Paraplegic patients: how to measure balance and what is normal or functional?
Barkoh, Kaku; Lucas, Joshua W; Lee, Larry; Hsieh, Patrick C; Wang, Jeffrey C; Rolfe, Kevin
2018-02-01
To review the current understanding and data of sagittal balance and alignment considerations in paraplegic patients. A PubMed literature search was conducted to identify all relevant articles relating to sagittal alignment and sagittal balance considerations in paraplegic and spinal cord injury patients. While there are numerous studies and publications on sagittal balance in the ambulatory patient with spinal deformity or complex spine disorders, there is paucity of the literature on "normal" sagittal balance in the paraplegic patients. Studies have reported significantly alterations of the sagittal alignment parameters in the non-ambulatory paraplegic patients compared to ambulatory patients. The variability of the alignment changes is related to the differences in the level of the spinal cord injury and their differences in the activations of truncal muscles to allow functional movements in those patients, particularly in optimizing sitting and transferring. Surgical goal in treating paraplegic patients with complex pathologies should not be solely directed to achieve the "normal" radiographic parameters of sagittal alignment in the ambulatory patients. The goal should be to maintain good coronal balance to allow ideal sitting position and to preserve motion segment to optimize functions of paraplegia patients. Current available literature data have not defined normal sagittal parameters for paraplegic patients. There are significant differences in postural sagittal parameters and muscle activations in paraplegic and non-spinal cord injury patients that can lead to differences in sagittal alignment and balance. Treatment goal in spine surgery for paraplegic patients should address their global function, sitting balance, and ability to perform self-care rather than the accepted radiographic parameters for adult spinal deformity in ambulatory patients.
Janssen, Michiel M A; Drevelle, Xavier; Humbert, Ludovic; Skalli, Wafa; Castelein, René M
2009-11-01
A three-dimensional analysis of spino-pelvic alignment in 60 asymptomatic young adult males and females. To analyze the differences in sagittal spino-pelvic alignment in a group of asymptomatic young adult males and females and describe gender specific reference values. Several spinal disorders like idiopathic scoliosis and Scheuermann's disease have a well-known sex-related prevalence ratio. As spino-pelvic alignment plays an important role in spinal biomechanics, it is imperative to analyze possible differences between the male and female spino-pelvic alignment. Furthermore, in spinal fusion surgery, normal sagittal balance should be recreated as closely as possible. An innovative biplanar ultra low-dose radiographic technique was used to obtain three-dimensional reconstructions of the spine (T1-L5), sacrum, and pelvis in a freestanding position of 30 asymptomatic young male and 30 young female adults. Values were calculated for thoracic kyphosis (T4-T12), lumbar lordosis (L1-S1), total and regional lumbopelvic lordosis (PRT12, PRL2, PRL4, and PRL5), sagittal plumb line of T1, T4, and T9 (HAT1, HAT4, and HAT9), T1-L5 sagittal spinal inclination, T9 sagittal offset, and pelvic parameters (pelvic tilt, sacral slope, and pelvic incidence). In addition, vertebral inclination in the sagittal plane of each vertebra was measured. Differences in spino-pelvic alignment between the sexes were analyzed. The female spine was more dorsally inclined (11 degrees vs. 8 degrees ; P = 0.003). High thoracic and thoracolumbar vertebrae were more dorsally inclined in women than in men. Thoracic kyphosis, lumbar lordosis, regional lumbopelvic lordosis, sagittal plumb lines, T9 sagittal offset, and pelvic parameters were not statistically different between the sexes. These results indicate that the female spine is definitely different from the male spine. The spine as whole and individual vertebrae in certain regions of the normal spine is more backwardly inclined in females than in males. Based on our previous research this signifies that these spinal regions are subjected to different biomechanical loading conditions. These vertebral segments are possibly less rotationally stable in females than in males.
Abelin-Genevois, K; Idjerouidene, A; Roussouly, P; Vital, J M; Garin, C
2014-07-01
To describe the normal cervical sagittal alignment of the pediatric spine in a normal population and to identify the changes during growth period. We randomly selected in PACS database 150 full-spine standing views. Exclusion criteria were: age >18 years, spinal deformity and any disease affecting the spine (medical charts reviewing). For cervical alignment we measured: OC-angle according to Mc Gregor, C1C7 angle, upper cervical angle, inferior cervical angle and C7 tilt. Spino pelvic parameters were analyzed: T1 tilt, thoracic kyphosis, lumbar lordosis, pelvic incidence, sacral slope and pelvic tilt. We compared two age subgroups (juvenile and adolescent). Differences between age groups and gender were tested using Student's t test. Correlations between sagittal spinal parameters were evaluated using Pearson's test. Cervical spine shape was correlated to cranio cervical orientation to maintain horizontal gaze (r = 0.60) and to thoracic kyphosis (r = -0.46). Cervical spine alignment was significantly different between the two age groups except for the global C1C7 cervical lordosis, which remained stable. A significant gender difference was found for all the cervical sagittal angles (p < 0.01) whereas no differences were demonstrated for the spino pelvic parameters, except the lumbar lordosis (p = 0.047). This study is the first to report the cervical spinal alignment in a normal pediatric Caucasian population. Even though cervical lordosis is the common shape, our results showed variability in cervical sagittal alignment. Cervical spine is a junctional area that adjusts its alignment to the head position and to the underlying spinal alignment.
Masaki, Mitsuhiro; Ikezoe, Tome; Fukumoto, Yoshihiro; Minami, Seigo; Aoyama, Junichi; Ibuki, Satoko; Kimura, Misaka; Ichihashi, Noriaki
2016-06-01
Age-related change of spinal alignment in the standing position is known to be associated with decreases in walking speed, and alteration in muscle quantity (i.e., muscle mass) and muscle quality (i.e., increases in the amount of intramuscular non-contractile tissue) of lumbar back muscles. Additionally, the lumbar lordosis angle in the standing position is associated with walking speed, independent of lower-extremity muscle strength, in elderly individuals. However, it is unclear whether spinal alignment in the standing position is associated with walking speed in the elderly, independent of trunk muscle quantity and quality. The present study investigated the association of usual and maximum walking speed with age, sagittal spinal alignment in the standing position, muscle quantity measured as thickness, and quality measured as echo intensity of lumbar muscles in 35 middle-aged and elderly women. Sagittal spinal alignment in the standing position (thoracic kyphosis, lumbar lordosis, and sacral anterior inclination angle) using a spinal mouse, and muscle thickness and echo intensity of the lumbar muscles (erector spinae, psoas major, and lumbar multifidus) using an ultrasound imaging device were also measured. Stepwise regression analysis showed that only age was a significant determinant of usual walking speed. The thickness of the lumbar erector spinae muscle was a significant, independent determinant of maximal walking speed. The results of this study suggest that a decrease in maximal walking speed is associated with the decrease in lumbar erector spinae muscles thickness rather than spinal alignment in the standing position in middle-aged and elderly women.
Smith, Justin S; Lafage, Virginie; Ryan, Devon J; Shaffrey, Christopher I; Schwab, Frank J; Patel, Alpesh A; Brodke, Darrel S; Arnold, Paul M; Riew, K Daniel; Traynelis, Vincent C; Radcliff, Kris; Vaccaro, Alexander R; Fehlings, Michael G; Ames, Christopher P
2013-10-15
Post hoc analysis of prospectively collected data. Development of methods to determine in vivo spinal cord dimensions and application to correlate preoperative alignment, myelopathy, and health-related quality-of-life scores in patients with cervical spondylotic myelopathy (CSM). CSM is the leading cause of spinal cord dysfunction. The association between cervical alignment, sagittal balance, and myelopathy has not been well characterized. This was a post hoc analysis of the prospective, multicenter AOSpine North America CSM study. Inclusion criteria for this study required preoperative cervical magnetic resonance imaging (MRI) and neutral sagittal cervical radiography. Techniques for MRI assessment of spinal cord dimensions were developed. Correlations between imaging and health-related quality-of-life scores were assessed. Fifty-six patients met inclusion criteria (mean age = 55.4 yr). The modified Japanese Orthopedic Association (mJOA) scores correlated with C2-C7 sagittal vertical axis (SVA) (r = -0.282, P = 0.035). Spinal cord volume correlated with cord length (r = 0.472, P < 0.001) and cord average cross-sectional area (r = 0.957, P < 0.001). For all patients, no correlations were found between MRI measurements of spinal cord length, volume, mean cross-sectional area or surface area, and outcomes. For patients with cervical lordosis, mJOA scores correlated positively with cord volume (r = 0.366, P = 0.022), external cord area (r = 0.399, P = 0.012), and mean cross-sectional cord area (r = 0.345, P = 0.031). In contrast, for patients with cervical kyphosis, mJOA scores correlated negatively with cord volume (r = -0.496, P = 0.043) and mean cross-sectional cord area (r = -0.535, P = 0.027). This study is the first to correlate cervical sagittal balance (C2-C7 SVA) to myelopathy severity. We found a moderate negative correlation in kyphotic patients of cord volume and cross-sectional area to mJOA scores. The opposite (positive correlation) was found for lordotic patients, suggesting a relationship of cord volume to myelopathy that differs on the basis of sagittal alignment. It is interesting to note that sagittal balance but not kyphosis is tied to myelopathy score. Future work will correlate alignment changes to cord morphology changes and myelopathy outcomes. SUMMARY STATEMENTS: This is the first study to correlate sagittal balance (C2-C7 SVA) to myelopathy severity. We found a moderate negative correlation in kyphotic patients of cord volume and cross-sectional area to mJOA scores. The opposite (positive correlation) was found for lordotic patients, suggesting a relationship of cord volume to myelopathy that differs on the basis of sagittal alignment.
Ilharreborde, Brice
2018-02-01
In the last decade, spine surgeons have been impacted by the "sagittal plane analysis revolution". Significant correlations have been found in adult spinal deformity (ASD) between sagittal lumbo-pelvic parameters and functional outcomes, but most of them do not apply in adolescent idiopathic scoliosis (AIS). Meanwhile, instrumentation and reduction strategies have considerably evolved. This paper aims to describe the preoperative sagittal alignment in AIS, and to report literature evidence regarding the influence of postoperative sagittal balance on complication rates, low back pain incidence and disc degeneration. A bibliographic search in Medline and Google database from 1984 to May 2017 was performed. The keywords included 'adolescent idiopathic scoliosis', 'adult scoliosis', 'sagittal alignment', 'proximal junctional kyphosis', 'distal junctional kyphosis', 'outcomes', 'low back pain' and 'complication', used individually or in combination. Algorithms of sagittal balance analysis and treatment decision have been reported in ASD, but the clinical situation is very different in children. Sagittal alignment greatly varies in AIS among the various Lenke types. Most patients are clinically balanced before surgery, but the spinal harmony is altered, with overgrowth of the anterior column and global sagittal flattening (undersestimated in 2D). The exact role of pelvic incidence and whether or not patients also use pelvic compensation to maintain balance still require further clarification. The incidence of radiological junctional failures remains highly variable, depending on definitions, cohort size and follow-up. Preoperative hyperkyphosis seems to be a consistent and relevant risk factor. Current literature does not support the recent trend to save motion segments (selective fusion), and no significant association was found between the distal level of fusion and the incidence of low back pain. Postoperative sagittal alignment seems to be more important than LIV selection to avoid disc degeneration at mid-term follow-up. It is clear now that sagittal alignment plays a major role in clinical outcomes and should not be neglected in AIS. Seven key guidelines that should be considered for each patient before surgery are reported (Table 2). Personalized planning using 3D technology is gaining popularity and might help in the future reducing complications.
Hresko, Michael T; Labelle, Hubert; Roussouly, Pierre; Berthonnaud, Eric
2007-09-15
Retrospective review of a radiographic database of high-grade spondylolisthesis patients in comparison with asymptomatic controls. To analyze the sagittal spinopelvic alignment in high-grade spondylolisthesis patients and identify subgroups that may require reduction to restore sagittal balance. High-grade spondylolisthesis is associated with an abnormally high pelvic incidence (PI); however, the spatial orientation of the pelvis, determined by sacral slope (SS) and pelvic tilt (PT), is not known. We hypothesized that sagittal spinal alignment would vary with the pelvic orientation. Digitized sagittal radiographs of 133 high-grade spondylolisthesis patients (mean age, 17 years) were measured to determined sagittal alignment. K-means cluster analysis identified 2 groups based on the PT and SS, which were compared by paired t test. Comparisons were made to asymptomatic controls matched for PI. High-grade spondylolisthesis patients had a mean PI of 78.9 degrees +/- 12.1 degrees . Cluster analysis identified a retroverted, unbalanced pelvis group with high PT (36.5 degrees +/- 8.0 degrees )/low SS (40.3 degrees +/- 9.0 degrees ) and a balanced pelvic group with low PT (mean 21.3 degrees +/- 8.2 degrees )/high SS (59.9 degrees +/- 11.2 degrees ). The retroverted pelvis group had significantly greater L5 incidence and lumbosacral angle with less thoracic kyphosis than the balanced pelvic group. A total of 83% of controls had a "balanced pelvis" based on the categorization by SS and PT. Analysis of sagittal alignment of high-grade spondylolisthesis patients revealed distinct groups termed "balanced" and "unbalanced" pelvis. The PT and SS were similar in controls and balanced pelvis patients. Unbalanced pelvis patients had a sagittal spinal alignment that differed from the balanced pelvis and control groups. Treatment strategies for high-grade spondylolisthesis should reflect the different mechanical strain on the spinopelvic junction in each group; reduction techniques might be considered in patients with an unbalanced pelvis high-grade spondylolisthesis.
Nowakowski, Andrzej; Dworak, Lechosław B.; Kubaszewski, Łukasz; Kaczmarczyk, Jacek
2012-01-01
Summary The objective of this study was to discuss the variables influencing alignment mechanisms of the spine, with particular consideration of post-surgical alignment in adolescent idiopathic scoliosis. The analysis is based on information currently available in the literature, and on the authors’ own experience, which includes surgical material from over 2200 cases of idiopathic scoliosis. Over 50% of cases of adolescent idiopathic scoliosis are decompensated before surgical treatment. Spinal alignment is most significantly influenced by the position of the pelvis. Surgical restoration of lumbar lordosis is more important than attempting to restore thoracic kyphosis in the sagittal plane. The sagittal profile has an essential impact on spinal alignment. The same curves in the coronal plane can have various 3-dimensional configurations. Clinical difficulties in the assessment of thoracic kyphosis and lumbar lordosis result from the fact that they undergo constant change with age. Thoracic hypokyphosis diagnosed before surgery is a very frequent symptom of curve progression. The presence of proximal (thoraco-thoracic) and distal (thoraco-lumbar) junctional kyphosis is very important for planning the scope of spondylodesis. The natural tendency of the spine for alignment (compensation) after surgery nowadays occurs more naturally by applying derotational forces through pedicle screws, compared to the distraction devices (eg, Harrington rod) used in the past. PMID:23229319
Analysis of sagittal spinopelvic parameters in achondroplasia.
Hong, Jae-Young; Suh, Seung-Woo; Modi, Hitesh N; Park, Jong-Woong; Park, Jung-Ho
2011-08-15
Prospective radiological analysis of patients with achondroplasia. To analyze sagittal spinal alignment and pelvic orientation in achondroplasia patients. Knowledge of sagittal spinopelvic parameters is important for the treatment of achondroplasia, because they differ from those of the normal population and can induce pain. The study and control groups were composed of 32 achondroplasia patients and 24 healthy volunteers, respectively. All underwent lateral radiography of the whole spine including hip joints. The radiographic parameters examined were sacral slope (SS), pelvic tilt, pelvic incidence (PI), S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis (LL1, LL2), and sagittal balance. Statistical analysis was performed to identify significant differences between the two groups. In addition, correlations between parameters and symptoms were sought. Sagittal spinopelvic parameters, namely, pelvic tilt, pelvic incidence, S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis 1 and sagittal balance were found to be significantly different in the patient and control groups (P < 0.05). In addition, sagittal parameters were found to be related to each other in the patient group (P < 0.05), that is, PI was related to SS and pelvic tilt, and LL was related to thoracic kyphosis. Furthermore, in terms of relations between spinal and pelvic parameters, LL was related to SS and PI, and sagittal balance was related to SS and PI. Furthermore, LL and T10-L2 kyphosis were found to be related to pain (P < 0.05), whereas no other parameter was found to be related to VAS scores. Sagittal parameters and possible relationships between sagittal parameters and symptoms were found to be significantly different in achondroplasia patients and normal healthy controls. The present study shows that sagittal spinal and pelvic parameters can assist the treatment of spinal disorders in achondroplasia patients.
Masaki, Mitsuhiro; Aoyama, Tomoki; Murakami, Takashi; Yanase, Ko; Ji, Xiang; Tateuchi, Hiroshige; Ichihashi, Noriaki
2017-11-01
Muscle stiffness of the lumbar back muscles in low back pain (LBP) patients has not been clearly elucidated because quantitative assessment of the stiffness of individual muscles was conventionally difficult. This study aimed to examine the association of LBP with muscle stiffness assessed using ultrasonic shear wave elastography (SWE) and muscle mass of the lumbar back muscle, and spinal alignment in young and middle-aged medical workers. The study comprised 23 asymptomatic medical workers [control (CTR) group] and 9 medical workers with LBP (LBP group). Muscle stiffness and mass of the lumbar back muscles (lumbar erector spinae, multifidus, and quadratus lumborum) in the prone position were measured using ultrasonic SWE. Sagittal spinal alignment in the standing and prone positions was measured using a Spinal Mouse. The association with LBP was investigated by multiple logistic regression analysis with a forward selection method. The analysis was conducted using the shear elastic modulus and muscle thickness of the lumbar back muscles, and spinal alignment, age, body height, body weight, and sex as independent variables. Multiple logistic regression analysis showed that muscle stiffness of the lumbar multifidus muscle and body height were significant and independent determinants of LBP, but that muscle mass and spinal alignment were not. Muscle stiffness of the lumbar multifidus muscle in the LBP group was significantly higher than that in the CTR group. The results of this study suggest that LBP is associated with muscle stiffness of the lumbar multifidus muscle in young and middle-aged medical workers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hey, Hwee Weng Dennis; Wong, Chengyuan Gordon; Lau, Eugene Tze-Chun; Tan, Kimberly-Anne; Lau, Leok-Lim; Liu, Ka-Po Gabriel; Wong, Hee-Kit
2017-02-01
Sitting spinal alignment is increasingly recognized as a factor influencing strategy for deformity correction. Considering that most individuals sit for longer hours in a "slumped" rather than in an erect posture, greater understanding of the natural sitting posture is warranted. This study aimed to investigate the differences in sagittal spinal alignment between two common sitting postures: a natural, patient-preferred posture; and an erect, investigator-controlled posture that is commonly used in alignment studies. This is a randomized, prospective study of 28 young, healthy patients seen in a tertiary hospital over a 6-month period. Twenty-eight patients (24 men, 4 women), with a mean age of 24 years (range 19-38), were recruited for this study. All patients with first episode of lower back pain of less than 3 months' duration were included. The exclusion criteria consisted of previous spinal surgery, radicular symptoms, red flag symptoms, previous spinal trauma, obvious spinal deformity on forward bending test, significant personal or family history of malignancy, and current pregnancy. Radiographic measurements included sagittal vertical axis (SVA), lumbar lordosis (LL), thoracolumbar angle (TL), thoracic kyphosis (TK), and cervical lordosis (CL). Standard spinopelvic parameters (pelvic incidence, pelvic tilt [PT], and sacral slope) and sagittal apex and end vertebrae were also measured. Basic patient demographics (age, gender, ethnicity) were recorded. Lateral sitting whole spine radiographs were obtained using a slot scanner in the imposed erect and the natural sitting posture. Statistical analyses of the radiographical parameters were performed comparing the two sitting postures using chi-squared tests for categorical variables and paired t tests for continuous variables. There was forward SVA shift between the two sitting postures by a mean of 2.9 cm (p<.001). There was a significant increase in CL by a mean of 11.62° (p<.001), and TL kyphosis by a mean of 11.48° (p<.001), as well as a loss of LL by a mean of 21.26° (p<.001). The mean PT increased by 17.68° (p<.001). The entire thoracic and lumbar spine has the tendency to form a single C-shaped curve with the apex moving to L1 (p=.002) vertebra in the majority of patients. In a natural sitting posture, the lumbar spine becomes kyphotic and contributes to a single C-shaped sagittal profile comprising the thoracic and the lumbar spine. This is associated with an increase in CL and PT, as well as a constant SVA. These findings lend insight into the body's natural way of energy conservation using the posterior ligamentous tension band while achieving sitting spinal sagittal balance. It also provides information on one of the possible causes of proximal junctional kyphosis or proximal junctional failure. Copyright © 2016 Elsevier Inc. All rights reserved.
Obeid, Ibrahim; Hauger, Olivier; Aunoble, Stéphane; Bourghli, Anouar; Pellet, Nicolas; Vital, Jean-Marc
2011-09-01
It has become well recognised that sagittal balance of the spine is the result of an interaction between the spine and the pelvis. Knee flexion is considered to be the last compensatory mechanism in case of sagittal imbalance, but only few studies have insisted on the relationship between spino-pelvic parameters and lower extremity parameters. Correlation between the lack of lumbar lordosis and knee flexion has not yet been established. A retrospective study was carried out on 28 patients with major spinal deformities. The EOS system was used to measure spinal and pelvic parameters and the knee flexion angle; the lack of lumbar lordosis was calculated after prediction of lumbar lordosis with two different formulas. Correlation analysis between the different measured parameters was performed. Lumbar lordosis correlated with sacral slope (r = -0.71) and moderately with knee flexion angle (r = 0.42). Pelvic tilt correlated moderately with knee flexion angle (r = 0.55). Lack of lumbar lordosis correlated best with knee flexion angle (r = 0.72 and r = 0.63 using the two formulas, respectively). Knee flexion as a compensatory mechanism to sagittal imbalance was well correlated to the lack of lordosis and, depending on the importance of the former parameter, the best procedure to correct sagittal imbalance could be chosen.
Schroeder, J; Reer, R; Braumann, K M
2015-02-01
As reliability of raster stereography was proved only for sagittal plane parameters with repeated measures on the same day, the present study was aiming at investigating variability and reliability of back shape reconstruction for all dimensions (sagittal, frontal, transversal) and for different intervals. For a sample of 20 healthy volunteers, intra-individual variability (SEM and CV%) and reliability (ICC ± 95% CI) were proved for sagittal (thoracic kyphosis, lumbar lordosis, pelvis tilt angle, and trunk inclination), frontal (pelvis torsion, pelvis and trunk imbalance, vertebral side deviation, and scoliosis angle), transversal (vertebral rotation), and functional (hyperextension) spine shape reconstruction parameters for different test-retest intervals (on the same day, between-day, between-week) by means of video raster stereography. Reliability was high for the sagittal plane (pelvis tilt, kyphosis and lordosis angle, and trunk inclination: ICC > 0.90), and good to high for lumbar mobility (0.86 < ICC < 0.97). Apart from sagittal plane spinal alignment, there was a lack of certainty for a high reproducibility indicated by wider ICC confidence intervals. So, reliability was fair to high for vertebral side deviation and the scoliosis angle (0.71 < ICC < 0.95), and poor to good for vertebral rotation values as well as for frontal plane upper body and pelvis position parameters (0.65 < ICC < 0.92). Coefficients for the between-day and between-week interval were a little lower than for repeated measures on the same day. Variability (SEM) was less than 1.5° or 1.5 mm, except for trunk inclination. Relative variability (CV) was greater in global trunk position and pelvis parameters (35-98%) than in scoliosis (14-20%) or sagittal sway parameters (4-8 %). Although we found a lower reproducibility for the frontal plane, raster stereography is considered to be a reliable method for the non-invasive, three-dimensional assessment of spinal alignment in normal non-scoliotic individuals in the sagittal plane and partly for scoliosis parameters, which fulfils scientific as well as practical recommendations for spine shape screening and monitoring, but cross-sectional or follow-up effect analyses should take into account the degree of reliability differing in various spine shape parameters. Further investigations should be conducted to analyse reliability in scoliosis patients with differing spinal deformities.
Muramoto, Akio; Imagama, Shiro; Ito, Zenya; Hirano, Kenichi; Ishiguro, Naoki; Hasegawa, Yukiharu
2016-03-01
Spinal sagittal imbalance has been well known risk factor of decreased quality of life in the field of adult spinal deformity. However, the impact of spinal sagittal balance on locomotive syndrome and physical performance in community-living elderly has not yet been clarified. The present study investigated the influence of spinal sagittal alignment on locomotive syndrome (LS) and physical performance in community-living middle-aged and elderly women. A total of 125 women between the age of 40-88 years (mean 66.2 ± 9.7 years) who completed the questionnaires, spinal mouse test, physical examination and physical performance tests in Yakumo study were enrolled in this study. Participants answered the 25-Question Geriatric Locomotive Function Scale (GLFS-25), the visual analog scale (VAS) for low back pain (LBP), knee pain. LS was defined as having a score of >16 points on the GLFS-25. Using spinal mouse, spinal inclination angle (SIA), thoracic kyphosis angle (TKA), lumbar lordosis angle (LLA), sacral slope angle (SSA), thoracic spinal range of motion (TSROM), lumbar spinal range of motion (LSROM) were measured. Timed-up-and-go test (TUG), one-leg standing time with eyes open (OLS), and maximum stride, back muscle strength were also measured. The relationship between spinal sagittal parameters and GLFS-25, VAS and physical performance tests were analyzed. 26 people were diagnosed as LS and 99 were diagnosed as non-LS. LBP and knee pain were greater, physical performance tests were poorer, SIA were greater, LLA were smaller in LS group compared to non-LS group even after adjustment by age. SIA significantly correlated with GLFS-25, TUG, OLS and maximum stride even after adjustment by age. The cutoff value of SIA for locomotive syndrome was 6°. People with a SIA of 6° or greater were grouped as "Inclined" and people with a SIA of less than 6° were grouped as "Non-inclined". 21 people were "Inclined" and 104 were "Non-inclined". Odds ratio to fall in LS of Inclined group compared to Non-inclined group is 5.0. GLFS-25 were significantly higher, VAS for LBP were greater, TUG, OLS and maximum stride were poorer in Inclined group compared to Non-inclined group even after adjustment by age. The present study demonstrated that spinal sagittal balance influences the LS and physical performance in community-living middle-aged and elderly women. SIA is a useful spinal parameter to evaluate the risk of LS, and its cutoff value is 6°. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Miyakoshi, N; Hongo, M; Kobayashi, T; Abe, T; Abe, E; Shimada, Y
2015-11-01
This study evaluated changes in spinal alignment and quality of life (QOL) after corrective spinal surgery for patients with postmenopausal osteoporosis and spinal kyphosis. Spinal global alignment and QOL were significantly improved after corrective spinal surgery but did not reach the level of non-operated controls. With the increased aging of society, the demand for corrective spinal instrumentation for spinal kyphosis in osteoporotic patients is increasing. However, previous studies have not focused on the improvement of quality of life (QOL) after corrective spinal surgery in patients with osteoporosis, compared to non-operated control patients. The purposes of this study were thus to evaluate changes in spinal alignment and QOL after corrective spinal instrumentation for patients with osteoporosis and spinal kyphosis and to compare these results with non-operated patients. Participants comprised 39 patients with postmenopausal osteoporosis ≥50 years old who underwent corrective spinal surgery using multilevel posterior lumbar interbody fusion (PLIF) for symptomatic thoracolumbar or lumbar kyphosis, and 82 age-matched patients with postmenopausal osteoporosis without prevalent vertebral fractures. Spinopelvic parameters were evaluated with standing lateral spine radiography, and QOL was evaluated with the Japanese Osteoporosis QOL Questionnaire (JOQOL), SF-36, and Roland-Morris Disability Questionnaire (RDQ). Lumbar kyphosis angle, sagittal vertical axis, and pelvic tilt were significantly improved postoperatively. QOL evaluated with all three questionnaires also significantly improved after 6 months postoperatively, particularly in domain and subscale scores for pain and general/mental health. However, these radiographic parameters, total JOQOL score, SF-36 physical component summary score, and RDQ score were significantly inferior compared with non-operated controls. The results indicate that spinal global alignment and QOL were significantly improved after corrective spinal surgery using multilevel PLIF for patients with osteoporosis and spinal kyphosis but did not reach the level of non-operated controls.
Ishikawa, Yoshinori; Miyakoshi, Naohisa; Hongo, Michio; Kasukawa, Yuji; Kudo, Daisuke; Shimada, Yoichi
2017-03-01
Spinal deformities can affect quality of life (QOL) and risk of falling, but no studies have explored the relationships of spinal mobility and sagittal alignment of spine and the lower extremities simultaneously. Purpose of this study is to clarify the relationship of those postural parameters to QOL and risk of falling. The study evaluated 110 subjects (41 men, 69 women; mean age, 73 years). Upright and flexion and extension angles for thoracic kyphosis, lumbar lordosis, and spinal inclination were evaluated with SpinalMouse ® . Total-body inclination and hip and knee flexion angles in upright position were measured from lateral photographs. Subjects were divided into Fallers (n=23, 21%) and Non-fallers (n=87, 79%) based on past history of falls. QOL was assessed using the Short Form 36 Health Survey (SF-36 ® ). Age, total-body inclination, spinal inclination upright and in extension, thoracic kyphosis in flexion, lumbar lordosis upright and in extension, and knee flexion correlated significantly with the SF-36. Multiple regression analysis revealed total-body inclination and knee flexion to have the most significant relationships with the SF-36. SF-36, total-body inclination, spinal inclination in extension, thoracic kyphosis in flexion, lumbar lordosis upright and in extension, and hip and knee flexion angles differed significantly between Fallers and Non-fallers (P<0.05 for all). Multivariate logistic regression analyses revealed lumbar lordosis in extension to be a significant predictor of falling (P=0.038). Forward-stooped posture and knee-flexion deformity could be important indicator of lower QOL. Moreover, limited extension in the lumbar spine could be a useful screening examination for fall prevention in the elderly. Copyright © 2017 Elsevier B.V. All rights reserved.
Hikata, Tomohiro; Watanabe, Kota; Fujita, Nobuyuki; Iwanami, Akio; Hosogane, Naobumi; Ishii, Ken; Nakamura, Masaya; Toyama, Yoshiaki; Matsumoto, Morio
2015-10-01
The object of this study was to investigate correlations between sagittal spinopelvic alignment and improvements in clinical and quality-of-life (QOL) outcomes after lumbar decompression surgery for lumbar spinal canal stenosis (LCS) without coronal imbalance. The authors retrospectively reviewed data from consecutive patients treated for LCS with decompression surgery in the period from 2009 through 2011. They examined correlations between preoperative or postoperative sagittal vertical axis (SVA) and radiological parameters, clinical outcomes, and health-related (HR)QOL scores in patients divided according to SVA. Clinical outcomes were assessed according to Japanese Orthopaedic Association (JOA) and visual analog scale (VAS) scores. Health-related QOL was evaluated using the Roland-Morris Disability Questionnaire (RMDQ) and the JOA Back Pain Evaluation Questionnaire (JOABPEQ). One hundred nine patients were eligible for inclusion in the study. Compared to patients with normal sagittal alignment prior to surgery (Group A: SVA < 50 mm), those with preoperative sagittal imbalance (Group B: SVA ≥ 50 mm) had significantly smaller lumbar lordosis and thoracic kyphosis angles and larger pelvic tilt. In Group B, there was a significant decrease in postoperative SVA compared with the preoperative SVA (76.3 ± 29.7 mm vs. 54.3 ± 39.8 mm, p = 0.004). The patients in Group B with severe preoperative sagittal imbalance (SVA > 80 mm) had residual sagittal imbalance after surgery (82.8 ± 41.6 mm). There were no significant differences in clinical and HRQOL outcomes between Groups A and B. Compared to patients with normal postoperative SVA (Group C: SVA < 50 mm), patients with a postoperative SVA ≥ 50 mm (Group D) had significantly lower JOABPEQ scores, both preoperative and postoperative, for walking ability (preop: 36.6 ± 26.3 vs. 22.7 ± 26.0, p = 0.038, respectively; postop: 71.1 ± 30.4 vs. 42.5 ± 29.6, p < 0.001) and social functioning (preop: 38.7 ± 18.5 vs. 30.2 ± 16.7, p = 0.045; postop: 67.0 ± 25.8 vs. 49.6 ± 20.0, p = 0.001), as well as significantly higher postoperative RMDQ (4.9 ± 5.2 vs. 7.9 ± 5.7, p = 0.015) and VAS scores for low-back pain (2.68 ± 2.69 vs. 3.94 ± 2.59, p = 0.039). Preoperative sagittal balance was not significantly correlated with clinical or HRQOL outcomes after decompression surgery in LCS patients without coronal imbalance. Decompression surgery improved the SVA value in patients with preoperative sagittal imbalance; however, the patients with severe preoperative sagittal imbalance (SVA > 80 mm) had residual imbalance after decompression surgery. Both clinical and HRQOL outcomes were negatively affected by postoperative residual sagittal imbalance.
Hey, Hwee Weng Dennis; Tan, Kian Loong Melvin; Moorthy, Vikaesh; Lau, Eugene Tze-Chun; Lau, Leok-Lim; Liu, Gabriel; Wong, Hee-Kit
2018-03-01
To describe normal variations in sagittal spinal radiographic parameters over an interval period and establish physiological norms and guidelines for which these images should be interpreted. Data were prospectively collected from a continuous series of adult patients with first-episode mild low back pain presenting to a single institution. The sagittal parameters of two serial radiographic images taken 6-months apart were obtained with the EOS ® slot scanner. Measured parameters include CL, TK, TL, LL, PI, PT, SS, and end and apical vertebrae. Chi-squared test and Wilcoxon Signed Rank test were used to compare categorical and continuous variables, respectively. Sixty patients with a total of 120 whole-body sagittal X-rays were analysed. Mean age was 52.1 years (SD 21.2). Mean interval between the first and second X-rays was 126.2 days (SD 47.2). Small variations (< 1°) occur for all except PT (1.2°), CL (1.2°), and SVA (2.9 cm). Pelvic tilt showed significant difference between two images (p = 0.035). Subgroup analysis based on the time interval between X-rays, and between the first and second X-rays, did not show significant differences. Consistent findings were found for end and apical vertebrae of the thoracic and lumbar spine between the first and second X-rays for sagittal curve shapes. Radiographic sagittal parameters vary between serial images and reflect dynamism in spinal balancing. SVA and PT are predisposed to the widest variation. SVA has the largest variation between individuals of low pelvic tilt. Therefore, interpretation of these parameters should be patient specific and relies on trends rather than a one-time assessment.
Yeh, Kuang-Ting; Lee, Ru-Ping; Chen, Ing-Ho; Yu, Tzai-Chiu; Peng, Cheng-Huan; Liu, Kuan-Lin; Wang, Jen-Hung; Wu, Wen-Tien
2018-05-01
Sagittal spinopelvic balance and proper sagittal alignment are important when planning corrective or reconstructive spinal surgery. Prior research suggests that people from different races and countries have moderate divergence; to the best of our knowledge, the population of Taiwan has not been studied with respect to this parameter. To investigate normal age- and sex-related differences in whole-spine sagittal alignment and balance of asymptomatic adults without spinal disorders. In this prospective study, we used convenience sampling to recruit asymptomatic volunteers who accompanied patients in the outpatient orthopaedic department. One hundred forty males with a mean age of 48 ± 19 years and 252 females with a mean age of 53 ± 17 years underwent standing lateral radiographs of the whole spine. For analysis, participants were divided in three groups by age (20 to 40 years, 41 to 60 years, and 61 to 80 years) and analyzed by sex (male and female). The following eight radiologic parameters were measured: sacral slope, pelvic tilt, pelvic incidence, thoracic kyphosis, lumbar lordosis, cervical lordosis, C2-C7 sagittal vertical axis, and C7-S1 sagittal vertical axis. Three observers performed estimations of the sagittal parameters twice, and the intraclass correlation coefficients for inter- and intraobserver variability were 0.81 and 0.83. The mean pelvic incidence was 49° ± 12°; lumbar lordosis was smaller in the group that was 61 to 80 years old than in the groups that were 20 to 40 years and 41 to 60 years (95% CI of the difference, 4.50-13.64 and 1.00- 9.60; p < 0.001), while cervical lordosis was greater in the 61 to 80 years age group than the other two groups (95% CI of the difference, -14.64 to -6.57 and -11.57 to -3.45; p < 0.001). The mean C7-S1 sagittal vertical axis was 30 ± 29 mm, and there was no difference among the three groups and between males and females. Pelvic tilt was greater in the group 61 to 80 years old than the 20 to 40 years and 41 to 60 years age groups (95% CI of the difference, -10.81 to -5.42 and -7.15 to -2.08; p < 0.001), while sacral slope was larger in 61 to 80 years age group than in the 41 to 60 years group (95% CI of the difference, 0.79-6.25; p = 0.006). C7 slope was greater in 61 to 80 years age group than in the 20 to 40 years group (95% CI of the difference, -7.49 to -1.26; p = 0.002) and larger in 41 to 60 years age group than in 20 to 40 years group (95% CI of the difference, -6.31 to -0.05; p = 0.045). C2-C7 sagittal vertical axis was greater in males than in females (95% CI of the difference, 2.84-7.74; p < 0.001). C7 slope was negatively correlated with thoracic kyphosis (95% CI of the difference, -0.619 to 0.468; p < 0.001) and lumbar lordosis (95% CI of the difference, -0.356 to -0.223; p < 0.001), and positively correlated with pelvic incidence (95% CI of the difference, 0.058- 0.215; p < 0.001) and cervical lordosis (95% CI of the difference, 0.228 - 0.334; p < 0.001). Normal values of the spinopelvic sagittal parameters vary by age and sex in Taiwanese individuals. Pelvic incidence and sacral slope observed in this population seemed smaller than those reported in other studies of white populations; this seems important when considering spine surgery in Taiwanese patients. Future studies should include collection of whole body sagittal parameters of larger and more-diverse populations, and assessments of patients with symptomatic spinal disorders.
Lenke, L G; Engsberg, J R; Ross, S A; Reitenbach, A; Blanke, K; Bridwell, K H
2001-07-15
Prospective evaluation of gait and spinal-pelvic balance parameters in patients with adolescent idiopathic scoliosis undergoing a spinal fusion. To evaluate changes in gait and three-dimensional alignment and balance of the spine relative to the pelvis as a consequence of spinal fusion. Preoperative and postoperative spinal radiographs have been the major forms of outcome analysis of adolescent idiopathic scoliosis fusions. The use of optoelectronic analysis for posture and gait has gained acceptance recently. However, there is a paucity of data quantifying, comparing, and correlating structural and functional changes in patients undergoing scoliosis fusion surgery including upright posture and gait. Thirty patients with adolescent idiopathic scoliosis undergoing an instrumented spinal fusion were prospectively evaluated. Coronal and sagittal vertical alignment was evaluated on radiographs (CVA-R, SVA-R), during upright posture (CVA-P and SVA-P), and during gait (CVA-G, SVA-G). Transverse plane alignment was evaluated by the acromion-pelvis angle during gait. Gait speed was significantly decreased (P < 0.05) between preoperative (129 +/- 16 cm/sec) and 2-year postoperative (119 +/- 16 cm/sec) testing sessions. Decreasing gait speed was the result of significantly reduced cadence and decreased stride length. There were no significant differences for lower extremity kinematics over the entire gait cycle. Spinal-pelvic balance parameters showed significant improvement in mean CVA-R, CVA-G (P < 0.05), then unchanged CVA-P at 2 years postoperation. CVA-P was relatively unchanged while the mean CVA-G also showed significant improvement from preoperation (2.2 +/- 2.4 cm) to 2 years postoperation (1.3 +/- 1.3 cm)(P < 0.05). The mean SVA-R, SVA-P, and SVA-G were unchanged at 2 years postoperation (P > 0.05). The acromion-pelvis angle during gait at maximum shoulder rotation was statistically improved at 1 year (P = 0.002) and 2 years (P = 0.001) after surgery. Importantly, CVA-P correlated with CVA-G, and SVA-P correlated with SVA-G to the P < 0.05 level. Patients with adolescent idiopathic scoliosis undergoing spinal fusion show slightly decreased gait speed at 2 years postoperation without any change in lower extremity kinematics. Spinal-pelvic balance parameters are improved in the coronal plane and unchanged in the sagittal plane radiographically and during standing posture and gait. Transverse plane parameters also are improved at maximum shoulder rotation during gait.
Clément, Jean-Luc; Geoffray, Anne; Yagoubi, Fatima; Chau, Edouard; Solla, Federico; Oborocianu, Ioana; Rampal, Virginie
2013-11-01
Sagittal spine and pelvic alignment of adolescent idiopathic scoliosis (AIS) is poorly described in the literature. It generally reports the sagittal alignment with regard to the type of curve and never correlated to the thoracic kyphosis. The objective of this study is to investigate the relationship between thoracic kyphosis, lumbar lordosis and sagittal pelvic parameters in thoracic AIS. Spinal and pelvic sagittal parameters were evaluated on lateral radiographs of 86 patients with thoracic AIS; patients were separated into hypokyphosis group (n = 42) and normokyphosis group (n = 44). Results were statistically analyzed. The lumbar lordosis was lower in the hypokyphosis group, due to the low proximal lordosis. The thoracic kyphosis was not correlated with any pelvic parameters but with the proximal lordosis. The pelvic incidence was correlated with sacral slope, pelvic tilt, lumbar lordosis and highly correlated with distal lumbar lordosis in the two groups. There was a significant linear regression between thoracic kyphosis and proximal lordosis and between pelvic incidence and distal lordosis. We can consider that the proximal part of the lordosis depends on the thoracic kyphosis and the distal part depends on the pelvic incidence. The hypokyphosis in AIS is independent of the pelvic parameters and could be described as a structural parameter, characteristic of the scoliotic deformity.
Shilton, Michael; Branney, Jonathan; de Vries, Bas Penning; Breen, Alan C
2015-01-01
The association between cervical lordosis (sagittal alignment) and neck pain is controversial. Further, it is unclear whether spinal manipulative therapy can change cervical lordosis. This study aimed to determine whether cervical lordosis changes after a course of spinal manipulation for non-specific neck pain. Posterior tangents of C2 and C6 were drawn on the lateral cervical fluoroscopic images of 29 patients with subacute/chronic non-specific neck pain and 30 healthy volunteers matched for age and gender, recruited August 2011 to April 2013. The resultant angle was measured using 'Image J' digital geometric software. The intra-observer repeatability (measurement error and reliability) and intra-subject repeatability (minimum detectable change (MDC) over 4 weeks) were determined in healthy volunteers. A comparison of cervical lordosis was made between patients and healthy volunteers at baseline. Change in lordosis between baseline and 4-week follow-up was determined in patients receiving spinal manipulation. Intra-observer measurement error for cervical lordosis was acceptable (SEM 3.6°) and reliability was substantial ICC 0.98, 95 % CI 0.962-0991). The intra-subject MDC however, was large (13.5°). There was no significant difference between lordotic angles in patients and healthy volunteers (p = 0.16). The mean cervical lordotic increase over 4 weeks in patients was 2.1° (9.2) which was not significant (p = 0.12). This study found no difference in cervical lordosis (sagittal alignment) between patients with mild non-specific neck pain and matched healthy volunteers. Furthermore, there was no significant change in cervical lordosis in patients after 4 weeks of cervical spinal manipulation.
Ito, Kenyu; Imagama, Shiro; Ito, Zenya; Ando, Kei; Kobayashi, Kazuyoshi; Hida, Tetsuro; Tsushima, Mikito; Ishikawa, Yoshimoto; Matsumoto, Akiyuki; Nishida, Yoshihiro; Ishiguro, Naoki
2016-10-01
Sagittal balance has recently been the focus of studies aimed at understanding the correction force required for both coronal and sagittal malalignment. However, the correlation between cervical kyphosis and sagittal balance in AIS patients has yet to be thoroughly investigated. This study aimed to clarify the correlation between cervical alignment and spinal balance in patients with adolescent idiopathic scoliosis (AIS). Here, we hypothesized that cervical kyphosis patients can be classified into groups by the apex of thoracic kyphosis. This study included 92 AIS patients (84 females, 8 males; mean age, 15.1 years). Patients were divided into the cervical lordosis (CL), cervical sigmoid (CS), or cervical kyphosis (CK) groups and further classified according to the apex of thoracic kyphosis into High (above T3), Middle (T4-T9), and Low (below T10) groups. There were 17 (18.5 %), 22 (23.9 %), and 53 (57.6 %) patients with CL, CS, and CK, respectively. In the CK group, 13 had CK-High, 35 had CK-Middle, and 5 had CK-Low. The C7 sagittal vertical axis (C7SVA) measurements were most backward in CK-High and most forward in CK-Low. The T5-12 kyphosis (TK) measurement was significantly lower in CK-High. Most AIS patients had kyphotic cervical alignment. Patients with CK can be classified as having CK-High, CK-Middle, or CK-Low according to the apex of thoracic kyphosis. CK-High is due to thoracic hypokyphosis with a backward balanced C7SVA. CK-Middle is well-balanced cervical kyphosis. CK-Low has forward-bent global kyphosis of the cervicothoracic spine that positioned the C7SVA forward.
Hey, Hwee Weng Dennis; Teo, Alex Quok An; Tan, Kimberly-Anne; Ng, Li Wen Nathaniel; Lau, Leok-Lim; Liu, Ka-Po Gabriel; Wong, Hee-Kit
2017-06-01
The current prevailing school of thought in spinal deformity surgery is to restore sagittal balance with reference to the alignment of the spine when the patient is standing. This strategy, however, likely accounts for increased rates of proximal junctional failure. The purpose of this study was to investigate the differences between the spine in standing and sitting positions as these may elucidate reasons for deformity correction failure. A prospective, comparative study of 58 healthy patients presenting to a tertiary hospital over a 6-month period was carried out. All patients presenting with a less than 3-month history of first episode lower back pain were included. Patients who had radicular symptoms, red flag symptoms, previous spine surgery, or visible spinal deformity during forward bending test were excluded. Pregnant patients were also excluded. Radiographic measurements including sagittal vertical axis (SVA), lumbar lordosis (LL), thoracolumbar angle (TL), thoracic kyphosis (TK), cervical lordosis (CL), pelvic incidence (PI), and pelvic tilt (PT) were collected. The sagittal apex and end vertebrae of all radiographs were also recorded. Basic demographic data (age, gender, and ethnicity) was recorded. Lateral standing and sitting radiographs were obtained using EOS technology. Statistical analysis was performed to compare standing and sitting parameters using chi-square tests for categorical variables and paired t tests for continuous variables. Taking the standing position as the reference point, forward displacement of the SVA occurred during sitting by a mean of 6.39±3.87 cm (p<.001). This was accompanied by a reduction of LL and TK by a mean of 24.63±12.70° (p<.001) and 8.56±7.21°(p<.001), respectively. The TL became more lordotic by a mean of 3.25±7.30° (p<.001). The CL only reached borderline significance (p=.047) for increased lordosis by a mean of 3.45±12.92°. The PT also increased by 50% (p<.001). Despite relatively constant end vertebrae, the apex vertebra moved inferiorly for the thoracic curve (p<.006) and superiorly for the lumbar curve (p<.001) by approximately one vertebral level each. Sagittal spinal alignment changes significantly between standing and sitting positions. Understanding these differences is crucial to avoid overcorrection of LL, which may occur if deformity correction is based solely on the spine's standing sagittal profile. Copyright © 2016 Elsevier Inc. All rights reserved.
Sagittal alignment after single cervical disc arthroplasty.
Guérin, Patrick; Obeid, Ibrahim; Gille, Olivier; Bourghli, Anouar; Luc, Stéphane; Pointillart, Vincent; Vital, Jean-Marc
2012-02-01
Prospective study. To analyze the sagittal balance after single-level cervical disc replacement (CDR) and range of motion (ROM). To define clinical and radiologic parameters those have a significant correlation with segmental and overall cervical curvature after CDR. Clinical outcomes and ROM after CDR with Mobi-C (LDR, Troyes, France) prosthesis have been documented in few studies. No earlier report of this prosthesis has studied correlations between static and dynamic parameters or those between static parameters and clinical outcomes. Forty patients were evaluated. Clinical outcome was assessed using the Short Form-36 questionnaire, Neck Disability Index, and a Visual Analog Scale. Spineview software (Surgiview, Paris, France) was used to investigate sagittal balance parameters and ROM. The mean follow-up was 24.3 months (range: 12 to 36 mo). Clinical outcomes were satisfactory. There was a significant improvement of Short Form-36, Neck Disability Index, and Visual Analog Scale scores. Mean ROM was 8.3 degrees preoperatively and 11.0 degrees postoperatively (P=0.013). Mean preoperative C2C7 curvature was 12.8 and 16.0 degrees at last follow-up (P=0.001). Mean preoperative functional spinal unit (FSU) angle was 2.3 and 5.3 degrees postoperatively (P<0.0001). Mean postoperative shell angle was 5.5 degrees. There was a significant correlation between postoperative C2C7 alignment and preoperative C2C7 alignment, change of C2C7 alignment, preoperative and postoperative FSU angle, and prosthesis shell angle. There was also a significant correlation between postoperative FSU angle and preoperative C2C7 alignment, preoperative FSU angle, change of FSU angle, and prosthesis shell angle. Regression analysis showed that prosthesis shell angle and preoperative FSU angle contributed significantly to postoperative FSU angle. Moreover, preoperative C2C7 alignment, preoperative FSU angle, postoperative FSU angle, and prosthesis shell angle contributed significantly to postoperative C2C7 alignment. No significant correlation was observed between ROM and sagittal parameters. Few correlations were found between sagittal alignment and clinical results. CDR with this prosthesis provided favorable clinical outcomes and maintains ROM of the FSU, overall and segmental cervical alignment. Long-term follow-up will be needed to assess the effectiveness and advantages of this procedure.
Cervical spinal stenosis and sports-related cervical cord neurapraxia in children.
Boockvar, J A; Durham, S R; Sun, P P
2001-12-15
Congenital spinal stenosis has been demonstrated to contribute to cervical cord neurapraxia after cervical spinal cord injury in adult athletes. A sagittal canal diameter <14 mm and/or a Torg ratio (sagittal diameter of the spinal canal: midcervical sagittal vertebral body diameter) of <0.8 are indicative of significant cervical spinal stenosis. Although sports-related cervical spine injuries are common in children, the role of congenital cervical stenosis in the etiology of these injuries remains unclear. The authors measured the sagittal canal diameter and the Torg ratio in children presenting with cervical cord neurapraxia resulting from sports-related cervical spinal cord injuries to determine the presence of congenital spinal stenosis. A total of 13 children (9 male, 4 female) presented with cervical cord neurapraxia after a sports-related cervical spinal cord injury. Age ranged from 7 to 15 years (mean +/- SD, 11.5 +/- 2.7 years). The sports involved were football (n = 4), wrestling (n = 2), hockey (n = 2), and soccer, gymnastics, baseball, kickball, and pogosticking (n = 1 each). Lateral cervical spine radiographs were used to determine the sagittal canal diameter and the Torg ratio at C4. The sagittal canal diameter (mean +/- SD, 17.58 +/- 1.63 mm) and the Torg ratio (mean +/- SD, 1.20 +/- 0.24) were normal in all of these children. Using the sagittal canal diameter and the Torg ratio as a measurement of congenital spinal stenosis, the authors did not find evidence of congenital cervical spinal stenosis in a group of children with sports-related cervical spinal cord neurapraxia. The occurrence of cervical cord neurapraxia in pediatric patients can be attributed to the mobility of the pediatric spine rather than to congenital cervical spinal stenosis.
Lafage, Renaud; Schwab, Frank; Challier, Vincent; Henry, Jensen K; Gum, Jeffrey; Smith, Justin; Hostin, Richard; Shaffrey, Christopher; Kim, Han J; Ames, Christopher; Scheer, Justin; Klineberg, Eric; Bess, Shay; Burton, Douglas; Lafage, Virginie
2016-01-01
Retrospective review of prospective, multicenter database. The aim of the study was to determine age-specific spino-pelvic parameters, to extrapolate age-specific Oswestry Disability Index (ODI) values from published Short Form (SF)-36 Physical Component Score (PCS) data, and to propose age-specific realignment thresholds for adult spinal deformity (ASD). The Scoliosis Research Society-Schwab classification offers a framework for defining alignment in patients with ASD. Although age-specific changes in spinal alignment and patient-reported outcomes have been established in the literature, their relationship in the setting of ASD operative realignment has not been reported. ASD patients who received operative or nonoperative treatment were consecutively enrolled. Patients were stratified by age, consistent with published US-normative values (Norms) of the SF-36 PCS (<35, 35-44, 45-54, 55-64, 65-74, >75 y old). At baseline, relationships between between radiographic spino-pelvic parameters (lumbar-pelvic mismatch [PI-LL], pelvic tilt [PT], sagittal vertical axis [SVA], and T1 pelvic angle [TPA]), age, and PCS were established using linear regression analysis; normative PCS values were then used to establish age-specific targets. Correlation analysis with ODI and PCS was used to determine age-specific ideal alignment. Baseline analysis included 773 patients (53.7 y old, 54% operative, 83% female). There was a strong correlation between ODI and PCS (r = 0.814, P < 0.001), allowing for the extrapolation of US-normative ODI by age group. Linear regression analysis (all with r > 0.510, P < 0.001) combined with US-normative PCS values demonstrated that ideal spino-pelvic values increased with age, ranging from PT = 10.9 degrees, PI-LL = -10.5 degrees, and SVA = 4.1 mm for patients under 35 years to PT = 28.5 degrees, PI-LL = 16.7 degrees, and SVA = 78.1 mm for patients over 75 years. Clinically, older patients had greater compensation, more degenerative loss of lordosis, and were more pitched forward. This study demonstrated that sagittal spino-pelvic alignment varies with age. Thus, operative realignment targets should account for age, with younger patients requiring more rigorous alignment objectives.
Sliwa, Karen; Weinberg, Ian R.; Sweet, Barry MBE; de Villiers, Malan; Candy, Geoffrey P.
2007-01-01
Background Failed fusion surgery remains difficult to treat. Few published data on disc replacement surgery after failed fusion procedures exist. Our objective was to evaluate outcomes of junctional lumbar disc replacement after previous fusion surgery and to correlate outcome with radiological changes to parameters of sagittal balance. Methods Out of a single-center prospective registry of 290 patients with 404 lumbar disc replacements, 27 patients had had a previous lumbar fusion operation on 1 to 4 lumbar segments and had completed a mean follow- up of 33 months (range: 18–56). We correlated the clinical outcome measures (patient satisfaction, 10-point pain score, and Oswestry Disability Index [ODI] score) to parameters of spinal sagittal alignment (sacral tilt, pelvic tilt, pelvic incidence, and lumbar lordosis). Results Postoperative hospital stay averaged 3.3 days (range: 2–8). Previously-employed patients went back to their jobs with a mean of 32 days (range: 21–42) after the procedure. At the latest follow-up, 1 of the patients considered the outcome to be poor, 3 fair, 8 good, and 15 excellent. Twenty-four patients “would undergo the operation again.” Average pain score decreased from 9.1 ± 1.0 (SD) to 3.2 ± 2.1 (P < .01). Average ODI decreased from 50.2 ± 9.9 preoperatively to 21.7 ± 14.2 (P ≤ .01). We found the change in pelvic tilt to be an independent predictor of better clinical outcome by multivariate analysis (P < .05). Conclusions In patients with junctional failure adjacent to a previous posterolateral fusion, disc replacement at the junctional level(s), compared with osteotomy and fusion surgery, offers the advantage of maintaining segmental mobility and correcting the flat-back deformity through a single approach with less operative time and blood loss. Early- to intermediate-term results are promising. The influence of changes in spinal sagittal alignment on clinical outcome needs to be addressed in future research. Clinical Relevance This is the first study on “junctional disc replacement patients” correlating clinical outcome to changes in spinal/pelvic alignment. PMID:25802584
Liang, Chen; Sun, Jianmin; Cui, Xingang; Jiang, Zhensong; Zhang, Wen; Li, Tao
2016-07-22
Spinal sagittal imbalance is a widely acknowledged problem, but there is insufficient knowledge regarding its occurrence. In some patients with lumbar disc herniation (LDH), their symptom is similar to spinal sagittal imbalance. The aim of this study is to illustrate the spinopelvic sagittal characteristics and identity the role of spinal musculature in the mechanism of sagittal imbalance in patients with LDH. Twenty-five adults with spinal sagittal imbalance who initially came to our clinic for treatment of LDH, followed by posterior discectomy were reviewed. The horizontal distance between C7 plumb line-sagittal vertical axis (C7PL-SVA) greater than 5 cm anteriorly with forward bending posture is considered as spinal sagittal imbalance. Radiographic parameters including thoracic kyphotic angle (TK), lumbar lordotic angle (LL), pelvic tilting angle (PT), sacral slope angle (SS) and an electromyography(EMG) index 'the largest recruitment order' were recorded and compared. All patients restored coronal and sagittal balance immediately after lumbar discectomy. The mean C7PL-SVA and trunk shift value decreased from (11.6 ± 6.6 cm, and 2.9 ± 6.1 cm) preoperatively to (-0.5 ± 2.6 cm and 0.2 ± 0.5 cm) postoperatively, while preoperative LL and SS increased from (25.3° ± 14.0° and 25.6° ± 9.5°) to (42.4° ± 10.2° and 30.4° ± 8.7°) after surgery (P < 0.05). The preoperative mean TK and PT (24.7° ± 11.3° and 20.7° ± 7.8°) decreased to (22.0° ± 9.8° and 15.8 ± 5.5°) postoperatively (P < 0.05). The largest recruitment order on the level of T7-T8, T12-L1 and the herniated level all improved compared with before and after surgery (P < 0.05). All patients have been followed up for more than 2 years. The mean ODI was 77.8 % before surgery to 4.2 % at the final follow-up. Spinal sagittal imbalance caused by LDH is one type of compensatory sagittal imbalance. Compensatory mechanism of spinal sagittal imbalance mainly includes a loss of lumbar lordosis, an increase of thoracic kyphosis and pelvis tilt. Spinal musculature plays an important role in spinal sagittal imbalance in patients with LDH.
Sagittal Balance in Adolescent Idiopathic Scoliosis
Xu, Xi-Ming; Wang, Fei; Zhou, Xiao-Yi; Liu, Zi-Xuan; Wei, Xian-Zhao; Bai, Yu-Shu; Li, Ming
2015-01-01
Abstract The relationship between spinal sagittal alignment and pelvic parameters is well known in adolescent idiopathic scoliosis. However, few studies have reported the sagittal spinopelvic relationship after selective posterior fusion of thoracolumbar/lumbar (TL/L) curves. We evaluated the relationship between spinal sagittal alignment and the pelvis, and analyzed how the pelvic sagittal state is adjusted in Lenke type 5C patients. We conducted a retrospective study of 36 patients with Lenke type 5C curves who received selective posterior TL/L curve fusion. Coronal and spinopelvic sagittal parameters were pre and postoperatively compared. Pearson coefficients were used to analyze the correlation between all spinopelvic sagittal parameters before and after surgery. We also evaluated 3 pelvic morphologies (anteverted, normal, and retroverted) before and after surgery. Preoperatively, the mean pelvic incidence was 46.0°, with a pelvic tilt and sacral slope (SS) of 8.2° and 37.8°, respectively, and 25% (9/36) of patients had an anteverted pelvis, whereas the other 75% had a normal pelvis. Postoperatively, 42% (15/36) of patients had a retroverted pelvis, 53% (19/36) had a normal pelvis, and 2 patients had an anteverted pelvis. Logistic regression analyses yielded 2 factors that were significantly associated with the risk for a postoperative unrecovered anteverted pelvis, including increased lumbar lordosis (LL) (odds ratio [OR] 4.8, P = 0.029) and increased SS (OR 5.6, P = 0.018). Four factors were significantly associated with the risk of a postoperative newly anteverted pelvis, including LL at the final follow-up (OR 6.9, P = 0.009), increased LL (OR 8.9, P = 0.003), LL below fusion (OR 9.4, P = 0.002), and increased SS (OR 11.5, P = 0.001). The pelvic state may be adjusted after selective posterior TL/L curve fusion in Lenke 5C adolescent idiopathic scoliosis patients. It is difficult to improve an anteverted pelvis in patients who have an LL that is increased by more than 11.6° or an SS that is increased by more than 4.7° after surgery. The anteverted pelvic state will generally occur with posterior correction surgery for patients with an LL that is greater than 63.7°, or an LL or SS that is respectively increased by more than 17.6° or 9.0° postoperatively. PMID:26559289
Zhong, Zhao-Ming; Deviren, Vedat; Tay, Bobby; Burch, Shane; Berven, Sigurd H
2017-05-01
A potential long-term complication of lumbar fusion is the development of adjacent segment disease (ASD), which may necessitate second surgery and adversely affect outcomes. The objective of this is to determine the incidence of ASD following instrumented fusion in adult patients with lumbar spondylolisthesis and to identify the risk factors for this complication. We retrospectively assessed adult patients who had undergone decompression and instrumented fusion for lumbar spondylolisthesis between January 2006 and December 2012. The incidence of ASD was analyzed. Potential risk factors included the patient-related factors, surgery-related factors, and radiographic variables such as sagittal alignment, preexisting disc degeneration and spinal stenosis at the adjacent segment. A total of 154 patients (mean age, 58.4 years) were included. Mean duration of follow-up was 28.6 months. Eighteen patients (11.7%) underwent a reoperation for ASD; 15 patients had reoperation at cranial ASD and 3 at caudal ASD. The simultaneous decompression at adjacent segment (p=0.002) and preexisting spinal stenosis at cranial adjacent segment (p=0.01) were identified as risk factors for ASD. The occurrence of ASD was not affected by patient-related factors, the types, grades and levels of spondylolisthesis, surgical approach, fusion procedures, levels of fusion, number of levels fused, types of bone graft, use of bone morphogenetic proteins, sagittal alignment, preexisting adjacent disc degeneration and preexisting spinal stenosis at caudal adjacent segments. Our findings suggest the overall incidence of ASD is 11.7% in adult patients with lumbar spondylolisthesis after decompression and instrumented fusion at a mean follow-up of 28.6 months, the simultaneous decompression at the adjacent segment and preexisting spinal stenosis at cranial adjacent segment are risk factors for ASD. Copyright © 2017. Published by Elsevier B.V.
Yilgor, Caglar; Sogunmez, Nuray; Boissiere, Louis; Yavuz, Yasemin; Obeid, Ibrahim; Kleinstück, Frank; Pérez-Grueso, Francisco Javier Sánchez; Acaroglu, Emre; Haddad, Sleiman; Mannion, Anne F; Pellise, Ferran; Alanay, Ahmet
2017-10-04
The restoration of normal sagittal alignment is a critical goal in adult spinal deformity surgery to achieve favorable outcomes and prevent mechanical complications. Schwab sagittal modifiers have been accepted as targets for appropriate alignment, but addressing these targets does not always prevent high mechanical complication or revision rates. This may be because the linear absolute numerical parameters do not cover the whole pelvic incidence spectrum and the distribution of lordosis, pelvic anteversion, and negative malalignment are not considered as potential causes of failure. The aim of the present study was to develop and validate a score based on pelvic-incidence-based proportional parameters to better predict mechanical complications. Two hundred and twenty-two patients (168 women and 54 men) followed for ≥2 years after posterior fusion at ≥4 levels were included in the study. The mean age (and standard deviation) was 52.2 ± 19.3 years (range, 18 to 84 years), and the mean duration of follow-up was 28.8 ± 8.2 months (range, 24 to 62 months). The global alignment and proportion (GAP) score was developed and validated in groups of patients randomly assigned to derivation (n = 148, 66.7%) and validation (n = 74, 33.3%) cohorts. GAP score parameters were relative pelvic version (the measured minus the ideal sacral slope), relative lumbar lordosis (the measured minus the ideal lumbar lordosis), lordosis distribution index (the L4-S1 lordosis divided by the L1-S1 lordosis multiplied by 100), relative spinopelvic alignment (the measured minus the ideal global tilt), and an age factor. Proximal and distal junctional kyphosis and/or failure, rod breakage, and other implant-related complications were considered mechanical complications. The predictive accuracy of the GAP score was analyzed using receiver operating characteristic (ROC) analyses. Associations between GAP categories and mechanical complications and revisions were analyzed using Cochran-Armitage tests. In the validation cohort, 32 patients (43%) experienced mechanical complications and 17 (23%) underwent mechanical revision. The area under curve for the GAP score predicting mechanical complications was 0.92 (standard error [SE] = 0.034, p < 0.001, 95% [confidence interval [CI] = 0.85 to 0.98). Postoperatively, patients with a proportioned spinopelvic state according to the GAP score had a mechanical complication rate of 6% while those with a moderately or severely disproportioned spinopelvic state had rates of 47% and 95%, respectively. The GAP score is a new pelvic-incidence-based proportional method of analyzing the sagittal plane that predicts mechanical complications in patients undergoing surgery for adult spinal deformity. Setting surgical goals according to the GAP score may decrease the prevalence of mechanical complications.
Spinal Instrumentation in Growing Children Retards the Natural Development of Pelvic Incidence.
Bekmez, Senol; Demirkiran, Halil Gokhan; Dede, Ozgur; Atici, Yunus; Balioglu, Mehmet Bulent; Kruyt, Moyo; Ward, Timothy; Yazici, Muharrem
2016-09-22
Pelvic incidence increases gradually throughout growth until skeletal maturity. Growing rod instrumentation has been suggested to have a stabilizing effect on the development of the normal sagittal spinal alignment. The purpose of this study is to determine the effect of fixed sagittal plane caused by dual growing rod instrumentation on the natural progression of sagittal spinopelvic parameters in children with idiopathic or idiopathic-like early onset scoliosis. Hospital records of children with growing rod instrumentation from 4 separate institutions were reviewed retrospectively. Inclusion criteria were idiopathic or idiopathic-like early onset scoliosis, treatment with dual growing rods with lower instrumented vertebra L4 or upper and more than 2 years of follow-up. Instrumentation levels, magnitudes of major curve, thoracic kyphosis (T2-T12), lumbar lordosis (L1-S1) and pelvic incidence were recorded from preoperative and postoperative standing whole-spine radiographs. Estimated pelvic incidence was also calculated for each patient as if their spines had not been instrumented using the previous normative data. A total of 37 patients satisfied the inclusion criteria. Average age at initial surgery was 7.4±1.8 years (range, 4 to 12 y). Mean follow-up time was 71±26 months (range, 27 to 120 mo). Mean preoperative Cobb angle of 59±13.5 (range, 30 to 86) degrees was reduced to 35.1±17.5 (range, 11 to 78) degrees at the last follow-up. Mean preoperative T2-T12 kyphosis angle was 46.2±14.9 degrees (range, 22 to 84 degrees). At the latest follow-up, it was 44.8±16.2 degrees (range, 11 to 84 degrees) (P=0.93). Mean L1-S1 lordosis angle was 50.5±10.7 degrees (range, 30 to 72 degrees) preoperatively. At the latest follow-up, mean L1-S1 lordosis angle was 48.8±12.7 degrees (range, 26 to 74 degrees) (P=0.29). Mean preoperative pelvic incidence was 45.7±7.9 degrees (range, 30 to 68 degrees). At the latest follow-up, it was 46.7±8.4 degrees (range, 34 to 72 degrees) (P=0.303). The estimated average pelvic incidence was 49.5 degrees (P=0.012). Previously reported developmental changes of the sagittal spinal parameters were not observed in children who underwent posterior spinal instrumentation. Our findings suggest that spinal instrumentation impedes the natural development of the sagittal spinal profile. Level IV-this is a retrospective case-series.
Comparison of Lumbosacral Alignment in Geriatric and Non-Geriatric patients suffering low back pain.
Kocyigit, Burhan Fatih; Berk, Ejder
2018-01-01
Lumbosacral alignment is a crucial factor for an appropriate spinal function. Changes in spinal alignment lead to diminished body biomechanics. Additionally, lumbosacral alignment may affect quality of life, sagittal balance and fall risk in elderly. In this study, we aimed to compare lumbosacral alignment in geriatric and non-geriatric patients suffering from low back pain. A total of 202 (120 male and 82 female) patients who visited to physical medicine and rehabilitation clinic with low back pain between January 2017 and August 2017 were enrolled in this study. Standing lateral lumbar radiographs were obtained from the electronic hospital database. Lumbar lordosis angle, sacral tilt, lumbosacral angle and lumbosacral disc angle were calculated on lateral standing lumbar radiographs. The mean age of the non-geriatric group was 43.02 ± 13.20 years, the geriatric group was 71.61 ± 6.42 years. In geriatric patients, lumbar lordosis angle, sacral tilt and lumbosacral disc angle were significantly smaller (p = 0.042, p = 0.017 and p = 0.017). No significant differences were observed in lumbosacral angle between the groups (p = 0.508). Our study indicates the specific changes in lumbosacral alignment with aging. Identifying these changes in lumbosacral alignment in the geriatric population will enable to create proper rehabilitation strategies.
Cogniet, A; Aunoble, S; Rigal, J; Demezon, H; Sadikki, R; Le Huec, J C
2016-08-01
Pedicle subtraction osteotomy (PSO) is one of the surgical options for treating alignment disorders of the fused spine (due to post-surgical fusion or related to arthritis). It enables satisfactory sagittal realignment and improved function due to economic sagittal balance. The aim of this study was to analyze clinical and radiological results of PSO after a minimum follow-up of 2 years and demonstrate the benefit of sub-group analysis as a function of pelvic incidence (PI). A descriptive prospective single center study of 63 patients presenting with spinal global malalignment who underwent correction by PSO. Function was assessed by the Oswestry disability index (ODI), a visual analog scale of lumbar pain (VAS) and a SF-36 questionnaire. Radiographic analyses of pre- and post-operative pelvic-spinal parameters were performed on X-rays obtained by EOS(®) imaging after 3D modeling. Global analysis and analysis of sub-groups as a function of pelvic incidence were performed and the full balance integrated index (FBI) was calculated. this series showed a marked clinical improvement and significant progress of functional scores. Global post-operative radiological analysis showed a significant improvement in all pelvic and spinal parameters. The mean correction obtained after PSO was 31.7° ± 8.4°, hence global improvement of lumbar lordosis of 22°. The sagittal vertical angle (SVA) decreased from +9 cm before surgery to +4.3 cm after surgery. Sub-group analysis demonstrated greater improvement in pelvic tilt, sacral slope and spinal parameters of patients with a small or moderate pelvic incidence; all had an FBI index <10°. Most of the pelvic and spinal parameters of patients with a large pelvic incidence were insufficiently corrected and they had an FBI index >10° PSO is a surgical procedure enabling correction of multiplane rigid spinal deformities that require major sagittal correction. It was seen to be highly effective in patients with a small or moderate pelvic incidence (PI <60°) but was sometimes less effective in patients with large pelvic incidence due to insufficient lordosis correction. Clinical results were highly correlated with the value of the FBI index.
Denaro, Vincenzo; Longo, Umile Giuseppe; Berton, Alessandra; Salvatore, Giuseppe; Denaro, Luca
2015-11-01
Surgical management of patients with multilevel CSM aims to decompress the spinal cord and restore the normal sagittal alignment. The literature lacks of high level evidences about the best surgical approach. Posterior decompression and stabilization in lordosis allows spinal cord back shift, leading to indirect decompression of the anterior spinal cord. The purpose of this study was to investigate the efficacy of posterior decompression and stabilization in lordosis for multilevel CSM. 36 out of 40 patients were clinically assessed at a mean follow-up of 5, 7 years. Outcome measures included EMS, mJOA Score, NDI and SF-12. Patients were asked whether surgery met their expectations and if they would undergo the same surgery again. Bone graft fusion, instrumental failure and cervical curvature were evaluated. Spinal cord back shift was measured and correlation with EMS and mJOA score recovery rate was analyzed. All scores showed a significative improvement (p < 0.001), except the SF12-MCS (p > 0.05). Ninety percent of patients would undergo the same surgery again. There was no deterioration of the cervical alignment, posterior grafted bones had completely fused and there were no instrument failures. The mean spinal cord back shift was 3.9 mm (range 2.5-4.5 mm). EMS and mJOA recovery rates were significantly correlated with the postoperative posterior cord migration (P < 0.05). Posterior decompression and stabilization in lordosis is a valuable procedure for patients affected by multilevel CSM, leading to significant clinical improvement thanks to the spinal cord back shift. Postoperative lordotic alignment of the cervical spine is a key factor for successful treatment.
Spino-pelvic sagittal balance of spondylolisthesis: a review and classification.
Labelle, Hubert; Mac-Thiong, Jean-Marc; Roussouly, Pierre
2011-09-01
In L5-S1 spondylolisthesis, it has been clearly demonstrated over the past decade that sacro-pelvic morphology is abnormal and that it can be associated to an abnormal sacro-pelvic orientation as well as to a disturbed global sagittal balance of the spine. The purpose of this article is to review the work done within the Spinal Deformity Study Group (SDSG) over the past decade, which has led to a classification incorporating this recent knowledge. The evidence presented has been derived from the analysis of the SDSG database, a multi-center radiological database of patients with L5-S1 spondylolisthesis, collected from 43 spine surgeons in North America and Europe. The classification defines 6 types of spondylolisthesis based on features that can be assessed on sagittal radiographs of the spine and pelvis: (1) grade of slip, (2) pelvic incidence, and (3) spino-pelvic alignment. A reliability study has demonstrated substantial intra- and inter-observer reliability similar to other currently used classifications for spinal deformity. Furthermore, health-related quality of life measures were found to be significantly different between the 6 types, thus supporting the value of a classification based on spino-pelvic alignment. The clinical relevance is that clinicians need to keep in mind when planning treatment that subjects with L5-S1 spondylolisthesis are a heterogeneous group with various adaptations of their posture. In the current controversy on whether high-grade deformities should or should not be reduced, it is suggested that reduction techniques should preferably be used in subjects with evidence of abnormal posture, in order to restore global spino-pelvic balance and improve the biomechanical environment for fusion.
Hey, Hwee Weng Dennis; Wong, Gordon Chengyuan; Chan, Chloe Xiaoyun; Lau, Leok-Lim; Kumar, Naresh; Thambiah, Joseph Shantakumar; Ruiz, John Nathaniel; Liu, Ka-Po Gabriel; Wong, Hee-Kit
2017-06-01
Knowledge of sagittal radiographic parameters in adolescent idiopathic scoliosis (AIS) patients has not yet caught up with our understanding of their roles in patients with adult spinal deformity. It is likely that more emphasis will be placed in restoring sagittal parameters for AIS patients in the future. Therefore, we need to understand how these parameters may vary in AIS to facilitate management plans. This study aimed to determine the reproducibility of sagittal spinal parameters on lateral film radiographs in patients with AIS. This was a retrospective, comparative study conducted in a tertiary health-care institution from January 2013 to February 2016 (3-year period). All AIS patients who underwent deformity correction surgery from January 2013 to February 2016 and had two preoperative serial lateral radiographs taken within the time period of a month were included in the study. Radiographic sagittal spinal parameters including sagittal vertical axis (SVA), cervical lordosis (CL), thoracic kyphosis (TK), thoracolumbar alignment (TL), lumbar lordosis (LL); standard spinopelvic measurements such as pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS); as well as end and apical vertebrae of cervical, thoracic, and lumbar curves were the outcome measures. All patient data were pooled from electronic medical records, and X-ray images were retrieved from Centricity Enterprise Web. Averaged X-ray measurements by two independent assessors were analyzed by comparing two radiographs of the same patients performed within a 1-month time period. Chi-squared and Wilcoxon signed-rank tests were used for categorical and continuous variables. The study cohort comprised 138 patients, 28 men and 110 women, with a mean age of 15 years (range 11-20). Between the two lateral X-rays, there was a mean difference of 0.79 cm in SVA (p<.001), 0.70° in LL (p=.033), and 0.73° in PT (p=.010). In the combined Lenke 1 and 2 subgroup, there was a similar 0.77 cm (p=.002), 0.79° (p=.009), and 1.49° (p=.001) mean difference in SVA, LL, and PT, respectively. Additionally, there was also a 1.85° (p=.009) and 1.76° (p=.006) mean difference seen in TL and SS, respectively. The overall profile of the sagittal curves remained largely similar, with only the lumbar apex shifting from L3 to L4 during the first and the second X-rays, respectively (p<.001). This occurred for the combined Lenke 1 and 2 subgroup as well (p<.001). Most radiographic sagittal spinal parameters in AIS patients are generally reproducible with some variations up to a maximum of 4°. This natural variation should be taken into account when interpreting these radiographic sagittal parameters so as to achieve the most accurate results in surgical planning. Copyright © 2017 Elsevier Inc. All rights reserved.
Yagi, Mitsuru; Hosogane, Naobumi; Watanabe, Kota; Asazuma, Takashi; Matsumoto, Morio
2016-04-01
Various factors are reported to affect the spinal alignment in degenerative lumbar scoliosis (DLS). Although trunk muscles also appear to affect spinal alignment, the role of the trunk muscles is not yet clear. The aim was to elucidate the role of the multifidus (MF) and psoas (PS) in maintaining global spinal alignment in patients with DLS. This was a multicenter retrospective matched cohort study. Surgically treated 60 paired DLS and lumbar spinal stenosis (LSS) female (120 patients), matched for age and body mass index (BMI; DLS age 68.0±6.8 vs. LSS 67.1±8.9 years; BMI 21.6±3.3 vs. 23.2±3.8 kg/m(2)), were included and were followed for at least 2 years. Spinal alignment, muscle area, and volume were measured from radiographs, magnetic resonance images (MRIs), and whole-body dual-energy X-ray absorptiometry (DXA) scans. Muscle strength was measured by grip power and peak expiratory flow (PEF). As a surrogate of muscle area, we obtained the cross-sectional area (CSA) at the L5-S level from preoperative MRIs. The MF and PS CSAs were significantly smaller in the DLS group than in the LSS group (MF 477.7±192.5 vs. 779.8±248.6 mm(2), p<.01; PS 692.3±201.2 vs. 943.4±272.4 mm(2), p=.002), whereas percentage of difference between the right and left sides was significantly larger in the DLS group (MF 18.4±30.6 vs. 2.4±3.3%, p<.01; PS 14.4±15.8 vs. 2.1±2.2%, p<.01). In the extremities, there were no significant differences in the left- or right-side lean composition and grip strength or PEF tests between the groups. Correlation coefficient tests showed moderate correlations between the MF average CSA (avCSA) and global spinal alignment and spinopelvic alignment (pelvic incidence-lumbar lordosis; R=-0.37, -0.38) in the DLS group. The MF avCSA was correlated with the postoperative progression of kyphosis at the unfused thoracic vertebrae in the DLS group (R=0.34). The CSAs of the MF and PS were significantly smaller in the DLS group. Whole-body DXA showed no significant difference in the lean composition between the groups. There were significant correlations in the DLS patients between the MF CSA and sagittal spinal alignment. These findings suggest the causal relationship between muscles and global spine alignment. Copyright © 2016 Elsevier Inc. All rights reserved.
Yukawa, Yasutsugu; Kato, Fumihiko; Suda, Kota; Yamagata, Masatsune; Ueta, Takayoshi
2012-08-01
This study aimed to establish radiographic standard values for cervical spine morphometry, alignment, and range of motion (ROM) in both male and female in each decade of life between the 3rd and 8th and to elucidate these age-related changes. A total of 1,230 asymptomatic volunteers underwent anteroposterior (AP), lateral, flexion, and extension radiography of the cervical spine. There were at least 100 men and 100 women in each decade of life between the 3rd and 8th. AP diameter of the spinal canal, vertebral body, and disc were measured at each level from the 2nd to 7th cervical vertebra (C2-C7). C2-C7 sagittal alignment and ROM during flexion and extension were calculated using a computer digitizer. The AP diameter of the spinal canal was 15.8 ± 1.5 [mean ± standard deviation (SD)] mm at the mid-C5 level, and 15.5 ± 2.0 mm at the C5/6 disc level. The disc height was 5.8 ± 1.3 mm at the C5/6 level, which was the minimum height, and the maximum height was at the C6/7 level. Both the AP diameter of the spinal canal and disc height decreased gradually with increasing age. The C2-C7 sagittal alignment and total ROM were 13.9 ± 12.3° in lordosis and 55.3 ± 16.0°, respectively. The C2-C7 lordotic angle was 8.0 ± 11.8° in the 3rd decade and increased to 19.7 ± 11.3 in the 8th decade, whereas the C2-C7 ROM was 67.7 ± 17.0° in the 3rd decade and decreased to 45.0 ± 12.5 in the 8th decade. The extension ROM decreased more than the flexion ROM, and lordotic alignment progressed with increasing age. There was a significant difference in C2-C7 alignment and ROM between men and women. The standard values and age-related changes in cervical anatomy, alignment, and ROM for males and females in each decade between the 3rd and 8th were established. Cervical lordosis in the neutral position develops with aging, while extension ROM decreases gradually. These data will be useful as normal values for the sake of comparison in clinical practice.
Liu, Tie; Hai, Yong
2014-07-01
To compare sagittal profiles of selective posterior thoracic instrumentation with segmental pedicle screws instrumentation and hybrid (hook and pedicle screw). Nowadays, thoracic screws are considered more effective than other constructs in spinal deformity correction and have become the treatment in adolescent idiopathic scoliosis surgery. However, recent research found that this enhanced correction ability may sacrifice sagittal balance. As lumbar lordosis is dependent upon thoracic kyphosis (TK), it has been important to maintain TK magnitude in selective thoracic fusions to keep balance. There is no sagittal measurement analysis between the hybrid and all-screw constructs type in cases of selective thoracic fusion. All adolescent idiopathic scoliosis (Lenke1) patients surgically treated in our department between 2003 and 2008 were reviewed. Radiographs of these patients, whose preoperative, immediately postoperative, and minimum 2-year follow-up after selective thoracic fusion (lower instrumented vertebrae not lower than L1, hybrid group the pedicle screw instrumentation not higher than T10) were evaluated, 21 patients underwent posterior hybrid instrumentation and 21 underwent pedicle screw instrumentation. No significant difference in sagittal profiles was observed between the 2 groups. At final follow-up, the proximal junctional measurement has a minor increase in both the groups. TK (T5-T12) also increased (+2.0 degrees of increase in hybrid group vs. +3.9 degrees of increase in the pedicle screw group). The effect of different instrumentation in changing TK at various time points between 2 groups was statistic different (P=0.004). Lumbar lordosis (L1-L5) was increased in both the groups. No significant changes in distal junctional measurement and thoracolumbar junction were noted. The C7 sagittal plumbline remained negative in both the groups at the final follow-up. There was no statistically significant difference comparing the sagittal alignment parameter of pedicle screw and hybrid constructs except for selective TK correction have differences. If used properly, both kinds of instrumentation could result in acceptable sagittal profiles when selective thoracic fusions were performed.
Kim, J; Hwang, J Y; Oh, J K; Park, M S; Kim, S W; Chang, H; Kim, T-H
2017-05-01
The objective of this study was to assess the association between whole body sagittal balance and risk of falls in elderly patients who have sought treatment for back pain. Balanced spinal sagittal alignment is known to be important for the prevention of falls. However, spinal sagittal imbalance can be markedly compensated by the lower extremities, and whole body sagittal balance including the lower extremities should be assessed to evaluate actual imbalances related to falls. Patients over 70 years old who visited an outpatient clinic for back pain treatment and underwent a standing whole-body radiograph were enrolled. Falls were prospectively assessed for 12 months using a monthly fall diary, and patients were divided into fallers and non-fallers according to the history of falls. Radiological parameters from whole-body radiographs and clinical data were compared between the two groups. A total of 144 patients (120 female patients and 24 male patients) completed a 12-month follow-up for assessing falls. A total of 31 patients (21.5%) reported at least one fall within the 12-month follow-up. In univariate logistic regression analysis, the risk of falls was significantly increased in older patients and those with more medical comorbidities, decreased lumbar lordosis, increased sagittal vertical axis, and increased horizontal distance between the C7 plumb line and the centre of the ankle (C7A). Increased C7A was significantly associated with increased risk of falls even after multivariate adjustment. Whole body sagittal balance, measured by the horizontal distance between the C7 plumb line and the centre of the ankle, was significantly associated with risk of falls among elderly patients with back pain. Cite this article : J. Kim, J. Y. Hwang, J. K. Oh, M. S. Park, S. W. Kim, H. Chang, T-H. Kim. The association between whole body sagittal balance and risk of falls among elderly patients seeking treatment for back pain. Bone Joint Res 2017;6:-344. DOI: 10.1302/2046-3758.65.BJR-2016-0271.R2. © 2017 Kim et al.
Acute proximal junctional failure in patients with preoperative sagittal imbalance.
Smith, Micah W; Annis, Prokopis; Lawrence, Brandon D; Daubs, Michael D; Brodke, Darrel S
2015-10-01
Proximal junctional failure (PJF) is a recognized complication of spinal deformity surgery. Acute PJF (APJF) has recently been demonstrated to be 5.6% in the adult spinal deformity (ASD) population. The incidence and rate of return to the operating room for APJF have not been specifically investigated in individuals with sagittal imbalance. The purpose of this study was to report the incidence of APJF in patients with preoperative sagittal imbalance and the rate of return to the operating room for APJF. This study is based on a retrospective review of prospectively collected database of ASD patients. One hundred seventy-three consecutive patients were included with preoperative sagittal imbalance according to one of the following common parameters: sagittal vertical axis (SVA) greater than 50 mm, global sagittal alignment greater than 45°, or pelvic incidence minus lumbar lordosis greater than 10°. Outcome measure was presence and/or absence of APJF defined as fracture at the upper instrumented vertebra (UIV) or UIV+1, failure of UIV fixation, 15° or more proximal junctional kyphosis, or need for extension of instrumentation within 6 months of surgery. We performed radiographic measurements on X-rays at preoperative, immediate postoperative, and 6-month follow-up visits. The APJF rate was reported for the entire patient population with preoperative sagittal imbalance. Acute PJF incidence was calculated postoperatively for each of the accepted sagittal balance parameters and/or formulas. Patients with persistent postoperative sagittal imbalance were compared with the sagittally balanced group. We also assessed for threshold values. Acute PJF was observed in 60 of 173 patients (35%) and was least common in fusions with the UIV in the upper thoracic (UT) spine (p=.035). Of those who developed APJF, 21.7% required surgery. Proximal junctional kyphosis 15° or more was the most common form of APJF in fusions to the UT spine but least likely to need revision (p=.014). The most common mode of failure in lower thoracic (LT) or lumbar (L) fusions was UIV fracture. Postoperative SVA less than 50 mm was a significant risk factor for APJF (p=.009). Acute PJF is more common in patients with preoperative sagittal imbalance (35%) than the general adult deformity patient population, and 37% of those with APJF require revision. It is least common when the UIV is in the UT spine, compared with the LT or L spine. Sagittal balance correction to an SVA 50 mm or less was a significant risk factor in patients with preoperative sagittal imbalance. Copyright © 2015 Elsevier Inc. All rights reserved.
Morphometric study of the lumbar spinal canal in the Korean population.
Lee, H M; Kim, N H; Kim, H J; Chung, I H
1995-08-01
The anatomic dimensions of the vertebral body and spinal canal of the lumbar spine were analyzed in Koreans. To determine the normal dimension of the lumbar spinal canal in Koreans, to determine whether there are any racial differences in the morphometry of the lumbar spinal canal, and to provide criteria for diagnosing spinal stenosis in the Far Eastern Asian. Some radiologic and anatomic studies have been conducted regarding the size of the lumbar spinal canal of whites and blacks in western and African countries. One-thousand-eight-hundred measurements were performed on the transverse and sagittal diameters of vertebral bodies and spinal canals using complete sets of 90 lumbar vertebrae. The mean mid-sagittal diameter of the lumbar spinal canal in the Korean population was less than that measured in white and African populations, but there was no significant differences between the Korean, white, and African populations regarding the transverse diameter of the lumbar spinal canal. The mid-sagittal diameter of the lumbar spinal canal is narrowest in the Far Eastern Asian population; the radiologic criteria of spinal stenosis should be reconsidered for these people.
Self-learning computers for surgical planning and prediction of postoperative alignment.
Lafage, Renaud; Pesenti, Sébastien; Lafage, Virginie; Schwab, Frank J
2018-02-01
In past decades, the role of sagittal alignment has been widely demonstrated in the setting of spinal conditions. As several parameters can be affected, identifying the driver of the deformity is the cornerstone of a successful treatment approach. Despite the importance of restoring sagittal alignment for optimizing outcome, this task remains challenging. Self-learning computers and optimized algorithms are of great interest in spine surgery as in that they facilitate better planning and prediction of postoperative alignment. Nowadays, computer-assisted tools are part of surgeons' daily practice; however, the use of such tools remains to be time-consuming. NARRATIVE REVIEW AND RESULTS: Computer-assisted methods for the prediction of postoperative alignment consist of a three step analysis: identification of anatomical landmark, definition of alignment objectives, and simulation of surgery. Recently, complex rules for the prediction of alignment have been proposed. Even though this kind of work leads to more personalized objectives, the number of parameters involved renders it difficult for clinical use, stressing the importance of developing computer-assisted tools. The evolution of our current technology, including machine learning and other types of advanced algorithms, will provide powerful tools that could be useful in improving surgical outcomes and alignment prediction. These tools can combine different types of advanced technologies, such as image recognition and shape modeling, and using this technique, computer-assisted methods are able to predict spinal shape. The development of powerful computer-assisted methods involves the integration of several sources of information such as radiographic parameters (X-rays, MRI, CT scan, etc.), demographic information, and unusual non-osseous parameters (muscle quality, proprioception, gait analysis data). In using a larger set of data, these methods will aim to mimic what is actually done by spine surgeons, leading to real tailor-made solutions. Integrating newer technology can change the current way of planning/simulating surgery. The use of powerful computer-assisted tools that are able to integrate several parameters and learn from experience can change the traditional way of selecting treatment pathways and counseling patients. However, there is still much work to be done to reach a desired level as noted in other orthopedic fields, such as hip surgery. Many of these tools already exist in non-medical fields and their adaptation to spine surgery is of considerable interest.
Boissière, Louis; Bourghli, Anouar; Vital, Jean-Marc; Gille, Olivier; Obeid, Ibrahim
2013-06-01
Sagittal malalignment is frequently observed in adult scoliosis. C7 plumb line, lumbar lordosis and pelvic tilt are the main factors to evaluate sagittal balance and the need of a vertebral osteotomy to correct it. We described a ratio: the lumbar lordosis index (ratio lumbar lordosis/pelvic incidence) (LLI) and analyzed its relationships with spinal malalignment and vertebral osteotomies. 53 consecutive patients with a surgical adult scoliosis had preoperative and postoperative full spine EOS radiographies to measure spino-pelvic parameters and LLI. The lack of lordosis was calculated after prediction of theoretical lumbar lordosis. Correlation analysis between the different parameters was performed. All parameters were correlated with spinal malalignment but LLI is the most correlated parameter (r = -0.978). It is also the best parameter in this study to predict the need of a spinal osteotomy (r = 1 if LLI <0.5). LLI is a statistically validated parameter for sagittal malalignment analysis. It can be used as a mathematical tool to detect spinal malalignment in adult scoliosis and guides the surgeon decision of realizing a vertebral osteotomy for adult scoliosis sagittal correction. It can be used as well for the interpretation of clinical series in adult scoliosis.
Kobayashi, Toshiki; Orendurff, Michael S; Zhang, Ming; Boone, David A
2013-04-26
Alignment is important for comfortable and stable gait of lower-limb prosthesis users. The magnitude of socket reaction moments in the multiple planes acting simultaneously upon the residual limb may be related to perception of comfort in individuals using prostheses through socket interface pressures. The aim of this study was to investigate the effect of prosthetic alignment changes on sagittal and coronal socket reaction moment interactions (moment-moment curves) and to characterize the curves in 11 individuals with transtibial amputation using novel moment-moment interaction parameters measured by plotting sagittal socket reaction moments versus coronal ones under various alignment conditions. A custom instrumented prosthesis alignment component was used to measure socket reaction moments during walking. Prosthetic alignment was tuned to a nominally aligned condition by a prosthetist, and from this position, angular (3° and 6° of flexion, extension, abduction or adduction of the socket) and translational (5mm and 10mm of anterior, posterior, medial or lateral translation of the socket) alignment changes were performed in either the sagittal or the coronal plane in a randomized manner. A total of 17 alignment conditions were tested. Coronal angulation and translation alignment changes demonstrated similar consistent changes in the moment-moment curves. Sagittal alignment changes demonstrated more complex changes compared to the coronal alignment changes. Effect of sagittal angulations and translations on the moment-moment curves was different during 2nd rocker (mid-stance) with extension malalignment appearing to cause medio-lateral instability. Presentation of coronal and sagittal socket reaction moment interactions may provide useful visual information for prosthetists to understand the biomechanical effects of malalignment of transtibial prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Jung-Hee; Kim, Ki-Tack; Lee, Sang-Hun; Kang, Kyung-Chung; Oh, Hyun-Seok; Kim, Young-Jun; Jung, Hyuk
2016-08-01
To determine the correlation of the difference between postoperative lumbar lordosis (LL) and ideal LL with the sagittal vertical axis (SVA) at the final follow-up in patients with adult spinal deformity (ASD). Fifty-one patients with degenerative lumbar kyphosis (DLK) (mean age 66.5 years) who underwent surgical correction with a minimum 2-year follow-up were evaluated. Based on the difference between postoperative LL and ideal LL using the Korean version of Legaye's formula, we divided the 51 patients into two groups: overcorrection (degree of postoperative LL > ideal LL) and undercorrection (degree of postoperative LL < ideal LL). Our clinical series of patients comprised 24 in the overcorrection and 27 in the undercorrection group. No significant differences were found in preoperative pelvic incidence (PI 52.6° vs. 57.3°), sacral slope (SS 23.3° vs. 18.3°), LL (-6.9° vs. -2.3°), thoracic kyphosis (TK 4.7° vs. 4.9°) and SVA (140 vs. 139 mm) except pelvic tilt (PT 29.4° vs. 39.0°), between the two groups. All the patients in the overcorrection group and 16 in the undercorrection group achieved postoperative optimal sagittal balance based on SVA ≤ 50 mm. In addition, significant differences in PT (10.5° vs. 26.7°), SS (42.1° vs. 30.6°), LL (-64.3° vs. -37.1°), TK (22.6° vs. 15.8°), and SVA (-1 vs. 41 mm) between the two groups were observed postoperatively. Furthermore, four patients (16.7 %) in the overcorrection group and eight (50 %) in the undercorrection group had sagittal decompensation at the final follow-up. Our results showed that the difference between postoperative LL and ideal LL had a significant correlation with postoperative and final follow-up SVA in our clinical series. Overcorrection of LL is an effective treatment modality to maintain optimal sagittal alignment in patients with DLK; this suggests that it should be considered in preoperative planning for patients with ASD with sagittal imbalance.
Surgical treatment of pyogenic vertebral osteomyelitis with spinal instrumentation
Chen, Wei-Hua; Jiang, Lei-Sheng
2006-01-01
Pyogenic vertebral osteomyelitis responds well to conservative treatment at early stage, but more complicated and advanced conditions, including mechanical spinal instability, epidural abscess formation, neurologic deficits, and refractoriness to antibiotic therapy, usually require surgical intervention. The subject of using metallic implants in the setting of infection remains controversial, although more and more surgeons acknowledge that instrumentation can help the body to combat the infection rather than to interfere with it. The combination of radical debridement and instrumentation has lots of merits such as, restoration and maintenance of the sagittal alignment of the spine, stabilization of the spinal column and reduction of bed rest period. This issue must be viewed in the context of the overall and detailed health conditions of the subjecting patient. We think the culprit for the recurrence of infection is not the implants itself, but is the compromised general health condition of the patients. In this review, we focus on surgical treatment of pyogenic vertebral osteomyelitis with special attention to the role of spinal instrumentation in the presence of pyogenic infection. PMID:17106664
Christensen, Sanne Toftgaard; Hartvigsen, Jan
2008-01-01
The purposes of this study were to (1) determine whether sagittal spinal curves are associated with health in epidemiological studies, (2) estimate the strength of such associations, and (3) consider whether these relations are likely to be causal. A systematic critical literature review of epidemiological (cross-sectional, case-control, cohort) studies published before 2008 including studies identified in the CINAHL, EMBASE, Mantis, and Medline databases was performed using a structured checklist and a quality assessment. Level of evidence analysis was performed as outlined by van Tulder et al (Spine. 2003;28:1290-9), and the strength of associations were determined using the procedure outlined by Hemingway and Marmot (BMJ. 1999;318:1460-7). Quality of the included articles were assessed by our own scoring system based on the STrengthening the Reporting of OBservational studies in Epidemiology checklist. Studies scoring maximum points (4/4 or 3/3) were considered to be of higher quality. Fifty-four original studies were included. We found no strong evidence for any association between sagittal spinal curves and any health outcomes including spinal pain. The included studies were generally of low methodological quality. There is moderate evidence for association between sagittal spinal curves and 4 health outcomes as follows: temporomandibular disorders (no odds ratios [ORs] provided), pelvic organ prolapse (OR, 3.18; 95% confidence interval [CI], 1.46-96.93), daily function (OR range, 1.8-3.7; 95% CI range, 1.1-6.3), and death (OR, 1.40; 95% CI, 1.08-1.91). These associations are however unlikely to be causal. Evidence from epidemiological studies does not support an association between sagittal spinal curves and health including spinal pain. Further research of better methodological quality may affect this conclusion, and causal effects cannot be determined in a systematic review.
Maderbacher, Günther; Matussek, Jan; Keshmiri, Armin; Greimel, Felix; Baier, Clemens; Grifka, Joachim; Maderbacher, Hermann
2018-02-17
Intramedullary rods are widely used to align the distal femoral cut in total knee arthroplasty. We hypothesised that both coronal (varus/valgus) and sagittal (extension/flexion) cutting plane are affected by rotational changes of intramedullary femoral alignment guides. Distal femoral cuts using intramedullary alignment rods were simulated by means of a computer-aided engineering software in 4°, 6°, 8°, 10°, and 12° of valgus in relation to the femoral anatomical axis and 4° extension, neutral, as well as 4°, 8°, and 12° of flexion in relation to the femoral mechanical axis. This reflects the different angles between anatomical and mechanical axis in coronal and sagittal planes. To assess the influence of rotation of the alignment guide on the effective distal femoral cutting plane, all combinations were simulated with the rod gradually aligned from 40° of external to 40° of internal rotation. Rotational changes of the distal femoral alignment guides affect both the coronal and sagittal cutting planes. When alignment rods are intruded neutrally with regards to sagittal alignment, external rotation causes flexion, while internal rotation causes extension of the sagittal cutting plane. Simultaneously the coronal effect (valgus) decreases resulting in an increased varus of the cutting plane. However, when alignment rods are intruded in extension or flexion partly contradictory effects are observed. Generally the effect increases with the degree of valgus preset, rotation and flexion. As incorrect rotation of intramedullary alignment guides for distal femoral cuts causes significant cutting errors, exact rotational alignment is crucial. Coronal cutting errors in the distal femoral plane might result in overall leg malalignment, asymmetric extension gaps and subsequent sagittal cutting errors.
Sagittal balance, a useful tool for neurosurgeons?
Villard, Jimmy; Ringel, Florian; Meyer, Bernhard
2014-01-01
New instrumentation techniques have made any correction of the spinal architecture possible. Sagittal balance has been described as an important parameter for assessing spinal deformity in the early 1970s, but over the last decade its importance has grown with the published results in terms of overall quality of life and fusion rate. Up until now, most of the studies have concentrated on spinal deformity surgery, but its use in the daily neurosurgery practice remains uncertain and may warrant further studies.
Standardized way for imaging of the sagittal spinal balance.
Morvan, Gérard; Mathieu, Philippe; Vuillemin, Valérie; Guerini, Henri; Bossard, Philippe; Zeitoun, Frédéric; Wybier, Marc
2011-09-01
Nowadays, conventional or digitalized teleradiography remains the most commonly used tool for the study of the sagittal balance, sometimes with secondary digitalization. The irradiation given by this technique is important and the photographic results are often poor. Some radiographic tables allow the realization of digitalized spinal radiographs by simultaneous translation of X-ray tube and receptor. EOS system is a new, very low dose system which gives good quality images, permits a simultaneous acquisition of upright frontal and sagittal views, is able to cover in the same time the spine and the lower limbs and study the axial plane on 3D envelope reconstructions. In the future, this low dose system should take a great place in the study of the pelvispinal balance. On the lateral view, several pelvic (incidence, pelvic tilt, sacral slope) and spinal (lumbar lordosis, thoracic kyphosis, Th9 sagittal offset, C7 plumb line) parameters are drawn to define the pelvispinal balance. All are interdependent. Pelvic incidence is an individual anatomic characteristic that corresponds to the "thickness" of the pelvis and governs the spinal balance. Pelvis and spine, in a harmonious whole, can be compared to an accordion, more or less compressed or stretched.
Müller, Michael; Duda, Georg; Perka, Carsten; Tohtz, Stephan
2016-03-01
The component alignment in total hip arthroplasty influences the impingement-free range of motion (ROM). While substantiated data is available for the cup positioning, little is known about the stem alignment. Especially stem rotation and the sagittal alignment influence the position of the cone in relation to the edge of the socket and thus the impingement-free functioning. Hence, the question arises as to what influence do these parameters have on the impingement-free ROM? With the help of a computer model the influence of the sagittal stem alignment and rotation on the impingement-free ROM were investigated. The computer model was based on the CT dataset of a patient with a non-cemented THA. In the model the stem version was set at 10°/0°/-10° and the sagittal alignment at 5°/0°/-5°, which resulted in nine alternative stem positions. For each position, the maximum impingement-free ROM was investigated. Both stem version and sagittal stem alignment have a relevant influence on the impingement-free ROM. In particular, flexion and extension as well as internal and external rotation capability present evident differences. In the position intervals of 10° sagittal stem alignment and 20° stem version a difference was found of about 80° in the flexion and 50° in the extension capability. Likewise, differences were evidenced of up to 72° in the internal and up to 36° in the external rotation. The sagittal stem alignment and the stem torsion have a relevant influence on the impingement-free ROM. To clarify the causes of an impingement or accompanying problems, both parameters should be examined and, if possible, a combined assessment of these factors should be made.
Thomas, Diala; Bachy, Manon; Courvoisier, Aurélien; Dubory, Arnaud; Bouloussa, Houssam; Vialle, Raphaël
2015-03-01
Spinopelvic alignment is crucial in assessing an energy-efficient posture in both normal and disease states, such as high-displacement developmental spondylolisthesis (HDDS). The overall effect in patients with HDDS who have undergone local surgical correction of lumbosacral imbalance for the global correction of spinal balance remains unclear. This paper reports the progressive spontaneous improvement of global sagittal balance following surgical correction of lumbosacral imbalance in patients with HDDS. The records of 15 patients with HDDS who underwent surgery between 2005 and 2010 were reviewed. The treatment consisted of L4-sacrum reduction and fusion via a posterior approach, resulting in complete correction of lumbosacral kyphosis. Preoperative, 6-month postoperative, and final follow-up postoperative angular measurements were taken from full-spine lateral radiographs obtained with the patient in a standard standing position. Radiographic measurements included pelvic incidence, sacral slope, lumbar lordosis, and thoracic kyphosis. The degree of lumbosacral kyphosis was evaluated by the lumbosacral angle. Because of the small number of patients, nonparametric tests were considered for data analysis. Preoperative lumbosacral kyphosis and L-5 anterior slip were corrected by instrumentation. Transient neurological complications were noted in 5 patients. Statistical analysis showed a significant increase of thoracic kyphosis on 6-month postoperative and final follow-up radiographs (p < 0.001). A statistically significant decrease of lumbar lordosis was noted between preoperative and 6-month control radiographs (p < 0.001) and between preoperative and final follow-up radiographs (p < 0.001). Based on the authors' observations, this technique resulted in an effective reduction of L-5 anterior slip and significant reduction of lumbosacral kyphosis (from 69.8° to 105.13°). Due to complete reduction of lumbosacral kyphosis and anterior trunk displacement associated with L-5 anterior slipping, lumbar lordosis progressively decreased and thoracic kyphosis progressively increased postoperatively. Adjusting the sagittal trunk balance produced not only pelvic anteversion, but also reciprocal adjustment of lumbar lordosis and thoracic kyphosis, creating a satisfactory level of compensated global sagittal balance.
Hasegawa, Kazuhiro; Okamoto, Masashi; Hatsushikano, Shun; Shimoda, Haruka; Ono, Masatoshi; Homma, Takao; Watanabe, Kei
2017-05-01
Human beings stand upright with the chain of balance beginning at the feet, progressing to the lower limbs (ankles, knees, hip joints, pelvis), each of the spinal segments, and then ending at the cranium to achieve horizontal gaze and balance using minimum muscle activity. The details of the alignment and balance of the chain, however, are not clearly understood, due to the lack of information regarding the three-dimensional (3D) orientation of all bony elements in relation to the gravity line (GL). We performed a clinical study to clarify the standing sagittal alignment of whole axial skeletons in reference to the GL using the EOS slot-scanning 3D X-ray imaging system with simultaneous force plate measurement in a healthy human population. The GL was defined as a vertical line drawn through the centre of vertical pressure measured by the force plate. The present study yielded a complete set of physiological alignment measurements of the standing axial skeleton from the database of 136 healthy subjects (a mean age of 39.7 years, 20-69 years; men: 40, women: 96). The mean offset of centre of the acoustic meati from the GL was 0.0 cm. The offset of the cervical and thoracic vertebrae was posterior to the GL with the apex of thoracic kyphosis at T7, 5.0 cm posterior to the GL. The sagittal alignment changed to lordosis at the level of L2. The apex of the lumbar lordosis was L4, 0.6 cm anterior to the GL, and the centre of the base of the sacrum (CBS) was just posterior to the GL. The hip axis (HA) was 1.4 cm anterior to the GL. The knee joint was 2.4 cm posterior and the ankle joint was 4.8 cm posterior to the GL. L4-, L5- and the CBS-offset in subjects in the age decades of 40s, 50s and 60s were significantly posterior to those of subjects in their 20s. The L5- and CBS-offset in subjects in their 50s and 60s were also significantly posterior to those in subjects in their 30s. HA was never posterior to the GL. In the global alignment, there was a positive correlation between offset of C7 vertebra from the sagittal vertical axis (a vertical line drawn through the posterior superior corner of the sacrum in the sagittal plane) and age, but no correlation was detected between the centre of the acoustic meati-GL offset and age. Cervical lordosis (CL), pelvic tilt (PT), pelvic incidence, hip extension, knee flexion and ankle dorsiflexion increased significantly with age. Our results revealed that aging induces trunk stooping, but the global alignment is compensated for by an increase in the CL, PT and knee flexion, with the main function of CL and PT to maintain a horizontal gaze in a healthy population. © 2017 The Authors Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
Muyor, José M; López-Miñarro, Pedro A; Casimiro, Antonio J
2012-01-01
To determine the effect of a stretching program performed in the workplace on the hamstring muscle extensibility and sagittal spinal posture of adult women. Fifty-eight adult women volunteers (mean age of 44.23 ± 8.87 years) from a private fruit and vegetable company were randomly assigned to experimental (n=27) or control (n=31) groups. The experimental group performed three exercises of hamstrings stretching of 20 seconds per exercise, three sessions a week for a period of 12 weeks. The control group did not participate in any hamstring stretching program. Hamstring flexibility was evaluated through the passive straight leg raise test and toe-touch test, performed both before and after the stretching program. Thoracic and lumbar curvatures and pelvic inclination were measured in relaxed standing and toe-touch test with a Spinal Mouse. Significant increases (p < 0.01) in toe-touch score and straight leg raise angle (in both legs) were found in the experimental group during post-test, while the control group showed a non-significant decrease for both toe-touch score and straight leg raise test. A significant decrease in thoracic curve and significant increase in pelvic inclination were found in the toe-touch test for the experimental group (p <0.05). However, no significant changes were found in standing posture for any group. Hamstring stretching exercises performed in the working place are effective for increasing hamstring muscle extensibility. This increase generates a more aligned thoracic curve and more anterior pelvic inclination when maximal trunk flexion is performed.
Singhatanadgige, Weerasak; Kang, Daniel G; Luksanapruksa, Panya; Peters, Colleen; Riew, K Daniel
2016-09-01
Retrospective analysis. To evaluate the correlation and reliability of cervical sagittal alignment parameters obtained from lateral cervical radiographs (XRs) compared with lateral whole-body stereoradiographs (SRs). We evaluated adults with cervical deformity using both lateral XRs and lateral SRs obtained within 1 week of each other between 2010 and 2014. XR and SR images were measured by two independent spine surgeons using the following sagittal alignment parameters: C2-C7 sagittal Cobb angle (SCA), C2-C7 sagittal vertical axis (SVA), C1-C7 translational distance (C1-7), T1 slope (T1-S), neck tilt (NT), and thoracic inlet angle (TIA). Pearson correlation and paired t test were used for statistical analysis, with intra- and interrater reliability analyzed using intraclass correlation coefficient (ICC). A total of 35 patients were included in the study. We found excellent intrarater reliability for all sagittal alignment parameters in both the XR and SR groups with ICC ranging from 0.799 to 0.994 for XR and 0.791 to 0.995 for SR. Interrater reliability was also excellent for all parameters except NT and TIA, which had fair reliability. We also found excellent correlations between XR and SR measurements for most sagittal alignment parameters; SCA, SVA, and C1-C7 had r > 0.90, and only NT had r < 0.70. There was a significant difference between groups, with SR having lower measurements compared with XR for both SVA (0.68 cm lower, p < 0.001) and C1-C7 (1.02 cm lower, p < 0.001). There were no differences between groups for SCA, T1-S, NT, and TIA. Whole-body stereoradiography appears to be a viable alternative for measuring cervical sagittal alignment parameters compared with standard radiography. XR and SR demonstrated excellent correlation for most sagittal alignment parameters except NT. However, SR had significantly lower average SVA and C1-C7 measurements than XR. The lower radiation exposure using single SR has to be weighed against its higher cost compared with XR.
Buell, Thomas J; Buchholz, Avery L; Quinn, John C; Mullin, Jeffrey P; Garces, Juanita; Mazur, Marcus D; Shaffrey, Mark E; Yen, Chun-Po; Shaffrey, Christopher I; Smith, Justin S
2018-06-16
Pedicle subtraction osteotomy (PSO) is an effective technique to correct fixed sagittal malalignment. A variation of this technique, the "trans-discal" or "extended" PSO (Schwab grade IV osteotomy), involves extending the posterior wedge resection of the index vertebra to include the superior adjacent disc for radical discectomy. The posterior wedge may be resected in asymmetric fashion to correct concurrent global coronal malalignment.This video illustrates the technical nuances of an extended asymmetrical lumbar PSO for adult spinal deformity. A 62-yr-old female with multiple prior lumbar fusions presented with worsening back pain and posture. Preoperative scoliosis X-rays demonstrated severe global sagittal and coronal malalignment (sagittal vertical axis [SVA, C7-plumbline] of 13.5 cm, pelvic incidence [PI] of 60°, lumbar lordosis [LL] of 14° [in kyphosis], pelvic tilt [PT] of 61°, thoracic kyphosis [TK] of 18°, and rightward coronal shift of 9.3 cm). The patient gave informed consent to surgery and for use of her imaging for medical publication. Briefly, surgery first involved transpedicular instrumentation from T10 to S1 with bilateral iliac screw fixation, and then T11-12 and T12-L1 Smith-Petersen osteotomies were performed. Next, an extended asymmetrical L4 PSO was performed and a 12° lordotic cage (9 × 14 × 40 mm) was placed at the PSO defect. Rods were placed from T10 to iliac bilaterally, and accessory supplemental rods spanning the PSO were attached. Postoperative scoliosis X-rays demonstrated improved alignment: SVA 5.5 cm, PI 60°, LL 55°, PT 36°, TK 37°, and 3.7 cm of rightward coronal shift. The patient had uneventful recovery.
Quantitative evaluation of the lumbosacral sagittal alignment in degenerative lumbar spinal stenosis
Makirov, Serik K.; Jahaf, Mohammed T.; Nikulina, Anastasia A.
2015-01-01
Goal of the study This study intends to develop a method of quantitative sagittal balance parameters assessment, based on a geometrical model of lumbar spine and sacrum. Methods One hundred eight patients were divided into 2 groups. In the experimental group have been included 59 patients with lumbar spinal stenosis on L1-5 level. Forty-nine healthy volunteers without history of any lumbar spine pathlogy were included in the control group. All patients have been examined with supine MRI. Lumbar lordosis has been adopted as circular arc and described either anatomical (lumbar lordosis angle), or geometrical (chord length, circle segment height, the central angle, circle radius) parameters. Moreover, 2 sacral parameters have been assessed for all patients: sacral slope and sacral deviation angle. Both parameters characterize sacrum disposition in horizontal and vertical axis respectively. Results Significant correlation was observed between anatomical and geometrical lumbo-sacral parameters. Significant differences between stenosis group and control group were observed in the value of the “central angle” and “sacral deviation” parameters. We propose additional parameters: lumbar coefficient, as ratio of the lordosis angle to the segmental angle (Kl); sacral coefficient, as ratio of the sacral tilt (ST) to the sacral deviation (SD) angle (Ks); and assessment modulus of the mathematical difference between sacral and lumbar coefficients has been used for determining lumbosacral balance (LSB). Statistically significant differences between main and control group have been obtained for all described coefficients (p = 0.006, p = 0.0001, p = 0.0001, accordingly). Median of LSB value of was 0.18 and 0.34 for stenosis and control groups, accordingly. Conclusion Based on these results we believe that that spinal stenosis is associated with an acquired deformity that is measureable by the described parameters. It's possible that spinal stenosis occurs in patients with an LSB of 0.2 or less, so this value can be predictable for its development. It may suggest that spinal stenosis is more likely to occur in patients with the spinal curvature of this type because of abnormal distribution of the spine loads. This fact may have prognostic significance for develop vertebral column disease and evaluation of treatment results. PMID:26767160
Okada, Eijiro; Ichihara, Daisuke; Chiba, Kazuhiro; Toyama, Yoshiaki; Fujiwara, Hirokazu; Momoshima, Suketaka; Nishiwaki, Yuji; Hashimoto, Takeshi; Ogawa, Jun; Watanabe, Masahiko; Takahata, Takeshi
2009-01-01
There have been few studies that investigated and clarified the relationships between progression of degenerative changes and sagittal alignment of the cervical spine. The objective of the study was to longitudinally evaluate the relationships among progression of degenerative changes of the cervical spine with age, the development of clinical symptoms and sagittal alignment of the cervical spine in healthy subjects. Out of 497 symptom-free volunteers who underwent MRI and plain radiography of the cervical spine between 1994 and 1996, 113 subjects (45 males and 68 females) who responded to our contacts were enrolled. All subjects underwent another MRI at an average of 11.3 years after the initial study. Their mean age at the time of the initial imaging was 36.6 ± 14.5 years (11–65 years). The items evaluated on MRI were (1) decrease in signal intensity of the intervertebral disks, (2) posterior disk protrusion, and (3) disk space narrowing. Each item was evaluated using a numerical grading system. The subjects were divided into four groups according to the age and sagittal alignment of the cervical spine, i.e., subjects under or over the age of 40 years, and subjects with the lordosis or non-lordosis type of sagittal alignment of the cervical spine. During the 10-year period, progression of decrease in signal intensity of the disk, posterior disk protrusion, and disk space narrowing were recognized in 64.6, 65.5, and 28.3% of the subjects, respectively. Progression of posterior disk protrusion was significantly more frequent in subjects over 40 years of age with non-lordosis type of sagittal alignment. Logistic regression analysis revealed that stiff shoulder was closely correlated with females (P = 0.001), and that numbness of the upper extremity was closely correlated with age (P = 0.030) and male (P = 0.038). However, no significant correlation between the sagittal alignment of the cervical spine and clinical symptoms was detected. Sagittal alignment of the cervical spine had some impact on the progression of degenerative changes of the cervical spine with aging; however, it had no correlation with the occurrence of future clinical symptoms. PMID:19609784
Sagittal alignment of the cervical spine after neck injury.
Beltsios, Michail; Savvidou, Olga; Mitsiokapa, Evanthia A; Mavrogenis, Andreas F; Kaspiris, Angelos; Efstathopoulos, Nikolaos; Papagelopoulos, Panayiotis J
2013-07-01
The normal sagittal alignment of the cervical spine is lordotic and is affected by the posture of the head and neck. The question of whether loss of cervical lordosis is the result of muscle spasm after injury or a normal variation, and the clinical significance of such changes in sagittal profile of the cervical spine has been an issue of several studies. The purpose of this paper is to study the incidence of normal cervical lordosis and its changes after neck injury compared to the healthy population. We studied the lateral radiographs of the cervical spine of 60 patients with neck injury compared to 100 patients without a neck injury. Lateral radiographs were obtained in the standing or sitting position, and the curvature of the cervical spine was measured using the angle formed between the inferior end plates of the C2 and C7 vertebrae. In the patients without neck injury, lordotic and straight cervical spine sagittal alignment was observed in 36.5% each, double curvature in 17%, and kyphotic in 10%. In the patients with neck injury, lordotic sagittal alignment was observed in 36%, straight in 34%, double curvature in 26% and kyphotic in 4%. No significant difference between the two groups regarding all types of sagittal alignment of the cervical spine was found (p > 0.100). The alterations in normal cervical lordosis in patients with neck injury must be considered coincidental. These alterations should not be associated with muscle spasm caused by neck pain.
Cloud, Beth A.; Zhao, Kristin D.; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan
2014-01-01
Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n=26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R2=0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95%LOA: −3.43-12.04°), 3.64° (95%LOA: −1.07-8.36°), and 4.02° (95%LOA: −2.80-10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures is 2.86° (95%LOA: −1.18-6.90°) and 2.55° (95%LOA: −3.38-8.48°), respectively. In natural sitting, the mean±SD of kyphosis values was 35.07± 6.75°. Lordosis was detected in 8/26 participants: 11.72±7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. PMID:24909579
Ying, Jinwei; Teng, Honglin; Qian, Yunfan; Hu, Yingying; Wen, Tianyong; Ruan, Dike; Zhu, Minyu
2018-01-01
Background Ossification of the nuchal ligament (ONL) caused by chronic injury to the nuchal ligament (NL) is very common in instability-related cervical disorders. Purpose To determine possible correlations between ONL, sagittal alignment, and segmental stability of the cervical spine. Material and Methods Seventy-three patients with cervical spondylotic myelopathy (CSM) and ONL (ONL group) and 118 patients with CSM only (control group) were recruited. Radiographic data included the characteristics of ONL, sagittal alignment and segmental stability, and ossification of the posterior longitudinal ligament (OPLL). We performed comparisons in terms of radiographic parameters between the ONL and control groups. The correlations between ONL size, cervical sagittal alignment, and segmental stability were analyzed. Multivariate logistic regression was used to identify the independent risk factors of the development of ONL. Results C2-C7 sagittal vertical axis (SVA), T1 slope (T1S), T1S minus cervical lordosis (T1S-CL) on the lateral plain, angular displacement (AD), and horizontal displacement (HD) on the dynamic radiograph increased significantly in the ONL group compared with the control group. The size of ONL significantly correlated with C2-C7 SVA, T1S, AD, and HD. The incidence of ONL was higher in patients with OPLL and segmental instability. Cervical instability, sagittal malalignment, and OPLL were independent predictors of the development of ONL through multivariate analysis. Conclusion Patients with ONL are more likely to have abnormal sagittal alignment and instability of the cervical spine. Thus, increased awareness and appreciation of this often-overlooked radiographic finding is warranted during diagnosis and treatment of instability-related cervical pathologies and injuries.
Kazdal, Hizir; Batcik, Osman Ersagun; Ozdemir, Bulent; Senturk, Senol; Yildirim, Murat; Kazancioglu, Leyla; Sen, Ahmet; Batcik, Sule; Balik, Mehmet Sabri
2017-01-01
Study Design Retrospective. Purpose This study investigated the possible association of persistent low back pain (LBP) with caesarean section (CS) under spinal anesthesia. Overview of Literature Many women suffer from LBP after CS, which is commonly performed under spinal anesthesia. However, this type of LBP is poorly understood, and there is poor consensus regarding increased risk after spinal anesthesia. Methods We examined two groups of patients who underwent cesarean delivery under spinal anesthesia. Group I included patients who presented to a neurosurgical clinic complaining of LBP for at least 6 months. Group II was a control group with patients without LBP. We analyzed clinical and sagittal angle parameters, including age, body mass index, parity, central sagittal angle of the sacrum (CSAS), and sacral slope (SS). Results Fifty-three patients participated in this study: 23 (43.1%) in Group I and 30 (56.9%) in Group II. Non-parametric Mann–Whitney U-tests showed that age, parity, and CSAS significantly differed between the two groups at 6 months. Conclusions Age, parity, and CSAS appear to be associated with increased risk for LBP after CS under spinal anesthesia. Future prospective studies on this subject may help validate our results. PMID:29093782
Noninvasive Optoelectronic Assessment of Induced Sagittal Imbalance Using the Vicon System.
Ould-Slimane, Mourad; Latrobe, Charles; Michelin, Paul; Chastan, Nathalie; Dujardin, Franck; Roussignol, Xavier; Gauthé, Rémi
2017-06-01
Spinal diseases often induce gait disorders with multifactorial origins such as lumbar pain, radicular pain, neurologic complications, or spinal deformities. However, radiography does not permit an analysis of spinal dynamics; therefore, sagittal balance dynamics during gait remain largely unexplored. This prospective and controlled pilot study assessed the Vicon system for detecting sagittal spinopelvic imbalance, to determine the correlations between optoelectronic and radiographic parameters. Reversible anterior sagittal imbalance was induced in 24 healthy men using a thoracolumbar corset. Radiographic, optoelectronic, and comparative analyses were conducted. Corset wearing induced significant variations in radiographic parameters indicative of imbalance; the mean C7-tilt and d/D ratio increased by 15° ± 7.4° and 359%, respectively, whereas the mean spinosacral angle decreased by 16.8° ± 8° (all P < 0.001). The Vicon system detected the imbalance; the mean spinal angle increased by 15.4° ± 5.6° (P < 0.01), the mean floor projection of the C7S1 vector (C7'S1') increased by 126.3 ± 51.9 mm (P < 0.001), and the mean C7-T10-S1 angle decreased by 9.8° ± 3° (P < 0.001). Variations in C7'S1' were significantly correlated with d/D ratio (ρ = 0.58; P < 0.05) and C7-tilt (ρ = 0.636; P < 0.05) variations. Corset wearing induced radiographically confirmed anterior sagittal imbalance detected using the Vicon system. Optoelectronic C7'S1' correlated with radiographic C7-tilt and d/D ratio. Copyright © 2017 Elsevier Inc. All rights reserved.
McAfee, Paul C.; Shucosky, Erin; Chotikul, Liana; Salari, Ben; Chen, Lun; Jerrems, Dan
2013-01-01
Background This is a retrospective review of 25 patients with severe lumbar nerve root compression undergoing multilevel anterior retroperitoneal lumbar interbody fusion and posterior instrumentation for deformity. The objective is to analyze the outcomes and clinical results from anterior interbody fusions performed through a lateral approach and compare these with traditional surgical procedures. Methods A consecutive series of 25 patients (78 extreme lateral interbody fusion [XLIF] levels) was identified to illustrate the primary advantages of XLIF in correcting the most extreme of the 3-dimensional deformities that fulfilled the following criteria: (1) a minimum of 40° of scoliosis; (2) 2 or more levels of translation, anterior spondylolisthesis, and lateral subluxation (subluxation in 2 planes), causing symptomatic neurogenic claudication and severe spinal stenosis; and (3) lumbar hypokyphosis or flat-back syndrome. In addition, the majority had trunks that were out of balance (central sacral vertical line ≥2 cm from vertical plumb line) or had sagittal imbalance, defined by a distance between the sagittal vertical line and S1 of greater than 3 cm. There were 25 patients who had severe enough deformities fulfilling these criteria that required supplementation of the lateral XLIF with posterior osteotomies and pedicle screw instrumentation. Results In our database, with a mean follow-up of 24 months, 85% of patients showed evidence of solid arthrodesis and no subsidence on computed tomography and flexion/extension radiographs. The complication rate remained low, with a perioperative rate of 2.4% and postoperative rate of 12.2%. The lateral listhesis and anterior spondylolisthetic subluxation were anatomically reduced with minimally invasive XLIF. The main finding in these 25 cases was our isolation of the major indication for supplemental posterior surgery: truncal decompensation in patients who are out of balance by 2 cm or more, in whom posterior spinal osteotomies and segmental pedicle screw instrumentation were required at follow up. No patients were out of sagittal balance (sagittal vertical line <3 cm from S1) postoperatively. Segmental instrumentation with osteotomies was also more effective for restoration of physiologic lumbar lordosis compared with anterior stand-alone procedures. Conclusions This retrospective study supports the finding that clinical outcomes (coronal/sagittal alignment) improve postoperatively after minimally invasive surgery with multilevel XLIF procedures and are improved compared with larger extensile thoracoabdominal anterior scoliosis procedures. PMID:25694908
Mendoza-Lattes, Sergio; Ries, Zachary; Gao, Yubo; Weinstein, Stuart L
2011-01-01
Background Proximal junctional kyphosis (PJK) is defined as: 1) Proximal junction sagittal Cobb angle >≥10°, and 2) Proximal junction sagittal Cobb angle of at least 10° greater than the pre-operative measurement PJK is a common complication which develops in 39% of adults following surgery for spinal deformity. The pathogenesis, risk factors and prevention of this complication are unclear. Methods Of 54 consecutive adults treated with spinal deformity surgery (age≥59.3±10.1 years), 19 of 54 (35%) developed PJK. The average follow-up was 26.8months (range 12 - 42). Radiographic parameters were measured at the pre-operative, early postoperative (4-6 weeks), and final follow-up visits. Sagittal alignment was measured by the ratio between the C7-plumbline and the sacral-femoral distance. Binary logistic regression model with predictor variables included: Age, BMI, C7-plumbline, and whether lumbar lordosis, thoracic kyphosis and sacral slope were present Results Patients who developed PJK and those without PJK presented with comparable age, BMI, pelvic incidence and sagittal imbalance before surgery. They also presented with comparable sacral slope and lumbar lordosis. The average magnitude of thoracic kyphosis was significantly larger than the lumbar lordosis in the proximal junctional kyphosis group, both at baseline and in the early postoperative period, as represented by [(-lumbar )lordosis - (thoracic kyphosis)]; no- PJK versus PJK; 6.6°±23.2° versus -6.6°±14.2°; p≥0.012. This was not effectively addressed with surgery in the PJK group [(-LL-TK): 6.2°±13.1° vs. -5.2°±9.6°; p≥0.004]. This group also presented with signs of pelvic retroversion with a sacral slope of 29.3°±8.2° pre-operatively that was unchanged after surgery (30.4°±8.5° postoperatively). Logistic regression determined that the magnitude of thoracic kyphosis and sagittal balance (C7-plumbline) was the most important predictor of proximal junctional kyphosis. Conclusions Proximal junctional kyphosis developed in those patients where the thoracic kyphosis remained greater in magnitude relative to the lumbar lordosis, and where the sagittal balance seemed corrected, but part of thise correction was secondary to pelvic retroversion. Level of Evidence Prognostic case-control study – Level III. PMID:22096442
Navigated total knee arthroplasty: is it error-free?
Chua, Kerk Hsiang Zackary; Chen, Yongsheng; Lingaraj, Krishna
2014-03-01
The aim of this study was to determine whether errors do occur in navigated total knee arthroplasty (TKAs) and to study whether errors in bone resection or implantation contribute to these errors. A series of 20 TKAs was studied using computer navigation. The coronal and sagittal alignments of the femoral and tibial cutting guides, the coronal and sagittal alignments of the final tibial implant and the coronal alignment of the final femoral implant were compared with that of the respective bone resections. To determine the post-implantation mechanical alignment of the limb, the coronal alignment of the femoral and tibial implants was combined. The median deviation between the femoral cutting guide and bone resection was 0° (range -0.5° to +0.5°) in the coronal plane and 1.0° (range -2.0° to +1.0°) in the sagittal plane. The median deviation between the tibial cutting guide and bone resection was 0.5° (range -1.0° to +1.5°) in the coronal plane and 1.0° (range -1.0° to +3.5°) in the sagittal plane. The median deviation between the femoral bone resection and the final implant was 0.25° (range -2.0° to 3.0°) in the coronal plane. The median deviation between the tibial bone resection and the final implant was 0.75° (range -3.0° to +1.5°) in the coronal plane and 1.75° (range -4.0° to +2.0°) in the sagittal plane. The median post-implantation mechanical alignment of the limb was 0.25° (range -3.0° to +2.0°). When navigation is used only to guide the positioning of the cutting jig, errors may arise in the manual, non-navigated steps of the procedure. Our study showed increased cutting errors in the sagittal plane for both the femur and the tibia, and following implantation, the greatest error was seen in the sagittal alignment of the tibial component. Computer navigation should be used not only to guide the positioning of the cutting jig, but also to check the bone resection and implant position during TKA. IV.
Spinal pedicle subtraction osteotomy for fixed sagittal imbalance patients
Hyun, Seung-Jae; Kim, Yongjung J; Rhim, Seung-Chul
2013-01-01
In addressing spinal sagittal imbalance through a posterior approach, the surgeon now may choose from among a variety of osteotomy techniques. Posterior column osteotomies such as the facetectomy or Ponte or Smith-Petersen osteotomy provide the least correction, but can be used at multiple levels with minimal blood loss and a lower operative risk. Pedicle subtraction osteotomies provide nearly 3 times the per-level correction of Ponte/Smith-Petersen osteotomies; however, they carry increased technical demands, longer operative time, and greater blood loss and associated significant morbidity, including neurological injury. The literature focusing on pedicle subtraction osteotomy for fixed sagittal imbalance patients is reviewed. The long-term overall outcomes, surgical tips to reduce the complications and suggestions for their proper application are also provided. PMID:24340276
Boone, David A; Kobayashi, Toshiki; Chou, Teri G; Arabian, Adam K; Coleman, Kim L; Orendurff, Michael S; Zhang, Ming
2013-04-01
Alignment - the process and measured orientation of the prosthetic socket relative to the foot - is important for proper function of a transtibial prosthesis. Prosthetic alignment is performed by prosthetists using visual gait observation and amputees' feedback. The aim of this study was to investigate the effect of transtibial prosthesis malalignment on the moments measured at the base of the socket: the socket reaction moments. Eleven subjects with transtibial amputation were recruited from the community. An instrumented prosthesis alignment component was used to measure socket reaction moments during ambulation under 17 alignment conditions, including nominally aligned using conventional clinical methods, and angle perturbations of 3° and 6° (flexion, extension, abduction, and adduction) and translation perturbations of 5mm and 10mm (anterior, posterior, lateral, and medial) referenced from the nominal alignment. Coronal alignment perturbations caused systematic changes in the coronal socket reaction moments. All angle and translation perturbations revealed statistically significant differences on coronal socket reaction moments compared to the nominal alignment at 30% and 75% of stance phase (P<0.05). The effect of sagittal alignment perturbations on sagittal socket reaction moments was not as responsive as that of the coronal perturbations. The sagittal angle and translation perturbations of the socket led to statistically significant changes in minimum moment, maximum moment, and moments at 45% of stance phase in the sagittal plane. Therefore, malalignment affected the socket reaction moments in amputees with transtibial prostheses. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of whole spine alignment patterns on neck responses in rear end impact.
Sato, Fusako; Odani, Mamiko; Miyazaki, Yusuke; Yamazaki, Kunio; Östh, Jonas; Svensson, Mats
2017-02-17
The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model. Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open magnetic resonance imaging (MRI) system were utilized. Spinal alignment was determined from the centers of the vertebrae and average spinal alignment patterns for both genders were estimated by multidimensional scaling (MDS). An occupant FE model of female average size (162 cm, 62 kg; the AF 50 size model) was developed by scaling THUMS AF 05. The average spinal alignment pattern for females was implemented in the model, and model validation was made with respect to female volunteer sled test data from rear end impacts. Thereafter, the average spinal alignment pattern for males and representative spinal alignments for all subjects were implemented in the validated female model, and additional FE simulations of the sled test were conducted to investigate effects of spinal alignment patterns on cervical vertebral motion. The estimated average spinal alignment pattern was slight kyphotic, or almost straight cervical and less-kyphotic thoracic spine for the females and lordotic cervical and more pronounced kyphotic thoracic spine for the males. The AF 50 size model with the female average spinal alignment exhibited spine straightening from upper thoracic vertebra level and showed larger intervertebral angular displacements in the cervical spine than the one with the male average spinal alignment. The cervical spine alignment is continuous with the thoracic spine, and a trend of the relationship between cervical spine and thoracic spinal alignment was shown in this study. Simulation results suggested that variations in thoracic spinal alignment had a potential impact on cervical spine motion as well as cervical spinal alignment in rear end impact condition.
Spinal sagittal contour affecting falls: cut-off value of the lumbar spine for falls.
Ishikawa, Yoshinori; Miyakoshi, Naohisa; Kasukawa, Yuji; Hongo, Michio; Shimada, Yoichi
2013-06-01
Spinal deformities reportedly affect postural instability or falls. To prevent falls in clinical settings, the determination of a cut-off angle of spinal sagittal contour associated with increase risk for falls would be useful for screening for high-risk fallers. The purpose of this study was to calculate the spinal sagittal contour angle associated with increased risk for falls during medical checkups in community dwelling elders. The subjects comprised 213 patients (57 men, 156 women) with a mean age of 70.1 years (range, 55-85 years). The upright and flexion/extension thoracic kyphosis and lumbar lordosis angles, and the spinal inclination were evaluated with SpinalMouse(®). Postural instability was evaluated by stabilometry, using the total track length (LNG), enveloped areas (ENV), and track lengths in the lateral and anteroposterior directions (X LNG and Y LNG, respectively). The back extensor strength (BES) was measured using a strain-gauge dynamometer. The relationships among the parameters were analyzed statistically. Age, lumbar lordosis, spinal inclination, LNG, X LNG, Y LNG, and BES were significantly associated with falls (P<0.05). Multivariate logistic regression analyses revealed that lumbar lordosis was the most significant factor (P<0.01). Univariate logistic regression analyses for falls about lumbar lordosis angles revealed that angles of 3° and less were significant for falls. The present findings suggest that increased age, spinal inclination, LNG, X LNG, Y LNG, and decreased BES and lumbar lordosis, are associated with falls. An angle of lumbar lordosis of 3° or less was associated with falls in these community-dwelling elders. Copyright © 2012 Elsevier B.V. All rights reserved.
Crawford, Charles H; Glassman, Steven D; Gum, Jeffrey L; Carreon, Leah Y
2017-01-01
Advancements in the understanding of adult spinal deformity have led to a greater awareness of the role of the pelvis in maintaining sagittal balance and alignment. Pelvic incidence has emerged as a key radiographic measure and should closely match lumbar lordosis. As proper measurement of the pelvic incidence requires accurate identification of the S-1 endplate, lumbosacral transitional anatomy may lead to errors. The purpose of this study is to demonstrate how lumbosacral transitional anatomy may lead to errors in the measurement of pelvic parameters. The current case highlights one of the potential complications that can be avoided with awareness. The authors report the case of a 61-year-old man who had undergone prior lumbar surgeries and then presented with symptomatic lumbar stenosis and sagittal malalignment. Radiographs showed a lumbarized S-1. Prior numbering of the segments in previous surgical and radiology reports led to a pelvic incidence calculation of 61°. Corrected numbering of the segments using the lumbarized S-1 endplate led to a pelvic incidence calculation of 48°. Without recognition of the lumbosacral anatomy, overcorrection of the lumbar lordosis might have led to negative sagittal balance and the propensity to develop proximal junction failure. This case illustrates that improper identification of lumbosacral transitional anatomy may lead to errors that could affect clinical outcome. Awareness of this potential error may help improve patient outcomes.
Cloud, Beth A; Zhao, Kristin D; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan
2014-07-01
Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n = 26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R(2) = 0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95% LOA: -3.43 to 12.04°), 3.64° (95% LOA: -1.07 to 8.36°), and 4.02° (95% LOA: -2.80 to 10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures was 2.86° (95% LOA: -1.18 to 6.90°) and 2.55° (95% LOA: -3.38 to 8.48°), respectively. In natural sitting, the mean ± SD of kyphosis values was 35.07 ± 6.75°. Lordosis was detected in 8/26 participants: 11.72 ± 7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. Copyright © 2014 Elsevier B.V. All rights reserved.
Ilharreborde, Brice; Pesenti, Sébastien; Ferrero, Emmanuelle; Accadbled, Franck; Jouve, Jean-Luc; De Gauzy, Jérôme Sales; Mazda, Keyvan
2018-02-01
The comparison of implants and correction methods remain controversial in AIS. Excellent frontal and axial correction rates have been reported with all-screw constructs, but at the expense of sagittal alignment, which has a tendency to flatten postoperatively. Posteromedial translation using hybrid constructs seems to preserve and improve thoracic kyphosis (TK), but no series exist to date with a significant number of hypokyphotic patients. In addition, the measures of TK in 2D are often wrong in severe AIS due to axial rotation. The goals of this study were therefore to analyze the 3D radiological outcomes of a group of hypokyphotic AIS patients operated with sublaminar bands. 35 consecutive AIS hypokyphotic patients (T4T12 <15°) operated in three centers were included, with a minimum 2-year follow-up. The surgical technique was similar in all centers, associating lumbar pedicle screws and thoracic sublaminar bands. Posteromedial translation was the main correction technique, and no patient underwent prior anterior release. 3D spinal reconstructions were performed preoperatively, postoperatively and at the latest follow-up by an independent observer using SterEOS (EOS imaging, Paris, France), and 2D and 3D measurements were compared. In addition, a new 3D parameter [sagittal shift of the apical vertebra (SSAV)], reflecting the translation of the apical vertebra of the main curve in the patient sagittal plane, was described and reported. The age of the cohort was 16 years and the number of sublaminar bands used for correction averaged 6 (±1.5). T1T12 and T4T12 sagittal Cobb angles appeared to be overestimated on 2D postoperatively (3°, p = 0.002 and 4°, p < 0.001, respectively). Hence, only 3D measurements were kept for the quantitative analysis of the postoperative correction. T4T12 TK significantly increased after surgery (average 8° ± 7°, p < 0.001), but 11 patients (31.4%) remained hypokyphotic. Seven out of the eight patients (87.5%) who presented a thoracic lordosis (i.e., T4T12 <0°) preoperatively were corrected after surgery (mean gain 16° ± 4°). A posterior shift (positive SSAV) of the apical vertebra was reported in 24 patients (68.6%). In this subgroup, the mean SSAV was +2 cm (±1). Good correlation was found between the SSAV and the postoperative change in 3D T4T12 kyphosis (r = 0.62). Measures in 2D tend to overestimate sagittal alignment and are not sufficient to evaluate postoperative correction. SSAV is a new 3D parameter reflecting the TK change that needs to be further investigated and used in the future. This series confirms that sublaminar bands should be considered in hypokyphotic patients, since thoracic sagittal alignment was restored in 68.6% of the cases.
Hultman, G; Saraste, H; Ohlsen, H
1992-09-01
One hundred fifty 45-55-year-old men were divided into three groups: those with healthy backs, recurrent low back pain (LBP), and chronic LBP. These groups were studied with respect to anthropometry, spinal canal width, spinal sagittal configuration and flexibility, and the flexibility of the hamstrings musculature with straight leg raising (SLR). There were no differences between the groups with respect to anthropometry. The group with healthy backs had significantly greater lordosis and sagittal flexibility than the other groups. The width of the spinal canal was correlated to body height. The SLR test showed significantly higher values in the group with healthy backs and in the recurrent pain group than in the chronic pain group. The possible role of restoring normal range of motion to minimize the risk of LBP recurrence is discussed.
Jasiewicz, Jan M; Allum, John H J; Middleton, James W; Barriskill, Andrew; Condie, Peter; Purcell, Brendan; Li, Raymond Che Tin
2006-12-01
We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate (p<0.02). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects.
Cecchinato, R; Langella, F; Bassani, R; Sansone, V; Lamartina, C; Berjano, P
2014-10-01
The variations of the cervical lordosis after correction of sagittal imbalance have been poorly studied. The aim of our study is to verify whether the cervical lordosis changes after surgery for sagittal imbalance. Thirty-nine patients were included in the study. Cervical, thoracic and lumbar spine, pelvic and lower-limb sagittal parameters were recorded. The cranial alignment was measured by the newly described Cranial Slope. The global cervical kyphosis (preop -43°, postop -31.5°) and the upper (preop -24.1°, postop -20.2°) and lower cervical kyphosis (preop -18.1°, postop -9.2°) were significantly reduced after surgical realignment of the trunk. A positive linear correlation was observed between the changes in T1 slope and the lower cervical lordosis, and between T1 slope and the global cervical alignment. The cervical lordosis is reduced by surgical correction of malalignment of the trunk, suggesting an adaptive role to maintain the head's neutral position.
Hayashi, Kazunori; Toyoda, Hiromitsu; Terai, Hidetomi; Suzuki, Akinobu; Hoshino, Masatoshi; Tamai, Koji; Ohyama, Shoichiro; Nakamura, Hiroaki
2017-04-01
OBJECTIVE Numerous reports have been published on the effectiveness and safety of correction of the coronal Cobb angle and thoracolumbar sagittal alignment in patients with adolescent idiopathic scoliosis (AIS). Suboptimal sagittal alignment, such as decreased thoracic kyphosis (TK), after corrective surgery, is a possible cause of lumbar or cervical spinal degeneration and junctional malalignment; however, few reports are available on reciprocal changes outside of the fused segments, such as the cervical lordotic angle (CLA). This study aimed to investigate the relationship between the perioperative CLA and other radiographic factors or clinical results in AIS, and to identify independent risk factors of postoperative cervical hyperkyphosis. METHODS A total of 51 AIS patients who underwent posterior spinal fusion with the placement of pedicle screw (PS) constructs at thoracic levels were included in the study. Clinical and radiographic follow-up of patients was conducted for a minimum of 2 years, and the postoperative course was evaluated. The authors measured and identified the changes in the CLA and other radiographic parameters using whole-spine radiography, with the patient in the standing position, performed immediately before surgery, 2 weeks after surgery, and 2 years after surgery. The postoperative cervical hyperkyphosis group included patients whose CLA at 2-year follow-up was smaller than -10°. The reciprocal changes of the CLA and other parameters were also investigated. Univariate and multivariate analyses were conducted to determine the associated risk factors for postoperative cervical hyperkyphosis. RESULTS This study comprised 48 females and 3 males (mean age 16.0 years). The mean follow-up period was 47 months (range 24-90 months). The main coronal thoracic curve was corrected from 54.6° to 16.4°, and the mean correction rate was 69.8% at 2 years. The CLA significantly increased from the mean preoperative measurement (-5.4° ± 14°) to the 2-year follow-up measurement (-1.7° ± 11°) (p = 0.019). Twelve of the 51 patients had postoperative cervical hyperkyphosis. This group exhibited significantly smaller preoperative CLA and TK measurements (p = 0.001 and 0.004, respectively) than the others. After adjusting for confounding factors, preoperative CLA less than -5° and preoperative TK less than 10° were significantly associated with postoperative cervical hyperkyphosis (p < 0.05; OR 12.5 and 8.59, respectively). However, no differences were found in the clinical results regardless of cervical hyperkyphosis. CONCLUSIONS The CLA increased significantly from preoperatively to 2 years after surgery. Preoperative small CLA and TK measurements were independent risk factors of postoperative cervical hyperkyphosis. However, there was no difference in the clinical outcomes regardless of cervical hyperkyphosis.
The relationships between low back pain and lumbar lordosis: a systematic review and meta-analysis.
Chun, Se-Woong; Lim, Chai-Young; Kim, Keewon; Hwang, Jinseub; Chung, Sun G
2017-08-01
Clinicians regard lumbar lordotic curvature (LLC) with respect to low back pain (LBP) in a contradictory fashion. The time-honored point of view is that LLC itself, or its increment, causes LBP. On the other hand, recently, the biomechanical role of LLC has been emphasized, and loss of lordosis is considered a possible cause of LBP. The relationship between LLC and LBP has immense clinical significance, because it serves as the basis of therapeutic exercises for treating and preventing LBP. This study aimed to (1) determine the difference in LLC in those with and without LBP and (2) investigate confounding factors that might affect the association between LLC and LBP. Systematic review and meta-analysis. The inclusion criteria consisted of observational studies that included information on lumbar lordotic angle (LLA) assessed by radiological image, in both patients with LBP and healthy controls. Studies solely involving pediatric populations, or addressing spinal conditions of nondegenerative causes, were excluded. A systematic electronic search of Medline, Embase, Cochrane Library, CINAHL, Scopus, PEDro, and Web of Science using terms related to lumbar alignment and Boolean logic was performed: (lumbar lordo*) or (lumbar alignment) or (sagittal alignment) or (sagittal balance). Standardized mean differences (SMD) and 95% confidence intervals (CI) were estimated, and chi-square and I 2 statistics were used to assess within-group heterogeneity by random effects model. Additionally, the age and gender of participants, spinal disease entity, and the severity and duration of LBP were evaluated as possible confounding factors. A total of 13 studies consisting of 796 patients with LBP and 927 healthy controls were identified. Overall, patients with LBP tended to have smaller LLA than healthy controls. However, the studies were heterogeneous. In the meta-regression analysis, the factors of age, severity of LBP, and spinal disease entity were revealed to contribute significantly to variance between studies. In the subgroup analysis of the five studies that compared patients with disc herniation or degeneration with healthy controls, patients with LBP had smaller LLA (SMD: -0.94, 95% CI: -1.19 to -0.69), with sufficient homogeneity based on significance level of .1 (I 2 =45.7%, p=.118). In the six age-matched studies, patients with LBP had smaller LLA than healthy controls (SMD: -0.33, 95% CI: -0.46 to -0.21), without statistical heterogeneity (I 2 =0%, p=.916). This meta-analysis demonstrates a strong relationship between LBP and decreased LLC, especially when compared with age-matched healthy controls. Among specific diseases, LBP by disc herniation or degeneration was shown to be substantially associated with the loss of LLC. Copyright © 2017 Elsevier Inc. All rights reserved.
The use of the T1 sagittal angle in predicting overall sagittal balance of the spine.
Knott, Patrick T; Mardjetko, Steven M; Techy, Fernando
2010-11-01
A balanced sagittal alignment of the spine has been shown to strongly correlate with less pain, less disability, and greater health status scores. To restore proper sagittal balance, one must assess the position of the occiput relative to the sacrum. The assessment of spinal balance preoperatively can be challenging, whereas predicting postoperative balance is even more difficult. This study was designed to evaluate and quantify multiple factors that influence sagittal balance. Retrospective analysis of existing spinal radiographs. A retrospective review of 52 adult spine patient records was performed. All patients had full-column digital radiographs that showed all the important skeletal landmarks necessary for accurate measurement. The average age of the patient was 53 years. Both genders were equally represented. The radiographs were measured using standard techniques to obtain the following parameters: scoliosis in the coronal plane; lordosis or kyphosis of the cervical, thoracic, and lumbar spine; the T1 sagittal angle (angle between a horizontal line and the superior end plate of T1); the angle of the dens in the sagittal plane; the angle of the dens in relation to the occiput; the sacral slope; the pelvic incidence; the femoral-sacral angle; and finally, the sagittal vertical axis (SVA) measured from both the dens of C2 and from C7. It was found that the SVA when measured from the dens was on average 16 mm farther forward than the SVA measured from C7 (p<.0001). The dens plumb line (SVA(dens)) was then used in the study. An analysis was done to examine the relationship between SVA(dens) and each of the other measurements. The T1 sagittal angle was found to have a moderate positive correlation (r=0.65) with SVA(dens), p<.0001, indicating that the amount of sagittal T1 tilt can be used as a good predictor of overall sagittal balance. When examining the other variables, it was found that cervical lordosis had a weak correlation (r=0.37) with SVA(dens) that was unexpected, given that cervical lordosis determines head position. Thoracic kyphosis also had a weak correlation (r=0.26) with SVA(C1), which was equally surprising. Lumbar lordosis had a slightly higher correlation (r=0.38), p=.006, than the cervical or thoracic spine. A multiple regression was run on the data to examine the relationship that all these independent variables have on SVA(dens). SPSS (SPSS, Inc., Chicago, IL, USA) was used to create a regression equation using the independent variables of T1 sagittal angle, cervical lordosis, thoracic kyphosis, lumbar lordosis, sacral slope, pelvic incidence, and femoral-sacral angle and the dependent variable of SVA(dens). The model had a strong correlation (r=0.80, r(2)=0.64) and was statistically significant (p<.0001). The T1 sagittal angle was the variable that had the strongest correlation with the SVA(dens) Spearman r=0.65, p<.0001, followed by pelvic incidence, p=.002, and lumbar lordosis, p=.006. We also observed that when the T1 tilt was higher than 25°, all patients had at least 10 cm of positive sagittal imbalance. In addition, patients with negative sagittal balance had mostly low T1 tilt values, usually lower than 13°. The other variables were not shown to have a statically significant influence on SVA. This analysis shows that many factors influence the overall sagittal balance of the patient, but it may be the position of the pelvis and lower spine that have a stronger influence than the position of the upper back and neck. Unfortunately, to our knowledge, there are no studies to date that have established a normal sagittal T1 tilt angle. However, our analysis has shown that when the T1 tilt was higher than 25°, all patients had at least 10 cm of positive sagittal imbalance. It also showed that patients with negative sagittal balance had mostly low T1 tilt values, usually below 13° of angulation. The T1 sagittal angle is a measurement that may be very useful in evaluating sagittal balance, as it was the measure that most strongly correlated with SVA(dens). It has its great utility where long films cannot be obtained. Patients whose T1 tilt falls outside the range 13° to 25° should be sent for full-column radiographs for a complete evaluation of their sagittal balance. On the other hand, a T1 tilt within the above range does not guarantee a normal sagittal balance, and further investigation should be performed at the surgeon's discretion. Copyright © 2010 Elsevier Inc. All rights reserved.
Bettany-Saltikov, J; Warren, J; Stamp, M
2008-01-01
Approximately 40 million students in the United States and a similar number in Europe carry school rucksacks. The average student carries a rucksack weighing almost one fourth of his or her body weight. This has led to more than 7,000 A&E, referrals each year related to carrying school bags in the US. The purpose of this study was to investigate the effects of carrying a rucksack (on each shoulder or on both), on 3D spinal curvature in healthy young students. A convenience sample of 30 healthy young adults participated in this study. A Microscribe 3DX digitiser recorded the three dimensional coordinates of thirteen key anatomical landmarks along the spine in four different loading conditions; no rucksack (reference) carrying a rucksack (17% body weight) simultaneously on both shoulders and solely on the right or the left shoulder. The data obtained was analyzed using standard statistical methods. Carrying the load on both shoulders resulted in no difference in the frontal plane angle but significantly decreased the thoracic kyphosis in the sagittal plane. However, carrying the load on the right shoulder significantly increased the thoracic lateral curvature in the frontal plane and decreased the thoracic kyphosis in the sagittal plane. This study confirms that even carrying a 17% load causes significant changes in spinal alignment. It is essential that Health and Safety professionals promote the awareness and effects of diverse rucksack carriage modes and excessive rucksack weight to avoid the early onset of low back pain.
Qi, Shun; Wu, Zhi-Gang; Mu, Yun-Feng; Gao, Lang-Lang; Yang, Jian; Zuo, Pan-Li; Nittka, Mathias; Liu, Ying; Wang, Hai-Qiang; Yin, Hong
2016-04-01
The study aimed for evaluating the diagnostic value of a 2D Turbo Spin Echo (TSE) magnetic resonance (MR) imaging sequence implanted slice-encoding metal artifact correction (SEMAC) and view-angle tilting (VAT) in patients with spinal instrumentation.Sixty-seven consecutive patients with an average age of 59.7 ± 17.8 years old (range: 32-75 years) were enrolled in this study. Both sagittal, axial T1-weighted and T2-weighted MRI images were acquired with a standard TSE sequence and a high-bandwidth TSE sequence implemented the SEMAC and VAT techniques. Three continuous sections around the instrumentation in axial and sagittal images were selected for quantitative evaluation. The measurement included cumulative areas of signal void on axial images and the length of spinal canal obscuration on sagittal images. Three radiologists independently evaluated all images blindly. The inter-observer reliability was evaluated with inter-class coefficient. We defined patients with discomfortable symptoms caused by spinal instrumentation as spinal instrumentation adverse reaction.Visualizations of all periprosthetic anatomic structures were significantly better for SEMAC-VAT compared with standard imaging. For axial images, the area of signal void at the level of the instrumentation were statistically reduced with SEMAC-VAT TSE sequences than with standard TSE sequences for T2-weighted images (9.9 ± 2.6 cm vs 29.8 ± 14.7 cm, P < 0.001). For sagittal imaging, the length of spinal canal obscuration at the level of the instrumentation was reduced from 5.2 ± 2.0 cm to 1.2 ± 0.6 cm on T2-weighted images (P < 0.001), and from 4.8 ± 2.1 cm to 1.1 ± 0.5 cm on T1-weighted images with SEMAC-VAT sequences (P < 0.001). Interobserver agreement for visualization of anatomic structures and image quality was good for both SEMAC-VAT (k = 0.77 and 0.68, respectively) and standard (k = 0.74 and 0.80, respectively) imaging. The number of abnormal findings noted on SEMAC images (59 findings) was significantly higher than detected on standard images (40 findings). The incidence rate of spinal instrumentation adverse reaction was 38.81%.MR images with SEMAC-VAT can significantly reduce metal artifacts for spinal instrumentation and improve delineation of the instrumentation and periprosthetic region. Furthermore, SEMAC-VAT technique can improve diagnostic accuracy in patients with post-instrumentation spinal diseases.
Payer, M
2005-06-01
A number of conservative and operative approaches have been described for the treatment of unstable traumatic upper and middle thoracic fractures. The advantage of surgical correction and fixation/fusion lies in its potential to restore sagittal and coronal alignment, thereby indirectly decompressing the spinal cord. A consecutive series of 8 patients with unstable traumatic upper and middle thoracic fractures is reviewed. In all patients, polyaxial pedicle screws were inserted bilaterally into the two levels above and below the fracture. Rods that were less contoured ("undercontoured") than the regional hyperkyphosis at the injured level, were anchored to the caudal four screws. The cranial four screws, with the vertebrae to which they were inserted, were then progressively pulled posteriorly onto the undercontoured rods with rod reducers, thus correcting the hyperkyphosis and anterolisthesis. The mean follow-up was 15 months. The mean regional kyphosis was 23 degrees preoperatively, 17 degrees postoperatively and 18 degrees at follow-up. The mean anterolisthesis was 8 mm preoperatively, 1 mm postoperatively and 1 mm at follow-up. No hardware failure occurred. Five patients with complete spinal cord injury at presentation made no neurological recovery, two patients with incomplete spinal cord injury initially (ASIA B), recovered substantially (to ASIA D), and the patients who were neurologically intact at presentation remained so.
Dang, Natasha Radhika; Moreau, Marc J; Hill, Douglas L; Mahood, James K; Raso, James
2005-05-01
Retrospective cross-sectional assessment of the reproducibility and reliability of radiographic parameters. To measure the intra-examiner and interexaminer reproducibility and reliability of salient radiographic features. The management and treatment of adolescent idiopathic scoliosis (AIS) depends on accurate and reproducible radiographic measurements of the deformity. Ten sets of radiographs were randomly selected from a sample of patients with AIS, with initial curves between 20 degrees and 45 degrees. Fourteen measures of the deformity were measured from posteroanterior and lateral radiographs by 2 examiners, and were repeated 5 times at intervals of 3-5 days. Intra-examiner and interexaminer differences were examined. The parameters include measures of curve size, spinal imbalance, sagittal kyphosis and alignment, maximum apical vertebral rotation, T1 tilt, spondylolysis/spondylolisthesis, and skeletal age. Intra-examiner reproducibility was generally excellent for parameters measured from the posteroanterior radiographs but only fair to good for parameters from the lateral radiographs, in which some landmarks were not clearly visible. Of the 13 parameters observed, 7 had excellent interobserver reliability. The measurements from the lateral radiograph were less reproducible and reliable and, thus, may not add value to the assessment of AIS. Taking additional measures encourages a systematic and comprehensive assessment of spinal radiographs.
Reames, Davis L; Kasliwal, Manish K; Smith, Justin S; Hamilton, D Kojo; Arlet, Vincent; Shaffrey, Christopher I
2015-03-01
A retrospective review. To study time to development, clinical and radiographic characteristics, and management of proximal junctional kyphosis (PJK) following thoracolumbar instrumented fusion for adult spinal deformity (ASD). PJK continues to be a common mode of failure following ASD surgery. Although literature exists on possible risk factors, data on management remain limited. A retrospective review of medical records of 289 consecutive ASD patients who underwent posterior segmental instrumentation incorporating at least 5 segments was conducted. PJK was defined as proximal kyphotic angle >10 degrees. PJK occurred in 32 patients (11%) at a mean follow-up of 34 months (range, 1.3-61.9±19 mo). Sixteen (50%) patients were revised (mean, 1.7 revisions; range, 1-3) at a mean follow-up of 9.6 months (range, 0.7-40 mo); primary indications for revision were pain (n=16), myelopathy (n=6), instability (n=4), and instrumentation protrusion (n=2). Comparison of preindex and postindex surgery radiographic parameters demonstrated significant improvement in mean lumbar lordosis (24 vs. 42 degrees, P<0.001), pelvic incidence-lumbar lordosis mismatch (30 vs. 11 degrees, P<0.001), and pelvic tilt (29 vs. 23 degrees, P<0.011). The mean T5-T12 kyphosis worsened (30 vs. 53 degrees, P<0.001) and the mean global sagittal spinal alignment failed to improve (9.6 vs. 8.0 cm, P=0.76). There was no apparent relationship between the absolute PJK angle and revision surgery (P>0.05). The patients in this series who developed PJK had substantial preoperative positive sagittal malalignment that remained inadequately corrected following surgery, likely resulting from a combination of inadequate surgical correction and a significant compensatory increase in thoracic kyphosis. In the absence of direct relationship between a greater PJK angle and worse clinical outcome, clinical symptoms and neurological status rather than absolute reliance on radiographic parameters should drive the decision to pursue revision surgery.
Yamato, Yu; Hasegawa, Tomohiko; Kobayashi, Sho; Yasuda, Tatsuya; Togawa, Daisuke; Arima, Hideyuki; Oe, Shin; Iida, Takahiro; Matsumura, Akira; Hosogane, Naobumi; Matsumoto, Morio; Matsuyama, Yukihiro
2016-02-01
This investigation consisted of a cross-sectional study and a retrospective multicenter case series. This investigation sought to identify the ideal lumbar lordosis (LL) angle for restoring an optimal pelvic tilt (PT) in patients with adult spinal deformity (ASD). To achieve successful corrective fusion in ASD patients with sagittal imbalance, it is essential to correct the sagittal spinal alignment and obtain a suitable pelvic inclination. We determined the LL angle that would restore the optimal PT following ASD surgery. The cross-sectional study included 184 elderly volunteers (mean age 64 years) with an Oswestry Disability Index score less than 20%. The relationship between PT or LL and the pelvic incidence (PI) in normal individuals was investigated. The second study included 116 ASD patients (mean age 66 years) who underwent thoracolumbar corrective fusion at 1 of 4 spine centers. The postoperative PT values were calculated using the parameters measured. On the basis of these studies, an ideal LL angle was determined. In the cross-sectional study, the linear regression equation for the optimal PT as a function of PI was "optimal PT = 0.47 × PI - 7.5." In the second study, the postoperative PT was determined as a function of PI and corrected LL, using the equation "postoperative PT = 0.7 × PI - 0.5 × corrected LL + 8.1." The target LL angle was determined by mathematically equalizing the PTs of these 2 equations: "target LL = 0.45 × PI + 31.8." The ideal LL angle can be determined using the equation "LL = 0.45 × PI + 31.8," which can be used as a reference during surgical planning in ASD cases. 4.
Yoshida, Go; Boissiere, Louis; Larrieu, Daniel; Bourghli, Anouar; Vital, Jean Marc; Gille, Olivier; Pointillart, Vincent; Challier, Vincent; Mariey, Remi; Pellisé, Ferran; Vila-Casademunt, Alba; Perez-Grueso, Francisco Javier Sánchez; Alanay, Ahmet; Acaroglu, Emre; Kleinstück, Frank; Obeid, Ibrahim
2017-03-15
Prospective multicenter study of adult spinal deformity (ASD) surgery. To clarify the effect of ASD surgery on each health-related quality of life (HRQOL) subclass/domain. For patients with ASD, surgery offers superior radiological and HRQOL outcomes compared with nonoperative care. HRQOL may, however, be affected by surgical advantages related to corrective effects, yielding adequate spinopelvic alignment and stability or disadvantages because of long segment fusion. The study included 170 consecutive patients with ASD from a multicenter database with more than 2-year follow-up period. We analyzed each HRQOL domain/subclass (short form-36 items, Oswestry Disability Index, Scoliosis Research Society-22 [SRS-22] questionnaire), and radiographic parameters preoperatively and at 1 and 2 years postoperatively. We divided the patients into two groups each based on lowest instrumented vertebra (LIV; above L5 or S1 to ilium) or surgeon-determined preoperative pathology (idiopathic or degenerative). Improvement rate (%) was calculated as follows: 100 × |pre.-post.|/preoperative points (%) (+, advantages; -, disadvantages). The scores of all short form-36 items and SRS-22 subclasses improved at 1 and 2 years after surgery, regardless of LIV location and preoperative pathology. Personal care and lifting in Oswestry Disability Index were, however, not improved after 1 year. These disadvantages were correlated to sagittal modifiers of SRS-Schwab classification similar to other HRQOL. The degree of personal care disadvantage mainly depended on LIV location and preoperative pathology. Although personal care improved after 2 years postoperatively, no noticeable improvements in lifting were recorded. HRQOL subclass analysis indicated two disadvantages of ASD surgery, which were correlated to sagittal radiographic measures. Fusion to the sacrum or ilium greatly restricted the ability to stretch or bend, leading to limited daily activities for at least 1 year postoperatively, although this effect may subside after another year. Consequently, spinal surgeons should note the effect of surgical treatment on each HRQOL domain and counsel patients about the implications of surgery. 4.
Lewis, Noah D H; Keshen, Sam G N; Lenke, Lawrence G; Zywiel, Michael G; Skaggs, David L; Dear, Taylor E; Strantzas, Samuel; Lewis, Stephen J
2015-08-01
A retrospective analysis. The purpose of this study was to determine whether the deformity angular ratio (DAR) can reliably assess the neurological risks of patients undergoing deformity correction. Identifying high-risk patients and procedures can help ensure that appropriate measures are taken to minimize neurological complications during spinal deformity corrections. Subjectively, surgeons look at radiographs and evaluate the riskiness of the procedure. However, 2 curves of similar magnitude and location can have significantly different risks of neurological deficit during surgery. Whether the curve spans many levels or just a few can significantly influence surgical strategies. Lenke et al have proposed the DAR, which is a measure of curve magnitude per level of deformity. The data from 35 pediatric spinal deformity correction procedures with thoracic 3-column osteotomies were reviewed. Measurements from preoperative radiographs were used to calculate the DAR. Binary logistic regression was used to model the relationship between DARs (independent variables) and presence or absence of an intraoperative alert (dependent variable). In patients undergoing 3-column osteotomies, sagittal curve magnitude and total curve magnitude were associated with increased incidence of transcranial motor evoked potential changes. Total DAR greater than 45° per level and sagittal DAR greater than 22° per level were associated with a 75% incidence of a motor evoked potential alert, with the incidence increasing to 90% with sagittal DAR of 28° per level. In patients undergoing 3-column osteotomies for severe spinal deformities, the DAR was predictive of patients developing intraoperative motor evoked potential alerts. Identifying accurate radiographical, patient, and procedural risk factors in the correction of severe deformities can help prepare the surgical team to improve safety and outcomes when carrying out complex spinal corrections. 3.
Shin, E Kyung; Kim, Chi Heon; Chung, Chun Kee; Choi, Yunhee; Yim, Dahae; Jung, Whei; Park, Sung Bae; Moon, Jung Hyeon; Heo, Won; Kim, Sung-Mi
2017-02-01
Lumbar spinal stenosis (LSS) is the most common lumbar degenerative disease, and sagittal imbalance is uncommon. Forward-bending posture, which is primarily caused by buckling of the ligamentum flavum, may be improved via simple decompression surgery. The objectives of this study were to identify the risk factors for sagittal imbalance and to describe the outcomes of simple decompression surgery. This is a retrospective nested case-control study PATIENT SAMPLE: This was a retrospective study that included 83 consecutive patients (M:F=46:37; mean age, 68.5±7.7 years) who underwent decompression surgery and a minimum of 12 months of follow-up. The primary end point was normalization of sagittal imbalance after decompression surgery. Sagittal imbalance was defined as a C7 sagittal vertical axis (SVA) ≥40 mm on a 36-inch-long lateral whole spine radiograph. Logistic regression analysis was used to identify the risk factors for sagittal imbalance. Bilateral decompression was performed via a unilateral approach with a tubular retractor. The SVA was measured on serial radiographs performed 1, 3, 6, and 12 months postoperatively. The prognostic factors for sagittal balance recovery were determined based on various clinical and radiological parameters. Sagittal imbalance was observed in 54% (45/83) of patients, and its risk factors were old age and a large mismatch between pelvic incidence and lumbar lordosis. The 1-year normalization rate was 73% after decompression surgery, and the median time to normalization was 1 to 3 months. Patients who did not experience SVA normalization exhibited low thoracic kyphosis (hazard ratio [HR], 1.04; 95% confidence interval [CI], 1.02-1.10) (p<.01) and spondylolisthesis (HR, 0.33; 95% CI, 0.17-0.61) before surgery. Sagittal imbalance was observed in more than 50% of LSS patients, but this imbalance was correctable via simple decompression surgery in 70% of patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Zhonghui; Li, Song; Qiu, Yong; Zhu, Zezhang; Chen, Xi; Xu, Liang; Sun, Xu
2017-12-01
OBJECTIVE Although the vertical expandable prosthetic titanium rib (VEPTR) and growing rod instrumentation (GRI) encourage spinal growth via regular lengthening, they can create different results because of their different fixation patterns and mechanisms in correcting scoliosis. Previous studies have focused comparisons on coronal plane deformity with minimal attention to the sagittal profile. In this retrospective study, the authors aimed to compare the evolution of the sagittal spinal profile in early-onset scoliosis (EOS) treated with VEPTR versus GRI. METHODS The data for 11 patients with VEPTR and 22 with GRI were reviewed. All patients had more than 2 years' follow-up with more than 2 lengthening procedures. Radiographic measurements were performed before and after the index surgery and at the latest follow-up. The complications in both groups were recorded. RESULTS Patients in both groups had similar diagnoses, age at the index surgery, and number of lengthening procedures. The changes in the major coronal Cobb angle and T1-S1 spinal height were not significantly different between the 2 groups. Compared with the GRI group, the VEPTR group had less correction in thoracic kyphosis (23% ± 12% vs 44% ± 16%, p < 0.001) after the index surgery and experienced a greater correction loss in thoracic kyphosis (46% ± 18% vs 11% ± 8%, p < 0.001) at the latest follow-up. Although the increase in the proximal junctional angle was not significantly different (VEPTR: 7° ± 4° vs GRI: 8° ± 5°, p = 0.569), the incidence of proximal junctional kyphosis was relatively lower in the VEPTR group (VEPTR: 18.2% vs GRI: 22.7%). No significant changes in the spinopelvic parameters were observed, while the sagittal vertical axis showed a tendency toward a neutral position in both groups. The overall complication rate was higher in the VEPTR group than in the GRI group (72.7% vs 54.5%). CONCLUSIONS The VEPTR had coronal correction and spinal growth results similar to those with GRI. In the sagittal plane, however, the VEPTR was not comparable to the GRI in controlling thoracic kyphosis. Thus, for hyperkyphotic EOS patients, GRI is recommended over VEPTR.
Yao, Ziming; Du, Jianwei; Wang, Zheng; Zheng, Guoquan; Zhang, Xuesong; Cui, Geng; Wang, Yan
2016-09-01
A retrospective study. The aim of this study was to assess the changes in sexual activities in male patients surgically treated for ankylosing spondylitis (AS)-induced kyphosis and the correlation between these changes and spinal sagittal realignment. Sexual function may be affected by AS. However, little is known about the effect of spinal surgery on the sexual activity of patients with AS-induced kyphosis. Data of 45 male patients who had been surgically treated for AS-induced kyphosis were retrospectively reviewed. Changes in sexual activity were evaluated by the international index of erectile function (IIEF), frequency of sexual activity, and time point at which sexual activity began postoperatively. We compared the above-mentioned parameters before and 24 months postoperatively and analyzed the correlation of the changes in the IIEF with the changes in radiological characteristics. Each domain of the IIEF and the total IIEF were increased postoperatively. Improved sexual function was correlated with changes in spinal sagittal characteristics, among which lumbar lordosis (LL) and the chin-brow vertical angle (CBVA) were the most significant causes (P < 0.05). Most patients (71.1%) resumed their sexual activity 5 to 12 weeks after surgery. At the 24-month follow-up, the frequency of patients' sexual activity was higher than that before surgery (P < 0.05). Surgical correction of spinal deformity may improve sexual function and increase the frequency of sexual activity in men with AS. Spinal sagittal realignment and pelvic rotation may be correlated with improvement of sexual function. 4.
Walker, Esther J; Bergen, Benjamin K; Núñez, Rafael
2017-04-01
People use space in a variety of ways to structure their thoughts about time. The present report focuses on the different ways that space is employed when reasoning about deictic (past/future relationships) and sequence (earlier/later relationships) time. In the first study, we show that deictic and sequence time are aligned along the lateral axis in a manner consistent with previous work, with past and earlier events associated with left space and future and later events associated with right space. However, the alignment of time with space is different along the sagittal axis. Participants associated future events and earlier events-not later events-with the space in front of their body and past and later events with the space behind, consistent with the sagittal spatial terms (e.g., ahead, in front of) that we use to talk about deictic and sequence time. In the second study, we show that these associations between sequence time and sagittal space are sensitive to person-perspective. This suggests that the particular space-time associations observed in English speakers are influenced by a variety of different spatial properties, including spatial location and perspective. Copyright © 2016. Published by Elsevier B.V.
Takagi, Shigeru; Sato, Takashi; Watanabe, Satoshi; Tanifuji, Osamu; Mochizuki, Tomoharu; Omori, Go; Endo, Naoto
2017-11-17
Abnormalities of lower extremity alignment (LEA) in recurrent patella dislocation (RPD) have been studied mostly by two-dimensional (2D) procedures leaving three-dimensional (3D) factors unknown. This study aimed to three-dimensionally examine risk factors for RPD in lower extremity alignment under the weight-bearing conditions. The alignment of 21 limbs in 15 RPD subjects was compared to the alignment of 24 limbs of 12 healthy young control subjects by an our previously reported 2D-3D image-matching technique. The sagittal, coronal, and transverse alignment in full extension as well as the torsional position of the femur (anteversion) and tibia (tibial torsion) under weight-bearing standing conditions were assessed by our previously reported 3D technique. The correlations between lower extremity alignment and RPD were assessed using multiple logistic regression analysis. The difference of lower extremity alignment in RPD between under the weight-bearing conditions and under the non-weight-bearing conditions was assessed. In the sagittal and coronal planes, there was no relationship (statistically or by clinically important difference) between lower extremity alignment angle and RPD. However, in the transverse plane, increased external tibial rotation [odds ratio (OR) 1.819; 95% confidence interval (CI) 1.282-2.581], increased femoral anteversion (OR 1.183; 95% CI 1.029-1.360), and increased external tibial torsion (OR 0.880; 95% CI 0.782-0.991) were all correlated with RPD. The tibia was more rotated relative to femur at the knee joint in the RPD group under the weight-bearing conditions compared to under the non-weight-bearing conditions (p < 0.05). This study showed that during weight-bearing, alignment parameters in the transverse plane related to the risk of RPD, while in the sagittal and coronal plane alignment parameters did not correlate with RPD. The clinical importance of this study is that the 3D measurements more directly, precisely, and sensitively detect rotational parameters associated with RPD and hence predict risk of RPD. III.
Functional MR imaging of the cervical spinal cord by use of electrical stimulation at LI4 (Hegu).
Wang, W D; Kong, K M; Xiao, Y Y; Wang, X J; Liang, B; Qi, W L; Wu, R H
2006-01-01
The purpose is to investigate the cervical spinal cord mapping on electrical stimulation at LI4 (Hegu) by using 'signal enhancement by extravascular water protons' (SEEP)-fMRI, and to establish the response of acupoint-stimulation in spinal cord. Three healthy volunteers were underwent low-frequency electrical stimulation at LI4. Meanwhile, a single-shot fast spin-echo (SSFSE) sequence was used to perform functional MR imaging on a 1.5 T GE Signa MR system. Cord activation was measured both in the sagittal and transverse imaging planes and then analyzed by AFNI (analysis of functional neuroimages) system. In the sagittal view, two subjects had an fMRI response in the cervical spinal cord upon electrical stimulation at LI4. The localizations of the segmental fMRI activation are both at C6 through T1 and C2/3 cervical spinal cord level. In the transverse imaging plane, significant fMRI responses could be measured in the last subjects locating at C6/7 segment, the cross-sectional localization of the activity measured in the spinal cord was most in terms of the ipsilateral posterior direction. It is concluded that the fMRI technique can be used for detecting with activity in the human cervical spinal cord by a single-shot fast spin-echo sequence on a 1.5 T GE clinical system. Investigating the acupoint-stimulation response in the spinal cord using the spinal fMRI will be helpful for the further discussion on the mechanisms of acupuncture to spinal cord diseases.
Current concepts and controversies on adolescent idiopathic scoliosis: Part I.
Sud, Alok; Tsirikos, Athanasios I
2013-03-01
Adolescent idiopathic scoliosis is the most common spinal deformity encountered by General Orthopaedic Surgeons. Etiology remains unclear and current research focuses on genetic factors that may influence scoliosis development and risk of progression. Delayed diagnosis can result in severe deformities which affect the coronal and sagittal planes, as well as the rib cage, waistline symmetry, and shoulder balance. Patient's dissatisfaction in terms of physical appearance and mechanical back pain, as well as the risk for curve deterioration are usually the reasons for treatment. Conservative management involves mainly bracing with the aim to stop or slow down scoliosis progression during growth and if possible prevent the need for surgical treatment. This is mainly indicated in young compliant patients with a large amount of remaining growth and progressive curvatures. Scoliosis correction is indicated for severe or progressive curves which produce significant cosmetic deformity, muscular pain, and patient discontent. Posterior spinal arthrodesis with Harrington instrumentation and bone grafting was the first attempt to correct the coronal deformity and replace in situ fusion. This was associated with high pseudarthrosis rates, need for postoperative immobilization, and flattening of sagittal spinal contour. Segmental correction techniques were introduced along with the Luque rods, Harri-Luque, and Wisconsin systems. Correction in both coronal and sagittal planes was not satisfactory and high rates of nonunion persisted until Cotrel and Dubousset introduced the concept of global spinal derotation. Development of pedicle screws provided a powerful tool to correct three-dimensional vertebral deformity and opened a new era in the treatment of scoliosis.
Alphabet Soup: Sagittal Balance Correction Osteotomies of the Spine-What Radiologists Should Know.
Takahashi, T; Kainth, D; Marette, S; Polly, D
2018-04-01
Global sagittal malalignment has been demonstrated to have correlation with clinical symptoms and is a key component to be restored in adult spinal deformity. In this article, various types of sagittal balance-correction osteotomies are reviewed primarily on the basis of the 3 most commonly used procedures: Smith-Petersen osteotomy, pedicle subtraction osteotomy, and vertebral column resection. Familiarity with the expected imaging appearance and commonly encountered complications seen on postoperative imaging studies following correction osteotomies is crucial for accurate image interpretation. © 2018 by American Journal of Neuroradiology.
A Novel Junctional Tether Weave Technique for Adult Spinal Deformity: 2-Dimensional Operative Video.
Buell, Thomas J; Mullin, Jeffrey P; Nguyen, James H; Taylor, Davis G; Garces, Juanita; Mazur, Marcus D; Buchholz, Avery L; Shaffrey, Mark E; Yen, Chun-Po; Shaffrey, Christopher I; Smith, Justin S
2018-06-05
Proximal junctional kyphosis (PJK) is a common problem after multilevel spine instrumentation for adult spinal deformity. Various anti-PJK techniques such as junctional tethers for ligamentous augmentation have been proposed. We present an operative video demonstrating technical nuances of junctional tether "weave" application. A 70-yr-old male with prior L2-S1 instrumented fusion presented with worsening back pain and posture. Imaging demonstrated pathological loss of lumbar lordosis (flat back deformity), proximal junctional failure, and pseudarthrosis. The patient had severe global and segmental sagittal malalignment, with sagittal vertical axis (SVA, C7-plumbline) measuring 22.3 cm, pelvic incidence (PI) 55°, lumbar lordosis (LL) 8° in kyphosis, pelvic tilt (PT) 30°, and thoracic kyphosis (TK) 6°. The patient gave informed consent for surgery and use of imaging for medical publication. Briefly, surgery first involved re-instrumentation with bilateral pedicle screws from T10 to S1. After right-sided iliac screw fixation (left-sided iliac screw fixation was not performed due to extensive prior iliac crest bone graft harvesting), we then completed a L2-3 Smith-Petersen osteotomy, extended L4 pedicle subtraction osteotomy, and L3-4 interbody arthrodesis with a 12° lordotic cage (9 × 14 × 40 mm). Cobalt Chromium rods were placed spanning the instrumentation bilaterally, and accessory supplemental rods spanning the PSO were attached. An anti-PJK junctional tether "weave" was then implemented using 4.5 mm polyethylene tape (Mersilene tape [Ethicon, Somerville, New Jersey]). Postoperative imaging demonstrated improved alignment (SVA 2.8 cm, PI 55°, LL 53°, PT 25°, TK 45°) and no significant neurological complications occurred during convalescence or at 6 mo postop.
Naserkhaki, Sadegh; Jaremko, Jacob L; El-Rich, Marwan
2016-09-06
There is a large, at times contradictory, body of research relating spinal curvature to Low Back Pain (LBP). Mechanical load is considered as important factor in LBP etiology. Geometry of the spinal structures and sagittal curvature of the lumbar spine govern its mechanical behavior. Thus, understanding how inter-individual geometry particularly sagittal curvature variation affects the spinal load-sharing becomes of high importance in LBP assessment. This study calculated and compared kinematics and load-sharing in three ligamentous lumbosacral spines: one hypo-lordotic (Hypo-L) with low lordosis, one normal-lordotic (Norm-L) with normal lordosis, and one hyper-lordotic (Hyper-L) with high lordosis in flexed and extended postures using 3D nonlinear Finite Element (FE) modeling. These postures were simulated by applying Follower Load (FL) combined with flexion or extension moment. The Hypo-L spine demonstrated stiffer behavior in flexion but more flexible response to extension compared to the Norm-L spine. The excessive lordosis stiffened response of the Hyper-L spine to extension but did not affect its resistance to flexion compared to the Norm-L spine. Despite the different resisting actions of the posterior ligaments to flexion moment, the increase of disc compression was similar in all the spines leading to similar load-sharing. However, resistance of the facet joints to extension was more important in the Norm- and Hyper-L spines which reduced the disc compression. The spinal curvature strongly influenced the magnitude and location of load on the spinal components and also altered the kinematics and load-sharing particularly in extension. Consideration of the subject-specific geometry and sagittal curvature should be an integral part of mechanical analysis of the lumbar spine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Xiao-Bin; Lenke, Lawrence G; Thuet, Earl; Blanke, Kathy; Koester, Linda A; Roth, Michael
2016-09-15
Retrospective review of prospectively collected data. To assess the value of the deformity angular ratio (DAR, maximum Cobb measurement divided by number of vertebrae involved) in evaluating the severity of spinal deformity, and predicting the risk of neurologic deficit in posterior vertebral column resection (PVCR). Although the literature has demonstrated that PVCR in spinal deformity patients has achieved excellent outcomes, it is still high risk neurologically. This study, to our knowledge, is the largest series of PVCR patients from a single center, evaluating deformity severity, and potential neurologic deficit risk. A total of 202 consecutive pediatric and adult patients undergoing PVCRs from November 2002 to September 2014 were reviewed. The DAR (coronal DAR, sagittal DAR, and total DAR) was used to evaluate the complexity of the deformity. The incidence of spinal cord monitoring (SCM) events was 20.5%. Eight patients (4.0%) had new neurologic deficits. Patients with a high total DAR (≥25) were significantly younger (20.3 vs. 29.0 yr, P = 0.001), had more severe coronal and sagittal deformities, were more myelopathic (33.3% vs. 11.7%, P = 0.000), needed larger vertebral resections (1.8 vs. 1.3, P = 0.000), and had a significantly higher rate of SCM events than seen in the low total DAR (<25) patients (41.1% vs. 10.8%; P = 0.000). Patients with a high sagittal DAR (≥15) also had a significantly higher rate of SCM events (34.0% vs. 15.1%, P = 0.005) and a greater chance of neurologic deficits postoperatively (12.5% vs. 0, P = 0.000). For patients undergoing a PVCR, the DAR can be used to quantify the angularity of the spinal deformity, which is strongly correlated to the risk of neurologic deficits. Patients with a total DAR greater than or equal to 25 or sagittal DAR greater than or equal to 15 are at much higher risk for intraoperative SCM events and new neurologic deficits. 3.
Kanna, Rishi Mugesh; Gradil, Daniela; Boszczyk, Bronek M
2012-12-01
Alström syndrome (AS) is a rare autosomal recessive genetic disorder with multisystemic involvement characterised by early blindness, hearing loss, obesity, insulin resistance, diabetes mellitus, dilated cardiomyopathy, and progressive hepatic and renal dysfunction. The clinical features, time of onset and severity can vary greatly among different patients. Many of the phenotypes are often not present in infancy but develop throughout childhood and adolescence. Recessively inherited mutations in ALMS1 gene are considered to be responsible for the causation of AS. Musculoskeletal manifestations including scoliosis and kyphosis have been previously described. Here, we present a patient with AS who presented with cervical myelopathy due to extensive flowing ossification of the anterior and posterior longitudinal ligaments of the cervical spine resulting in cervical spinal cord compression. The presence of an auto-fused spine in an acceptable sagittal alignment, in the background of a constellation of medical comorbidities, which necessitated a less morbid surgical approach, favored a posterior cervical laminectomy decompression in this patient. Postoperatively, the patient showed significant neurological recovery with improved function. Follow-up MRI showed substantial enlargement of the spinal canal with improved space available for the spinal cord. The rarity of the syndrome, cervical myelopathy due to ossified posterior longitudinal ligament as a disease phenotype and the treatment considerations for performing a posterior cervical decompression have been discussed in this Grand Rounds' case presentation.
Daubs, Michael D; Lenke, Lawrence G; Bridwell, Keith H; Kim, Yongjung J; Hung, Man; Cheh, Gene; Koester, Linda A
2013-03-15
Retrospective study with prospectively collected outcomes data. Determine the significance of coronal balance on spinal deformity surgery outcomes. Sagittal balance has been confirmed as an important radiographic parameter correlating with adult deformity treatment outcomes. The significance of coronal balance on functional outcomes is less clear. Eighty-five patients with more than 4 cm of coronal imbalance who underwent reconstructive spinal surgery were evaluated to determine the significance of coronal balance on functional outcomes as measured with the Oswestry Disability Index (ODI) and Scoliosis Research Society outcomes questionnaires. Sixty-two patients had combined coronal (>4 cm) and sagittal imbalance (>5 cm), while 23 patients had coronal imbalance alone. Postoperatively, 85% of patients demonstrated improved coronal balance. The mean improvement in the coronal C7 plumb line was 26 mm for a mean correction of 42%. The mean preoperative sagittal C7 plumb line in patients with combined coronal and sagittal imbalance was 118 mm (range, 50-310 mm) and improved to a mean 49 mm. The mean preoperative and postoperative ODI scores were 42 (range, 0-90) and 27 (range, 0-78), for a mean improvement of 15 (36%) (P = 0.00001; 95% CI, 12-20). The mean Scoliosis Research Society scores improved by 17 points (29%) (P = 0.00). Younger age (P = 0.008) and improvement in sagittal balance (P = 0.014) were positive predictors for improved ODI scores. Improvement in sagittal balance (P = 0.010) was a positive predictor for improved Scoliosis Research Society scores. In patients with combined coronal and sagittal imbalance, improvement in sagittal balance was the most significant predictor for improved ODI scores (P = 0.009). In patients with preoperative coronal imbalance alone, improvement in coronal balance trended toward, but was not a significant predictor for improved ODI (P = 0.092). Sagittal balance improvement is the strongest predictor of improved outcomes in patients with combined coronal and sagittal imbalance. In patients with coronal imbalance alone, improvement in coronal balance was not a factor for predicting improved functional outcomes.
Anterior Cervical Discectomy and Fusion Alters Whole-Spine Sagittal Alignment
Kim, Jang Hoon; Yi, Seong; Kim, Kyung Hyun; Kuh, Sung Uk; Chin, Dong Kyu; Kim, Keun Su; Cho, Yong Eun
2015-01-01
Purpose Anterior cervical discectomy and fusion (ACDF) has become a common spine procedure, however, there have been no previous studies on whole spine alignment changes after cervical fusion. Our purpose in this study was to determine whole spine sagittal alignment and pelvic alignment changes after ACDF. Materials and Methods Forty-eight patients who had undergone ACDF from January 2011 to December 2012 were enrolled in this study. Cervical lordosis, thoracic kyphosis, lumbar lordosis, sagittal vertical axis (SVA), and pelvic parameters were measured preoperatively and at 1, 3, 6, and 12 months postoperatively. Clinical outcomes were assessed using Visual Analog Scale (VAS) scores and Neck Disability Index (NDI) values. Results Forty-eight patients were grouped according to operative method (cage only, cage & plate), operative level (upper level: C3/4 & C4/5; lower level: C5/6 & C6/7), and cervical lordosis (high lordosis, low lordosis). All patients experienced significant improvements in VAS scores and NDI values after surgery. Among the radiologic parameters, pelvic tilt increased and sacral slope decreased at 12 months postoperatively. Only the high cervical lordosis group showed significantly-decreased cervical lordosis and a shortened SVA postoperatively. Correlation tests revealed that cervical lordosis was significantly correlated with SVA and that SVA was significantly correlated with pelvic tilt and sacral slope. Conclusion ACDF affects whole spine sagittal alignment, especially in patients with high cervical lordosis. In these patients, alteration of cervical lordosis to a normal angle shortened the SVA and resulted in reciprocal changes in pelvic tilt and sacral slope. PMID:26069131
Audu, Musa L; Triolo, Ronald J
2015-08-01
The contributions of intrinsic (passive) and extrinsic (active) properties of the human trunk, in terms of the simultaneous actions about the hip and spinal joints, to the control of sagittal and coronal seated balance were examined. Able-bodied (ABD) and spinal-cord-injured (SCI) volunteers sat on a moving platform which underwent small amplitude perturbations in the anterior-posterior (AP) and medial-lateral (ML) directions while changes to trunk orientation were measured. A linear parametric model that related platform movement to trunk angle was fit to the experimental data by identifying model parameters in the time domain. The results showed that spinal cord injury leads to a systematic reduction in the extrinsic characteristics, while most of the intrinsic characteristics were rarely affected. In both SCI and ABD individuals, passive characteristics alone were not enough to maintain seated balance. Passive stiffness in the ML direction was almost 3 times that in the AP direction, making more extrinsic mechanisms necessary for balance in the latter direction. Proportional and derivative terms of the extrinsic model made the largest contribution to the overall output from the active system, implying that a simple proportional plus derivative (PD) controller structure will suffice for restoring seated balance after spinal cord injury.
Impact of back muscle strength and aging on locomotive syndrome in community living Japanese women.
Hirano, Kenichi; Imagama, Shiro; Hasegawa, Yukiharu; Wakao, Norimitsu; Muramoto, Akio; Ishiguro, Naoki
2013-02-01
The Japanese Orthopaedic Association has proposed the term locomotive syndrome (LS) to designate a condition of individuals in high-risk groups with musculoskeletal disease who are highly likely to require nursing care. This study investigates the influence of spinal factors on LS in Japanese females. A total of 187 women > or =50 years old were enrolled in the study. Those answering yes to least one of the 7 categories in the self-assessment checklist for LS were defined as having LS. We evaluated lateral lumbar radiographs, sagittal parameters, sagittal balance using the spinal inclination angle (SIA) as an index, spinal range of motion (ROM) as determined with SpinalMouse, back muscle strength (BMS), and body mass index (BMI). Age, BMI, BMS, SIA, sacral slope angle (SSA), and lumbar spinal ROM showed significant correlations with LS. Multiple logistic regression analysis indicated that an increase in age (OR 1.054, p<0.05) and a decrease in BMS (OR 0.968, p<0.01) were significantly associated with LS. Age had significant negative correlations with BMS, SSA, thoracic and lumbar spinal ROM, and it had positive correlations with BMI, SIA, and lumbar kyphosis. BMS had significant negative correlations with age, SIA, thoracic and lumbar kyphosis, and it had positive correlations with SSA, lumbar and total spinal ROM. An increase in age and a decrease in BMS may be the most important risk factors for LS in Japanese women. Back muscle strengthening and spinal ROM exercises could be useful for improving the status of an individual suffering from LS.
Wang, Shengru; Aikenmu, Kahaer; Zhang, Jianguo; Qiu, Guixing; Guo, Jianwei; Zhang, Yanbin; Weng, Xisheng
2017-07-01
The aim of this retrospective study is to evaluate the efficacy and safety of posterior-only vertebral column resection (PVCR) for the treatment of angular and isolated congenital kyphosis. 24 patients with isolated angular congenital kyphosis treated by PVCR in our hospital were retrospectively studied. The patients' radiographs and hospital records were reviewed. Deformity in sagittal planes and global sagittal alignment were analyzed for correction and maintenance of the correction in preoperative, postoperative, and follow-up radiographs. The complications and related risk factors were analyzed. The average age was 13.9 (4-40) years. Three of them were revision surgeries. Two patients have intraspinal anomalies. The mean follow-up is 56.9 (26-129) months. The mean operation time was 293.1 (170-480) min. The averaged blood loss was 993.8 (250-3000) ml. The segmental kyphosis was 87.3° before surgery, 17.6° post surgery and 20.4° at the latest the follow-up. And the sagittal vertical axis was improved from 43.1 mm to 9.2 mm. Mean total score of SRS-22 was 89.3. Complications occurred in 4 patients, including 1 screw pullout due to pseudarthrosis, 1 proximal junctional kyphosis, 1 incomplete spinal cord injury and 1 root injuries. Posterior-only vertebral column resection is an ideal procedure for severe rigid congenital kyphosis. However, it is still a highly technical demanding procedure. Neurological compromises still remain the biggest challenges. Sufficient height of anterior reconstruction, avoidance sacrifice of bilateral roots in the same level in the thoracic spine, avoidance of the sagittal translation of the upper and lower vertebras, intra-operative neuromonitoring, and preoperative surgical release of diastematomyelia and tethered cord may help to improve the safety.
Alcelik, Ilhan; Blomfield, Mark; Öztürk, Cenk; Soni, Ashish; Charity, Richard; Acornley, Alex
2017-05-01
The aim of this study was to review the radiological alignment outcomes of patient Specific (PS) cutting blocks and Standard Instrumentation in Primary Total Knee Arthroplasty. We hypothesized that the use of PS techniques would significantly improve sagittal, coronal and rotational alignment of the prosthesis on short term. We performed a systematic review and a meta-analysis including all the randomised controlled trials (RCT) using PS and standard (ST) total knee arthroplasty to date. A total of 538 PS TKA and 549 ST TKA were included in the study. Statistical analysis of the outliers for femoral component sagittal, coronal and rotational positioning, tibial component sagittal and coronal positioning and the overall mechanical axis were assessed. We found that there was no significant benefit from using PS instrumentation in primary knee arthroplasty to aid in the positioning of either the tibial or femoral components. Furthermore sagittal plane tibial component positioning was worse in the PS than the traditional ST group. Our results suggest that at present PS instrumentation is not superior to ST instrumentation in primary total knee arthroplasty. Level 1, Systematic review of therapeutic studies. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Yagi, Mitsuru; Kaneko, Shinjiro; Yato, Yoshiyuki; Asazuma, Takashi; Machida, Masafumi
2016-08-01
Pedicle subtraction osteotomy (PSO) is widely used to treat severe fixed sagittal imbalance. However, the effect of PSO on balance has not been fully documented. The aim of this study was to assess dynamic walking balance after PSO to treat fixed sagittal imbalance. Gait and balance were assessed in 15 consecutive adult female patients who had been treated by PSO for a fixed sagittal imbalance and compare patients' preop and postop dynamic walking balance with that of 15 age- and gender-matched healthy volunteers (HV). Each patient's chart, X-rays, pre and postop SRS22 outcome scores, and ODI were reviewed. Means were compared by Mann-Whitney U test and Chi-square test. The mean age was 66.3 years (51-74 years). The mean follow-up was 2.7 years (2-3.5 years). The C7PL and GL, measured on the force platform, were both improved from 24.2 ± 7.3 cm and 27.6 ± 9.4 to 5.4 ± 2.6 cm and 7.2 ± 3.4 cm, respectively. The baseline hip ROM was significantly smaller in patients compared to HV, whereas no significant difference was observed in the knee or ankle ROM. The pelvic tilt (preop -0.4° ± 1.4°, postop 8.9° ± 1.0°), and maximum hip-extension angle (preop -1.2° ± 14.2°, postop -11.2° ± 7.2°) were also improved after surgery. Cadence (116 s/min), stance-swing ratio (stance 63.2 % vs. swing 36.8 %), and stride (98.0 cm) were all increased after surgery. On the other hand, gait velocity was significantly slower in the PSO group at both pre and postop than in HV (PSO 53.3 m/min at preop and 58.8 m/min at postop vs. HV 71.1 m/min, p = 0.04). Despite a mild residual spinal-pelvic malalignment, PSO restored sagittal alignment and balance satisfactorily and has improved the gait pattern.
Fujiwara, Hiroyasu; Oda, Takenori; Makino, Takahiro; Moriguchi, Yu; Yonenobu, Kazuo; Kaito, Takashi
2018-05-01
This is prospective observational study. To prospectively investigate the correlation among axial neck pain; a newly developed patient-based quality of life outcome measure, the Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ); and cervical sagittal alignment after open-door laminoplasty for cervical myelopathy. Many studies have focused on postoperative axial neck pain after laminoplasty. However, the correlation among cervical sagittal alignment, neck pain, and JOACMEQ has not been investigated. In total, 57 consecutive patients treated by open-door laminoplasty for cervical myelopathy were included (mean age, 63.7 y; 15 women and 42 men) and divided into 2 groups according to diagnosis [cervical spondylotic myelopathy (CSM) group: 35 patients, and ossification of the posterior longitudinal ligament (OPLL) group: 22 patients]. JOA score, a subdomain of cervical spine function (CSF) in the JOACMEQ, and the visual analog scale for axial neck pain were assessed preoperatively and 12 months postoperatively. Radiographic cervical sagittal parameters were measured by C2 sagittal vertical axis (C2 SVA), C2-C7 lordosis, C7 sagittal slope (C7 slope), and range of motion. C2 SVA values in both groups shifted slightly anteriorly between preoperative and 12-month postoperative measurements (CSM: +19.7±10.9 mm; OPLL: +22.1±13.4 mm vs. CSM: +23.2±16.1 mm; OPLL: +28.7±15.4 mm, respectively). Postoperative axial neck pain in the OPLL group showed strong negative correlations with C2 SVA and C7 slope. Strong negative correlations were found between axial neck pain and CSF in both the preoperative CSM and OPLL groups (CSM: r=-0.45, P=0.01; OPLL: r=-0.61, P<0.01) and between axial neck pain and CSF in the postoperative OPLL group (r=-0.51, P=0.05). This study demonstrated a significant negative correlation between neck pain and CSF in both the CSM and OPLL groups preoperatively and in the OPLL group postoperatively. Radiographic cervical sagittal alignment did not significantly correlate with preoperative or postoperative axial neck pain.
Krawczky, Bruna; Pacheco, Antonio G; Mainenti, Míriam R M
2014-05-01
Reference values for postural alignment in the coronal plane, as measured by computerized photogrammetry, have been established but not for the sagittal plane. The objective of this study is to propose reference values for angular measurements used for postural analysis in the sagittal plane for healthy adults. Electronic databases (PubMed, BVS, Cochrane, Scielo, and Science Direct) were searched using the following key words: evaluation, posture, photogrammetry, and software. Articles published between 2006 and 2012 that used the PAS/SAPO (postural assessment software) were selected. Another inclusion criterion was the presentation of, at least, one of the following measurements: head horizontal alignment, pelvic horizontal alignment, hip angle, vertical alignment of the body, thoracic kyphosis, and lumbar lordosis. Angle samples of the selected articles were grouped 2 by 2 in relation to an overall average, which made possible total average, variance, and SD calculations. Six articles were included, and the following average angular values were found: 51.42° ± 4.87° (head horizontal alignment), -12.26° ± 5.81° (pelvic horizontal alignment), -6.40° ± 3.86° (hip angle), and 1.73° ± 0.94° (vertical alignment of the body). None of the articles contained the measurements for thoracic kyphosis and lumbar lordosis. The reference values can be adopted as reference for postural assessment in future researches if the same anatomical points are considered. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Hallager, Dennis Winge; Hansen, Lars Valentin; Dragsted, Casper Rokkjær; Peytz, Nina; Gehrchen, Martin; Dahl, Benny
2016-05-01
Cross-sectional analyses on a consecutive, prospective cohort. To evaluate the ability of the Scoliosis Research Society (SRS)-Schwab Adult Spinal Deformity Classification to group patients by widely used health-related quality-of-life (HRQOL) scores and examine possible confounding variables. The SRS-Schwab Adult Spinal Deformity Classification includes sagittal modifiers considered important for HRQOL and the clinical impact of the classification has been validated in patients from the International Spine Study Group database; however, equivocal results were reported for the Pelvic Tilt modifier and potential confounding variables were not evaluated. Between March 2013 and May 2014, all adult spinal deformity patients from our outpatient clinic with sufficient radiographs were prospectively enrolled. Analyses of HRQOL variance and post hoc analyses were performed for each SRS-Schwab modifier. Age, history of spine surgery, and aetiology of spinal deformity were considered potential confounders and their influence on the association between SRS-Schwab modifiers and aggregated Oswestry Disability Index (ODI) scores was evaluated with multivariate proportional odds regressions. P values were adjusted for multiple testing. Two hundred ninety-two of 460 eligible patients were included for analyses. The SRS-Schwab Classification significantly discriminated HRQOL scores between normal and abnormal sagittal modifier classifications. Individual grade comparisons showed equivocal results; however, Pelvic Tilt grade + versus + + did not discriminate patients according to any HRQOL score. All modifiers showed significant proportional odds for worse aggregated ODI scores with increasing grade levels and the effects were robust to confounding. However, age group and aetiology had individual significant effects. The SRS-Schwab sagittal modifiers reliably grouped patients graded 0 versus + / + + according to the most widely used HRQOL scores and the effects of increasing grade level on odds for worse ODI scores remained significant after adjusting for potential confounders. However, effects of age group and aetiology should not be neglected. 3.
Vertebral column resection in children with neuromuscular spine deformity.
Sponseller, Paul D; Jain, Amit; Lenke, Lawrence G; Shah, Suken A; Sucato, Daniel J; Emans, John B; Newton, Peter O
2012-05-15
Retrospective analysis. To determine, in pediatric patients with neuromuscular deformity undergoing vertebral column resection (VCR), the (1) characteristics of the surgery performed; (2) amount of pelvic obliquity restoration, and coronal and sagittal correction achieved; (3) associated blood loss and complications; and (4) extent to which curve type and VCR approach influenced correction, blood loss, and complications. VCR allows for correction of severe, rigid spinal deformity. This technique has not been previously reported in children with neuromuscular disorders. We retrospectively reviewed the records of 23 children with neuromuscular disorders (mean age, 15 years) and spinal deformities (severe scoliosis, 9; global kyphosis or angular kyphosis, 4; kyphoscoliosis, 10) who underwent VCR. The Student t test was used to compare correction differences (statistical significance, P < 0.05). A mean 1.5 vertebrae (27 thoracic and 6 lumbar) were resected per patient. Significant corrections were achieved in pelvic obliquity (11°, from 19° ± 13° to 8° ± 7°), in major coronal curve (56°, from 94° ± 36° to 38° ± 20°), and in major sagittal curve (46°, from 86° ± 37° to 40° ± 19°). There was no difference in correction between various curve types. VCR was associated with substantial blood loss (mean, 76% [estimated blood loss per total blood volume]), which correlated with patient weight and operating time. Overall, 6 patients experienced major complications: spinal cord injury, pleural effusion requiring chest tube insertion, pneumonia, pancreatitis, deep wound infection, and prominent implant requiring revision surgery. There were no deaths or permanent neurological injuries. VCR achieved significant pelvic obliquity restoration and coronal and sagittal correction in children with neuromuscular disorders and severe, rigid spinal deformity. However, this challenging procedure involves the potential for major complications.
Shapiro, F; Zurakowski, D; Bui, T; Darras, B T
2014-01-01
We determined the frequency, rate and extent of development of scoliosis (coronal plane deformity) in wheelchair-dependent patients with Duchenne muscular dystrophy (DMD) who were not receiving steroid treatment. We also assessed kyphosis and lordosis (sagittal plane deformity). The extent of scoliosis was assessed on sitting anteroposterior (AP) spinal radiographs in 88 consecutive non-ambulatory patients with DMD. Radiographs were studied from the time the patients became wheelchair-dependent until the time of spinal fusion, or the latest assessment if surgery was not undertaken. Progression was estimated using a longitudinal mixed-model regression analysis to handle repeated measurements. Scoliosis ≥ 10° occurred in 85 of 88 patients (97%), ≥ 20° in 78 of 88 (89%) and ≥ 30° in 66 of 88 patients (75%). The fitted longitudinal model revealed that time in a wheelchair was a highly significant predictor of the magnitude of the curve, independent of the age of the patient (p < 0.001). Scoliosis developed in virtually all DMD patients not receiving steroids once they became wheelchair-dependent, and the degree of deformity deteriorated over time. In general, scoliosis increased at a constant rate, beginning at the time of wheelchair-dependency (p < 0.001). In some there was no scoliosis for as long as three years after dependency, but scoliosis then developed and increased at a constant rate. Some patients showed a rapid increase in the rate of progression of the curve after a few years - the clinical phenomenon of a rapidly collapsing curve over a few months. A sagittal plane kyphotic deformity was seen in 37 of 60 patients (62%) with appropriate radiographs, with 23 (38%) showing lumbar lordosis (16 (27%) abnormal and seven (11%) normal). This study provides a baseline to assess the effects of steroids and other forms of treatment on the natural history of scoliosis in patients with DMD, and an approach to assessing spinal deformity in the coronal and sagittal planes in wheelchair-dependent patients with other neuromuscular disorders.
Liu, Congcong; Lin, Li; Wang, Weixing; Lv, Guohua; Deng, Youwen
2016-05-01
OBJECTIVE The authors conducted a study to evaluate the long-term clinical and radiographic outcomes of vertebral column resection (VCR) for kyphosis in patients with cured spinal tuberculosis. METHODS This was a retrospective study. Between 2003 and 2009, 28 consecutive patients with cured spinal tuberculosis underwent VCR for kyphosis in which the target vertebra was removed completely. Autologous iliac crest bone graft or titanium mesh packed with autograft was placed into the osteotomy gap to reconstruct the spine for anterior column stability. Posterior pedicle screw fixation and fusion were typically performed. Radiographic parameters, including kyphosis angle and sagittal balance, were measured, and visual analog scale score, America Spinal Injury Association grade, Scoliosis Research Society outcome instrument (SRS-22) score, Oswestry Disability Index, patient satisfaction index, and long-term complications were evaluated. RESULTS This study included 12 males and 16 females, with an average age of 20.9 years at the time of surgery. The average follow-up was 96.9 months. No deaths occurred in this study. At the final follow-up, the kyphosis angle improved from the preoperative average of 70.7° to the final follow-up average of 30.2°, and the average kyphosis correction loss was 8.5°. The sagittal balance averaged 15.4 mm before surgery, 2.8 mm after surgery, and 5.4 mm at the final followup. Thirteen patients showed improvement of more than 1 America Spinal Injury Association grade. The visual analog scale, Oswestry Disability Index, and SRS-22 scores improved significantly, and the overall satisfaction rate was 92.9%. Adjacent-segment degeneration occurred in 3 patients. No severe instrumentation-related complications were observed. CONCLUSIONS The long-term safety and efficacy of the VCR technique for treating spinal tuberculosis-related kyphosis were favorable, and no severe late-stage complications appeared. Lumbar tubercular kyphosis showed a tendency for sagittal decompensation within the first 3 postoperative years. Cases of adjacent-segment degenerations were relatively few and mild without clinical symptoms.
Aubin, Carl-Eric; Cammarata, Marco; Wang, Xiaoyu; Mac-Thiong, Jean-Marc
2015-05-01
Biomechanical analysis of proximal junctional kyphosis (PJK) through numerical simulations. Assessment of the effect of sagittal alignment, the upper instrumented vertebral level (UIV), and 4 other surgical variables on biomechanical indices related to the PJK risks. Despite retrospective clinical studies, biomechanical analysis of individual parameters associated with PJK is lacking to support instrumentation strategies to reduce the PJK risks. Instrumentations of 6 adult scoliosis cases with different operative strategies were simulated (1,152 simulations). Proximal junctional (PJ) angle and flexion loads were evaluated against the sagittal alignment and the proximal instrumentation level. Instrumenting 1 more proximal vertebra allowed the PJ angle, proximal moment, and force to be reduced by 18%, 25%, and 16%, respectively. Shifting sagittal alignment by 20 mm posteriorly increased the PJ angle and proximal moment by 16% and 22%, and increased the equivalent posterior extensor force by 37%. Bilateral complete facetectomy, posterior ligaments resection, and the combination of the 2 resulted in an increase of the PJ angle (by 10%, 28%, and 53%, respectively), flexion forces (by 4%, 12%, and 22%, respectively), and proximal moments (by 16%, 44%, and 83%, respectively). Transverse process hooks at UIV compared with pedicle screws allowed 26% lower PJ angle and flexion loads. The use of proximal transition rods with proximal diameter reduced from 5.5 to 4 mm slightly reduced PJ angle, flexion force, and moment (less than 8%). The increase in sagittal rod curvature from 10° to 40° increased the PJ angle (from 6% to 19%), flexion force (from 3% to 10%), and moment (from 9% to 27%). Simulated posteriorly shifted sagittal alignment was associated with higher PJK risks, whereas extending instrumentation proximally allowed a lower mechanical risk of PJK. Preserving PJ intervertebral elements and using a more flexible anchorage at UIV help reduce the biomechanical risks of PJK. Copyright © 2015 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Aksahin, Ertugrul; Aktekin, Cem Nuri; Kocadal, Onur; Duran, Semra; Gunay, Cüneyd; Kaya, Defne; Hapa, Onur; Pepe, Murad
2017-10-01
The aims of this study were to evaluate sagittal plane alignment in patients with chondromalacia patella via magnetic resonance imaging (MRI), analyse the relationships between the location of the patellar cartilaginous lesions and sagittal alignment and finally investigate the relationships between the sagittal plane malalignment and patellofemoral loadings using by finite element analysis. Fifty-one patients who were diagnosed with isolated modified Outerbridge grade 3-4 patellar chondromalacia based on MRI evaluation and 51 control subjects were evaluated. Chondromalacia patella patients were divided into three subgroups according to the chondral lesion location as superior, middle and inferior. The patella-patellar tendon angle (P-PT) was used for evaluation of sagittal alignment of patellofemoral joint. Each subgroup was compared with control group by using P-PT angle. To investigate the biomechanical effects of sagittal plane malpositioning on patellofemoral joint, bone models were created at 30°, 60° and 90° knee flexion by using mean P-PT angles, which obtained from patients with chondromalacia patellae and control subjects. The total loading and contact area values of the patellofemoral joints were investigated by finite element analysis. The mean age of all participants was 52.9 ± 8.2 years. The mean P-PT angle was significantly lower in chondromalacia group (142.1° ± 3.6°) compared to control group (144.5° ± 5.3°) (p = 0.008). Chondral lesions were located in superior, middle and inferior zones in 16, 20 and 15 patients, respectively. The mean P-PT angles in patients with superior (141.8 ± 2.7) and inferior subgroups (139.2 ± 2.3) were significantly lower than the values in the control group (p < 0.05). The contact area values were detected higher in models with chondromalacia than in the control models at the same flexion degrees. There were increased loadings at 30° and 90° flexions in the sagittal patellar tilt models. This study revealed that sagittal plain malpositioning of the patellofemoral joint might be related to chondromalacia, especially in the presence of lesions in the upper and lower part of the patella. This condition leads to supraphysiological loadings on the patellofemoral joint. Sagittal patellar tilt should be considered in the evaluation and management of patellar cartilage defects. Taking sagittal plane malalignment into consideration in patellofemoral joint evaluation will enable us to design new physical and surgical modalities. IV.
Influence of implant rod curvature on sagittal correction of scoliosis deformity.
Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu
2014-08-01
Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8°, respectively. The average preoperative and postoperative implant rod angle of curvature at the convex side was 25.5° and 23.9°, respectively. A significant relationship was found between the degree of rod deformation and preoperative implant rod angle of curvature (r=0.60, p<.005). The implant rods at the convex side of all patients did not have significant deformation. The results indicate that the postoperative sagittal outcome could be predicted from the initial rod shape. Changes in implant rod angle of curvature may lead to over- or undercorrection of the sagittal curve. Rod deformation at the concave side suggests that corrective forces acting on that side are greater than the convex side. Copyright © 2014 Elsevier Inc. All rights reserved.
Voleti, Pramod B; Hamula, Mathew J; Baldwin, Keith D; Lee, Gwo-Chin
2014-09-01
The purpose of this systematic review and meta-analysis is to compare patient-specific instrumentation (PSI) versus standard instrumentation for total knee arthroplasty (TKA) with regard to coronal and sagittal alignment, operative time, intraoperative blood loss, and cost. A systematic query in search of relevant studies was performed, and the data published in these studies were extracted and aggregated. In regard to coronal alignment, PSI demonstrated improved accuracy in femorotibial angle (FTA) (P=0.0003), while standard instrumentation demonstrated improved accuracy in hip-knee-ankle angle (HKA) (P=0.02). Importantly, there were no differences between treatment groups in the percentages of FTA or HKA outliers (>3 degrees from target alignment) (P=0.7). Sagittal alignment, operative time, intraoperative blood loss, and cost were also similar between groups (P>0.1 for all comparisons). Copyright © 2014 Elsevier Inc. All rights reserved.
Pinsornsak, Piya; Harnroongroj, Thos
2016-11-01
The specialized instrument system used in minimally invasive surgery (MIS) has been developed for reducing soft tissue trauma in total knee arthroplasty (TKA). Compared with front-cutting MIS instruments, side-cutting quadriceps sparing MIS instruments have the advantage of creating a smaller incision and causing fewer traumas to the quadriceps tendon. However, the accuracy of side-cutting instruments concerns surgeons in prosthesis malalignment. To compare the accuracy of side-cutting quadriceps sparing instruments versus front-cutting instruments in MIS-TKA. In this prospective randomized controlled study, we compared the accuracy of side-cutting quadriceps sparing instruments versus the front-cutting instruments used in MIS-TKA. Sixty knees were included in the study, with 30 knees in each group. All the operations were performed by single surgeon. Coronal alignment (tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle), and sagittal alignment (femoral component flexion and tibial posterior slope) were measured and compared. Tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle, all of which are considered in the assessment of acceptable coronal radiographic alignment, were not different between groups (p = 0.353, 0.500, and 0.177, respectively). However, side-cutting quadriceps sparing instruments produced less acceptable sagittal radiographic alignment, femoral component flexion (63% vs. 93%, p = 0.005), and tibial posterior slope (73% vs. 93%, p = 0.04). Side-cutting quadriceps sparing MIS-TKA instruments had similar accuracy to front-cutting MIS-TKA instruments for coronal alignment but is less accurate for sagittal alignment.
Cervical spinal canal narrowing in idiopathic syringomyelia.
Struck, Aaron F; Carr, Carrie M; Shah, Vinil; Hesselink, John R; Haughton, Victor M
2016-08-01
The cervical spine in Chiari I patient with syringomyelia has significantly different anteroposterior diameters than it does in Chiari I patients without syringomyelia. We tested the hypothesis that patients with idiopathic syringomyelia (IS) also have abnormal cervical spinal canal diameters. The finding in both groups may relate to the pathogenesis of syringomyelia. Local institutional review boards approved this retrospective study. Patients with IS were compared to age-matched controls with normal sagittal spine MR. All subjects had T1-weighted spin-echo (500/20) and T2-weighted fast spin-echo (2000/90) sagittal cervical spine images at 1.5 T. Readers blinded to demographic data and study hypothesis measured anteroposterior diameters at each cervical level. The spinal canal diameters were compared with a Mann-Whitney U test. The overall difference was assessed with a Friedman test. Seventeen subjects were read by two reviewers to assess inter-rater reliability. Fifty IS patients with 50 age-matched controls were studied. IS subjects had one or more syrinxes varying from 1 to 19 spinal segments. Spinal canal diameters narrowed from C1 to C3 and then enlarged from C5 to C7 in both groups. Diameters from C2 to C4 were narrower in the IS group (p < 0.005) than in controls. The ratio of the C3 to the C7 diameters was also smaller (p = 0.004) in IS than controls. Collectively, the spinal canal diameters in the IS were significantly different from controls (Friedman test p < 0.0001). Patients with IS have abnormally narrow upper and mid cervical spinal canal diameters and greater positive tapering between C3 and C7.
Kyphosis and review of the literature.
Yaman, Onur; Dalbayrak, Sedat
2014-01-01
The term kyphosis is used to describe the spinal curve that results in an abnormally rounded back. Kyphosis may develop due to trauma, developmental anomalies, degenerative disc disease, inflammatory diseases, and infectious diseases and also iatrogenic. The aim of this paper is to review the etiopathognesis and the treatment management of kyphosis. A search in the National Library of Medicine (Pubmed) database using key word 'kyphosis' and was made. For the literature review, papers concerning etiopathogenesis, classification and treatment were selected among these papers. A search in the National Library of Medicine (Pubmed) database using key word 'kyphosis' yielded 7506 papers published between 1916 and 2013. The main papers about kyphosis were congenital, Scheuermann, tumour related, neuromuscular, posttraumatic, infectionrelated, iatrogenic kyphosis. Every patient with kyphosis should be treated based on her/his current state and needs. It should always be remembered that the patients with negative sagittal balance can compensate it with the hip flexion but it is far more difficult to compensate the positive sagittal balance. The main goal of surgery to treat the kyphotic patients is to correct the sagittal curve and also restore a spinal balance within an acceptable range above the hips and knees.
Acute Effects of Hamstring Stretching on Sagittal Spinal Curvatures and Pelvic Tilt
López-Miñarro, Pedro A.; Muyor, José M.; Belmonte, Felipe; Alacid, Fernando
2012-01-01
The aim of this study was to determine acute effects of hamstring stretching in thoracic and lumbar spinal curvatures and pelvic tilt. Fifty-five adults (29.24 ± 7.41 years) were recruited for this study. Subjects performed a hamstring stretching protocol consisting of four exercises. The session consisted of 3 sets of each exercise and subjects held the position for 20 seconds with a 30-second rest period between sets and exercises. Thoracic and lumbar spinal angles and pelvic tilt were measured with a SpinalMouse in relaxed standing, sit-and-reach test and Macrae & Wright position. Hamstring extensibility was determined by active straight leg raise test and sit-and-reach score. All measures were performed before and immediately after the hamstring stretching protocol. Active straight leg raise angle and sitand-reach score significantly improved immediately after the stretching protocol (p<0.001). Greater anterior pelvic tilt (p<0.001) and lumbar flexion (p<0.05) and a smaller thoracic kyphosis in the sit-and-reach (p<0.001) were found after the stretching protocol. However, stretching produced no significant change on spinal curvatures or pelvic tilt in standing and maximal trunk flexion with knees flexed. In conclusion, static stretching of the hamstring is associated to an immediate change in the sagittal spinal curvatures and pelvic position when performing trunk flexion with knees extended, so that allowing for greater lumbar flexion and anterior pelvic tilt and lower thoracic kyphosis. Hamstring stretching is recommended prior to sport activities involving trunk flexion with the knees straight. PMID:23486214
Gross, Daniel J; Golijanin, Petar; Dumont, Guillaume D; Parada, Stephen A; Vopat, Bryan G; Reinert, Steven E; Romeo, Anthony A; Provencher, C D R Matthew T
2016-01-01
Computed tomography (CT) scans of the shoulder are often not well aligned to the axis of the scapula and glenoid. The purpose of this paper was to determine the effect of sagittal rotation of the glenoid on axial measurements of anterior-posterior (AP) glenoid width and glenoid version attained by standard CT scan. In addition, we sought to define the angle of rotation required to correct the CT scan to optimal positioning. A total of 30 CT scans of the shoulder were reformatted using OsiriX software multiplanar reconstruction. The uncorrected (UNCORR) and corrected (CORR) CT scans were compared for measurements of both (1) axial AP glenoid width and (2) glenoid version at 5 standardized axial cuts. The mean difference in glenoid version was 2.6% (2° ± 0.1°; P = .0222) and the mean difference in AP glenoid width was 5.2% (1.2 ± 0.42 mm; P = .0026) in comparing the CORR and UNCORR scans. The mean angle of correction required to align the sagittal plane was 20.1° of rotation (range, 9°-39°; standard error of mean, 1.2°). These findings demonstrate that UNCORR CT scans of the glenohumeral joint do not correct for the sagittal rotation of the glenoid, and this affects the characteristics of the axial images. Failure to align the sagittal image to the 12-o'clock to 6-o'clock axis results in measurement error in both glenoid version and AP glenoid width. Use of UNCORR CT images may have notable implications for decision-making and surgical treatment. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Lv, Xin; Liu, Yuan; Zhou, Song; Wang, Qiang; Gu, Houyun; Fu, Xiaoxing; Ding, Yi; Zhang, Bin; Dai, Min
2016-08-15
Sagittal spinopelvic alignment changes associated with degenerative facet joint arthritis have been assessed in a few studies. It has been documented that patients with facet joint degeneration have higher pelvic incidence, but the relationship between facet joint degeneration and other sagittal spinopelvic alignment parameters is still disputed. Our purpose was to evaluate the correlation between the features of sagittal spinopelvic alignment and facet joint degeneration. Imaging data of 140 individuals were retrospectively analysed. Lumbar lordosis, pelvic tilt (PT), pelvic incidence (PI), sacral slope, and height of the lumbar intervertebral disc were measured on lumbar X-ray plates. Grades of facet joint degeneration were evaluated from the L2 to S1 on CT scans. Spearman's rank correlation coefficient and Student's t-test were used for statistical analyses, and a P-value <0.05 was considered statistically significant. PI was positively associated with degeneration of the facet joint at lower lumbar levels (p < 0.001 r = 0.50 at L5/S1 and P = 0.002 r = 0.25 at L4/5). A significant increase of PT was found in the severe degeneration group compared with the mild degeneration group: 22.0° vs 15.7°, P = 0.034 at L2/3;21.4°vs 15.1°, P = 0.006 at L3/4; 21.0° vs 13.5°, P = 0.000 at L4/5; 20.8° vs 12.1°, P = 0.000 at L5/S1. Our results indicate that a high PI is a predisposing factor for facet joint degeneration at the lower lumbar spine, and that severe facet joint degeneration may accompany with greater PT at lumbar spine.
Hamlat, Abderrahmane; Adn, Mahmoudreza; Sid-ahmed, Seddik; Askar, Brahim; Pasqualini, Edouardo
2006-01-01
Normal pressure hydrocephalus (NPH) is considered to be an example of reversible dementia although clinical improvement after shunting varies from subject to subject, and recent studies have pointed to a possible link with other dementia. The authors consider that the craniospinal compartment is a partially closed sphere with control device systems represented by the spinal axis and the sagittal sinus-arachnoid villi complex which interact with each other in the clinical patient setting. We hypothesise that changing spinal compliance by altering the flow process and CSF dynamics lead to hydrocephalus. Therefore four NPH types have been distinguished according to the alterations in spinal compliance, decrease in CSF absorption at the sagittal sinus or both occurrences. The authors consider that NPH and NPH-related diseases (NPH-RD) are initiated by the same common final pathway and demonstrate that NPH could represent an initial stage of NPH-RD. Progression of clinical signs can be explained as damage to the cerebral tissue by both intermittent increased intracranial pressure and pulse pressure waves leading to periventricular ischaemia. In addition, they believe that both volume equilibrium and spinal compliance are restored in patients who improve after CSF shunt, whereas in patients whose condition does not improve, only volume equilibrium is restored and not spinal compliance, which was the underlying cause of hydrocephalus in such cases. They therefore wonder whether cervical decompression should not be indicated in patients who show no improvement. Although attractive, this analysis warrants confirmation from clinical, radiological, and hydrodynamic studies.
Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu; Yoshino, Kensuke; Suzuki, Mashiko
2018-05-01
The aim of this study was to determine factors that contribute to bone cutting errors of conventional instrumentation for tibial resection in total knee arthroplasty (TKA) as assessed by an image-free navigation system. The hypothesis is that preoperative varus alignment is a significant contributory factor to tibial bone cutting errors. This was a prospective study of a consecutive series of 72 TKAs. The amount of the tibial first-cut errors with reference to the planned cutting plane in both coronal and sagittal planes was measured by an image-free computer navigation system. Multiple regression models were developed with the amount of tibial cutting error in the coronal and sagittal planes as dependent variables and sex, age, disease, height, body mass index, preoperative alignment, patellar height (Insall-Salvati ratio) and preoperative flexion angle as independent variables. Multiple regression analysis showed that sex (male gender) (R = 0.25 p = 0.047) and preoperative varus alignment (R = 0.42, p = 0.001) were positively associated with varus tibial cutting errors in the coronal plane. In the sagittal plane, none of the independent variables was significant. When performing TKA in varus deformity, careful confirmation of the bone cutting surface should be performed to avoid varus alignment. The results of this study suggest technical considerations that can help a surgeon achieve more accurate component placement. IV.
Pourgiezis, N; Reddy, S P; Nankivell, M; Morrison, G; VanEssen, J
2016-08-01
To compare patient-matched instrumentation (PMI) with conventional total knee arthroplasty (TKA) in terms of limb alignment and component position. Nine men and 36 women (mean age, 69.5 years) who underwent PMI TKA were compared with 20 men and 25 women (mean age, 69.3 years) who underwent conventional TKA by the same team of surgeons with the same prosthesis and protocols in terms of limb alignment and component position using the Perth protocol computed tomography, as well as bone resection measurements, operating time, and the number of trays used. The PMI and conventional TKA groups were comparable in terms of age, body mass index, tourniquet time, operating time, and the number of trays used. For limb alignment and component position, the 2 groups differed significantly in sagittal femoral component position (2.4º vs. 0.9º, p=0.0008) and the percentage of knees with femoral component internally rotated ≥1° with respect to the transepicondylar axis (20% vs. 55%, p=0.001). The difference was not significant in terms of limb alignment, coronal and rotational femoral component position, or coronal and sagittal tibial component position. Intra-operatively, all patient-matched cutting blocks demonstrated acceptable fit and stability. No instrument-related adverse events or complications were encountered. One (2.2%) femur and 6 (13.3%) tibiae were recut 2 mm for optimal ligament balancing. Two femoral components were upsized to the next size, and 2 tibial components were upsized and 2 downsized to the next size. PMI was as accurate as conventional instrumentation in TKA. There was no significant difference in limb alignment or femoral and tibial component position in the coronal and sagittal planes between PMI and conventional TKA. PMI had a higher tendency to achieve correct femoral component rotation.
Chen, Y X; Kong, K M; Wang, W D; Xie, C H; Wu, R H
2007-01-01
To investigate the cervical spinal cord mapping on acupuncture at LI 4 (Hegu) and LI 11 (Quchi) by using 'Signal Enhancement by Extravascular water Protons' (SEEP)-fMRI, and to establish the response of using acupuncture in the cervical spinal cord. This research may provide some laboratory evidences from the acupuncture treatment on the cervical spinal cord of injuried patients. Seven healthy volunteers (healthy group) and three cervical spinal cord injury patients (injury group) were underwent low-frequency electrical stimulation at LI 4 and LI 11. Meanwhile, a single-shot fast spin-echo (SSFSE) sequence was used to perform functional MR imaging on a 1.5 T GE Signa MR system. The signals from the cervical spinal cord activated was measured both in sagittal and transverse imaging planes and then analyzed by AFNI (Analysis of Functional Neuroimages) system. It was found that in the sagittal view, two groups had an fMRI response in the cervical spinal cord after given acupuncture treatments at LI 4 and LI 11. The localizations of the segmental fMRI activation were focused at C6 and C2 cervical spinal cord level. In the transverse imaging plane, significant fMRI responses could be measured from the four of seven healthy volunteers and from two of three cervical spinal cord injury patients. They were located at C6/7 segments. The cross-sectional localization of the activity measured in the spinal cord was most in terms of the ipsilateral posterior direction. The signal amplitude varied mainly between 6.8%17.8%. However, the difference found between the two groups had no statistical meaning. The fMRI technique had detected an activation focused at C6 and C2 cervical spinal cord levels by use of acupuncture at LI 4 and LI 11 on a 1.5T GE clinical system. This proved that the meridians and points are found to be in existence. The fMRI can be used as a harmless research method to discuss the mechanisms of acupuncture as well as study the mechanisms of spinal cord diseases. It can be used to direct or monitor the related therapy on the spinal cord injury patients.
Postural profile and falls of osteoporotic women.
Karakasidou, Palina; Skordilis, Emmanouil K; Dontas, Ismene; Lyritis, George P
2012-01-01
1. To compare postural alignment in erect standing between osteoporotic fallers, osteoporotic non-fallers and healthy women. 2. To compare BMI, number of fractures and intensity of pain between osteoporotic fallers and non-fallers. Thirty-six osteoporotic women with vertebral fractures and 40 healthy women participated in the study. Spinal curvatures were assessed with a digital inclinometer. Photographic measurements of knee, hip, shoulder and head were carried out in sagittal plane. Significant differences were found between osteoporotic fallers and healthy women in the head (p=0.040), and thoracic angles (p=0.001). Significant differences were found between fallers and non-fallers in BMI (p=0.000), number of fractures (p=0.033) and pain (p=0.005), with fallers being heavier, with less fractures and pain than non-fallers. Osteoporotic fallers probably differ from osteoporotic non-fallers and healthy women. Researchers and clinicians may consider, in the future, the above differences when planning research and clinical intervention in this field. Replication studies are necessary to confirm the present findings.
Trunk posture monitoring with inertial sensors
Wong, Man Sang
2008-01-01
Measurement of human posture and movement is an important area of research in the bioengineering and rehabilitation fields. Various attempts have been initiated for different clinical application goals, such as diagnosis of pathological posture and movements, assessment of pre- and post-treatment efficacy and comparison of different treatment protocols. Image-based methods for measurements of human posture and movements have been developed, such as the radiography, photogrammetry, optoelectric technique and video analysis. However, it is found that these methods are complicated to set up, time-consuming to operate and could only be applied in laboratory environments. This study introduced a method of using a posture monitoring system in estimating the spinal curvature changes during trunk movements on the sagittal and coronal planes and providing trunk posture monitoring during daily activities. The system consisted of three sensor modules, each with one tri-axial accelerometer and three uni-axial gyroscopes orthogonally aligned, and a digital data acquisition and feedback system. The accuracy of this system was tested with a motion analysis system (Vicon 370) in calibration with experimental setup and in trunk posture measurement with nine human subjects, and the performance of the posture monitoring system during daily activities with two human subjects was reported. The averaged root mean squared differences between the measurements of the system and motion analysis system were found to be <1.5° in dynamic calibration, and <3.1° for the sagittal plane and ≤2.1° for the coronal plane in estimation of the trunk posture change during trunk movements. The measurements of the system and the motion analysis system was highly correlated (>0.999 for dynamic calibration and >0.829 for estimation of spinal curvature change in domain planes of movement during flexion and lateral bending). With the sensing modules located on the upper trunk, mid-trunk and the pelvic levels, the inclination of trunk segment and the change of spinal curvature in trunk movements could be estimated. The posture information of five subjects was recorded at 30 s intervals during daily activity over a period of 3 days and 2 h a day. The preliminary results demonstrated that the subjects could improve their posture when feedback signals were provided. The posture monitoring system could be used for the purpose of posture monitoring during daily activity. PMID:18196296
Trunk posture monitoring with inertial sensors.
Wong, Wai Yin; Wong, Man Sang
2008-05-01
Measurement of human posture and movement is an important area of research in the bioengineering and rehabilitation fields. Various attempts have been initiated for different clinical application goals, such as diagnosis of pathological posture and movements, assessment of pre- and post-treatment efficacy and comparison of different treatment protocols. Image-based methods for measurements of human posture and movements have been developed, such as the radiography, photogrammetry, optoelectric technique and video analysis. However, it is found that these methods are complicated to set up, time-consuming to operate and could only be applied in laboratory environments. This study introduced a method of using a posture monitoring system in estimating the spinal curvature changes during trunk movements on the sagittal and coronal planes and providing trunk posture monitoring during daily activities. The system consisted of three sensor modules, each with one tri-axial accelerometer and three uni-axial gyroscopes orthogonally aligned, and a digital data acquisition and feedback system. The accuracy of this system was tested with a motion analysis system (Vicon 370) in calibration with experimental setup and in trunk posture measurement with nine human subjects, and the performance of the posture monitoring system during daily activities with two human subjects was reported. The averaged root mean squared differences between the measurements of the system and motion analysis system were found to be < 1.5 degrees in dynamic calibration, and < 3.1 degrees for the sagittal plane and < or = 2.1 degrees for the coronal plane in estimation of the trunk posture change during trunk movements. The measurements of the system and the motion analysis system was highly correlated (> 0.999 for dynamic calibration and > 0.829 for estimation of spinal curvature change in domain planes of movement during flexion and lateral bending). With the sensing modules located on the upper trunk, mid-trunk and the pelvic levels, the inclination of trunk segment and the change of spinal curvature in trunk movements could be estimated. The posture information of five subjects was recorded at 30 s intervals during daily activity over a period of 3 days and 2 h a day. The preliminary results demonstrated that the subjects could improve their posture when feedback signals were provided. The posture monitoring system could be used for the purpose of posture monitoring during daily activity.
Pilot Study for OCT Guided Design and Fit of a Prosthetic Device for Treatment of Corneal Disease.
Le, Hong-Gam T; Tang, Maolong; Ridges, Ryan; Huang, David; Jacobs, Deborah S
2012-01-01
Purpose. To assess optical coherence tomography (OCT) for guiding design and fit of a prosthetic device for corneal disease. Methods. A prototype time domain OCT scanner was used to image the anterior segment of patients fitted with large diameter (18.5-20 mm) prosthetic devices for corneal disease. OCT images were processed and analyzed to characterize corneal diameter, corneal sagittal height, scleral sagittal height, scleral toricity, and alignment of device. Within-subject variance of OCT-measured parameters was evaluated. OCT-measured parameters were compared with device parameters for each eye fitted. OCT image correspondence with ocular alignment and clinical fit was assessed. Results. Six eyes in 5 patients were studied. OCT measurement of corneal diameter (coefficient of variation, CV = 0.76%), cornea sagittal height (CV = 2.06%), and scleral sagittal height (CV = 3.39%) is highly repeatable within each subject. OCT image-derived measurements reveal strong correlation between corneal sagittal height and device corneal height (r = 0.975) and modest correlation between scleral and on-eye device toricity (r = 0.581). Qualitative assessment of a fitted device on OCT montages reveals correspondence with slit lamp images and clinical assessment of fit. Conclusions. OCT imaging of the anterior segment is suitable for custom design and fit of large diameter (18.5-20 mm) prosthetic devices used in the treatment of corneal disease.
Mieritz, Rune M; Bronfort, Gert; Jakobsen, Markus D; Aagaard, Per; Hartvigsen, Jan
2014-09-01
A basic premise for any instrument measuring spinal motion is that reliable outcomes can be obtained on a relevant sample under standardized conditions. The purpose of this study was to assess the overall reliability and measurement error of regional spinal sagittal plane motion in patients with chronic low back pain (LBP), and then to evaluate the influence of body mass index, examiner, gender, stability of pain, and pain distribution on reliability and measurement error. This study comprises a test-retest design separated by 7 to 14 days. The patient cohort consisted of 220 individuals with chronic LBP. Kinematics of the lumbar spine were sampled during standardized spinal extension-flexion testing using a 6-df instrumented spatial linkage system. Test-retest reliability and measurement error were evaluated using interclass correlation coefficients (ICC(1,1)) and Bland-Altman limits of agreement (LOAs). The overall test-retest reliability (ICC(1,1)) for various motion parameters ranged from 0.51 to 0.70, and relatively wide LOAs were observed for all parameters. Reliability measures in patient subgroups (ICC(1,1)) ranged between 0.34 and 0.77. In general, greater (ICC(1,1)) coefficients and smaller LOAs were found in subgroups with patients examined by the same examiner, patients with a stable pain level, patients with a body mass index less than below 30 kg/m(2), patients who were men, and patients in the Quebec Task Force classifications Group 1. This study shows that sagittal plane kinematic data from patients with chronic LBP may be sufficiently reliable in measurements of groups of patients. However, because of the large LOAs, this test procedure appears unusable at the individual patient level. Furthermore, reliability and measurement error varies substantially among subgroups of patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of halo-vest components on stabilizing the injured cervical spine.
Ivancic, Paul C; Beauchman, Naseem N; Tweardy, Lisa
2009-01-15
An in vitro biomechanical study. The objectives were to develop a new biofidelic skull-neck-thorax model capable of quantifying motion patterns of the cervical spine in the presence of a halo-vest; to investigate the effects of vest loosening, superstructure loosening, and removal of the posterior uprights; and to evaluate the ability of the halo-vest to stabilize the neck within physiological motion limits. Previous clinical and biomechanical studies have investigated neck motion with the halo-vest only in the sagittal plane or only at the injured spinal level. No previous studies have quantified three-dimensional intervertebral motion patterns throughout the injured cervical spine stabilized with the halo-vest or studied the effect of halo-vest components on these motions. The halo-vest was applied to the skull-neck-thorax model. Six osteoligamentous whole cervical spine specimens (occiput through T1 vertebra) were used that had sustained multiplanar ligamentous injuries at C3/4 through C7-T1 during a previous protocol. Flexibility tests were performed with normal halo-vest application, loose vest, loose superstructure, and following removal of the posterior uprights. Average total range of motion for each experimental condition was statistically compared (P < 0.05) with the physiologic rotation limit for each spinal level. Cervical spine snaking was observed in both the sagittal and frontal planes. The halo-vest, applied normally, generally limited average spinal motions to within average physiological limits. No significant increases in average spinal motions above physiologic were observed due to loose vest, loose superstructure, or removal of the posterior uprights. However, a trend toward increased motion at C6/7 in lateral bending was observed due to loose superstructure. The halo-vest, applied normally, effectively immobilized the cervical spine. Sagittal or frontal plane snaking of the cervical spine due to the halo-vest may reduce its immobilization capability at the upper cervical spine and cervicothoracic junction.
Reliability of image-free navigation to monitor lower-limb alignment.
Pearle, Andrew D; Goleski, Patrick; Musahl, Volker; Kendoff, Daniel
2009-02-01
Proper alignment of the mechanical axis of the lower limb is the principal goal of a high tibial osteotomy. A well-accepted and relevant technical specification is the coronal plane lower-limb alignment. Target values for coronal plane alignment after high tibial osteotomy include 2 degrees of overcorrection, while tolerances for this specification have been established as 2 degrees to 4 degrees. However, the role of axial plane and sagittal plane realignment after high tibial osteotomy is poorly understood; consequently, targets and tolerance for this technical specification remain undefined. This article reviews the literature concerning the reliability and precision of navigation in monitoring the clinically relevant specification of lower-limb alignment in high tibial osteotomy. We conclude that image-free navigation registration may be clinically useful for intraoperative monitoring of the coronal plane only. Only fair and poor results for the axial and sagittal planes can be obtained by image-free navigation systems. In the future, combined image-based data, such as those from radiographs, magnetic resonance imaging, and gait analysis, may be used to help to improve the accuracy and reproducibility of quantitative intraoperative monitoring of lower-limb alignment.
Jo, Dae-Jean; Kim, Yong-Sang; Kim, Sung-Min; Kim, Ki-Tack; Seo, Eun-Min
2015-10-01
Most thoracolumbar fractures have a good healing outcome with adequate treatment. However, posttraumatic thoracolumbar kyphosis can occur in a proportion of thoracolumbar fractures after inappropriate treatment, osteoporosis, or osteonecrosis of the vertebral body. There are several surgical options to correct posttraumatic thoracolumbar kyphosis, including anterior, posterior, and combined approaches, which are associated with varying degrees of success. The aim of this study was to assess the use of a modified closing wedge osteotomy for the treatment of posttraumatic thoracolumbar kyphosis and to evaluate the radiographic findings and clinical outcomes of patients treated using this technique. Thirteen consecutive patients with symptomatic posttraumatic thoracolumbar kyphosis were treated using a modified closing wedge osteotomy. The mean patient age was 62 years. The kyphosis apex ranged from T-10 to L-2. The sagittal alignment, kyphotic angle, neurological function, visual analog scale for back pain, and Oswestry Disability Index were evaluated before surgery and at follow-up. RESULTS The mean preoperative regional angle was 27.4°, and the mean correction angle was 29.6°. Sagittal alignment improved with a mean correction rate of 58.3%. The mean surgical time was 275 minutes, and the mean intraoperative blood loss was 1585 ml. The intraoperative complications included 2 dural tears, 1 nerve root injury, and 1 superficial wound infection. The mean visual analog scale score for back pain improved from 6. 6 to 2, and the Oswestry Disability Index score decreased from 55.4 to 22.6 at the last follow-up. All patients achieved bony anterior fusion based on the presence of trabecular bone bridging at the osteotomy site. The modified posterior closing wedge osteotomy technique achieves satisfactory kyphosis correction with direct visualization of the circumferentially decompressed spinal cord, as well as good fusion with less blood loss and fewer complications. It is an alternative method for treating patients with posttraumatic thoracolumbar kyphosis.
[Plain radiographs of the spine: static and relationships between spine and pelvis].
Morvan, G; Wybier, M; Mathieu, P; Vuillemin, V; Guerini, H
2008-05-01
Man, with his erect posture, evolves in a world subject to the laws of gravity. His spine reflects these constraints. The morphology and static of human spine and biomechanical relationships between spine and pelvis are in direct relation with bipedia. Owing to this position the pelvis widened and straightened, characteristic sagittal spinal curves appeared and the perispinal muscles were deeply reorganized. Each pelvis is characterized by an important anatomical landmark: the pelvic incidence that reflects the sagittal morphology of the pelvis. Based on this anatomical characteristic, a chain of reactions determines the more efficient equilibrium of the whole body in the sagittal plane in term of energy consumption. Incidence affects the sacral slope, which determines lumbar lordosis, which itself influences pelvic tilt, thoracic kyphosis, and even hip and knee position. All these landmarks can easily be studied on a sagittal radiograph. Knowledge of these functional relationships is essential to understand the origin of low back pain, sagittal imbalance and above all before surgical treatment of spine disorders especially when arthrodesis is considered.
Perception of socket alignment perturbations in amputees with transtibial prostheses.
Boone, David A; Kobayashi, Toshiki; Chou, Teri G; Arabian, Adam K; Coleman, Kim L; Orendurff, Michael S; Zhang, Ming
2012-01-01
A person with amputation's subjective perception is the only tool available to describe fit and comfort to a prosthetist. However, few studies have investigated the effect of alignment on this perception. The aim of this article is to determine whether people with amputation could perceive the alignment perturbations of their prostheses and effectively communicate them. A randomized controlled perturbation of angular (3 and 6 degrees) and translational (5 and 10 mm) alignments in the sagittal (flexion, extension, and anterior and posterior translations) and coronal (abduction, adduction, and medial and lateral translations) planes were induced from an aligned condition in 11 subjects with transtibial prostheses. The perception was evaluated when standing (static) and immediately after walking (dynamic) using software that used a visual analog scale under each alignment condition. In the coronal plane, Friedman test demonstrated general statistical differences in static (p < 0.001) and dynamic (p < 0.001) measures of perceptions with angular perturbations. In the sagittal plane, it also demonstrated general statistical differences in late-stance dynamic measures of perceptions (p < 0.001) with angular perturbations, as well as in early-stance dynamic measures of perceptions (p < 0.05) with translational perturbations. Fisher exact test suggested that people with amputation's perceptions were good indicators for coronal angle malalignments but less reliable when defining other alignment conditions.
A late neurological complication following posterior correction surgery of severe cervical kyphosis.
Hojo, Yoshihiro; Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Sudo, Hideki; Takahata, Masahiko; Minami, Akio
2011-06-01
Though a possible cause of late neurological deficits after posterior cervical reconstruction surgery was reported to be an iatrogenic foraminal stenosis caused not by implant malposition but probably by posterior shift of the lateral mass induced by tightening screws and plates, its clinical features and pathomechanisms remain unclear. The aim of this retrospective clinical review was to investigate the clinical features of these neurological complications and to analyze the pathomechanisms by reviewing pre- and post-operative imaging studies. Among 227 patients who underwent cervical stabilization using cervical pedicle screws (CPSs), six patients who underwent correction of cervical kyphosis showed postoperative late neurological complications without any malposition of CPS (ND group). The clinical courses of the patients with deficits were reviewed from the medical records. Radiographic assessment of the sagittal alignment was conducted using lateral radiographs. The diameter of the neural foramen was measured on preoperative CT images. These results were compared with the other 14 patients who underwent correction of cervical kyphosis without late postoperative neurological complications (non-ND group). The six patients in the ND group showed no deficits in the immediate postoperative periods, but unilateral muscle weakness of the deltoid and biceps brachii occurred at 2.8 days postoperatively on average. Preoperative sagittal alignment of fusion area showed significant kyphosis in the ND group. The average of kyphosis correction in the ND was 17.6° per fused segment (range 9.7°-35.0°), and 4.5° (range 1.3°-10.0°) in the non-ND group. A statistically significant difference was observed in the degree of preoperative kyphosis and the correction angles at C4-5 between the two groups. The diameter of the C4-5 foramen on the side of deficits was significantly smaller than that of the opposite side in the ND group. Late postoperative neurological complications after correction of cervical kyphosis were highly associated with a large amount of kyphosis correction, which may lead foraminal stenosis and enhance posterior drift of the spinal cord. These factors may lead to both compression and traction of the nerves, which eventually cause late neurological deficits. To avoid such complications, excessive kyphosis correction should not be performed during posterior surgery to avoid significant posterior shift of the spinal cord and prophylactic foraminotomies are recommended if narrow neuroforamina were evident on preoperative CT images. Regardless of revision decompression or observation, the majority of this late neurological complication showed complete recovery over time.
Lumbar scoliosis associated with spinal stenosis in idiopathic and degenerative cases.
Le Huec, J C; Cogniet, A; Mazas, S; Faundez, A
2016-10-01
Degenerative de novo scoliosis is commonly present in older adult patients. The degenerative process including disc bulging, facet arthritis, and ligamentum flavum hypertrophy contributes to the appearance of symptoms of spinal stenosis. Idiopathic scoliosis has also degenerative changes that can lead to spinal stenosis. The aetiology, prevalence, biomechanics, classification, symptomatology, and treatment of idiopathic and degenerative lumbar scoliosis in association with spinal stenosis are reviewed. Review study is based on a review of pertinent but non-exhaustive literature of the last 20 years in PubMed in English language. Retrospective analysis of studies focused on all parameters concerning scoliosis associated with stenosis. Very few publications have focused specifically on idiopathic scoliosis and stenosis, and this was before the advent of modern segmental instrumentation. On the other hand, many papers were found for degenerative scoliosis and stenosis with treatment methods based on aetiology of spinal canal stenosis and analysis of global sagittal and frontal parameters. Satisfactory clinical results after operative treatment range from 83 to 96 % but with increased percentage of complications. Recent literature analysed the importance of stabilizing or not the spine after decompression in such situation knowing the increasing risk of instability after facet resection. No prospective randomized studies were found to support short instrumentation. Long instrumentation and fusion to prevent distabilization after decompression were always associated with higher complication rates. Imbalance patients with unsatisfactory compensation capacities were at risk of complications. Operative treatment using newly proposed classification system of lumbar scoliosis with associated canal stenosis is useful. Sagittal balance and rotatory dislocation are the main parameters to analyse to determine the length of fusion.
Current Diagnosis and Management of Cervical Spondylotic Myelopathy.
Bakhsheshian, Joshua; Mehta, Vivek A; Liu, John C
2017-09-01
Review. Cervical spondylotic myelopathy (CSM) is a major cause of disability, particular in elderly patients. Awareness and understanding of CSM is imperative to facilitate early diagnosis and management. This review article addresses CSM with regard to its epidemiology, anatomical considerations, pathophysiology, clinical manifestations, imaging characteristics, treatment approaches and outcomes, and the cost-effectiveness of surgical options. The authors performed an extensive review of the peer-reviewed literature addressing the aforementioned objectives. The clinical presentation and natural history of CSM is variable, alternating between quiescent and insidious to stepwise decline or rapid neurological deterioration. For mild CSM, conservative options could be employed with careful observation. However, surgical intervention has shown to be superior for moderate to severe CSM. The success of operative or conservative management of CSM is multifactorial and high-quality studies are lacking. The optimal surgical approach is still under debate, and can vary depending on the number of levels involved, location of the pathology and baseline cervical sagittal alignment. Early recognition and treatment of CSM, before the onset of spinal cord damage, is essential for optimal outcomes. The goal of surgery is to decompress the cord with expansion of the spinal canal, while restoring cervical lordosis, and stabilizing when the risk of cervical kyphosis is high. Further high-quality randomized clinical studies with long-term follow up are still needed to further define the natural history and help predict the ideal surgical strategy.
Legaye, Jean; Duval-Beaupere, Ginette
2017-11-01
To evaluate the influence of the position of the arms on the location of the body's gravity line. The sagittal balance of the pelvi-spinal unit is organized so that the gravity line is localized in a way that limits the mechanical loads and the muscle efforts. This position of the gravity line was analyzed in vivo, in standing position, the arms dangling, by the barycentremeter, a gamma rays scanner. Then, several teams had the same purpose but using a force platform combined with radiographies. Their results differed significantly among themselves and with the data of the barycentremetry. However, in these studies, the positions of the arms varied noticeably, either slightly bent forwards on a support, or the fingers on the clavicles or on the cheeks. We estimated, for each varied posture of the arms, the sagittal coordinates of the masses of the upper limbs and their influence on the anatomical position of the gravity line of the whole body. Using a simple equation and the data of the barycentremeter, we observed that the variations in the location of the gravity line were proportionally connected to the changes of the sagittal position of the mass of the upper limbs induced by the various positions of the arms. We conclude in a validation of the data of the barycentremeter, as well as of the data obtained by the force platforms as long as the artifact of the position of the arms is taken into account.
Is the sagittal postural alignment different in normal and dysphonic adult speakers?
Franco, Débora; Martins, Fernando; Andrea, Mário; Fragoso, Isabel; Carrão, Luís; Teles, Júlia
2014-07-01
Clinical research in the field of voice disorders, in particular functional dysphonia, has suggested abnormal laryngeal posture due to muscle adaptive changes, although specific evidence regarding body posture has been lacking. The aim of our study was to verify if there were significant differences in sagittal spine alignment between normal (41 subjects) and dysphonic speakers (33 subjects). Cross-sectional study. Seventy-four adults, 35 males and 39 females, were submitted to sagittal plane photographs so that spine alignment could be analyzed through the Digimizer-MedCalc Software Ltd program. Perceptual and acoustic evaluation and nasoendoscopy were used for dysphonic judgments: normal and dysphonic speakers. For thoracic length curvature (TL) and for the kyphosis index (KI), a significant effect of dysphonia was observed with mean TL and KI significantly higher for the dysphonic speakers than for the normal speakers. Concerning the TL variable, a significant effect of sex was found, in which the mean of the TL was higher for males than females. The interaction between dysphonia and sex did not have a significant effect on TL and KI variables. For the lumbar length curvature variable, a significant main effect of sex was demonstrated; there was no significant main effect of dysphonia or significant sex×dysphonia interaction. Findings indicated significant differences in some sagittal spine posture measures between normal and dysphonic speakers. Postural measures can add useful information to voice assessment protocols and should be taken into account when considering particular treatment strategies. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Kobayashi, Toshiki; Orendurff, Michael S; Zhang, Ming; Boone, David A
2014-05-01
The alignment of transtibial prostheses has a systematic effect on the mean socket reaction moments in amputees. However, understanding their individual differences in response to alignment perturbations is also important for prosthetists to fully utilize the socket reaction moments for dynamic alignment in each unique patient. The aim of this study was to investigate individual responses to alignment perturbations in transtibial prostheses with solid-ankle-cushion-heel feet. A custom instrumented prosthesis alignment component was used to measure the socket reaction moments while walking in 11 amputees with transtibial prostheses under 17 alignment conditions, including 3° and 6° of flexion, extension, abduction, and adduction of the socket, 5mm and 10mm of anterior, posterior, lateral, and medial translation of the socket, and an initial baseline alignment. Coronal moments at 30% of stance and maximum sagittal moments were extracted for comparisons from each amputee. In the coronal plane, varus moment at 30% of stance was generally reduced by adduction or medial translation of the socket in all the amputees. In the sagittal plane, extension moment was generally increased by posterior translation or flexion of the socket; however, this was not necessarily the case for all the amputees. Individual responses to alignment perturbations are not always consistent, and prosthetists would need to be aware of this variance when addressing individual socket reaction moments during dynamic alignment in clinical setting. Copyright © 2014 Elsevier Ltd. All rights reserved.
2014-01-01
Background The sagittal alignment of the spine changes depending on body posture and degenerative changes. This study aimed to observe changes in sagittal alignment of the lumbar spine with different positions (standing, supine, and various sitting postures) and to verify the effect of aging on lumbar sagittal alignment. Methods Whole-spine lateral radiographs were obtained for young volunteers (25.4 ± 2.3 years) and elderly volunteers (66.7 ± 1.7 years). Radiographs were obtained in standing, supine, and sitting (30°, 60°, and 90°) positions respectively. We compared the radiological changes in the lordotic and segmental angles in different body positions and at different ages. Upper and lower lumbar lordosis were defined according to differences in anatomical sagittal mobility and kinematic behavior. Results Lumbar lordosis was greater in a standing position (52.79° and 53.90° in young and old groups, respectively) and tended to decrease as position changed from supine to sitting. Compared with the younger group, the older group showed significantly more lumbar lordosis in supine and 60° and 90° sitting positions (P = 0.043, 0.002, 0.011). Upper lumbar lordosis in the younger group changed dynamically in all changed positions compared with the old group (P = 0.019). Lower lumbar lordosis showed a decreasing pattern in both age groups, significantly changing as position changed from 30° to 60° (P = 0.007, 0.007). Conclusions Lumbar lordosis decreases as position changes from standing to 90°sitting. The upper lumbar spine is more flexible in individuals in their twenties compared to those in their sixties. Changes in lumbar lordosis were concentrated in the lower lumbar region in the older group in sitting positions. PMID:24571953
Tafti, Nahid; Karimlou, Masoud; Mardani, Mohammad Ali; Jafarpisheh, Amir Salar; Aminian, Gholam Reza; Safari, Reza
2018-04-20
The objectives of current study were to a) assess similarities and relationships between anatomical landmark-based angles and distances of lower limbs in unilateral transtibial amputees and b) develop and evaluate a new anatomically based static prosthetic alignment method. First sub-study assessed the anthropometrical differences and relationships between the lower limbs in the photographs taken from amputees. Data were analysed via paired t-test and regression analysis. Results show no significant differences in frontal and transverse planes. In the sagittal plane, the anthropometric parameters of the amputated limb were significantly correlated to the corresponding variables of the sound limb. The results served as bases for the development of a new prosthetic alignment method. The method was evaluated on a single subject study. Prosthetic alignment carried out by an experienced prosthetist was compared with such alignment adjusted by an inexperienced prosthetist but with the use of the developed method. In sagittal and frontal planes, the socket angle was tuned with respect to the shin angle, and the position of the prosthetic foot was tuned in relation to the pelvic landmarks. Further study is needed to assess the proposed method on a larger sample of amputees and prosthetists.
Kobayashi, Toshiki; Arabian, Adam K.; Orendurff, Michael S.; Rosenbaum-Chou, Teri G.; Boone, David A.
2014-01-01
Background Energy storage and return feet are designed for active amputees. However, little is known about the socket reaction moments in transtibial prostheses with energy storage and return feet. The aim of this study was to investigate the effect of alignment changes on the socket reaction moments during gait while using the energy storage and return feet. Methods A Smart Pyramid™ was used to measure the socket reaction moments in 10 subjects with transtibial prostheses while walking under 25 alignment conditions, including a nominal alignment (as defined by conventional clinical methods), as well as angle malalignments of 2°, 4° and 6° (flexion, extension, abduction, and adduction) and translation malalignments of 5mm, 10mm and 15mm (anterior, posterior, lateral, and medial) referenced from the nominal alignment. The socket reaction moments of the nominal alignment were compared with each malalignment. Findings Both coronal and sagittal alignment changes demonstrated systematic effects on the socket reaction moments. In the sagittal plane, angle and translation alignment changes demonstrated significant differences (P<0.05) in the minimum moment, the moment at 45% of stance and the maximum moment for some comparisons. In the coronal plane, angle and translation alignment changes demonstrated significant differences (P<0.05) in the moment at 30% and 75% of stance for all comparisons. Interpretation The alignment may have systematic effects on the socket reaction moments in transtibial prostheses with energy storage and return feet. The socket reaction moments could potentially be a useful biomechanical parameter to evaluate the alignment of the transtibial prostheses. PMID:24315709
Kobayashi, Toshiki; Orendurff, Michael S.; Arabian, Adam K.; Rosenbaum-Chou, Teri G.; Boone, David A.
2014-01-01
The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment–time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid™ in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health. PMID:24612718
Proximal Junctional Kyphosis Following Spinal Deformity Surgery in the Pediatric Patient.
Cho, Samuel K; Kim, Yongjung J; Lenke, Lawrence G
2015-07-01
Proper understanding and restoration of sagittal balance is critical in spinal deformity surgery, including conditions such as adolescent idiopathic scoliosis and Scheuermann kyphosis. One potential complication following spinal reconstruction is proximal junctional kyphosis. The prevalence of proximal junctional kyphosis varies in the literature, and several patient- and surgery-related risk factors have been identified. To date, the development of proximal junctional kyphosis has not been shown to lead to a negative clinical outcome following spinal fusion for adolescent idiopathic scoliosis or Scheuermann kyphosis. Treatment options range from simple observation in asymptomatic cases to revision surgery with extension of the fusion proximally. Several techniques and technologies are emerging that seek to address and prevent proximal junctional kyphosis. Copyright 2015 by the American Academy of Orthopaedic Surgeons.
The association of spinal osteoarthritis with lumbar lordosis
2010-01-01
Background Careful review of published evidence has led to the postulate that the degree of lumbar lordosis may possibly influence the development and progression of spinal osteoarthritis, just as misalignment does in other joints. Spinal degeneration can ensue from the asymmetrical distribution of loads. The resultant lesions lead to a domino- like breakdown of the normal morphology, degenerative instability and deviation from the correct configuration. The aim of this study is to investigate whether a relationship exists between the sagittal alignment of the lumbar spine, as it is expressed by lordosis, and the presence of radiographic osteoarthritis. Methods 112 female subjects, aged 40-72 years, were examined in the Outpatients Department of the Orthopedics' Clinic, University Hospital of Heraklion, Crete. Lumbar radiographs were examined on two separate occasions, independently, by two of the authors for the presence of osteoarthritis. Lordosis was measured from the top of L1 to the bottom of L5 as well as from the top of L1 to the top of S1. Furthermore, the angle between the bottom of L5 to the top of S1was also measured. Results and discussion 49 women were diagnosed with radiographic osteoarthritis of the lumbar spine, while 63 women had no evidence of osteoarthritis and served as controls. The two groups were matched for age and body build, as it is expressed by BMI. No statistically significant differences were found in the lordotic angles between the two groups Conclusions There is no difference in lordosis between those affected with lumbar spine osteoarthritis and those who are disease free. It appears that osteoarthritis is not associated with the degree of lumbar lordosis. PMID:20044932
Road Cycling and Mountain Biking Produces Adaptations on the Spine and Hamstring Extensibility.
Muyor, J M; Zabala, M
2016-01-01
The purposes of this study were as follows: 1) to analyse the influence of training in road cycling or cross-country mountain biking on sagittal spinal curvatures, pelvic tilt and trunk inclination in cyclists of both cycling modalities; 2) to evaluate the specific spinal posture and pelvic tilt adopted on the road bicycle and cross-country mountain bike; and 3) to compare the spinal sagittal capacity of flexion and pelvic tilt mobility as well as hamstring muscle extensibility among road cyclists, cross-country mountain bikers and non-cyclists. Thirty matched road cyclists, 30 mountain bikers and 30 non-cyclists participated in this study. The road cyclists showed significantly greater thoracic kyphosis and trunk inclination than did the mountain bikers and non-cyclists in a standing posture. On the bicycle, the road bicycling posture was characterised by greater lumbar flexion and more significant anterior pelvic tilt and trunk inclination compared with the mountain biking posture. The thoracic spine was more flexed in mountain biking than in road cycling. Road cyclists had significantly greater hamstring muscle extensibility in the active knee extension test, and showed greater anterior pelvic tilt and trunk inclination capacity in the sit-and-reach test, compared with mountain bikers and non-cyclists. © Georg Thieme Verlag KG Stuttgart · New York.
Influence of Lumbar Lordosis on the Outcome of Decompression Surgery for Lumbar Canal Stenosis.
Chang, Han Soo
2018-01-01
Although sagittal spinal balance plays an important role in spinal deformity surgery, its role in decompression surgery for lumbar canal stenosis is not well understood. To investigate the hypothesis that sagittal spinal balance also plays a role in decompression surgery for lumbar canal stenosis, a prospective cohort study analyzing the correlation between preoperative lumbar lordosis and outcome was performed. A cohort of 85 consecutive patients who underwent decompression for lumbar canal stenosis during the period 2007-2011 was analyzed. Standing lumbar x-rays and 36-item short form health survey questionnaires were obtained before and up to 2 years after surgery. Correlations between lumbar lordosis and 2 parameters of the 36-item short form health survey (average physical score and bodily pain score) were statistically analyzed using linear mixed effects models. There was a significant correlation between preoperative lumbar lordosis and the 2 outcome parameters at postoperative, 6-month, 1-year, and 2-year time points. A 10° increase of lumbar lordosis was associated with a 5-point improvement in average physical scores. This correlation was not present in preoperative scores. This study showed that preoperative lumbar lordosis significantly influences the outcome of decompression surgery on lumbar canal stenosis. Copyright © 2017 Elsevier Inc. All rights reserved.
El Ouaaid, Z; Shirazi-Adl, A; Plamondon, A
2018-03-21
To reduce lifting and associated low back injuries, manual material handling operations often involve pulling-pushing of carts at different weights, orientations, and heights. The loads on spine and risk of injury however need to be investigated. The aim of this study was to evaluate muscle forces, spinal loads and trunk stability in pull-push tasks in sagittal-symmetric, static upright standing posture. Three hand-held load magnitudes (80, 120 and 160 N) at four elevations (0, 20, 40 and 60 cm to the L5-S1) and 24 force directions covering all pull/push orientations were considered. For this purpose, a musculoskeletal finite element model with kinematics measured earlier were used. Results demonstrated that peak spinal forces occur under inclined pull (lift) at upper elevations but inclined push at the lowermost one. Minimal spinal loads, on the other hand, occurred at and around vertical pull directions. Overall, spinal forces closely followed variations in the net external moment of pull-push forces at the L5-S1. Local lumbar muscles were most active in pulls while global extensor muscles in lifts. The trunk stability margin decreased with load elevation except at and around horizontal push; it peaked under pulls and reached minimum at vertical lifts. It also increased with antagonist activity in muscles and intra-abdominal pressure. Results provide insight into the marked effects of variation in the load orientation and elevation on muscle forces, spinal loads and trunk stability and hence offer help in rehabilitation, performance enhancement training and design of safer workplaces. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, Benlong; Mao, Saihu; Xu, Leilei; Sun, Xu; Liu, Zhen; Zhu, Zezhang; Lam, Tsz Ping; Cheng, Jack Cy; Ng, Bobby; Qiu, Yong
2016-07-04
Height gain is a common beneficial consequence following correction surgery in adolescent idiopathic scoliosis (AIS), yet little is known concerning factors favoring regain of the lost vertical spinal height (SH) through posterior spinal fusion. A consecutive series of AIS patients from February 2013 to August 2015 were reviewed. Surgical changes in SH (ΔSH), as well as the multiple coronal and sagittal deformity parameters were measured and correlated. Factors associated with ΔSH were identified through Pearson correlation analysis and multivariate regression analysis. A total of 172 single curve and 104 double curve patients were reviewed. The ΔSH averaged 2.5 ± 0.9 cm in single curve group and 2.9 ± 1.0 cm in double curve group. The multivariate regression analysis revealed the following pre-operative variables contributed significantly to ΔSH: pre-op Cobb angle, pre-op TK (single curve group only), pre-op GK (double curve group only) and pre-op LL (double curve group only) (p < 0.05). Thus change in height (in cm) = 0.044 × (pre-op Cobb angle) + 0.012 × (pre-op TK) (Single curve, adjusted R(2) = 0.549) or 0.923 + 0.021 × (pre-op Cobb angle1) + 0.028 × (pre-op Cobb angle2) + 0.015 × (pre-op GK)-0.012 × (pre-op LL) (Double curve, adjusted R(2) = 0.563). Severer pre-operative coronal Cobb angle and greater sagittal curves were beneficial factors favoring more contribution to the surgical lengthening effect in vertical spinal height in AIS.
Weiss, Hans-Rudolf; Werkmann, Mario
2009-01-01
Background Up to now, chronic low back pain without radicular symptoms is not classified and attributed in international literature as being "unspecific". For specific bracing of this patient group we use simple physical tests to predict the brace type the patient is most likely to benefit from. Based on these physical tests we have developed a simple functional classification of "unspecific" low back pain in patients with spinal deformities. Methods Between January 2006 and July 2007 we have tested 130 patients (116 females and 14 males) with spinal deformities (average age 45 years, ranging from 14 years to 69) and chronic unspecific low back pain (pain for > 24 months) along with the indication for brace treatment for chronic unspecific low back pain. Some of the patients had symptoms of spinal claudication (n = 16). The "sagittal realignment test" (SRT) was applied, a lumbar hyperextension test, and the "sagittal delordosation test" (SDT). Additionally 3 female patients with spondylolisthesis were tested, including one female with symptoms of spinal claudication and 2 of these patients were 14 years of age and the other 43yrs old at the time of testing. Results 117 Patients reported significant pain release in the SRT and 13 in the SDT (>/= 2 steps in the Roland & Morris VRS). 3 Patients had no significant pain release in both of the tests (< 2 steps in the Roland & Morris VRS). Pain intensity was high (3,29) before performing the physical tests (VRS-scale 0–5) and low (1,37) while performing the physical test for the whole sample of patients. The differences where highly significant in the Wilcoxon test (z = -3,79; p < 0,0001). In the 16 patients who did not respond to the SRT in the manual investigation we found hypermobility at L5/S1 or a spondylolisthesis at level L5/S1. In the other patients who responded well to the SRT loss of lumbar lordosis was the main issue, a finding which, according to scientific literature, correlates well with low back pain. The 3 patients who did not respond to either test had a fair pain reduction in a generally delordosing brace with an isolated small foam pad inserted at the level of L 2/3, leading to a lordosation at this region. Discussion With the exception of 3 patients (2.3%) a clear distribution to one of the two classes has been possible. 117 patients were supplied successfully with a sagittal realignment test-brace (physio-logic® brace) and 13 with a sagittal delordosing brace (spondylogic® brace). There were patients with scoliosies and hyperkyphosiesbrace). Therefore a clear distribution of the patients from this sample to either chronic postural or chronic instability back pain was possible. In 2.3% a combined chronic low back pain from the findings obtained seems reasonable. Conclusion Chronic unspecific low back pain is possible to clearly be classified physically. This functional classification is necessary to decide on which specific conservative approach (physical therapy, braces) should be used. Other factors than spinal deformities contribute to chronic low back pain. PMID:19222845
Weiss, Hans-Rudolf; Werkmann, Mario
2009-02-17
Up to now, chronic low back pain without radicular symptoms is not classified and attributed in international literature as being "unspecific". For specific bracing of this patient group we use simple physical tests to predict the brace type the patient is most likely to benefit from. Based on these physical tests we have developed a simple functional classification of "unspecific" low back pain in patients with spinal deformities. Between January 2006 and July 2007 we have tested 130 patients (116 females and 14 males) with spinal deformities (average age 45 years, ranging from 14 years to 69) and chronic unspecific low back pain (pain for > 24 months) along with the indication for brace treatment for chronic unspecific low back pain. Some of the patients had symptoms of spinal claudication (n = 16). The "sagittal realignment test" (SRT) was applied, a lumbar hyperextension test, and the "sagittal delordosation test" (SDT). Additionally 3 female patients with spondylolisthesis were tested, including one female with symptoms of spinal claudication and 2 of these patients were 14 years of age and the other 43yrs old at the time of testing. 117 Patients reported significant pain release in the SRT and 13 in the SDT (> or = 2 steps in the Roland & Morris VRS). 3 Patients had no significant pain release in both of the tests (< 2 steps in the Roland & Morris VRS).Pain intensity was high (3,29) before performing the physical tests (VRS-scale 0-5) and low (1,37) while performing the physical test for the whole sample of patients. The differences where highly significant in the Wilcoxon test (z = -3,79; p < 0,0001).In the 16 patients who did not respond to the SRT in the manual investigation we found hypermobility at L5/S1 or a spondylolisthesis at level L5/S1. In the other patients who responded well to the SRT loss of lumbar lordosis was the main issue, a finding which, according to scientific literature, correlates well with low back pain. The 3 patients who did not respond to either test had a fair pain reduction in a generally delordosing brace with an isolated small foam pad inserted at the level of L 2/3, leading to a lordosation at this region. With the exception of 3 patients (2.3%) a clear distribution to one of the two classes has been possible. 117 patients were supplied successfully with a sagittal realignment test-brace (physio-logic brace) and 13 with a sagittal delordosing brace (spondylogic brace). There were patients with scoliosies and hyperkyphosiesbrace). Therefore a clear distribution of the patients from this sample to either chronic postural or chronic instability back pain was possible. In 2.3% a combined chronic low back pain from the findings obtained seems reasonable. Chronic unspecific low back pain is possible to clearly be classified physically. This functional classification is necessary to decide on which specific conservative approach (physical therapy, braces) should be used.Other factors than spinal deformities contribute to chronic low back pain.
Pelvic Evaluation in Thoracolumbar Corrective Spine Surgery: How I Do It.
Murtagh, Ryan D; Quencer, Robert M; Uribe, Juan
2016-03-01
Surgeons and radiologists have traditionally focused on frontal radiographs and the measurement of scoliosis curves as important tools in the management of spinal deformity. It has become evident, however, that the management of spinal deformity should use a multidimensional approach with an increased emphasis on standing lateral radiographs and the sagittal position of the spine. Furthermore, they have come to realize the critical role that the pelvis plays in the maintenance of posture. Failure to recognize pelvic compensation can lead to under-treatment and poor postoperative outcomes.
Reliability of the xipho-pubic angle in patients with sagittal imbalance of the spine.
Langella, Francesco; Villafañe, Jorge H; Ismael, Maryem; Buric, Josip; Piazzola, Andrea; Lamartina, Claudio; Berjano, Pedro
2018-04-01
Proximal junctional kyphosis (PJK) is a frequent complication that compromises the outcomes of spinal surgery, especially for adult deformity. To the date no single risk factor or cause has been identified that explains its occurrence. The purpose of this study was to investigate the test-retest reliability of the radiologic measurements using xipho-pubic angle (XPA) for subjects undergoing surgery for sagittal misalignment of the spine. Retrospective observational cross-sectional study of prospectively collected data. Full-spine standing lateral radiographs of 50 patients who underwent surgery for fixed sagittal imbalance (preoperative and postoperative) were evaluated. Internal consistency, reproducibility, concurrent validity, and discriminative ability of the XPA. Two physicians measured XPA on the 100 randomly sorted and anonymized radiographs on two occasions, one week apart (test and retest conditions), were calculated for inter and intraobserver agreement. Test-retest reliability of XPA measurement was excellent for pre- (ICC=0.98; P=0.001) and post-surgical (ICC=0.86; P=0.001) radiographs of subjects with sagittal imbalance of the spine. XPA was able to discriminate between preoperative and postoperative radiographs F=17.924, P<0.001) in patients undergoing surgery for fixed sagittal imbalance for both raters. There were significant differences between pre- vs. postoperative XPA, pelvic tilt, lumbar lordosis and sagittal vertical axis values (all P<0.001). Xipho-pubic angle had fair to excellent test-retest reliability, and it did possess validity to discriminate between preoperative and postoperative radiographs in patients undergoing surgery for fixed sagittal imbalance.
Effect of Cervical Sagittal Balance on Laminoplasty in Patients With Cervical Myelopathy
Namikawa, Takashi; Matsumura, Akira; Konishi, Sadahiko; Nakamura, Hiroaki
2017-01-01
Study Design: Retrospective clinical study. Objective: We evaluated the relationship between cervical sagittal alignment parameters and clinical status in patients with cervical myelopathy and analyzed the effect of cervical sagittal balance on cervical laminoplasty. Methods: Patients with cervical myelopathy (n = 110) who underwent laminoplasty were included in this study. The relationship between cervical sagittal alignment parameters and clinical status was evaluated. The changes in radiographic cervical sagittal parameters and clinical status 2 years after surgery were compared between patients with preoperative C2-7 SVA ≥35 mm (group A) and those with preoperative C2-7 SVA <35 mm (group B). Results: Preoperatively, C2-7 SVA had no correlation with defined health-related quality of life evaluation scores. At 2-year follow-up, the improvement in SF-36 physical component summary was significantly lower in group A than in group B. The postoperative change of C2-7 SVA did not significantly differ in 2 groups. Patients in group A maintained cervical regional balance after laminoplasty but experienced extensive postoperative neck pain. Conclusions: Our patients with a C2-7 SVA of ≥35 mm maintained cervical regional balance after laminoplasty and their improvement in myelopathy was equivalent to that in patients with a C2-7 SVA of <35 mm. However, the patents with a C2-7 SVA of ≥35 mm experienced severe postoperative neck pain. C2-7 SVA is a parameter worth considering because it can lead to poor QOL and axial neck pain after laminoplasty. PMID:28507885
Qian, Bang-ping; Jiang, Jun; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Ze-zhang
2013-12-15
A retrospective radiographical study. To identify the radiographical predictors for sagittal imbalance in patients with thoracolumbar kyphosis secondary to ankylosing spondylitis (AS) after 1-level lumbar pedicle subtraction osteotomy (PSO). Few studies had correlated the preoperative sagittal parameters with postoperative sagittal alignments to determine the radiographical predictors for postoperative sagittal imbalance in patients with AS after 1-level lumbar PSO. Thirty-six patients with thoracolumbar kyphosis secondary to AS who underwent 1-level lumbar PSO were recruited with a minimal follow-up of 24 months (mean = 27.4 mo; range, 24-53 mo). Correlation analysis and subsequent stepwise multiple regression analysis were used to evaluate the correlations between preoperative parameters, including global kyphosis, local kyphosis, thoracic kyphosis, thoracolumbar Cobb angle, lumbar lordosis, pelvic incidence (PI), pelvic tilt, sacral slope, and sagittal vertical axis (SVA), as well as SVA at the last follow-up. All these patients were further divided into 2 groups according to the PI value (group A: PI >50°; group B: PI ≤50°). The correction outcomes were compared between these 2 groups. The preoperative SVA was not significantly different between group A and group B (157.6 mm vs. 124.5 mm; P> 0.05), and both groups had similar magnitudes of kyphosis corrections at the last follow-up (global kyphosis: 42.9° vs. 46.1°; local kyphosis: 42.7° vs. 40.5°; lumbar lordosis: 35.7° vs. 43.0°). However, group A patients had significantly larger SVA at the last follow-up (73.2 mm vs. 28.7 mm; P< 0.05) and a higher incidence of postoperative sagittal imbalance (77.8% vs. 25.9%; P< 0.05) than those in group B. The stepwise multiple regression analysis demonstrated that both preoperative SVA and PI were significant independent predictors of postoperative sagittal alignments, which explained 52.0% and 9.7% of the variability of SVA at the last follow-up, respectively. Patients with AS with either larger preoperative SVA or larger PI are more likely to experience failed sagittal realignments after 1-level lumbar PSO. For these patients, additional osteotomies may be recommended for satisfactory correction outcomes. 4.
Validity of a smartphone protractor to measure sagittal parameters in adult spinal deformity.
Kunkle, William Aaron; Madden, Michael; Potts, Shannon; Fogelson, Jeremy; Hershman, Stuart
2017-10-01
Smartphones have become an integral tool in the daily life of health-care professionals (Franko 2011). Their ease of use and wide availability often make smartphones the first tool surgeons use to perform measurements. This technique has been validated for certain orthopedic pathologies (Shaw 2012; Quek 2014; Milanese 2014; Milani 2014), but never to assess sagittal parameters in adult spinal deformity (ASD). This study was designed to assess the validity, reproducibility, precision, and efficiency of using a smartphone protractor application to measure sagittal parameters commonly measured in ASD assessment and surgical planning. This study aimed to (1) determine the validity of smartphone protractor applications, (2) determine the intra- and interobserver reliability of smartphone protractor applications when used to measure sagittal parameters in ASD, (3) determine the efficiency of using a smartphone protractor application to measure sagittal parameters, and (4) elucidate whether a physician's level of experience impacts the reliability or validity of using a smartphone protractor application to measure sagittal parameters in ASD. An experimental validation study was carried out. Thirty standard 36″ standing lateral radiographs were examined. Three separate measurements were performed using a marker and protractor; then at a separate time point, three separate measurements were performed using a smartphone protractor application for all 30 radiographs. The first 10 radiographs were then re-measured two more times, for a total of three measurements from both the smartphone protractor and marker and protractor. The parameters included lumbar lordosis, pelvic incidence, and pelvic tilt. Three raters performed all measurements-a junior level orthopedic resident, a senior level orthopedic resident, and a fellowship-trained spinal deformity surgeon. All data, including the time to perform the measurements, were recorded, and statistical analysis was performed to determine intra- and interobserver reliability, as well as accuracy, efficiency, and precision. Statistical analysis using the intra- and interclass correlation coefficient was calculated using R (version 3.3.2, 2016) to determine the degree of intra- and interobserver reliability. High rates of intra- and interobserver reliability were observed between the junior resident, senior resident, and attending surgeon when using the smartphone protractor application as demonstrated by high inter- and intra-class correlation coefficients greater than 0.909 and 0.874 respectively. High rates of inter- and intraobserver reliability were also seen between the junior resident, senior resident, and attending surgeon when a marker and protractor were used as demonstrated by high inter- and intra-class correlation coefficients greater than 0.909 and 0.807 respectively. The lumbar lordosis, pelvic incidence, and pelvic tilt values were accurately measured by all three raters, with excellent inter- and intra-class correlation coefficient values. When the first 10 radiographs were re-measured at different time points, a high degree of precision was noted. Measurements performed using the smartphone application were consistently faster than using a marker and protractor-this difference reached statistical significance of p<.05. Adult spinal deformity radiographic parameters can be measured accurately, precisely, reliably, and more efficiently using a smartphone protractor application than with a standard protractor and wax pencil. A high degree of intra- and interobserver reliability was seen between the residents and attending surgeon, indicating measurements made with a smartphone protractor are unaffected by an observer's level of experience. As a result, smartphone protractors may be used when planning ASD surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Kobayashi, Toshiki; Orendurff, Michael S; Arabian, Adam K; Rosenbaum-Chou, Teri G; Boone, David A
2014-04-11
The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment-time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kobayashi, Toshiki; Arabian, Adam K; Orendurff, Michael S; Rosenbaum-Chou, Teri G; Boone, David A
2014-01-01
Energy storage and return feet are designed for active amputees. However, little is known about the socket reaction moments in transtibial prostheses with energy storage and return feet. The aim of this study was to investigate the effect of alignment changes on the socket reaction moments during gait while using the energy storage and return feet. A Smart Pyramid™ was used to measure the socket reaction moments in 10 subjects with transtibial prostheses while walking under 25 alignment conditions, including a nominal alignment (as defined by conventional clinical methods), as well as angle malalignments of 2°, 4° and 6° (flexion, extension, abduction, and adduction) and translation malalignments of 5mm, 10mm and 15mm (anterior, posterior, lateral, and medial) referenced from the nominal alignment. The socket reaction moments of the nominal alignment were compared with each malalignment. Both coronal and sagittal alignment changes demonstrated systematic effects on the socket reaction moments. In the sagittal plane, angle and translation alignment changes demonstrated significant differences (P<0.05) in the minimum moment, the moment at 45% of stance and the maximum moment for some comparisons. In the coronal plane, angle and translation alignment changes demonstrated significant differences (P<0.05) in the moment at 30% and 75% of stance for all comparisons. The alignment may have systematic effects on the socket reaction moments in transtibial prostheses with energy storage and return feet. The socket reaction moments could potentially be a useful biomechanical parameter to evaluate the alignment of the transtibial prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pappou, Ioannis P; Papadopoulos, Elias C; Swanson, Andrew N; Mermer, Matthew J; Fantini, Gary A; Urban, Michael K; Russell, Linda; Cammisa, Frank P; Girardi, Federico P
2006-02-15
Case report. To report on a patient with Pott disease, progressive neurologic deficit, and severe kyphotic deformity, who had medical treatment fail and required posterior/anterior decompression with instrumented fusion. Treatment options will be discussed. Tuberculous spondylitis is an increasingly common disease worldwide, with an estimated prevalence of 800,000 cases. Surgical treatment consisting of extensive posterior decompression/instrumented fusion and 3-level posterior vertebral column resection, followed by anterior debridement/fusion with cage reconstruction. Neurologic improvement at 6-month follow-up (Frankel B to Frankel D), with evidence of radiographic fusion. A 70-year-old patient with progressive Pott paraplegia and severe kyphotic deformity, for whom medical treatment failed is presented. A posterior vertebral column resection, multiple level posterior decompression, and instrumented fusion, followed by an anterior interbody fusion with cage was used to decompress the spinal cord, restore sagittal alignment, and debride the infection. At 6-month follow-up, the patient obtained excellent pain relief, correction of deformity, elimination of the tuberculous foci, and significant recovery of neurologic function.
The effect of trunk flexion on lower-limb kinetics of able-bodied gait.
Kluger, David; Major, Matthew J; Fatone, Stefania; Gard, Steven A
2014-02-01
Able-bodied individuals spontaneously adopt crouch gait when walking with induced anterior trunk flexion, but the effect of this adaptation on lower-limb kinetics is unknown. Sustained forward trunk displacement during walking can greatly alter body center-of-mass location and necessitate a motor control response to maintain upright balance. Understanding this response may provide insight into the biomechanical demands on the lower-limb joints of spinal pathology that alter trunk alignment (e.g., flatback). The purpose of this study was to determine the effect of sustained trunk flexion on lower-limb kinetics in able-bodied gait, facilitating understanding of the effects of spinal pathologies. Subjects walked with three postures: 0° (normal upright), 25±7°, and 50±7° trunk flexion. With increased trunk flexion, decreased peak ankle plantar flexor moments were observed with increased energy absorption during stance. Sustained knee flexion during mid- and terminal stance decreased knee flexor moments, but energy absorption/generation remained unchanged across postures. Increased trunk flexion placed significant demand on the hip extensors, thus increasing peak hip extensor moments and energy generation. The direct relationship between trunk flexion and energy absorption/generation at the ankle and hip, respectively, suggest increased muscular demand during gait. These findings on able-bodied subjects might shed light on muscular demands associated with individuals having pathology-induced positive sagittal spine balance. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Jae Hyuk; Suh, Seung Woo; Cho, Won Tae; Hwang, Jin Ho; Hong, Jae Young; Modi, Hitesh N
2014-10-15
Prospective case series study. To study the effect of posterior multilevel vertebral osteotomy (posterior crack osteotomy) on coronal and sagittal balance in patients with the fusion mass over the spine caused by previous surgery. Few studies have investigated revisional scoliosis surgery with the fusion mass using osteotomy. Among patients who had a history of prior surgery for scoliosis correction and posterior fusion, those showing progression of the curve postoperatively due to nonunion, implant failure, or adding-on phenomenon were enrolled. All patients were treated using posterior crack osteotomy. For clinical evaluation, the pre- and postoperative Gross Motor Function Classification System score for walking status and the Berg balanced scale were used. For radiological evaluation, pre- and postoperative Cobb angle, and coronal and sagittal balance factors were used. Ten patients (5 males and 5 females) were enrolled. The preoperative diagnosis was neuromuscular scoliosis (3 cases), syndromic scoliosis (1 case), congenital scoliosis (5 cases), and neurofibromatosis (1 case). Osteotomies were performed at 3.3±1.3 levels on average. Pre- and postoperative Cobb angles were 70.8°±30.0° and 28.1°±20.0° (P=0.002 (0.97)), respectively. In pre- and postoperative evaluation of coronal balance, the coronal balance, clavicle angle, and T1-tilt angle were 36.8±27.1 mm and 10.4±8.5 mm, 6.7°±8.0° and 3.3°±1.5°, and 7.8°±19.0° and 4.7°±2.1°, respectively (P=0.002, 0.002, 0.002). In pre- and postoperative evaluation of sagittal balance, the spinal vertical axis, thoracic kyphosis, and lumbar alignments were 25.1±37.8 mm and 14.1±21.8 mm, 33.5°±51.1° and 29.7°±27.4°, and 45.7°±34.8° and 48.9°±23.1° (P=0.002, 0.169, 0.169). The walking and functional statuses did not change (P=0.317, 0.932). Although pulmonary and gastrointestinal complications were noted, the patients were discharged without complications. Posterior crack osteotomy can be used effectively in revisional scoliosis surgery and the clinical and radiological results seem to be acceptable. 4.
Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong
2015-02-01
Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Barczyk-Pawelec, Katarzyna; Sipko, Tomasz; Demczuk-Włodarczyk, Ewa; Boczar, Agata
2012-05-01
Playing an instrument often requires a certain posture and asymmetric position that may affect the anteroposterior spinal curvatures and may lead to postural asymmetry. The aim of the study was to evaluate the spinal curvatures in the sagittal plane and the magnitude of asymmetries in the trunk in the frontal plane in a group of music students in comparison with a control group. The group of 67 students aged 20 to 26 years was made up of 2 subgroups: the musicians (violin playing students of the Academy of Music in Wroclaw) and the control group (physical therapy students who played no instruments). The examination included an interview, measuring of somatic characteristics, and evaluation of body posture by means of the photogrammetric method. The spinal curvatures of the instrumentalists in the sagittal plane differ from the control group mainly in terms of length and depth parameters. Compared with the control group, the musicians were characterized by statistically more significantly longer and deeper thoracic kyphosis (P < .01) and more shallow lumbar lordosis (P < .05), a greater angle of thoracic kyphosis (P < .005), and a smaller inclination angle of the thoracolumbar and lumbosacral section of the spine (P < .01). In the group of musicians, the asymmetries in the area of shoulders and waist triangles as well as the distance of the spinous processes from the C7 to S1 line were more frequent. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Hey, Hwee Weng Dennis; Tan, Kimberly-Anne; Ho, Vivienne Chien-Lin; Azhar, Syifa Bte; Lim, Joel-Louis; Liu, Gabriel Ka-Po; Wong, Hee-Kit
2018-06-01
As sagittal alignment of the cervical spine is important for maintaining horizontal gaze, it is important to determine the former for surgical correction. However, horizontal gaze remains poorly-defined from a radiological point of view. The objective of this study was to establish radiological criteria to define horizontal gaze. This study was conducted at a tertiary health-care institution over a 1-month period. A prospective cohort of healthy patients was used to determine the best radiological criteria for defining horizontal gaze. A retrospective cohort of patients without rigid spinal deformities was used to audit the incidence of horizontal gaze. Two categories of radiological parameters for determining horizontal gaze were tested: (1) the vertical offset distances of key identifiable structures from the horizontal gaze axis and (2) imaginary lines convergent with the horizontal gaze axis. Sixty-seven healthy subjects underwent whole-body EOS radiographs taken in a directed standing posture. Horizontal gaze was radiologically defined using each parameter, as represented by their means, 95% confidence intervals (CIs), and associated 2 standard deviations (SDs). Subsequently, applying the radiological criteria, we conducted a retrospective audit of such radiographs (before the implementation of a strict radioimaging standardization). The mean age of our prospective cohort was 46.8 years, whereas that of our retrospective cohort was 37.2 years. Gender was evenly distributed across both cohorts. The four parameters with the lowest 95% CI and 2 SD were the distance offsets of the midpoint of the hard palate (A) and the base of the sella turcica (B), the horizontal convergents formed by the tangential line to the hard palate (C), and the line joining the center of the orbital orifice with the internal occipital protuberance (D). In the prospective cohort, good sensitivity (>98%) was attained when two or more parameters were used. Audit using Criterion B+D yielded compliance rates of 76.7%, a figure much closer to that of A+B+C+D (74.8%). From a practical viewpoint, Criterion B+D were most suitable for clinical use and could be simplified to the "3-6-12 rule" as a form of cursory assessment. Verbal instructions in the absence of stringent postural checks only ensured that ~75% of subjects achieved horizontal gaze. Fulfillment of Criterion B+D is sufficient to evaluate for horizontal gaze. Further criteria can be added to increase sensitivity. Verbal instructions alone yield high rates of inaccuracy when attempting to image patients in horizontal gaze. Apart from improving methods for obtaining radiographs, a radiological definition of horizontal gaze should be routinely applied for better evaluation of sagittal spinal alignment. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sankarasubramanian, V.; Buitenweg, J. R.; Holsheimer, J.; Veltink, P.
2011-02-01
The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (IDC) and dorsal root fiber thresholds (IDR) at various anodal current ratios. IDC and IDR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.
Iida, Takahiro; Suzuki, Nobumasa; Kono, Katsuki; Ohyama, Yasumasa; Imura, Jyunya; Ato, Akihisa; Ozeki, Satoru; Nohara, Yutaka
2015-08-15
A retrospective minimum 20-year follow-up study using 4 standard self-administered questionnaires, one of which, the SRS-22 was also administered to control groups. To evaluate long-term postoperative pain and other clinical outcomes of scoliosis correction and fusion surgery with Harrington instrumentation using Moe square-ended rods for better preservation of sagittal alignment. Only a few long-term outcome studies have used standardized and validated self-administered tools, and no studies have established SRS-22 control data within their own population. There is no previous minimum 20-year follow-up evaluation after correction surgery preserving thoracic kyphosis and lumbar lordosis. Of 86 consecutive patients who underwent instrumentation surgery for scoliosis by a single surgeon, 61 patients participated using Japanese Orthopaedic Association, Roland-Morris Disability Questionnaire, Oswestry Disability Index, and Scoliosis Research Society (SRS-22) questionnaires and 51 patients were included in this study. Results were analyzed for pain and other clinical outcomes. A total of 771 hospital employees were sent SRS-22 questionnaires. A total of 763 responded, resulting in 2 control groups composed of nonscoliosis and untreated mild scoliosis controls of the same culture and language as the long-term follow-up group. The prevalence of continuous low back pain was about 15%. Average Japanese Orthopaedic Association, Oswestry Disability Index, and Roland-Morris Disability Questionnaire scores at follow-up were 25 points, 7.3%, and 1.6, respectively. The average SRS-22 scores were 4.2 (function), 4.3 (pain), 3.7 (self-image), and 3.9 (mental health) for the postoperative follow-up group compared with 4.5 (function), 4.3 (pain), 3.5 (self-image), and 3.5 (mental health) for the nonscoliosis controls. Improved preservation of normal sagittal alignment resulted in a prevalence of low back pain comparable with the age-matched general population. Moreover, SRS-22 results for self-image and mental health were positive compared with the controls, possibly reflecting the surgeon's emphases on mental health and management of patient expectations. 4.
Le Huec, J C; Cogniet, A; Demezon, H; Rigal, J; Saddiki, R; Aunoble, S
2015-01-01
Pedicle subtraction osteotomies (PSO) enable correction of spinal deformities but remain difficult and are associated with high complication rates. This study aimed to prospectively review different post-operative complications and mechanical problems in patients who underwent PSO as treatment for sagittal imbalance as sequelae of degenerative disc disease or previous spinal fusion. This was a descriptive prospective single center study of 63 patients who underwent sagittal imbalance correction by PSO. Radiographic analysis of pre- and post-operative pelvic and spinal parameters was completed based on EOS images following 3D modeling. Global and sub-group analyses were completed based on the Roussouly classification. A systematic analysis of post-operative complications was conducted during hospital stay and at follow-up visits. Complications included 15 cases (20.2%) of bilateral leg pain, with transient neurological deficit in 6 cases (9.5%), and 9 cases (12.5%) of early surgical site infections. Intra-operative complications included five tears of the dura mater and two cases of excessive blood loss (>5,000 mL). Two mortalities occurred from major intracerebral bleeds in the early post-operative period. Mechanical complications were principally non-union (9 cases) and junctional kyphosis (3 cases). All 19 post-operative complications (28.1%) were revised at an average of 2 years following surgery. All mechanical complications were found in the patients who had insufficient imbalance correction and this was mainly associated with high PI (>60°) or a moderate PI (45-60º) combined with excess FBI pre-operatively that remained >10° post-operatively. Infection and neurologic complications following PSO are relatively common, and frequently reported in the literature. The principal cause of mechanical complications, such as non-union or junctional kyphosis, was insufficient sagittal correction, characterized by post-operative FBI >10°. The risks of insufficient correction are greater in patients with higher pelvic incidence and those patients who required very high correction.
Effect of torso flexion on the lumbar torso extensor muscle sagittal plane moment arms.
Jorgensen, Michael J; Marras, William S; Gupta, Purnendu; Waters, Thomas R
2003-01-01
Accurate anatomical inputs for biomechanical models are necessary for valid estimates of internal loading. The magnitude of the moment arm of the lumbar erector muscle group is known to vary as a function of such variables as gender. Anatomical evidence indicates that the moment arms decrease during torso flexion. However, moment arm estimates in biomechanical models that account for individual variability have been derived from imaging studies from supine postures. Quantify the sagittal plane moment arms of the lumbar erector muscle group as a function of torso flexion, and identify individual characteristics that are associated with the magnitude of the moment arms as a function of torso flexion. Utilization of a 0.3 Tesla Open magnetic resonance image (MRI) to image and quantify the moment arm of the right erector muscle group as a function of gender and torso flexion. Axial MRI images through and parallel to each of the lumbar intervertebral discs at four torso flexion angles were obtained from 12 male and 12 female subjects in a lateral recumbent posture. Multivariate analysis of variance was used to investigate the differences in the moment arms at different torso flexion angles, whereas hierarchical linear regression was used to investigate associations with individual anthropometric characteristics and spinal posture. The largest decrease in the lumbar erector muscle group moment arm from neutral to 45-degree flexion occurred at the L5-S1 level (9.7% and 8.9% for men and women, respectively). Measures of spinal curvature (L1-S1 lordosis), body mass and trunk characteristics (depth or circumference) were associated with the varying moment arm at most lumbar levels. The sagittal plane moment arms of the lumbar erector muscle mass decrease as the torso flexes forward. The change in moment arms as a function of torso flexion may have an impact on prediction of spinal loading in biomechanical models.
Simon, J; Longis, P-M; Passuti, N
2017-04-01
Adult scoliosis is a condition in which the spinal deformity occurs because of degeneration. Although various studies have agreed on the importance of restoring the sagittal balance, few have evaluated the relationship between functional scores and radiological parameters. The primary objective of this retrospective study was to demonstrate the correlation between radiographic parameters and functional outcomes in adult patients with lumbar or thoracolumbar degenerative scoliosis. The secondary objective was to assess the long-term effects of posterolateral fusion for treating this deformity. This single-centre retrospective study included 47 patients over 50years of age who had degenerative lumbar scoliosis treated with an instrumented posterolateral fusion; the mean follow-up was 6.4years (range 2 to 20). Radiographic analysis of A/P and lateral full spine standing radiographs was carried out with the KEOPS software. Three pelvic parameters (pelvic tilt, pelvic incidence, sacral slope), two spinal parameters (lumbar lordosis and thoracic kyphosis) and three sagittal balance parameters (C7 sagittal tilt, C7 Barrey's ratio and spinosacral angle) were calculated. The functional outcomes were evaluated through three self-assessment questionnaires: Oswestry Disability Index, SRS-30 and SF-36. The correlation between clinical and radiographic parameters was calculated with Spearman's correlation test. There was a significant correlation between the SF-36 (PCS) and the following three sagittal parameters: sacral slope (r=-0.31453; P=0.04), lumbar lordosis (r=-0.30198; P=0.0491) and spinosacral angle (r=-0.311967; P=0.0366). The mean ODI score was 33.61, which corresponds to minimal to moderate disability. The mean physical (PCS) and mental (MCS) component summary scores of the SF-36 were 37.70 and 38.40, respectively. The mean SRS-30 score was 3.07. It is essential that the sagittal balance be restored when treating degenerative lumbar scoliosis to generate better functional outcomes and better quality of life. To achieve this correction, instrumented posterolateral fusion appears to be a very reliable technique that leads to lasting improvement. IV. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Proximal junctional kyphosis following adult spinal deformity surgery.
Cho, Samuel K; Shin, John I; Kim, Yongjung J
2014-12-01
Proximal junctional kyphosis (PJK) is a common radiographic finding following long spinal fusions. Whether PJK leads to negative clinical outcome is currently debatable. A systematic review was performed to assess the prevalence, risk factors, and treatments of PJK. Literature search was conducted on PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials using the terms 'proximal junctional kyphosis' and 'proximal junctional failure'. Excluding reviews, commentaries, and case reports, we analyzed 33 studies that reported the prevalence rate, risk factors, and discussions on PJK following spinal deformity surgery. The prevalence rates varied widely from 6 to 61.7%. Numerous studies reported that clinical outcomes for patients with PJK were not significantly different from those without, except in one recent study in which adult patients with PJK experienced more pain. Risk factors for PJK included age at operation, low bone mineral density, shorter fusion constructs, upper instrumented vertebrae below L2, and inadequate restoration of global sagittal balance. Prevalence of PJK following long spinal fusion for adult spinal deformity was high but not clinically significant. Careful and detailed preoperative planning and surgical execution may reduce PJK in adult spinal deformity patients.
Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Wong, Gordon Chengyuan; Tan, Kimberly-Anne; Liu, Gabriel Ka-Po; Wong, Hee-Kit
2017-11-01
Comparative study of prospectively collected radiographic data. To predict physiological alignment of the cervical spine and study its morphology in different postures. There is increasing evidence that normal cervical spinal alignment may vary from lordosis to neutral to kyphosis, or form S-shaped or reverse S-shaped curves. Standing, erect sitting, and natural sitting whole-spine radiographs were obtained from 26 consecutive patients without cervical spine pathology. Sagittal vertical axis (SVA), global cervical lordosis, lower cervical alignment C4-T1, C0-C2 angle, T1 slope, C0-C7 SVA and C2-7SVA, SVA, thoracic kyphosis, thoracolumbar junctional angle, lumbar lordosis, sacral slope, pelvic tilt, and pelvic incidence were measured. Statistical analysis was performed to elucidate differences in cervical alignment for all postures. Predictive values of T1 slope and SVA for cervical kyphosis were evaluated. Most patients (73.0%) do not have lordotic cervical alignment (C2-C7) upon standing (mean -0.6, standard deviation 11.1°). Lordosis increases significantly when transitioning from standing to erect sitting, as well as from erect to natural sitting (mean -17.2, standard deviation 12.1°). Transition from standing to natural sitting also produces concomitant increases in SVA (-8.8-65.2 mm) and T1-slope (17.4°-30.2°). T1 slope and SVA measured during standing significantly predicts angular cervical spine alignment in the same position. SVA < 10 mm significantly predicts C4-C7 kyphosis (P < 0.001), and to a lesser extent, C2-C7 kyphosis (P = 0.02). T1 slope <20° is both predictive of C2-C7 and C4-7 kyphosis (P = 0.001 and P = 0.023, respectively). For global cervical Cobb angle, T1 slope seems to be a more significant predictor of kyphosis than SVA (odds ratio 17.33, P = 0.001 vs odds ratio 11.67, P = 0.02, respectively). The cervical spine has variable normal morphology. Key determinants of its alignment include SVA and T1 slope. Lordotic correction of the cervical spine is not always physiological and thus correction targets should be individualized. 3.
Talbott, Jason F; Whetstone, William D; Readdy, William J; Ferguson, Adam R; Bresnahan, Jacqueline C; Saigal, Rajiv; Hawryluk, Gregory W J; Beattie, Michael S; Mabray, Marc C; Pan, Jonathan Z; Manley, Geoffrey T; Dhall, Sanjay S
2015-10-01
Previous studies that have evaluated the prognostic value of abnormal changes in signals on T2-weighted MRI scans of an injured spinal cord have focused on the longitudinal extent of this signal abnormality in the sagittal plane. Although the transverse extent of injury and the degree of spared spinal cord white matter have been shown to be important for predicting outcomes in preclinical animal models of spinal cord injury (SCI), surprisingly little is known about the prognostic value of altered T2 relaxivity in humans in the axial plane. The authors undertook a retrospective chart review of 60 patients who met the inclusion criteria of this study and presented to the authors' Level I trauma center with an acute blunt traumatic cervical SCI. Within 48 hours of admission, all patients underwent MRI examination, which included axial and sagittal T2 images. Neurological symptoms, evaluated with the grades according to the American Spinal Injury Association (ASIA) Impairment Scale (AIS), at the time of admission and at hospital discharge were correlated with MRI findings. Five distinct patterns of intramedullary spinal cord T2 signal abnormality were defined in the axial plane at the injury epicenter. These patterns were assigned ordinal values ranging from 0 to 4, referred to as the Brain and Spinal Injury Center (BASIC) scores, which encompassed the spectrum of SCI severity. The BASIC score strongly correlated with neurological symptoms at the time of both hospital admission and discharge. It also distinguished patients initially presenting with complete injury who improved by at least one AIS grade by the time of discharge from those whose injury did not improve. The authors' proposed score was rapid to apply and showed excellent interrater reliability. The authors describe a novel 5-point ordinal MRI score for classifying acute SCIs on the basis of axial T2-weighted imaging. The proposed BASIC score stratifies the SCIs according to the extent of transverse T2 signal abnormality during the acute phase of the injury. The new score improves on current MRI-based prognostic descriptions for SCI by reflecting functionally and anatomically significant patterns of intramedullary T2 signal abnormality in the axial plane.
Sagittal lumbar and pelvic alignment in the standing and sitting positions.
Endo, Kenji; Suzuki, Hidekazu; Nishimura, Hirosuke; Tanaka, Hidetoshi; Shishido, Takaaki; Yamamoto, Kengo
2012-11-01
The sitting position has become the most common posture in today's workplace. In relation to this position, kinematic analysis of the lumbar spine is helpful in understanding the causes of low back pain and its prevention. In this study, we investigated the relationship between sagittal lumbar alignment and pelvic alignment in the standing and sitting positions for 50 healthy adults. Lumbar lordotic angle (LLA), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI) were measured on lateral lumbar spine standing and sitting radiographs. Regarding changes from the standing to sitting positions, average LLA, SS, and PT were -16.6° (-49.8 %), -18.7° (-50.3 %), and 18.3° (284.8 %), respectively (P < 0.01). In the sitting position, lumbar lordosis was reduced and pelvic rotation became posterior. This study showed that LLA decreased by approximately 50 % and PT increased by approximately 25 % in the sitting position compared with the standing position. No significant gender differences were observed for LLA, SS, and PT in the standing position. In the sitting position, however, LLA and SS were markedly larger for women.
Awwad, Waleed; Bourget-Murray, Jonathan; Zeiadin, Nadil; Mejia, Juan P; Steffen, Thomas; Algarni, Abdulrahman D; Alsaleh, Khalid; Ouellet, Jean; Weber, Michael; Jarzem, Peter F
2017-01-01
This study aims to improve the understanding of the anatomic variations along the thoracic and lumbar spine encountered during an all-posterior vertebrectomy, and reconstruction procedure. This information will help improve our understanding of human spine anatomy and will allow better planning for a vertebral body replacement (VBR) through either a transpedicular or costotransversectomy approach. The major challenge to a total posterior approach vertebrectomy and VBR in the thoracolumbar spine lies in the preservation of important neural structures. This was a retrospective analysis. Hundred normal magnetic resonance imaging (MRI) spinal studies (T1-L5) on sagittal T2-weighted MRI images were studied to quantify: (1) mid-sagittal vertebral body (VB) dimensions (anterior, midline, and posterior VB height), (2) midline VB and associated intervertebral discs height, (3) mean distance between adjacent spinal nerve roots (DNN) and mean distance between the inferior endplate of the superior vertebrae to its respective spinal nerve root (DNE), and (4) posterior approach expansion ratio (PAER). (1) The mean anterior VB height gradually increased craniocaudally from T1 to L5. The mean midline and posterior VB height showed a similar pattern up to L2. Mean posterior VB height was larger than the mean anterior VB height from T1 to L2, consistent with anterior wedging, and then measured less than the mean anterior VB height, indicating posterior wedging. (2) Midline VB and intervertebral disc height gradually increased from T1 to L4. (3) DNN and DNE were similar, whereby they gradually increased from T1 to L3. (5) Mean PAER varied between 1.69 (T12) and 2.27 (L5) depending on anatomic level. The dimensions of the thoracic and lumbar vertebrae and discs vary greatly. Thus, any attempt at carrying out a VBR from a posterior approach should take into account the specifications at each spinal level.
Sembrano, Jonathan N; Horazdovsky, Ryan D; Sharma, Amit K; Yson, Sharon C; Santos, Edward R G; Polly, David W
2017-05-01
A retrospective comparative radiographic review. To evaluate the radiographic changes brought about by lordotic and nonlordotic cages on segmental and regional lumbar sagittal alignment and disk height in lateral lumbar interbody fusion (LLIF). The effects of cage design on operative level segmental lordosis in posterior interbody fusion procedures have been reported. However, there are no studies comparing the effect of sagittal implant geometry in LLIF. This is a comparative radiographic analysis of consecutive LLIF procedures performed with use of lordotic and nonlordotic interbody cages. Forty patients (61 levels) underwent LLIF. Average age was 57 years (range, 30-83 y). Ten-degree lordotic PEEK cages were used at 31 lumbar interbody levels, and nonlordotic cages were used at 30 levels. The following parameters were measured on preoperative and postoperative radiographs: segmental lordosis; anterior and posterior disk heights at operative level; segmental lordosis at supra-level and subjacent level; and overall lumbar (L1-S1) lordosis. Measurement changes for each cage group were compared using paired t test analysis. The use of lordotic cages in LLIF resulted in a significant increase in lordosis at operative levels (2.8 degrees; P=0.01), whereas nonlordotic cages did not (0.6 degrees; P=0.71) when compared with preoperative segmental lordosis. Anterior and posterior disk heights were significantly increased in both groups (P<0.01). Neither cage group showed significant change in overall lumbar lordosis (lordotic P=0.86 vs. nonlordotic P=0.25). Lordotic cages provided significant increase in operative level segmental lordosis compared with nonlordotic cages although overall lumbar lordosis remained unchanged. Anterior and posterior disk heights were significantly increased by both cages, providing basis for indirect spinal decompression.
In-vivo spinal cord deformation in flexion
NASA Astrophysics Data System (ADS)
Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.
1997-05-01
Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.
Luo, Hong-Ji; Lin, Shi-Xiang; Wu, Shyi-Kuen; Tsai, Mei-Wun; Lee, Shwn-Jen
2017-01-01
Postural rehabilitation emphasizing on motor control training of segmental spinal movements has been proposed to effectively reduce the scoliotic spinal deformities in adolescent idiopathic scoliosis (AIS). However, information regarding the impairments of segmental spinal movement control involving segmental spinal stabilizers in adolescent idiopathic scoliosis remains limited. Examination of segmental spinal movement control may provide a window for investigating the features of impaired movement control specific to spinal segments that may assist in the development of physiotherapeutic management of AIS. To compare segmental spinal movement control in adolescents with and without idiopathic scoliosis using modified pressure biofeedback unit. Segmental spinal movement control was assessed in twenty adolescents with idiopathic scoliosis (AISG) and twenty healthy adolescents (CG) using a modified pressure biofeedback unit. Participants performed segmental spinal movements that primarily involved segmental spinal stabilizing muscles with graded and sustained muscle contraction against/off a pressure cuff from baseline to target pressures and then maintained for 1 min. Pressure data during the 1-minute maintenance phase were collected for further analysis. Pressure deviation were calculated and compared between groups. The AISG had significantly greater pressure deviations for all segmental spinal movements of cervical, thoracic, and lumbar spine than the CG. Pressure biofeedback unit was feasible for assessing segmental spinal movement control in AIS. AISG exhibited poorer ability to grade and sustain muscle activities for local movements of cervical, thoracic, and lumbar spine, suggesting motor control training of segmental spinal movements involving segmental spinal stabilizing muscles on frontal, sagittal, and transverse planes were required.
Tebet, Marcos Antonio
2014-01-01
Treatment of spondylolysis and spondylolisthesis remains a challenge for orthopaedic surgeons, neurosurgeons and paediatrics. In spondylolisthesis, it has been clearly demonstrated over the past decade that spino-pelvic morphology is abnormal and that it can be associated to an abnormal sacro-pelvic orientation as well as to a disturbed global sagittal balance of spine. This article presents the SDSG (Spinal Deformity Study Group) classification of lumbosacral spondylolisthesis. The proper treatment of spondylolisthesis is dependent on recognizing the type of slip, sacro-pelvic balance and overall sagittal balance and its natural history. Although a number of clinical radiographic features have been identified as risk factors, their role as primary causative factors or secondary adaptative changes is not clear. The conservative treatment of adult isthmic spondylolisthesis results in good outcome in the majority of cases. Of those patients who fail conservative treatment, success with surgery is quite good, with significant improvement in neurologic function in those patients with deficits, as well as improvement in patients with back pain. PMID:26229765
Chaise, Fabiana O; Candotti, Cláudia T; Torre, Marcelo L; Furlanetto, Tássia S; Pelinson, Patricia P T; Loss, Jefferson F
2011-01-01
The need for early identification of postural abnormalities without exposing patients to constant radiation has stimulated the development of instruments aiming to measure the spinal curvatures. To verify the validity, repeatability and reproducibility of angular measures of sagittal curvatures of the spine obtained using an adapted arcometer, by comparing them with Cobb angles of the respective curvatures obtained by using X-rays. 52 participants were submitted to two procedures designed to evaluate the thoracic and lumbar curvatures: (1) X-ray examination from which the Cobb angles (CA) of both curvatures were obtained, and (2) measuring the angles with the arcometer (AA). Two evaluators collected the data using the arcometer, with the rods placed at T1, T12, L1 and L5 spinous processes levels in a way as to permit linear measurements which, with aid of trigonometry, supplied the AA. There was a very strong and significant correlation between AA and CA (r=0.94; p<0.01), with no-significant difference (p=0.32), for the thoracic curvature. There was a strong and significant correlation for the lumbar curvature (r=0.71; p<0.01) between AA and CA, with no-significant difference (p=0.30). There is a very strong correlation between intra-evaluator and inter-evaluator AA. It was possible to quantify reliably the thoracic and lumbar curvatures with the arcometer and it can thus be considered valid and reliable and for use in evaluating spinal curvatures in the sagittal plane.
Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis.
Singh, Kern; Samartzis, Dino; Vaccaro, Alexander R; Nassr, Ahmad; Andersson, Gunnar B; Yoon, S Tim; Phillips, Frank M; Goldberg, Edward J; An, Howard S
2005-01-01
Degenerative lumbar spinal stenosis manifests primarily after the sixth decade of life as a result of facet hypertrophy and degenerative disc disease. Congenital stenosis, on the other hand, presents earlier in age with similar clinical findings but with multilevel involvement and fewer degenerative changes. These patients may have subtle anatomic variations of the lumbar spine that may increase the likelihood of thecal sac compression. However, to the authors' knowledge, no quantitative studies have addressed various radiographic parameters of symptomatic, congenitally stenotic individuals to normal subjects. To radiographically quantify and compare the anatomy of the lumbar spine in symptomatic, congenitally stenotic individuals to age- and sex-matched, asymptomatic, nonstenotic controlled individuals. A prospective, control-matched, cohort radiographic analysis. Axial and sagittal magnetic resonance imaging (MRI) and lateral, lumbar, plain radiographs of 20 surgically treated patients who were given a clinical diagnosis of congenital lumbar stenosis by the senior author were randomized with images of 20, asymptomatic age- and sex-matched subjects. MRIs and lateral, lumbar, plain radiographs were independently quantitatively assessed by two individuals. Measurements obtained from the axial MRIs included: midline anterior-posterior (AP) vertebral body diameter, vertebral body width, midline AP canal diameter, canal width, spinal canal cross-sectional area, pedicle length, and pedicle width. From the sagittal MRIs, the following measurements were calculated: AP vertebral body diameter, vertebral body height, and AP canal diameter at the mid-vertebral level. On the lateral, lumbar, plain radiograph (L3 level), the AP diameters of the vertebral body spinal canal were measured. The images of these 40 individuals were then randomized and distributed in a blinded fashion to five separate spine surgeons who graded the presence and severity of congenital stenosis utilizing a five-tier scale. Images consisting of 15 symptomatic individuals, graded definitely congenitally stenotic (mean age, 51.7 years; range, 43-65 years), and 15 asymptomatic individuals, graded definitely not stenotic (mean age, 50.7 years; range, 41-55 years), were age- and sex-matched and included for further review. From these 30 patients, a lateral, lumbar, plain radiograph and axial and sagittal MRIs (T1/T2 weighted) from L2-L5 were quantitatively analyzed. Rater reliability was assessed by Kappa coefficient testing. The cross-sectional area of the canal was significantly smaller in the congenitally stenotic patients at all lumbar levels measured (L2: 176 mm(2) vs. 259 mm(2), L3: 177 mm(2) vs. 275 mm(2), L4: 183 mm(2) vs. 283 mm(2), L5: 213 mm(2) vs. 323 mm(2), p<.05). Pedicle length was markedly shorter in the stenosis group at each lumbar level (L2: 5.9 mm vs. 8.9 mm, L3: 6.0 mm vs. 8.8 mm, L4: 6.5 mm vs. 9.2 mm, L5: 5.8 mm vs. 9.1 mm, p<.05). Furthermore, midline, axial AP canal diameter, vertebral body width, and sagittal AP canal diameter were all significantly smaller than the control patients (p<.05). A ratio of the AP diameter of the pedicle length to the vertebral body was also noted to be statistically significant on both the lateral plain radiographs (L3: 0.426 vs. 0.704) and sagittal MRI (L2: 0.343 vs. 0.461, L3: 0.361 vs. 0.461, L4: 0.362 vs. 0.481, L5: 0.354 vs. 0.452, p<.05). No difference was noted comparing the AP diameter of the vertebral body (axial and sagittal images), vertebral body height, canal width, and pedicle width. Kappa testing coefficient indicated a strong rater reliability (k=0.81, 95% confidence interval: 0.62-0.94). Congenital lumbar stenosis has not been clearly defined radiographically. Clinically, congenitally stenotic patients present at a younger age with fewer degenerative changes and multiple levels of involvement. Radiographically, these patients have a shorter pedicular length and as a result a smaller cross-sectional spinal canal area (mean critical values of 6.5 mm and 213 mm(2) were observed, respectively). The mean critical ratios were 0.43 (2:1 AP vertebral body: pedicle length) on the lateral lumbar radiograph and 0.36 on the sagittal MRI. The altered canal anatomy resulting from a decreased pedicle length may anatomically predispose these patients to earlier complaints of symptomatic neurogenic claudication. Identification of the presence of congenital stenosis should increase the treating surgeon's awareness of the potential need for multilevel treatment.
NASA Technical Reports Server (NTRS)
Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.;
1998-01-01
Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.
[Influence of disc height on outcome of posterolateral fusion].
Drain, O; Lenoir, T; Dauzac, C; Rillardon, L; Guigui, P
2008-09-01
Experimentally, posterolateral fusion only provides incomplete control of flexion-extension, rotation and lateral inclination forces. The stability deficit increases with increasing height of the anterior intervertebral space, which for some warrants the adjunction of an intersomatic arthrodesis in addition to the posterolateral graft. Few studies have been devoted to the impact of disc height on the outcome of posterolateral fusion. The purpose of this work was to investigate the spinal segment immobilized by the posterolateral fusion: height of the anterior intervertebral space, the clinical and radiographic impact of changes in disc height, and the short- and long-term impact of disc height measured preoperatively on clinical and radiographic outcome. In order to obtain a homogeneous group of patients, the series was limited to patients undergoing posterolateral arthrodesis for degenerative spondylolisthesis, in combination with radicular release. This was a retrospective analysis of a consecutive series of 66 patients with mean 52 months follow-up (range 3-63 months). A dedicated self-administered questionnaire was used to collect data on pre- and postoperative function, the SF-36 quality of life score, and patient satisfaction. Pre- and postoperative (early, one year, last follow-up) radiographic data were recorded: olisthesic level, disc height, intervertebral angle, intervertebral mobility (angular, anteroposterior), and global measures of sagittal balance (thoracic kyphosis, lumbar lordosis, T9 sagittal tilt, pelvic version, pelvic incidence, sacral slope). SpineView was used for all measures. Univariate analysis searched for correlations between variation in disc height and early postoperative function and quality of fusion at last follow-up. Multivariate analysis was applied to the following preoperative parameters: intervertebral angle, disc height, intervertebral mobility, sagittal balance parameters, use of osteosynthesis or not. At the olisthesic level, there was a 30% mean decrease in disc height and intervertebral angle. These variations were not correlated with functional outcome or quality of fusion observed at last follow-up. Disc height preoperatively did not affect these variations. The only factor correlated with decreased disc height was T9 sagittal tilt: disc height decreased more when T9 sagittal tilt approached 0 degrees . In this very restricted context (retrospective study, short arthrodesis for degenerative spondylolisthesis), we were unable to find any evidence supporting the notion that high disc height is an argument which should favor complementary intersomatic arthrodesis in combination with posterolateral fusion. Analysis of the spinal balance in the sagittal plane would probably allow a more pertinent assessment of the specific needs of individual patients.
Fracture of fusion mass after hardware removal in patients with high sagittal imbalance.
Sedney, Cara L; Daffner, Scott D; Stefanko, Jared J; Abdelfattah, Hesham; Emery, Sanford E; France, John C
2016-04-01
As spinal fusions become more common and more complex, so do the sequelae of these procedures, some of which remain poorly understood. The authors report on a series of patients who underwent removal of hardware after CT-proven solid fusion, confirmed by intraoperative findings. These patients later developed a spontaneous fracture of the fusion mass that was not associated with trauma. A series of such patients has not previously been described in the literature. An unfunded, retrospective review of the surgical logs of 3 fellowship-trained spine surgeons yielded 7 patients who suffered a fracture of a fusion mass after hardware removal. Adult patients from the West Virginia University Department of Orthopaedics who underwent hardware removal in the setting of adjacent-segment disease (ASD), and subsequently experienced fracture of the fusion mass through the uninstrumented segment, were studied. The medical records and radiological studies of these patients were examined for patient demographics and comorbidities, initial indication for surgery, total number of surgeries, timeline of fracture occurrence, risk factors for fracture, as well as sagittal imbalance. All 7 patients underwent hardware removal in conjunction with an extension of fusion for ASD. All had CT-proven solid fusion of their previously fused segments, which was confirmed intraoperatively. All patients had previously undergone multiple operations for a variety of indications, 4 patients were smokers, and 3 patients had osteoporosis. Spontaneous fracture of the fusion mass occurred in all patients and was not due to trauma. These fractures occurred 4 months to 4 years after hardware removal. All patients had significant sagittal imbalance of 13-15 cm. The fracture level was L-5 in 6 of the 7 patients, which was the first uninstrumented level caudal to the newly placed hardware in all 6 of these patients. Six patients underwent surgery due to this fracture. The authors present a case series of 7 patients who underwent surgery for ASD after a remote fusion. These patients later developed a fracture of the fusion mass after hardware removal from their previously successfully fused segment. All patients had a high sagittal imbalance and had previously undergone multiple spinal operations. The development of a spontaneous fracture of the fusion mass may be related to sagittal imbalance. Consideration should be given to reimplanting hardware for these patients, even across good fusions, to prevent spontaneous fracture of these areas if the sagittal imbalance is not corrected.
Veljkovic, Andrea; Norton, Adam; Salat, Peter; Abbas, Kaniza Zahra; Saltzman, Charles; Femino, John E; Phisitkul, Phinit; Amendola, Annunziato
2016-09-01
Longevity of total ankle replacement (TAR) depends heavily on anatomic alignment. The lateral talar station (LTS) classifies the sagittal position of the talus relative to the tibia. We hypothesized that correcting the sagittal distal tibial articular angle (sDTAA) during TAR would anatomically realign the tibiotalar joint and potentially reduce the risk of prosthesis subluxation. The LTS (millimeters) and sDTAA (degrees) were measured twice by 2 blinded observers using weight-bearing lateral ankle radiographs obtained before (n = 96) and after (n = 94) TAR, with excellent interobserver and intraobserver reliability (correlation coefficient >0.9). Preoperative LTS was as follows: anterior (60.4%), posterior (27.1%), and neutral (12.5%). A strong preoperative correlation was found between LTS and sDTAA (r = 0.81; P < .0001). In ankles that were initially anterior and became less anterior postoperatively (n = 41), LTS decreased from an average 8.1 mm to 6.5 mm and the LTS changed 1.1 mm per degree of sDTAA change. In ankles that were initially posterior (n = 25), LTS increased from an average of -5.1 mm to -2.8 mm and the LTS changed 0.6 mm per degree of sDTAA change. The correlation between LTS and sDTAA was reduced postoperatively (r = 0.62; P < .0001). Our results suggest that rather than following generic recommendations, the surgeon should customize the sagittal distal tibial cut to the individual patient based on the preoperative LTS in order to achieve neutral TAR alignment. Level III, retrospective comparative series. © The Author(s) 2016.
Tegos, Stergios; Charitidis, Charalampos; Korovessis, Panagiotis G
2014-04-01
Retrospective study on circumferential hybrid instrumentation with posterior lumbar interbody fusion (PLIF) and the novel posterior Universal Clamp (UC) instrumentation. This study evaluated the roentgenographic and clinical outcome after PLIF with PEEK cage augmented with UC posterior sublaminar fixation without posterior fusion. Although UC has been successfully used in scoliosis surgery, to our knowledge, this is the first report on its use in degenerative lumbosacral disease. Rigid pedicle screw lumbosacral fixation is associated with several intraoperative screw-related complications. The use of sublaminar bands and rods combined with PEEK PLIF should increase fusion rate and avoid screw-related complications. From a total of 295 consecutive patients who experienced degenerative lumbosacral disease and received posterior decompression, implantation of PLIF with PEEK cages and semirigid posterior fixation with sublaminar UC bands-rods without posterolateral fusion, 150 patients were eligible for this study with a follow-up of more than 2 years. Interbody fusion rate and global plus segmental sagittal spinal lordosis restoration were recorded pre- and postoperatively. Visual analogue scale and Oswestry Disability Index were used to assess functional outcome. Hybrid instrumentation expanded over 1 to 5 levels. Surgical time ranged from 45 to 225 minutes. Only 12.6% of the patients were transfused. There was no nerve root lesion or deep wound infection. Laminar fracture occurred intraoperatively in one case during band insertion. Interbody fusion was achieved in 94% of the operated segments. Lumbar lordosis improved from -36 ± 9° preoperatively to -53 ± 6° postoperatively. Segmental lordosis improved in L4-L5 segment from -5 ± 3° preoperatively to -12 ± 2° postoperatively and in L5-S1 from -9 ± 4° to -14 ± 2° postoperation. Oswestry Disability Index score improved from 44.9 preoperatively to 2.2 postoperatively (P < 0.001). No patient required further spinal surgery until the final evaluation. UC, a novel semirigid sublaminar posterior instrumentation, combined with wedge-shaped PEEK PLIF corrected both global and segmental sagittal lumbar alignment and achieved fusion rate similar to that historically reported with pedicle screw-PLIF techniques, however, avoiding intraoperative complications associated with the use of pedicle screws.
Boonen, Bert; Schotanus, Martijn G M; Kerens, Bart; Hulsmans, Frans-Jan; Tuinebreijer, Wim E; Kort, Nanne P
2017-09-01
To assess whether there is a significant difference between the alignment of the individual femoral and tibial components (in the frontal, sagittal and horizontal planes) as calculated pre-operatively (digital plan) and the actually achieved alignment in vivo obtained with the use of patient-specific positioning guides (PSPGs) for TKA. It was hypothesised that there would be no difference between post-op implant position and pre-op digital plan. Twenty-six patients were included in this non-inferiority trial. Software permitted matching of the pre-operative MRI scan (and therefore calculated prosthesis position) to a pre-operative CT scan and then to a post-operative full-leg CT scan to determine deviations from pre-op planning in all three anatomical planes. For the femoral component, mean absolute deviations from planning were 1.8° (SD 1.3), 2.5° (SD 1.6) and 1.6° (SD 1.4) in the frontal, sagittal and transverse planes, respectively. For the tibial component, mean absolute deviations from planning were 1.7° (SD 1.2), 1.7° (SD 1.5) and 3.2° (SD 3.6) in the frontal, sagittal and transverse planes, respectively. Absolute mean deviation from planned mechanical axis was 1.9°. The a priori specified null hypothesis for equivalence testing: the difference from planning is >3 or <-3 was rejected for all comparisons except for the tibial transverse plane. PSPG was able to adequately reproduce the pre-op plan in all planes, except for the tibial rotation in the transverse plane. Possible explanations for outliers are discussed and highlight the importance for adequate training surgeons before they start using PSPG in their day-by-day practise. Prospective cohort study, Level II.
Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation.
Yim, Ji Hyeon; Seon, Jong Keun; Song, Eun Kyoo
2012-10-01
Although opening-wedge high tibial osteotomy (HTO) is used to correct deformities, it can simultaneously alter tibial slope in the sagittal plane because of the triangular configuration of the proximal tibia, and this undesired change in tibial slope can influence knee kinematics, stability, and joint contact pressure. Therefore, medial opening-wedge HTO is a technically demanding procedure despite the use of 2-dimensional (2-D) navigation. The authors evaluated the posterior tibial slope pre- and postoperatively in patients who underwent navigation-assisted opening-wedge HTO and compared posterior slope changes for 2-D and 3-dimensional (3-D) navigation versions. Patients were randomly divided into 2 groups based on the navigation system used: group A (2-D guidance for coronal alignment; 17 patients) and group B (3-D guidance for coronal and sagittal alignments; 17 patients). Postoperatively, the mechanical axis was corrected to a mean valgus of 2.81° (range, 1°-5.4°) in group A and 3.15° (range, 1.5°-5.6°) in group B. A significant intergroup difference existed for the amount of posterior tibial slope change (Δ slope) pre- and postoperatively (P=.04).Opening-wedge HTO using navigation offers accurate alignment of the lower limb. In particular, the use of 3-D navigation results in significantly less change in the posterior tibial slope postoperatively than does the use of 2-D navigation. Accordingly, the authors recommend the use of 3-D navigation systems because they provide real-time intraoperative information about coronal, sagittal, and transverse axes and guide the maintenance of the native posterior tibial slope. Copyright 2012, SLACK Incorporated.
[Adolescent idiopathic scoliosis].
2016-12-01
Adolescent idiopathic scoliosis is a 3D spinal deformity in frontal, sagittal and axial planes, with high relevance in the pediatric population especially in adolescents and females between 10 years of age and the end of growth spurt and skeletal maturity. The radiographic manifestation is a curve greater than 10° measured by Cobb method associated with vertebral rotation. "Idiopathic" diagnosis has to be done after neuroanatomical anomalies of the posterior cerebral fosa and spinal canal have been ruled out. The physical finding of a thoracic or lumbar hump is the clinical manifestation of vertebral rotation seen in a forward bending test (Adam's Test). It is recommended that all curves with a magnitude greater than 20° have to be controlled and treated by a spinal surgeon being observation, bracing and surgery the different treatment options based on the extent, progression of deformity and basically the clinical condition of the patient. Sociedad Argentina de Pediatría.
Effect of mat pilates exercise on postural alignment and body composition of middle-aged women.
Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun
2016-06-01
[Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment.
Park, Se-Jun; Lee, Chong-Suh; Chung, Sung-Soo; Lee, Jun-Young; Kang, Sang-Soo; Park, Se-Hwan
2017-02-01
The failure modes, time to development, and clinical relevance are known to differ between proximal junctional kyphosis (PJK) and proximal junctional failure (PJF). However, there are no reports that study the risk factors of PJK and PJF separately. The aim of this study was to investigate the risk factors for PJK and PJF separately. A retrospective study of 160 consecutive patients who underwent a long instrumented fusion to the sacrum for adult spinal deformity with a minimum follow-up of 2 years was conducted. A separate survivorship analysis of PJK and PJF was performed using the Cox proportional hazards model for the 3 categorical parameters of surgical, radiographic, and patient factors. PJK developed in 27 patients (16.9%) and PJF in 29 patients (18.1%). The median survival time was 17.0 months for PJK and 3.0 months for PJF. Multivariate analyses revealed that a high body mass index was an independent risk factor for PJK (hazard ratio [HR] = 1.179), whereas the significant risk factors for PJF were older age, the presence of osteoporosis, the uppermost instrumented vertebra level at T11-L1, and a greater preoperative sagittal vertical axis (HR = 1.082, 6.465, 5.236, and 1.017, respectively). A large correction of sagittal deformity was shown to be a risk factor for PJF on univariate analyses, but not on multivariate analyses. PJK developed at a median of 17 months and PJF at a median of 3 months. A high body mass index was an independent risk factor for PJK, whereas older age, osteoporosis, uppermost instrumented vertebra level at the thoracolumbar junction, and greater preoperative sagittal vertical axis were risk factors for PJF.
Tins, B; Cassar-Pullicino, V; Haddaway, M; Nachtrab, U
2012-01-01
Objectives The bulk of spinal imaging is still performed with conventional two-dimensional sequences. This study assesses the suitability of three-dimensional sampling perfection with application-optimised contrasts using a different flip angle evolutions (SPACE) sequence for routine spinal imaging. Methods 62 MRI examinations of the spine were evaluated by 2 examiners in consensus for the depiction of anatomy and presence of artefact. We noted pathologies that might be missed using the SPACE sequence only or the SPACE and a sagittal T1 weighted sequence. The reference standards were sagittal and axial T1 weighted and T2 weighted sequences. At a later date the evaluation was repeated by one of the original examiners and an additional examiner. Results There was good agreement of the single evaluations and consensus evaluation for the conventional sequences: κ>0.8, confidence interval (CI)>0.6–1.0. For the SPACE sequence, depiction of anatomy was very good for 84% of cases, with high interobserver agreement, but there was poor interobserver agreement for other cases. For artefact assessment of SPACE, κ=0.92, CI=0.92–1.0. The SPACE sequence was superior to conventional sequences for depiction of anatomy and artefact resistance. The SPACE sequence occasionally missed bone marrow oedema. In conjunction with sagittal T1 weighted sequences, no abnormality was missed. The isotropic SPACE sequence was superior to conventional sequences in imaging difficult anatomy such as in scoliosis and spondylolysis. Conclusion The SPACE sequence allows excellent assessment of anatomy owing to high spatial resolution and resistance to artefact. The sensitivity for bone marrow abnormalities is limited. PMID:22374284
Tins, B; Cassar-Pullicino, V; Haddaway, M; Nachtrab, U
2012-08-01
The bulk of spinal imaging is still performed with conventional two-dimensional sequences. This study assesses the suitability of three-dimensional sampling perfection with application-optimised contrasts using a different flip angle evolutions (SPACE) sequence for routine spinal imaging. 62 MRI examinations of the spine were evaluated by 2 examiners in consensus for the depiction of anatomy and presence of artefact. We noted pathologies that might be missed using the SPACE sequence only or the SPACE and a sagittal T(1) weighted sequence. The reference standards were sagittal and axial T(1) weighted and T(2) weighted sequences. At a later date the evaluation was repeated by one of the original examiners and an additional examiner. There was good agreement of the single evaluations and consensus evaluation for the conventional sequences: κ>0.8, confidence interval (CI)>0.6-1.0. For the SPACE sequence, depiction of anatomy was very good for 84% of cases, with high interobserver agreement, but there was poor interobserver agreement for other cases. For artefact assessment of SPACE, κ=0.92, CI=0.92-1.0. The SPACE sequence was superior to conventional sequences for depiction of anatomy and artefact resistance. The SPACE sequence occasionally missed bone marrow oedema. In conjunction with sagittal T(1) weighted sequences, no abnormality was missed. The isotropic SPACE sequence was superior to conventional sequences in imaging difficult anatomy such as in scoliosis and spondylolysis. The SPACE sequence allows excellent assessment of anatomy owing to high spatial resolution and resistance to artefact. The sensitivity for bone marrow abnormalities is limited.
Restrained Differential Growth: The Initiating Event of Adolescent Idiopathic Scoliosis?
Crijns, Tom Joris; Stadhouder, Agnita; Smit, Theodoor Henri
2017-06-15
An experimental model study and a short review of literature. The purpose of this study was to explore a new hypothesis suggesting that the curvatures seen in adolescent idiopathic scoliosis (AIS) originate from restrained differential growth between the vertebral column and the surrounding musculo-ligamentary structures. Despite decades of research, there is no generally accepted theory on the physical origin of the severe spinal deformations seen in AIS. The prevailing theories tend to focus on left-right asymmetry, rotational instability, or the sagittal spinal profile in idiopathic scoliosis. We test our hypothesis with a physical model of the spine that simulates growth, counteracted by ligaments and muscles, modeled by tethers and springs. Growth of the spine is further restrained by an anterior band representing the thorax, the linea alba, and abdominal musculature. We also explore literature in search of molecular mechanisms that may induce differential growth. Differential growth in the restrained spine model first induces hypokyphosis and mild lateral bending of the thoracic spine, but then suddenly escalates into a scoliotic deformity, consistent with clinical observations of AIS. The band simulating the ventral structures of the body had a pivotal effect on sagittal curvature and the initiation of lateral bending and rotation. In literature, several molecular mechanisms were found that may explain the occurrence of differential growth between the spine and the musculo-ligamentary structures. While AIS is a three-dimensional deformation of the spine, it appears that restrained differential growth in the sagittal plane can result in lateral bending and rotation without a pre-existing left-right asymmetry. This supports the concept that AIS may result from a growth imbalance rather than a local anatomical defect. N/A.
Toprak Çelenay, Şeyda; Özer Kaya, Derya
2017-04-18
To investigate the effects of an 8-week thoracic stabilization exercise program on back pain, spinal alignment, postural sway, and core endurance in university students. University students were randomly allocated into exercise (n: 28) and control (n: 25) groups. The exercise program was carried out 3 days a week for 8 weeks. Postural pain, spinal alignment, postural sway, and core endurance were assessed via visual analogue scale, Spinal Mouse, Biodex Balance System, and McGill's trunk muscle endurance tests at the baseline and after 8 weeks of training. Differences were observed for postural pain, thoracic and lumbar curvature, dynamic stability index (eyes closed), and core endurance scores in the exercise group between baseline and week 8 (P < 0.05) and all the parameters were significantly different when compared to those of the control group (P < 0.05). The program decreased postural pain, spinal curvatures, and postural sway, and increased core endurance in university students. The program can be effective in postural pain and misalignment of spine problems related to core weakness and balance disorders.
Patient-specific instrumentation for total knee arthroplasty.
Nabavi, Arash; Olwill, Caroline M; Do, Mike; Wanasawage, Tanya; Harris, Ian A
2017-01-01
To assess the accuracy of total knee replacements (TKRs) performed using CT-based patient-specific instrumentation by postoperative CT scan. Approval from the Ethics Committee was granted prior to commencement of this study. Fifty prospective and consecutive patients who had undergone TKR (Evolis, Medacta International) using CT-based patient-specific instrumentation (MY KNEE, Medacta International) were assessed postoperatively using a CT scan and the validated Perth protocol measurement technique. The hip-knee-ankle (HKA) angle of the lower limb in the coronal plane; the coronal, sagittal, and rotational orientation of the femoral component; and the coronal and sagittal orientation of the tibial component were measured. These results were then compared to each patient's preoperative planning. The percentage of patients found to be less than or equal to 3° of planned alignment was calculated. One patient was excluded as the femoral cutting block did not fit the femur as predicted by planning and therefore underwent a conventional TKR. Ninety-eight percent of patients were within 3° of planned alignment in the coronal plane reproducing the predicted HKA angle. Predicted coronal plane orientation of the tibial and femoral component was achieved in 100% and 96% of patients, respectively. The sagittal orientation of the femoral component was within 3° in 98% of patients. The planned sagittal positioning of the tibial component was achieved in 92% of patients. Furthermore, 90% of patients were found to have a femoral rotation within 3° of planning. Eighty-six percent of patients achieved good-to-excellent outcome at 12 months (Oxford Knee Score > 34). We have found that TKR using this patient-specific instrumentation accurately reproduces preoperative planning in all six of the parameters measured in this study.
Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis
Granato, Michael
2016-01-01
During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator. PMID:27855159
Albert, Michael C; LaFleur, Brett C
2015-03-01
Segmental spinal instrumentation with Luque wire fixation has been the standard treatment of neuromuscular scoliosis for >30 years. More recently, pedicle screw constructs have become the most widely utilized method of posterior spinal fixation; however, they are associated with complications such as implant malposition. We report the use of polyester bands and clamps utilized with pedicle screws in a hybrid fixation construct in the treatment of neuromuscular scoliosis. A retrospective review was conducted of 115 pediatric spinal deformity cases between 2008 and 2010 at a single center performed by a single surgeon. Intraoperative and postoperative complications were recorded. Radiographs were reviewed preoperatively and at the latest follow-up. A systematic review of the literature was conducted. Data from case series reporting outcomes of sublaminar wires and all-pedicle screw constructs in the treatment of neuromuscular scoliosis were compared with outcomes of the present study. Twenty-nine patients with neuromuscular scoliosis who underwent segmental spinal instrumentation with a hybrid construct including sublaminar bands and pedicle screws were included. There was an average follow-up of 29 months (range, 12 to 40 mo). The average postoperative correction of coronal balance was 69% (range, 24 to 71 degrees). Sagittal balance was corrected to within 2 cm of the C7 plumbline in 97% of patients. The loss of coronal and sagittal correction at latest follow-up was 0% and 2%, respectively. There were 2 intraoperative clamp failures of the 398 implants (0.5%). There were 2 major (6.9%) and 7 minor (24%) complications in 7 patients (24% overall). These results compared favorably to previous case series of sublaminar wire and all-pedicle screw fixation techniques. The polyester band technique is an excellent adjunct in the correction of spinal deformity in patients with neuromuscular scoliosis. Sublaminar bands utilized in a hybrid construct appear to be safe, can achieve corrections equivalent to all-pedicle screw constructs, and may decrease the potential complications associated with every level transpedicular fixation in the patient with a highly dysmorphic and osteoporotic spine. Level IV: cohort study.
Kim, Han Jo; Lenke, Lawrence G; Oshima, Yasushi; Chuntarapas, Tapanut; Mesfin, Addisu; Hershman, Stuart; Fogelson, Jeremy L; Riew, K Daniel
2014-09-01
Retrospective. The authors hypothesized that cervical lordosis (CL) would decrease with aging and increasing degeneration. It is theorized that with age and degeneration, the cervical spine loses lordosis and becomes progressively more kyphotic; however, no studies support these conclusions in patients with various spinal deformities. The authors performed a radiographic analysis of asymptomatic adults (referring to their cervical spine) of varying ages, with differing forms of spinal deformity to the thoracic/lumbar spine to see how cervical lordosis changes with increasing age. A total of 104 total spine EOS X-rays of adult (aged >18 years) spinal deformity patients without documented neck pain, prior neck surgery, or cervical deformity were reviewed. The researchers only reviewed EOS X-rays because they allow complete visualization from occiput to feet. Cervical lordosis, standard Cobb measurements, sagittal balance parameters, and cervical degeneration were quantified radiographically by the method previously described by Gore et al. Statistical analysis was performed with 1-way analysis of variance to compare significant differences between groups aged <40, 40-60 and >60 years as well as changes in sagittal balance. A p-value < .05 was considered significant. Average CL actually increased with increasing age (10.3 ± 14.7, 15.4 ± 15.1, and 23.3 ± 1.6.7 for age < 40, 40-60, and > 60 years, respectively; p < .05). Average cervical degeneration score increased at all disc space levels from C2 to C7 across age groups (0.7 ± 1.2, 9.9 ± 69, and 16.3 ± 8.9 for age <40, 40-60, and >60 years, respectively; p < .01), with the highest degeneration at the C5-6 and C6-7 disc spaces (3.7 ± 3.3 and 3.2 ± 2.9, respectively; p < .01). This increase did not correlate with the increase in CL seen with aging (r = 0.02; p = .84). Cervical lordosis increased with aging in adult spinal deformity patients. There was no relationship between cervical degeneration and lordosis despite the strong relationship seen between increasing CL in older age groups. Copyright © 2014 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Chugh, Arunit J S; Weinberg, Douglas S; Alonso, Fernando; Eubanks, Jason D
2017-11-01
Retrospective cohort review. To determine whether preoperative cord rotation is independently correlated with C5 palsy when analyzed alongside measures of sagittal balance and foraminal stenosis. Postoperative C5 palsy is a well-documented complication of cervical procedures with a prevalence of 4%-8%. Recent studies have shown a correlation with preoperative spinal cord rotation. There have been few studies, however, that have examined the role of sagittal balance and foraminal stenosis in the development of C5 palsy. A total of 77 patients who underwent cervical decompression-10 of whom developed C5 palsy-were reviewed. Sagittal balance was assessed using curvature angle and curvature index on radiographs and magnetic resonance image (MRI). Cord rotation was assessed on axial MRI. C4-C5 foraminal stenosis was assessed on sagittal MRI using area measurements and a grading scale. Demographics and information on surgical approach were gathered from chart review. Correlation with C5 palsy was performed by point-biserial, χ, and regression analyses. Point-biserial analysis indicated that only cord rotation showed significance (P<0.01). There was no statistical significance shown with surgical approach, sex, or age. In addition, changes in sagittal balance did not correlate with presence of C5 palsy. Logistic regression model yielded cord rotation as the only significant independent predictor of C5 palsy. For every degree of axial cord rotation, the likelihood ratio for suffering a C5 palsy was 3.93 (95% confidence interval, 2.01-8.66; P<0.05). This supports the independent capability of preoperative cord rotation to predict postoperative C5 palsy. Lack of correlation with measures of neuroforaminal stenosis potentially points to mechanisms other than direct compression as the etiology. In addition, the lack of correlation with postoperative changes in sagittal balance hints that measures of curvature angle and curvature index may not be appropriate to accurately predict this complication. Level 3.
Jang, Jee-Soo; Lee, Sang-Ho; Min, Jun-Hong; Maeng, Dae Hyeon
2009-02-01
A retrospective study. To determine postsurgical correlations between thoracic and lumbar sagittal curves in lumbar degenerative kyphosis (LDK) and to determine predictability of spontaneous correction of thoracic curve and sacral angle after surgical restoration of lumbar lordosis and fusion. To our knowledge, there are only a limited number of articles about the relationship between thoracic and lumbar curve in sagittal thoracic compensated LDK. Retrospective review of 53 consecutive patients treated with combined anterior and posterior spinal arthrodesis. We included patients with sagittal thoracic compensated LDK caused by sagittal imbalance in this study. Total lumbar lordosis, thoracic kyphosis, sacral slope, and C7 plumb line were measured on the pre- and postoperative whole spine lateral views. Postoperative changes in thoracic kyphosis, sacral slope, and C7 plumb line according to the surgical lumbar lordosis restoration were measured and evaluated. The mean preoperative sagittal imbalance by plumb line was 78.3 mm (+/-76.5); this improved to 13.6 mm (+/-25) after surgery (P < 0.0001). Mean lumbar lordosis was 9.4 degrees (+/-19.2) before surgery and increased to 38.4 degrees (+/-13.1) at follow-up (P < 0.0001). Mean thoracic kyphosis was 1.1 degrees (+/-12.7) before surgery and increased to 17.6 degrees (+/-12.2) at follow-up (P < 0.0001). Significant preoperative correlations existed between kyphosis and lordosis (r = 0.772, P < 0.0001) and between lordosis and sacral slope (r = 0.785, P < 0.0001). Postoperative lumbar lordosis is correlated to thoracic kyphosis increase (r = 0.620, P < 0.0001). Postoperative lumbar lordosis is correlated to sacral slope increase (r = 0.722, P < 0.0001). Reciprocal relationship exists between lumbar lordosis and thoracic kyphosis in sagittal thoracic compensated LDK. Surgical restoration of lumbar lordosis for LDK brings about high level of statistical correlation to thoracic kyphosis improvement. At the same time, the reciprocal relationship is maintained.
Liu, Hui-Miao; Dong, Ci; Zhang, Yong-Zhi; Tian, Ya-Yun; Chen, Hong-Xu; Zhang, Sai; Li, Na; Gu, Ping
2017-10-01
To investigate the clinical and MRI characteristics of spinal cord nerve Behçet's disease. One patient with spinal cord nerve Behçet's disease was admitted to our hospital at October 20, 2015. Spinal cord nerve Behçet's disease. Retrospective analysis was performed on such case as well as 16 cases of spinal cord nerve Behçet's disease reported in China or abroad. Seventeen cases of spinal cord type of neuro Behçet's disease include 13 men and 4 women, with an average age of onset of 34.8 years old. The mean time from Behçet's disease symptoms to spinal cord involvement were 10.8 years. The initial symptom in one case was spinal cord injury, and another 4 cases had a recurrence course. The most common performance of spinal cord injury was sensory disturbance (82.4%), following by weakness (76.5%), sphincter or sexual dysfunction (58.8%), and pain in back, backside of neck or lower chest (29.4%). The number of cells was slightly increased or the protein level was increased in cerebrospinal fluid test. And the water channel protein antibody and oligoclonal band of serum levels were all negative. The spinal cord injury involved more than 3 vertebral bodies in 10 cases, and involved more than half of spinal cord in sagittal plane in 8 cases. In acute stage, shock therapy with large dose of glucocorticoid was generally applied both in China and abroad. The clinical features of spinal cord nerve Behçet's disease were various, making it easily misdiagnosed. Longitudinal extensive transverse myelitis performs as a characteristic manifestation.
Chen, Yisheng; Wang, Jingjing; Chen, Xuyi; Chen, Chong; Tu, Yue; Zhang, Sai; Li, Xiaohong
2015-03-01
To fabricate the bionic scaffolds of rat spinal cord by combining three dimensional (3D) printer and 3D software, so as to lay the foundation of theory and technology for the manufacture of scaffolds by using biomaterials. Three female Sprague Dawley rats were scanned by 7.0T MRI to obtain the shape and position data of the cross section and gray matter of T8 to T10 spinal cord. Combined with data of position and shape of nerve conduction beam, the relevant data were obtained via Getdata software. Then the 3D graphics were made and converted to stereolithography (STL) format by using SolidWorks software. Photosensitive resin was used as the materials of spinal cord scaffolds. The bionic scaffolds were fabricated by 3D printer. MRI showed that the section shape of T8 to T10 segments of the spinal cord were approximately oval with a relatively long sagittal diameter of (2.20 ± 0.52) mm and short transverse diameter of (2.05 ± 0.24) mm, and the data of nerve conduction bundle were featured in the STL format. The spinal cord bionic scaffolds of the target segments made by 3D printer were similar to the spinal cord of rat in the morphology and size, and the position of pores simulated normal nerve conduction of rat spinal cord. Spinal cord scaffolds produced by 3D printer which have similar shape and size of normal rat spinal cord are more bionic, and the procedure is simple. This technology combined with biomaterials is also promising in spinal cord repairing after spinal cord injury.
Granacher, Urs; Lacroix, Andre; Muehlbauer, Thomas; Roettger, Katrin; Gollhofer, Albert
2013-01-01
Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 ± 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 ± 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group × test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. Copyright © 2012 S. Karger AG, Basel.
Pawłowska, Paulina; Kolwicz-Gańko, Aleksandra; Sitarski, Dominik
2017-01-01
Objectives. The aim of the study was to assess the change of sagittal spinal curvatures in children with generalized joint hypermobility (GJH) instructed with “straighten your back” command (SYB). Methods. The study included 56 children with GJH. The control group consisted of 193 children. Sacral slope (SS), lumbar lordosis (LL), global thoracic kyphosis (TK), lower thoracic kyphosis (LK), and upper thoracic kyphosis (UK) were assessed with Saunders inclinometer both in spontaneous positions (standing and sitting) and after the SYB. Results. Children with GJH after SYB presented the following: in standing, increase in SS and decrease in TK, LK, and UK (P < 0.01), with LL not significantly changed; in sitting: decrease in global thoracic kyphosis (35.5° (SD 20.5) versus 21.0° (SD 15.5), P < 0.001) below the standards proposed in the literature (30–40°) and flattening of its lower part (P < 0.001). The same changes were observed in the control group. Conclusions. In children with generalized joint hypermobility, the “straighten your back” command leads to excessive reduction of the global thoracic kyphosis and flattening of its lower part. Therefore, the “straighten your back” command should not be used to achieve the optimal standing and sitting positions. PMID:28116313
Czaprowski, Dariusz; Pawłowska, Paulina; Kolwicz-Gańko, Aleksandra; Sitarski, Dominik; Kędra, Agnieszka
2017-01-01
Objectives . The aim of the study was to assess the change of sagittal spinal curvatures in children with generalized joint hypermobility (GJH) instructed with "straighten your back" command (SYB). Methods . The study included 56 children with GJH. The control group consisted of 193 children. Sacral slope (SS), lumbar lordosis (LL), global thoracic kyphosis (TK), lower thoracic kyphosis (LK), and upper thoracic kyphosis (UK) were assessed with Saunders inclinometer both in spontaneous positions (standing and sitting) and after the SYB. Results . Children with GJH after SYB presented the following: in standing, increase in SS and decrease in TK, LK, and UK ( P < 0.01), with LL not significantly changed; in sitting: decrease in global thoracic kyphosis (35.5° (SD 20.5) versus 21.0° (SD 15.5), P < 0.001) below the standards proposed in the literature (30-40°) and flattening of its lower part ( P < 0.001). The same changes were observed in the control group. Conclusions . In children with generalized joint hypermobility, the "straighten your back" command leads to excessive reduction of the global thoracic kyphosis and flattening of its lower part. Therefore, the "straighten your back" command should not be used to achieve the optimal standing and sitting positions.
Pritz, M B
1996-01-01
Interconnections between the dorsal column nucleus and the spinal cord were investigated in a reptile, Caiman crocodilus. After placement of an anterograde tracer into the dorsal column nucleus, descending fibers are seen to leave this nucleus to enter the dorsal funiculus where they course ventrally to terminate in lamina V of the spinal cord as far caudally as C2. Placement of a retrograde tracer into cut fibers of the cervical spinal cord identified the relay cells of the dorsal column nucleus that project to the spinal cord. These neurons were mainly clustered in a caudal and ventral part of this nucleus. The soma of these spinally projecting cells were small and were generally round or oval in shape. A number of these neurons had the long axis of their soma oriented dorsoventrally, with a primary dendrite extending dorsally. Fibers in the dorsal funiculus that originated from the spinal cord enter the caudal part of the dorsal column nucleus and turn ventral. In the dorsal column nucleus, these axons run parallel to the vertically oriented dendrites of these spinally projecting cells before termination in close relation to the cell bodies of these neurons. Quantitative observations (mean +/- standard error) were made on well labeled neurons and included several measurements: area, perimeter, and degree of eccentricity (greatest width/greatest length) in both the transverse as well as the sagittal plane. These spinally projecting neurons in Caiman are located in the dorsal column nucleus in a position similar to that of spinally projecting cells in cats.
McClendon, Jamal; Smith, Timothy R; Sugrue, Patrick A; Thompson, Sara E; O'Shaughnessy, Brian A; Koski, Tyler R
2016-11-01
To evaluate spinal implant density and proximal junctional kyphosis (PJK) in adult spinal deformity (ASD). Consecutive patients with ASD receiving ≥5 level fusions were retrospectively analyzed between 2007 and 2010. ASD, elective fusions, minimum 2-year follow-up. age <18 years, neuromuscular or congenital scoliosis, cervical or cervicothoracic fusions, nonelective conditions (infection, tumor, trauma). Instrumented fusions were classified by the Scoliosis Research Society-Schwab ASD classification. Statistical analysis consisted of descriptives (measures of central tendency, dispersion, frequencies), independent Student t tests, χ 2 , analysis of variance, and logistic regression to determine association of implant density [(number of screws + number of hooks)/surgical levels of fusion] and PJK. Mean and median follow-up was 2.8 and 2.7 years, respectively. Eighty-three patients (17 male, 66 female) with a mean age of 59.7 years (standard deviation, 10.3) were analyzed. Mean body mass index (BMI) was 29.5 kg/m 2 (range, 18-56 kg/m 2 ) with mean preoperative Oswestry Disability Index of 48.67 (range, 6-86) and mean preoperative sagittal vertical axis of 8.42. The mean levels fused were 9.95 where 54 surgeries had interbody fusion. PJK prevalence was 21.7%, and pseudoarthrosis was 19.3%. Mean postoperative Oswestry Disability Index was 27.4 (range, 0-74). Independent Student t tests showed that PJK was not significant for age, gender, BMI, rod type, mean postoperative sagittal vertical axis, or Scoliosis Research Society-Schwab ASD classification; but iliac fixation approached significance (P = 0.077). Implant density and postoperative lumbar lordosis (LL) were predictors for PJK (P = 0.018 and 0.045, respectively). Controlling for age, BMI, and gender, postoperative LL (not implant density) continued to show significance in multivariate logistic regression model. PJK, although influenced by a multitude of factors, may be statistically related to implant density and LL. Copyright © 2016. Published by Elsevier Inc.
Gross, Cassandra; Ellison, Brian; Buchman, Aron S.; Terasawa, Ei
2017-01-01
Proper identification of spinal cord levels is crucial for clinical-pathological and imaging studies in humans, but can be a challenge given technical limitations. We have previously demonstrated in non-primate models that the contours of the spinal ventral horn are determined by the position of motoneuron pools. These positions are preserved within and among individuals and can be used to identify lumbosacral spinal levels. Here we tested the hypothesis that this approach can be extended to identify monkey and human spinal levels. In 7 rhesus monkeys, we retrogradely labeled motoneuron pools that represent rostral, middle and caudal landmarks of the lumbosacral enlargement. We then aligned the lumbosacral enlargements among animals using absolute length, segmental level or a relative scale based upon rostral and caudal landmarks. Inter-animal matching of labeled motoneurons across the lumbosacral enlargement was most precise when using internal landmarks. We then reconstructed 3 human lumbosacral spinal cords, and aligned these based upon homologous internal landmarks. Changes in shape of the ventral horn were consistent among human subjects using this relative scale, despite marked differences in absolute length or age. These data suggest that the relative position of spinal motoneuron pools is conserved across species, including primates. Therefore, in clinical-pathological or imaging studies in humans, one can assign spinal cord levels to even single sections by matching ventral horn shape to standardized series. PMID:28542213
Lin, Bon-Jour; Lin, Meng-Chi; Lin, Chin; Lee, Meei-Shyuan; Feng, Shao-Wei; Ju, Da-Tong; Ma, Hsin-I; Liu, Ming-Ying; Hueng, Dueng-Yuan
2015-10-01
Previous studies have identified the factors affecting the surgical outcome of cervical spondylotic myelopathy (CSM) following laminoplasty. Nonetheless, the effect of these factors remains controversial. It is unknown about the association between pre-operative cervical spinal cord morphology and post-operative imaging result following laminoplasty. The goal of this study is to analyze the impact of pre-operative cervical spinal cord morphology on post-operative imaging in patients with CSM. Twenty-six patients with CSM undergoing open-door laminoplasty were classified according to pre-operative cervical spine bony alignment and cervical spinal cord morphology, and the results were evaluated in terms of post-operative spinal cord posterior drift, and post-operative expansion of the antero-posterior dura diameter. By the result of study, pre-operative spinal cord morphology was an effective classification in predicting surgical outcome - patients with anterior convexity type, description of cervical spinal cord morphology, had more spinal cord posterior migration than those with neutral or posterior convexity type after open-door laminoplasty. Otherwise, the interesting finding was that cervical spine Cobb's angle had an impact on post-operative spinal cord posterior drift in patients with neutral or posterior convexity type spinal cord morphology - the degree of kyphosis was inversely proportional to the distance of post-operative spinal cord posterior drift, but not in the anterior convexity type. These findings supported that pre-operative cervical spinal cord morphology may be used as screening for patients undergoing laminoplasty. Patients having neutral or posterior convexity type spinal cord morphology accompanied with kyphotic deformity were not suitable candidates for laminoplasty. Copyright © 2015 Elsevier B.V. All rights reserved.
Impact of spine alignment on the rotator cuff in long-term wheelchair users.
Kentar, Yasser; Brunner, Manuela; Bruckner, Thomas; Hug, Andreas; Raiss, Patric; Zeifang, Felix; Loew, Markus; Almansour, Haidara; Akbar, Michael
2018-06-01
We investigated the impact of poor seated posture on the prevalence of rotator cuff tears (RCTs) among wheelchair-dependent individuals with long-standing paraplegia. The study included 319 patients. Lateral radiographs of the spine were collected from a database and analyzed to assess the global spinopelvic alignment (SPA). Magnetic resonance images of both shoulders were obtained to detect the presence of cuff tears. Patients were divided into 2 groups: Group RCT-I included all patients with cuff tears (right, left, or bilateral), whereas group RCT-II consisted exclusively of patients with bilateral cuff tears. We used the classification systems developed by Kendall et al and Roussouly et al to assess the sagittal spine alignment and SPA, respectively. Univariate and multivariate analyses were performed. To fit both models (groups RCT-I and RCT-II) to the data, the 4 spine curves according to Roussouly et al were subdivided into 2 groups: Group SPA-I included both type 1 and type 2, whereas group SPA-II included both type 3 and type 4. Magnetic resonance images showed a cuff tear in 192 patients (60.19%) (group RCT-I). Among those, 37 patients (11.60%) had tears in both shoulders (group RCT-II). In group RCT-I, 70.31% of the patients had a kyphotic-lordotic posture. The kyphotic-lordotic posture, a longer duration, and a more rostral neurologic level of injury were highly associated with cuff tear prevalence. In group RCT-II, the multivariate analysis showed that only the duration of spinal cord injury was significantly associated with RCTs. Thoracic hyperkyphosis was associated with a markedly high rate of RCTs. The data from this study may provide support for developing preventive strategies. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Snodgrass, Suzanne J; Haskins, Robin; Rivett, Darren A
2012-10-01
To review and discuss the methods used for measuring spinal stiffness and factors associated with stiffness, how stiffness is used in diagnosis, prognosis, and treatment decision-making and the effects of manipulative techniques on stiffness. A systematic search of MEDLINE, EMBASE, CINAHL, AMED and ICL databases was conducted. Included studies addressed one of four constructs related to stiffness: measurement, diagnosis, prognosis and/or treatment decision-making, and the effects of manipulation on stiffness. Spinal stiffness was defined as the relationship between force and displacement. One hundred and four studies are discussed in this review, with the majority of studies focused on the measurement of stiffness, most often in asymptomatic persons. Eight studies investigated spinal stiffness in diagnosis, providing limited evidence that practitioner-judged stiffness is associated with radiographic findings of sagittal rotational mobility. Fifteen studies investigated spinal stiffness in prognosis or treatment decision-making, providing limited evidence that spinal stiffness is unlikely to independently predict patient outcomes, though stiffness may influence a practitioner's application of non-thrust manipulative techniques. Nine studies investigating the effects of manipulative techniques on spinal stiffness provide very limited evidence that there is no change in spinal stiffness following thrust or non-thrust manipulation in asymptomatic individuals and non-thrust techniques in symptomatic persons, with only one study supporting an immediate, but not sustained, stiffness decrease following thrust manipulation in symptomatic individuals. The existing limited evidence does not support an association between spinal stiffness and manipulative treatment outcomes. There is a need for additional research investigating the effects of manipulation on spinal stiffness in persons with spinal pain. Copyright © 2012 Elsevier Ltd. All rights reserved.
Domagalska-Szopa, Małgorzata; Szopa, Andrzej
2017-11-01
Standing postural alignment in children with cerebral palsy is usually altered by central postural control disorders. The primary aim of this study is to describe body alignment in a quiet standing position in ambulatory children with bilateral cerebral palsy compared with children with typical development. Fifty-eight children with bilateral cerebral palsy (aged 7-13years) and 45 age-matched children with typical development underwent a surface topography examination based on Moiré topography and were classified according to their sagittal postural profiles. The following eight grouping variables were extracted using a data reduction technique: angle of trunk inclination, pelvic tilt, and lordosis, the difference between kyphosis and lordosis, angle of vertebral lateral curvature, shoulder inclination, and shoulder and pelvic rotation. According to the cluster analysis results, 25% of the participants were classified into Cluster 1, 9% into Cluster 2, 49% in Cluster 3, and 17% in Cluster 4. Three different postural patterns emerged in accordance with the sagittal postural profiles in children with bilateral cerebral palsy and were defined as follows: 1) a lordotic postural pattern corresponding to forward-leaning posture; 2) a swayback postural pattern corresponding to backward-leaning posture; and 3) a balanced postural pattern corresponding to balanced posture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Volume and fat infiltration of spino-pelvic musculature in adults with spinal deformity
Moal, Bertrand; Bronsard, Nicolas; Raya, José G; Vital, Jean Marc; Schwab, Frank; Skalli, Wafa; Lafage, Virginie
2015-01-01
AIM: To investigate fat infiltration and volume of spino-pelvic muscles in adults spinal deformity (ASD) with magnetic resonance imaging (MRI) and 3D reconstructions. METHODS: Nineteen female ASD patients (mean age 60 ± 13) were included prospectively and consecutively and had T1-weighted Turbo Spin Echo sequence MRIs with Dixon method from the proximal tibia up to T12 vertebra. The Dixon method permitted to evaluate the proportion of fat inside each muscle (fat-water ratio). In order to investigate the accuracy of the Dixon method for estimating fat vs water, the same MRI acquisition was performed on phantoms of four vials composed of different proportion of fat vs water. With Muscl’X software, 3D reconstructions of 17 muscles or group of muscles were obtained identifying the muscle’s contour on a limited number of axial images [Deformation of parametric specific objects (DPSO) Method]. Musclar volume (Vmuscle), infiltrated fat volume (Vfat) and percentage of fat infiltration [Pfat, calculated as follow: Pfat = 100 × (Vfat/Vmuscle)] were characterized by extensor or flexor function respectively for the spine, hip and knee and theirs relationship with demographic data were investigated. RESULTS: Phantom acquisition demonstrated a non linear relation between Dixon fat-water ratio and the real fat-water ratio. In order to correct the Dixon fat-water ratio, the non linear relation was approximated with a polynomial function of degree three using the phantom acquisition. On average, Pfat was 13.3% ± 5.3%. Muscles from the spinal extensor group had a Pfat significantly greater than the other muscles groups, and the largest variability (Pfat = 31.9% ± 13.8%, P < 0.001). Muscles from the hip extensor group ranked 2nd in terms of Pfat (14% ± 8%), and were significantly greater than those of the knee extensor (P = 0.030). Muscles from the knee extensor group demonstrated the least Pfat (12% ± 8%). They were also the only group with a significant correlation between Vmuscle and Pfat (r = -0.741, P < 0.001), however this correlation was lacking in the other groups. No correlation was found between the Vmuscle total and age or body mass index. Except for the spine flexors, Pfat was correlated with age. Vmuscle and Vfat distributions demonstrated that muscular degeneration impacted the spinal extensors most. CONCLUSION: Mechanisms of fat infiltration are not similar among the muscle groups. Degeneration impacted the spinal and hip extensors most, key muscles of the sagittal alignment. PMID:26495250
Smith, Justin S; Singh, Manish; Klineberg, Eric; Shaffrey, Christopher I; Lafage, Virginie; Schwab, Frank J; Protopsaltis, Themistocles; Ibrahimi, David; Scheer, Justin K; Mundis, Gregory; Gupta, Munish C; Hostin, Richard; Deviren, Vedat; Kebaish, Khaled; Hart, Robert; Burton, Douglas C; Bess, Shay; Ames, Christopher P
2014-08-01
Increased sagittal vertical axis (SVA) correlates strongly with pain and disability for adults with spinal deformity. A subset of patients with sagittal spinopelvic malalignment (SSM) have flatback deformity (pelvic incidence-lumbar lordosis [PI-LL] mismatch > 10°) but remain sagittally compensated with normal SVA. Few data exist for SSM patients with flatback deformity and normal SVA. The authors' objective was to compare baseline disability and treatment outcomes for patients with compensated (SVA < 5 cm and PI-LL mismatch > 10°) and decompensated (SVA > 5 cm) SSM. The study was a multicenter, prospective analysis of adults with spinal deformity who consecutively underwent surgical treatment for SSM. Inclusion criteria included age older than 18 years, presence of adult spinal deformity with SSM, plan for surgical treatment, and minimum 1-year follow-up data. Patients with SSM were divided into 2 groups: those with compensated SSM (SVA < 5 cm and PI-LL mismatch > 10°) and those with decompensated SSM (SVA ≥ 5 cm). Baseline and 1-year follow-up radiographic and health-related quality of life (HRQOL) outcomes included Oswestry Disability Index, Short Form-36 scores, and Scoliosis Research Society-22 scores. Percentages of patients achieving minimal clinically important difference (MCID) were also assessed. A total of 125 patients (27 compensated and 98 decompensated) met inclusion criteria. Compared with patients in the compensated group, patients in the decompensated group were older (62.9 vs. 55.1 years; p = 0.004) and had less scoliosis (43° vs 54°; p = 0.002), greater SVA (12.0 cm vs. 1.7 cm; p < 0.001), greater PI-LL mismatch (26° vs. 20°; p = 0.013), and poorer HRQOL scores (Oswestry Disability Index, Short Form-36 physical component score, Scoliosis Research Society-22 total; p ≤ 0.016). Although these baseline HRQOL differences between the groups reached statistical significance, only the mean difference in Short Form-36 physical component score reached threshold for MCID. Compared with baseline assessment, at 1 year after surgery improvement was noted for patients in both groups for mean SVA (compensated -1.1 cm, decompensated +4.8 cm; p ≤ 0.009), mean PI-LL mismatch (compensated 6°, decompensated 5°; p < 0.001), and all HRQOL measures assessed (p ≤ 0.005). No significant differences were found between the compensated and decompensated groups in the magnitude of HRQOL score improvement or in the percentages of patients achieving MCID for each of the outcome measures assessed. Decompensated SSM patients with elevated SVA experience significant disability; however, the amount of disability in compensated SSM patients with flatback deformity caused by PI-LL mismatch but normal SVA is underappreciated. Surgical correction of SSM demonstrated similar radiographic and HRQOL score improvements for patients in both groups. Evaluation of SSM should extend beyond measuring SVA. Among patients with concordant pain and disability, PI-LL mismatch must be evaluated for SSM patients and can be considered a primary indication for surgery.
Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás
2012-11-01
Three-dimensional (3D) deformations of the spine are predominantly characterized by two-dimensional (2D) angulation measurements in coronal and sagittal planes, using anteroposterior and lateral X-ray images. For coronal curves, a method originally described by Cobb and for sagittal curves a modified Cobb method are most widely used in practice, and these methods have been shown to exhibit good-to-excellent reliability and reproducibility, carried out either manually or by computer-based tools. Recently, an ultralow radiation dose-integrated radioimaging solution was introduced with special software for realistic 3D visualization and parametric characterization of the spinal column. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and sterEOS 3D measurements in a routine clinical setting. Retrospective nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4° and 117.5°. Analysis of accuracy and reliability of measurements were carried out on a group of all patients and in subgroups based on coronal plane deviation: 0° to 10° (Group 1, n=36), 10° to 25° (Group 2, n=25), 25° to 50° (Group 3, n=69), 50° to 75° (Group 4, n=49), and more than 75° (Group 5, n=22). Coronal and sagittal curvature measurements were determined by three experienced examiners, using either traditional 2D methods or automatic measurements based on sterEOS 3D reconstructions. Manual measurements were performed three times, and sterEOS 3D reconstructions and automatic measurements were performed two times by each examiner. Means comparison t test, Pearson bivariate correlation analysis, reliability analysis by intraclass correlation coefficients for intraobserver reproducibility and interrater reliability were performed using SPSS v16.0 software (IBM Corp., Armonk, NY, USA). No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this article. In comparison with manual 2D methods, only small and nonsignificant differences were detectable in sterEOS 3D-based curvature data. Intraobserver reliability was excellent for both methods, and interrater reproducibility was consistently higher for sterEOS 3D methods that was found to be unaffected by the magnitude of coronal curves or sagittal plane deviations. This is the first clinical report on EOS 2D/3D system (EOS Imaging, Paris, France) and its sterEOS 3D software, documenting an excellent capability for accurate, reliable, and reproducible spinal curvature measurements. Copyright © 2012 Elsevier Inc. All rights reserved.
Passias, Peter G; Jalai, Cyrus M; Line, Breton G; Poorman, Gregory W; Scheer, Justin K; Smith, Justin S; Shaffrey, Christopher I; Burton, Douglas C; Fu, Kai-Ming G; Klineberg, Eric O; Hart, Robert A; Schwab, Frank; Lafage, Virginie; Bess, Shay
2018-02-01
Non-operative management is a common initial treatment for patients with adult spinal deformity (ASD) despite reported superiority of surgery with regard to outcomes. Ineffective medical care is a large source of resource drain on the health system. Characterization of patients with ASD likely to elect for operative treatment from non-operative management may allow for more efficient patient counseling and cost savings. This study aimed to identify deformity and disability characteristics of patients with ASD who ultimately convert to operative treatment compared with those who remain non-operative and those who initially choose surgery. A retrospective review was carried out. A total of 510 patients with ASD (189 non-operative, 321 operative) with minimum 2-year follow-up comprised the patient sample. Oswestry Disability Index (ODI), Short-Form 36 Health Assessment (SF-36), Scoliosis Research Society questionnaire (SRS-22r), and spinopelvic radiographic alignment were the outcome measures. Demographic, radiographic, and patient-reported outcome measures (PROMs) from a cohort of patients with ASD prospectively enrolled into a multicenter database were evaluated. Patients were divided into three treatment cohorts: Non-operative (NON=initial non-operative treatment and remained non-operative), Operative (OP=initial operative treatment), and Crossover (CROSS=initial non-operative treatment with subsequent conversion to operative treatment). NON and OP groups were propensity score-matched (PSM) to CROSS for baseline demographics (age, body mass index, Charlson Comorbidity Index). Time to crossover was divided into early (<1 year) and late (>1 year). Outcome measures were compared across and within treatment groups at four time points (baseline, 6 weeks, 1 year, and 2 years). Following PSM, 118 patients were included (NON=39, OP=38, CROSS=41). Crossover rate was 21.7% (41/189). Mean time to crossover was 394 days. All groups had similar baseline sagittal alignment, but CROSS had larger pelvic incidence and lumbar lordosis (PI-LL) mismatch than NON (11.9° vs. 3.1°, p=.032). CROSS and OP had similar baseline PROM scores; however, CROSS had worse baseline ODI, PCS, SRS-22r (p<.05). At time of crossover, CROSS had worse ODI (35.7 vs. 27.8) and SRS Satisfaction (2.6 vs. 3.3) compared with NON (p<.05). Alignment remained similar for CROSS from baseline to conversion; however, PROMs (ODI, PCS, SRS Activity/Pain/Total) worsened (p<.05). Early and late crossover evaluation demonstrated CROSS-early (n=25) had worsening ODI, SRS Activity/Pain at time of crossover (p<.05). From time of crossover to 2-year follow-up, CROSS-early had less SRS Appearance/Mental improvement compared with OP. Both CROSS-early/late had worse baseline, but greater improvements, in ODI, PCS, SRS Pain/Total compared with NON (p<.05). Baseline alignment and disability parameters increased crossover odds-Non with Schwab T/L/D curves and ODI≥40 (odds ratio [OR]: 3.05, p=.031), and Non with high PI-LL modifier grades ("+"/'++') and ODI≥40 (OR: 5.57, p=.007) were at increased crossover risk. High baseline and increasing disability over time drives conversion from non-operative to operative ASD care. CROSS patients had similar spinal deformity but worse PROMs than NON. CROSS achieved similar 2-year outcome scores as OP. Profiling at first visit for patients at risk of crossover may optimize physician counseling and cost savings. Copyright © 2017. Published by Elsevier Inc.
Spine: posture, mobility and pain. A longitudinal study from childhood to adolescence.
Widhe, T
2001-04-01
A longitudinal study was undertaken to analyse the development of posture and spinal mobility during growth and its relationship to low back pain and sports activities. A total of 90 children were examined at 5-6 years of age and re-examined at 15-16. Sagittal configuration and mobility were measured using Debrunner's kyphometer. Information about pain and activities was acquired by interview with the parents of the 5- to 6-year-olds and by a questionnaire to the 15- to 16-year-olds. Posture changed significantly during the study period: thoracic kyphosis increased by 6 degrees and lumbar lordosis increased by 6 degrees. The relationship between kyphosis and lordosis was independent of gender at age 5-6, but kyphosis in relation to lordosis was significantly lower in girls among the 15- to 16-year-olds. The total sagittal mobility of the spine decreased significantly during the 10-year study period: in the thoracic spine by as much as 27 degrees and in the lumbar spine by 4 degrees. About one-third of the children at the age of 15-16 years stated that they had occasional low back pain. This complaint was more frequent in those stating they had suffered some type of back injury, but low back pain was not related to gender, regular physical training, posture or spinal mobility. The results of the study showed that kyphosis and lordosis increased and mobility decreased in the 90 children who were examined both at age 5-6 and 15-16 years. The relationship between kyphosis and lordosis decreased in girls but not in boys. Occasional low back pain was reported by 38% of the children at the age of 15-16 years, but back pain was not related to posture, spinal mobility or physical activity.
Evaluation of cervical posture of children in skeletal class I, II, and III.
D'Attilio, Michele; Caputi, Sergio; Epifania, Ettore; Festa, Felice; Tecco, Simona
2005-07-01
Previous studies on the relationship between morphological structure of the face and cervical posture have predominantly focused on vertical dimensions of the face. The aim of this study was to investigate whether there are significant differences in cervical posture in subjects with a different sagittal morphology of the face, i.e., a different skeletal class. One hundred twenty (120) children (60 males and 60 females, average age 9.5 yrs., SD+/-0.5) were admitted for orthodontic treatment. Selection criteria was: European ethnic origin, date of birth, considerable skeletal growth potential remaining and an absence of temporomandibular joint dysfunction (TMD). Lateral skull radiographs were taken in mirror position. Subjects were divided into three groups based on their skeletal class. The cephalometric tracings included postural variables. The most interesting findings were: 1. children in skeletal class III showed a significantly lower cervical lordosis angle (p<0.001) than the children in skeletal class I and skeletal class II; 2. children in skeletal class II showed a significantly higher extension of the head upon the spinal column compared to children in skeletal class I and skeletal class III (p<0.001 and p<0.01, respectively). This is probably because the lower part of their spinal column was straighter than those of subjects in skeletal class I and II (p<0.01 and p<0.001, respectively). Significant differences among the three groups were also observed in the inclination of maxillary and mandibular bases to the spinal column. The posture of the neck seems to be strongly associated with the sagittal as well as the vertical structure of the face.
Postural Consequences of Cervical Sagittal Imbalance: A Novel Laboratory Model.
Patwardhan, Avinash G; Havey, Robert M; Khayatzadeh, Saeed; Muriuki, Muturi G; Voronov, Leonard I; Carandang, Gerard; Nguyen, Ngoc-Lam; Ghanayem, Alexander J; Schuit, Dale; Patel, Alpesh A; Smith, Zachary A; Sears, William
2015-06-01
A biomechanical study using human spine specimens. To study postural compensations in lordosis angles that are necessary to maintain horizontal gaze in the presence of forward head posture and increasing T1 sagittal tilt. Forward head posture relative to the shoulders, assessed radiographically using the horizontal offset distance between the C2 and C7 vertebral bodies (C2-C7 [sagittal vertical alignment] SVA), is a measure of global cervical imbalance. This may result from kyphotic alignment of cervical segments, muscle imbalance, as well as malalignment of thoracolumbar spine. Ten cadaveric cervical spines (occiput-T1) were tested. The T1 vertebra was anchored to a tilting and translating base. The occiput was free to move vertically but its angular orientation was constrained to ensure horizontal gaze regardless of sagittal imbalance. A 5-kg mass was attached to the occiput to mimic head weight. Forward head posture magnitude and T1 tilt were varied and motions of individual vertebrae were measured to calculate C2-C7 SVA and lordosis across C0-C2 and C2-C7. Increasing C2-C7 SVA caused flexion of lower cervical (C2-C7) segments and hyperextension of suboccipital (C0-C1-C2) segments to maintain horizontal gaze. Increasing kyphotic T1 tilt primarily increased lordosis across the C2-C7 segments. Regression models were developed to predict the compensatory C0-C2 and C2-C7 angulation needed to maintain horizontal gaze given values of C2-C7 SVA and T1 tilt. This study established predictive relationships between radiographical measures of forward head posture, T1 tilt, and postural compensations in the cervical lordosis angles needed to maintain horizontal gaze. The laboratory model predicted that normalization of C2-C7 SVA will reduce suboccipital (C0-C2) hyperextension, whereas T1 tilt reduction will reduce the hyperextension in the C2-C7 segments. The predictive relationships may help in planning corrective strategy in patients experiencing neck pain, which may be attributed to sagittal malalignment. N/A.
Hyun, Seung-Jae; Kim, Ki-Jeong; Jahng, Tae-Ahn; Kim, Hyun-Jib
2016-04-01
Retrospective study. To assess the relationship between sagittal alignment of the cervical spine and patient-reported health-related quality-of-life scores following multilevel posterior cervical fusion, and to explore whether an analogous relationship exists in the cervical spine using T1 slope minus C2-C7 lordosis (T1S-CL). A recent study demonstrated that, similar to the thoracolumbar spine, the severity of disability increases with sagittal malalignment following cervical reconstruction surgery. From 2007 to 2013, 38 consecutive patients underwent multilevel posterior cervical fusion for cervical stenosis, myelopathy, and deformities. Radiographic measurements included C0-C2 lordosis, C2-C7 lordosis, C2-C7 sagittal vertical axis (SVA), T1 slope, and T1S-CL. Pearson correlation coefficients were calculated between pairs of radiographic measures and health-related quality-of-life. C2-C7 SVA positively correlated with neck disability index (NDI) scores (r = 0.495). C2-C7 lordosis (P = 0.001) and T1S-CL (P = 0.002) changes correlated with NDI score changes after surgery. For significant correlations between C2-C7 SVA and NDI scores, regression models predicted a threshold C2-C7 SVA value of 50 mm, beyond which correlations were most significant. The T1S-CL also correlated positively with C2-C7 SVA and NDI scores (r = 0.871 and r = 0.470, respectively). Results of the regression analysis indicated that a C2-C7 SVA value of 50 mm corresponded to a T1S-CL value of 26.1°. This study showed that disability of the neck increased with cervical sagittal malalignment following surgical reconstruction and a greater T1S-CL mismatch was associated with a greater degree of cervical malalignment. Specifically, a mismatch greater than 26.1° corresponded to positive cervical sagittal malalignment, defined as C2-C7 SVA greater than 50 mm. 3.
Bonacker, J; Janousek, M; Kröber, M
2014-02-01
Pregnancy-associated osteoporosis is a rare condition, which imposes multiple symptoms in the musculoskeletal system. Common complaints announced by patients are severe pain in the lower back, hips and the joints of the lower extremities with a reduced and less mobility status in general. Most of the patients' problems occur in the last trimester of pregnancy or postpartum and are often not diagnosed as side effects of osteoporosis but as problems associated with pregnancy. Although vertebral fractures are rare complications of pregnancy-associated osteoporosis, they should be always considered in women presenting with an acute pain syndrome in peripregnancy period. This case presents a 40-year-old primagravid woman who developed pain in hips and severe pain in the lower back causing an immobilization diagnosed with a pregnancy-associated osteoporosis with eight compression fractures in the thoracic and lumbar spine. Because of sagittal imbalance of the spine, she was treated with kyphoplasty at the four lumbar fractures and with bracing for the upper, thoracic ones, additional to the conservative anti-osteoporotic therapy. The authors discuss pregnancy-associated osteoporosis and its clinical presentation, as well as the indications of kyphoplasty, spinal alignment and the risk of single conservative treatment.
Effect of mat pilates exercise on postural alignment and body composition of middle-aged women
Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun
2016-01-01
[Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment. PMID:27390396
Rothenfluh, Dominique A; Mueller, Daniel A; Rothenfluh, Esin; Min, Kan
2015-06-01
Several risk factors and causes of adjacent segment disease have been debated; however, no quantitative relationship to spino-pelvic parameters has been established so far. A retrospective case-control study was carried out to investigate spino-pelvic alignment in patients with adjacent segment disease compared to a control group. 45 patients (ASDis) were identified that underwent revision surgery for adjacent segment disease after on average 49 months (7-125), 39 patients were selected as control group (CTRL) similar in the distribution of the matching variables, such as age, gender, preoperative degenerative changes, and numbers of segments fused with a mean follow-up of 84 months (61-142) (total n = 84). Several radiographic parameters were measured on pre- and postoperative radiographs, including lumbar lordosis measured (LL), sacral slope, pelvic incidence (PI), and tilt. Significant differences between ASDis and CTRL groups on preoperative radiographs were seen for PI (60.9 ± 10.0° vs. 51.7 ± 10.4°, p = 0.001) and LL (48.1 ± 12.5° vs. 53.8 ± 10.8°, p = 0.012). Pelvic incidence was put into relation to lumbar lordosis by calculating the difference between pelvic incidence and lumbar lordosis (∆PILL = PI-LL, ASDis 12.5 ± 16.7° vs. CTRL 3.4 ± 12.1°, p = 0.001). A cutoff value of 9.8° was determined by logistic regression and ROC analysis and patients classified into a type A (∆PILL <10°) and a type B (∆PILL ≥10°) alignment according to pelvic incidence-lumbar lordosis mismatch. In type A spino-pelvic alignment, 25.5 % of patients underwent revision surgery for adjacent segment disease, whereas 78.3 % of patients classified as type B alignment had revision surgery. Classification of patients into type A and B alignments yields a sensitivity for predicting adjacent segment disease of 71 %, a specificity of 81 % and an odds ratio of 10.6. In degenerative disease of the lumbar spine a high pelvic incidence with diminished lumbar lordosis seems to predispose to adjacent segment disease. Patients with such pelvic incidence-lumbar lordosis mismatch exhibit a 10-times higher risk for undergoing revision surgery than controls if sagittal malalignment is maintained after lumbar fusion surgery.
Hey, Hwee Weng Dennis; Kim, Cheung-Kue; Lee, Won-Gyu; Juh, Hyung-Suk; Kim, Ki-Tack
2017-12-01
The aim of spinal deformity correction is to restore the spine's functional alignment by balancing it in both the sagittal and coronal planes. Regardless of posture, the ideal coronal profile is straight, and therefore readily assessable. This study compares two radiological methods to determine which better predicts postoperative standing coronal balance. We conducted a single-center, radiographic comparative study between 2011 and 2015. A total of 199 patients with a mean age of 55.1 years were studied. Ninety patients with degenerative lumbar scoliosis (DLS) and 109 ankylosing spondylitis (AS) were treated with posterior surgery during this period. Baseline clinical and radiographic parameters (sagittal and coronal) were recorded. Comparison was performed between the new supra-acetabular line (central sacral vertical line [CSVL1]) and conventional supra-iliac line (CSVL2) perpendicular methods of coronal balance assessment. These methods were also compared with the gold standard standing C7 plumb line. Each patient underwent standardized operative procedures and had perioperative spine X-rays obtained for assessment of spinal balance. Adjusted multivariate analysis was used to determine predictors of coronal balance. Significant differences in baseline characteristics (age, gender, and radiographic parameters) were found between patients with DLS and AS. CSVL1, CSVL2, and C7 plumb line differed in all the perioperative measurements. These three radiological methods showed a mean right coronal imbalance for both diagnoses in all pre-, intra-, and postoperative radiographs. The magnitude of imbalance was the greatest for CSVL2 followed by CSVL1 and subsequently the C7 plumb line. A larger discrepancy between CSVL and C7 plumb line measurements intraoperatively than those postoperatively suggests a postural effect on these parameters, which is greater for CSVL2. Multivariate analysis identified that in DLS, the preoperative C7 plumb line was predictive of its postoperative value. CSVL1, but not CSVL2, was predictive of the postoperative C7 plumb line in patients with AS. The supra-acetabular line (CSVL1) is better, although not ideal, as compared with the supra-iliac line (CSVL2) in determining coronal balance. Because CSVL1 still cannot be relied on with a high predictive value, it is imperative that future studies continue to identify better intraoperative markers for achieving coronal balance. Copyright © 2017 Elsevier Inc. All rights reserved.
Sagittal plane analysis of the spine and pelvis in degenerative lumbar scoliosis.
Han, Fei; Weishi, Li; Zhuoran, Sun; Qingwei, Ma; Zhongqiang, Chen
2017-01-01
Previous studies have reported the normative values of pelvic sagittal parameters, but no study has analyzed the sagittal spino-pelvic alignment in degenerative lumbar scoliosis (DLS) and its role in the pathogenesis. Retrospective analysis was applied to 104 patients with DLS, together with 100 cases of asymptomatic young adults as a control group and another control group consisting of 145 cases with cervical spondylosis. The coronal and sagittal parameters were measured on the anteroposterior and lateral radiograph of the whole spine in the DLS group as well as in the two control groups. Statistical analysis showed that the DLS group had a higher pelvic incidence (PI) value (50.5° ± 10.2°), than the normal control group (with PI 47.2° ± 8.8°) and the cervical spondylosis group (46.9° ± 9.1°). In DLS group, there were 38 cases (36.5%) complicated with degenerative lumbar spondylolisthesis, who had higher PI values than patients without it. Besides, the lumbar lordosis (LL) and sacral slope (SS) of DLS group were lower; the scoliosis Cobb's angle was correlated with pelvic tilt (PT); thoracic kyphosis was correlated with LL, SS, and PT; and LL was correlated with other sagittal parameters. Patients with DLS may have a higher PI, which may impact the pathogenesis of DLS. A high PI value is probably associated with the high prevalence of degenerative lumbar spondylolisthesis among DLS patients. In DLS patients, the lumbar spine maintains the ability of regulating the sagittal balance, and the regulation depends more on thoracic curve.
Serial elongation-derotation-flexion casting for children with early-onset scoliosis.
Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie
2015-12-18
Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois.
Serial elongation-derotation-flexion casting for children with early-onset scoliosis
Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie
2015-01-01
Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois. PMID:26716089
A self-aligning knee joint for walking assistance devices.
Byungjune Choi; Younbaek Lee; Jeonghun Kim; Minhyung Lee; Jongwon Lee; Se-Gon Roh; Hyundo Choi; Yong-Jae Kim; Jung-Yun Choi
2016-08-01
This paper presents a novel self-aligning knee mechanism for walking assistance devices for the elderly to provide physical gait assistance. Self-aligning knee joints can assist in flexion/extension motions of the knee joint and compensate the knee's transitional movements in the sagittal plane. In order to compensate the center of rotation, which moves with the flexion/extension motion of the human knee joint, a self-aligning knee joint is proposed that adds redundant degrees of freedom (i.e., 2-DoF) to the 1-DoF revolute joint. The key idea of the proposed mechanism is to decouple joint rotations and translations for use in lower-extremity wearable devices. This paper describes the mechanical design of this self-aligning knee mechanism and its implementation on a wearable robot and in preliminary experiments. The performance of the proposed mechanism is verified by simulations and experiments.
Cool, Steve; Victor, Jan; De Baets, Thierry
2006-12-01
Fifty unicompartmental knee arthroplasties (UKAs) were performed through a minimally invasive approach and were reviewed with an average follow-up of 3.7 years. This technique leads to reduced access to surgical landmarks. The purpose of this study was to evaluate whether correct component positioning is possible through this less invasive approach. Component positioning, femorotibial alignment and early outcomes were evaluated. We observed perfect tibial component position, but femoral component position was less consistent, especially in the sagittal plane. Femorotibial alignment in the coronal plane was within 2.5 degrees of the desired axis for 80% of the cases. Femoral component position in the sagittal plane was within a 10 degrees range of the ideal for 70% of the cases. The mean IKS Knee Function Score and Knee Score were 89/100 and 91/100 respectively. We observed two polyethylene dislocations, and one revision was performed for progressive patellofemoral arthrosis. According to our data, minimally invasive UKA does not conflict with component positioning although a learning curve needs to be respected, with femoral component positioning as the major obstacle.
How to measure kyphosis in everyday clinical practice: a reliability study on different methods.
Zaina, Fabio; Donzelli, Sabrina; Lusini, Monia; Negrini, Stefano
2012-01-01
The sagittal plane measures have a relevant role both in Idiopathic Scoliosis (AIS) and in Hyperkyphosis (HK) management. Nevertheless, clinical tools for everyday use are scarce and not adequately studied. To assess the repeatability of different methods for the collection of the sagittal profile of patients with spinal deformities during everyday clinics. We performed 4 different studies in 4 different populations of AIS and HK patients. In the first study we reported the normative data and measurement error of the plumbline measures in a general population of 180 adolescents. In the second study we compared the sagittal distances from the plumbline of C7, T12, L3, and Sagittal Index (SI = C7+L3) with the measures of the Video Rasterstereography at the same levels and the angles of kyphosis and lordosis in 100 AIS patients. In the third study we evaluated the intra and inter-rater repeatability and the measurement error of kyphosis and lordosis angles measured with the Inclimed in 100 AIS patients. In the last study we evaluated the repeatability of the sagittal distances from the plumbline, by using a 1 mm change instead of 5 mm in a population of 40 patients. repeatability has been evaluated according to Bland and Altman, to identify the limits of variation that are clinically significant. Results. Study 1: the normative data were: females: 34 ± 11 mm for C7; 34 ± 15 mm for L3, males: 34 ± 10 mm for C7; 48 ± 10 mm for L3;. Study 2: a coefficient of correlation was calculated in order to compare measures. Study 3: the k value for Inclimed varied from fair to good. Study 4: the repeatability was fair for this measure. Some clinical instruments are now available for sagittal plane assessment in AIS and hyperkyphosis. The results of the present study report the limits during measurements in a clinical setting of parameters that are routinely collected by some clinicians.
Franklin, Samuel P; Dover, Ryan K; Andrade, Natalia; Rosselli, Desiree; M Clarke, Kevin
2017-11-01
To describe oblique plane inclined osteotomies and report preliminary data on outcomes in dogs treated for antebrachial angulation-rotation deformities. Retrospective clinical study. Six antebrachii from 5 dogs. Records of dogs with antebrachial angulation-rotation deformities treated with oblique plane inclined osteotomies were reviewed. Postoperative frontal, sagittal, and transverse plane alignments were assessed subjectively, and alignment in the frontal and sagittal planes was quantified on radiographs. Outcomes were classified based on owner's and veterinarian's evaluation as full, acceptable, and unacceptable function. Complications were classified as minor, major, or catastrophic. Limb alignment was subjectively considered excellent in 1 case, good in 3 cases, and fair in 2 cases. Osseous union was achieved in all cases (mean 10.5 weeks; range, 6-13 weeks). Outcomes were assessed by the veterinarian as return to full function in 5 cases and acceptable function in 1 case at the final in-hospital follow-up (mean 44 weeks; range, 6-124 weeks). All owners classified their dogs as returning to full function at the final phone/email interview (mean 107 weeks; range, 72-153 weeks). Implants were removed due to infection or irritation in 3/6 limbs, while the other 3 limbs had minor dermatitis secondary to postoperative external coaptation. No catastrophic complications occurred. Oblique plane inclined osteotomies led to a successful outcome in all 6 limbs, but the technique can be challenging and does not always lead to optimal alignment. Future refinement of this technique could focus on the development of patient-specific osteotomy guides to improve accuracy and precision. © 2017 The American College of Veterinary Surgeons.
Ferrero, E; Ilharreborde, B; Mas, V; Vidal, C; Simon, A-L; Mazda, K
2018-01-20
Major concern during surgery for high-grade spondylolisthesis (HGS) is to reduce lumbosacral kyphosis and restore sagittal alignment. Despite the numerous methods described, lumbosacral fixation in HGS is a challenging technique associated with high complication rate. Few series have described outcomes and most of the results are limited to lumbosacral correction without global sagittal alignment analysis. This study aims at analyzing clinical and radiological outcomes of HGS patients treated with intrasacral rods on full spine radiographs. HGS patients (Meyerding III or higher) operated between 2004 and 2014 were reviewed. All patients underwent full spine stereoradiographic images. After L5 and S1 decompression, reduction and circumferential fusion with intrasacral rod fixation and fusion up to L4 were performed under fluoroscopy. The entry points for S1 screws were located 3-5 mm above and 5 mm lateral to the first sacral hole, toward the promontory. The two short distal fusion rods were then positioned into the sacrum guided by anteroposterior fluoroscopy using Jackson's technique. Then, sacral dome resection was performed and a PEEK cage was impacted in L5S1 after reduction. Postoperatively, the hip and knee were kept flexed at 45° for 1 week and extended progressively. Preoperative, 3 months postoperative and last follow-up (> 2 years minimum) clinical and radiographic data were collected. Sagittal parameters included lumbosacral angle (LSA), olisthesis, T1 spinopelvic inclination (T1SPi) and spinopelvic parameters. 20 HGS patients were included (8 ptosis, 5 Meyerding IV). The mean age was 14 years. At final FU (7.2 years ± 3), LSA kyphosis and olisthesis were reduced (65° ± 14 vs 99° ± 11, p < 0.001 and 81% ± 19 vs 45% ± 18, p < 0.001, respectively). While L1L5 lordosis decreased, T1T12 kyphosis increased. At FU, global alignment with T1SPi was - 6° ± 3. No significant loss of correction was observed. Regarding complications, ten patients presented transient L5 motor deficit that occurred when patients were put in standing position. However, all recovered before 3 months postoperatively. Intrasacral rod fixation appears to be an effective technique to correct LSA kyphosis, compensatory hyperlordosis and restore global sagittal alignment with a postoperative T1SPi corresponding to the value of the asymptomatic subject and achieve fusion. However, it remains a demanding technique with high risk of transient neurologic complications.
Abol Oyoun, Nariman; Stuecker, Ralf
2014-07-01
Neuromuscular scoliosis could develop at a young age and progress beyond skeletal maturity. An early spinal fusion arrests growth of the spine and thorax, risking the development of secondary thoracic insufficiency syndrome. Vertical expandable prosthetic titanium rib (VEPTR) is a fusionless technique aiming at correction of the deformity with preservation of growth potential. To demonstrate the preliminary results of the use of VEPTR in an Eiffel Tower construct in children with neuromuscular scoliosis in regard to coronal and sagittal profiles, space available for the lungs (SAL), and spinal growth. The report lists the complications we faced during the follow-up of 1.33 years after the index procedure. A retrospective analysis of prospectively collected data of a case series. Twenty nonambulatory children (mean 8.9 years) with neuromuscular scoliosis. Their primary diagnoses were myelomeningocele in seven, cerebral palsy in three, spinal muscular atrophy in two, myopathies in three, arthrogryposis in one, and syndromic scoliosis in four patients. All 20 patients received percutaneous rib-to-pelvis VEPTR implantation. Mean operative time was 2 hours, and mean hospital stay was 12 days. None of them needed blood transfusion. They underwent 20 primary implantations and 39 lengthenings. The patients were assessed based on physiologic measures, that is, the radiographic improvement of their scoliosis, SAL, pelvic tilt, spinal height, and sagittal and coronal decompensation. At the latest follow-up, thoracolumbar curvature improved significantly (65.7°±20.5° to 49.9°±15.7°), as did lumbar curvature (61.6°±19.5° to 35°±21.2°), thoracic (17.2±2.3 to 20±2.3 cm) and lumbar spinal height (9.9±1.7 to 11.9±1.8 cm), SAL (86.5±8.9 to 97±10), pelvic obliquity (12.5°±8° to 5.2°± 5.2°), and the iliolumbar angle (15°±8° to 10.06°±7.1°). Nine patients suffered complications in the form of proximal cradle migration (five), implant breakage (five), deep wound infection (three), and dislodged iliac hooks (two). Early results of VEPTR for neuromuscular scoliosis are encouraging. Follow-up till skeletal maturity will best determine future indications. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Yun-Peng; Qian, Bang-Ping; Qiu, Yong; Qu, Zhe; Mao, Sai-Hu; Jiang, Jun; Zhu, Ze-Zhang
2017-08-01
This is a retrospective study. To identify the relationship between global sagittal alignment and health-related quality of life (HRQoL) in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. Little data are available on correlation between global sagittal alignment and HRQoL in AS. A total of 107 AS patients were included in this study. The radiographic parameters were measured on lateral radiographs of the whole spine, including sagittal vertical axias (SVA), spinosacral angle (SSA), spinopelvic angle (SPA), and T1 pelvic angle (TPA). HRQoL was assessed using the oswestry disability index questionnaire, the bath ankylosing spondylitis disease activity index, the bath ankylosing spondylitis functional index, and short form-36 questionnaire. The patients were divided into 2 groups: group A (n=76, global kyphosis≤70 degrees), group B (n=31, global kyphosis>70 degrees). Statistical analysis was performed to identify significant differences between these 2 groups. In addition, correlation analysis and multiple regression analysis between radiologic parameters and clinical questionnaires were conducted. With respect to SVA, SSA, SPA, TPA, and HRQoL scores, significant differences were observed between 2 groups (P<0.05). Also, SVA, SSA, SPA, and TPA were significantly related to HRQoL. Multiple regression analysis revealed that SVA, SSA, SPA, and TPA were significant parameters in the prediction of HRQoL in AS patients with thoracolumbar kyphosis. Of note, HRQoL related much more to SSA and SPA than SVA and TPA. AS patients with moderate and severe deformity were demonstrated to be significantly different in terms of SVA, SSA, SPA, TPA, and HRQoL. Moreover, SVA, SSA, SPA, and TPA correlated with HRQoL significantly. In particular, SSA and SPA could better predict HRQoL than SVA and TPA in AS patients with thoracolumbar kyphosis.
Sudo, Hideki; Ito, Manabu; Kaneda, Kiyoshi; Shono, Yasuhiro; Takahata, Masahiko; Abumi, Kuniyoshi
2013-05-01
Retrospective review. To assess the long-term outcomes of anterior spinal fusion (ASF) for treating thoracic adolescent idiopathic scoliosis (AIS). Although ASF is reported to provide good coronal and sagittal correction of the main thoracic (MT) AIS curves, the long-term outcomes of ASF is unknown. A consecutive series of 25 patients with Lenke 1 MT AIS were included. Outcome measures comprised radiographical measurements, pulmonary function, and Scoliosis Research Society outcome instrument (SRS-30) scores (preoperative SRS-30 scores were not documented). Postoperative surgical revisions and complications were recorded. Twenty-five patients were followed-up for 12 to 18 years (average, 15.2 yr). The average MT Cobb angle correction rate and the correction loss at the final follow-up were 56.7% and 9.2°, respectively. The average preoperative instrumented level of kyphosis was 8.3°, which significantly improved to 18.6° (P = 0.0003) at the final follow-up. The average percent-predicted forced vital capacity and forced expiratory volume in 1 second were significantly decreased during long-term follow-up measurements (73% and 69%; P = 0.0004 and 0.0016, respectively). However, no patient had complaints related to pulmonary function. The average total SRS-30 score was 4.0. Implant breakage was not observed. All patients, except 1 who required revision surgery, demonstrated solid fusion. Late instrumentation-related bronchial problems were observed in 1 patient who required implant removal and bronchial tube repair, 13 years after the initial surgery. Overall radiographical findings and patient outcome measures of ASF for Lenke 1 MT AIS were satisfactory at an average follow-up of 15 years. ASF provides significant sagittal correction of the main thoracic curve with long-term maintenance of sagittal profiles. Percent-predicted values of forced vital capacity and forced expiratory volume in 1 second were decreased in this cohort; however, no patient had complaints related to pulmonary function.
Yilmaz, Guney; Borkhuu, Battugs; Dhawale, Arjun A; Oto, Murat; Littleton, Aaron G; Mason, Dan E; Gabos, Peter G; Shah, Suken A
2012-01-01
Spinal instrumentation in adolescent idiopathic scoliosis (AIS) aims to correct spinal deformity and maintain long-term spinal stability until bony healing is ensured. The purpose of this study was to compare the minimum 2-year postoperative radiographic and clinical results of posterior spine correction and fusion with all-hook instrumentation versus hybrid segmental instrumentation versus pedicle screw instrumentation for AIS from a single institution. A total of 105 patients with AIS who underwent a posterior spinal fusion with segmental pedicle screw (35), hook (35), or hybrid (35) instrumentation were sorted and matched according to the following criteria: similar age at surgery, identical Lenke curve types, curve magnitude, and Risser grade. Patients were evaluated before, immediately after, and at 2 years after surgery for radiographic parameters, complications, and outcome, as well as on the basis of the Scoliosis Research Society (SRS) questionnaire. The age and Risser grade, major curve Cobb angle, apical vertebral rotation (AVR), apical vertebral translation (AVT), lowest instrumented vertebral tilt, global coronal and sagittal balance, lumbar lordosis, and thoracic kyphosis were determined as part of preoperative evaluation. All 3 groups showed significant differences between the preoperative and postoperative major curve Cobb angle, lowest instrumented vertebral tilt, AVT, and AVR. At the latest follow-up, lumbar lordosis, thoracic kyphosis, and global coronal and sagittal balance remained similar among the 3 groups. Major curve Cobb angle, AVT, and AVR were significantly different--the hook group's measurements were significantly higher than the other groups, but there was no difference between the pedicle screw and hybrid groups. Major curve correction rate was significantly different among all groups (screw=71.9%±13.8%, hybrid=61.4%±16.6%, hook=48.1%±19.7%) (P<0.001). The pedicle screw group had the least amount of correction loss but there was no statistically significant difference between groups (screw=2.6±6.7 degrees, hybrid=4.5±7.4 degrees, hook=4.4±6.2 degrees) (P=0.35). The hook group had the least amount of AVT correction, but the screw group and the hybrid groups were similar (pedicle=67.3%±15.5%, hybrid=57.5%±22.4%, hook=39.9%±32.5%) (P<0.001). Surgery time and blood loss were higher in the screw group. No differences in global SRS-22 scores were demonstrated between the patients treated with pedicle screw, hybrid, and hook constructs; however, the satisfaction domain was higher in the screw group at the latest follow-up. Pedicle screw and hybrid instrumentations offer significantly better spinal deformity correction than hook constructs in major curve coronal correction, AVT, and AVR. Patients with pedicle screw instrumentation had the greatest curve correction percentage, maintenance of this correction in the coronal and sagittal planes, and higher patient satisfaction by the SRS outcome scores. Global SRS-22 scores were similar at 2-year follow-up in all groups. Therapeutic level III retrospective comparative study.
Wangdi, Kuenzang; Otsuki, Bungo; Fujibayashi, Shunsuke; Tanida, Shimei; Masamoto, Kazutaka; Matsuda, Shuichi
2018-02-07
To report on suggested technique with four screws in a single vertebra (two pedicle screws and two direct vertebral body screws) for enhanced fixation with just one level cranially to a pedicle subtraction osteotomy (PSO). A 60-year-old woman underwent L4/5 fusion surgery for degenerative spondylolisthesis. Two years later, she was unable to stand upright even for a short time because of lumbar kyphosis caused by subsidence of the fusion cage and of Baastrup syndrome in the upper lumbar spine [sagittal vertical axis (SVA) of 114 mm, pelvic incidence of 75°, and lumbar lordosis (LL) of 41°]. She underwent short-segment fusion from L4 to the sacrum with L5 pedicle subtraction osteotomy. We reinforced the construct with two vertebral screws at L4 in addition to the conventional L4 pedicle screws. After the surgery, her sagittal parameters were improved (SVA, 36 mm; LL, 54°). Two years after the corrective surgery, she maintained a low sagittal vertical axis though high residual pelvic tilt indicated that the patient was still compensating for residual sagittal misalignment. PSO surgery for sagittal imbalance usually requires a long fusion at least two levels above and below the osteotomy site to achieve adequate stability and better global alignment. However, longer fixation may decrease the patients' quality of life and cause a proximal junctional failure. Our novel technique may shorten the fixation area after osteotomy surgery. These slides can be retrieved under Electronic Supplementary Material.
Radiographic Findings in Revision Anterior Cruciate Ligament Reconstructions from the MARS Cohort
2013-01-01
The Multicenter ACL (anterior cruciate ligament) Revision Study (MARS) group was developed to investigate revision ACL reconstruction outcomes. An important part of this is obtaining and reviewing radiographic studies. The goal for this radiographic analysis is to establish radiographic findings for a large revision ACL cohort to allow comparison with future studies. The study was designed as a cohort study. Various established radiographic parameters were measured by three readers. These included sagittal and coronal femoral and tibial tunnel position, joint space narrowing, and leg alignment. Inter- and intraobserver comparisons were performed. Femoral sagittal position demonstrated 42% were more than 40% anterior to the posterior cortex. On the sagittal tibia tunnel position, 49% demonstrated some impingement on full-extension lateral radiographs. Limb alignment averaged 43% medial to the medial edge of the tibial plateau. On the Rosenberg view (45-degree flexion view), the minimum joint space in the medial compartment averaged 106% of the opposite knee, but it ranged down to a minimum of 4.6%. Lateral compartment narrowing at its minimum on the Rosenberg view averaged 91.2% of the opposite knee, but it ranged down to a minimum of 0.0%. On the coronal view, verticality as measured by the angle from the center of the tibial tunnel aperture to the center of the femoral tunnel aperture measured 15.8 degree ± 6.9% from vertical. This study represents the radiographic findings in the largest revision ACL reconstruction series ever assembled. Findings were generally consistent with those previously demonstrated in the literature. PMID:23404491
Ruivo, Rodrigo M.; Pezarat-Correia, Pedro; Carita, Ana I.
2014-01-01
Background: There is sparse literature that provides evidence of cervical and shoulder postural alignment of 15 to 17-year-old adolescents and that analyzes sex differences. Objectives: To characterize the postural alignment of the head and shoulder in the sagittal plane of 15 to 17-year-old Portuguese adolescents in natural erect standing and explore the relationships between three postural angles and presence of neck and shoulder pain. Method: This cross-sectional study was conducted in two secondary schools in Portugal. 275 adolescent students (153 females and 122 males) aged 15 to 17 were evaluated. Sagittal head, cervical, and shoulder angles were measured with photogrammetry and PAS software. The American Shoulder and Elbow Surgeons Shoulder Assessment (ASES) was used to assess shoulder pain, whereas neck pain was self-reported with a single question. Results: Mean values of sagittal head, cervical, and shoulder angles were 17.2±5.7, 47.4±5.2, and 51.4±8.5º, respectively. 68% of the participants revealed protraction of the head, whereas 58% of them had protraction of the shoulder. The boys showed a significantly higher mean cervical angle, and adolescents with neck pain revealed lower mean cervical angle than adolescents without neck pain. 53% of the girls self-reported regular neck pain, contrasting with 19% of the boys. Conclusions: This data shows that forward head and protracted shoulder are common postural disorders in adolescents, especially in girls. Neck pain is prevalent in adolescents, especially girls, and it is associated with forward head posture. PMID:25054381
Ruivo, Rodrigo M; Pezarat-Correia, Pedro; Carita, Ana I
2014-01-01
There is sparse literature that provides evidence of cervical and shoulder postural alignment of 15 to 17-year-old adolescents and that analyzes sex differences. To characterize the postural alignment of the head and shoulder in the sagittal plane of 15 to 17-year-old Portuguese adolescents in natural erect standing and explore the relationships between three postural angles and presence of neck and shoulder pain. This cross-sectional study was conducted in two secondary schools in Portugal. 275 adolescent students (153 females and 122 males) aged 15 to 17 were evaluated. Sagittal head, cervical, and shoulder angles were measured with photogrammetry and PAS software. The American Shoulder and Elbow Surgeons Shoulder Assessment (ASES) was used to assess shoulder pain, whereas neck pain was self-reported with a single question. Mean values of sagittal head, cervical, and shoulder angles were 17.2±5.7, 47.4±5.2, and 51.4±8.5º, respectively. 68% of the participants revealed protraction of the head, whereas 58% of them had protraction of the shoulder. The boys showed a significantly higher mean cervical angle, and adolescents with neck pain revealed lower mean cervical angle than adolescents without neck pain. 53% of the girls self-reported regular neck pain, contrasting with 19% of the boys. This data shows that forward head and protracted shoulder are common postural disorders in adolescents, especially in girls. Neck pain is prevalent in adolescents, especially girls, and it is associated with forward head posture.
Miyakoshi, N; Kudo, D; Hongo, M; Kasukawa, Y; Ishikawa, Y; Shimada, Y
2017-11-01
This study compared spinal alignment, muscular strength, and quality of life (QOL) between women with postmenopausal osteoporosis and healthy volunteers. The results indicated that lower QOL in osteoporosis patients may be associated with increased thoracic kyphosis, reduced lean muscle mass, and generalized muscle weakness. Increased spinal kyphosis is common in patients with osteoporosis and negatively impacts quality of life (QOL). Muscular strength is also important for QOL in patients with osteoporosis. However, spinal kyphosis and muscle weakness also occur in healthy individuals with advancing age. The purposes of this study were thus to compare spinal alignment, muscular strength, and QOL between women with postmenopausal osteoporosis and healthy volunteers. Participants comprised 236 female patients with postmenopausal osteoporosis (mean age, 68.7 years) and 93 healthy volunteer women (mean age, 71.0 years). Body mass index (BMI), angles of spinal kyphosis, back extensor strength, grip strength, and QOL were compared between groups. BMI, back extensor strength, and grip strength were significantly higher in the volunteer group than in the osteoporosis group (p < 0.01). Both thoracic kyphosis and lumbar lordosis were significantly greater in the osteoporosis group than in the volunteer group (p < 0.01). With regard to QOL, the 36-Item Short-Form Health Survey (SF-36) subscale scores of role physical, bodily pain, general health, and role emotional were all significantly lower in the osteoporosis group than in the volunteer group (p < 0.05 each). SF-36 physical component summary (PCS) score was significantly lower in the osteoporosis group than in the volunteer group (p < 0.001). SF-36 PCS score correlated positively with thoracic kyphosis and negatively with BMI only in the osteoporosis group (p < 0.05 each). These results indicated that lower QOL in osteoporosis patients may be associated with increased thoracic kyphosis, reduced lean muscle mass, and generalized muscle weakness.
The impact of routine whole spine MRI screening in the evaluation of spinal degenerative diseases.
Kanna, Rishi Mugesh; Kamal, Younis; Mahesh, Anupama; Venugopal, Prakash; Shetty, Ajoy Prasad; Rajasekaran, S
2017-08-01
Magnetic resonance imaging (MRI) of the spine is a sensitive investigation, which not only provides detailed images of the spinal column but also adjacent spinal regions and para-vertebral organ systems. Such incidental findings (IF) can be asymptomatic but significant. The efficacy of whole spine T2 sagittal screening in providing additional information has been demonstrated in several spinal diseases but its routine use in patients with spinal degenerative diseases has not been studied. A review of 1486 consecutive T2w whole spine screening MRI performed for cervical, thoracic or lumbar spinal imaging for degenerative diseases, was performed to document the incidence and significance of asymptomatic IF in the spinal and extra-spinal regions. 236 (15.88%) patients had IF with a M:F ratio of 102:134 and the mean age being 50.3 years. Of these, spinal IF was observed in 122 (51.7%-Group A) while extra-spinal IF was present in 114 (48.3%-Group B). In Group A, 84 patients had IF in the vertebral column and 38 patients had IF in the spinal cord. IF within the spine included vertebral haemangioma (n = 60, 4.5%), diffuse vertebral marrow changes (n = 18, 1.2%), vertebral metastasis (n = 2), incidental cord myelopathy (n = 21), intradural tumour (n = 7), and others. 33 patients required surgical intervention of the IF (2.2%). In Group B, pelvic IF were most prevalent (n = 79, 5.3%) followed by retro-peritoneal abdominal IF in 22 (1.48%) and intra-cranial IF in 9 (0.60%). 32 (2.1%) of these pathologies required further specialist medical or surgical evaluation. Routine T2 whole spine screening MRI identified 15.8% IF of the spinal and extra-spinal regions. 65 patients (4.3%) required either spine surgical intervention or other specialist care. Considering the potential advantages in identifying significant IF and the minimal extra time spent to perform whole spine screening, its application can be considered to be incorporated in routine imaging of spinal degenerative diseases.
Kim, Do Yeon; Moon, Eun Su; Park, Jin Oh; Chong, Hyon Su; Lee, Hwan Mo; Moon, Seong Hwan; Kim, Sung Hoon; Kim, Hak Sun
2016-10-01
Retrospective study. To report on neuromuscular patients with preserved walking ability, but forward bending of the body due to thoracic lordosis, and to suggest thoracic lordosis correction as the surgical treatment. It is an established fact that lumbar lordosis or pelvic parameter is directly related to thoracic sagittal balance. However, the reverse relationship has not been fully defined yet. Loss of thoracic kyphosis results in positive sagittal balance, which causes walking difficulty. Neuromuscular patients with thoracic lordosis have not been reported yet, and there have been no reports on their surgical treatments. This study analyzed 8 patients treated with thoracic lordosis correction surgery. Every patient was diagnosed with muscular dystrophy. In thoracic lordosis correction surgery, anterior release was performed in the first stage and posterior segmental instrumentation was performed in the second stage. Radiographic parameters were compared and walking ability was evaluated with gait analysis. All patients were classified according to the modified Rancho Los Amigos Hospital system preoperatively and 2 years postoperatively to evaluate functional ability. The average follow-up period was 2.9 years. Before surgery, the mean thoracic sagittal alignment was -2.1-degree lordosis, the mean Cobb angle and sacral slope increased to 36.3 and 56.6 degrees, respectively. The anterior pelvic tilt in gait analysis was 29.3 degrees. At last follow-up after surgery, the mean thoracic sagittal alignment changed to 12.6-degree kyphosis, and the Cobb angle and sacral slope decreased to 18.9 and 39.5 degrees, respectively. Lumbar lordosis and the sacral slope showed significant positive correlation (P<0.001). The improvement in thoracic lordosis showed a significant correlation to the preoperative flexibility of the major curve (P=0.028). The anterior pelvic tilt in gait analysis improved to 15.4 degrees. The functional ability improved in 2 (50%) of 4 patients in class 2 and maintained in remaining 6 patients 2 years after surgery. Thoracic lordosis correction surgery in neuromuscular scoliosis patients with thoracic lordosis improved the sacral slope in the standing position and the anterior pelvic tilt in gait. Sagittal imbalance was compensated by the spinopelvic mechanism, and back and hip extensor muscles seem to play a major role in this compensation.
Dumpa, Srikanth Reddy; Shetty, Ajoy Prasad; Aiyer, Siddharth N; Kanna, Rishi Mugesh; Rajasekaran, S
2018-04-01
Retrospective observational study. To analyze the effect of low-density (LD) strategic pedicle screw fixation on the correction of coronal and sagittal parameters in adolescent idiopathic scoliosis (AIS) patients. LD screw fixation achieves favorable coronal correction, but its effect on sagittal parameters is not well established. AIS is often associated with decreased thoracic kyphosis (TK), and the use of multi-level pedicle screws may result in further flattening of the sagittal profile. A retrospective analysis was performed on 92 patients with AIS to compare coronal and sagittal parameters preoperatively and at 2-year follow-up. All patients underwent posterior correction via LD strategic pedicle screw fixation. Radiographs were analyzed for primary Cobb angle (PCA), coronal imbalance, cervical sagittal angle (CSA), TK, lumbar lordosis (LL), pelvic incidence, pelvic tilt (PT), sacral slope (SS), C7 plumb line, spino-sacral angle, curve flexibility, and screw density. PCA changed significantly from 57.6°±13.9° to 19°±8.4° ( p <0.0001) with 67% correction, where the mean curve flexibility was 41% and screw density was 68%. Regional sagittal parameters did not change significantly, including CSA (from 10.76° to 10.56°, p =0.893), TK (from 24.4° to 22.8°, p =0.145), and LL (from 50.3° to 51.1°, p =0.415). However, subgroup analysis of the hypokyphosis group (<10°) and the hyperkyphosis group (>40°) showed significant correction of TK ( p <0.0001 in both). Sacro-pelvic parameters showed a significant decrease of PT and increase of SS, suggesting a reduction in pelvic retroversion SS (from 37° to 40°, p =0.0001) and PT (from 15° to 14°, p =0.025). LD strategic pedicle screw fixation provides favorable coronal correction and improves overall sagittal sacro-pelvic parameters. This technique does not cause significant flattening of TK and results in a favorable restoration of TK in patients with hypokyphosis or hyperkyphosis.
Dumpa, Srikanth Reddy; Aiyer, Siddharth N.; Kanna, Rishi Mugesh; Rajasekaran, S
2018-01-01
Study Design Retrospective observational study. Purpose To analyze the effect of low-density (LD) strategic pedicle screw fixation on the correction of coronal and sagittal parameters in adolescent idiopathic scoliosis (AIS) patients. Overview of Literature LD screw fixation achieves favorable coronal correction, but its effect on sagittal parameters is not well established. AIS is often associated with decreased thoracic kyphosis (TK), and the use of multi-level pedicle screws may result in further flattening of the sagittal profile. Methods A retrospective analysis was performed on 92 patients with AIS to compare coronal and sagittal parameters preoperatively and at 2-year follow-up. All patients underwent posterior correction via LD strategic pedicle screw fixation. Radiographs were analyzed for primary Cobb angle (PCA), coronal imbalance, cervical sagittal angle (CSA), TK, lumbar lordosis (LL), pelvic incidence, pelvic tilt (PT), sacral slope (SS), C7 plumb line, spino-sacral angle, curve flexibility, and screw density. Results PCA changed significantly from 57.6°±13.9° to 19°±8.4° (p <0.0001) with 67% correction, where the mean curve flexibility was 41% and screw density was 68%. Regional sagittal parameters did not change significantly, including CSA (from 10.76° to 10.56°, p =0.893), TK (from 24.4° to 22.8°, p =0.145), and LL (from 50.3° to 51.1°, p =0.415). However, subgroup analysis of the hypokyphosis group (<10°) and the hyperkyphosis group (>40°) showed significant correction of TK (p <0.0001 in both). Sacro-pelvic parameters showed a significant decrease of PT and increase of SS, suggesting a reduction in pelvic retroversion SS (from 37° to 40°, p =0.0001) and PT (from 15° to 14°, p =0.025). Conclusions LD strategic pedicle screw fixation provides favorable coronal correction and improves overall sagittal sacro-pelvic parameters. This technique does not cause significant flattening of TK and results in a favorable restoration of TK in patients with hypokyphosis or hyperkyphosis. PMID:29713412
Role of facet curvature for accurate vertebral facet load analysis.
Holzapfel, Gerhard A; Stadler, Michael
2006-06-01
The curvature of vertebral facet joints may play an important role in the study of load-bearing characteristics and clinical interventions such as graded facetectomy. In previously-published finite element simulations of this procedure, the curvature was either neglected or approximated with a varying degree of accuracy. Here we study the effect of the curvature in three different load situations by using a numerical model which is able to represent the actual curvature without any loss of accuracy. The results show that previously-used approximations of the curvature lead to good results in the analysis of sagittal moment/rotation. However, for sagittal shear-force/displacement and for the contact stress distribution, previous results deviate significantly from our results. These findings are supported through related convergence studies. Hence we can conclude that in order to obtain reliable results for the analysis of sagittal shear-force/displacement and the contact stress distribution in the facet joint, the curvature must not be neglected. This is of particular importance for the numerical simulation of the spine, which may lead to improved diagnostics, effective surgical planning and intervention. The proposed method may represent a more reliable basis for optimizing the biomedical engineering design for tissue engineering or, for example, for spinal implants.
Lee, Sung-San; Lim, Seung-Jae; Moon, Young-Wan; Seo, Jai-Gon
2014-01-01
The treatment of periprosthetic supracondylar femoral fractures following total knee arthroplasty (TKA) is challenging because of osteopenia and the limited bone available for distal fixation. The purpose of this study was to report the outcomes of periprosthetic supracondylar femoral fractures treated with long retrograde intramedullary nailing. We conducted a retrospective review of 25 patients who were treated with a long retrograde intramedullary nail for periprosthetic supracondylar femoral fractures following TKA. Clinical evaluation included range of motion of knee, Knee Society Score (KSS), Western Ontario and McMaster Universities Arthritis (WOMAC) score, and radiologic evaluation including time to union, coronal and sagittal alignment of femoral component, lower limb alignment, and implant loosening. The mean duration of follow-up after the fracture repair was 39 months (range 12-47). All 25 fractures were united with a mean time of 12 weeks (range 8-20). At the last follow-up, the mean knee flexion was 111° (range 60°-130°), the mean KSS was 81.5 (range 50-100), and the mean WOMAC score was 30.2 (range 5-55). Four (16%) of the 25 patients developed malalignment according to Rorabeck and Taylor criteria, but all patients had a knee flexion of more than 90°. Coronal and sagittal alignments of femoral component and lower limb alignment did not differ significantly between before and after the fracture repair. Complications included the loosening or breakage of distal interlocking screws in three patients. No deep infection or prosthesis loosening was detected at the last follow-up. Surgical treatment of periprosthetic supracondylar femoral fractures following TKA with long retrograde intramedullary nailing resulted in high union rates and encouraging functional outcomes.
Dobbe, J G G; du Pré, K J; Blankevoort, L; Streekstra, G J; Kloen, P
2017-08-01
The correction of multiplanar deformity is challenging. We describe preoperative 3-D planning and treatment of a complex tibia malunion using an oblique single-cut rotation osteotomy to correct deformity parameters in the sagittal, coronal and transverse plane. At 5 years postoperatively, the patient ambulates without pain with a well-aligned leg.
Couillandre, Annabelle; Lewton-Brain, Peter; Portero, Pierre
2008-01-01
This study was designed to assess the ability of a practitioner intervention using kinesiological explanations and mental imagery techniques to optimize the performance of demi-plié in dancers. Seven professional female ballet dancers were involved in the study. Biomechanical and electromyographical parameters (maximum knee flexion, jump height, maximal vertical acceleration and its duration, ratio of sagittal acceleration variation, and ratio of muscle activity in four muscles of the lower limb) were analyzed before and after the practitioner intervention. Results demonstrated no significant difference in the depth of the demi-plié, nor in the height of the jump that followed, nor in the maximal vertical acceleration and its duration, leading to the suggestion that the technical potential of the dancers was preserved. Significant differences were found in the SEMG of the hamstrings during the demi-plié and the jump, implying that an improvement in the dynamic alignment of the dancers was present. A correlation was also found between the ratio of sagittal acceleration variation and the hamstring activity, suggesting that increased hamstring engagement produces decreased disruption of dynamic alignment. However, the intervention was not assimilated equally by all of the dancers.
A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking.
Jo, Sungho; Massaquoi, Steve G
2007-03-01
A computationally developed model of human upright balance control (Jo and Massaquoi on Biol cybern 91:188-202, 2004) has been enhanced to describe biped walking in the sagittal plane. The model incorporates (a) non-linear muscle mechanics having activation level -dependent impedance, (b) scheduled cerebrocerebellar interaction for control of center of mass position and trunk pitch angle, (c) rectangular pulse-like feedforward commands from a brainstem/ spinal pattern generator, and (d) segmental reflex modulation of muscular synergies to refine inter-joint coordination. The model can stand when muscles around the ankle are coactivated. When trigger signals activate, the model transitions from standing still to walking at 1.5 m/s. Simulated natural walking displays none of seven pathological gait features. The model can simulate different walking speeds by tuning the amplitude and frequency in spinal pattern generator. The walking is stable against forward and backward pushes of up to 70 and 75 N, respectively, and with sudden changes in trunk mass of up to 18%. The sensitivity of the model to changes in neural parameters and the predicted behavioral results of simulated neural system lesions are examined. The deficit gait simulations may be useful to support the functional and anatomical correspondences of the model. The model demonstrates that basic human-like walking can be achieved by a hierarchical structure of stabilized-long loop feedback and synergy-mediated feedforward controls. In particular, internal models of body dynamics are not required.
Marchetti, Bárbara V; Candotti, Cláudia T; Raupp, Eduardo G; Oliveira, Eduardo B C; Furlanetto, Tássia S; Loss, Jefferson F
The purpose of this study was to assess a radiographic method for spinal curvature evaluation in children, based on spinous processes, and identify its normality limits. The sample consisted of 90 radiographic examinations of the spines of children in the sagittal plane. Thoracic and lumbar curvatures were evaluated using angular (apex angle [AA]) and linear (sagittal arrow [SA]) measurements based on the spinous processes. The same curvatures were also evaluated using the Cobb angle (CA) method, which is considered the gold standard. For concurrent validity (AA vs CA), Pearson's product-moment correlation coefficient, root-mean-square error, Pitman- Morgan test, and Bland-Altman analysis were used. For reproducibility (AA, SA, and CA), the intraclass correlation coefficient, standard error of measurement, and minimal detectable change measurements were used. A significant correlation was found between CA and AA measurements, as was a low root-mean-square error. The mean difference between the measurements was 0° for thoracic and lumbar curvatures, and the mean standard deviations of the differences were ±5.9° and 6.9°, respectively. The intraclass correlation coefficients of AA and SA were similar to or higher than the gold standard (CA). The standard error of measurement and minimal detectable change of the AA were always lower than the CA. This study determined the concurrent validity, as well as intra- and interrater reproducibility, of the radiographic measurements of kyphosis and lordosis in children. Copyright © 2017. Published by Elsevier Inc.
Update on traumatic acute spinal cord injury. Part 2.
Mourelo Fariña, M; Salvador de la Barrera, S; Montoto Marqués, A; Ferreiro Velasco, M E; Galeiras Vázquez, R
The aim of treatment in acute traumatic spinal cord injury is to preserve residual neurologic function, avoid secondary injury, and restore spinal alignment and stability. In this second part of the review, we describe the management of spinal cord injury focusing on issues related to short-term respiratory management, where the preservation of diaphragmatic function is a priority, with prediction of the duration of mechanical ventilation and the need for tracheostomy. Surgical assessment of spinal injuries based on updated criteria is discussed, taking into account that although the type of intervention depends on the surgical team, nowadays treatment should afford early spinal decompression and stabilization. Within a comprehensive strategy in spinal cord injury, it is essential to identify and properly treat patient anxiety and pain associated to spinal cord injury, as well as to prevent and ensure the early diagnosis of complications secondary to spinal cord injury (thromboembolic disease, gastrointestinal and urinary disorders, pressure ulcers). Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
Thoracic Spine Growth Revisited: How Accurate Is the Dimeglio Data?
Dede, Ozgur; Büyükdoğan, Kadir; Demirkıran, Halil Gökhan; Akpınar, Erhan; Yazici, Muharrem
2017-06-15
Cross-sectional descriptive study. To describe the normal rate pattern of thoracic spine growth in children without any spinal deformity. The knowledge of thoracic spine growth and height is important for growing spine treatment and the decision of final fusion. Currently, pediatric spinal deformity is approached as early onset and late onset with an understanding of the fast growth during the first 5 years of life. The growth data that support this classification is often cited but has not been reconfirmed with follow-up studies. Sagittal computed tomography (CT) reformations of thoracic vertebrae were examined in children without spinal deformity. The sagittal CT cut at the widest canal diameter was identified and the measurements were performed on this image. The length of the thoracic spine was measured from the posterosuperior corner of T1 to the posteroinferior corner of the T12. One hundred forty-four thoracic CT scans satisfied the inclusion criteria. The analysis of the data identified two break points in the growth velocity; one at the end of the 4th year of life and the other at the beginning of the 12th year. Specifically, growth rate between 1 and 4 years was 1.71 cm/yr, between 4 and 8 years was 0.55 cm/yr, between 8 and 10 was 0.74 cm/yr, between 10 and 12 was 0.69 cm/yr, and between 12 and 16 was 1.61 cm/yr. The results show that in growing children the thoracic spine demonstrates two major growth spurts. The initial growth spurt is between the birth to the end of the fourth year of life and the second is between the 12 and 16 years of age. Between 4 and 12 years there is a steady but slower increase in thoracic height. The findings show that the fastest growth velocity may be limited to a younger age group than previously believed. This data will help guide growth friendly management strategies. 2.
Arima, Hideyuki; Yamato, Yu; Hasegawa, Tomohiko; Kobayashi, Sho; Yoshida, Go; Yasuda, Tatsuya; Banno, Tomohiro; Oe, Shin; Mihara, Yuki; Togawa, Daisuke; Matsuyama, Yukihiro
2017-10-01
Longitudinal cohort. The present study aimed to document changes in posture and lower extremity kinematics during gait in patients with adult spinal deformity (ASD) after extensive corrective surgery. Standing radiographic parameters are typically used to evaluate patients with ASD. Previously, preoperative walking and standing posture discrepancy were reported in patients with ASD. We did not include comparison between before and after surgery. Therefore, we thought that pre- and postoperative evaluations for patients with ASD should include gait analysis. Thirty-nine patients with ASD (5 men, 34 women; mean age, 71.0 ± 6.1) who underwent posterior corrective fixation surgeries from the thoracic spine to the pelvis were included. A 4-m walk was recorded and analyzed. Sagittal balance while walking was calculated as the angle between the plumb line on the side and the line connecting the greater trochanter and pinna while walking (i.e., the gait-trunk tilt angle [GTA]). We measured maximum knee extension angle during one gait cycle, step length (cm), and walking speed (m/min). Radiographic parameters were also measured. The mean GTA and the mean maximum knee extension angle significantly improved from 13.4° to 6.4°, and -13.3° to -9.4°(P < 0.001 and P = 0.006), respectively. The mean step length improved from 40.4 to 43.1 cm (P = 0.049), but there was no significant change in walking speed (38.4 to 41.5 m/min, P = 0.105). Postoperative GTA, maximum knee extension angle and step length correlated with postoperative pelvic incidence minus lumbar lordosis (r = 0.324, P = 0.044; r = -0.317, P = 0.049; r = -0.416, P = 0.008, respectively). Our results suggest that postoperative posture, maximum knee extension angle, and step length during gait in patients with ASD improved corresponding to how much correction of the sagittal spinal deformity was achieved. 3.
Are we simplifying balance evaluation in adolescent idiopathic scoliosis?
Pasha, Saba; Baldwin, Keith
2018-01-01
Clinical evaluation of the postural balance in adolescent idiopathic scoliosis has been measured by sagittal vertical axis and frontal balance. The impact of the scoliotic deformity in three planes on balance has not been fully investigated. 47 right thoracic and left lumbar curves adolescent idiopathic scoliosis and 10 non-scoliotic controls were registered prospectively. 13 spinopelvic postural parameters were calculated from the 3-dimantional reconstructions of X-rays. 7 balance variables describing the position and sway of the center of pressure were recorded using a pressure mat. A regression analysis was used to predict sagittal vertical axis and frontal balance from the 7 balance variables. A canonical correlation analysis was performed between all the postural parameters and balance variables and the significant associations between the postural and balance variables were determined. sagittal vertical axis and frontal balance were not significantly associated with the position or sway of the center of pressure (p>0.05). Canonical correlation analysis showed significant associations between the postural variables in the 3 planes and center of pressure position (R 2 =0.81) and sway (R 2 =0.62), p<0.05. Frontal Cobbs, apical rotations, distal kyphosis, pelvic incidence, sacral slope, sagittal vertical axis, and frontal balance contributed to the postural balance in the cohort. The compensatory role of the pelvis and distal kyphosis in sagittal plane was underlined. Multidimensional analyses between the postural and balance variables showed the alignment of the thoracic, lumbar, and pelvis in the 3 planes, in addition to the global head-pelvic position impact on adolescent idiopathic scoliosis balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Beaubien, Brian P; Freeman, Andrew L; Buttermann, Glenn R
2016-01-25
The spinous processes and supraspinous and interspinous ligaments (SSL and ISL, respectively) limit flexion and may relate to spinal curvature. Spinous process angles and mechanical properties of explanted human thoracic posterior SSL/ISL complexes were compared for scoliosis (n=14) vs. kyphosis (n=8) patients. The median thoracic coronal Cobb angle for scoliosis patients was 48°, and sagittal angles for kyphosis patients was 78°. Spinous processes were gripped and four strain steps of 4% were applied and held. Percent relaxation was calculated over each step, equilibrium load data were fit to an exponential equation, and a Kelvin model was fit to the load from all four curves. Failure testing was also performed. Median ligament complex dimensions from scoliosis and kyphosis patients were, respectively: ISL width=16.5mm and 16.0mm; SSL width=4.3mm and 3.8mm; ISL+SSL area=17.2mm and 25.7mm; these differences were not significant. Significant differences did exist in terms of spinous process angle vs. spine axis (47° for scoliosis and 32° for kyphosis) and SSL thickness (2.1mm for scoliosis and 3.0mm for kyphosis). Fourth-step median relaxation was 42% for scoliosis and 49% for kyphosis. Median linear region stiffness was 42N/mm for scoliosis and 51N/mm for kyphosis. Median failure load was 191N for scoliotic and 175N for kyphotic ligaments. Differences in loading, relaxation, viscoelastic and failure parameters were not statistically significant, except for a trend for greater initial rate of relaxation (T1) for scoliosis ligaments. However, we found significant morphological differences related to the spinous processes, which suggests a need for future biomechanical studies related to the musculoskeletal aspects of spinal alignment and posture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kovacs, Francisco M; Seco, Jesús; Royuela, Ana; Barriga, Andrés; Zamora, Javier
2018-04-01
Cross-sectional study. To determine the prevalence of, and factors associated with, spinal pain among wheelchair users. Four Spanish hospitals specialized in providing care for wheelchair users. Persons who had used a wheelchair for a median (IRQ) of 10 (5;19) years, 27% of them due to reasons other than spinal cord injury, were recruited consecutively (n = 750). Data on 43 demographic, psychosocial, ergonomic, and clinical variables were collected, and analyzed. Main outcome measures were: point prevalence of neck (NP), thoracic (TP), low back pain (LBP), and pain at any spinal level (PASL); and factors associated with them. Point prevalence was 56% for NP, 54% for TP, 45% for LBP, and 76% for PSAL. PASL was associated with a lower quality of life (OR (95% CI) 0.91 (0.86; 0.97)). Multivariable regression models showed that the main factors associated with significant pain (≥1.5 VAS points) were: (a) For NP: cervical spinal injury and wheelchair seat cushion thickness, (b) For TP: thoracic spinal injury and sagittal index, (c) For LBP: thoracic or lumbar spinal injury, with some sensitivity remaining, (d) For PASL: being female, living alone, and using a non-power wheelchair. Discrimination (AUC) of these models ranged between 0.638 and 0.818. p-values in the Hosmer-Lemeshow test ranged between 0.420 and 0.701. Prevalence of spinal pain among wheelchair users is high. It is associated with a lower quality of life. Future studies should assess whether using a power wheelchair affects PASL, and if the thickness of seat cushion affects NP. Spanish Back Pain Research Network.
Zeinali-Davarani, Shahrokh; Shirazi-Adl, Aboulfazl; Dariush, Behzad; Hemami, Hooshang; Parnianpour, Mohamad
2011-07-01
The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation.
Yang, Changsheng; Wang, Huafeng; Zheng, Zhaomin; Zhang, Zhongmin; Wang, Jianru; Liu, Hui; Kim, Yongjung Jay; Cho, Samuel
2017-07-01
Halo-gravity traction has been reported to successfully assist in managing severe spinal deformity. This is a systematic review of all studies on halo-gravity traction in the treatment of spinal deformity to provide information for clinical practice. A comprehensive search was conducted for articles on halo-gravity traction in the treatment of spinal deformity according to the PRISMA guidelines. Appropriate studies would be included and analyzed. Preoperative correction rate of spinal deformity, change of pulmonary function and prevalence of complications were the main measurements. Sixteen studies, a total of 351 patients, were included in this review. Generally, the initial Cobb angle was 101.1° in the coronal plane and 80.5° in the sagittal plane, and it was corrected to 49.4° and 56.0° after final spinal fusion. The preoperative correction due to traction alone was 24.1 and 19.3%, respectively. With traction, the flexibility improved 6.1% but postoperatively the patients did not have better correction. Less aggressive procedures and improved pulmonary function were observed in patients with traction. The prevalence of traction-related complications was 22% and three cases of neurologic complication related to traction were noted. The prevalence of total complications related to surgery was 32% and that of neurologic complications was 1%. Partial correction could be achieved preoperatively with halo-gravity traction, and it may help decrease aggressive procedures, improve preoperative pulmonary function, and reduce neurologic complications. However, traction could not increase preoperative flexibility or final correction. Traction-related complications, although usually not severe, were not rare.
Rudas, G; Varga, E; Méder, U; Pataki, M; Taylor, G A
2000-11-01
The role of subarachnoid blood and secondary, sterile inflammation in the pathogenesis of posthemorrhagic hydrocephalus (PHH) is not well understood. The aims of this study were to study the frequency and rate of spread of blood into the spinal subarachnoid space (SSS) and to evaluate the relationship of this finding and PHH. Nine premature babies with major intracerebral hemorrhage (ICH, grade 3 or higher), and ten premature infants with minor ICH (grade 1) or no evidence of ICH (control group) were identified and underwent serial cranial and spinal sonography at the time of initial diagnosis, 12-24 h after the ICH and weekly thereafter for at least 9 weeks. Sagittal and axial scans of the thoracolumbar spine were obtained and evaluated for the presence of echogenic debris in the dorsal SSS. Six additional patients who had cranial and spinal sonography died within the 1st week of life and underwent post-mortem examinations. The SSS was echo-free (normal) in all cases at the time of initial sonographic diagnosis of ICH. Within 24 h, all babies with major ICH had developed increased echogenicity of the cervical and thoracic SSS. Echogenicity of the SSS decreased gradually over several weeks. Although transient ventricular dilatation was present in every patient, only one patient had rapidly progressive PHH requiring shunt placement. Transient cysts of the cervicothoracic subarachnoid space were identified in two patients 6-7 weeks after ICH. The subarachnoid space remained echo-free in all control infants At autopsy, all four infants with echogenic spinal debris had blood or blood products in the spinal subarachnoid space, whereas two infants with echo-free spinal images did not. Spread of blood from the ventricular system into the spinal subarachnoid space after ICH is common and can be seen within 24 h of initial ICH. Subarachnoid blood is associated with post-hemorrhagic ventricular dilatation and transient spinal subarachnoid cyst formation.
Salem, Walid; Coomans, Ysaline; Brismée, Jean-Michel; Klein, Paul; Sobczak, Stéphane; Dugailly, Pierre-Michel
2015-08-01
A prospective study was performed on the assessment of both thoracic and lumbar spine sagittal profiles (from C7 to S1). To propose a new noninvasive method for measuring the spine curvatures in standing and lying prone positions and to analyze their relationship with various biometric characteristics. Modifications of spine curvatures (i.e. lordosis or kyphosis) are of importance in the development of spinal disorders. Studies have emphasized the development of new devices to measure the spine sagittal profiles using a noninvasive and low-cost method. To date, it has not been applied for analyzing both lumbar and thoracic alterations for various positioning. Seventy-five healthy subjects (mean 22.6 ± 4.3 yr) were recruited to participate in this study. Thoracic and lumbar sagittal profiles were assessed in standing and lying prone positions using a 3D digitizer. In addition, several biometric data were collected including maximal trunk isometric strength for flexion and extension movement. Statistical analysis consisted in data comparisons of spine profiles and a multivariate analysis including biometric features, to classify individuals considering low within- and high between-variability. Kyphosis and lordosis angles decreased significantly from standing to lying prone position by an average of 13.4° and 16.6°, respectively. Multivariate analysis showed a sample clustering of 3 homogenous subgroups. The first group displayed larger lordosis and flexibility, and had low data values for height, weight, and strength. The second group had lower values than the overall trend of the whole sample, whereas the third group had larger score values for the torques, height, weight, waist, body mass index, and kyphosis angle but a reduced flexibility. The present results demonstrate a significant effect of the positioning on both thoracic and lumbar spine sagittal profiles and highlight the use of cluster analysis to categorize subgroups after biometric characteristics including curvature measurement. N/A.
Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu
2016-03-01
Although sagittal tibial alignment in total knee arthroplasty (TKA) is important, no landmarks exist to achieve a reproducible slope. The purpose of this study was to evaluate the clinical usefulness of the distance from the guide rod to the skin surface for the tibial slope in TKA. Computer simulation studies were performed on 100 consecutive knees scheduled for TKA. The angle between the line connecting the most anterior point of the predicted tibial cut surface and the skin surface 20 cm distal to the predicted cut surface (Line S) and the mechanical axis (MA) of the tibia in the sagittal plane was measured. The mean (±SD) absolute angle difference between the Line S and the MA was 0.9°±0.7°. The Line S was almost parallel to the MA in the sagittal plane (95% and 99% within two degrees and three degrees of deviation from MA, respectively). The guide rod orientation is a surrogate for the tibial cut slope because the targeted posterior slope is usually built into the cutting block and ensuring the rod is parallel to the MA in the sagittal plane is recommended. Therefore the distance between the skin surface and the rod can be a useful guide for the tibial slope. II. Copyright © 2015 Elsevier B.V. All rights reserved.
Bracing of the Reconstructed and Osteoarthritic Knee during High Dynamic Load Tasks.
Hart, Harvi F; Crossley, Kay M; Collins, Natalie J; Ackland, David C
2017-06-01
Lateral compartment osteoarthritis accompanied by abnormal knee biomechanics is frequently reported in individuals with knee osteoarthritis after anterior cruciate ligament reconstruction (ACLR). The aim of this study was to evaluate changes in knee biomechanics produced by an adjusted and unadjusted varus knee brace during high dynamic loading activities in individuals with lateral knee osteoarthritis after ACLR and valgus malalignment. Nineteen participants who had undergone ACLR 5 to 20 yr previously and had symptomatic and radiographic lateral knee osteoarthritis with valgus malalignment were assessed. Quantitative motion analysis experiments were conducted during hopping, stair ascent, and descent under three test conditions: (i) no brace, (ii) unadjusted brace with sagittal plane support and neutral frontal plane alignment, and (iii) adjusted brace with sagittal plane support and varus realignment (valgus to neutral). Sagittal, frontal, and transverse plane knee kinematics, external joint moment, and angular impulse data were calculated. Relative to an unbraced knee, braced conditions significantly increased knee flexion and adduction angles during hopping (P = 0.003 and P = 0.005; respectively), stair ascent (P = 0.003 and P < 0.001, respectively), and descent (P = 0.009 and P < 0.001, respectively). In addition, the brace conditions increased knee flexion (P < 0.001) and adduction (P = 0.001) angular impulses and knee stiffness (P < 0.001) during hopping, as well as increased knee adduction moments during stair ascent (P = 0.008) and flexion moments during stair descent (P = 0.006). There were no significant differences between the adjusted and the unadjusted brace conditions (P > 0.05). A knee brace, with or without varus alignment, can modulate knee kinematics and external joint moments during hopping, stairs ascent, and descent in individuals with predominant lateral knee osteoarthritis after ACLR. Longer-term use of a brace may have implications in slowing osteoarthritis progression.
CT of facet distraction in flexion injuries of the thoracolumbar spine: the "naked" facet.
O'Callaghan, J P; Ullrich, C G; Yuan, H A; Kieffer, S A
1980-03-01
Vertical distraction of the articular processes is an important sign of ligamentous disruption due to flexion injuries of the thoracolumbar spine. In addition to illustrating this finding in cross section (the "naked" facet), computed tomography in the transaxial plane allows assessment of the presence and position of fracture fragments that may encroach on the spinal canal. Image reconstruction in sagittal and coronal planes provides a clear demonstration of the degree of bony compression, facet distraction, and kyphosis associated with flexion injuries without additional patient manipulation or radiation exposure.
Sparrey, Carolyn J; Salegio, Ernesto A; Camisa, William; Tam, Horace; Beattie, Michael S; Bresnahan, Jacqueline C
2016-06-15
Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5-1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries.
Bridwell, Keith H
2006-09-01
Author experience and literature review. To investigate and discuss decision-making on when to perform a Smith-Petersen osteotomy as opposed to a pedicle subtraction procedure and/or a vertebral column resection. Articles have been published regarding Smith-Petersen osteotomies, pedicle subtraction procedures, and vertebral column resections. Expectations and complications have been reviewed. However, decision-making regarding which of the 3 procedures is most useful for a particular spinal deformity case is not clearly investigated. Discussed in this manuscript is the author's experience and the literature regarding the operative options for a fixed coronal or sagittal deformity. There are roles for Smith-Petersen osteotomy, pedicle subtraction, and vertebral column resection. Each has specific applications and potential complications. As the magnitude of resection increases, the ability to correct deformity improves, but also the risk of complication increases. Therein, an understanding of potential applications and complications is helpful.
Wong, Simon W; Niazi, Ahtsham U; Chin, Ki J; Chan, Vincent W
2013-01-01
The SonixGPS® is an electromagnetic needle tracking system for ultrasound-guided needle intervention. Both current and predicted needle tip position are displayed on the ultrasound screen in real-time, facilitating needle-beam alignment and guidance to the target. This case report illustrates the use of the SonixGPS system for successful performance of real-time ultrasound-guided spinal anesthesia in a patient with difficult spinal anatomy. A 67-yr-old male was admitted to our hospital to undergo revision of total right hip arthroplasty. His four previous arthroplasties for hip revision were performed under general anesthesia because he had undergone L3-L5 instrumentation for spinal stenosis. The L4-L5 interspace was viewed with the patient in the left lateral decubitus position. A 19G 80-mm proprietary needle (Ultrasonix Medical Corp, Richmond, BC, Canada) was inserted and directed through the paraspinal muscles to the ligamentum flavum in plane to the ultrasound beam. A 120-mm 25G Whitacre spinal needle was then inserted through the introducer needle in a conventional fashion. Successful dural puncture was achieved on the second attempt, as indicated by a flow of clear cerebrospinal fluid. The patient tolerated the procedure well, and the spinal anesthetic was adequate for the duration of the surgery. The SonixGPS is a novel technology that can reduce the technical difficulty of real-time ultrasound-guided neuraxial blockade. It may also have applications in other advanced ultrasound-guided regional anesthesia techniques where needle-beam alignment is critical.
Limson, Marc Anthony; Kim, Soo-Bum; Arbatin, Jose Joefrey F.; Chang, Kee-Young; Park, Moon-Soo; Shin, Jae-hyuk; Ju, Yeong-Su
2009-01-01
The object of this study is to compare radiographic outcomes of anterior cervical decompression and fusion (ACDF) versus cervical disc replacement using the Bryan Cervical Disc Prosthesis (Medtronic Sofamor Danek, Memphis, TN) in terms of range of motion (ROM), Functional spinal unit (FSU), overall sagittal alignment (C2–C7), anterior intervertebral height (AIH), posterior intervertebral height (PIH) and radiographic changes at the implanted and adjacent levels. The study consisted of 105 patients. A total of 63 Bryan disc were placed in 51 patients. A single level procedure was performed in 39 patients and a two-level procedure in the other 12. Fifty-four patients underwent ACDF, 26 single level cases and 28 double level cases. The Bryan group had a mean follow-up 19 months (12–38). Mean follow-up for the ACDF group was 20 months (12–40 months). All patients were evaluated using static and dynamic cervical spine radiographs as well as MR imaging. All patients underwent anterior cervical discectomy followed by autogenous bone graft with plate (or implantation of a cage) or the Bryan artificial disc prosthesis. Clinical evaluation included the visual analogue scale (VAS), and neck disability index (NDI). Radiographic evaluation included static and dynamic flexion-extension radiographs using the computer software (Infinitt PiviewSTAR 5051) program. ROM, disc space angle, intervertebral height were measured at the operative site and adjacent levels. FSU and overall sagittal alignment (C2–C7) were also measured pre-operatively, postoperatively and at final follow-up. Radiological change was analyzed using χ2 test (95% confidence interval). Other data were analyzed using the mixed model (SAS enterprises guide 4.1 versions). There was clinical improvement within each group in terms of VAS and NDI scores from pre-op to final follow-up but not significantly between the two groups for both single (VAS p = 0.8371, NDI p = 0.2872) and double (VAS p = 0.2938, NDI p = 0.6753) level surgeries. Overall, ROM and intervertebral height was relatively well maintained during the follow-up in the Bryan group compared to ACDF. Regardless of the number of levels operated on, significant differences were noted for overall ROM of the cervical spine (p < 0.0001) and all other levels except at the upper adjacent level for single level surgeries (p = 0.2872). Statistically significant (p < 0.0001 and p = 0.0172) differences in the trend of intervertebral height measurements between the two groups were noted at all levels except for the AIH of single level surgeries at the upper (p = 0.1264) and lower (p = 0.7598) adjacent levels as well as PIH for double level surgeries at the upper (p = 0.8363) adjacent level. Radiological change was 3.5 times more observed for the ACDF group. Clinical status of both groups, regardless of the number of levels, showed improvement. Although clinical outcomes between the two groups were not significantly different at final follow-up, radiographic parameters, namely ROM and intervertebral heights at the operated site, some adjacent levels as well as FSU and overall sagittal alignment of the cervical spine were relatively well maintained in Bryan group compared to ACDF group. We surmise that to a certain degree, the maintenance of these parameters could contribute to reduce development of adjacent level change. Noteworthy is that radiographic change was 3.5 times more observed for ACDF surgeries. A longer period of evaluation is needed, to see if all these radiographic changes will translate to symptomatic adjacent level disease. PMID:19127374
Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis
Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul
2013-01-01
Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim that scoliosis could be initiated through a hypokyphosis. PMID:23977058
Yang, Benson P; Ondra, Stephen L; Chen, Larry A; Jung, Hee Soo; Koski, Tyler R; Salehi, Sean A
2006-07-01
The authors conducted a study to evaluate the radiographically documented and functional outcomes obtained in patients who underwent pedicle subtraction osteotomy (PSO). They also compared outcomes after classification of cases into thoracic and lumbar PSO subgroups. The authors analyzed data obtained in 35 consecutive PSO-treated patients with sagittal imbalance. One surgeon performed all surgeries. The minimal follow-up period was 2 years. Events during the perioperative course and complications were noted. Standing long-film radiographs of the spine were obtained and measurements were made preoperatively, immediately postoperatively, and at most recent follow-up examination. The modified Prolo Scale and the 22-item Scoliosis Research Society (SRS-22) Outcomes Questionnaire were administered. Early complications after PSO included neurological injury, wound-related problems, and nosocomial infections. Late complications were limited to pseudarthrosis and attendant instrumentation failure. Early and late complication rates ranged from 10 to 30% for both thoracic and lumbar PSO cohorts. Lumbar PSO was associated with improvements in local, segmental, and global measures of sagittal balance, whereas thoracic PSO was only associated with local improvement. Most patients rated their functional status as fair to good according to the modified Prolo Scale and reported, according to the SRS-22 Outcomes Questionnaire, that they were satisfied with the overall treatment of their back condition. The ability to perform a PSO at both lumbar and thoracic levels is a powerful asset for the spine surgeon treating spinal deformity. In the present study radiographic and clinical outcomes were superior when PSO was used to treat lumbar deformity rather than thoracic deformity because of several anatomical and technical obstacles that hindered the thoracic procedure. Nevertheless, the thoracic PSO proved a useful addition with which to produce regional improvement in sagittal balance for patients with a fixed thoracic kyphosis.
Di Silvestre, Mario; Lolli, Francesco; Greggi, Tiziana; Vommaro, Francesco; Baioni, Andrea
2013-01-01
Study Design. A retrospective study. Purpose. Posterolateral fusion with pedicle screw instrumentation used for degenerative lumbar scoliosis can lead to several complications. In elderly patients without sagittal imbalance, dynamic stabilization could represent an option to avoid these adverse events. Methods. 57 patients treated by dynamic stabilization without fusion were included. All patients had degenerative lumbar de novo scoliosis (average Cobb angle 17.2°), without sagittal imbalance, associated in 52 cases (91%) with vertebral canal stenosis and in 24 (42%) with degenerative spondylolisthesis. Nineteen patients (33%) had previously undergone lumbar spinal surgery. Results. At an average followup of 77 months, clinical results improved with statistical significance. Scoliosis Cobb angle was 17.2° (range, 12° to 38°) before surgery and 11.3° (range, 4° to 26°) at last follow-up. In the patients with associated spondylolisthesis, anterior vertebral translation was 19.5% (range, 12% to 27%) before surgery, 16.7% (range, 0% to 25%) after surgery, and 17.5% (range, 0% to 27%) at followup. Complications incidence was low (14%), and few patients required revision surgery (4%). Conclusions. In elderly patients with mild degenerative lumbar scoliosis without sagittal imbalance, pedicle screw-based dynamic stabilization is an effective option, with low complications incidence, granting curve stabilization during time and satisfying clinical results. PMID:23781342
Youssef, J A; McKinley, T O; Yerby, S A; McLain, R F
1999-06-01
A bending analysis of pedicle screws inserted into vertebral body analogues. Intravertebral and intrapedicular pedicle screw bending moments were studied as a function of sagittal insertion angle. To determine how the pedicle screw bending moment is affected by changes in the insertion angle. There is a significant incidence of failure when pedicle screws are used to instrument unstable spinal segments. Extrinsic factors that affect screw bending failure have been poorly characterized. Previous work has demonstrated that intrapedicular pedicle screw bending moments are significantly affected by the sagittal location and depth of pedicle screw placement. Pedicle screw transducers were inserted in analogue vertebrae at one of three orientations: 7 degrees cephalad (toward the superior endplate), 7 degrees caudal (toward the inferior endplate), or parallel to the superior endplate (control). An axial load was applied to the superior endplate of the vertebra, and screw bending moments were recorded directly from the transducers. Screws angled 7 degrees cephalad developed significantly greater mean intrapedicular bending moments compared with screws inserted caudal or control screws. There was no significant difference in bending moments realized within the vertebral body for the three screw positions. Angulating pedicle screws toward the superior endplate increased bending moments within the pedicle. If attention to optimal screw insertion technique can reduce bending moments and potential for screw failure without increasing morbidity, surgical risk, or operative time, then proper insertion technique takes on new importance.
Inui, Hiroshi; Taketomi, Shuji; Tahara, Keitarou; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2017-03-01
Bone cutting errors can cause malalignment of unicompartmental knee arthroplasties (UKA). Although the extent of tibial malalignment due to horizontal cutting errors has been well reported, there is a lack of studies evaluating malalignment as a consequence of keel cutting errors, particularly in the Oxford UKA. The purpose of this study was to examine keel cutting errors during Oxford UKA placement using a navigation system and to clarify whether two different tibial keel cutting techniques would have different error rates. The alignment of the tibial cut surface after a horizontal osteotomy and the surface of the tibial trial component was measured with a navigation system. Cutting error was defined as the angular difference between these measurements. The following two techniques were used: the standard "pushing" technique in 83 patients (group P) and a modified "dolphin" technique in 41 patients (group D). In all 123 patients studied, the mean absolute keel cutting error was 1.7° and 1.4° in the coronal and sagittal planes, respectively. In group P, there were 22 outlier patients (27 %) in the coronal plane and 13 (16 %) in the sagittal plane. Group D had three outlier patients (8 %) in the coronal plane and none (0 %) in the sagittal plane. Significant differences were observed in the outlier ratio of these techniques in both the sagittal (P = 0.014) and coronal (P = 0.008) planes. Our study demonstrated overall keel cutting errors of 1.7° in the coronal plane and 1.4° in the sagittal plane. The "dolphin" technique was found to significantly reduce keel cutting errors on the tibial side. This technique will be useful for accurate component positioning and therefore improve the longevity of Oxford UKAs. Retrospective comparative study, Level III.
Hildebrandt, Markus; Fankhauser, Gabriela; Meichtry, André; Luomajoki, Hannu
2017-01-10
Lumbar multifidus muscles (LMM) are important for spinal motion and stability. Low back pain (LBP) is often associated with fat infiltration in LMM. An increasing fat infiltration of LMM may lead to lumbar dysfunction. The purpose of this study was to investigate whether there is a correlation between the severity of lumbar dysfunction and the severity of fat infiltration of LMM. In a cross-sectional study, 42 patients with acute or chronic LBP were recruited. Their MRI findings were visually rated and graded using three criteria for fat accumulation in LMM: Grade 0 (0-10%), Grade 1 (10-50%) and Grade 2 (>50%). Lumbar sagittal range of motion, dynamic upright and seated posture control, sagittal movement control, body awareness and self-assessed functional disability were measured to determine the patients' low back dysfunction. The main result of this study was that increased severity of fat infiltration in the lumbar multifidus muscles correlated significantly with decreased range of motion of lumbar flexion (p = 0.032). No significant correlation was found between the severity of fat infiltration in LMM and impaired movement control, posture control, body awareness or self-assessed functional disability. This is the first study investigating the relationship between the severity of fat infiltration in LMM and the severity of lumbar dysfunction. The results of this study will contribute to the understanding of the mechanisms leading to fat infiltration of LMM and its relation to spinal function. Further studies should investigate whether specific treatment strategies are effective in reducing or preventing fat infiltration of LMM.
Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás
2012-10-01
For many decades, visualization and evaluation of three-dimensional (3D) spinal deformities have only been possible by two-dimensional (2D) radiodiagnostic methods, and as a result, characterization and classification were based on 2D terminologies. Recent developments in medical digital imaging and 3D visualization techniques including surface 3D reconstructions opened a chance for a long-sought change in this field. Supported by a 3D Terminology on Spinal Deformities of the Scoliosis Research Society, an approach for 3D measurements and a new 3D classification of scoliosis yielded several compelling concepts on 3D visualization and new proposals for 3D classification in recent years. More recently, a new proposal for visualization and complete 3D evaluation of the spine by 3D vertebra vectors has been introduced by our workgroup, a concept, based on EOS 2D/3D, a groundbreaking new ultralow radiation dose integrated orthopedic imaging device with sterEOS 3D spine reconstruction software. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and vertebra vector-based 3D measurements in a routine clinical setting. Retrospective, nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4 and 117.5°. Analysis of accuracy and reliability of measurements was carried out on a group of all patients and in subgroups based on coronal plane deviation: 0 to 10° (Group 1; n=36), 10 to 25° (Group 2; n=25), 25 to 50° (Group 3; n=69), 50 to 75° (Group 4; n=49), and above 75° (Group 5; n=22). All study subjects were examined by EOS 2D imaging, resulting in anteroposterior (AP) and lateral (LAT) full spine, orthogonal digital X-ray images, in standing position. Conventional coronal and sagittal curvature measurements including sagittal L5 vertebra wedges were determined by 3 experienced examiners, using traditional Cobb methods on EOS 2D AP and LAT images. Vertebra vector-based measurements were performed as published earlier, based on computer-assisted calculations of corresponding spinal curvature. Vertebra vectors were generated by dedicated software from sterEOS 3D spine models reconstructed from EOS 2D images by the same three examiners. Manual measurements were performed by each examiner, thrice for sterEOS 3D reconstructions and twice for vertebra vector-based measurements. Means comparison t test, Pearson bivariate correlation analysis, reliability analysis by intraclass correlation coefficients for intraobserver reproducibility and interrater reliability were performed using SPSS v16.0 software. In comparison with manual 2D methods, only small and nonsignificant differences were detectable in vertebra vector-based curvature data for coronal curves and thoracic kyphosis, whereas the found difference in L1-L5 lordosis values was shown to be strongly related to the magnitude of corresponding L5 wedge. Intraobserver reliability was excellent for both methods, and interrater reproducibility was consistently higher for vertebra vector-based methods that was also found to be unaffected by the magnitude of coronal curves or sagittal plane deviations. Vertebra vector-based angulation measurements could fully substitute conventional manual 2D measurements, with similar accuracy and higher intraobserver reliability and interrater reproducibility. Vertebra vectors represent a truly 3D solution for clear and comprehensible 3D visualization of spinal deformities while preserving crucial parametric information for vertebral size, 3D position, orientation, and rotation. The concept of vertebra vectors may serve as a starting point to a valid and clinically useful alternative for a new 3D classification of scoliosis. Copyright © 2012 Elsevier Inc. All rights reserved.
Pedicle distraction increases intervertebral and spinal canal area in a cadaver and bone model
Hughes, Matthew; Papadakos, Nikolaos; Bishop, Tim; Bernard, Jason
2018-01-01
Introduction: Lumbar spinal stenosis is degenerative narrowing of the spinal canal and/or intervertebral foramen causing compression of the spinal cord and nerve roots. Traditional decompression techniques can often cause significant trauma and vertebral instability. This paper evaluates a method of increasing pedicle length to decompress the spinal and intervertebral foramen, which could be done minimally invasive. Methods: Three Sawbone (Sawbones Europe, Sweden) and 1 cadaveric lumbar spine underwent bilateral pedicle distraction at L4. A pedicle channel was drilled between the superior articular process and transverse process into the vertebral body. The pedicles underwent osteotomy at the midpoint. Screws were inserted bilaterally and fixated distraction of 0 mm, 2 mm, 4 mm and 6 mm. CT images were taken at each level of distraction. Foramen area was measured in the sagittal plane at L3/4. Spinal canal area was measured at L4 in the axial images. The cadaver was used to evaluate safety of osteotomy and soft tissue interactions preventing distraction. Statistical analysis was by student paired t-test and Pearson rank test. Results: Increasing distraction led to greater Spinal canal area. From 4.27 cm2 to 5.72 cm2 (p = 0.002) with 6 mm distraction. A Maximal increase of 34.1%. Vertebral foramen area also increased with increasing pedicle distraction. From 2.43 cm2 to 3.22 cm2 (p = 0.022) with 6 mm distraction. A maximal increase of 32.3%. The cadaver spinal canal increased in area by 21.7%. The vertebral foramen increased in area by 36.2% (left) and 22.6% (right). Discussion: For each increase in pedicle distraction the area of the spinal and vertebral foramen increases. Pedicle distraction could potentially be used to alleviate spinal stenosis and root impingement. A potential osteotomy plane could be at the midpoint of the pedicle with minimal risk to nerve roots and soft tissue restrictions to prevent distraction. PMID:29727270
Pedicle distraction increases intervertebral and spinal canal area in a cadaver and bone model.
Hughes, Matthew; Papadakos, Nikolaos; Bishop, Tim; Bernard, Jason
2018-01-01
Lumbar spinal stenosis is degenerative narrowing of the spinal canal and/or intervertebral foramen causing compression of the spinal cord and nerve roots. Traditional decompression techniques can often cause significant trauma and vertebral instability. This paper evaluates a method of increasing pedicle length to decompress the spinal and intervertebral foramen, which could be done minimally invasive. Three Sawbone (Sawbones Europe, Sweden) and 1 cadaveric lumbar spine underwent bilateral pedicle distraction at L4. A pedicle channel was drilled between the superior articular process and transverse process into the vertebral body. The pedicles underwent osteotomy at the midpoint. Screws were inserted bilaterally and fixated distraction of 0 mm, 2 mm, 4 mm and 6 mm. CT images were taken at each level of distraction. Foramen area was measured in the sagittal plane at L3/4. Spinal canal area was measured at L4 in the axial images. The cadaver was used to evaluate safety of osteotomy and soft tissue interactions preventing distraction. Statistical analysis was by student paired t-test and Pearson rank test. Increasing distraction led to greater Spinal canal area. From 4.27 cm 2 to 5.72 cm 2 (p = 0.002) with 6 mm distraction. A Maximal increase of 34.1%. Vertebral foramen area also increased with increasing pedicle distraction. From 2.43 cm 2 to 3.22 cm 2 (p = 0.022) with 6 mm distraction. A maximal increase of 32.3%. The cadaver spinal canal increased in area by 21.7%. The vertebral foramen increased in area by 36.2% (left) and 22.6% (right). For each increase in pedicle distraction the area of the spinal and vertebral foramen increases. Pedicle distraction could potentially be used to alleviate spinal stenosis and root impingement. A potential osteotomy plane could be at the midpoint of the pedicle with minimal risk to nerve roots and soft tissue restrictions to prevent distraction. © The Authors, published by EDP Sciences, 2018.
Petcharaporn, Maty; Pawelek, Jeff; Bastrom, Tracey; Lonner, Baron; Newton, Peter O
2007-09-15
A retrospective chart review and radiographic analysis. To evaluate the association between thoracic hyperkyphosis and patient quality of life measures as determined by the Scoliosis Research Society (SRS) outcomes instrument. Although validated outcomes questionnaires (e.g., Pediatric Outcomes Data Collection Instrument and SRS) have been used to evaluate patients with scoliosis, there has been little written about the effects of sagittal plane alignment on these functional outcome measurements. Data from the SRS outcomes instrument were collected from patients with thoracic hyperkyphosis as well as those with normal spinal alignment. A total of 50 patients with thoracic kyphosis >or=45 degrees were compared with 50 normal patients with thoracic kyphosis <45 degrees . Correlation analysis was performed to identify significant relationships between the magnitude of the major kyphotic curve and the 4 SRS outcome questionnaire domains (Total Pain, General Self-Image, General Function, and Activity). Lower SRS scores indicate an increase in symptoms. The average age of the subjects was 14 +/- 4 years (range, 8-18 years). The thoracic kyphosis varied between 11 degrees and 95 degrees for all subjects. Significant negative correlations were found between kyphosis magnitude and the total pain, general self-image, general function, overall level of activity, and total SRS scores (P < 0.0001). Of the 4 domains, self-image had the highest correlation with kyphosis magnitude while activity had the lowest. These findings indicate that higher kyphosis magnitudes were associated with increased pain, lower self-image, and decreased function and activity. Patients with thoracic hyperkyphosis were significantly more symptomatic than normal subjects in all domains. The r values for this analysis of kyphosis (0.40-0.66), in fact were substantially greater than those previously reported for scoliosis magnitude versus SRS Questionnaire scores (0.16-0.26), suggesting this instrument may be even better suited for the evaluation of hyperkyphosis patients.
Guler, Olcay; Mahırogulları, Mahir; Mutlu, Serhat; Cercı, Mehmet H; Seker, Ali; Cakmak, Selami
2016-11-01
When treating anterior cruciate ligament (ACL) injuries, the position of the ACL graft plays a key role in regaining postoperative knee function and physiologic kinematics. In this study, we aimed to compare graft angle, graft position in tibial tunnel, and tibial and femoral tunnel positions in patients operated with anteromedial (AM) and transtibial (TT) methods to those of contralateral healthy knees. Forty-eight patients who underwent arthroscopic ACL reconstruction with ipsilateral hamstring tendon autograft were included. Of these, 23 and 25 were treated by AM and TT techniques, respectively. MRI was performed at 18.4 and 19.7 months postoperatively in AM and TT groups. Graft angles, graft positions in the tibial tunnel and alignment of tibial and femoral tunnels were noted and compared in these two groups. The sagittal graft insertion tibia midpoint distance (SGON) has been used for evaluation of graft position in tunnel. Sagittal ACL graft angles in operated and healthy knees of AM patients were 57.78° and 46.80° (p < 0.01). With respect to TT patients, ACL graft angle was 58.87° and 70.04° on sagittal and frontal planes in operated knees versus 47.38° and 61.82° in healthy knees (p < 0.001). ACL graft angle was significantly different between the groups on both sagittal and frontal planes (p < 0.001). Sagittal graft insertion tibia midpoint distance ratio was 0.51 and 0.48 % in the operated and healthy knees of AM group (p < 0.001) and 0.51 and 0.48 % in TT group (p < 0.001). Sagittal tibial tunnel midpoint distance ratio did not differ from sagittal graft insertion tibia midpoint distance of healthy knees in either group. Femoral tunnel clock position was better in AM [right knee 10:19 o'clock-face position (310° ± 4°); left knee 1:40 (50° ± 3°)] compared with TT group [right knee 10:48 (324° ± 5°); left knee 1:04 (32° ± 4°)]. With respect to the sagittal plane, the anterior-posterior position of femoral tunnel was better in AM patients. Lysholm scores and range of motion of operated knees in the AM and TT groups showed no significant difference (p > 0.05). Precise reconstruction on sagittal plane cannot be obtained with either AM or TT technique. However, AM technique is superior to TT technique in terms of anatomical graft positioning. Posterior-placed grafts in tibial tunnel prevent ACL reconstruction, although tibial tunnel is drilled on sagittal plane.
A Combination Tissue Engineering Strategy for Schwann Cell-Induced Spinal Cord Repair
2016-10-01
block copolymer consisting of polyethylene oxide (PEO) and polypropylene oxide (PPO). It has thermoreversible gelation properties when used at...high; Zeus Inc., Orangeburg, SC) were placed on top of the aligned and random fibrous PVDF-TrFE disks in 96-well polypropylene plates to prevent them...2011. Preparation of spinal cord injured tissue for light and electron microscopy including preparation for immunostaining. In: Lane LE , Dunnett BS
[Surgical management of ankylosing spondylitis (Bechterew's disease)].
Allouch, H; Shousha, M; Böhm, H
2017-12-01
Ankylosing spondylitis is an inflammatory rheumatic disease that is often associated with back pain and restricted spinal movement. In the later stages of the disease, complete ossification of the entire spine and severe deformity can occur, often resulting in a marked reduction in quality of life and an increased risk of loss of independence due to diminished visual field. Patients with ankylosing spondylitis are at greater risk of spinal fractures. These are generally complex fractures associated with high morbidity and mortality; in addition, neurological deficits are not unusual. Conventional radiological diagnosis is often insufficient to establish a diagnosis. Conservative treatment of fractures of the spine in this patient group is unsatisfactory. Surgical procedures, if necessary combined with decompression, are often the preferred treatment of choice in the fractured or malaligned ankylosed spine. Rebalancing of the sagittal profile with normalization of the visual axis and an improvement of quality of life is achieved through corrective osteotomies. Despite the high rate of complications, long-term results following spinal surgery in patients with ankylosing spondylitis are good. Minimally invasive surgery is appropriate for a further reduction in the complication rate. Meticulous preoperative planning is essential in the treatment of patients with ankylosing spondylitis.
Salegio, Ernesto A.; Camisa, William; Tam, Horace; Beattie, Michael S.; Bresnahan, Jacqueline C.
2016-01-01
Abstract Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5–1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries. PMID:26670940
Fathallah, F A; Marras, W S; Parnianpour, M
1999-09-01
Most biomechanical assessments of spinal loading during industrial work have focused on estimating peak spinal compressive forces under static and sagittally symmetric conditions. The main objective of this study was to explore the potential of feasibly predicting three-dimensional (3D) spinal loading in industry from various combinations of trunk kinematics, kinetics, and subject-load characteristics. The study used spinal loading, predicted by a validated electromyography-assisted model, from 11 male participants who performed a series of symmetric and asymmetric lifts. Three classes of models were developed: (a) models using workplace, subject, and trunk motion parameters as independent variables (kinematic models); (b) models using workplace, subject, and measured moments variables (kinetic models); and (c) models incorporating workplace, subject, trunk motion, and measured moments variables (combined models). The results showed that peak 3D spinal loading during symmetric and asymmetric lifting were predicted equally well using all three types of regression models. Continuous 3D loading was predicted best using the combined models. When the use of such models is infeasible, the kinematic models can provide adequate predictions. Finally, lateral shear forces (peak and continuous) were consistently underestimated using all three types of models. The study demonstrated the feasibility of predicting 3D loads on the spine under specific symmetric and asymmetric lifting tasks without the need for collecting EMG information. However, further validation and development of the models should be conducted to assess and extend their applicability to lifting conditions other than those presented in this study. Actual or potential applications of this research include exposure assessment in epidemiological studies, ergonomic intervention, and laboratory task assessment.
Leveque, Jean-Christophe A; Segebarth, Bradley; Schroerlucke, Samuel R; Khanna, Nitin; Pollina, John; Youssef, Jim A; Tohmeh, Antoine G; Uribe, Juan S
2018-07-01
Multicenter, retrospective, institutional-review-board -approved study at 18 institutions in the United States with 24 treating investigators. This study was designed to retrospectively assess the prevalence of spinopelvic malalignment in patients who underwent one- or two-level lumbar fusions for degenerative (nondeformity) indications and to assess the incidence of malalignment after fusion surgery as well as the rate of alignment preservation and/or correction in this population. Spinopelvic malalignment after lumbar fusion has been associated with lower postoperative health-related quality of life and elevated risk of adjacent segment failure. The prevalence of spinopelvic malalignment in short-segment degenerative lumbar fusion procedures from a large sample of patients is heretofore unreported and may lead to an under-appreciation of these factors in surgical planning and ultimate preservation or correction of alignment. Lateral preoperative and postoperative lumbar radiographs were retrospectively acquired from 578 one- or two-level lumbar fusion patients and newly measured for lumbar lordosis (LL), pelvic incidence (PI), and pelvic tilt. Patients were categorized at preop and postop time points as aligned if PI-LL < 10° or malaligned if PI-LL≥10°. Patients were grouped into categories based on their alignment progression from pre- to postoperative, with preserved (aligned to aligned), restored (malaligned to aligned), not corrected (malaligned to malaligned), and worsened (aligned to malaligned) designations. Preoperatively, 173 (30%) patients exhibited malalignment. Postoperatively, 161 (28%) of patients were malaligned. Alignment was preserved in 63%, restored in 9%, not corrected in 21%, and worsened in 7% of patients. This is the first multicenter study to evaluate the preoperative prevalence and postoperative incidence of spinopelvic malalignment in a large series of short-segment degenerative lumbar fusions, finding over 25% of patients out of alignment at both time points, suggesting that alignment preservation/restoration considerations should be incorporated into the decision-making of even degenerative lumbar spinal fusions. 3.
The effect of spinal curvature on the photogrammetric assessment on static balance in elderly women.
Drzał-Grabiec, Justyna; Rachwał, Maciej; Podgórska-Bednarz, Justyna; Rykała, Justyna; Snela, Sławomir; Truszczyńska, Aleksandra; Trzaskoma, Zbigniew
2014-05-29
Involutional changes to the body in elderly patients affect the shape of the spine and the activity of postural muscles. The purpose of this study was to assess the influence of age-related changes in spinal curvature on postural balance in elderly women. The study population consisted of 90 women, with a mean age of 70 ± 8.01 years. Static balance assessments were conducted on a tensometric platform, and posturographic assessments of body posture were performed using a photogrammetric method based on the Projection Moiré method. The results obtained were analysed using the Spearman's rank correlation coefficient test. We found a statistically significant correlation between body posture and the quality of the balance system response based on the corrective function of the visual system. The shape of the spinal curvature influenced postural stability, as measured by static posturography. Improvement in the quality of the balance system response depended on corrective information from the visual system and proprioceptive information from the paraspinal muscles. The sensitivity of the balance system to the change of centre of pressure location was influenced by the direction of the change in rotation of the shoulder girdle and spine. Development of spinal curvature in the sagittal plane and maintenance of symmetry in the coronal and transverse planes are essential for correct balance control, which in turn is essential for the development of a properly proportioned locomotor system.
Comer, Christine M; White, Derrick; Conaghan, Philip G; Bird, Howard A; Redmond, Anthony C
2010-10-01
To explore possible mechanisms underpinning symptom relief and improved walking tolerance in patients with neurogenic claudication (NC) when pushing a shopping trolley by evaluating the effects of a shopping trolley on spinal posture and loading patterns. An exploratory study of kinematic and kinetic changes in walking with and without pushing a shopping trolley in persons with NC symptoms and a comparison with asymptomatic control subjects. A primary care-based musculoskeletal service. Participants (n=8) with NC symptoms who have anecdotally reported symptomatic improvement when walking with a shopping trolley and a control group of asymptomatic persons (n=8). Shopping trolley. Changes in lumbar spinal sagittal posture and ground reaction force. Subjects with NC and asymptomatic controls walked with significantly more flexed spinal posture (increase in flexion, 3.40°; z=3.516; P<.001) and reduced mean ground reaction forces (-6.9% of body weight; z=-3.46; P=.001) when walking with a shopping trolley. However, at the midstance point of the gait cycle, controls showed minimal reliance on the trolley, whereas, people with NC showed continued offloading. Both posture and loading are affected by pushing a shopping trolley; however, patients with NC were found to offload the spine throughout the stance phase of gait, whereas asymptomatic controls did not. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Utility of an allograft tendon for scoliosis correction via the costo-transverse foreman.
Sun, Dong; McCarthy, Michael; Dooley, Adam C; Ramakrishnaiah, Raghu H; Shelton, R Shane; McLaren, Sandra G; Skinner, Robert A; Suva, Larry J; McCarthy, Richard E
2017-01-01
Current convex tethering techniques for treatment of scoliosis have centered on anterior convex staples or polypropylene tethers. We hypothesized that an allograft tendon tether inserted via the costo-transverse foramen would correct an established spinal deformity. In the pilot study, six 8-week-old pigs underwent allograft tendon tethering via the costo-transverse foreman or sham to test the strength of the transplanted tendon to retard spine growth. After 4 months, spinal deformity in three planes was induced in all animals with allograft tendons. In the treatment study, the allograft tendon tether was used to treat established scoliosis in 11 8-week-old pigs (spinal deformity > 50°). Once the deformity was observed (4 months) animals were assigned to either no treatment group or allograft tendon tether group and progression assessed by monthly radiographs. At final follow-up, coronal Cobb angle and maximum vertebral axial rotation of the treatment group was significantly smaller than the non-treatment group, whereas sagittal kyphosis of the treatment group was significantly larger than the non-treatment group. In sum, a significant correction was achieved using a unilateral allograft tendon spinal tether, suggesting that an allograft tendon tethering approach may represent a novel fusion-less procedure to correct idiopathic scoliosis. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:183-192, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Walicka-Cupryś, Katarzyna; Drzał-Grabiec, Justyna; Mrozkowiak, Mirosław
2013-10-31
BACKGROUND. The photogrammetric method and inclinometer-based measurements are commonly employed to assess the anteroposterior curvatures of the spine. These methods are used both in clinical trials and for screening purposes. The aim of the study was to compare the parameters used to characterise the anteroposterior spinal curvatures as measured by photogrammetry and inclinometry. MATERIAL AND METHODS. The study enrolled 341 subjects: 169 girls and 172 boys, aged 4 to 9 years, from kindergartens and primary schools in Rzeszów. The anteroposterior spinal curvatures were examined by photogrammetry and with a mechanical inclinometer. RESULTS. There were significant differences in the α angle between the inclinometric and photogrammetric assessment in the Student t test (p=0.017) and the Fisher Snedecor test (p=0.0001), with similar differences in the β angle (Student's t p=0.0001, Fisher Snedecor p=0.007). For the γ angle, significant differences were revealed with Student's t test (p=0.0001), but not with the Fisher Snedecor test (p = 0.22). CONCLUSIONS. 1. Measurements of inclination of particular segments of the spine obtained with the photogrammetric method and the inclinometric method in the same study group revealed statistically significant differences. 2. The results of measurements obtained by photogrammetry and inclinometry are not comparable. 3. Further research on agreement between measurements of the anteroposterior spinal curvatures obtained using the available measurement equipment is recommended.
Modic changes of the cervical spine: T1 slope and its impact on axial neck pain.
Li, Jia; Qin, Shuhui; Li, Yongqian; Shen, Yong
2017-01-01
The purpose of the research was to evaluate cervical sagittal parameters on magnetic resonance imaging (MRI) in patients with Modic changes and its impact on axial neck pain. This study consisted of 266 consecutive asymptomatic or symptomatic patients with Modic changes, whose average age was 50.9±12.6 years from January 2015 to December 2016. Cervical sagittal parameters included sagittal alignment of the cervical spine (SACS), T1 slope, thoracic inlet angle (TIA), and neck tilt (NT). The Modic changes group was compared with an asymptomatic control group of 338 age- and gender-matched adults. In the Modic changes group, T1 slope was significantly higher (25.8°±6.3°) compared with that in the control group (22.5°±6.8°) ( P =0.000). However, there was no significant difference of the NT, TIA, and SACS between the two groups. Patients in the Modic changes group were more likely to have experienced historical axial neck pain compared with the control group ( P =0.000). With regard to the disc degeneration, it indicated that the disc in the Modic changes group had more severe disc degeneration ( P =0.032). T1 slope in the Modic changes group was significantly higher compared to that of the control group. The findings suggested that a higher T1 slope with broken compensation of cervical sagittal mechanism may be associated with the development of Modic changes in the cervical spine.
Korovessis, Panagiotis; Papazisis, Zisis; Lambiris, Elias
2002-01-01
This is a prospective comparative randomised study to compare the immediately postoperative effects of a rigid versus dynamic instrumentation for degenerative spine disease and stenosis on the standing sagittal lumbar spine alignment and to investigate if a dynamic spine system can replace the commonly used rigid systems in order to avoid the above mentioned disadvantages of rigid fixation. 15 randomly selected patients received the rigid instrumentation SCS and an equal number of randomly selected patients the dynamic TWINFLEX device for spinal stenosis associated degenerative lumbar disease. The age of the patients, who received rigid and dynamic instrumentation was 65 +/- 9 years and 62 +/- 10 years respectively. All patients had standing spine radiographs preoperatively and three months postoperatively. The parameters that were measured and compared pre- to postoperatively were: lumbar lordosis (L1-S1), total lumbar lordosis (T12-S1), sacral tilt, distal lordosis (L4-S1), intervertebral angulation, vertebral inclination and disc index. The instrumented levels in the spines that received rigid and dynamic instrumentation were 3.5 +/- 0.53 and 3 +/- 0.7 respectively. The instrumented levels from L3 to L5 were 23, the lumbosacral junction was instrumented in 3 patients of group A and in 4 patients of group B. Lumbar lordosis did not significantly change postoperatively, while total lordosis was significantly (P=0.04) increased in the patients who received the rigid instrumentation, while it was significantly (P=0.012) decreased in the group B. Intervertebral angulation of the non-instrumented level L1-L2 was increased in the group A (P=0.01), while the dynamic instrumentation increased (P=0.02) the intervertebral inclination of the adjacent level L2-L3, immediately above the uppermost instrumented level. Distal lordosis and sacral tilt did not change in any patient in both groups. Both instrumentations did not change the lateral vertebral inclination of L1 to L5 vertebrae. Rigid instrumentation increased the lordotic inclination of L5 (P=0.03) and of S1 (P=0.03). Rigid instrumentation increased (P=0.04) the intervertebral angulation at the uppermost instrumented level L3-L4 The most significant change in vertebral angulation was achieved at the instrumented level L4-L5 by the dynamic (P=0.007) and rigid (0.05). The disc index at the level L2-L3 was increased by both instrumentation [dynamic P=0.007 and rigid (P=0.02)]. The index L3-L4 was increased following dynamic fixation (P=0.0007). The disc index L4-L5 was postoperatively increased by both types of instrumentation (rigid P=0.006, dynamic P=0.02). The disc index L5-S1 did not significantly change postoperatively by either system. Both rigid and dynamic instrumentations restored lumbar lordosis, sacral tilt, distal lordosis and increased the foraminal diameter at the level L4-L5 resulting in an indirect decompression of the nerve roots at this level . Both rigid and dynamic instrumentations applied in the lumbosacral spine to treat degenerative disease secured L3 to S1 sagittal spine profile close to preoperative levels, that should theoretically guarantee a pain-free postoperative course. This study supports the belief that the dynamic system can be used with the same indications with the rigid in degenerative lumbar spine because it can offer equally good short-term results regarding sagittal spine alignment while simultaneously it has the previously mentioned advantages (avoidance stress shielding etc).
Thoracolumbar imbalance analysis for osteotomy planification using a new method: FBI technique.
Le Huec, J C; Leijssen, P; Duarte, M; Aunoble, S
2011-09-01
Treatment of spine imbalance by posterior osteotomy is a valuable technique. Several surgical techniques have been developed and proposed to redress the vertebral column in harmonious kyphosis in order to recreate correct sagittal alignment. Although surgical techniques proved to be adequate, preoperative planning still is mediocre. Multiple suggestions have been proposed, from cutting tracing paper to ingenious mathematical formulas and computerised models. The analysis of the pelvic parameters to try to recover the initial shape of the spine before the spine imbalance occurred is very important to avoid mistakes during the osteotomy planification. The authors proposed their method for the osteotomy planning paying attention to the pelvic, and spine parameters and in accordance with Roussouly's classification. The pre operative planning is based on a full-body X-ray including the spine from C1 to the femoral head and the first 10 cm of the femur shaft. Using all the balance parameters provided, a formula name FBI is proposed. Calculation of the osteotomy is basic goniometry, the midpoint of the C7 inferior plateau (point a) is transposed horizontally on the projected future C7 plumb line (point b) crossing posterior S1 plateau on a sagittal X-ray. These are the first two reference points. A third reference point is made on the anterior wall of the selected vertebra for osteotomy at mid height of the pedicle (point c) mainly L4 vertebra. These three points form a triangle with the tip being the third reference point. The angle represented by this triangle is the theoretical angle of the osteotomy. Two more angles should be measured and eventually added. The femur angulation measured as the inclination of the femoral axis to the vertical. And a third angle named the compensatory pelvic tilt to integrate the type of pelvis. If the pelvic tilt is between 15 and 25° or is higher than 25° you must add 5 or 10°, respectively. This compensatory tilt is based on a clinical analysis of operated patients. This planification was applied in a retrospective study of 18 patients and showed why in some cases improper correction was performed and prospectively in 8 cases with good clinical outcomes and correct spinal alignment. Sometimes it is necessary to find an acceptable compromise when rebalancing the spine paying attention to the general parameters of the patients like: age, osteoporosis, systemic disease etc. This FBI technique can be used even for small lordosis restoration: it gave a good evaluation of the amount of correction needed and then the surgeon had the choice to use the appropriate technique to obtain a good balance.
Fontes, Ricardo B; Fessler, Richard G
2017-07-01
Surgery for adult spinal deformity (ASD) has emerged as an efficient treatment alternative, but it is fraught with potential perioperative morbidity, incompletely mitigated by emerging minimally invasive surgical techniques. In mild-to-moderate ASD balanced in the sagittal plane, there are situations in which the counterintuitive simple decompression through a foraminotomy or laminectomy, or even a short-segment fusion may be an attractive treatment. This article presents a case example and the authors' treatment rationale and reviews the limited available literature supporting it. Copyright © 2017 Elsevier Inc. All rights reserved.
Kothari, Pranay D; Hanser, Evelyn M; Wang, Harrison; Farid, Nikdokht
2016-01-01
A 38year-old male presented with cauda equina syndrome following multiple lumbar puncture attempts. Lumbar spine magnetic resonance imaging (MRI) showed a subdural hematoma and an area of apparent contrast enhancement in the spinal canal on sagittal post-contrast images. Axial post-contrast images obtained seven minutes later demonstrated an increase in size and change in shape of the region of apparent contrast enhancement, indicating active extravasation of the contrast agent. This is the first reported case of active extravasation of gadolinium-based contrast agent in the spine. Copyright © 2016 Elsevier Inc. All rights reserved.
Isola spinal instrumentation system for idiopathic scoliosis.
Benli, I T; Akalin, S; Aydin, E; Baz, A; Citak, M; Kiş, M; Duman, E
2001-01-01
Since the definition of three-dimensional components of the scoliotic deformity, there have been important improvements in the surgical treatment of the problem. A derotation maneuver was proposed as a treatment option with CD instrumentation, but the reports of imbalance and decompensation with this system repopularized sublaminar wiring and translation as a corrective maneuver. Isola spinal instrumentation is one of the modern systems that utilizes vertebral translation instead of rod rotation. This study analyzes the results of 24 patients with idiopathic scoliosis who had been followed up for at least 2 years, and were surgically treated with titanium Isola Spinal Instrumentation in the Department of Orthopaedics and Traumatology, Ankara Social Security Hospital. Patients were grouped according to the King-Moe classification. Patients with type III, IV or V curves received only posterior instrumentation while this procedure followed anterior release and discectomy in the same session in patients with type I or II curves. A translation maneuver was utilized in the correction of scoliotic curves using the cantilever technique, either alone or supplemented by sublaminar wiring with Songer multifilament titanium cables. This study aimed to elucidate the effects of this technique in the frontal and sagittal plane curves and the trunk balance. The balance was analyzed clinically and radiologically by measurement of the lateral trunk shift (LT), shift of stable vertebra (SS), and shift of head (SH) in vertebral units (VU). The postoperative correction was significant in the frontal plane for all types of curves (p < 0.05). The postoperative correction was 80.9% +/- 9.5% in type III curves. Overall, the mean Cobb angle of the major curve value in the frontal plane was 66.9 degrees +/- 18.8 degrees, and it was corrected by 62.8% +/- 20.1%. The correction loss of Cobb angles in the frontal plane was 5.4 degrees +/- 5.5 degrees at the last follow-up visit. A normal physiologic thoracic contour (30 degrees - 50 degrees) was achieved in 83.3% of the patients and normal lumbar contour (40 degrees - 60 degrees) in 66.7% of the patients in the sagittal plane. The correction was found to be significant in all balance values (p < 0.05). The postoperative correction in LT values correlated with the correction of the Cobb angle values in the frontal plane. All patients had complete balance (SH: 0 VU and SS: 0 VU) or balanced curves (0 VU < SH, SS < 0.5 VU).Finally, the study concluded that the translation maneuver, especially when used with the cantilever technique, resulted in high correction rates in the frontal plane. Additionally, the technique was also successful in obtaining normal sagittal contours and correcting balance values.
Kakar, Rumit Singh; Li, Yumeng; Brown, Cathleen N; Kim, Seock-Ho; Oswald, Timothy S; Simpson, Kathy J
2018-01-01
Individuals with adolescent idiopathic scoliosis post spinal fusion often return to exercise and sport. However, the movements that individuals with spinal fusion for adolescent idiopathic scoliosis (SF-AIS) use to compensate for the loss of spinal flexibility during high-effort tasks are not known. The objective of this study was to compare the spinal kinematics of the trunk segments displayed during the stop-jump, a maximal effort task, between SF-AIS and healthy control groups. The study used a case-controlled design. Ten SF-AIS (physically active, posterior-approach spinal fusion: 11.2±1.9 fused segments, postop time: 2±.6 years) and nine control individuals, pair matched for gender, age (17.4±1.3 years and 20.6±1.5 years, respectively), mass (63.50±12.2 kg and 66. 40±10.9 kg), height (1.69±.09 m and 1.72±.08 m), and level of physical activity, participated in the study. Individuals with spinal fusion for adolescent idiopathic scoliosis and controls (CON) performed five acceptable trials of the stop-jump task. Spatial locations of 21 retroreflective trunk and pelvis markers were recorded via high-speed motion capture methodology. Mean differences and analysis of covariance (jump height=covariate, p<.05) were used to compare the groups' relative angle (RelAng) and segmental angle (SegAng) of the three trunk segments (trunk segments=upper trunk [C7-T8], middle trunk [MT: T9-T12], lower trunk [LT: L1-L5]) for each rotation plane in the three phases of interest (flight, stance, and the vertical flight phases). No significant group differences for jump height and RelAng were detected in the three phases of stop-jump. Individuals with spinal fusion for adolescent idiopathic scoliosis displayed 3.2° greater transverse plane RelAng of LT compared with CON (p=.059) in the stance phase. Group differences for RelAng ranged from 0° to 15.3°. For SegAng in the stance phase, LT demonstrated greater SegAng in the sagittal and frontal planes (mean difference: 3.2°-6.2°), whereas SegAng for MT was 5.1° greater in the sagittal plane and had a tendency of 2° greater displacement in the frontal plane (p=.070). In the vertical flight phase, greater LT displacement in the frontal plane was observed for SF-AIS than CON. In the flight phase, LT had a tendency for greater SegAng for SF-AIS than for CON in the transverse plane (p=.089). Overall, SF-AIS who participate in physical activity on a regular basis are able to demonstrate similar trunk kinematics during a high-intensity stop-jump task as their matched healthy peers. Fewer group differences for relative angular displacements of the spine were observed than anticipated. This finding suggests that the fused MT appeared to be moving synchronously with the LT, thereby suggesting a compensatory adaptation of SF-AIS to achieve sufficient trunk movements during this high-effort movement. Copyright © 2017 Elsevier Inc. All rights reserved.
Cheng, Tao; Zhang, Guoyou; Zhang, Xianlong
2011-12-01
The aim of computer-assisted surgery is to improve accuracy and limit the range of surgical variability. However, a worldwide debate exists regarding the importance and usefulness of computer-assisted navigation for total knee arthroplasty (TKA). The main purpose of this study is to summarize and compare the radiographic outcomes of TKA performed using imageless computer-assisted navigation compared with conventional techniques. An electronic search of PubMed, EMBASE, Web of Science, and Cochrane library databases was made, in addition to manual search of major orthopedic journals. A meta-analysis of 29 quasi-randomized/randomized controlled trials (quasi-RCTs/RCTs) and 11 prospective comparative studies was conducted through a random effects model. Additional a priori sources of clinical heterogeneity were evaluated by subgroup analysis with regard to radiographic methods. When the outlier cut-off value of lower limb axis was defined as ±2° or ±3° from the neutral, the postoperative full-length radiographs demonstrated that the risk ratio was 0.54 or 0.39, respectively, which were in favor of the navigated group. When the cut-off value used for the alignment in the coronal and sagittal plane was 2° or 3°, imageless navigation significantly reduced the outlier rate of the femoral and tibial components compared with the conventional group. Notably, computed tomography scans demonstrated no statistically significant differences between the two groups regarding the outliers in the rotational alignment of the femoral and tibial components; however, there was strong statistical heterogeneity. Our results indicated that imageless computer-assisted navigation systems improve lower limb axis and component orientation in the coronal and sagittal planes, but not the rotational alignment in TKA. Further multiple-center clinical trials with long-term follow-up are needed to determine differences in the clinical and functional outcomes of knee arthroplasties performed using computer-assisted techniques. Copyright © 2011 Elsevier Inc. All rights reserved.
Biomedical Analyses, Tolerance, and Mitigation of Acute and Chronic Trauma
2012-07-01
aligned such that in one group the heads were constrained to rotate in the mid-sagittal line and in the other group head was angulated about all three...the restrained than in the unrestrained groups indicating the role of posture on trauma. Uniaxial force gages introduced into the C5-C6...directions for future experimental design. Tests conducted on the Hybrid-III ATD with both curved and straightened lumbar spines demonstrated that
Retinoic acid regulates size, pattern and alignment of tissues at the head-trunk transition.
Lee, Keun; Skromne, Isaac
2014-11-01
At the head-trunk transition, hindbrain and spinal cord alignment to occipital and vertebral bones is crucial for coherent neural and skeletal system organization. Changes in neural or mesodermal tissue configuration arising from defects in the specification, patterning or relative axial placement of territories can severely compromise their integration and function. Here, we show that coordination of neural and mesodermal tissue at the zebrafish head-trunk transition crucially depends on two novel activities of the signaling factor retinoic acid (RA): one specifying the size and the other specifying the axial position relative to mesodermal structures of the hindbrain territory. These activities are each independent but coordinated with the well-established function of RA in hindbrain patterning. Using neural and mesodermal landmarks we demonstrate that the functions of RA in aligning neural and mesodermal tissues temporally precede the specification of hindbrain and spinal cord territories and the activation of hox transcription. Using cell transplantation assays we show that RA activity in the neuroepithelium regulates hindbrain patterning directly and territory size specification indirectly. This indirect function is partially dependent on Wnts but independent of FGFs. Importantly, RA specifies and patterns the hindbrain territory by antagonizing the activity of the spinal cord specification gene cdx4; loss of Cdx4 rescues the defects associated with the loss of RA, including the reduction in hindbrain size and the loss of posterior rhombomeres. We propose that at the head-trunk transition, RA coordinates specification, patterning and alignment of neural and mesodermal tissues that are essential for the organization and function of the neural and skeletal systems. © 2014. Published by The Company of Biologists Ltd.
ASTM F1717 standard for the preclinical evaluation of posterior spinal fixators: can we improve it?
La Barbera, Luigi; Galbusera, Fabio; Villa, Tomaso; Costa, Francesco; Wilke, Hans-Joachim
2014-10-01
Preclinical evaluation of spinal implants is a necessary step to ensure their reliability and safety before implantation. The American Society for Testing and Materials reapproved F1717 standard for the assessment of mechanical properties of posterior spinal fixators, which simulates a vertebrectomy model and recommends mimicking vertebral bodies using polyethylene blocks. This set-up should represent the clinical use, but available data in the literature are few. Anatomical parameters depending on the spinal level were compared to published data or measurements on biplanar stereoradiography on 13 patients. Other mechanical variables, describing implant design were considered, and all parameters were investigated using a numerical parametric finite element model. Stress values were calculated by considering either the combination of the average values for each parameter or their worst-case combination depending on the spinal level. The standard set-up represents quite well the anatomy of an instrumented average thoracolumbar segment. The stress on the pedicular screw is significantly influenced by the lever arm of the applied load, the unsupported screw length, the position of the centre of rotation of the functional spine unit and the pedicular inclination with respect to the sagittal plane. The worst-case combination of parameters demonstrates that devices implanted below T5 could potentially undergo higher stresses than those described in the standard suggestions (maximum increase of 22.2% at L1). We propose to revise F1717 in order to describe the anatomical worst case condition we found at L1 level: this will guarantee higher safety of the implant for a wider population of patients. © IMechE 2014.
Carnero Contentti, Edgar; Daccach Marques, Vanessa; Soto de Castillo, Ibis; Tkachuk, Verónica; Antunes Barreira, Amilton; Armas, Elizabeth; Chiganer, Edson; de Aquino Cruz, Camila; Di Pace, José Luis; Hryb, Javier Pablo; Lavigne Moreira, Carolina; Lessa, Carmen; Molina, Omaira; Perassolo, Mónica; Soto, Arnoldo; Caride, Alejandro
2018-05-22
Multicenter retrospective study. The aim was to determine the frequency and magnetic resonance imaging (MRI) features of short-segment transverse myelitis (STM) in patients with neuromyelitis optica spectrum disorders (NMOSD) during a myelitis attack. Latin American diagnostic centres (Neuroimmunology Unit). A multicenter study from Argentina, Brazil and Venezuela was performed. Seventy-six patients with NMOSD were included. We analyzed 346 attacks and reviewed spinal cord MRIs performed within 30 days from spinal attack onset. Sagittal and axial characteristics on cervical and thoracic MRI (1.5 tesla) were observed. Demographics, clinical, serological, and disability data were collected. Among the 76 patients with NMOSD, isolated STM was observed in 8% (n = 6), multisegmental lesions (longitudinally extensive transverse myelitis (LETM) + STM) in 28% (n = 21; 13 had at least one STM), LETM in 42% (n = 32), and normal spinal MRI in 22% (n = 17). However, isolated STM was increased by 10% in patients with NMOSD with spinal lesions (6 out of 59) with mean attacks of 2.5 (±0.83) and last follow-up expanded disability status scale (EDSS) of 3.1 (±2.63). Positive aquaporin 4 antibodies (AQP4-ab) were found in 50%. Upper-cervical lesion was most frequently observed (5 out of 6). Myelitis was preceded by ON in all isolated patients with STM. Only one had a positive gadolinium lesion and none of these had asymptomatic spinal cord lesion. Isolated STM does not exclude NMOSD diagnosis. Therefore, APQ4-ab testing could be useful during a myelitis attack with STM.
Tokgoz, Nil; Ucar, Murat; Erdogan, Aylin Billur; Kilic, Koray; Ozcan, Cahide
2014-01-01
To evaluate the value of spinal and paraspinal anatomic markers in both the diagnosis of lumbosacral transitional vertebrae (LSTVs) and identification of vertebral levels on lumbar MRI. Lumbar MRI from 1049 adult patients were studied. By comparing with the whole-spine localizer, the diagnostic errors in numbering vertebral segments on lumbar MRI were evaluated. The morphology of S1-2 disc, L5 and S1 body, and lumbar spinous processes (SPs) were evaluated by using sagittal MRI. The positions of right renal artery (RRA), superior mesenteric artery, aortic bifurcation (AB) and conus medullaris (CM) were described. The diagnostic error for evaluation of vertebral segmentation on lumbar MRI alone was 14.1%. In lumbarization, all patients revealed a well-formed S1-2 disc with squared S1 body. A rhombus-shaped L5 body in sacralization and a rectangular-shaped S1 body in lumbarization were found. The L3 had the longest SP. The most common sites of spinal and paraspinal structures were: RRA at L1 body (53.6%) and L1-2 disc (34.1%), superior mesenteric artery at L1 body (55.1%) and T12-L1 disc (31.6%), and AB at L4 body (71.1%). CM had variable locations, changing from the T12-L1 disc to L2 body. They were located at higher sacralization and lower lumbarization. The spinal morphologic features and locations of the spinal and paraspinal structures on lumbar MRI are not completely reliable for the diagnosis of LSTVs and identification on the vertebral levels.
Pelvic incidence variation among individuals: functional influence versus genetic determinism.
Chen, Hong-Fang; Zhao, Chang-Qing
2018-03-20
Pelvic incidence has become one of the most important sagittal parameters in spinal surgery. Despite its great importance, pelvic incidence can vary from 33° to 85° in the normal population. The reasons for this great variability in pelvic incidence remain unexplored. The objective of this article is to present some possible interpretations for the great variability in pelvic incidence under both normal and pathological conditions and to further understand the determinants of pelvic incidence from the perspective of the functional requirements for bipedalism and genetic backgrounds via a literature review. We postulate that both pelvic incidence and pelvic morphology may be genetically predetermined, and a great variability in pelvic incidence may already exist even before birth. This great variability may also serve as a further reminder that the sagittal profile, bipedal locomotion mode, and genetic background of every individual are unique and specific, and clinicians should avoid making universally applying broad generalizations of pelvic incidence. Although PI is an important parameter and there are many theories behind its variability, we still do not have clear mechanistic answers.
[Novel artificial lamina for prevention of epidural adhesions after posterior cervical laminectomy].
Lü, Chaoliang; Song, Yueming; Liu, Hao; Liu, Limin; Gong, Quan; Li, Tao; Zeng, Jiancheng; Kong, Qingquan; Pei, Fuxing; Tu, Chongqi; Duan, Hong
2013-07-01
To evaluate the application of artificial lamina of multi-amino-acid copolymer (MAACP)/nano-hydroxyapatite (n-HA) in prevention of epidural adhesion and compression of scar tissue after posterior cervical laminectomy. Fifteen 2-year-old male goats [weighing, (30 +/- 2) kg] were randomly divided into experimental group (n=9) and control group (n=6). In the experimental group, C4 laminectomy was performed, followed by MAACP/n-HA artificial lamina implantations; in the control group, only C4 laminectomy was performed. At 4, 12, and 24 weeks after operation, 2, 2, and 5 goats in the experimental group and 2, 2, and 2 goats in the control group were selected for observation of wound infection, artificial laminar fragmentation and displacement, and its shape; Rydell's degree of adhesion criteria was used to evaluate the adhesion degree between 2 groups. X-ray and CT images were observed; at 24 weeks after operation, CT scan was used to measure the spinal canal area and the sagittal diameter of C3, C4, and C5 vertebrea, 2 normal goats served as normal group; and MRI was used to assess adhesion and compression of scar tissue on the dura and the nerve root. Then goats were sacrificed and histological observation was carried out. After operation, the wound healed well; no toxicity or elimination reaction was observed. According to Rydell's degree of adhesion criteria, adhesion in the experimental group was significantly slighter than that in the control group (Z= -2.52, P=0.00). X-ray and CT scan showed that no dislocation of artificial lamina occurred, new cervical bone formed in the defect, and bony spinal canal was rebuilt in the experimental group. Defects of C4 vertebral plate and spinous process were observed in the control group. At 24 weeks, the spinal canal area and sagittal diameter of C4 in the experimental group and normal group were significantly larger than those in the control group (P < 0.05), but no significant difference was found between experimental group and normal group (P > 0.05). MRI showed cerebrospinal fluid signal was unobstructed and no soft tissue projected into the spinal canal in the experimental group; scar tissue projected into the spinal canal and the dura were compressed by scar tissue in the control group. HE staining and Masson trichrome staining showed that artificial lamina had no obvious degradation with high integrity, some new bone formed at interface between the artificial material and bone in the experimental group; fibrous tissue grew into defect in the control group. The MAACP/n-HA artificial lamina could maintaine good biomechanical properties for a long time in vivo and could effectively prevent the epidural scar from growing in the lamina defect area.
Surgical treatment of aspergillus spondylodiscitis.
van Ooij, A; Beckers, J M; Herpers, M J; Walenkamp, G H
2000-02-01
Four cases of aspergillus spondylodiscitis were treated with operative debridement and fusion. In this rarely encountered mycotic infection of the spine in immunocompromised patients rapid destruction of the intervertebral disc and vertebral bodies can occur. In advanced cases antimycotic drug therapy is thought to be ineffective and a forcing indication for surgery exists when the destruction is progressive and spinal cord compression is imminent or manifest. Spinal instrumentation can be of help in maintaining or restoring spinal stability and maintaining spinal alignment. In our four patients the aspergillus spondylodiscitis was successfully eradicated and fusion achieved. In two of three patients with a neurologic deficit, this deficit disappeared. Two patients died within 6 months after the operative treatment, due to complications related to the underlying illness. One patient was left with a subtotal paraplegia.
Housley, Daniel; Caine, Abby; Cherubini, Giunio; Taeymans, Olivier
2017-07-01
Sagittal T2-weighted sequences (T2-SAG) are the foundation of spinal protocols when screening for the presence of intervertebral disc extrusion. We often utilize sagittal short-tau inversion recovery sequences (STIR-SAG) as an adjunctive screening series, and experience suggests that this combined approach provides superior detection rates. We hypothesized that STIR-SAG would provide higher sensitivity than T2-SAG in the identification and localization of intervertebral disc extrusion. We further hypothesized that the parallel evaluation of paired T2-SAG and STIR-SAG series would provide a higher sensitivity than could be achieved with either independent sagittal series when viewed in isolation. This retrospective diagnostic accuracy study blindly reviewed T2-SAG and STIR-SAG sequences from dogs (n = 110) with surgically confirmed intervertebral disc extrusion. A consensus between two radiologists found no significant difference in sensitivity between T2-SAG and STIR-SAG during the identification of intervertebral disc extrusion (T2-SAG: 92.7%, STIR-SAG: 94.5%, P = 0.752). Nevertheless, STIR-SAG accurately identified intervertebral disc extrusion in 66.7% of cases where the evaluation of T2-SAG in isolation had provided a false negative diagnosis. Additionally, one radiologist found that the parallel evaluation of paired T2-SAG and STIR-SAG series provided a significantly higher sensitivity than T2-SAG in isolation, during the identification of intervertebral disc extrusion (T2-SAG: 78.2%, paired T2-SAG, and STIR-SAG: 90.9%, P = 0.017). A similar nonsignificant trend was observed when the consensus of both radiologists was taken into consideration (T2-SAG: 92.7%, paired T2-SAG, and STIR-SAG = 97.3%, P = 0.392). We therefore conclude that STIR-SAG is capable of identifying intervertebral disc extrusion that is inconspicuous in T2-SAG, and that STIR-SAG should be considered a useful adjunctive sequence during preliminary sagittal screening for intervertebral disc extrusion in low-field magnetic resonance. © 2017 American College of Veterinary Radiology.
Harrison, D E; Harrison, D D; Janik, T J; William Jones, E; Cailliet, R; Normand, M
2001-05-01
To calculate and compare combined axial and flexural stresses in lordosis versus buckled configurations of the sagittal cervical curve. Digitized measurements from lateral cervical radiographs of four different shapes were used to calculate axial loads and bending moments on the vertebral bodies of C2-C7.Background. Osteoarthritis and spinal degeneration are factors in neck and back pain. Calculations of stress in clinically occurring configurations of the sagittal cervical spine are rare. Center of gravity of the head (inferior-posterior sella turcica) and vertebral body margins were digitized on four different lateral cervical radiographs: lordosis, kyphosis, and two "S"-shapes. Polynomials (seventh degree) and stress concentrations on the concave and convex margins were derived for the shape of the sagittal cervical curvatures from C1 to T1. Moments of inertia were determined from digitizing and the use of an elliptical shell model of cross-section. Moment arms from a vertical line through the center of gravity of the head to the atlas and scaled neck extensor moment arms from the literature were used to compute the vertical component of extensor muscle effort. Segmental lever arms were calculated from a vertical line through C1 to each vertebra. In lordosis, anterior and posterior stresses in the vertebral body are nearly uniform and minimal. In kyphotic areas, combined stresses changed from tension to compression at the anterior vertebral margins and were very large (6-10 times as large in magnitude) compared to lordosis. In kyphotic areas at the posterior vertebral body, the combined stresses changed from compression (in lordosis) to tension. The stresses in kyphotic areas are very large and opposite in direction compared to a normal lordosis. This analysis provides the basis for the formation of osteophytes (Wolff's Law) on the anterior margins of vertebrae in kyphotic regions of the sagittal cervical curve. This indicates that any kyphosis is an undesirable configuration in the cervical spine. Relevance. Osteophytes and osteoarthritis are found at areas of altered stress and strain. Axial and flexural stresses at kyphotic areas in the sagittal cervical spine are abnormally high.
Protopsaltis, Themistocles S; Lafage, Renaud; Smith, Justin S; Passias, Peter G; Shaffrey, Christopher I; Kim, Han Jo; Mundis, Gregory M; Ames, Christopher P; Burton, Douglas C; Bess, Shay; Klineberg, Eric; Hart, Robert A; Schwab, Frank J; Lafage, Virginie
2018-05-15
Prospective multicenter analysis of adult spinal deformity (ASD) patients. The aim of this study was to introduce the lumbar pelvic angle (LPA), a novel parameter of spinopelvic alignment. The T1 pelvic angle (TPA), a measure of global spinopelvic alignment, correlates with health-related quality of life (HRQOL), but it may not be measureable on all intraoperative x-rays. In patients with previous interbody fusion at L5-S1, the plane of the S1 endplate can be blurred, creating error in pelvic incidence and lumbar lordosis (PI-LL) measure. The LPA is more readily measured on intraoperative imaging than the TPA. ASD patients were included with either coronal Cobb angle >20°, sagittal vertical axis (SVA) >5 cm, thoracic kyphosis >60°, or pelvic tilt (PT) >25°. Measures of disability included Oswestry Disability Index (ODI), Scoliosis Research Society (SRS), and Short Form (SF)-36. Baseline and 2-year follow-up radiographic and HRQOL outcomes were evaluated. Linear regressions compared LPA with radiographic parameters and HRQOL. A total of 852 ASD patients (407 operative) were enrolled (mean age 53.7). Baseline LPA correlated with PI-LL (r = 0.79), PT (r = 0.78), TPA (r = 0.82), and SVA (r = 0.61) (all P < 0.001). PI-LL, LPA, and TPA correlated with ODI (r = 0.42/0.29/0.45), SF-36 physical component score (-0.43/-0.28/-0.45) SRS (-0.354/-0.23/-0.37) with all P < 0.001. At 2 years' follow-up, LPA correlated with PI-LL (r = 0.77), PT (r = 0.78), TPA (r = 0.83), and SVA (r = 0.57) (all P < 0.001). Categorizing patients by increasing LPA (<7°; 7°-15°; >15°) revealed progressive increases in all HRQOL, PI-LL (-3.2°/12.7°/32.4°), and TPA (9.7°/20.1°/34.6°) with all P < 0.001. Moderate disability (ODI = 40) corresponded to LPA 10.1°, PI-LL 12.6°, and TPA 20.6°. Mild disability (ODI = 20) corresponded to LPA 7.2°, PI-LL 4.2°, and TPA 14.7°. LPA correlates with TPA, PI-LL, and HRQOL in ASD patients. LPA can be used as an intraoperative tool to gauge correction with a target LPA of <7.2°. LPA predicts global alignment, as it correlates with baseline and 2-year TPA and SVA. Along with the cervical-thoracic pelvic angle and TPA, LPA completes the fan of spinopelvic alignment. 3.
Hastings, Mary K; Woodburn, James; Mueller, Michael J; Strube, Michael J; Johnson, Jeffrey E; Beckert, Krista S; Stein, Michelle L; Sinacore, David R
2014-01-01
Diabetic foot deformity onset and progression maybe associated with abnormal foot and ankle motion. The modified Oxford multi-segmental foot model allows kinematic assessment of inter-segmental foot motion. However, there are insufficient anatomical landmarks to accurately representation the alignment of the hindfoot and forefoot segments during model construction. This is most notable for the sagittal plane which is referenced parallel to the floor, allowing comparison of inter-segmental excursion but not capturing important sagittal hind-to-forefoot deformity associated with diabetic foot disease and can potentially underestimate true kinematic differences. The purpose of the study was to compare walking kinematics using local coordinate systems derived from the modified Oxford model and the radiographic directed model which incorporated individual calcaneal and 1st metatarsal declination pitch angles for the hindfoot and forefoot. We studied twelve participants in each of the following groups: (1) diabetes mellitus, peripheral neuropathy and medial column foot deformity (DMPN+), (2) DMPN without medial column deformity (DMPN-) and (3) age- and weight-match controls. The modified Oxford model coordinate system did not identify differences between groups in the initial, peak, final, or excursion hindfoot relative to shank or forefoot relative to hindfoot dorsiflexion/plantarflexion during walking. The radiographic coordinate system identified the DMPN+ group to have an initial, peak and final position of the forefoot relative to hindfoot that was more dorsiflexed (lower arch phenotype) than the DMPN- group (p<.05). Use of radiographic alignment in kinematic modeling of those with foot deformity reveals segmental motion occurring upon alignment indicative of a lower arch. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Baoge; Zeng, Zheng; Hoof, Tom Van; Kalala, Jean Pierre; Liu, Zhenyu; Wu, Bingxuan
2015-04-08
Multi-level cervical degeneration of the spine is a common clinical pathology that is often repaired by anterior cervical discectomy and fusion (ACDF). The aim of this study was to investigate the kinematics of the cervical spine after hybrid surgery compared with 2-level ACDF. Five freshly frozen, unembalmed whole human cadavers were used including 3 males and 2 females with a mean age of 51 ± 8 years. After evaluating the intact spine for range of motion (ROM), sagittal alignment and instantaneous center of rotation (ICR), each cadaver underwent 4 consecutive surgeries: 2-level artificial disc replacement (ADR) from C4 to C6 (ADR surgery); 2-level ACDF from C4 to C6 (ACDF surgery); hybrid C4-5 ACDF and C5-6 ADR (ACDF+ADR surgery); and hybrid C4-5 ADR and C5-6 ACDF (ADR+ACDF surgery). The ROM and ICR of adjacent intact segments (C3-4; C6-7), and whole sagittal alignment were revaluated. Two-level ACDF resulted in increased ROM at C3-4 and C6-7 compared with intact spine. ROM was significantly different to intact spine using ACDF surgery at C3-C4 and C6-C7 and ROM was increased with ACDF+ADR surgery at C6-C7 (all P<0.05). No improvement in sagittal alignment was observed with any approach. The localization of the ICR shifted upwards and anteriorly at C3-C4 after reconstruction. ICR changes at C3-C4 were greatest for ADR+ACDF surgery and were significantly different to ACDF surgery (P<0.05), but not between ADR surgery and ACDF+ADR surgery. At C6-C7, the ICR was more posterior and superior than in the intact condition. The greatest change in ICR was observed in ACDF surgery at the C6-C7 level, significantly different from the other groups (P<0.05). For 2-level reconstruction, hybrid surgery and ADR did not alter ROM and minimally changed ICR at the adjacent-level. The type of surgery had a significant impact on the ICR location. This suggests that hybrid surgery may be a viable option for 2-level cervical surgery.
Kiapour, Ata M.; Fleming, Braden C.; Murray, Martha M.
2017-01-01
Background: Abnormal joint motion has been linked to joint arthrosis after anterior cruciate ligament (ACL) reconstruction. However, the relationships between the graft properties (ie, structural and anatomic) and extent of posttraumatic osteoarthritis are not well defined. Hypotheses: (1) The structural (tensile) and anatomic (area and alignment) properties of the reconstructed graft or repaired ACL correlate with the total cartilage lesion area 1 year after ACL surgery, and (2) side-to-side differences in anterior-posterior (AP) knee laxity correlate with the total cartilage lesion area 1 year postoperatively. Study Design: Controlled laboratory study. Methods: Sixteen minipigs underwent unilateral ACL transection and were randomly treated with ACL reconstruction or bridge-enhanced ACL repair. The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACL or graft, AP knee laxity, and cartilage lesion areas were assessed 1 year after surgery. Results: In the reconstructed group, the normalized graft yield and maximum failure loads, cross-sectional area, sagittal and coronal elevation angles, and side-to-side differences in AP knee laxity at 60° of flexion were associated with the total cartilage lesion area 1 year after surgery (R 2 > 0.5, P < .04). In the repaired group, normalized ACL yield load, linear stiffness, cross-sectional area, and the sagittal and coronal elevation angles were associated with the total cartilage lesion area (R 2 > 0.5, P < .05). Smaller cartilage lesion areas were observed in the surgically treated knees when the structural and anatomic properties of the ligament or graft and AP laxity values were closer to those of the contralateral ACL-intact knee. Reconstructed grafts had a significantly larger normalized cross-sectional area and sagittal elevation angle (more vertical) when compared with repaired ACLs (P < .02). Conclusion: The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACLs or grafts and AP knee laxity in reconstructed knees were associated with the extent of tibiofemoral cartilage damage after ACL surgery. Clinical Relevance: These data highlight the need for novel ACL injury treatments that can restore the structural and anatomic properties of the torn ACL to those of the native ACL in an effort to minimize the risk of early-onset posttraumatic osteoarthritis. PMID:28875154
The effect of spinal manipulation impulse duration on spine neuromechanical responses
Pagé, Isabelle; Nougarou, François; Dugas, Claude; Descarreaux, Martin
2014-01-01
Introduction: Spinal manipulation therapy (SMT) is characterized by specific kinetic and kinematic parameters that can be modulated. The purpose of this study is to investigate fundamental aspects of SMT dose-physiological response relation in humans by varying SMT impulse duration. Methods: Twenty healthy adults were subjected to four different SMT force-time profiles delivered by a servo-controlled linear actuator motor and differing in their impulse duration. EMG responses of the left and right thoracic paraspinal muscles (T6 and T8 levels) and vertebral displacements of T7 and T8 were evaluated for all SMT phases. Results: Significant differences in paraspinal EMG were observed during the “Thrust phase” and immediately after (“Post-SMT1”) (all T8 ps < 0.01 and T6 during the thrust ps < 0.05). Sagittal vertebral displacements were similar across all conditions (p > 0.05). Conclusion: Decreasing SMT impulse duration leads to a linear increase in EMG response of thoracic paraspinal during and following the SMT thrust. PMID:24932018
Qiu, Tian-Xia; Teo, Ee-Chon; Lee, Kim-Kheng; Ng, Hong-Wan; Yang, Kai
2004-04-01
The purpose of this study was to determine the locations and loci of instantaneous axes of rotation (IARs) of the T10-T11 motion segment in flexion and extension. An anatomically accurate three-dimensional model of thoracic T10-T11 functional spinal unit (FSU) was developed and validated against published experimental data under flexion, extension, lateral bending, and axial rotation loading configurations. The validated model was exercised under six load configurations that produced motions only in the sagittal plane to characterize the loci of IARs for flexion and extension. The IARs for both flexion and extension under these six load types were directly below the geometric center of the moving vertebra, and all the loci of IARs were tracked superoanteriorly for flexion and inferoposteriorly for extension with rotation. These findings may offer an insight to better understanding of the kinematics of the human thoracic spine and provide clinically relevant information for the evaluation of spinal stability and implant device functionality.
Yüksel, Mehmet Onur; Gürbüz, Mehmet Sabri; Gök, Şevki; Karaarslan, Numan; İş, Merih; Berkman, Mehmet Zafer
2016-01-01
Aim: Our aim was to determine whether a combination of sagittal index (SI), canal compromise (CC), and loss of vertebral body height (LVBH) is associated with the severity of neurological injury in patients with thoracolumbar burst fractures. Materials and Methods: Seventy-four patients with thoracolumbar burst fracture undergoing instrumentation between 2010 and 2015 were analyzed retrospectively. The degree of neurological injury was determined using the American Spinal Injury Association (ASIA) scoring system. The association between the morphology of the fracture and the severity of neurological injury was analyzed. Results: There was a strong association between fracture morphology and the severity of neurological injury. Of the patients, 77.5% with SI ≥20°, 81.6% with CC ≥40%, and 100% with LVBH ≥50% had lesion according to ASIA. All of 7 patients with ASIA A had SI ≥20°, CC ≥40%, and LVBH ≥50%. On the other hand, 79% of the patients with ASIA E had SI <20°, 83.7% of the patients with ASIA E had CC <40%, and all of the patients with ASIA E had LVBH <50%. SI, CC, and LVBH were lower in neurologically intact patients (ASIA E), whereas they were higher in patients with neurological deficits (ASIA A, B, C, D) (P = 0.001; P < 0.01). These measurements had 100% negative predictive values and relatively high positive predictive values. Conclusion: SI, CC, and LVBH are significantly associated with the severity of neurological injury in patients with thoracolumbar burst fractures. The patients with SI >25°, the patients with CC >40%, and the patients with LVBH >50% are likely to have a more severe neurological injury. PMID:28163505
Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy
2017-05-01
Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of the screw designs.
Hornby, T George; Kinnaird, Catherine R; Holleran, Carey L; Rafferty, Miriam R; Rodriguez, Kelly S; Cain, Julie B
2012-10-01
Robotic-assisted locomotor training has demonstrated some efficacy in individuals with neurological injury and is slowly gaining clinical acceptance. Both exoskeletal devices, which control individual joint movements, and elliptical devices, which control endpoint trajectories, have been utilized with specific patient populations and are available commercially. No studies have directly compared training efficacy or patient performance during stepping between devices. The purpose of this study was to evaluate kinematic, electromyographic (EMG), and metabolic responses during elliptical- and exoskeletal-assisted stepping in individuals with incomplete spinal cord injury (SCI) compared with therapist-assisted stepping. Design A prospective, cross-sectional, repeated-measures design was used. Participants with incomplete SCI (n=11) performed 3 separate bouts of exoskeletal-, elliptical-, or therapist-assisted stepping. Unilateral hip and knee sagittal-plane kinematics, lower-limb EMG recordings, and oxygen consumption were compared across stepping conditions and with control participants (n=10) during treadmill stepping. Exoskeletal stepping kinematics closely approximated normal gait patterns, whereas significantly greater hip and knee flexion postures were observed during elliptical-assisted stepping. Measures of kinematic variability indicated consistent patterns in control participants and during exoskeletal-assisted stepping, whereas therapist- and elliptical-assisted stepping kinematics were more variable. Despite specific differences, EMG patterns generally were similar across stepping conditions in the participants with SCI. In contrast, oxygen consumption was consistently greater during therapist-assisted stepping. Limitations Limitations included a small sample size, lack of ability to evaluate kinetics during stepping, unilateral EMG recordings, and sagittal-plane kinematics. Despite specific differences in kinematics and EMG activity, metabolic activity was similar during stepping in each robotic device. Understanding potential differences and similarities in stepping performance with robotic assistance may be important in delivery of repeated locomotor training using robotic or therapist assistance and for consumers of robotic devices.
Dynamic Knee Alignment and Collateral Knee Laxity and Its Variations in Normal Humans
Deep, Kamal; Picard, Frederic; Clarke, Jon V.
2015-01-01
Alignment of normal, arthritic, and replaced human knees is a much debated subject as is the collateral ligamentous laxity. Traditional quantitative values have been challenged. Methods used to measure these are also not without flaws. Authors review the recent literature and a novel method of measurement of these values has been included. This method includes use of computer navigation technique in clinic setting for assessment of the normal or affected knee before the surgery. Computer navigation has been known for achievement of alignment accuracy during knee surgery. Now its use in clinic setting has added to the inventory of measurement methods. Authors dispel the common myth of straight mechanical axis in normal knees and also look at quantification of amount of collateral knee laxity. Based on the scientific studies, it has been shown that the mean alignment is in varus in normal knees. It changes from lying non-weight-bearing position to standing weight-bearing position in both coronal and the sagittal planes. It also varies with gender and race. The collateral laxity is also different for males and females. Further studies are needed to define the ideal alignment and collateral laxity which the surgeon should aim for individual knees. PMID:26636090
Savarese, Eugenio; Bisicchia, Salvatore; Romeo, Rocco; Amendola, Annunziato
2011-03-01
High tibial osteotomy (HTO) is a surgical procedure used to change the mechanical weight-bearing axis and alter the loads carried through the knee. Conventional indications for HTO are medial compartment osteoarthritis and varus malalignment of the knee causing pain and dysfunction. Traditionally, knee instability associated with varus thrust has been considered a contraindication. However, today the indications include patients with chronic ligament deficiencies and malalignment, because an HTO procedure can change not only the coronal but also the sagittal plane of the knee. The sagittal plane has generally been ignored in HTO literature, but its modification has a significant impact on biomechanics and joint stability. Indeed, decreased posterior tibial slope causes posterior tibia translation and helps the anterior cruciate ligament (ACL)-deficient knee. Vice versa, increased tibial slope causes anterior tibia translation and helps the posterior cruciate ligament (PCL)-deficient knee. A review of literature shows that soft tissue procedures alone are often unsatisfactory for chronic posterior instability if alignment is not corrected. Since limb alignment is the most important factor to consider in lower limb reconstructive surgery, diagnosis and treatment of limb malalignment should not be ignored in management of chronic ligamentous instabilities. This paper reviews the effects of chronic posterior instability and tibial slope alteration on knee and soft tissues, in addition to planning and surgical technique for chronic posterior and posterolateral instability with HTO.
Erdil, M; Yildiz, F; Kuyucu, E; Sayar, Ş; Polat, G; Ceylan, H H; Koçyiğit, F
2016-01-01
The objective of this study is to evaluate the effect of posterior tibial slope after fracture healing on antero-posterior knee laxity, functional outcome and patient satisfaction. 126 patients who were treated for tibial plateau fractures between 2008-2013 in the orthopedics and traumatology department of our institution were evaluated for the study. Patients were treated with open reduction and internal fixation, arthroscopy assisted minimally invasive osteosynthesis or conservative treatment. Mean posterior tibial slope after the treatment was 6.91 ± 5.11 and there was no significant difference when compared to the uninvolved side 6.42 ± 4,21 (p = 0.794). Knee laxity in anterior-posterior plane was 6.14 ± 2.11 and 5.95 ± 2.25 respectively on healthy and injured side. The difference of mean laxity in anterior-posterior plane between two sides was statistically significant. In this study we found no difference in laxity between the injured and healthy knees. However Tegner score decreased significantly in patients who had greater laxity difference between the knees. We did not find significant difference between fracture type and laxity, IKDC functional scores independent of the ligamentous injury. In conclusion despite coronal alignment is taken into consideration in treatment of tibial plateau fractures, sagittal alignment is reasonably important for stability and should not be ignored.
Lee, Ji-Ho; Lee, Dong-Oh; Lee, Jae Hyup; Shim, Hee Jong
2015-01-01
This study aims to assess the differences in the radiological and clinical results depending on the lordotic angles of the cage in posterior lumbar interbody fusion (PLIF). We reviewed 185 segments which underwent PLIF using two different lordotic angles of 4° and 8° of a polyetheretherketone (PEEK) cage. The segmental lordosis and total lumbar lordosis of the 4° and 8° cage groups were compared preoperatively, as well as on the first postoperative day, 6th and 12th months postoperatively. Clinical assessment was performed using the ODI and the VAS of low back pain. The pre- and immediate postoperative segmental lordosis angles were 12.9° and 12.6° in the 4° group and 12° and 12.0° in the 8° group. Both groups exhibited no significant different segmental lordosis angle and total lumbar lordosis over period and time. However, the total lumbar lordosis significantly increased from six months postoperatively compared with the immediate postoperative day in the 8° group. The ODI and the VAS in both groups had no differences. Cages with different lordotic angles of 4° and 8° showed insignificant results clinically and radiologically in short-level PLIF surgery. Clinical improvements and sagittal alignment recovery were significantly observed in both groups. PMID:25685795
The influence of knee alignment on lower extremity kinetics during squats.
Slater, Lindsay V; Hart, Joseph M
2016-12-01
The squat is an assessment of lower extremity alignment during movement, however there is little information regarding altered joint kinetics during poorly performed squats. The purpose of this study was to examine changes in joint kinetics and power from altered knee alignment during a squat. Thirty participants completed squats while displacing the knee medially, anteriorly, and with neutral alignment (control). Sagittal and frontal plane torques at the ankle, knee, and hip were altered in the descending and ascending phase of the squat in both the medial and anterior malaligned squat compared to the control squat. Ankle and trunk power increased and hip power decreased in the medial malaligned squat compared to the control squat. Ankle, knee, and trunk power increased and hip power decreased in the anterior malaligned squat compared to the control squat. Changes in joint torques and power during malaligned squats suggest that altered knee alignment increases ankle and trunk involvement to execute the movement. Increased anterior knee excursion during squatting may also lead to persistent altered loading of the ankle and knee. Sports medicine professionals using the squat for quadriceps strengthening must consider knee alignment to reduce ankle and trunk involvement during the movement. Copyright © 2016 Elsevier Ltd. All rights reserved.
Soft-plastic brace for lower limb fractures in patients with spinal cord injury.
Uehara, K; Akai, M; Kubo, T; Yamasaki, N; Okuma, Y; Tobimatsu, Y; Iwaya, T
2013-04-01
Retrospective study at a rehabilitation center. Patients with spinal cord injury, even if they are wheelchair users, sometimes suffer from fractures of the lower limb bones. As their bones are too weak to have surgery, and because a precise reduction is not required for restoration, such patients are often indicated for conservative treatment. This case series study investigated the use of a hinged, soft-plastic brace as a conservative approach to treating fractures of the lower extremities of patients with spinal cord injury. National Rehabilitation Center, Japan. Fifteen patients (male, n=10; female, n=5; average age, 52.7 years) with 19 fractures of the femur or the tibia who were treated with a newly-developed hinged, soft-plastic brace were studied. All of them used wheelchairs. We analyzed the time taken for fracture union and for wearing orthotics, degree of malalignment, femorotibial angle and side effects. The fractures in this series were caused by relatively low-energy impact. The average time taken for fracture union was 80.1 (37-189) days, and the average amount of time spent wearing orthotics was 77.9 (42-197) days. On final X-ray imaging, the average femorotibial angle was 176.9° (s.d. ±8.90), and 15° of misalignment in the sagittal plane occurred in one patient. A hinged, soft-plastic brace is a useful option as a conservative approach for treating fractures of the lower extremities in patients with spinal cord injury.
Reduction in nerve root compression by the nucleus pulposus after Feng's Spinal Manipulation☆
Feng, Yu; Gao, Yan; Yang, Wendong; Feng, Tianyou
2013-01-01
Ninety-four patients with lumbar intervertebral disc herniation were enrolled in this study. Of these, 48 were treated with Feng's Spinal Manipulation, hot fomentation, and bed rest (treatment group). The remaining 46 patients were treated with hot fomentation and bed rest only (control group). After 3 weeks of treatment, clinical parameters including the angle of straight-leg raising, visual analogue scale pain score, and Japanese Orthopaedic Association score for low back pain were improved. The treatment group had significantly better improvement in scores than the control group. Magnetic resonance myelography three-dimensional reconstruction imaging of the vertebral canal demonstrated that filling of the compressed nerve root sleeve with cerebrospinal fluid increased significantly in the treatment group. The diameter of the nerve root sleeve was significantly larger in the treatment group than in the control group. However, the sagittal diameter index of the herniated nucleus pulposus and the angle between the nerve root sleeve and the thecal sac did not change significantly in either the treatment or control groups. The effectiveness of Feng's Spinal Manipulation for the treatment of symptoms associated with lumbar intervertebral disc herniation may be attributable to the relief of nerve root compression, without affecting the herniated nucleus pulposus or changing the morphology or position of the nerve root. PMID:25206408
Functional anatomy of the spine.
Bogduk, Nikolai
2016-01-01
Among other important features of the functional anatomy of the spine, described in this chapter, is the remarkable difference between the design and function of the cervical spine and that of the lumbar spine. In the cervical spine, the atlas serves to transmit the load of the head to the typical cervical vertebrae. The axis adapts the suboccipital region to the typical cervical spine. In cervical intervertebrtal discs the anulus fibrosus is not circumferential but is crescentic, and serves as an interosseous ligament in the saddle joint between vertebral bodies. Cervical vertebrae rotate and translate in the sagittal plane, and rotate in the manner of an inverted cone, across an oblique coronal plane. The cervical zygapophysial joints are the most common source of chronic neck pain. By contrast, lumbar discs are well designed to sustain compression loads, but rely on posterior elements to limit axial rotation. Internal disc disruption is the most common basis for chronic low-back pain. Spinal muscles are arranged systematically in prevertebral and postvertebral groups. The intrinsic elements of the spine are innervated by the dorsal rami of the spinal nerves, and by the sinuvertebral nerves. Little modern research has been conducted into the structure of the thoracic spine, or the causes of thoracic spinal pain. © 2016 Elsevier B.V. All rights reserved.
Improved accuracy in Risser sign grading with lateral spinal radiography
2008-01-01
Development of the ossification of the iliac crest is used to assess the remaining spinal growth. The clinical value of the Risser sign has been questioned because of its inaccuracy in grades 3 and 4. Estimation of the Risser sign based on the lateral spinal radiograph has not been reported. The aim of the study was to evaluate the course of ossification of the iliac apophysis along its full extension and to investigate relevance of the lateral spinal radiograph for more accurate Risser sign grading. Cross sectional analysis of spinal frontal and lateral long cassette standing spinal radiographs of 201 girls aged from 10.2 to 20.0 years were done. On the lateral spinal view, the ossification of the posterior part of the iliac apophysis was quantified at four grades: absent (A), partial (B), complete (C) or fused (D). The position of the posterior superior iliac spine was studied on both views as well as in pelvic specimens. The results showed that the posterior one-third portion of the iliac apophysis was sagittally oriented and obscured on the frontal radiograph by the sacroiliac junction. It could be studied on the lateral radiograph and revealed a different grading of the apophysis excursion in 58 of 201 (29%) patients, comparing to the frontal view. Both advanced or delayed ossification was observed and assessed with Lateral Risser Modifiers. Twenty-five percent of the patients at Risser 0 or 1 or 2 demonstrated a simultaneous ossification of the most anterior and the most posterior part of the iliac crest. The Risser grades of capping or fusion could be more precisely diagnosed using lateral radiograph in complement to the frontal one. The conclusions drawn from this study were: (1) Currently used Risser sign grading does not consider the actual excursion of the iliac apophysis, because one-third of the apophysis cannot be observed on the frontal radiograph. (2) Iliac apophysis full excursion or fusion can be more accurately estimated when the lateral spinal radiograph is analyzed with Lateral Risser Modifiers. Electronic supplementary material The online version of this article (doi:10.1007/s00586-008-0794-7) contains supplementary material, which is available to authorized users. PMID:18946691
Improved accuracy in Risser sign grading with lateral spinal radiography.
Kotwicki, Tomasz
2008-12-01
Development of the ossification of the iliac crest is used to assess the remaining spinal growth. The clinical value of the Risser sign has been questioned because of its inaccuracy in grades 3 and 4. Estimation of the Risser sign based on the lateral spinal radiograph has not been reported. The aim of the study was to evaluate the course of ossification of the iliac apophysis along its full extension and to investigate relevance of the lateral spinal radiograph for more accurate Risser sign grading. Cross sectional analysis of spinal frontal and lateral long cassette standing spinal radiographs of 201 girls aged from 10.2 to 20.0 years were done. On the lateral spinal view, the ossification of the posterior part of the iliac apophysis was quantified at four grades: absent (A), partial (B), complete (C) or fused (D). The position of the posterior superior iliac spine was studied on both views as well as in pelvic specimens. The results showed that the posterior one-third portion of the iliac apophysis was sagittally oriented and obscured on the frontal radiograph by the sacroiliac junction. It could be studied on the lateral radiograph and revealed a different grading of the apophysis excursion in 58 of 201 (29%) patients, comparing to the frontal view. Both advanced or delayed ossification was observed and assessed with Lateral Risser Modifiers. Twenty-five percent of the patients at Risser 0 or 1 or 2 demonstrated a simultaneous ossification of the most anterior and the most posterior part of the iliac crest. The Risser grades of capping or fusion could be more precisely diagnosed using lateral radiograph in complement to the frontal one. The conclusions drawn from this study were: (1) Currently used Risser sign grading does not consider the actual excursion of the iliac apophysis, because one-third of the apophysis cannot be observed on the frontal radiograph. (2) Iliac apophysis full excursion or fusion can be more accurately estimated when the lateral spinal radiograph is analyzed with Lateral Risser Modifiers.
Park, Won Man; Choi, Dae Kyung; Kim, Kyungsoo; Kim, Yongjung J; Kim, Yoon Hyuk
2015-12-01
Spinal fusion surgery is a widely used surgical procedure for sagittal realignment. Clinical studies have reported that spinal fusion may cause proximal junctional kyphosis and failure with disc failure, vertebral fracture, and/or failure at the implant-bone interface. However, the biomechanical injury mechanisms of proximal junctional kyphosis and failure remain unclear. A finite element model of the thoracolumbar spine was used. Nine fusion models with pedicle screw systems implanted at the L2-L3, L3-L4, L4-L5, L5-S1, L2-L4, L3-L5, L4-S1, L2-L5, and L3-S1 levels were developed based on the respective surgical protocols. The developed models simulated flexion-extension using hybrid testing protocol. When spinal fusion was performed at more distal levels, particularly at the L5-S1 level, the following biomechanical properties increased during flexion-extension: range of motion, stress on the annulus fibrosus fibers and vertebra at the adjacent motion segment, and the magnitude of axial forces on the pedicle screw at the uppermost instrumented vertebra. The results of this study demonstrate that more distal fusion levels, particularly in spinal fusion including the L5-S1 level, lead to greater increases in the risk of proximal junctional kyphosis and failure, as evidenced by larger ranges of motion, higher stresses on fibers of the annulus fibrosus and vertebra at the adjacent segment, and higher axial forces on the screw at the uppermost instrumented vertebra in flexion-extension. Therefore, fusion levels should be carefully selected to avoid proximal junctional kyphosis and failure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhu, Rui; Rohlmann, Antonius
2014-06-01
In only a few published finite element (FE) simulations have muscle forces been applied to the spine. Recently, muscle forces determined using an inverse static (IS) model of the spine were transferred to a spinal FE model, and the effect of methodical parameters was investigated. However, the sensitivity of anthropometric differences between FE and IS models, such as body height and spinal orientation, was not considered. The aim of this sensitivity study was to determine the influence of those differences on the intervertebral rotations (IVRs) following the transfer of muscle forces from an IS model to a FE model. Muscle forces were estimated for 20° flexion and 10° extension of the upper body using an inverse static musculoskeletal model. These forces were subsequently transferred to a nonlinear FE model of the spino-pelvic complex, which includes 243 muscle fascicles. Deviations of body height (±10 cm), spinal orientation in the sagittal plane (±10°), and body weight (±10 kg) between both models were intentionally generated, and their influences on IVRs were determined. The changes in each factor relative to their corresponding reference value of the IS model were calculated. Deviations in body height, spinal orientation, and body weight resulted in maximum changes in the IVR of 19.2%, 26% and 4.2%, respectively, relative to T12-S1 IVR. When transferring muscle forces from an IS to a FE model, it is crucial that both models have the same spinal orientation and height. Additionally, the body weight should be equal in both models.
Ucar, Murat; Erdogan, Aylin Billur; Kilic, Koray; Ozcan, Cahide
2014-01-01
Objective To evaluate the value of spinal and paraspinal anatomic markers in both the diagnosis of lumbosacral transitional vertebrae (LSTVs) and identification of vertebral levels on lumbar MRI. Materials and Methods Lumbar MRI from 1049 adult patients were studied. By comparing with the whole-spine localizer, the diagnostic errors in numbering vertebral segments on lumbar MRI were evaluated. The morphology of S1-2 disc, L5 and S1 body, and lumbar spinous processes (SPs) were evaluated by using sagittal MRI. The positions of right renal artery (RRA), superior mesenteric artery, aortic bifurcation (AB) and conus medullaris (CM) were described. Results The diagnostic error for evaluation of vertebral segmentation on lumbar MRI alone was 14.1%. In lumbarization, all patients revealed a well-formed S1-2 disc with squared S1 body. A rhombus-shaped L5 body in sacralization and a rectangular-shaped S1 body in lumbarization were found. The L3 had the longest SP. The most common sites of spinal and paraspinal structures were: RRA at L1 body (53.6%) and L1-2 disc (34.1%), superior mesenteric artery at L1 body (55.1%) and T12-L1 disc (31.6%), and AB at L4 body (71.1%). CM had variable locations, changing from the T12-L1 disc to L2 body. They were located at higher sacralization and lower lumbarization. Conclusion The spinal morphologic features and locations of the spinal and paraspinal structures on lumbar MRI are not completely reliable for the diagnosis of LSTVs and identification on the vertebral levels. PMID:24644411
Reliability analysis of the epidural spinal cord compression scale.
Bilsky, Mark H; Laufer, Ilya; Fourney, Daryl R; Groff, Michael; Schmidt, Meic H; Varga, Peter Paul; Vrionis, Frank D; Yamada, Yoshiya; Gerszten, Peter C; Kuklo, Timothy R
2010-09-01
The evolution of imaging techniques, along with highly effective radiation options has changed the way metastatic epidural tumors are treated. While high-grade epidural spinal cord compression (ESCC) frequently serves as an indication for surgical decompression, no consensus exists in the literature about the precise definition of this term. The advancement of the treatment paradigms in patients with metastatic tumors for the spine requires a clear grading scheme of ESCC. The degree of ESCC often serves as a major determinant in the decision to operate or irradiate. The purpose of this study was to determine the reliability and validity of a 6-point, MR imaging-based grading system for ESCC. To determine the reliability of the grading scale, a survey was distributed to 7 spine surgeons who participate in the Spine Oncology Study Group. The MR images of 25 cervical or thoracic spinal tumors were distributed consisting of 1 sagittal image and 3 axial images at the identical level including T1-weighted, T2-weighted, and Gd-enhanced T1-weighted images. The survey was administered 3 times at 2-week intervals. The inter- and intrarater reliability was assessed. The inter- and intrarater reliability ranged from good to excellent when surgeons were asked to rate the degree of spinal cord compression using T2-weighted axial images. The T2-weighted images were superior indicators of ESCC compared with T1-weighted images with and without Gd. The ESCC scale provides a valid and reliable instrument that may be used to describe the degree of ESCC based on T2-weighted MR images. This scale accounts for recent advances in the treatment of spinal metastases and may be used to provide an ESCC classification scheme for multicenter clinical trial and outcome studies.
Contact pressure in the facet joint during sagittal bending of the cadaveric cervical spine.
Jaumard, Nicolas V; Bauman, Joel A; Weisshaar, Christine L; Guarino, Benjamin B; Welch, William C; Winkelstein, Beth A
2011-07-01
The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local pressure values for the cervical joint in a cadaveric model.
Veintemillas Aráiz, M T; Beltrán Salazar, V P; Rivera Valladares, L; Marín Aznar, A; Melloni Ribas, P; Valls Pascual, R
2016-04-01
Spinal misalignments are a common reason for consultation at primary care centers and specialized departments. Misalignment has diverse causes and is influenced by multiple factors: in adolescence, the most frequent misalignment is scoliosis, which is idiopathic in 80% of cases and normally asymptomatic. In adults, the most common cause is degenerative. It is important to know the natural history and to detect factors that might predict progression. The correct diagnosis of spinal deformities requires specific imaging studies. The degree of deformity determines the type of treatment. The aim is to prevent progression of the deformity and to recover the flexibility and balance of the body. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Compression fractures detection on CT
NASA Astrophysics Data System (ADS)
Bar, Amir; Wolf, Lior; Bergman Amitai, Orna; Toledano, Eyal; Elnekave, Eldad
2017-03-01
The presence of a vertebral compression fracture is highly indicative of osteoporosis and represents the single most robust predictor for development of a second osteoporotic fracture in the spine or elsewhere. Less than one third of vertebral compression fractures are diagnosed clinically. We present an automated method for detecting spine compression fractures in Computed Tomography (CT) scans. The algorithm is composed of three processes. First, the spinal column is segmented and sagittal patches are extracted. The patches are then binary classified using a Convolutional Neural Network (CNN). Finally a Recurrent Neural Network (RNN) is utilized to predict whether a vertebral fracture is present in the series of patches.
Schweitzer, Karl M; Vaccaro, Alexander R; Harrop, James S; Hurlbert, John; Carrino, John A; Rechtine, Glenn R; Schwartz, David G; Alanay, Ahmet; Sharma, Dinesh K; Anderson, D Greg; Lee, Joon Y; Arnold, Paul M
2007-09-01
The Spine Trauma Study Group (STSG) has proposed a novel thoracolumbar injury classification system and score (TLICS) in an attempt to define traumatic spinal injuries and direct appropriate management schemes objectively. The TLICS assigns specific point values based on three variables to generate a final severity score that guides potential treatment options. Within this algorithm, significant emphasis has been placed on posterior ligamentous complex (PLC) integrity. The purpose of this study was to determine the interrater reliability of indicators surgeons use when assessing PLC disruption on imaging studies, including computed tomography (CT) and magnetic resonance imaging (MRI). Orthopedic surgeons and neurosurgeons retrospectively reviewed a series of thoracolumbar injury case studies. Thirteen case studies, including images, were distributed to STSG members for individual, independent evaluation of the following three criteria: (1) diastasis of the facet joints on CT; (2) posterior edema-like signal in the region of PLC components on sagittal T2-weighted fat saturation (FAT SAT) MRI; and (3) disrupted PLC components on sagittal T1-weighted MRI. Interrater agreement on the presence or absence of each of the three criteria in each of the 13 cases was assessed. Absolute interrater percent agreement on diastasis of the facet joints on CT and posterior edema-like signal in the region of PLC components on sagittal T2-weighted FAT SAT MRI was similar (agreement 70.5%). Interrater agreement on disrupted PLC components on sagittal T1-weighted MRI was 48.9%. Facet joint diastasis on CT was the most reliable indicator of PLC disruption as assessed by both Cohen's kappa (kappa = 0.395) and intraclass correlation coefficient (ICC 0.430). The interrater reliability of assessing diastasis of the facet joints on CT had fair to moderate agreement. The reliability of assessing the posterior edema-like signal in the region of PLC components was lower but also fair, whereas the reliability of identifying disrupted PLC components was poor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crockett, D.P.; Smith, W.K.; Proshansky, E.
1989-10-08
We report on computer-assisted three-dimensional reconstruction of spinal cord activity associated with stimulation of the plantar cushion (PC) as revealed by (14C)-2-deoxy-D-glucose (2-DG) serial autoradiographs. Moderate PC stimulation in cats elicits a reflex phasic plantar flexion of the toes. Four cats were chronically spinalized at about T6 under barbiturate anesthesia. Four to 11 days later, the cats were injected (i.v.) with 2-DG (100 microCi/kg) and the PC was electrically stimulated with needle electrodes at 2-5 times threshold for eliciting a reflex. Following stimulation, the spinal cord was processed for autoradiography. Subsequently, autoradiographs, representing approximately 8-18 mm from spinal segments L6-S1,more » were digitized for computer analysis and 3-D reconstruction. Several strategies of analysis were employed: (1) Three-dimensional volume images were color-coded to represent different levels of functional activity. (2) On the reconstructed volumes, virtual sections were made in the horizontal, sagittal, and transverse planes to view regions of 2-DG activity. (3) In addition, we were able to sample different regions within the grey and white matter semi-quantitatively (i.e., pixel intensity) from section to section to reveal differences between ipsi- and contralateral activity, as well as possible variation between sections. These analyses revealed 2-DG activity associated with moderate PC stimulation, not only in the ipsilateral dorsal horn as we had previously demonstrated, but also in both the ipsilateral and contralateral ventral horns, as well as in the intermediate grey matter. The use of novel computer analysis techniques--combined with an unanesthetized preparation--enabled us to demonstrate that the increased metabolic activity in the lumbosacral spinal cord associated with PC stimulation was much more extensive than had heretofore been observed.« less
Early development of the circumferential axonal pathway in mouse and chick spinal cord.
Holley, J A
1982-03-10
The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.
A Combination Tissue Engineering Strategy for Schwann Cell-Induced Spinal Cord Repair
2015-10-01
the mechanical perturbation (2-3Hz) in both samples, however, there is much more power in the PVDF-TrEE sample overall. The frequency spectra for the...aligned-fibers contain signal power above and beyond the first and second harmonics of the mechanical stimulus, unlike the control sample on the...right. This finding shows that the 8 aligned PVDF-TrFE fibers generate field potentials that show up at higher harmonics of the mechanical
Yamamoto, Yu; Hara, Masahito; Nishimura, Yusuke; Haimoto, Shoichi; Wakabayashi, Toshihiko
2018-03-15
Transvertebral foraminotomy (TVF) combined with anterior cervical decompression and fusion (ACDF) can be used to treat multilevel cervical spondylotic myelopathy and radiculopathy; however, the radiological outcomes and effectiveness of this hybrid procedure are unknown. We retrospectively assessed 22 consecutive patients treated with combined TVF and ACDF between January 2007 and May 2016. The Japanese Orthopedic Association (JOA) score and Odom's criteria were analyzed. Radiological assessment included the C2-7 sagittal Cobb angle (CA) and range of motion (ROM). The tilting angle (TA), TA ROM, and disc height (DH) of segments adjacent to the ACDF were also measured. Adjacent segment degeneration, which includes disc degeneration, was evaluated. The mean postoperative follow-up was 41.7 months. All surgeries were performed at two adjacent segments, with ACDF and TVF of the upper and lower segments, respectively. The JOA scores significantly improved. There were no significant differences in the C2-7 CA, C2-7 ROM, TA, and TA ROM, but there was a statistically significant decrease in DH of the lower adjacent segment to ACDF. Progression of disc degeneration was identified in two patients, with no progression in the criterion of adjacent segment degeneration over the follow-up. The TVF combined with ACDF produced excellent clinical results and maintained spinal alignment, albeit with a reduction in DH. TVF was safely performed at the lower segment adjacent to the ACDF, although this might result in earlier degeneration. In conclusion, this hybrid method is less invasive and beneficial for reduction of the number of fused levels.
Uribe, Juan S; Harris, Jeffrey E; Beckman, J M; Turner, Alexander W L; Mundis, Gregory M; Akbarnia, Behrooz A
2015-04-01
Restoring sagittal alignment is an important factor in the treatment of spinal deformities. Recent investigations have determined that releasing the anterior longitudinal ligament (ALL) and placing hyperlordotic cages can increase lordosis, while minimizing need for 3 column osteotomies. The influences of parameters such as cage height and angle have not been determined. Finite element analysis was employed to assess the extent of lordosis achievable after placement of different sized lordotic cages. A 3-dimensional model of a L3-4 segment was used. Disc distraction was simulated by inserting interbody cages mid-body in the disc space. Analyses were performed in the following conditions: (1) intact, (2) ALL release, (3) ALL release + facetectomy, and (4) ALL release + posterior column osteotomy. Changes in segmental lordosis, disc height, foraminal height, and foraminal area were measured. After ALL resection and insertion of hyperlordotic cages, lordosis was increased in all cases. The lordosis achieved by the shorter cages was less due to posterior disc height maintained by the facet joints. A facetectomy increased segmental lordosis, but led to contact between the spinous processes. For some configurations, a posterior column osteotomy was required if the end goal was to match cage angle to intradiscal angle. Increased segmental lumbar lordosis is achievable with hyperlordotic cages after ALL resection. Increased cage height tended to increase the amount of lordosis achieved, although in some cases additional posterior bone resection was required to maximize lordosis. Further studies are needed to evaluate the impact on regional lumbar lordosis.
Patel, Shalin; Glivar, Phillip; Asgarzadie, Farbod; Cheng, David Juma Wayne; Danisa, Olumide
2017-11-01
The loss of regional cervical sagittal alignment and the progressive development of cervical kyphosis is a factor in the advancement of myelopathy. Adequate decompression of the spinal canal along with reestablishment of cervical lordosis are desired objective with regard to the surgical treatment of patients with cervical spondylotic myelopathy. A retrospective chart review was conducted in which patients who underwent either a combined anterior/posterior instrumentation and decompression or a posterior alone instrumentation and decompression for the treatment of CSM at our institution were identified. Any patient undergoing operative intervention for trauma, infection or tumors were excluded. Similarly, patients undergoing posterior instrumentation with constructs extending beyond the level of C2-C7 were similarly excluded from this study. A total of 67 patients met the inclusion criteria for this study. A total of 32 patients underwent posterior alone surgery and the remaining 35 underwent combined anterior/posterior procedure. Radiographic evaluation of patient's preoperative and postoperative cervical lordosis as measured by the C2-C7 Cobb angle was performed. Each patient's preoperative and postoperative functional disability as enumerated by the Nurick score was also recorded. Statistical analysis was conducted to determine if there was a significant relationship between improvement in cervical lordosis and improvement in patient's clinical outcomes as enumerated by the Nurick Score in patients undergoing posterior alone versus combined anterior/posterior decompression, instrumentation and fusion of the cervical spine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of shoulder girdle strengthening on trunk alignment in patients with stroke.
Awad, Amina; Shaker, Hussien; Shendy, Wael; Fahmy, Manal
2015-07-01
[Purpose] This study investigated the effect of shoulder girdle strengthening, particularly the scapular muscles, on poststroke trunk alignment. [Subjects and Methods] The study involved 30 patients with residual hemiparesis following cerebrovascular stroke. Patient assessment included measuring shoulder muscle peak torque, scapular muscles peak force, spinal lateral deviation angle, and motor functional performance. Patients were randomly allocated either to the control group or the study group and received an 18-session strengthening program including active resisted exercises for shoulder abductors and external rotators in addition to trunk control exercises. The study group received additional strengthening exercises for the scapular muscles. [Results] The two groups showed significant improvement in strength of all shoulder and scapular muscles, with higher improvement in the study group. Similarly, the lateral spinal deviation angles significantly improved in both groups, with significantly higher improvement in the study group. Transfer activity, sitting balance, upper limb functions, and hand movements significantly improved in the two groups, with higher improvement in the latter two functions in the study group. [Conclusion] Strengthening of shoulder girdle muscles, particularly scapular muscles, can significantly contribute to improving the postural alignment of the trunk in patients with poststroke hemiparesis.
A novel spinal kinematic analysis using X-ray imaging and vicon motion analysis: a case study.
Noh, Dong K; Lee, Nam G; You, Joshua H
2014-01-01
This study highlights a novel spinal kinematic analysis method and the feasibility of X-ray imaging measurements to accurately assess thoracic spine motion. The advanced X-ray Nash-Moe method and analysis were used to compute the segmental range of motion in thoracic vertebra pedicles in vivo. This Nash-Moe X-ray imaging method was compared with a standardized method using the Vicon 3-dimensional motion capture system. Linear regression analysis showed an excellent and significant correlation between the two methods (R2 = 0.99, p < 0.05), suggesting that the analysis of spinal segmental range of motion using X-ray imaging measurements was accurate and comparable to the conventional 3-dimensional motion analysis system. Clinically, this novel finding is compelling evidence demonstrating that measurements with X-ray imaging are useful to accurately decipher pathological spinal alignment and movement impairments in idiopathic scoliosis (IS).
Vertebral reconstruction using the telescopic plate spacer-thoracolumbar (TPS-TL) device.
Atalay, Basar; Riesenburger, Ron I; Schirmer, Clemens M; Bhadelia, Rafeeque A; Weller, Simcha J
2010-07-01
Retrospective study of surgical technique and outcome. The authors conducted a study to evaluate the ability of the TPS-TL (telescopic plate spacer-thoracolumbar) implant to correct kyphotic deformity and restore vertebral body height after vertebrectomy in the thoracolumbar spine. TPS-TL is a novel vertebral body replacement device that consists of an expandable cage with an integrated plate component for transvertebral screw fixation. This is a retrospective study of 20 patients who underwent anterior column reconstruction with TPS-TL after a 1 or 2 level thoracolumbar vertebrectomy. Preoperative and postoperative sagittal alignment and vertebral body heights were radiologically analyzed in all patients. The mean follow-up was 14 months. Preoperative and postoperative Cobb angles were measured to assess sagittal alignment. The average preoperative Cobb angle was 16.0 + or - 7 degrees. This was reduced to 9.8 + or - 10 degrees at the final follow-up (P<0.001). Percent of ideal vertebral body height was used to assess postoperative restoration of vertebral body height. This value was obtained by creating a ratio of the height of the effected vertebral levels to the height of the adjacent normal vertebral bodies. The mean percent of ideal vertebral body height improved from a preoperative value from 86.2 + or - 2% to 93.1 + or - 6% at the final follow-up (P<0.001). The TPS-TL implant is effective in restoring vertebral body height and correcting kyphotic deformity after thoracolumbar vertebrectomy.
Effect of spine motion on mobility in quadruped running
NASA Astrophysics Data System (ADS)
Chen, Dongliang; Liu, Qi; Dong, Litao; Wang, Hong; Zhang, Qun
2014-11-01
Most of current running quadruped robots have similar construction: a stiff body and four compliant legs. Many researches have indicated that the stiff body without spine motion is a main factor in limitation of robots' mobility. Therefore, investigating spine motion is very important to build robots with better mobility. A planar quadruped robot is designed based on cheetahs' morphology. There is a spinal driving joint in the body of the robot. When the spinal driving joint acts, the robot has spine motion; otherwise, the robot has not spine motion. Six group prototype experiments with the robot are carried out to study the effect of spine motion on mobility. In each group, there are two comparative experiments: the spinal driving joint acts in one experiment but does not in the other experiment. The results of the prototype experiments indicate that the average speeds of the robot with spine motion are 8.7%-15.9% larger than those of the robot without spine motion. Furthermore, a simplified sagittal plane model of quadruped mammals is introduced. The simplified model also has a spinal driving joint. Using a similar process as the prototype experiments, six group simulation experiments with the simplified model are conducted. The results of the simulation experiments show that the maximum rear leg horizontal thrusts of the simplified mode with spine motion are 68.2%-71.3% larger than those of the simplified mode without spine motion. Hence, it is found that spine motion can increase the average running speed and the intrinsic reason of speed increase is the improvement of the maximum rear leg horizontal thrust.
Kalb, Samuel; Zaidi, Hasan A; Ribas-Nijkerk, Juan C; Sindhwani, Maughan K; Clark, Justin C; Martirosyan, Nikolay L; Theodore, Nicholas
2015-08-01
Hypertension and cervical spondylosis are diseases of the adult population that are approaching near pandemic proportions. However, the interactions between these two disease processes are poorly understood. We set out to determine the associations among systemic hypertension, clinical status, and imaging findings of spinal cord damage for patients with cervical stenosis. A retrospective chart review was performed on patients with symptomatic cervical stenosis related to degenerative disease and divided on the basis of outpatient blood pressure control (normal <140/<90 mm Hg). Sagittal T2-weighted magnetic resonance imaging (MRI) of the cervical spine was analyzed to determine the degree of maximal canal stenosis (MCS; %), surface area of increased signal intensity (ISI; cm(2)), and signal intensity ratio (SIR). Functional status was evaluated using the modified Japanese Orthopaedic Association (mJOA) scale and the Nurick scale. One hundred twenty-two patients were identified (64 hypertensive, 58 nonhypertensive). Likelihood of ISI was higher in hypertensive patients (P < 0.05). Average ISI was significantly higher in patients with uncontrolled blood pressure (P = 0.02) despite MCS being identical between the two groups. The mJOA and Nurick scores were worse for patients with systemic hypertension (P < 0.02). Diabetes mellitus and smoking history did not affect these findings. Persistent hypertension in outpatients is associated with worsened clinical status and increased markers of spinal cord damage on MRI. Perioperative management of blood pressure may serve to improve clinical outcomes. Larger prospective trials are necessary to further validate these findings. Copyright © 2015 Elsevier Inc. All rights reserved.
Accuracy of image-guided surgical navigation using near infrared (NIR) optical tracking
NASA Astrophysics Data System (ADS)
Jakubovic, Raphael; Farooq, Hamza; Alarcon, Joseph; Yang, Victor X. D.
2015-03-01
Spinal surgery is particularly challenging for surgeons, requiring a high level of expertise and precision without being able to see beyond the surface of the bone. Accurate insertion of pedicle screws is critical considering perforation of the pedicle can result in profound clinical consequences including spinal cord, nerve root, arterial injury, neurological deficits, chronic pain, and/or failed back syndrome. Various navigation systems have been designed to guide pedicle screw fixation. Computed tomography (CT)-based image guided navigation systems increase the accuracy of screw placement allowing for 3- dimensional visualization of the spinal anatomy. Current localization techniques require extensive preparation and introduce spatial deviations. Use of near infrared (NIR) optical tracking allows for realtime navigation of the surgery by utilizing spectral domain multiplexing of light, greatly enhancing the surgeon's situation awareness in the operating room. While the incidence of pedicle screw perforation and complications have been significantly reduced with the introduction of modern navigational technologies, some error exists. Several parameters have been suggested including fiducial localization and registration error, target registration error, and angular deviation. However, many of these techniques quantify error using the pre-operative CT and an intra-operative screenshot without assessing the true screw trajectory. In this study we quantified in-vivo error by comparing the true screw trajectory to the intra-operative trajectory. Pre- and post- operative CT as well as intra-operative screenshots were obtained for a cohort of patients undergoing spinal surgery. We quantified entry point error and angular deviation in the axial and sagittal planes.
Mummaneni, Praveen V; Shaffrey, Christopher I; Lenke, Lawrence G; Park, Paul; Wang, Michael Y; La Marca, Frank; Smith, Justin S; Mundis, Gregory M; Okonkwo, David O; Moal, Bertrand; Fessler, Richard G; Anand, Neel; Uribe, Juan S; Kanter, Adam S; Akbarnia, Behrooz; Fu, Kai-Ming G
2014-05-01
Minimally invasive surgery (MIS) is an alternative to open deformity surgery for the treatment of patients with adult spinal deformity. However, at this time MIS techniques are not as versatile as open deformity techniques, and MIS techniques have been reported to result in suboptimal sagittal plane correction or pseudarthrosis when used for severe deformities. The minimally invasive spinal deformity surgery (MISDEF) algorithm was created to provide a framework for rational decision making for surgeons who are considering MIS versus open spine surgery. A team of experienced spinal deformity surgeons developed the MISDEF algorithm that incorporates a patient's preoperative radiographic parameters and leads to one of 3 general plans ranging from MIS direct or indirect decompression to open deformity surgery with osteotomies. The authors surveyed fellowship-trained spine surgeons experienced with spinal deformity surgery to validate the algorithm using a set of 20 cases to establish interobserver reliability. They then resurveyed the same surgeons 2 months later with the same cases presented in a different sequence to establish intraobserver reliability. Responses were collected and tabulated. Fleiss' analysis was performed using MATLAB software. Over a 3-month period, 11 surgeons completed the surveys. Responses for MISDEF algorithm case review demonstrated an interobserver kappa of 0.58 for the first round of surveys and an interobserver kappa of 0.69 for the second round of surveys, consistent with substantial agreement. In at least 10 cases there was perfect agreement between the reviewing surgeons. The mean intraobserver kappa for the 2 surveys was 0.86 ± 0.15 (± SD) and ranged from 0.62 to 1. The use of the MISDEF algorithm provides consistent and straightforward guidance for surgeons who are considering either an MIS or an open approach for the treatment of patients with adult spinal deformity. The MISDEF algorithm was found to have substantial inter- and intraobserver agreement. Although further studies are needed, the application of this algorithm could provide a platform for surgeons to achieve the desired goals of surgery.
Luenam, Suriya; Chalongviriyalert, Piti; Kosiyatrakul, Arkaphat; Thanawattano, Chusak
2012-01-01
Many studies comparing the morphology of native radial head with the prosthesis have been published. However, there is limited information regarding the postoperative alignment of the articular surface following the radial head replacement. The purpose of this study is to evaluate the alteration of the end-plane angle in the modular radial head prosthesis with a press-fit cementless cylindrical stem. The study used 36 cadaveric radii. The press-fit size prosthesis with cylindrical stem was inserted into each specimen. The end-plane angles of the radial head before and after prosthetic replacement, were measured in coronal and sagittal planes with a digital inclinometer. The data were analyzed by paired t-test. From paired t-test, there were statistically symmetrical end-plane angles before and after radial head replacement in both coronal and sagittal planes (p-value < 0.01). The mean of radial head end-plane angle alteration in the coronal plane was 3.62° (SD, 2.76°) (range, 0.3°-8.9°). In the sagittal plane, the mean of alteration was 5.85° (SD, 3.56°) degrees (range, 0.3° - 14.2°). The modular radial head prosthesis with cylindrical stem is in vitro able to restore the native end-plane angles of radial heads statistically when used in a press-fit fashion.
Celestre, Paul C; Carreon, Leah Y; Lenke, Lawrence G; Sucato, Daniel J; Glassman, Steven D
2015-11-01
Matched cohort. To evaluate thoracic and thoracolumbar sagittal Cobb angles in patients undergoing either selective thoracic fusion (STF) or nonselective thoracic fusion (NSTF) for Lenke 1C adolescent idiopathic scoliosis (AIS). The Lenke classification is used to guide fusion levels in AIS. For some curve types, including 1C, there is a disparity in practice regarding whether the thoracolumbar/lumbar curve should be included in the arthrodesis. The impact of performing an NSTF on sagittal parameters has not been adequately evaluated. A multicenter database of AIS was queried for patients with right-sided 1C curves treated with posterior correction and fusion. A matched cohort for each group was created based on age, gender, preoperative Cobb angles, and Scoliosis Research Society-22R domain scores. Independent t tests for continuous variables and Fisher exact test for categorical variables were used to compare the STF and NSTF groups. Thirty-eight patients who underwent NSTF were matched to 38 patients in the STF. An average of 8.0 levels were fused in the STF group and 11.6 in the NSTF group (p < .001). Preoperative and radiographic variables were similar between the two groups. Postoperatively, there was a statistically significant difference between the STF and NSTF sagittal Cobb in the thoracic spine, 26.9° and 21.7° (p = .013). The greatest difference was in the thoracolumbar sagittal Cobb, which increased to 4.3° kyphosis in the STF group and decreased to 9° of lordosis in the NSTF group (p < .001). Residual thoracolumbar/lumbar scoliosis was 25.5° in the STF group and 14.5° in the NSTF group (p < .001). STF in 1C curves preserves lumbar motion segments but may be associated with an increase in thoracic and thoracolumbar kyphosis compared to NSTF. As expected, residual thoracolumbar/lumbar scoliosis was less in the NSTF group compared to the STF group. Although the long-term implications of these changes are unknown, consideration of sagittal balance is critical. Following these patients in the medium and long term will provide important information to guide fusion levels. II. Copyright © 2015 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Automated segmentation of three-dimensional MR brain images
NASA Astrophysics Data System (ADS)
Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee
2006-03-01
Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.
Kobayashi, Toshiki; Orendurff, Michael S; Boone, David A
2013-09-27
The alignment of a lower-limb prosthesis is critical to the successful prosthetic fitting and utilization by the wearer. Loads generated by the socket applied to the residual limb while walking are thought to be different in transfemoral and knee-disarticulation prostheses. The aim of this case series was to compare the socket reaction moments between transfemoral and knee-disarticulation prostheses and to investigate the effect of alignment changes on them. Two amputees, one with a transfemoral prosthesis and another with a knee-disarticulation prosthesis, participated in this study. A Smart Pyramid™ was used to measure socket reaction moments while walking under 9 selected alignment conditions; including nominally aligned, angle malalignments of 6° (flexion, extension, abduction and adduction) and translation malalignments of 15 mm (anterior, posterior, medial and lateral) of the socket relative to the foot. This study found that the pattern of the socket reaction moments was similar between transfemoral and knee-disarticulation prostheses. An extension moment in the sagittal plane and a varus moment in the coronal plane were dominant during stance under the nominally aligned condition. This study also demonstrated that alignment changes might have consistent effects on the socket reaction moments in transfemoral and knee-disarticulation prostheses. Extension and posterior translation of the socket resulted in increases in an extension moment, while abduction and lateral translation of the socket resulted in increases in a varus moment. The socket reaction moments may potentially serve as useful biomechanical parameters to evaluate alignment in transfemoral and knee-disarticulation prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Jingfeng; Cheung, Kenneth M C; Samartzis, Dino; Ganal-Antonio, Anne K B; Zhu, Xiaodong; Li, Ming; Luk, Keith D K
2016-10-01
The following study was a prospective radiographic and retrospective clinical data assessment of adolescent idiopathic scoliosis (AIS) patients who had undergone a key-vertebral screws strategy (KVSS) at a single institution, with a minimum of 2 years' follow-up. The aim of the study was to introduce the KVSS for the operative treatment of AIS of the main thoracic curve, and to address the role of the fulcrum-bending radiograph (FBR) in predicting the outcome of surgical management by this method. The application of multilevel pedicle screws for the main thoracic curve in AIS patients is popular in an effort to provide spinal stability, enhance fusion outcome, and provide optimal curve correction. However, with the application of pedicle screw also comes a potential risk for soft tissue and neural injury and increased health care costs. It remains unknown whether limited screw placement can provide proper curve correction without compromising patient outcome. A total of 17 consecutive patients with AIS extending to the main thoracic spine, who had undergone posterior fusion and fixation by the KVSS, a procedure in which screws are placed at important strategic points in the spine (ie, bilaterally at the upper and lower end segments of the fusion block, apical vertebra on the convex side, adjacent cephalad, and caudal screw placement on the concave side), at a single institution, with a minimum of 2 year' follow-up, were included. The assessment of preoperative standing posteroanterior and sagittal, FBR, and postoperative standing posteroanterior and sagittal plain radiographs were assessed in all patients. The flexibility of the curve as well as the fulcrum-bending correction index (FBCI) were calculated for all patients. Postoperatively, radiographs were assessed at the immediate (ie, 1 wk) and last follow-up. Clinical assessment entailed evaluation of patient demographics and the presence of any intraoperative or postoperative complications. The mean age at the time of surgery was 15.6 years. The mean follow-up was 39.8 months. The average FBR flexibility was 62.2%. The mean immediate curve correction was 71.2%, which did not differ in comparison with the last follow-up assessment (P>0.05). The mean immediate and last follow-up FBCIs were 119.3% and 112.5%, respectively (P=0.079). A significant negative correlation was found between immediate FBCI to that of the FBR curve flexibility (r=-0.706; P=0.002), which remained similar on the last follow-up (r=-0.681; P=0.003). Sagittal alignment did not significantly change from the immediate to last follow-up (P=0.163) Fusion was achieved in all patients. No instrumentation-related complications were noted. Key-vertebral screws strategy is a safe and cost-effective method for the surgical treatment of the main thoracic curve in AIS patients. Moreover, in the context of this strategy, the FBR may have some predictive utility in the correction of the main thoracic curve in AIS patients.
Geometrical properties of the human child cervical spine with a focus on the C1 vertebra.
Yoganandan, Narayan; Pintar, Frank A; Lew, Sean M; Rao, Raj D
2014-01-01
Child dummies and injury criteria used in automotive crashworthiness environments are based on scaling from the adult and/or between children of different ages. Cartilage-to-bone ossification, spinal canal and joint developments of the spine, and strength attainments do not grow linearly from birth to maturity. Though this is known to medical professionals, age-based quantitative analyses are needed to accurately model the pediatric spine. The objective of this study was to quantify longitudinal growths of various regions of the first cervical vertebrae, responsible for transmitting the axial load from the base of the skull through the condyles to the neck/torso. Computed tomography (CT) images of 54 children from one day to 18 years of age were retrospectively used to determine the following geometrical properties: bilateral neurocentral synchondroses widths, the width of posterior synchondrosis, outer and inner anteroposterior and transverse diameters, spinal canal area, and depths of the anterior and posterior arches of the C1 vertebra. Both axial and sagittal CT images were used in the analysis. Sagittal images were used to quantify data for the anterior and posterior arches and axial images were used for all described cross-sectional parameters. Geometrical properties were extracted and reported for the various parameters at 6 months; one year; 18 months; and 3, 6, and 10 years of age corresponding to the dummy family ages routinely used in motor vehicle crashworthiness research and other applications. The outer transverse diameter ranged from 4.97 to 7.08 cm; outer and inner antero-posterior diameters ranged from 2.99 to 4.18 and 2.19 to 3.03 mm; and spinal canal area ranged from 4.34 to 6.68 mm(2). Other data are given in the body of the article. The growths of the first cervical vertebra quantified in terms of the above variables occurred nonlinearly with age and the degree of nonlinearity depended on the type of the geometrical parameter. Growths did not match with the simple scaling ratios based on the adult spine, used in different studies reported in the current literature. These early nonlinear and nonuniform age- and local geometry-specific variations should be considered in human finite element models for an accurate transfer of the external load from the atlas to the subaxial spine and to improve their fidelity and biomechanical capabilities.
Zhang, Yanxin; Ma, Ye; Liu, Guangyu
2016-01-01
The objective of the study was to evaluate two types of cricket bowling techniques by comparing the lumbar spinal loading using a musculoskeletal modelling approach. Three-dimensional kinematic data were recorded by a Vicon motion capture system under two cricket bowling conditions: (1) participants bowled at their absolute maximal speeds (max condition), and (2) participants bowled at their absolute maximal speeds while simultaneously forcing their navel down towards their thighs starting just prior to ball release (max-trunk condition). A three-dimensional musculoskeletal model comprised of the pelvis, sacrum, lumbar vertebrae and torso segments, which enabled the motion of the individual lumbar vertebrae in the sagittal, frontal and coronal planes to be actuated by 210 muscle-tendon units, was used to simulate spinal loading based on the recorded kinematic data. The maximal lumbar spine compressive force is 4.89 ± 0.88BW for the max condition and 4.58 ± 0.54BW for the max-trunk condition. Results showed that there was no significant difference between the two techniques in trunk moments and lumbar spine forces. This indicates that the max-trunk technique may not increase lower back injury risks. The method proposed in this study could be served as a tool to evaluate lower back injury risks for cricket bowling as well as other throwing activities.
Dreischarf, Marcel; Pries, Esther; Bashkuev, Maxim; Putzier, Michael; Schmidt, Hendrik
2016-03-21
The individual lumbar lordosis and lumbar motion have been identified to play an important role in pathogenesis of low back pain and are essential references for preoperative planning and postoperative evaluation. The clinical "gold-standard" for measuring lumbar lordosis and its motion are radiological "snap-shots" taken while standing and during upper-body flexion and extension. The extent to which these clinically assessed values characterise lumbar alignment and its motion in daily life merits discussion. A non-invasive measurement-system was employed to measure lumbar lordosis and lumbar motion in 208 volunteers (age: 20-74yrs; ♀/♂: 115/93). For an initial short-term measurement, comparable with the clinical "snap-shot", lumbar lordosis and its motion were assessed while standing and during flexion and extension. Subsequently, volunteers were released to their daily lives while wearing the device, and measurements were performed during the following 24h. The average lumbar lordosis during 24h (8.0°) differed significantly from the standardised measurement while standing (33.3°). Ranges of motion were significantly different throughout the day compared to standing measurements. The influence of the factors age and gender on lordosis and its motion resulted in conflicting results between long- and short-term-measurements. In conclusion, results of short-term examinations differ considerably from the average values during real-life. These findings might be important for surgical planning and increase the awareness of the biomechanical challenges that spinal structures and implants face in real-life. Furthermore, long-term assessments of spinal alignment and motion during daily life can provide valid data on spinal function and can reveal the importance of influential factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
European Board of Orthodontics case report: severe skeletal discrepancy.
Paduano, Sergio
2009-01-01
The 10.3 year-old patient presented a sagittal skeletal and dental Class II division I malocclusion with a severe overjet in the mixed dentition. The convex profile aesthetically improved with the mandibular advancement (positive Frankel manoeuvre). No signs or symptoms of TMJ disorders were present. Oral mucosa and gingiva conditions were good notwithstanding a scanty oral hygiene. The treatment plan included: a) Bass appliance to improve the retruded profile and, partially, OVJ; b) upper and lower arch fixed appliance for alignment, levelling and correction of the malocclusion c) posttreatment retention.
Mochizuki, Tomoharu; Sato, Takashi; Tanifuji, Osamu; Watanabe, Satoshi; Kobayashi, Koichi; Endo, Naoto
2018-02-13
This study aimed to identify the factors affecting postoperative rotational limb alignment of the tibia relative to the femur. We hypothesized that not only component positions but also several intrinsic factors were associated with postoperative rotational limb alignment. This study included 99 knees (90 women and 9 men) with a mean age of 77 ± 6 years. A three-dimensional (3D) assessment system was applied under weight-bearing conditions to biplanar long-leg radiographs using 3D-to-2D image registration technique. The evaluation parameters were (1) component position; (2) preoperative and postoperative coronal, sagittal, and rotational limb alignment; (3) preoperative bony deformity, including femoral torsion, condylar twist angle, and tibial torsion; and (4) preoperative and postoperative range of motion (ROM). In multiple linear regression analysis using a stepwise procedure, postoperative rotational limb alignment was associated with the following: (1) rotation of the component position (tibia: β = 0.371, P < .0001; femur: β = -0.327, P < .0001), (2) preoperative rotational limb alignment (β = 0.253, P = .001), (3) postoperative flexion angle (β = 0.195, P = .007), and (4) tibial torsion (β = 0.193, P = .010). In addition to component positions, the intrinsic factors, such as preoperative rotational limb alignment, ROM, and tibial torsion, affected postoperative rotational limb alignment. On a premise of correct component positions, the intrinsic factors that can be controlled by surgeons should be taken care. In particular, ROM is necessary to be improved within the possible range to acquire better postoperative rotational limb alignment. Copyright © 2018 Elsevier Inc. All rights reserved.
Total knee arthroplasty with a computer-navigated saw: a pilot study.
Garvin, Kevin L; Barrera, Andres; Mahoney, Craig R; Hartman, Curtis W; Haider, Hani
2013-01-01
Computer-aided surgery aims to improve implant alignment in TKA but has only been adopted by a minority for routine use. A novel approach, navigated freehand bone cutting (NFC), is intended to achieve wider acceptance by eliminating the need for cumbersome, implant-specific mechanical jigs and avoiding the expense of navigation. We determined cutting time, surface quality, implant fit, and implant alignment after NFC of synthetic femoral specimens and the feasibility and alignment of a complete TKA performed with NFC technology in cadaveric specimens. Seven surgeons prepared six synthetic femoral specimens each, using our custom NFC system. Cutting times, quality of bone cuts, and implant fit and alignment were assessed quantitatively by CT surface scanning and computational measurements. Additionally, a single surgeon performed a complete TKA on two cadaveric specimens using the NFC system, with cutting time and implant alignment analyzed through plain radiographs and CT. For the synthetic specimens, femoral coronal alignment was within ± 2° of neutral in 94% of the specimens. Sagittal alignment was within 0° to 5° of flexion in all specimens. Rotation was within ± 1° of the epicondylar axis in 97% of the specimens. The mean time to make cuts improved from 13 minutes for the first specimen to 9 minutes for the fourth specimen. TKA was performed in two cadaveric specimens without complications and implants were well aligned. TKA is feasible with NFC, which eliminates the need for implant-specific instruments. We observed a fast learning curve. NFC has the potential to improve TKA alignment, reduce operative time, and reduce the number of instruments in surgery. Fewer instruments and less sterilization could reduce costs associated with TKA.
SU-E-T-255: Optimized Supine Craniospinal Irradiation with Image-Guided and Field Matched Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Z; Holupka, E; Naughton, J
2014-06-01
Purpose: Conventional craniospinal irradiation (CSI) challenges include dose inhomogeneity at field junctions and position uncertainty due to the field divergence, particular for the two spinal fields. Here we outline a new supine CSI technique to address these difficulties. Methods: Patient was simulated in supine position. The cranial fields had isocenter at C2/C3 vertebral and were matched with 1st spinal field. Their inferior border was chosen to avoid the shoulder, as well as chin from the 1st spine field. Their collimator angles were dependent on asymmetry jaw setting of the 1st spinal field. With couch rotation, the spinal field gantry anglesmore » were adjusted to ensure, the inferior border of 1st and superior border of 2nd spinal fields were perpendicular to the table top. The radio-opaque wire position for the spinal junction was located initially by the light field from an anterior setup beam, and was finalized by the portal imaging of the 1st spinal field. With reference to the spinal junction wire, the fields were matched by positioning the isocenter of the 2nd spinal field. A formula was derived to optimize supine CSI treatment planning, by utilizing the relationship among the Yjaw setting, the spinal field gantry angles, cranial field collimator angles, and the spinal field isocenters location. The plan was delivered with portal imaging alignment for the both cranial and spinal junctions. Results: Utilizing this technique with matching beams, and conventional technique such as feathering and forwarding planning, a homogenous dose distribution was achieved throughout the entire CSI treatment volume including the spinal junction. Placing the spinal junction wire visualized in both spinal portals, allows for precise determination and verification of the appropriate match line of the spine fields. Conclusion: This technique of optimization supine CSI achieved a homogenous dose distributions and patient localization accuracy with image-guided and matched beams.« less
Ricart, O; Serwier, J-M
2008-11-01
We used the Dynesys stabilization to treat degenerative lumber spondylolysis by decompression without fusion with the objective of decreasing the morbidity related to instrumented arthrodesis in older patients yet preventing progression of the displacement. This was a prospective study of 25 patients with symptomatic degenerative lumber spondylolysis associated with degenerative spinal canal stenosis documented by saccoradiculography. For inclusion, static anteroposterior intervertebral displacement had to be at least 3mm in the upright position, irrespective of the displacement on the stress films. The series included 19 women and six men, mean age 71 years (range 53-83). The level was L4-L5 in all 25 cases. Instrumentations involved a single level (L4-L5) or two levels (L3-L5). All patients were explored with computed tomography and saccoradiculography. An MRI was obtained in 12 patients. Pre- and postoperative stress images and views of the entire spinal column in the upright position were used to study pelvic parameters and sagittal spinal balance before and after surgery. Lumbar incidence and lordosis was used to divide the patients into three groups. Outcome was assessed with the Beaujon classification at minimal follow-up of 24 months, mean 34, range 24-72 months. Very good results were obtained in 72% of patients (relative gain greater than 70%) and good results in 28% (relative gain 40-70%). There were not outcomes considered fair or poor. There were two complications: aggravation of preoperative crural paresia with complete recovery and replacement of one neuroaggressive pedicular screw with no consequence thereafter. The stress films confirmed the residual mobility of the instrumented level when the preserved disc was of sufficient height. Postoperative pelvic parameters after Dynesys instrumentation showed improvement in sagittal tilt for T9 by accentuated suprajacent lordosis, even in the event of anterior spinal imbalance preoperatively. Theoretically, solicitation of the pedicular anchors of a rigid instrumentation on a poorly balanced spine would rapidly lead to failure, while fibrous non-union on a globally well balanced spine would be tolerated much longer or even definitively without development of clinical symptoms. In our opinion, the Dynesys instrumentation enables a real restabilization of the spine by adapting to the patients particular spinal balance intra-operatively and postoperatively without imposing a definitive curvature as would a rigid fixation. The ultimate objective is to accompany the aging spine without brutally changing the stress forces. This semi-rigid instrumentation without fusion enables an adapted evolution of the overall spinal degeneration without imposing excessive local forces, which could be sources of stenosis or junctional instability. The most logical indication for this instrumentation is the older subject aged at least 65 years with degenerative lumber spondylolysis and a predominantly self-reducible angular displacement and satisfactory disc height. This context (group 3 in our series) occurs in patients with a weak sacral slope and incidence, as well as minimal lordosis adapted to the pelvic parameters. The Dynesys instrumentation can be a palliative alternative to fusion for more advanced degenerative lumber spondylolysis occurring on spines with anterior imbalance where fusion would be technically difficult in terms of correction of the kyphosis or because of the general risk factors.
Temporary Percutaneous Instrumentation and Selective Anterior Fusion for Thoracolumbar Fractures.
Charles, Yann Philippe; Walter, Axel; Schuller, Sébastien; Steib, Jean-Paul
2017-05-01
Prospective clinical trial in thoracolumbar trauma with 5-year follow-up. To analyze clinical and radiographic outcomes of minimal invasive surgery, and the rational of circumferential fracture treatment with regard to age, degenerative changes, bone mineral density, and global sagittal balance. Non-neurologic fractures with anterior column defect can be treated by posterior percutaneous instrumentation and selective anterior fusion. After consolidation, instrumentation can be removed at 1 year to provide mobility in non-fused segments. Fifty-one patients, 47 (18-75) years, were operated for A2, A3, or B-type fractures. Visual analog scale (VAS) for back pain and Oswestry Disability Index (ODI) were assessed. Radiographic measurements were: sagittal index, regional kyphosis, T4-T12 kyphosis, L1-S1 lordosis, pelvic incidence, pelvic tilt, sacral slope, and T9 tilt. Anterior fusion and facet joints were analyzed on computed tomography (CT) at 1 year. The ODI was 8.8 before accident, 35.4 at 3 months, 17.8 at 2 years, 14.4 at 5 years. The VAS was 2.0 at 3 months and 1.0 at 5 years. The sagittal index was 18.0° preoperatively and 1.0° at 3 months (P < 0.0001). A loss of reduction of 1.1° occurred after implant removal (P = 0.009). Global sagittal balance remained unchanged. Ten patients with osteopenia or osteoporosis had a worse ODI: 24.7 versus 11.9 (P = 0.016), and a greater loss of correction: 4.9° versus 1.3° (P = 0.007). Cages filled with cancellous bone from the fractured vertebra fused regularly. Spontaneous facet joint fusions were observed in two patients at the fracture level in B-type injuries. Percutaneous instrumentation and selective anterior fusion using autologous bone and mesh cages lead to high fusion rates, which provided good long-term clinical results in younger patients with thoracolumbar fractures. Sagittal alignment was maintained after instrumentation removal without damaging paravertebral muscles. Outcomes were worse in elderly patients presenting osteopenia or osteoporosis. 3.
Eccentric Capitellar Ossification Limits the Utility of the Radiocapitellar Line in Young Children.
Fader, Lauren M; Laor, Tal; Eismann, Emily A; Cornwall, Roger; Little, Kevin J
2016-03-01
The radiocapitellar line (RCL) has long been used for the radiographic evaluation of elbow alignment. In children, the capitellar ossific nucleus serves as a proxy for the entire capitellum, but this substitution has not been verified. Using magnetic resonance imaging (MRI), we sought to understand how maturation of the ossific nucleus of the capitellum affects the utility of RCL throughout skeletal maturation of the elbow. The RCL was drawn on coronal and sagittal MRIs in 82 children (43 boys, 39 girls; age range, 1 to 13 y) with at least 3 patients in each 1-year interval age group. The perpendicular distance of the RCL from the center of both the cartilaginous capitellum and the capitellar ossific nucleus was measured relative to its total width, and a percent offset for each measurement was calculated. Logarithmic regression analysis was performed to analyze the effect of age and sex on percent offset. The RCL reliably intersected with the central third of the cartilaginous capitellum at all ages in both planes. Although the RCL intersected with the ossified capitellum in all but 3 measurements, it intersected with the central third of the ossified capitellum less often in younger children in both sagittal (B=0.47, P<0.001) and coronal (B=0.31, P=0.002) planes. Percent offset decreased significantly with age in a logarithmic manner in both sagittal (r=0.57, P<0.001) and coronal (r=-0.47, P<0.001) planes. 95% confidence intervals predict that the sagittal plane RCL will accurately intersect the central third of the ossified capitellum by age 10 years in girls and age 11 years in boys but not in the coronal plane. Eccentric ossification of the capitellum explains RCL variability in young children. The RCL does not reliably intersect the central third of the ossified capitellum until ages 10 years in girls and 11 years in boys in the sagittal plane. The RCL should be used within its limitations in skeletally immature children and should be combined with advanced imaging if necessary.
Hollenbeck, S Matt; Glattes, R Christopher; Asher, Marc A; Lai, Sue Min; Burton, Douglas C
2008-07-01
Retrospective case series. To determine the prevalence of proximal junctional sagittal plane flexion increase after posterior instrumentation and arthrodesis. Increased flexion proximal to the junction of the instrumented and fused spinal region with the adjacent mobile spine seems to be a relatively recent observation, may be increasing, and is occasionally problematic. The proximal junctional sagittal angulation 2 motion segments above the upper end instrumentation levels was measured on lateral standing preoperative and follow-up radiographs. One hundred seventy-four of 208 consecutive patients (84%) at an average radiograph follow-up of 4.9 +/- 2.73 years had increased proximal junctional flexion in 9.2%. The preoperative junctional measurements were normal for both normal and increased flexion groups. At follow-up, proximal junctional flexion had increased significantly more in the increased flexion group (2.1 degrees vs. 14.1 degrees , P < 0.0001). None of the possible risk factors studied, including demographic comparisons, Lenke classification (including lumbar and sagittal modifiers), end-instrumented vertebrae, end vertebra anchor configurations, surgical sequence, additional anterior surgery, rib osteotomies, and instrumentation length, were significantly associated with increased proximal junctional flexion at follow-up. Lenke 6 curves were at marginal risk of increased proximal junctional flexion (P = 0.0108). There were no differences between the groups in total Scoliosis Research Society-22r scores at an average follow-up of 8.0 +/- 3.74 years. No patient had additional surgery related to increased proximal junctional flexion. The prevalence of increased proximal junctional flexion was 9.2%. No significant risk factors were identified. Total Scoliosis Research Society-22r scores were similar for groups with normal and increased proximal junctional flexion at follow-up.
Ibuki, Satoko; Ichihashi, Noriaki
2017-01-01
Background Trunk axial rotation is a risk factor for chronic low back pain (CLBP). The characteristics of rotational mobility in the pelvis and spine among CLBP patients are not fully understood. Purpose The purpose of this study was to examine three-dimensional kinematic changes, and to compare the differences of rotational mobility and coupled motion, in patients with and without CLBP. Methods Fifteen patients with CLBP and 15 age and sex matched healthy subjects participated in this study. Each subject performed trunk rotation to maximum range of motion (ROM) in a standing position. The kinematics data was collected using a three-dimensional motion analysis system. The outcomes measured were the rotational ROM and the spine/pelvis ratio (SPR) in transvers plane at both maximum and 50% rotation position. The coupled angles in sagittal and frontal planes were also measured. Results No significant differences in rotational ROM of the thorax, pelvis, and spine were observed between two groups at maximum rotation position. However, there was a significant interaction between groups and rotational ROM of pelvis and spine (F = 4.57, p = 0.04), and the SPR in CLBP patients was significantly greater than that of the healthy subjects (CLBP; 0.50 ± 0.10 Control; 0.41 ± 0.12, p = 0.04). The results at 50% rotation position were similar to that at maximum rotation. This indicates a relative increase in spinal rotation in the CLBP patients during trunk rotation. Moreover, the CLBP patients exhibited a significantly higher anterior tilt of the pelvis and extension of the spine in the sagittal plane coupled with rotation. Conclusions CLBP patients had relative hyper rotational mobility of the spine as well as excessive spinal extension coupled with trunk rotation. These results suggest that uncoordinated trunk rotation might be a functional failure associated with CLBP. PMID:29040298
Taniguchi, Masashi; Tateuchi, Hiroshige; Ibuki, Satoko; Ichihashi, Noriaki
2017-01-01
Trunk axial rotation is a risk factor for chronic low back pain (CLBP). The characteristics of rotational mobility in the pelvis and spine among CLBP patients are not fully understood. The purpose of this study was to examine three-dimensional kinematic changes, and to compare the differences of rotational mobility and coupled motion, in patients with and without CLBP. Fifteen patients with CLBP and 15 age and sex matched healthy subjects participated in this study. Each subject performed trunk rotation to maximum range of motion (ROM) in a standing position. The kinematics data was collected using a three-dimensional motion analysis system. The outcomes measured were the rotational ROM and the spine/pelvis ratio (SPR) in transvers plane at both maximum and 50% rotation position. The coupled angles in sagittal and frontal planes were also measured. No significant differences in rotational ROM of the thorax, pelvis, and spine were observed between two groups at maximum rotation position. However, there was a significant interaction between groups and rotational ROM of pelvis and spine (F = 4.57, p = 0.04), and the SPR in CLBP patients was significantly greater than that of the healthy subjects (CLBP; 0.50 ± 0.10 Control; 0.41 ± 0.12, p = 0.04). The results at 50% rotation position were similar to that at maximum rotation. This indicates a relative increase in spinal rotation in the CLBP patients during trunk rotation. Moreover, the CLBP patients exhibited a significantly higher anterior tilt of the pelvis and extension of the spine in the sagittal plane coupled with rotation. CLBP patients had relative hyper rotational mobility of the spine as well as excessive spinal extension coupled with trunk rotation. These results suggest that uncoordinated trunk rotation might be a functional failure associated with CLBP.
Wang, Xiandi; Wang, Hongli; Sun, Chi; Zhou, Shuyi; Meng, Tao; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Jiang, Jianyuan
2018-04-26
Previous studies have indicated that decreased fractional anisotropy (FA) values on diffusion tensor imaging (DTI) are well correlated with the symptoms of nerve root compression. The aim of our study is to determine primary radiological parameters associated with decreased FA values in patients with lumbar spinal stenosis involving single L5 nerve root. Patients confirmed with single L5 nerve root compression by transforaminal nerve root blocks were included in this study. FA values of L5 nerve roots on both symptomatic and asymptomatic side were obtained. Conventional radiological parameters, such as disc height, degenerative scoliosis, dural sac cross-sectional area (DSCSA), foraminal height (FH), hypertrophic facet joint degeneration (HFJD), sagittal rotation (SR), sedimentation sign, sagittal translation and traction spur were measured. Correlation and regression analyses were performed between the radiological parameters and FA values of the symptomatic L5 nerve roots. A predictive regression equation was established. Twenty-one patients were included in this study. FA values were significantly lower at the symptomatic side comparing to the asymptomatic side (0.263 ± 0.069 vs. 0.334 ± 0.080, P = 0.038). DSCSA, FH, HFJD, and SR were significantly correlated with the decreased FA values, with r = 0.518, 0.443, 0.472 and - 0.910, respectively (P < 0.05). DSCSA and SR were found to be the primary radiological parameters related to the decreased FA values, and the regression equation is FA = - 0.012 × SR + 0.002 × DSCSA. DSCSA and SR were primary contributors to decreased FA values in LSS patients involving single L5 nerve root, indicating that central canal decompression and segmental stability should be the first considerations in preoperative planning of these patients. These slides can be retrieved under Electronic Supplementary Material.
Roser, Florian; Ebner, Florian H; Danz, Søren; Riether, Felix; Ritz, Rainer; Dietz, Klaus; Naegele, Thomas; Tatagiba, Marcos S
2008-05-01
Neuroradiology has become indispensable in detecting the pathophysiology in syringomyelia. Constructive interference in steady-state (CISS) magnetic resonance (MR) imaging can provide superior contrast at the sub-arachnoid tissue borders. As this region is critical in preoperative evaluation, the authors hypothesized that CISS imaging would provide superior assessment of syrinx pathology and surgical planning. Based on records collected from a database of 130 patients with syringomyelia treated at the authors' institution, 59 patients were prospectively evaluated with complete neuroradiological examinations. In addition to routine acquisitions with FLAIR, T1- and T2-weighted, and contrast-enhanced MR imaging series, the authors obtained sagittal cardiac-gated sequences to visualize cerebrospinal fluid (CSF) pulsations and axial 3D CISS MR sequences to detect focal arachnoid webs. Statistical qualitative and quantitative evaluations of spinal cord/CSF contrast, spinal cord/CSF delineation, motion artifacts, and artifacts induced by pulsatile CSF flow were performed. The 3D CISS MR sequences demonstrated a contrast-to-noise ratio significantly better than any other routine imaging sequence (p < 0.001). Moreover, 3D CISS imaging can detect more subarachnoid webs and cavitations in the syrinx than T2-weighted MR imaging with less flow-void artifact. The limitation of 3D CISS imaging is a susceptibility to motion artifacts that can cause reduced spatial resolution. Lengthy acquisition times for axial segments can be reduced with multiplanar reconstruction of 3D CISS-generated sagittal images. Constructive interference in steady-state imaging is the MR sequence of choice in the preoperative evaluation of syringomyelia, allowing significantly higher detection rates of focal subarachnoid webs, whereas standard T2-weighted MR imaging shows turbulent CSF flow voids. Constructive interference in steady-state MR imaging enables the neurosurgeon to accurately identify cases requiring decompression for obstructed CSF. Motion artifacts can be eliminated with technical variations.
Kinnaird, Catherine R.; Holleran, Carey L.; Rafferty, Miriam R.; Rodriguez, Kelly S.; Cain, Julie B.
2012-01-01
Background Robotic-assisted locomotor training has demonstrated some efficacy in individuals with neurological injury and is slowly gaining clinical acceptance. Both exoskeletal devices, which control individual joint movements, and elliptical devices, which control endpoint trajectories, have been utilized with specific patient populations and are available commercially. No studies have directly compared training efficacy or patient performance during stepping between devices. Objective The purpose of this study was to evaluate kinematic, electromyographic (EMG), and metabolic responses during elliptical- and exoskeletal-assisted stepping in individuals with incomplete spinal cord injury (SCI) compared with therapist-assisted stepping. Design A prospective, cross-sectional, repeated-measures design was used. Methods Participants with incomplete SCI (n=11) performed 3 separate bouts of exoskeletal-, elliptical-, or therapist-assisted stepping. Unilateral hip and knee sagittal-plane kinematics, lower-limb EMG recordings, and oxygen consumption were compared across stepping conditions and with control participants (n=10) during treadmill stepping. Results Exoskeletal stepping kinematics closely approximated normal gait patterns, whereas significantly greater hip and knee flexion postures were observed during elliptical-assisted stepping. Measures of kinematic variability indicated consistent patterns in control participants and during exoskeletal-assisted stepping, whereas therapist- and elliptical-assisted stepping kinematics were more variable. Despite specific differences, EMG patterns generally were similar across stepping conditions in the participants with SCI. In contrast, oxygen consumption was consistently greater during therapist-assisted stepping. Limitations Limitations included a small sample size, lack of ability to evaluate kinetics during stepping, unilateral EMG recordings, and sagittal-plane kinematics. Conclusions Despite specific differences in kinematics and EMG activity, metabolic activity was similar during stepping in each robotic device. Understanding potential differences and similarities in stepping performance with robotic assistance may be important in delivery of repeated locomotor training using robotic or therapist assistance and for consumers of robotic devices. PMID:22700537
Lateral interbody fusion combined with open posterior surgery for adult spinal deformity.
Strom, Russell G; Bae, Junseok; Mizutani, Jun; Valone, Frank; Ames, Christopher P; Deviren, Vedat
2016-12-01
OBJECTIVE Lateral interbody fusion (LIF) with percutaneous screw fixation can treat adult spinal deformity (ASD) in the coronal plane, but sagittal correction is limited. The authors combined LIF with open posterior (OP) surgery using facet osteotomies and a rod-cantilever technique to enhance lumbar lordosis (LL). It is unclear how this hybrid strategy compares to OP surgery alone. The goal of this study was to evaluate the combination of LIF and OP surgery (LIF+OP) for ASD. METHODS All thoracolumbar ASD cases from 2009 to 2014 were reviewed. Patients with < 6 months follow-up, prior fusion, severe sagittal imbalance (sagittal vertical axis > 200 mm or pelvic incidence-LL > 40°), and those undergoing anterior lumbar interbody fusion were excluded. Deformity correction, complications, and outcomes were compared between LIF+OP and OP-only surgery patients. RESULTS LIF+OP (n = 32) and OP-only patients (n = 60) had similar baseline features and posterior fusion levels. On average, 3.8 LIFs were performed. Patients who underwent LIF+OP had less blood loss (1129 vs 1833 ml, p = 0.016) and lower durotomy rates (0% vs 23%, p = 0.002). Patients in the LIF+OP group required less ICU care (0.7 vs 2.8 days, p < 0.001) and inpatient rehabilitation (63% vs 87%, p = 0.015). The incidence of new leg pain, numbness, or weakness was similar between groups (28% vs 22%, p = 0.609). All leg symptoms resolved within 6 months, except in 1 OP-only patient. Follow-up duration was similar (28 vs 25 months, p = 0.462). LIF+OP patients had significantly less pseudarthrosis (6% vs 27%, p = 0.026) and greater improvement in visual analog scale back pain (mean decrease 4.0 vs 1.9, p = 0.046) and Oswestry Disability Index (mean decrease 21 vs 12, p = 0.035) scores. Lumbar coronal correction was greater with LIF+OP surgery (mean [± SD] 22° ± 13° vs 14° ± 13°, p = 0.010). LL restoration was 22° ± 13°, intermediately between OP-only with facet osteotomies (11° ± 7°, p < 0.001) and pedicle subtraction osteotomy (29° ± 10°, p = 0.045). CONCLUSIONS LIF+OP is an effective strategy for ASD of moderate severity. Compared with the authors' OP-only operations, LIF+OP was associated with faster recovery, fewer complications, and greater relief of pain and disability.
Ashnagar, Zinat; Hadian, Mohammad Reza; Olyaei, Gholamreza; Talebian Moghadam, Saeed; Rezasoltani, Asghar; Saeedi, Hassan; Yekaninejad, Mir Saeed; Mahmoodi, Rahimeh
2017-07-01
The aim of this study was to investigate the intratester reliability of digital photographic method for quantifying static lower extremity alignment in individuals with flatfeet and normal feet types. Thirteen females with flexible flatfeet and nine females with normal feet types were recruited from university communities. Reflective markers were attached over the participant's body landmarks. Frontal and sagittal plane photographs were taken while the participants were in a standardized standing position. The markers were removed and after 30 min the same procedure was repeated. Pelvic angle, quadriceps angle, tibiofemoral angle, genu recurvatum, femur length and tibia length were measured from photographs using the Image j software. All measured variables demonstrated good to excellent intratester reliability using digital photography in both flatfeet (ICC: 0.79-0.93) and normal feet type (ICC: 0.84-0.97) groups. The findings of the current study indicate that digital photography is a highly reliable method of measurement for assessing lower extremity alignment in both flatfeet and normal feet type groups. Copyright © 2016. Published by Elsevier Ltd.
Chu, Winnie Cw; Lam, Wynnie Mw; Ng, Bobby Kw; Tze-Ping, Lam; Lee, Kwong-Man; Guo, Xia; Cheng, Jack Cy; Burwell, R Geoffrey; Dangerfield, Peter H; Jaspan, Tim
2008-06-27
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The Statement for this debate was written by Dr WCW Chu and colleagues who examine the spinal cord to vertebral growth interaction during adolescence in scoliosis. Using the multi-planar reconstruction technique of magnetic resonance imaging they investigated the relative length of spinal cord to vertebral column including ratios in 28 girls with AIS (mainly thoracic or double major curves) and 14 age-matched normal girls. Also evaluated were cerebellar tonsillar position, somatosensory evoked potentials (SSEPs), and clinical neurological examination. In severe AIS compared with normal controls, the vertebral column is significantly longer without detectable spinal cord lengthening. They speculate that anterior spinal column overgrowth relative to a normal length spinal cord exerts a stretching tethering force between the two ends, cranially and caudally leading to the initiation and progression of thoracic AIS. They support and develop the Roth-Porter concept of uncoupled neuro-osseous growth in the pathogenesis of AIS which now they prefer to term 'asynchronous neuro-osseous growth'. Morphological evidence about the curve apex suggests that the spinal cord is also affected, and a 'double pathology' is suggested. AIS is viewed as a disorder with a wide spectrum and a common neuroanatomical abnormality namely, a spinal cord of normal length but short relative to an abnormally lengthened anterior vertebral column. Neuroanatomical changes and/or abnormal neural function may be expressed only in severe cases. This asynchronous neuro-osseous growth concept is regarded as one component of a larger concept. The other component relates to the brain and cranium of AIS subjects because abnormalities have been found in brain (infratentorial and supratentorial) and skull (vault and base). The possible relevance of systemic melatonin-signaling pathway dysfunction, platelet calmodulin levels and putative vertebral vascular biology to the asynchronous neuro-osseous growth concept is discussed. A biomechanical model to test the spinal component of the concept is in hand. There is no published research on the biomechanical properties of the spinal cord for scoliosis specimens. Such research on normal spinal cords includes movements (kinematics), stress-strain responses to uniaxial loading, and anterior forces created by the stretched cord in forward flexion that may alter sagittal spinal shape during adolescent growth. The asynchronous neuro-osseous growth concept for the spine evokes controversy. Dr Chu and colleagues respond to five other concepts of pathogenesis for AIS and suggest that relative anterior spinal overgrowth and biomechanical growth modulation may also contribute to AIS pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnelli, A; Smith, A; Chao, S
2016-06-15
Purpose: Spinal stereotactic body radiotherapy (SBRT) involves highly conformal dose distributions and steep dose gradients due to the proximity of the spinal cord to the treatment volume. To achieve the planning goals while limiting the spinal cord dose, patients are setup using kV cone-beam CT (kV-CBCT) with 6 degree corrections. The kV-CBCT registration with the reference CT is dependent on a user selected region of interest (ROI). The objective of this work is to determine the dosimetric impact of ROI selection. Methods: Twenty patients were selected for this study. For each patient, the kV-CBCT was registered to the reference CTmore » using three ROIs including: 1) the external body, 2) a large anatomic region, and 3) a small region focused in the target volume. Following each registration, the aligned CBCTs and contours were input to the treatment planning system for dose evaluation. The minimum dose, dose to 99% and 90% of the tumor volume (D99%, D90%), dose to 0.03cc and the dose to 10% of the spinal cord subvolume (V10Gy) were compared to the planned values. Results: The average deviations in the tumor minimum dose were 2.68%±1.7%, 4.6%±4.0%, 14.82%±9.9% for small, large and the external ROIs, respectively. The average deviations in tumor D99% were 1.15%±0.7%, 3.18%±1.7%, 10.0%±6.6%, respectively. The average deviations in tumor D90% were 1.00%±0.96%, 1.14%±1.05%, 3.19%±4.77% respectively. The average deviations in the maximum dose to the spinal cord were 2.80%±2.56%, 7.58%±8.28%, 13.35%±13.14%, respectively. The average deviation in V10Gy to the spinal cord were 1.69%±0.88%, 1.98%±2.79%, 2.71%±5.63%. Conclusion: When using automated registration algorithms for CBCT-Reference alignment, a small target-focused ROI results in the least dosimetric deviation from the plan. It is recommended to focus narrowly on the target volume to keep the spinal cord dose below tolerance.« less
Yu, Bin; Zhu, Ke; Zhao, Deng; Wang, Fei; Liang, Yijian
2016-02-01
A case report of treatment of extreme tuberculous kyphosis using spinal osteotomy and halopelvic traction. The aim of this study was to describe the process and outcome of treatment of a case with extreme tuberculous kyphosis using spine osteotomy and halo-pelvic traction. Spinal tuberculosis causes destruction, deformity, and paraplegia. Long-standing kyphosis may progress with growth in children, and produces respiratory insufficiency, and neurologic deficit. Surgery may help to prevent or reverse the neurological deterioration, while improving pulmonary function in cases with significant spinal deformity. Review of records and radiographs. A 24-year-old female with tuberculous angular kyphosis presented with bilateral lower extremities paresis and dyspnea. The vertebral bodies from T3 to T9 were severely destructed, with a Cobb's angle of 180°on radiographs. The total duration of distraction using halopelvic apparatus kept 10 months. During the duration of traction, the patient underwent a posterior release surgery because flexibility of the kyphosis was not sufficient. Pedicle subtraction osteotomy and pedicle screw fixation were performed to achieve final correction when the Cobb's angle decreased to about 80°. After the whole treatment of halopelvic traction and spine ostetomy, the patient's height increased nearly 30 cm, whereas the angular kyphosis was corrected to a Cobb's angle of 30°. The patient had no complication and neurological deterioration during the treatment. Correction angle and good sagittal balance were well maintained in the duration of 2 years' follow-up. The halo-pelvic apparatus produces high corrective forces applied over a long period, and it provides a slow and safe correction of deformity. In cases of extreme kyphotic deformity, halopelvic traction is an appropriate technique, while avoiding many serious complications from a rapid, one-stage correction. N/A.
Traboulsee, A.; Simon, J.H.; Stone, L.; Fisher, E.; Jones, D.E.; Malhotra, A.; Newsome, S.D.; Oh, J.; Reich, D.S.; Richert, N.; Rammohan, K.; Khan, O.; Radue, E.-W.; Ford, C.; Halper, J.; Li, D.
2016-01-01
SUMMARY An international group of neurologists and radiologists developed revised guidelines for standardized brain and spinal cord MR imaging for the diagnosis and follow-up of MS. A brain MR imaging with gadolinium is recommended for the diagnosis of MS. A spinal cord MR imaging is recommended if the brain MR imaging is nondiagnostic or if the presenting symptoms are at the level of the spinal cord. A follow-up brain MR imaging with gadolinium is recommended to demonstrate dissemination in time and ongoing clinically silent disease activity while on treatment, to evaluate unexpected clinical worsening, to re-assess the original diagnosis, and as a new baseline before starting or modifying therapy. A routine brain MR imaging should be considered every 6 months to 2 years for all patients with relapsing MS. The brain MR imaging protocol includes 3D T1-weighted, 3D T2-FLAIR, 3D T2-weighted, post-single-dose gadolinium-enhanced T1-weighted sequences, and a DWI sequence. The progressive multifocal leukoencephalopathy surveillance protocol includes FLAIR and DWI sequences only. The spinal cord MR imaging protocol includes sagittal T1-weighted and proton attenuation, STIR or phase-sensitive inversion recovery, axial T2- or T2*-weighted imaging through suspicious lesions, and, in some cases, postcontrast gadolinium-enhanced T1-weighted imaging. The clinical question being addressed should be provided in the requisition for the MR imaging. The radiology report should be descriptive, with results referenced to previous studies. MR imaging studies should be permanently retained and available. The current revision incorporates new clinical information and imaging techniques that have become more available. PMID:26564433
Photogrammetry as a tool for the postural evaluation of the spine: A systematic review.
Furlanetto, Tássia Silveira; Sedrez, Juliana Adami; Candotti, Cláudia Tarragô; Loss, Jefferson Fagundes
2016-02-18
To evaluate the use of photogrammetry and identify the mathematical procedures applied when evaluating spinal posture. A systematic search using keywords was conducted in the PubMed, EMBASE, Scopus, Science and Medicine(®) databases. The following inclusion criteria adopted were: (1) the use of photogrammetry as a method to evaluate spinal posture; (2) evaluations of spinal curvature in the sagittal and/or frontal plane; (3) studies published within the last three decades; and (4) written entirely in English. The exclusion criteria were: (1) studies which objective involved the verification of some aspect of validation of instruments; (2) studies published as abstracts and those published in scientific events; and (3) studies using evaluation of the anteriorization of the head to determine the angular positioning of the cervical spine. The articles in this review were included and evaluated for their methodological quality, based on the Downs and Black scale, by two independent reviewers. Initially, 1758 articles were found, 76 of which were included upon reading the full texts and 29 were included in accordance with the predetermined criteria. In addition, after analyzing the references in those articles, a further six articles were selected, so that 35 articles were included in this review. This systematic review revealed that the photogrammetry has been using in observational studies. Furthermore, it was also found that, although the data collection methodologies are similar across the studies, in relation to aspects of data analysis, the methodologies are very different, especially regarding the mathematical routines employed to support different postural evaluation software. With photogrammetry, the aim of the assessment, whether it is for clinical, research or collective health purposes, must be considered when choosing which protocol to use to evaluate spinal posture.
Photogrammetry as a tool for the postural evaluation of the spine: A systematic review
Furlanetto, Tássia Silveira; Sedrez, Juliana Adami; Candotti, Cláudia Tarragô; Loss, Jefferson Fagundes
2016-01-01
AIM: To evaluate the use of photogrammetry and identify the mathematical procedures applied when evaluating spinal posture. METHODS: A systematic search using keywords was conducted in the PubMed, EMBASE, Scopus, Science and Medicine® databases. The following inclusion criteria adopted were: (1) the use of photogrammetry as a method to evaluate spinal posture; (2) evaluations of spinal curvature in the sagittal and/or frontal plane; (3) studies published within the last three decades; and (4) written entirely in English. The exclusion criteria were: (1) studies which objective involved the verification of some aspect of validation of instruments; (2) studies published as abstracts and those published in scientific events; and (3) studies using evaluation of the anteriorization of the head to determine the angular positioning of the cervical spine. The articles in this review were included and evaluated for their methodological quality, based on the Downs and Black scale, by two independent reviewers. RESULTS: Initially, 1758 articles were found, 76 of which were included upon reading the full texts and 29 were included in accordance with the predetermined criteria. In addition, after analyzing the references in those articles, a further six articles were selected, so that 35 articles were included in this review. This systematic review revealed that the photogrammetry has been using in observational studies. Furthermore, it was also found that, although the data collection methodologies are similar across the studies, in relation to aspects of data analysis, the methodologies are very different, especially regarding the mathematical routines employed to support different postural evaluation software. CONCLUSION: With photogrammetry, the aim of the assessment, whether it is for clinical, research or collective health purposes, must be considered when choosing which protocol to use to evaluate spinal posture. PMID:26925386
Bennett, Hunter J; Shen, Guangping; Cates, Harold E; Zhang, Songning
2017-12-01
Increased peak external knee adduction moments exist for individuals with knee osteoarthritis and varus knee alignments, compared to healthy and neutrally aligned counterparts. Walking with increased toe-in or increased step width have been individually utilized to successfully reduce 1st and 2nd peak knee adduction moments, respectfully, but have not previously been combined or tested among all alignment groups. The purpose of this study was to compare toe-in only and toe-in with wider step width gait modifications in individuals with neutral, valgus, and varus alignments. Thirty-eight healthy participants with confirmed varus, neutral, or valgus frontal-plane knee alignment through anteroposterior radiographs, performed level walking in normal, toe-in, and toe-in with wider step width gaits. A 3×3 (group×intervention) mixed model repeated measures ANOVA compared alignment groups and gait interventions (p<0.05). The 1st peak knee adduction moment was reduced in both toe-in and toe-in with wider step width compared to normal gait. The 2nd peak adduction moment was increased in toe-in compared to normal and toe-in with wider step width. The adduction impulse was also reduced in toe-in and toe-in with wider step width compared to normal gait. Peak knee flexion and external rotation moments were increased in toe-in and toe-in with wider step width compared to normal gait. Although the toe-in with wider step width gait seems to be a viable option to reduce peak adduction moments for varus alignments, sagittal, and transverse knee loadings should be monitored when implementing this gait modification strategy. Copyright © 2017 Elsevier B.V. All rights reserved.
Alderighi, Marzia; Ferrari, Raffaello; Maghini, Irene; Del Felice, Alessandra; Masiero, Stefano
2016-11-21
Radiographic examination is the gold standard to evaluate spine curves, but ionising radiations limit routine use. Non-invasive methods, such as skin-surface goniometer (IncliMed®) should be used instead. To evaluate intra- and interrater reliability to assess sagittal curves and mobility of the spine with IncliMed®. a reliability study on agonistic football players. Thoracic kyphosis, lumbar lordosis and mobility of the spine were assessed by IncliMed®. Measurements were repeated twice by each examiner during the same session with between-rater blinding. Intrarater and interrater reliability were measured by Intraclass Correlation Coefficient (ICC), 95% Confidence Interval (CI 95%) and Standard Error of Measurement (SEM). Thirty-four healthy female football players (19.17 ± 4.52 years) were enrolled. Statistical results showed high intrarater (0.805-0.923) and interrater (0.701-0.886) reliability (ICC > 0.8). The obtained intra- and interrater SEM were low, with overall absolute intrarater values between 1.39° and 2.76° and overall interrater values between 1.71° and 4.25°. IncliMed® provides high intra- and interrater reliability in healthy subjects, with limited Standard Error of Measurement. These results encourage its use in clinical practice and scientific research.
Primo Vascular System in the Subarachnoid Space of a Mouse Brain
Moon, Sang-Ho; Cha, Richard; Lim, Jae-Kwan; Soh, Kwang-Sup
2013-01-01
Objective. Recently, a novel circulatory system, the primo vascular system (PVS), was found in the brain ventricles and in the central canal of the spinal cord of a rat. The aim of the current work is to detect the PVS along the transverse sinuses between the cerebrum and the cerebellum of a mouse brain. Materials and Methods. The PVS in the subarachnoid space was analyzed after staining with 4′,6-diamidino-2-phenylindole (DAPI) and phalloidin in order to identify the PVS. With confocal microscopy and polarization microscopy, the primo vessel underneath the sagittal sinus was examined. The primo nodes under the transversal sinuses were observed after peeling off the dura and pia maters of the brain. Results. The primo vessel underneath the superior sagittal sinus was observed and showed linear optical polarization, similarly to the rabbit and the rat cases. The primo nodes were observed under the left and the right transverse sinuses at distances of 3,763 μm and 5,967 μm. The average size was 155 μm × 248 μm. Conclusion. The observation of primo vessels was consistent with previous observations in rabbits and rats, and primo nodes under the transverse sinuses were observed for the first time in this work. PMID:23781258
Mori, Toshihiko; Nishino, Eri; Jitsukawa, Tomomi; Hoshino, Emiko; Hirakawa, Satoshi; Kuroiwa, Yuki; Fuse, Shigeto; Yoto, Yuko; Tsutsumi, Hiroyuki
2018-01-01
Abstract. We describe the case of a short-statured 12-yr-old boy who developed a Chiari type 1 malformation associated with central sleep apnea after administration of high-dose GH therapy, which he had been receiving since the age of 10 yr and 4 mo. He responded well to GH therapy, and his height increased by 18.8 cm in 2 yr. At 12 yr and 4 mo of age, his mother reported that he had developed sleep apnea during the previous year and it had worsened over a month prior to presentation at our hospital. Otolaryngological examination did not reveal tonsillar or adenoidal hypertrophy. Polysomnography demonstrated severe central sleep apnea with an apnea-hypopnea index of 46.5/h. Sagittal T1-weighted magnetic resonance imaging (MRI) demonstrated herniation of the cerebellar tonsils 15 mm below the foramen magnum into the cervical spinal cord. Continuous positive airway pressure therapy initiated prior to performing neurosurgery was ineffective. Following uncomplicated foramen magnum decompression, his breathing pattern during sleep returned to normal. Sagittal MRI examination should be considered in patients who develop sleep apnea during/following administration of GH therapy. PMID:29403156
Hu, Boyi; Ning, Xiaopeng; Dai, Fei; Almuhaidib, Ibrahim
2016-09-01
Uneven ground surface is a common occupational injury risk factor in industries such as agriculture, fishing, transportation and construction. Studies have shown that antero-posteriorly slanted ground surfaces could reduce spinal stability and increase the risk of falling. In this study, the influence of antero-posteriorly slanted ground surfaces on lumbar flexion-relaxation responses was investigated. Fourteen healthy participants performed sagittally symmetric and asymmetric trunk bending motions on one flat and two antero-posteriorly slanted surfaces (-15° (uphill facing) and 15° (downhill facing)), while lumbar muscle electromyography and trunk kinematics were recorded. Results showed that standing on a downhill facing slanted surface delays the onset of lumbar muscle flexion-relaxation phenomenon (FRP), while standing on an uphill facing ground causes lumbar muscle FRP to occur earlier. In addition, compared to symmetric bending, when performing asymmetric bending, FRP occurred earlier on the contralateral side of lumbar muscles and significantly smaller maximum lumbar flexion and trunk inclination angles were observed. Practitioner Summary: Uneven ground surface is a common risk factor among a number of industries. In this study, we investigated the influence of antero-posteriorly slanted ground surface on trunk biomechanics during trunk bending. Results showed the slanted surface alters the lumbar tissue load-sharing mechanism in both sagittally symmetric and asymmetric bending.
The spinal posture of computing adolescents in a real-life setting
2014-01-01
Background It is assumed that good postural alignment is associated with the less likelihood of musculoskeletal pain symptoms. Encouraging good sitting postures have not reported consequent musculoskeletal pain reduction in school-based populations, possibly due to a lack of clear understanding of good posture. Therefore this paper describes the variability of postural angles in a cohort of asymptomatic high-school students whilst working on desk-top computers in a school computer classroom and to report on the relationship between the postural angles and age, gender, height, weight and computer use. Methods The baseline data from a 12 month longitudinal study is reported. The study was conducted in South African school computer classrooms. 194 Grade 10 high-school students, from randomly selected high-schools, aged 15–17 years, enrolled in Computer Application Technology for the first time, asymptomatic during the preceding month, and from whom written informed consent were obtained, participated in the study. The 3D Posture Analysis Tool captured five postural angles (head flexion, neck flexion, cranio-cervical angle, trunk flexion and head lateral bend) while the students were working on desk-top computers. Height, weight and computer use were also measured. Individual and combinations of postural angles were analysed. Results 944 Students were screened for eligibility of which the data of 194 students are reported. Trunk flexion was the most variable angle. Increased neck flexion and the combination of increased head flexion, neck flexion and trunk flexion were significantly associated with increased weight and BMI (p = 0.0001). Conclusions High-school students sit with greater ranges of trunk flexion (leaning forward or reclining) when using the classroom computer. Increased weight is significantly associated with increased sagittal plane postural angles. PMID:24950887
Mulpruek, Pornchai; Angsanuntsukh, Chanika; Woratanarat, Patarawan; Sa-Ngasoongsong, Paphon; Tawonsawatruk, Tulyapruek; Chanplakorn, Pongsthorn
2015-09-01
To assess the outcome after using the Shaft-Condylar angle (SCA) as intraoperative reference for sagittal plane correction in displaced lateral humeral condyle fractures in children presented 3-weeks after injury. Ten children, with delayed presentation of a displaced lateral humeral condyle fracture and undergoing surgery during 1999-2011, were reviewed. The goal was to obtain a smooth articular surface with an intraoperative SCA of nearly 40° and nearest-anatomical carrying angle. They were allocated into two groups according to the postoperative SCA [Good-reduction group (SCA=30-50°), and Bad-reduction group (SCA<30°, >50°)] and the final outcomes were then compared. All fractures united without avascular necrosis. The Good-reduction group (n=7) showed a significant improvement in final range of motion and functional outcome compared to the Bad-reduction group (n=3) (p=0.02). However, there was no significant difference in pain, carrying angle and overall outcome between both groups. SCA is a possible intraoperative reference for sagittal alignment correction in late presented displaced lateral humeral condyle fractures.
Takaso, Masashi; Nakazawa, Toshiyuki; Imura, Takayuki; Fukuda, Michinari; Takahashi, Kazuhisa; Ohtori, Seiji
2018-03-01
A retrospective cohort study was performed. The purpose of this study was to determine the efficacy and safety of stopping segmental pedicle screw instrumentation constructs at L5 in the treatment of neuromuscular scoliosis. Duchenne muscular dystrophy and spinal muscular atrophy are flaccid neuromuscular disorders in which gradual deterioration is the hallmark and have a lot of characteristics in common despite differences in etiology. Instrumentation and fusion to the sacrum/pelvis has been a mainstay in the surgical treatment of flaccid neuromuscular scoliosis and recommended to correct pelvic obliquity. However, the caudal extent of instrumentation and fusion in the surgical treatment of flaccid neuromuscular scoliosis has remained a matter of considerable debate and there have been few studies on the use of segmental pedicle screw instrumentation for flaccid neuromuscular scoliosis. From 2005 to 2007, a total of 27 consecutive patients with neuromuscular disorders (20 Duchenne muscular dystrophy and 7 spinal muscular atrophy), aged 11 to 17 years, underwent segmental pedicle screw instrumentation and fusion only to L5. Assessment was performed clinically and with radiologic measurements. Minimum 2-year follow-up was required for inclusion in this study. Twenty patients were enrolled in this study. No patient was lost to follow-up. All patients had L5 tilt of less than 15° and a coronal curve with apex L2 or higher preoperatively. Preoperative coronal curve averaged 70° (range: 51°-88°), with a postoperative mean of 15° (range: 5°-25°) and 17° (range: 6°-27°) at the last follow-up. The pelvic obliquity improved from 15° (range: 9°-25°) preoperatively to 5° (range: 3°-8°) postoperatively and 6° (range: 3°-8°) at the last follow-up. The L5 tilt improved from 9° (range: 2°-14°) preoperatively to 2° (range: 0°-4°) postoperatively and 2° (range: 0°-5°) at the last follow-up. Physiologic sagittal plane alignment was recreated after surgery and maintained long-term. There was no significant loss of correction of coronal curve and pelvic obliquity. There was no major complication. Segmental pedicle screw instrumentation and fusion to L5 was safe and effective in patients with flaccid neuromuscular scoliosis with apex L2 or higher and minimal L5 tilt of less than 15°. Segmental pedicle screw instrumentation ending at L5 offered the ability to correct spinal deformity and pelvic obliquity initially, intermediate and even long-term, with no major complications. This method in appropriate patients can be a viable alternative to instrumentation and fusion to the sacrum/pelvis in the surgical treatment of flaccid neuromuscular scoliosis. N/A.
2017-01-01
Design: Observational cross-sectional study. The current study aims to yield normative data: i.e., the physiological standard for 30 selected quantitative 3D parameters that accurately capture and describe a full-skeleton, upright-standing attitude. Specific and exclusive consideration was given to three distinct categories: postural, spine morphology and pelvic parameters. To capture such 3D parameters, the authors selected a non-ionising 3D opto-electronic stereo-photogrammetric approach. This required the identification and measurement of 27 body landmarks, each specifically tagged with a skin marker. As subjects for the measurement of these parameters, a cohort of 124 asymptomatic young adult volunteers was recruited. All parameters were identified and measured within this group. Postural and spine morphology data have been compared between genders. In this regard, only five statistically significant differences were found: pelvis width, pelvis torsion, the “lumbar” lordosis angle value, the lumbar curve length, and the T12-L5 anatomically-bound lumbar angle value. The “thoracic” kyphosis mean angle value was the same in both sexes and, even if, derived from skin markers placed on spinous processes it resulted in perfect agreement with the X-ray based literature. As regards lordosis, a direct comparison was more difficult because methods proposed in the literature differ as to the number and position of vertebrae under consideration, and their related angle values. However, when the L1 superior–L5 inferior end plate Cobb angle was considered, these results aligned strongly with the existing literature. Asymmetry was a standard postural-spinal feature for both sexes. Each subject presented some degree of leg length discrepancy (LLD) with μ = 9.37mm. This was associated with four factors: unbalanced posture and/or underfoot loads, spinal curvature in the frontal plane, and pelvis torsion. This led to the additional study of the effect of LLD equalisation influence on upright posture, relying on a sub-sample of 100 subjects (51 males, 49 females). As a result of the equalisation, about 82% of this sub-sample showed improvement in standing posture, mainly in the frontal plane; while in the sagittal plane less than 1/3 of the sub-sample showed evidence of change in spinal angles. A significant variation was found in relation to pelvis torsion: 46% of subjects showed improvement, 49% worsening. The method described in study presents several advantages: non-invasive aspect; relatively short time for a complete postural evaluation with many clinically useful 3D and 2D anatomical/biomechanical/clinical parameters; analysis of real neutral unconstrained upright standing posture. PMID:28640899
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Chia-Lin; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario; Sussman, Marshall S.
2015-04-01
Purpose: To assess motion of the spinal cord and cauda equina, which are critical neural tissues (CNT), which is important when evaluating the planning organ-at-risk margin required for stereotactic body radiation therapy. Methods and Materials: We analyzed CNT motion in 65 patients with spinal metastases (11 cervical, 39 thoracic, and 24 lumbar spinal segments) in the supine position using dynamic axial and sagittal magnetic resonance imaging (dMRI, 3T Verio, Siemens) over a 137-second interval. Motion was segregated according to physiologic cardiorespiratory oscillatory motion (characterized by the average root mean square deviation) and random bulk shifts associated with gross patient motionmore » (characterized by the range). Displacement was evaluated in the anteroposterior (AP), lateral (LR), and superior-inferior (SI) directions by use of a correlation coefficient template matching algorithm, with quantification of random motion measure error over 3 separate trials. Statistical significance was defined according to P<.05. Results: In the AP, LR, and SI directions, significant oscillatory motion was observed in 39.2%, 35.1%, and 10.8% of spinal segments, respectively, and significant bulk motions in all cases. The median oscillatory CNT motions in the AP, LR, and SI directions were 0.16 mm, 0.17 mm, and 0.44 mm, respectively, and the maximal statistically significant oscillatory motions were 0.39 mm, 0.41 mm, and 0.77 mm, respectively. The median bulk displacements in the AP, LR, and SI directions were 0.51 mm, 0.59 mm, and 0.66 mm, and the maximal statistically significant displacements were 2.21 mm, 2.87 mm, and 3.90 mm, respectively. In the AP, LR, and SI directions, bulk displacements were greater than 1.5 mm in 5.4%, 9.0%, and 14.9% of spinal segments, respectively. No significant differences in axial motion were observed according to cord level or cauda equina. Conclusions: Oscillatory CNT motion was observed to be relatively minor. Our results support the importance of controlling bulk patient motion and the practice of applying a planning organ-at-risk margin.« less
Belavý, Daniel L; Armbrecht, Gabriele; Gast, Ulf; Richardson, Carolyn A; Hides, Julie A; Felsenberg, Dieter
2010-12-01
To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.
Decoster, Laura C; Burns, Matthew F; Swartz, Erik E; Murthi, Dinakar S; Hernandez, Adam E; Vailas, James C; Isham, Linda L
2012-04-15
Descriptive laboratory study. To determine whether the placement of padding beneath the occiput after helmet removal is an effective intervention to maintain neutral sagittal cervical spine alignment in a position comparable with the helmeted condition. Current on-field recommendations for managing football athletes with suspected cervical spine injuries call for face mask removal, rather than helmet removal, because the combination of helmet and shoulder pads has been shown to maintain neutral cervical alignment. Therefore, in cases when helmet removal is required, recommendations also call for shoulder pad removal. Because removal of equipment causes motion, any technique that postpones the need to remove the shoulder pads would reduce prehospital motion. Four lateral radiographs of 20 male participants were obtained (age = 23.6 ± 2.7 years). Radiographs of participants wearing shoulder pads and helmet were first obtained. The helmet was removed and radiographs of participants with occipital padding were obtained immediately and 20 minutes later and finally without occipital padding. Cobb angle measurements for C2-C6 vertebral segments were determined by an orthopedic spine surgeon blinded to the study's purpose. Intraobserver reliability was determined using intraclass coefficient analysis. Measurements were analyzed using a 1×4 repeated-measures analysis of variance and post hoc pairwise comparisons with Bonferroni correction. Intraobserver analysis showed excellent reliability (intraclass correlation = 1.0; 95% confidence interval [CI], 0.999-1.0). Repeated-measures analysis of variance detected significant differences (F(3,17) = 13.34; P < 0.001). Pairwise comparisons revealed no differences in cervical alignment (all measurements reported reflect lordosis) when comparing the baseline helmeted condition (10.1° ± 8.7°; 95% CI, 6.0-14.1) with the padded conditions. Measurements taken after removal of occipital padding (14.4° ± 8.1°; 95% CI, 10.6-18.2) demonstrated a significant increase in cervical lordosis compared with the immediate padded measurement (9.5° ± 6.9°; 95% CI, 6.3-12.7; P = 0.011) and the 20-minute padded measurement (6.5° ± 6.8°; 95% CI, 3.4-9.7; P < 0.001). Although face mask removal remains the standard, if it becomes necessary to remove the football helmet in the field, occipital padding (along with full body/head immobilization techniques) may be used to limit cervical lordosis, allowing safe delay of shoulder pad removal.
Shaha, James S; Cage, Jason M; Black, Sheena R; Wimberly, Robert L; Shaha, Steven H; Riccio, Anthony I
The ideal canal fill for flexible intramedullary fixation of pediatric femoral shaft fractures is considered to be 80% based upon relatively few clinical studies. The purpose of this study is to assess the relationship between the summed nail to intramedullary canal diameter (ND/MCD) ratio and alignment at radiographic union following flexible intramedullary nailing (FIMN) of pediatric femoral shaft fractures. An Internal Review Board approved, retrospective review of a consecutive series of patients who sustained a femoral shaft fracture treated by retrograde, stainless steel FIMN was performed at a single level 1 pediatric trauma center from 2005 to 2012. Preoperative radiographs were analyzed to determine fracture pattern, location, and isthmic canal diameter. ND/MCD ratio was calculated using the sum of the known nail diameters and the measured isthmic diameter. Radiographs at bony union were reviewed to measure shortening, coronal angulation, and sagittal angulation. ND/MCD ratio was analyzed to determine correlative factors with final radiographic outcomes. In total, 261 children underwent retrograde FIMN at an average age of 8.2 years (range, 2.2 to 17.0 y). ND/MCD ratio of ≥80% was seen in 108 (41.4%) patients. When compared with those with <80% ND/MCD ratio, there were no significant differences in age (8.8 vs. 8.0 y), sex (76.9% vs. 71.0% males), or body mass index (18.5 vs. 17.2 kg/m). There were significantly more length unstable fractures in the <80% ND/MCD ratio group (49.4% vs. 29.7%; P<0.01). Radiographic outcome was no different with respect to coronal angulation (2.7 vs. 3.0 degrees), sagittal angulation (3.0 vs. 3.2 degrees), or shortening (2.5 vs. 4.1 mm). ND/MCD ratio of ≥70% was seen in 176 (67.4%) patients and, when compared with the <70% ND/MCD ratio group, there were no differences in shortening (3.3 vs. 3.9 mm), coronal angulation (2.8 vs. 3.0 degrees), or sagittal angulation (3.0 vs. 3.4 degrees). Finally, 6.9% of the population (18 patients) had ND/MCD ratios <60% and did not demonstrate a significant increase in shortening, coronal, or sagittal angulation compared with groups with higher ND/MCD ratios. No group had an increased rate of infection, implant removal, nonunion, or need for reoperation. In a large series of consecutive patients treated with retrograde stainless steel FIMN there does not appear to be any correlation between the ND/MCD ratio and radiographic outcome. Stainless steel flexible IM nails seem to maintain fracture alignment without an increase in complications at lower ND/MCD ratios than previously reported as "optimal." Level III.
Management of Osseous and Soft-Tissue Ankle Equinus During Total Ankle Replacement.
Roukis, Thomas S; Simonson, Devin C
2015-10-01
Obtaining functional alignment of a total ankle replacement, including physiologic sagittal plane range of motion, is paramount for a successful outcome. This article reviews the literature on techniques available for correction of osseous and soft-tissue equinus at the time of index total ankle replacement. These techniques include anterior tibiotalar joint cheilectomy, posterior superficial muscle compartment lengthening, posterior ankle capsule release, and release of the posterior portions of the medial and lateral collateral ligament complexes. The rationale for these procedures and the operative sequence of events for these procedures are presented. Copyright © 2015 Elsevier Inc. All rights reserved.
The posture of adolescent male handball players: A two-year study.
Grabara, Małgorzata
2018-02-06
Young athletes at the stage of growth acceleration tend to exhibit increased susceptibility to postural abnormalities, especially in the trunk region. The aim of this study was to assess and compare the posture in male adolescent handball players over two years of regular training sessions. The study group comprised 21 handball players. At the start of the study 15 participants were aged 14 and 6 participants were aged 15 (mean 14.25 ± 0.58). The measurements were repeated three times. Posture was assessed with a photogrammetric method based on the moiré phenomenon. The analysis of posture relative to symmetry in the frontal and transverse planes did not reveal any significant differences between posture indicators obtained during the successive measurements. Sagittal plane posture indicators revealed significant changes in torso forward inclination angle and the shape of anteroposterior spinal curvatures. The latter consisted of significant deepening of the upper thoracic curve (angle α) and flattening of the lumbosacral curve (angle γ). A two-year period of handball training did not result in posture asymmetries in young male handball players. The observed changes in the shape of anteroposterior spinal curvatures might be related both to sports training and somatic parameters.
Current status of adult spinal deformity.
Youssef, J A; Orndorff, D O; Patty, C A; Scott, M A; Price, H L; Hamlin, L F; Williams, T L; Uribe, J S; Deviren, V
2013-03-01
Purpose To review the current literature for the nonoperative and operative treatment for adult spinal deformity. Recent Findings With more than 11 million baby boomers joining the population of over 60 years of age in the United States, the incidence of lumbar deformity is greatly increasing. Recent literature suggests that a lack of evidence exists to support the effectiveness of nonoperative treatment for adult scoliosis. In regards to operative treatment, current literature reports a varying range of improved clinical outcomes, curve correction, and complication rates. The extension of fusion to S1 compared with L5 and lower thoracic levels compared with L1 remains a highly controversial topic among literature. Summary Most adult deformity patients never seek nonoperative or operative treatment. Of the few that seek treatment, many can benefit from nonoperative treatment. However, in selected patients who have failed nonoperative treatment and who are candidates for surgical intervention, the literature reflects positive outcomes related to surgical intervention as compared with nonoperative treatment despite varying associated ranges in morbidity and mortality rates. If nonoperative therapy fails in addressing a patient's complaints, then an appropriate surgical procedure that relieves neural compression, corrects excessive sagittal or coronal imbalance, and results in a solidly fused, pain-free spine is warranted.
Matgé, Guy; Berthold, Christophe; Gunness, Vimal Raj Nitish; Hana, Ardian; Hertel, Frank
2015-03-01
Although cervical total disc replacement (TDR) has shown equivalence or superiority to anterior cervical discectomy and fusion (ACDF), potential problems include nonphysiological motion (hypermobility), accelerated degeneration of the facet joints, particulate wear, and compromise of the mechanical integrity of the endplate during device fixation. Dynamic cervical stabilization is a novel motion-preserving concept that facilitates controlled, limited flexion and extension, but prevents axial rotation and lateral bending, thereby reducing motion across the facet joints. Shock absorption of the Dynamic Cervical Implant (DCI) device is intended to protect adjacent levels from accelerated degeneration. The authors conducted a prospective evaluation of 53 consecutive patients who underwent DCI stabilization for the treatment of 1-level (n = 42), 2-level (n = 9), and 3-level (n = 2) cervical disc disease with radiculopathy or myelopathy. Forty-seven patients (89%) completed all clinical and radiographic outcomes at a minimum of 24 months. Clinical outcomes consisted of Neck Disability Index (NDI) and visual analog scale (VAS) scores, neurological function at baseline and at latest follow-up, as well as patient satisfaction. Flexion-extension radiography was evaluated for device motion, implant migration, subsidence, and heterotopic ossification. Cervical sagittal alignment (Cobb angle), functional spinal unit (FSU) angle, and range of motion (ROM) at index and adjacent levels were evaluated with WEB 1000 software. The NDI score, VAS neck and arm pain scores, and neurological deficits were significantly reduced at each postoperative time point compared with baseline (p < 0.0001). At 24 months postoperatively, 91% of patients were very satisfied and 9% somewhat satisfied, while 89% would definitely and 11% would probably elect to have the same surgery again. In 47 patients with 58 operated levels, the radiographic assessment showed good motion (5°-12°) of the device in 57%, reduced motion (2°-5°) in 34.5%, and little motion (0-2°) in 8.5%. The Cobb and FSU angles improved, showing a clear tendency for lordosis with the DCI. Motion greater than 2° of the treated segment could be preserved in 91.5%, while 8.5% had a near segmental fusion. Mean ROM at index levels demonstrated satisfying motion preservation with DCI. Mean ROM at upper and lower adjacent levels showed maintenance of adjacent-level kinematics. Heterotopic ossification, including 20% minor and 15% major, had no direct impact on clinical results. There were 2 endplate subsidences detected with an increased segmental lordosis. One asymptomatic anterior device migration required reoperation. Three patients underwent a secondary surgery in another segment during follow-up, twice for a new disc herniation and once for an adjacent degeneration. There was no posterior migration and no device breakage. Preliminary results indicate that the DCI implanted using a proper surgical technique is safe and facilitates excellent clinical outcomes, maintains index-and adjacent-level ROM in the majority of cases, improves sagittal alignment, and may be suitable for patients with facet arthrosis who would otherwise not be candidates for cervical TDR. Shock absorption together with maintained motion in the DCI may protect adjacent levels from early degeneration in longer follow-up.
Furuhashi, Hiroki; Togawa, Daisuke; Koyama, Hiroshi; Hoshino, Hironobu; Yasuda, Tatsuya; Matsuyama, Yukihiro
2017-05-01
Several reports have indicated that anterior dislocation of total hip arthroplasty (THA) can be caused by spinal degenerative changes with excessive pelvic retroversion. However, no reports have indicated that posterior dislocation can be caused by fixed pelvic anteversion after corrective spine surgery. We describe a rare case experiencing repeated posterior THA dislocation that occurred at 5 months after corrective spinal long fusion with pelvic fixation. A 64-year-old woman had undergone bilateral THA at 13 years before presenting to our institution. She had been diagnosed with kyphoscoliosis and underwent three subsequent spinal surgeries after the THA. We finally performed spinal corrective long fusion from T5 to ilium with pelvic fixation (with iliac screws). Five months later, she experienced severe hip pain when she tried to stand up from the toilet, and was unable to move, due to posterior THA dislocation. Therefore, we performed closed reduction under sedation, and her left hip was easily reduced. After the reduction, she started to walk with a hip abduction brace. However, she had experienced 5 subsequent dislocations. Based on our findings and previous reports, we have hypothesized that posterior dislocation could be occurred after spinal corrective long fusion with pelvic fixation due to three mechanisms: (1) a change in the THA cup alignment before and after spinal corrective long fusion surgery, (2) decreased and fixed pelvic posterior tilt in the sitting position, or (3) the trunk's forward tilting during standing-up motion after spinopelvic fixation. Spinal long fusion with pelvic fixation could be a risk factor for posterior THA dislocation.
Steinhaus, Michael E; McLawhorn, Alexander S; Richardson, Shawn S; Maher, Patrick; Mayman, David J
2016-10-01
Proper alignment of total knee arthroplasty (TKA) is essential for TKA function and may reduce the risk of aseptic failure. Technologies that prevent malalignment may reduce the risk of revision surgery. The purpose of this study was to compare two competing TKA systems that purport improved alignment: patient-specific instrumentation (PSI), and a handheld portable navigation device (NAV). After IRB approval, 49 consecutive PSI TKAs (40 patients) were matched based on preoperative characteristics to 49 NAV TKAs (40 patients) performed by a single surgeon. A blinded observer measured alignment on digital radiographs. Operating room records were reviewed for procedure times. Two-tailed paired sample t tests and McNemar's test were used as appropriate. Alpha level was 0.05 for all tests. Preoperative cohort characteristics were not different. Mean postoperative long-leg mechanical alignment was within ±1° of neutral for both groups, although statistically different ( p = 0.026). There were no other significant differences in coronal alignment. PSI exhibited significantly greater posterior tibial slope (4.4°) compared to NAV (2.7°) ( p = 0.004); PSI resulted in significantly more outliers (>6°; p = 0.004). Procedure time for unilateral TKAs was lower for PSI (74.4 min) compared to that for NAV (80.6 min; p = 0.023). NAV and PSI technologies provided excellent coronal plane alignment. NAV was better for sagittal tibial slope, while PSI procedure times were shorter for unilateral TKA. The impact of these technologies on patient-reported outcomes and TKA survivorship is controversial and should be the focus of future research.
Abraira, Victoria E.; Ginty, David D.
2013-01-01
The somatosensory system decodes a wide range of tactile stimuli and thus endows us with a remarkable capacity for object recognition, texture discrimination, sensory-motor feedback and social exchange. The first step leading to perception of innocuous touch is activation of cutaneous sensory neurons called low-threshold mechanoreceptors (LTMRs). Here, we review the properties and functions of LTMRs, emphasizing the unique tuning properties of LTMR subtypes and the organizational logic of their peripheral and central axonal projections. We discuss the spinal cord neurophysiological representation of complex mechanical forces acting upon the skin and current views of how tactile information is processed and conveyed from the spinal cord to the brain. An integrative model in which ensembles of impulses arising from physiologically distinct LTMRs are integrated and processed in somatotopically aligned mechanosensory columns of the spinal cord dorsal horn underlies the nervous system’s enormous capacity for perceiving the richness of the tactile world. PMID:23972592
Fedorchuk, Curtis; Lightstone, Douglas F; McRae, Christi; Kaczor, Derek
2017-01-01
Objective Discuss the use of non-surgical spinal rehabilitation protocol in the case of a 69-year-old female with a grade 2 spondylolisthesis. A selective literature review and discussion are provided. Clinical Features A 69-year-old female presented with moderate low back pain (7/10 pain) and severe leg cramping (7/10 pain). Initial lateral lumbar x-ray revealed a grade 2 spondylolisthesis at L4-L5 measuring 13.3 mm. Interventions and Outcomes The patient completed 60 sessions of Mirror Image® spinal exercises, adjustments, and traction over 45 weeks. Post-treatment lateral lumbar x-ray showed a decrease in translation of L4-L5 from 13.3 mm to 2.4 mm, within normal limits. Conclusions This case provides the first documented evidence of a non-surgical or chiropractic treatment, specifically Chiropractic BioPhysics®, protocols of lumbar spondylolisthesis where spinal alignment was corrected. Additional research is needed to investigate the clinical implications and treatment methods. PMID:29299090
Boissière, Louis; Takemoto, Mitsuru; Bourghli, Anouar; Vital, Jean-Marc; Pellisé, Ferran; Alanay, Ahmet; Yilgor, Caglar; Acaroglu, Emre; Perez-Grueso, Francisco Javier; Kleinstück, Frank; Obeid, Ibrahim
2017-04-01
Many radiological parameters have been reported to correlate with patient's disability including sagittal vertical axis (SVA), pelvic tilt (PT), and pelvic incidence minus lumbar lordosis (PI-LL). European literature reports other parameters such as lumbar lordosis index (LLI) and the global tilt (GT). If most parameters correlate with health-related quality of life scores (HRQLs), their impact on disability remains unclear. This study aimed to validate these parameters by investigating their correlation with HRQLs. It also aimed to evaluate the relationship between each of these sagittal parameters and HRQLs to fully understand the impact in adult spinal deformity management. A retrospective review of a multicenter, prospective database was carried out. The database inclusion criteria were adults (>18 years old) presenting any of the following radiographic parameters: scoliosis (Cobb ≥20°), SVA ≥5 cm, thoracic kyphosis ≥60° or PT ≥25°. All patients with complete data at baseline were included. Health-related quality of life scores, demographic variables (DVs), and radiographic parameters were collected at baseline. Differences in HRQLs among groups of each DV were assessed with analyses of variance. Correlations between radiographic variables and HRQLs were assessed using the Spearman rank correlation. Multivariate linear regression models were fitted for each of the HRQLs (Oswestry Disability Index [ODI], Scoliosis Research Society-22 subtotal score, or physical component summaries) with sagittal parameters and covariants as independent variables. A p<.05 value was considered statistically significant. Among a total of 755 included patients (mean age, 52.1 years), 431 were non-surgical candidates and 324 were surgical candidates. Global tilt and LLI significantly correlated with HRQLs (r=0.4 and -0.3, respectively) for univariate analysis. Demographic variables such as age, gender, body mass index, past surgery, and surgical or non-surgical candidate were significant predictors of ODI score. The likelihood ratio tests for the addition of the sagittal parameters showed that SVA, GT, T1 sagittal tilt, PI-LL, and LLI were statistically significant predictors for ODI score even adjusted for covariates. The differences of R 2 values from Model 1 were 1.5% at maximum, indicating that the addition of sagittal parameters to the reference model increased only 1.5% of the variance of ODI explained by the models. GT and LLI appear to be independent radiographic parameters impacting ODI variance. If most of the parameters described in the literature are correlated with ODI, the impact of these radiographic parameters is less than 2% of ODI variance, whereas 40% are explained by DVs. The importance of radiographic parameters lies more on their purpose to describe and understand the malalignment mechanisms than their univariate correlation with HRQLs. Copyright © 2016 Elsevier Inc. All rights reserved.
Fusion Rate and Clinical Outcomes in Two-Level Posterior Lumbar Interbody Fusion.
Aono, Hiroyuki; Takenaka, Shota; Nagamoto, Yukitaka; Tobimatsu, Hidekazu; Yamashita, Tomoya; Furuya, Masayuki; Iwasaki, Motoki
2018-04-01
Posterior lumbar interbody fusion (PLIF) has become a general surgical method for degenerative lumbar diseases. Although many reports have focused on single-level PLIF, few have focused on 2-level PLIF, and no report has covered the fusion status of 2-level PLIF. The purpose of this study is to investigate clinical outcomes and fusion for 2-level PLIF by using a combination of dynamic radiographs and multiplanar-reconstruction computed tomography scans. This study consisted of 48 consecutive patients who underwent 2-level PLIF for degenerative lumbar diseases. We assessed surgery duration, estimated blood loss, complications, clinical outcomes as measured by the Japanese Orthopaedic Association score, lumbar sagittal alignment as measured on standing lateral radiographs, and fusion status as measured by dynamic radiographs and multiplanar-reconstruction computed tomography. Patients were examined at a follow-up point of 4.8 ± 2.2 years after surgery. Thirty-eight patients who did not undergo lumbosacral fusion comprised the lumbolumbar group, and 10 patients who underwent lumbosacral fusion comprised the lumbosacral group. The mean Japanese Orthopaedic Association score improved from 12.1 to 22.4 points by the final follow-up examination. Sagittal alignment also was improved. All patients had fusion in the cranial level. Seven patients had nonunion in the caudal level, and the lumbosacral group (40%) had a significantly poorer fusion rate than the lumbolumbar group (97%) did. Surgical outcomes of 2-level PLIF were satisfactory. The fusion rate at both levels was 85%. All nonunion was observed at the caudal level and concentrated at L5-S level in L4-5-S PLIF. Copyright © 2018 Elsevier Inc. All rights reserved.
Restoration of Lumbar Lordosis in Flat Back Deformity: Optimal Degree of Correction
Kim, Ki-Tack; Lee, Sang-Hun; Kim, Hyo-Jong; Kim, Jung-Youn; Lee, Jung-Hee
2015-01-01
Study Design A retrospective comparative study. Purpose To provide an ideal correction angle of lumbar lordosis (LL) in degenerative flat back deformity. Overview of Literature The degree of correction in degenerative flat back in relation to pelvic incidence (PI) remains controversial. Methods Forty-nine patients with flat back deformity who underwent corrective surgery were enrolled. Posterior-anterior-posterior sequential operation was performed. Mean age and mean follow-up period was 65.6 years and 24.2 months, respectively. We divided the patients into two groups based on immediate postoperative radiographs-optimal correction (OC) group (PI-9°≤LL
Spencer, Brian A; Mont, Michael A; McGrath, Mike S; Boyd, Bradley; Mitrick, Michael F
2009-12-01
New technology using magnetic resonance imaging (MRI) allows the surgeon to place total knee replacement components into each patient's pre-arthritic natural alignment. This study evaluated the initial intra-operative experience using this technique. Twenty-one patients had a sagittal MRI of their arthritic knee to determine component placement for a total knee replacement. Cutting guides were machined to control all intra-operative cuts. Intra-operative events were recorded and these knees were compared to a matching cohort of the senior surgeon's previous 30 conventional total knee replacements. Post-operative scanograms were obtained from each patient and coronal alignment was compared to previous studies using conventional and computer-assisted techniques. There were no intra-operative or acute post-operative complications. There were no differences in blood loss and there was a mean decrease in operative time of 14% compared to a cohort of patients with conventional knee replacements. The average deviation from the mechanical axis was 1.2 degrees of varus, which was comparable to previously reported conventional and computer-assisted techniques. Custom-fit total knee replacement appeared to be a safe procedure for uncomplicated cases of osteoarthritis.
Uncovertebral joint injury in cervical facet dislocation: the headphones sign.
Palmieri, Francesco; Cassar-Pullicino, Victor N; Dell'Atti, Claudia; Lalam, Radhesh K; Tins, Bernhard J; Tyrrell, Prudencia N M; McCall, Iain W
2006-06-01
The purpose of our study is to demonstrate the uncovertebral mal-alignment as a reliable indirect sign of cervical facet joint dislocation. We examined the uncovertebral axial plane alignment of 12 patients with unilateral and bilateral cervical facet joint dislocation (UCFJD and BCFJD, respectively), comparing its frequency to the reverse hamburger bun sign on CT and MR axial images. Of the seven cases with BCFJD, five clearly demonstrated the diagnostic reverse facet joint hamburger bun sign on CT and MR images, but in two cases this sign was not detectable. In the five cases with UCFJD, four demonstrated the reverse hamburger bun sign on both CT and MRI. In one case the reverse hamburger bun sign was not seen adequately with either image modality, but the facet dislocation was identified on sagittal imaging. The uncovertebral mal-alignment was detected in all 12 cases. Normally, the two components of the uncovertebral joint enjoy a concentric relationship that in the axial plane is reminiscent of the relationship of headphones with the wearer's head. We name this appearance the 'headphones' sign. Radiologists should be aware of the headphones sign as a reliable indicator of facet joint dislocation on axial imaging used in the assessment of cervical spine injuries.
Patient-specific instruments in total knee arthroplasty.
Conteduca, Fabio; Iorio, Raffaele; Mazza, Daniele; Ferretti, Andrea
2014-02-01
In recent years, patient-specific instruments (PSI) has been introduced with the aim of reducing the overall costs of the implants, minimising the size and number of instruments required, and also reducing surgery time. The purpose of this study was to perform a review of the current literature, as well as to report about our personal experience, to assess reliability of patient specific instrument system in total knee arthroplasty (TKA). A literature review was conducted of PSI system reviewing articles related to coronal alignment, clinical knee and function scores, cost, patient satisfaction and complications. Studies have reported incidences of coronal alignment ≥3° from neutral in TKAs performed with patient-specific cutting guides ranging from 6% to 31%. PSI seem not to be able to result in the same degree of accuracy as the CAS system, while comparing well with standard manual technique with respect to component positioning and overall lower axis, in particular in the sagittal plane. In cases in which custom-made cutting jigs were used, we recommend performing an accurate control of the alignment before and after any cuts and in any further step of the procedure, in order to avoid possible outliers.
Theologis, Alexander A; Mundis, Gregory M; Nguyen, Stacie; Okonkwo, David O; Mummaneni, Praveen V; Smith, Justin S; Shaffrey, Christopher I; Fessler, Richard; Bess, Shay; Schwab, Frank; Diebo, Bassel G; Burton, Douglas; Hart, Robert; Deviren, Vedat; Ames, Christopher
2017-02-01
OBJECTIVE The aim of this study was to evaluate the utility of supplementing long thoracolumbar posterior instrumented fusion (posterior spinal fusion, PSF) with lateral interbody fusion (LIF) of the lumbar/thoracolumbar coronal curve apex in adult spinal deformity (ASD). METHODS Two multicenter databases were evaluated. Adults who had undergone multilevel LIF of the coronal curve apex in addition to PSF with L5-S1 interbody fusion (LS+Apex group) were matched by number of posterior levels fused with patients who had undergone PSF with L5-S1 interbody fusion without LIF (LS-Only group). All patients had at least 2 years of follow-up. Percutaneous PSF and 3-column osteotomy (3CO) were excluded. Demographics, perioperative details, radiographic spinal deformity measurements, and HRQoL data were analyzed. RESULTS Thirty-two patients were matched (LS+Apex: 16; LS: 16) (6 men, 26 women; mean age 63 ± 10 years). Overall, the average values for measures of deformity were as follows: Cobb angle > 40°, sagittal vertical axis (SVA) > 6 cm, pelvic tilt (PT) > 25°, and mismatch between pelvic incidence (PI) and lumbar lordosis (LL) > 15°. There were no significant intergroup differences in preoperative radiographic parameters, although patients in the LS+Apex group had greater Cobb angles and less LL. Patients in the LS+Apex group had significantly more anterior levels fused (4.6 vs 1), longer operative times (859 vs 379 minutes), and longer length of stay (12 vs 7.5 days) (all p < 0.01). For patients in the LS+Apex group, Cobb angle, pelvic tilt (PT), lumbar lordosis (LL), PI-LL (lumbopelvic mismatch), Oswestry Disability Index (ODI) scores, and visual analog scale (VAS) scores for back and leg pain improved significantly (p < 0.05). For patients in the LS-Only group, there were significant improvements in Cobb angle, ODI score, and VAS scores for back and leg pain. The LS+Apex group had better correction of Cobb angles (56% vs 33%, p = 0.02), SVA (43% vs 5%, p = 0.46), LL (62% vs 13%, p = 0.35), and PI-LL (68% vs 33%, p = 0.32). Despite more LS+Apex patients having major complications (56% vs 13%; p = 0.02) and postoperative leg weakness (31% vs 6%, p = 0.07), there were no intergroup differences in 2-year outcomes. CONCLUSIONS Long open posterior instrumented fusion with or without multilevel LIF is used to treat a variety of coronal and sagittal adult thoracolumbar deformities. The addition of multilevel LIF to open PSF with L5-S1 interbody support in this small cohort was often used in more severe coronal and/or lumbopelvic sagittal deformities and offered better correction of major Cobb angles, lumbopelvic parameters, and SVA than posterior-only operations. As these advantages came at the expense of more major complications, more leg weakness, greater blood loss, and longer operative times and hospital stays without an improvement in 2-year outcomes, future investigations should aim to more clearly define deformities that warrant the addition of multilevel LIF to open PSF and L5-S1 interbody fusion.
Chaoui, R; Benoit, B; Heling, K S; Kagan, K O; Pietzsch, V; Sarut Lopez, A; Tekesin, I; Karl, K
2011-12-01
We describe a case series of six fetuses with open spina bifida (OSB) from four different prenatal units, where the anomaly was detected at the routine 11-13-week ultrasound examination. Crown-rump length ranged from 49 to 78 mm. All cases were first suspected during nuchal translucency thickness measurement in the mid-sagittal plane of the face. OSB was lumbosacral in five fetuses and cervical in one. The intracranial translucency (IT) was obliterated in two cases, but some fluid was found in the other four cases. However, in all cases the typical landmarks of a normal posterior brain and normal IT were absent. In all six cases the ratio of brainstem diameter to brainstem-occipital bone distance was increased (≥ 1). This detection of an abnormal posterior brain led to a targeted examination and detection of the spinal lesion during the same examination in five cases, whereas in one suspicious case the patient was recalled at 17 weeks, when the abnormality was detected. Two fetuses had both multiple anomalies and trisomy 18. These prospective cases demonstrate the feasibility of using the standard mid-sagittal plane commonly used for NT measurement to assess the IT and the posterior brain and to determine the presence of OSB during NT screening. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.
Effects of polarization in low-level laser therapy of spinal cord injury in rats
NASA Astrophysics Data System (ADS)
Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru
2012-03-01
Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.
Adjustable selective maxillary expansion combined with maxillomandibular surgery: A case report.
Leyder, Patrick; Altounian, Gérard; Chardain, Jacques; Quilichini, Julien
2015-09-01
Surgically assisted rapid maxillary expansion (SARME) is usually considered the gold standard for maxillary transverse expansion in adults. However, a second surgical procedure is needed in cases of associated sagittal or vertical discrepancies. We describe the use of two new innovative devices for the correction of discrepancies in all dimensions during a single surgical procedure, thus reducing treatment duration. We report the case of a 21-year-old female patient, referred to our department for skeletal Class III malocclusion associated with right-side laterognathism and transverse maxillary deficiency. The patient underwent one-stage surgery, using sliding osteosynthesis plates and an adjustable bone-borne distractor. Pre-surgical orthodontics consisted in leveling and aligning the mandibular arch; maxillary leveling was initiated 3 months before surgery. Postoperative palatal distraction combined with orthodontic finishing enabled complete correction of dental and bony discrepancies after 3 months. In our experience, treatment of transverse, sagittal and vertical discrepancies has been possible in a single surgical procedure, using two innovative techniques: sliding osteosynthesis and an adjustable bone distractor. Two years post-surgery, the correction is stable in all dimensions. Copyright © 2015. Published by Elsevier Masson SAS.
Patel, Krutiben; Kau, Chung How; Waite, Peter D; Celebi, Ahmet Arif
2017-01-01
This case report describes the successful treatment of a 26-year-old Caucasian male with skeletal and dental Class III malocclusion associated with mild maxillary and mandibular crowding. The patient had anteroposterior and transverse discrepancies with a reverse overjet and bilateral posterior crossbites. The nonextraction treatment plan included aligning and leveling of the teeth in both arches, Le Fort I and bilateral sagittal split osteotomies, and postsurgical correction of the malocclusion. Orthodontic treatment was initiated with custom lingual appliances followed by orthognathic surgery planned with virtual surgical planning. Treatment was concluded with detailed orthodontic finishing, achieving optimum esthetics and function. PMID:28713747
Muyor, José M; Alacid, Fernando; López-Miñarro, Pedro A
2011-09-01
The purpose of this study was to determine the influence of hamstring muscles extensibility in standing, maximal trunk flexion with knees extended and on the bicycle in lower handlebar-hands position of highly trained cyclists. Ninety-six cyclists were recruited for the study (mean ± SD, age: 30.36 ± 5.98 years). Sagittal spinal curvatures and pelvic tilt were measured in the standing position, maximal trunk flexion with knees extended (sit-and-reach test) and while sitting on a bicycle in lower handlebar-hand position using a Spinal Mouse system. Hamstring muscles extensibility was determined in both legs by passive straight leg raise test (PSLR). The sample was divided into three groups according to PSLR angle: (1) reduced extensibility (PSLR < 80º; n = 30), (2) moderate hamstring extensibility group (PSLR = 80º - 90º; n = 35), and (3) high hamstring extensibility (PSLR = > 90º; n = 31). ANOVA analysis showed significant differences among groups for thoracic (p < 0.001) and pelvic tilt (p < 0.001) angles in the sit-and-reach test. No differences were found between groups for standing and on the bicycle position. Post hoc analysis showed significant differences in all pairwise comparisons for thoracic angle (p < 0.01) and pelvic angle (p < 0.001) in the sit-and-reach test. No differences were found in lumbar angle in any posture. In conclusion, the hamstring muscles extensibility influence the thoracic and pelvic postures when maximal trunk flexion with knees extended is performed, but not when cyclists are seated on their bicycles.
Muyor, José M.; Alacid, Fernando; López-Miñarro, Pedro A.
2011-01-01
The purpose of this study was to determine the influence of hamstring muscles extensibility in standing, maximal trunk flexion with knees extended and on the bicycle in lower handlebar-hands position of highly trained cyclists. Ninety-six cyclists were recruited for the study (mean ± SD, age: 30.36 ± 5.98 years). Sagittal spinal curvatures and pelvic tilt were measured in the standing position, maximal trunk flexion with knees extended (sit-and-reach test) and while sitting on a bicycle in lower handlebar-hand position using a Spinal Mouse system. Hamstring muscles extensibility was determined in both legs by passive straight leg raise test (PSLR). The sample was divided into three groups according to PSLR angle: (1) reduced extensibility (PSLR < 80º; n = 30), (2) moderate hamstring extensibility group (PSLR = 80º – 90º; n = 35), and (3) high hamstring extensibility (PSLR = > 90º; n = 31). ANOVA analysis showed significant differences among groups for thoracic (p < 0.001) and pelvic tilt (p < 0.001) angles in the sit-and-reach test. No differences were found between groups for standing and on the bicycle position. Post hoc analysis showed significant differences in all pairwise comparisons for thoracic angle (p < 0.01) and pelvic angle (p < 0.001) in the sit-and-reach test. No differences were found in lumbar angle in any posture. In conclusion, the hamstring muscles extensibility influence the thoracic and pelvic postures when maximal trunk flexion with knees extended is performed, but not when cyclists are seated on their bicycles PMID:23486997
Chronic low back pain after lumbosacral fracture due to sagittal and frontal vertebral imbalance.
Boyoud-Garnier, L; Boudissa, M; Ruatti, S; Kerschbaumer, G; Grobost, P; Tonetti, J
2017-06-01
Over time, some patients with unilateral or bilateral lumbosacral injuries experience chronic low back pain. We studied the sagittal and frontal balance in a population with these injuries to determine whether mismatch in the pelvic and lumbar angles are associated with chronic low back pain. Patients with posterior pelvic ring fractures (Tile C1, C2, C3 and A3.3) that had healed were included. Foreign patients and those with an associated spinal or acetabular fracture or nonunion were excluded. The review consisted of subjective questionnaires, a clinical examination, and standing A/P and lateral stereoradiographic views. The pelvic tilt (PT), sacral slope (SS), pelvic incidence (PI), measured lumbar lordosis (LLm), T9 sagittal offset, leg discrepancy (LD) and lateral curvature (LC). The expected lumbar lordosis (LLe) was calculated using the formula LLe=PI+9°. We defined lumbopelvic mismatch (LPM) as the difference between LLm and LLe being equal or greater than 25% of LLe. Fifteen patients were reviewed after an average follow-up of 8.8 years [5.4-15]. There were four Tile C1, five Tile C2, five Tile C3 and one Tile A3.3 fracture. Ten of the 15 patients had low back pain. The mean angles were: LLm 49.6° and LLe 71.9° (P=0.002), PT 21.3°, SS 44.1°, PI 62.9° in patients with low back pain and LLm 57.4° and LLe 63.2° (P=0.55), PT 13°, SS 43.1°, PI 54.2° in those without. LPM was present in 9 patients, 8 of who had low back pain (P=0.02). Six patients, all of whom had low back pain, had a mean LC of 7.5° [4.5-23] (P=0.02). The mean LD was 0.77cm. The findings of this small study suggest that patients who experience low back pain after their posterior arch of the pelvic ring fracture has healed, have a lumbopelvic mismatch. Early treatment of these patients should aim to reestablish the anatomy of the pelvic base relative to the frontal and sagittal balance. IV. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Lumbar Lordosis of Spinal Stenosis Patients during Intraoperative Prone Positioning
Lee, Su-Keon; Song, Kyung-Sub; Park, Byung-Moon; Lim, Sang-Youn; Jang, Geun; Lee, Beom-Seok; Moon, Seong-Hwan; Lee, Hwan-Mo
2016-01-01
Background To evaluate the effect of spondylolisthesis on lumbar lordosis on the OSI (Jackson; Orthopaedic Systems Inc.) frame. Restoration of lumbar lordosis is important for maintaining sagittal balance. Physiologic lumbar lordosis has to be gained by intraoperative prone positioning with a hip extension and posterior instrumentation technique. There are some debates about changing lumbar lordosis on the OSI frame after an intraoperative prone position. We evaluated the effect of spondylolisthesis on lumbar lordosis after an intraoperative prone position. Methods Sixty-seven patients, who underwent spinal fusion at the Department of Orthopaedic Surgery of Gwangmyeong Sungae Hospital between May 2007 and February 2012, were included in this study. The study compared lumbar lordosis on preoperative upright, intraoperative prone and postoperative upright lateral X-rays between the simple stenosis (SS) group and spondylolisthesis group. The average age of patients was 67.86 years old. The average preoperative lordosis was 43.5° (± 14.9°), average intraoperative lordosis was 48.8° (± 13.2°), average postoperative lordosis was 46.5° (± 16.1°) and the average change on the frame was 5.3° (± 10.6°). Results Among all patients, 24 patients were diagnosed with simple spinal stenosis, 43 patients with spondylolisthesis (29 degenerative spondylolisthesis and 14 isthmic spondylolisthesis). Between the SS group and spondylolisthesis group, preoperative lordosis, intraoperative lordosis and postoperative lordosis were significantly larger in the spondylolisthesis group. The ratio of patients with increased lordosis on the OSI frame compared to preoperative lordosis was significantly higher in the spondylolisthesis group. The risk of increased lordosis on frame was significantly higher in the spondylolisthesis group (odds ratio, 3.325; 95% confidence interval, 1.101 to 10.039; p = 0.033). Conclusions Intraoperative lumbar lordosis on the OSI frame with a prone position was larger in the SS patients than the spondylolisthesis patients, which also produced a larger postoperative lordosis angle after posterior spinal fusion surgery. An increase in lumbar lordosis on the OSI frame should be considered during posterior spinal fusion surgery, especially in spondylolisthesis patients. PMID:26929801
Macri, Erin M; Culvenor, Adam G; Morris, Hayden G; Whitehead, Timothy S; Russell, Trevor G; Khan, Karim M; Crossley, Kay M
2017-05-09
Patellofemoral osteoarthritis (PFOA) occurs in approximately half of anterior cruciate ligament (ACL)-injured knees within 10-15 years of trauma. Risk factors for post-traumatic PFOA are poorly understood. Patellofemoral alignment and trochlear morphology may be associated with PFOA following ACL reconstruction (ACLR), and understanding these relationships, particularly early in the post-surgical time period, may guide effective early intervention strategies. In this study, patellofemoral alignment and trochlear morphology were investigated in relation to radiographic features of early PFOA 1-year post-ACLR. Participants (aged 18-50 years) had undergone ACLR approximately 1 year prior to being assessed. Early PFOA was defined as presence of a definite patellofemoral osteophyte on lateral or skyline radiograph. Sagittal and axial plane alignment and trochlear morphology were estimated using MRI. Using logistic regression, the relationship between alignment or morphology and presence of osteophytes was evaluated. Of 111 participants [age 30 ± 8.5; 41 (37%) women], 19 (17%) had definite osteophytes, only two of whom had had patellofemoral chondral lesions noted intra-operatively. One measure of patellar alignment (bisect offset OR 1.1 [95% confidence interval 1.0, 1.2]) and two measures of trochlear morphology (sulcus angle OR 1.1 [1.0, 1.2], trochlear angle OR 1.2 [1.0, 1.5]) were associated with patellofemoral osteophytes. Patellofemoral malalignment and/or altered trochlear morphology were associated with PFOA 1 year following ACLR compared to individuals post-ACLR without these features. Clarifying the role of alignment and morphology in post-traumatic PFOA may contribute to improving early intervention strategies aimed at secondary prevention. IV.
Victor, Jan; Dujardin, Jan; Vandenneucker, Hilde; Arnout, Nele; Bellemans, Johan
2014-01-01
Recently, patient-specific guides (PSGs) have been introduced, claiming a significant improvement in accuracy and reproducibility of component positioning in TKA. Despite intensive marketing by the manufacturers, this claim has not yet been confirmed in a controlled prospective trial. We (1) compared three-planar component alignment and overall coronal mechanical alignment between PSG and conventional instrumentation and (2) logged the need for applying changes in the suggested position of the PSG. In this randomized controlled trial, we enrolled 128 patients. In the PSG cohort, surgical navigation was used as an intraoperative control. When the suggested cut deviated more than 3° from target, the use of PSG was abandoned and marked as an outlier. When cranial-caudal position or size was adapted, the PSG was marked as modified. All patients underwent long-leg standing radiography and CT scan. Deviation of more than 3° from the target in any plane was defined as an outlier. The PSG and conventional cohorts showed similar numbers of outliers in overall coronal alignment (25% versus 28%; p = 0.69), femoral coronal alignment (7% versus 14%) (p = 0.24), and femoral axial alignment (23% versus 17%; p = 0.50). There were more outliers in tibial coronal (15% versus 3%; p = 0.03) and sagittal 21% versus 3%; p = 0.002) alignment in the PSG group than in the conventional group. PSGs were abandoned in 14 patients (22%) and modified in 18 (28%). PSGs do not improve accuracy in TKA and, in our experience, were somewhat impractical in that the procedure needed to be either modified or abandoned with some frequency.
Carreau, Joseph H; Bastrom, Tracey; Petcharaporn, Maty; Schulte, Caitlin; Marks, Michelle; Illés, Tamás; Somoskeöy, Szabolcs; Newton, Peter O
2014-03-01
Reproducibility study of SterEOS 3-dimensional (3D) software in large, idiopathic scoliosis (IS) spinal curves. To determine the accuracy and reproducibility of various 3D, software-generated radiographic measurements acquired from a 2-dimensional (2D) imaging system. SterEOS software allows a user to reconstruct a 3D spinal model from an upright, biplanar, low-dose, X-ray system. The validity and internal consistency of this system have not been tested in large IS curves. EOS images from 30 IS patients with curves greater than 50° were collected for analysis. Three observers blinded to the study protocol conducted repeated, randomized, manual 2D measurements, and 3D software generated measurements from biplanar images acquired from an EOS Imaging system. Three-dimensional measurements were repeated using both the Full 3D and Fast 3D guided processes. A total of 180 (120 3D and 60 2D) sets of measurements were obtained of coronal (Cobb angle) and sagittal (T1-T12 and T4-T12 kyphosis; L1-S1 and L1-L5; and pelvic tilt, pelvic incidence, and sacral slope) parameters. Intra-class correlation coefficients were compared, as were the calculated differences in values generated by SterEOS 3D software and manual 2D measurements. The 95% confidence intervals of the mean differences in measures were calculated as an estimate of reproducibility. Average intra-class correlation coefficients were excellent: 0.97, 0.97, and 0.93 for Full 3D, Fast 3D, and 2D measures, respectively (p = .11). Measurement errors for some sagittal measures were significantly lower with the 3D techniques. Both the Full 3D and Fast 3D techniques provided consistent measurements of axial plane vertebral rotation. SterEOS 3D reconstruction spine software creates reproducible measurements in all 3 planes of deformity in curves greater than 50°. Advancements in 3D scoliosis imaging are expected to improve our understanding and treatment of idiopathic scoliosis. Copyright © 2014 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Tsou, Paul M; Daffner, Scott D; Holly, Langston T; Shamie, A Nick; Wang, Jeffrey C
2012-02-10
Multiple factors contribute to the determination for surgical intervention in the setting of cervical spinal injury, yet to date no unified classification system exists that predicts this need. The goals of this study were twofold: to create a comprehensive subaxial cervical spine injury severity numeric scoring model, and to determine the predictive value of this model for the probability of surgical intervention. In a retrospective cohort study of 333 patients, neural impairment, patho-morphology, and available spinal canal sagittal diameter post-injury were selected as injury severity determinants. A common numeric scoring trend was created; smaller values indicated less favorable clinical conditions. Neural impairment was graded from 2-10, patho-morphology scoring ranged from 2-15, and post-injury available canal sagittal diameter (SD) was measured in millimeters at the narrowest point of injury. Logistic regression analysis was performed using the numeric scores to predict the probability for surgical intervention. Complete neurologic deficit was found in 39 patients, partial deficits in 108, root injuries in 19, and 167 were neurologically intact. The pre-injury mean canal SD was 14.6 mm; the post-injury measurement mean was 12.3 mm. The mean patho-morphology score for all patients was 10.9 and the mean neurologic function score was 7.6. There was a statistically significant difference in mean scores for neural impairment, canal SD, and patho-morphology for surgical compared to nonsurgical patients. At the lowest clinical score for each determinant, the probability for surgery was 0.949 for neural impairment, 0.989 for post-injury available canal SD, and 0.971 for patho-morphology. The unit odds ratio for each determinant was 1.73, 1.61, and 1.45, for neural impairment, patho-morphology, and canal SD scores, respectively. The subaxial cervical spine injury severity determinants of neural impairment, patho-morphology, and post-injury available canal SD have well defined probability for surgical intervention when scored separately. Our data showed that each determinant alone could act as a primary predictor for surgical intervention.
Zhu, Zezhang; Sha, Shifu; Chu, Winnie C C; Yan, Huang; Xie, Dingding; Liu, Zhen; Sun, Xu; Zhu, Weiguo; Cheng, Jack C Y; Qiu, Yong
2016-02-01
Although the more readily available MR imaging has brought about more incidental findings of idiopathic syringomyelia (IS), no published study has specifically addressed the clinical and imaging features of IS-associated scoliosis. Since IS and Chiari I malformation (CMI)-type syringomyelia are hypothesized to share a common underlying developmental pathomechanism, this study aimed to investigate the scoliosis curve patterns and MRI syrinx cord characteristics of patients with IS comparing with those seen in CMI. Sixty-one patients with scoliosis secondary to IS were identified and reviewed retrospectively. The curve pattern and specific curve features were recorded and compared with historic CMI controls. Location, size, and morphological appearance of the syrinx were systematically assessed on MR images. The maximal syrinx/cord ratio and rostrocaudal length of the syrinx in IS averaged 0.43 ± 0.16 (range 0.17-0.78) and 4.6 ± 2.5 (range 2-15) vertebral levels, respectively, both of which were smaller than those reported in CMI-type syringomyelia. Regarding the characteristics of IS-related scoliosis, sagittal profiles as well as the frequency of curve patterns and atypical features were all found to resemble those in patients with CMI (P > .05). Among the 47 individuals with a single thoracic curve, Fisher exact test revealed a significant correlation between curve convexity and the dominant side of deviated syrinx (83.3 % concordance rate, P = .021). In addition, apex of the thoracic curve trended toward being significantly correlated with the level of maximum expansion of the syrinx (P = .066). Radiological characteristics of scoliosis were found to be similar between idiopathic and CMI-type syrinx in both the coronal and sagittal planes, adding further evidence to the concept that these entities may be part of a spectrum of disease sharing a common pathophysiological mechanism. The thoracic spine in IS patients tended to be convex to the deviated side of syrinx, which indirectly supported the likely role of spinal cord dysfunction in the pathogenesis of syrinx-associated spinal deformities.
Progressive early-onset scoliosis in Conradi disease: a 34-year follow-up of surgical management.
Kabirian, Nima; Hunt, Leonel A; Ganjavian, Mohammad S; Akbarnia, Behrooz A
2013-03-01
Conradi-Hunermann syndrome (CHS) is a rare metabolic syndrome with several orthopaedic problems. Early-onset scoliosis is of great importance because of often rapidly progressive nature and high risk of postoperative complications. To report the 34-year follow-up and outcome of a patient with CHS treated with combined anterior and posterior fusion without instrumentation. All available clinical and radiographs of a female patient with CHS retrospectively reviewed. Overall health status, sagittal and coronal deformity, pulmonary function test, and outcome questionnaires were evaluated. Initial films at the age of 4 months showed a curve of 37 degrees from T6-T11 and a curve of 17 degrees from T11-L2. Thoracic kyphosis was measured at 43 degrees. Standing films at the age of 2 years and 2 months showed progression of both the curves to 50 and 66 degrees, respectively, and a significant spinal imbalance. The kyphosis also progressed to 57 degrees. She underwent a staged anterior inlay graft spinal fusion with autograft and allograft ribs from T8-L1 and posterior in situ fusion from T6-L1 with corticocancellous allograft. Solid radiographic fusion was observed 18 months after surgery. She was 36 years old at her latest follow-up, 34 years after surgery, with neutral clinical coronal and sagittal balance. No significant pain and respiratory complaint at moderate sports and normal daily life activity. "Vital capacity" and "total lung capacity" were 65% and 75%, respectively, of the normal. Thoracic curve of 35 degrees (T6-T11) and right thoracolumbar curve of 53 degrees from T11-L2 with a solid fusion fromT6-L1 with kyphosis measured over the fused area of 40 degrees were observed. Her overall mean Scoliosis Research Society-22 score was 3.68. She is an MBA graduate from a competitive school and currently works full-time. Although the treatment of early-onset scoliosis has significantly evolved over the past 3 decades, the traditional method of anterior release and fusion and staged in-situ posterior fusion posterior fusion with postoperative immobilization showed acceptable deformity correction and maintenance of the pulmonary function over the 34 years.
Lin, Tao; Shao, Wei; Zhang, Ke; Gao, Rui; Zhou, Xuhui
2018-03-01
To compare outcomes of anterior-only (AO), posterior-only (PO), and anteroposterior (AP) surgical approaches for treatment of dystrophic cervical kyphosis in patients with neurofibromatosis 1 (NF1). This retrospective observational study included 81 patients with dystrophic cervical kyphosis secondary to NF1. Length of kyphosis, duration of halo traction, Cobb angle, C2-7-sagittal vertical axis (SVA), T1 slope, Neck Disability Index score, and postoperative complications were evaluated before and, if possible, after each surgical approach. AP approach provided the best outcomes (average spinal Cobb angle was corrected from 61.2 ± 9.1° to 5.7 ± 3.2°, P < 0.05); there was no significant difference between AO and PO approaches (P > 0.05). With regard to cervical sagittal balance, AP approach had the most improvements of C2-7-SVA (mean C2-7-SVA was corrected from 3.2 ± 9.2 mm to 12.8 ± 2.6 mm, P < 0.05); the difference between AO and PO approaches was not significant (P > 0.05). T1 slope results were similar to C2-7-SVA. Neck Disability Index score of all patients improved significantly after surgery (P < 0.05); specifically, patients who had an AP approach constituted the largest portion of the satisfied patient group. Postoperative junctional kyphosis occurred in 11 patients (1 AP approach, 6 AO approach, 4 PO approach); these findings correlated with patients with ≤5 fused segments. AP approach surgery provided the best correction of dystrophic cervical kyphosis and sagittal balance for patients with NF1. Patients undergoing an AP approach were more satisfied with their outcomes. Junctional kyphosis can be prevented effectively using an AP approach in patients with >5 fused segments. Copyright © 2017 Elsevier Inc. All rights reserved.
Dreischarf, Marcel; Schmidt, Hendrik; Putzier, Michael; Zander, Thomas
2015-09-18
Total disc replacement has been introduced to overcome negative side effects of spinal fusion. The amount of iatrogenic distraction, preoperative disc height and implant positioning have been considered important for surgical success. However, their effect on the postoperative range of motion (RoM) and loading of the facets merits further discussion. A validated osteoligamentous finite element model of the lumbosacral spine was employed and extended with four additional models to account for different disc heights. An artificial disc with a fixed center of rotation (CoR) was implemented in L5-S1. In 4000 simulations, the influence of distraction and the CoR's location on the RoM, facet joint forces (FJFs) and facet capsule ligament forces (FCLFs) was investigated. Distraction substantially altered segmental kinematics in the sagittal plane by decreasing range of flexion (0.5° per 1mm of distraction), increasing range of extension (0.7°/mm) and slightly affecting complete sagittal RoM (0.2°/mm). The distraction already strongly increased the FCLFs during surgery (up to 230N) and in flexion (~12N/mm), with higher values in models with larger preoperative disc heights, and increased FJFs in extension. A more anterior implant location decreased the RoM in all planes. In most loading cases, a more posterior location of the implant's CoR increased the FJFs and FCLFs, whereas a more caudal location increased the FCLFs but decreased the FJFs. The results of this study may explain the worse clinical results in patients with overdistraction after TDR. The complete RoM in the sagittal plane appears to be insensitive to detecting surgery-related biomechanical changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
A kinematic model to assess spinal motion during walking.
Konz, Regina J; Fatone, Stefania; Stine, Rebecca L; Ganju, Aruna; Gard, Steven A; Ondra, Stephen L
2006-11-15
A 3-dimensional multi-segment kinematic spine model was developed for noninvasive analysis of spinal motion during walking. Preliminary data from able-bodied ambulators were collected and analyzed using the model. Neither the spine's role during walking nor the effect of surgical spinal stabilization on gait is fully understood. Typically, gait analysis models disregard the spine entirely or regard it as a single rigid structure. Data on regional spinal movements, in conjunction with lower limb data, associated with walking are scarce. KinTrak software (Motion Analysis Corp., Santa Rosa, CA) was used to create a biomechanical model for analysis of 3-dimensional regional spinal movements. Measuring known angles from a mechanical model and comparing them to the calculated angles validated the kinematic model. Spine motion data were collected from 10 able-bodied adults walking at 5 self-selected speeds. These results were compared to data reported in the literature. The uniaxial angles measured on the mechanical model were within 5 degrees of the calculated kinematic model angles, and the coupled angles were within 2 degrees. Regional spine kinematics from able-bodied subjects calculated with this model compared well to data reported by other authors. A multi-segment kinematic spine model has been developed and validated for analysis of spinal motion during walking. By understanding the spine's role during ambulation and the cause-and-effect relationship between spine motion and lower limb motion, preoperative planning may be augmented to restore normal alignment and balance with minimal negative effects on walking.
Hong, Jae-Young; Park, Jung-Ho; Hur, Chang-Yong; Hong, Suk-Joo; Modi, Hitesh N
2011-01-01
Background Detection of postoperative spinal cord level change can provide basic information about the spinal cord status, and electrophysiological studies regarding this point should be conducted in the future. Methods To determine the changes in the spinal cord level postoperatively and the possible associated factors, we prospectively studied 31 patients with scoliosis. All the patients underwent correction and posterior fusion using pedicle screws and rods between January 2008 and March 2009. The pre- and postoperative conus medullaris levels were determined by matching the axial magnetic resonance image to the sagittal scout image. The patients were divided according to the change in the postoperative conus medullaris level. The change group was defined as the patients who showed a change of more than one divided section in the vertebral column postoperatively, and the parameters of the change and non-change groups were compared. Results The mean pre- and postoperative Cobb's angle of the coronal curve was 76.80° ± 17.19° and 33.23° ± 14.39°, respectively. Eleven of 31 patients showed a lower conus medullaris level postoperatively. There were no differences in the pre- and postoperative magnitude of the coronal curve, lordosis and kyphosis between the groups. However, the postoperative degrees of correction of the coronal curve and lumbar lordosis were higher in the change group. There were also differences in the disease entities between the groups. A higher percentage of patients with Duchene muscular dystrophy had a change in level compared to that of the patients with cerebral palsy (83.3% vs. 45.5%, respectively). Conclusions The conus medullaris level changed postoperatively in the patients with severe scoliosis. Overall, the postoperative degree of correction of the coronal curve was higher in the change group than that in the non-change group. The degrees of correction of the coronal curve and lumbar lordosis were related to the spinal cord level change after scoliosis correction. PMID:21369475
Current Status of Adult Spinal Deformity
Youssef, J. A.; Orndorff, D. O.; Patty, C. A.; Scott, M. A.; Price, H. L.; Hamlin, L. F.; Williams, T. L.; Uribe, J. S.; Deviren, V.
2012-01-01
Purpose To review the current literature for the nonoperative and operative treatment for adult spinal deformity. Recent Findings With more than 11 million baby boomers joining the population of over 60 years of age in the United States, the incidence of lumbar deformity is greatly increasing. Recent literature suggests that a lack of evidence exists to support the effectiveness of nonoperative treatment for adult scoliosis. In regards to operative treatment, current literature reports a varying range of improved clinical outcomes, curve correction, and complication rates. The extension of fusion to S1 compared with L5 and lower thoracic levels compared with L1 remains a highly controversial topic among literature. Summary Most adult deformity patients never seek nonoperative or operative treatment. Of the few that seek treatment, many can benefit from nonoperative treatment. However, in selected patients who have failed nonoperative treatment and who are candidates for surgical intervention, the literature reflects positive outcomes related to surgical intervention as compared with nonoperative treatment despite varying associated ranges in morbidity and mortality rates. If nonoperative therapy fails in addressing a patient's complaints, then an appropriate surgical procedure that relieves neural compression, corrects excessive sagittal or coronal imbalance, and results in a solidly fused, pain-free spine is warranted. PMID:24436852
Del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C
2014-01-01
Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance.
del-Ama, Antonio J.; Gil-Agudo, Ángel; Pons, José L.; Moreno, Juan C.
2014-01-01
Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance. PMID:24860478
Nasto, Luigi A; Perez-Romera, Ana Belen; Shalabi, Saggah Tarek; Quraishi, Nasir A; Mehdian, Hossein
2016-04-01
Surgical correction of Scheuermann kyphosis (SK) is challenging and plagued by relatively high rates of proximal junctional kyphosis and failure (PJK and PJF). Normal sagittal alignment of the spine is determined by pelvic geometric parameters. How these parameters correlate with the risk of developing PJK in SK is not known. The study aimed to investigate the relationship between preoperative and postoperative spinopelvic alignment and occurrence of PJK and PJF. This is a retrospective observational cohort study. The sample included 37 patients who underwent posterior correction of SK from January 2006 to December 2012. The outcome measure was correlation analysis between preoperative and postoperative spinopelvic alignment parameters and the development of PJK over the course of the study period. Whole spine x-rays obtained before surgery, 3 months after surgery, and at the latest follow-up were analyzed. The following parameters were measured: thoracic kyphosis (TK), lumbar lordosis (LL), sagittal vertical axis (SVA), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). The development of PJK was considered the primary end point of the study. Patient population was split into a control and a PJK group; repeated-measures analysis of variance was used to assess group and time differences. Seven patients developed PJK over the study period. Although the severity of the preoperative deformity (TK) did not differ significantly between the two groups, preoperative PI was significantly higher in the PJK group (51.9°C±8.6°C vs. 42.7°C±8.8°C, p=.018). Postoperative correction of TK was similar between the two groups (39.3% and 41.2%, p=.678) and final LL did not differ as well (53.6°C±9.2°C vs. 51.3°C±11.5°C). However, because PJK patients had larger preoperative PI values, a significant deficit of LL was observed at final follow-up in this group compared with the control group (ΔLL -10.5°C±9.8°C vs. 0.6°C±10.5°C, p=.013). Scheuermann kyphosis patients who developed PJK appeared to have a significant postoperative deficit of LL (lumbopelvic mismatch). Lumbar lordosis decreases after surgery following correction of TK; therefore, TK correction should be planned according to preoperative PI values to avoid excessive reduction of LL in patients with higher PI values. Copyright © 2016 Elsevier Inc. All rights reserved.
Yao, L; Daly, W; Newland, B; Yao, S; Wang, W; Chen, B K K; Madigan, N; Windebank, A; Pandit, A
2013-12-01
Functionalized biomaterial scaffolds targeted at improving axonal regeneration by enhancing guided axonal growth provide a promising approach for the repair of spinal cord injury. Collagen neural conduits provide structural guidance for neural tissue regeneration, and in this study it is shown that these conduits can also act as a reservoir for sustained gene delivery. Either a G-luciferase marker gene or a neurotrophin-3-encoding gene, complexed to a non-viral, cyclized, PEGylated transfection vector, was loaded within a multichannel collagen conduit. The complexed genes were then released in a controlled fashion using a dual release system both in vitro and in vivo. For evaluation of their biological performance, the loaded conduits were implanted into the completely transected rat thoracic spinal cord (T8-T10). Aligned axon regeneration through the channels of conduits was observed one month post-surgery. The conduits delivering neurotrophin-3 polyplexes resulted in significantly increased neurotrophin-3 levels in the surrounding tissue and a statistically higher number of regenerated axons versus the control conduits (P<0.05). This study suggests that collagen neural conduits delivering a highly effective non-viral therapeutic gene may hold promise for repair of the injured spinal cord.
Effect of atelectasis changes on tissue mass and dose during lung radiotherapy.
Guy, Christopher L; Weiss, Elisabeth; Jan, Nuzhat; Reshko, Leonid B; Christensen, Gary E; Hugo, Geoffrey D
2016-11-01
To characterize mass and density changes of lung parenchyma in non-small cell lung cancer (NSCLC) patients following midtreatment resolution of atelectasis and to quantify the impact this large geometric change has on normal tissue dose. Baseline and midtreatment CT images and contours were obtained for 18 NSCLC patients with atelectasis. Patients were classified based on atelectasis volume reduction between the two scans as having either full, partial, or no resolution. Relative mass and density changes from baseline to midtreatment were calculated based on voxel intensity and volume for each lung lobe. Patients also had clinical treatment plans available which were used to assess changes in normal tissue dose constraints from baseline to midtreatment. The midtreatment image was rigidly aligned with the baseline scan in two ways: (1) bony anatomy and (2) carina. Treatment parameters (beam apertures, weights, angles, monitor units, etc.) were transferred to each image. Then, dose was recalculated. Typical IMRT dose constraints were evaluated on all images, and the changes from baseline to each midtreatment image were investigated. Atelectatic lobes experienced mean (stdev) mass changes of -2.8% (36.6%), -24.4% (33.0%), and -9.2% (17.5%) and density changes of -66.0% (6.4%), -25.6% (13.6%), and -17.0% (21.1%) for full, partial, and no resolution, respectively. Means (stdev) of dose changes to spinal cord D max , esophagus D mean , and lungs D mean were 0.67 (2.99), 0.99 (2.69), and 0.50 Gy (2.05 Gy), respectively, for bone alignment and 0.14 (1.80), 0.77 (2.95), and 0.06 Gy (1.71 Gy) for carina alignment. Dose increases with bone alignment up to 10.93, 7.92, and 5.69 Gy were found for maximum spinal cord, mean esophagus, and mean lung doses, respectively, with carina alignment yielding similar values. 44% and 22% of patients had at least one metric change by at least 5 Gy (dose metrics) or 5% (volume metrics) for bone and carina alignments, respectively. Investigation of GTV coverage showed mean (stdev) changes in V Rx , D max , and D min of -5.5% (13.5%), 2.5% (4.2%), and 0.8% (8.9%), respectively, for bone alignment with similar results for carina alignment. Resolution of atelectasis caused mass and density decreases, on average, and introduced substantial changes in normal tissue dose metrics in a subset of the patient cohort.
Effect of atelectasis changes on tissue mass and dose during lung radiotherapy
Guy, Christopher L.; Weiss, Elisabeth; Jan, Nuzhat; Reshko, Leonid B.; Christensen, Gary E.; Hugo, Geoffrey D.
2016-01-01
Purpose: To characterize mass and density changes of lung parenchyma in non-small cell lung cancer (NSCLC) patients following midtreatment resolution of atelectasis and to quantify the impact this large geometric change has on normal tissue dose. Methods: Baseline and midtreatment CT images and contours were obtained for 18 NSCLC patients with atelectasis. Patients were classified based on atelectasis volume reduction between the two scans as having either full, partial, or no resolution. Relative mass and density changes from baseline to midtreatment were calculated based on voxel intensity and volume for each lung lobe. Patients also had clinical treatment plans available which were used to assess changes in normal tissue dose constraints from baseline to midtreatment. The midtreatment image was rigidly aligned with the baseline scan in two ways: (1) bony anatomy and (2) carina. Treatment parameters (beam apertures, weights, angles, monitor units, etc.) were transferred to each image. Then, dose was recalculated. Typical IMRT dose constraints were evaluated on all images, and the changes from baseline to each midtreatment image were investigated. Results: Atelectatic lobes experienced mean (stdev) mass changes of −2.8% (36.6%), −24.4% (33.0%), and −9.2% (17.5%) and density changes of −66.0% (6.4%), −25.6% (13.6%), and −17.0% (21.1%) for full, partial, and no resolution, respectively. Means (stdev) of dose changes to spinal cord Dmax, esophagus Dmean, and lungs Dmean were 0.67 (2.99), 0.99 (2.69), and 0.50 Gy (2.05 Gy), respectively, for bone alignment and 0.14 (1.80), 0.77 (2.95), and 0.06 Gy (1.71 Gy) for carina alignment. Dose increases with bone alignment up to 10.93, 7.92, and 5.69 Gy were found for maximum spinal cord, mean esophagus, and mean lung doses, respectively, with carina alignment yielding similar values. 44% and 22% of patients had at least one metric change by at least 5 Gy (dose metrics) or 5% (volume metrics) for bone and carina alignments, respectively. Investigation of GTV coverage showed mean (stdev) changes in VRx, Dmax, and Dmin of −5.5% (13.5%), 2.5% (4.2%), and 0.8% (8.9%), respectively, for bone alignment with similar results for carina alignment. Conclusions: Resolution of atelectasis caused mass and density decreases, on average, and introduced substantial changes in normal tissue dose metrics in a subset of the patient cohort. PMID:27806593
Schuster, Sergio; Biagini, Roberto; Casadei, Roberto; De Paolis, Massimiliano; Bertoni, Franco; Boriani, Stefano; Mercuri, Mario
2007-01-01
We report a case of ABC in a child where, after resection of the posterior spinal column of L1, we did a biological reconstruction using a posterior tension band with a segment of fascia lata allograft in tension between T12 and L2. After the long term follow up, X-ray and MRI controls showed a satisfactory alignment of the spine and no local recurrence. The patient now has no sign of spinal instability or deviation, with no kind of discomfort or pain, and has a normal life. In our experience this biological tension band interferes minimally with the growth of the spine, and has a less number of complications in comparison with other more aggressive methods and so is a good option for restoring the stability in young patients with benign spinal tumors that arises on the posterior column without having any kind of potential deviations. PMID:17426986
Walker, Tilman; Heinemann, Pascal; Bruckner, Thomas; Streit, Marcus R; Kinkel, Stefan; Gotterbarm, Tobias
2017-07-01
The Oxford unicompartmental knee arthroplasty (OUKA) has been proven to be an effective treatment for anteromedial osteoarthritis of the knee joint. New instrumentation has been introduced to improve the reproducibility of implant positioning and to minimize bone loss during tibial resection (Oxford Microplasty; Zimmer Biomet, Warsaw, Indiana, USA). To assess the effect of the new instrumentation, we retrospectively evaluated the postoperative radiographs and surgical records of 300 OUKAs in three consecutive cohorts of patients. The first cohort consists of the first 100 minimal invasive implantations of the OUKA using the conventional phase III instrumentation, the second cohort consists of the 100 most recent minimal invasive OUKA with the conventional phase III instrumentation and the third cohort consists of the first 100 minimal invasive OUKA using the new Oxford Microplasty instrumentation. Mean bearing thickness was statistically significant and lower in OUKA with use of the updated instrumentation than with the conventional instrumentation (p = 0.01 and p = 0.04). Additionally, statistically significant and more femoral components were aligned within the accepted range of tolerance in both the coronal and the sagittal plane with use of the updated instrumentation compared to the conventional phase III instrumentation in group A (p = 0.029 and p = 0.038) and in the sagittal plane with use of the updated instrumentation compared to the conventional phase III instrumentation in group B (p = 0.002). The new modified instrumentation seems to be an effective tool to reduce the risk of malalignment of the femoral component in the coronal and in the sagittal plane compared to the conventional phase III instrumentation. Furthermore, the instrumentation is also effective in determining an adequate level of tibial resection and thus avoiding unnecessary bone loss.
Yazdani, Farzaneh; Razeghi, Mohsen; Karimi, Mohammad Taghi; Raeisi Shahraki, Hadi; Salimi Bani, Milad
2018-05-01
Despite the theoretical link between foot hyperpronation and biomechanical dysfunction of the pelvis, the literature lacks evidence that confirms this assumption in truly hyperpronated feet subjects during gait. Changes in the kinematic pattern of the pelvic segment were assessed in 15 persons with hyperpronated feet and compared to a control group of 15 persons with normally aligned feet during the stance phase of gait based on biomechanical musculoskeletal simulation. Kinematic and kinetic data were collected while participants walked at a comfortable self-selected speed. A generic OpenSim musculoskeletal model with 23 degrees of freedom and 92 muscles was scaled for each participant. OpenSim inverse kinematic analysis was applied to calculate segment angles in the sagittal, frontal and horizontal planes. Principal component analysis was employed as a data reduction technique, as well as a computational tool to obtain principal component scores. Independent-sample t-test was used to detect group differences. The difference between groups in scores for the first principal component in the sagittal plane was statistically significant (p = 0.01; effect size = 1.06), but differences between principal component scores in the frontal and horizontal planes were not significant. The hyperpronation group had greater anterior pelvic tilt during 20%-80% of the stance phase. In conclusion, in persons with hyperpronation we studied the role of the pelvic segment was mainly to maintain postural balance in the sagittal plane by increasing anterior pelvic inclination. Since anterior pelvic tilt may be associated with low back symptoms, the evaluation of foot posture should be considered in assessing the patients with low back and pelvic dysfunction.
Directional constraint of endpoint force emerges from hindlimb anatomy.
Bunderson, Nathan E; McKay, J Lucas; Ting, Lena H; Burkholder, Thomas J
2010-06-15
Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force constraint phenomenon may result from the anatomical arrangement of the limb.
Azevedo, Daniel Camara; Paiva, Edson Barreto; Lopes, Alexia Moura Abuhid; Santos, Henrique de Oliveira; Carneiro, Ricardo Luiz; Rodrigues, André Soares; de Andrade, Marco Antonio Percope; Novais, Eduardo N; Van Dillen, Linda R
2016-11-01
Study Design Cross-sectional, case-control design. Background Pelvic movement has been considered a possible discriminating parameter associated with femoroacetabular impingement (FAI) symptom onset. Decreased pelvic rotation has been found during squatting in people with FAI when compared to people with healthy hips. However, it is possible that changes in pelvic movement may occur in other hip conditions because of pain and may not be specific to FAI. Objectives To compare sagittal pelvic rotation during hip flexion and in sitting between people with FAI and people with other symptomatic hip conditions. Methods Thirty people with symptomatic FAI, 30 people with other symptomatic hip conditions, and 20 people with healthy hips participated in the study. Sagittal pelvic rotation was calculated based on measures of pelvic alignment in standing, hip flexion to 45° and 90°, and sitting. Results There were significant differences in sagittal pelvic rotation among the 3 groups in all conditions (P<.05). Post hoc analyses revealed that participants in the symptomatic FAI group had less pelvic rotation during hip flexion to 45° and 90° compared to participants in the other symptomatic hip conditions group and the hip-healthy group (mean difference, 1.2°-1.9°). In sitting, participants in the other symptomatic hip conditions group had less posterior pelvic rotation compared to those in the hip-healthy group (mean difference, 3.9°). Conclusion People with symptomatic FAI have less posterior pelvic rotation during hip flexion when compared to people with other symptomatic hip conditions and those with healthy hips. Level of Evidence Diagnosis, level 4. J Orthop Sports Phys Ther 2016;46(11):957-964. Epub 29 Sep 2016. doi:10.2519/jospt.2016.6713.
Directional constraint of endpoint force emerges from hindlimb anatomy
Bunderson, Nathan E.; McKay, J. Lucas; Ting, Lena H.; Burkholder, Thomas J.
2010-01-01
Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force constraint phenomenon may result from the anatomical arrangement of the limb. PMID:20511528
Bao, Hongda; He, Shouyu; Liu, Zhen; Zhu, Zezhang; Qiu, Yong; Zhu, Feng
2015-03-01
A retrospective radiographical study. To compare compensatory behavior of coronal and sagittal alignment after pedicle subtraction osteotomy (PSO) and Smith-Petersen osteotomy (SPO) for degenerative kyphoscoliosis. There was a paucity of literature paying attention to the postoperative imbalance after PSO or SPO and natural evolution of the imbalance. A retrospective study was performed on 68 consecutive patients with degenerative kyphoscoliosis treated by lumbar PSO (25 patients) or SPO (43 patients) procedures at a single institution. Long-cassette standing radiographs were taken preoperatively, postoperatively, and at the last follow-up and radiographical parameters were measured. The lower instrumented vertebral level and level of osteotomy were compared between the patients with and without improvement. Negative sagittal vertical axis (SVA) was observed in the PSO group postoperatively, implying an overcorrection of SVA. This negative SVA improved spontaneously during follow-up (P < 0.05). Coronal balance was found to worsen immediately postoperatively in the SPO group (P < 0.05). At the last follow-up, spontaneous improvement was observed in 15 patients and the average coronal balance decreased to 16.35 mm. For the 15 patients with improved coronal balance, fusion at L5 or above was more common compared with the 11 patients with persisted postoperative imbalance (P = 0.027), whereas no difference in term of levels of osteotomy was found (P > 0.05). The overcorrection of SVA is more often seen in the PSO group. The coronal imbalance is more likely to occur in the SPO group. The postoperative sagittal imbalance often spontaneously improves with time. Lower instrumented vertebra at S1 or with pelvic fixation should be regarded as potential risk factors for persistent coronal imbalance in patients with SPO. 3.
Galla, Frederick; Wähnert, Dirk; Liljenqvist, Ulf
2018-04-01
A balanced ratio of the main parameters of lumbar lordosis (LL) and pelvic incidence (PI) has high clinical relevance. A postoperative mismatch of LL and PI has been described in the literature to be associated with an inferior clinical outcome and higher postoperative revision rates. The aim of this retrospective, radiological study is to evaluate the magnitude of relordosing in mono-/bisegmental TLIF spondylodesis affecting the spino-pelvic alignment and the main contributing factors. 164 patients (pat.) underwent monosegmental (n = 115, G1) and bisegmental (n = 49, G2) TLIF spondylodesis, respectively, for different indications in 2016 in our hospital. Pelvic incidence, lumbar lordosis (preop., postop., 3 months postop.), implanted cage sizes, and the use of additional Smith-Petersen osteotomies were analysed retrospectively. Patients were divided into three groups depending on match of LL/PI (PI-LL < 10° green, PI-LL = 10-20° yellow, PI-LL > 20° red). Furthermore, a differentiation was made between surgeons with more than or less than 10 years of spinal surgery experience, respectively. 29.6% of pat. in G1 and 16.3% in G2 showed a highly pronounced preoperative spino-pelvic mismatch (red). A high grade of mismatch (yellow) between LL/PI was seen in 29.6% in G1 and in 38.8% in G2. The remaining patients already had a balanced ratio of LL/PI (green). Through relordosing TLIF the LL could be corrected significantly (p < 0.05). Therefore, the number of patients with a balanced sagittal alignment (green) increased from 40.9% preop. to 70.4% postoperative in G1 and from 44.9 to 85.7% in G2 (p < 0.05). The number of pat. with highly pronounced preoperative mismatch (red) could be lowered in G1 from 29.6 to 13.9% and in G2 from 16.3 to 2% postoperative (p < 0.05). In G1, the preoperative LL could be corrected from 46.3° to 53.8° (yellow) and 35.7° to 45.8° (red), while in G2, a correction was possible from 43.4° to 51.5° (yellow) and 36.6° to 50.1° (red) (p < 0.05). No significant difference of segmental/complete LL was found between radiologic measurement immediately postoperative and at the 3-month follow-up. In monosegmental fusion higher cages sizes lead to a better match of LL/PI (p < 0.05). The specific cage lordosis (5° vs. 10°) had no influence on the extent of relordosing. Experienced surgeons had significant higher postoperative matches of LL/PI (p < 0.05) and accomplished more osteotomies (p < 0.05). This retrospective study demonstrates that significant relordosing and, therefore, correction of the spino-pelvic alignment are possible with mono-/bisegmental TLIF spondylodesis. Positive influence of higher cage sizes and surgeon's experience was shown. We conclude that the ratio of LL/PI should be taken into account preoperatively in lumbar fusion surgery when planning mono-/bisegmental TLIF spondylodesis to optimize spino-pelvic alignment. These slides can be retrieved under Electronic Supplementary Material.
Fu, Huichao; Wang, Jiaxing; Zhou, Shenyuan; Cheng, Tao; Zhang, Wen; Wang, Qi; Zhang, Xianlong
2015-11-01
There is a rising interest in the use of patient-specific instrumentation (PSI) during total knee arthroplasty (TKA). The goal of this meta-analysis was to compare PSI with conventional instrumentation (CI) in patients undergoing TKA. A literature search was performed in PubMed, Embase, Springer, Ovid, China National Knowledge Infrastructure, and the Cochrane Library. A total of 10 randomized controlled studies involving 837 knees comparing outcomes of PSI TKAs with CI TKAs were included in the present analysis. Outcomes of interest included component alignment, surgical time, blood loss, and hospital stay. The results presented no significant differences between the two instrumentations in terms of restoring a neutral mechanical axis and femoral component placement. However, their differences have been noted regarding the alignment of the tibial component in coronal and sagittal planes. Also, 3 min less surgical time was used in PSI patients. Based on these findings, PSI appeared not to be superior to CI in terms of the post-operative mechanical axis of the limb or femoral component placement. Despite a statistical difference for operative duration, the benefit of a small reduction in surgical time with PSI is clinically irrelevant. Therapeutic study (systematic review and meta-analysis), Level I.
Postimplant left ventricular assist device fit analysis using three-dimensional reconstruction.
Truong, Thang V; Stanfield, J Ryan; Chaffin, John S; Elkins, C Craig; Kanaly, Paul J; Horstmanshof, Douglas A; Long, James W; Snyder, Trevor A
2013-01-01
Left ventricular assist devices (LVADs) are blood pumps that augment the function of the failing heart to improve perfusion, resulting in improved survival. For LVADs to effectively unload the left ventricle, the inflow cannula (IC) should be unobstructed and ideally aligned with the heart's mitral valve (MV). We examined IC orientation deviation from a hypothesized conventional angle (45° right-posterior) and the approximate angle for direct IC-MV alignment in many patients. Three-dimensional anatomic models were created from computed tomography scans for 24 LVAD-implanted patients, and angles were measured between the IC and the apical z-axis in both the coronal and the sagittal planes. Common surgical IC angulation was found to be 22 ± 15° rightward and 21 ± 12° posterior from the apical z-axis; 38% (n = 9) of patients fell in this range. Direct IC-MV angulation was found to be 34 ± 8° rightward and 15 ± 7° posterior; only 8% (n = 2) of patients fell in this range. Rightward deviation toward ventricular septal wall and anterior deviation toward LV anterior freewall are associated with mortalities more so than leftward and posterior deviation. In conclusion, anatomic reconstruction may be a useful preoperative tool to obtain general population and patient-specific alignment for optimal LVAD implantation.
Single-operator real-time ultrasound-guided spinal injection using SonixGPS™: a case series.
Brinkmann, Silke; Tang, Raymond; Sawka, Andrew; Vaghadia, Himat
2013-09-01
The SonixGPS™ is a novel needle tracking system that has recently been approved in Canada for ultrasound-guided needle interventions. It allows optimization of needle-beam alignment by providing a real-time display of current and predicted needle tip position. Currently, there is limited evidence on the effectiveness of this technique for performance of real-time spinal anesthesia. This case series reports performance of the SonixGPS system for real-time ultrasound-guided spinal anesthesia in elective patients scheduled for joint arthroplasty. In this single-centre case series, 20 American Society of Anesthesiologists' class I-II patients scheduled for lower limb joint arthroplasty were recruited to undergo real-time ultrasound-guided spinal anesthesia with the SonixGPS after written informed consent. The primary outcome for this clinical cases series was the success rate of spinal anesthesia, and the main secondary outcome was time required to perform spinal anesthesia. Successful spinal anesthesia for joint arthroplasty was achieved in 18/20 patients, and 17 of these required only a single skin puncture. In 7/20 (35%) patients, dural puncture was achieved on the first needle pass, and in 11/20 (55%) patients, dural puncture was achieved with two or three needle redirections. Median (range) time taken to perform the block was 8 (5-14) min. The study procedure was aborted in two cases because our clinical protocol dictated using a standard approach if spinal anesthesia was unsuccessful after three ultrasound-guided insertion attempts. These two cases were classified as failures. No complications, including paresthesia, were observed during the procedure. All patients with successful spinal anesthesia found the technique acceptable and were willing to undergo a repeat procedure if deemed necessary. This case series shows that real-time ultrasound-guided spinal anesthesia with the SonixGPS system is possible within an acceptable time frame. It proved effective with a low rate of failure and a low rate of complications. Our clinical experience suggests that a randomized trial is warranted to compare the SonixGPS with a standard block technique.
Griffin, John F; Archambault, Nicholas S; Mankin, Joseph M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Kerwin, Sharon C
2013-11-15
Laboratory investigation, ex vivo. Postoperative complications are common after spinal implantation procedures, and magnetic resonance imaging (MRI) would be the ideal modality to image these patients. Unfortunately, the implants cause artifacts that can render MRI nondiagnostic. The WARP-turbo spin echo (TSE) sequence has been developed to mitigate artifacts caused by metal. The objective of this investigation was to evaluate the performance of the WARP-TSE sequence in canine cadaver specimens after implantation with metallic vertebral implants. Magnetic field strength, implant type, and MRI acquisition technique all play a role in the severity of susceptibility artifacts. The WARP-TSE sequence uses increased bandwidth, view angle tilting, and SEMAC (slice-encoding metal artifact correction) to correct for susceptibility artifact. The WARP-TSE technique has outperformed conventional techniques in patients, after total hip arthroplasty. However, published reports of its application in subjects with vertebral column implants are lacking. Ex vivo anterior stabilization of the atlantoaxial joint was performed on 6 adult small breed (<8 kg) cadaver dogs using stainless steel screws and polymethylmethacrylate. Axial and sagittal T2-weighted and short tau inversion recovery MRI was performed using conventional pulse sequences and WARP-TSE sequences at 3 T. Images were assessed qualitatively and quantitatively. Images made with the WARP-TSE sequence had smaller susceptibility artifacts and superior spinal cord margin depiction. WARP-TSE sequences reduced the length over which susceptibility artifacts caused spinal cord margin depiction interference by 24.9% to 71.5% with scan times of approximately 12 to 16 minutes. The WARP-TSE sequence is a viable option for evaluating the vertebral column after implantation with stainless steel implants. N/A.
Hocquelet, Arnaud; Cornelis, François; Jirot, Anna; Castaings, Laurent; de Sèze, Mathieu; Hauger, Olivier
2016-10-01
The aim of this study is to compare the accuracy and reliability of spinal curvatures and vertebral rotation data based on patient-specific 3D models created by 3D imaging system or by bi-planar imaging coupled with Moiré-Fringe projections. Sixty-two consecutive patients from a single institution were prospectively included. For each patient, frontal and sagittal calibrated low-dose bi-planar X-rays were performed and coupled simultaneously with an optical Moiré back surface-based technology. The 3D reconstructions of spine and pelvis were performed independently by one radiologist and one technician in radiology using two different semi-automatic methods using 3D radio-imaging system (method 1) or bi-planar imaging coupled with Moiré projections (method 2). Both methods were compared using Bland-Altman analysis, and reliability using intraclass correlation coefficient (ICC). ICC showed good to very good agreement. Between the two techniques, the maximum 95 % prediction limits was -4.9° degrees for the measurements of spinal coronal curves and less than 5° for other parameters. Inter-rater reliability was excellent for all parameters across both methods, except for axial rotation with method 2 for which ICC was fair. Method 1 was faster for reconstruction time than method 2 for both readers (13.4 vs. 20.7 min and 10.6 vs. 13.9 min; p = 0.0001). While a lower accuracy was observed for the evaluation of the axial rotation, bi-planar imaging coupled with Moiré-Fringe projections may be an accurate and reliable tool to perform 3D reconstructions of the spine and pelvis.
Kinetic DTI of the cervical spine: diffusivity changes in healthy subjects.
Kuhn, Félix P; Feydy, Antoine; Launay, Nathalie; Lefevre-Colau, Marie-Martine; Poiraudeau, Serge; Laporte, Sébastien; Maier, Marc A; Lindberg, Pavel
2016-09-01
The study aims to assess the influence of neck extension on water diffusivity within the cervical spinal cord. IRB approved the study in 22 healthy volunteers. All subjects underwent anatomical MR and diffusion tensor imaging (DTI) at 1.5 T. The cervical cord was imaged in neutral (standard) position and extension. Segmental vertebral rotations were analyzed on sagittal T2-weighted images using the SpineView® software. Spinal cord diffusivity was measured in cross-sectional regions of interests at multiple levels (C1-C5). As a result of non-adapted coil geometry for spinal extension, 10 subjects had to be excluded. Image quality of the remaining 12 subjects was good without any deteriorating artifacts. Quantitative measurements of vertebral rotation angles and diffusion parameters showed good intra-rater reliability (ICC = 0.84-0.99). DTI during neck extension revealed significantly decreased fractional anisotropy (FA) and increased radial diffusivity (RD) at the C3 level and increased apparent diffusion coefficients (ADC) at the C3 and C4 levels (p < 0.01 Bonferroni corrected). The C3/C4 level corresponded to the maximal absolute change in segmental vertebral rotation between the two positions. The increase in RD correlated positively with the degree of global extension, i.e., the summed vertebral rotation angle between C1 and C5 (R = 0.77, p = 0.006). Our preliminary results suggest that DTI can quantify changes in water diffusivity during cervical spine extension. The maximal differences in segmental vertebral rotation corresponded to the levels with significant changes in diffusivity (C3/C4). Consequently, kinetic DTI measurements may open new perspectives in the assessment of neural tissue under biomechanical constraints.
Sundseth, Jarle; Jacobsen, Eva A; Kolstad, Frode; Nygaard, Oystein P; Zwart, John A; Hol, Per K
2013-10-01
Cervical disc prostheses induce significant amount of artifact in magnetic resonance imaging which may complicate radiologic follow-up after surgery. The purpose of this study was to investigate as to what extent the artifact, induced by the frequently used Discover(®) cervical disc prosthesis, impedes interpretation of the MR images at operated and adjacent levels in 1.5 and 3 Tesla MR. Ten subsequent patients were investigated in both 1.5 and 3 Tesla MR with standard image sequences one year following anterior cervical discectomy with arthroplasty. Two neuroradiologists evaluated the images by consensus. Emphasis was made on signal changes in medulla at all levels and visualization of root canals at operated and adjacent levels. A "blur artifact ratio" was calculated and defined as the height of the artifact on T1 sagittal images related to the operated level. The artifacts induced in 1.5 and 3 Tesla MR were of entirely different character and evaluation of the spinal cord at operated level was impossible in both magnets. Artifacts also made the root canals difficult to assess at operated level and more pronounced in the 3 Tesla MR. At the adjacent levels however, the spinal cord and root canals were completely visualized in all patients. The "blur artifact" induced at operated level was also more pronounced in the 3 Tesla MR. The artifact induced by the Discover(®) titanium disc prosthesis in both 1.5 and 3 Tesla MR, makes interpretation of the spinal cord impossible and visualization of the root canals difficult at operated level. Adjusting the MR sequences to produce the least amount of artifact is important.
Lee, Dong Ryul; Lee, Nam Gi; Cha, Hyun Jung; Yun Sung, O; You, Sung Joshua Hyun; Oh, Jin Hwan; Bang, Hyo Seong
2011-01-01
This case study was conducted to highlight the clinical and radiological features of a patient with progressive neuromuscular scoliosis before and after robo-horseback riding therapy (HBRT). A clinical, laboratory, and radiological analysis of a single case. An 11-year-old child, dignosed right thoracolumbar neuromuscular scoliosis secondary to cerebral palsy. The child received a 5-week course of robo-HBRT, comprising of 60-minute periods a day, five times a week. Postural alignment was determined by Cobb's method. A real-time magnetic resonance imaging (MRI) was performed to determine the robo-HBRT-induced changes in cross-sectional area (CSA) of bilateral thoracic (T2) and lumbar (L2) paraspinalis. Clinical tests including the standard Gross Motor Function Measure (GMFM) and manual muscle testing (MMT) with the Lafayette Manual Muscle Tester were used to compare the intervention-related changes in motor performance and power. The surface EMG was also used to examine therapy-induced changes in muscle activity amplitude for bilateral T2 and L2 paraspinalis and rectus abdominis muscles. Clinical motor and strength scores increased after the intervention. Radiographic Cobb's angle, MRI, and electromyographic amplitude data demonstrated notably enhanced spinal alignment and muscle fiber CSA and symmetry, respectively. This is the first study to provide evidence of the therapeutic efficacy of a novel form of robo-HBRT on motor function and associated structural and motor control improvements, thus suggesting a method of augmenting therapy in neuromuscular scoliosis.
Uribe, Juan S; Myhre, Sue Lynn; Youssef, Jim A
2016-04-01
A literature review. The purpose of this study was to review lumbar segmental and regional alignment changes following treatment with a variety of minimally invasive surgery (MIS) interbody fusion procedures for short-segment, degenerative conditions. An increasing number of lumbar fusions are being performed with minimally invasive exposures, despite a perception that minimally invasive lumbar interbody fusion procedures are unable to affect segmental and regional lordosis. Through a MEDLINE and Google Scholar search, a total of 23 articles were identified that reported alignment following minimally invasive lumbar fusion for degenerative (nondeformity) lumbar spinal conditions to examine aggregate changes in postoperative alignment. Of the 23 studies identified, 28 study cohorts were included in the analysis. Procedural cohorts included MIS ALIF (two), extreme lateral interbody fusion (XLIF) (16), and MIS posterior/transforaminal lumbar interbody fusion (P/TLIF) (11). Across 19 study cohorts and 720 patients, weighted average of lumbar lordosis preoperatively for all procedures was 43.5° (range 28.4°-52.5°) and increased 3.4° (9%) (range -2° to 7.4°) postoperatively (P < 0.001). Segmental lordosis increased, on average, by 4° from a weighted average of 8.3° preoperatively (range -0.8° to 15.8°) to 11.2° at postoperative time points (range -0.2° to 22.8°) (P < 0.001) in 1182 patient from 24 study cohorts. Simple linear regression revealed a significant relationship between preoperative lumbar lordosis and change in lumbar lordosis (r = 0.413; P = 0.003), wherein lower preoperative lumbar lordosis predicted a greater increase in postoperative lumbar lordosis. Significant gains in both weighted average lumbar lordosis and segmental lordosis were seen following MIS interbody fusion. None of the segmental lordosis cohorts and only two of the 19 lumbar lordosis cohorts showed decreases in lordosis postoperatively. These results suggest that MIS approaches are able to impact regional and local segmental alignment and that preoperative patient factors can impact the extent of correction gained (preserving vs. restoring alignment). 4.
Iglesias-Linares, Alejandro; Sonnenberg, Boris; Solano, Beatriz; Yañez-Vico, Rosa-Maria; Solano, Enrique; Lindauer, Steven J; Flores-Mir, Carlos
2017-01-01
To determine whether orthodontic treatment with removable aligners vs fixed orthodontic appliances is associated with a different frequency of orthodontically induced external apical root resorption (OIEARR) when genetic, radiographic, and clinical factors are accounted for. Three hundred seventy-two orthodontic patients treated with removable aligners (Invisalign) or fixed appliances were genetically screened for interleukin 1B gene (IL1B) (rs1143634), interleukin 1 receptor antagonist gene (IL1RN) (rs419598), and osteopontin gene (SPP1) (rs9138/rs11730582). Twelve clinical variables, potentially associated with OIEARR, were also considered. Subjects were divided according to the presence of radiographically determined OIEARR (>2 mm). The association between OIEARR and appliance type, and radiographic, clinical and genetic factors, was assessed using backward stepwise conditional logistic regression. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported. Reliability of the methods was adequate. Clinical case complexity (American Board of Orthodontics [ABO] Discrepancy Index) (OR: 1.032; 95% CI: 1.005-1.061; P = .021) and extent of incisor apical displacement in the sagittal plane (OR: 1.478; 95% CI: 1.285-1.699; P = .001) were associated with an increased OIEARR risk. After adjusting for associations between clinical/radiographic/genetic factors, there were no statistically significant differences with respect to OIEARR or type of orthodontic appliance used, whether removable aligners or fixed appliances (OR: 1.662; 95% CI: 0.945-2.924; P = .078). Only subjects homozygous for the T allele of IL1RN (rs419598) were more prone to OIEARR during orthodontic treatment (OR: 3.121; CI: 1.93-5.03; P < .001). A similar OIEARR predisposition was identified using either removable aligners (Invisalign) or fixed appliances.
Hu, Jun; Ji, Ming-liang; Qian, Bang-ping; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang; Jiang, Jun
2014-11-01
A retrospective radiographical study. To construct a predictive model for pelvic tilt (PT) based on the sacrofemoral-pubic (SFP) angle in patients with thoracolumbar kyphosis secondary to ankylosing spondylitis (or AS). PT is a key pelvic parameter in the regulation of spine sagittal alignment that can be used to plan the appropriate osteotomy angle in patients with AS with thoracolumbar kyphosis. However, it could be difficult to measure PT in patients with femoral heads poorly visualized on lateral radiographs. Previous studies showed that the SFP angle could be used to evaluate PT in adult patients with scoliosis. However, this method has not been validated in patients with AS. A total of 115 patients with AS with thoracolumbar kyphosis were included. Full-length anteroposterior and lateral spine radiographs were all available, with spinal and pelvic anatomical landmarks clearly identified. PT, SFP angle, and global kyphosis were measured. The patients were randomly divided into group A (n=65) and group B (n=50). In group A, the predictive model for PT was constructed by the results of the linear regression analysis. In group B, the predictive ability and accuracy of the predictive model were investigated. In group A, the Pearson correlation analysis revealed a strong correlation between the SFP angle and PT (r=0.852; P<0.001). The predictive model for PT was constructed as PT=72.3-0.82×(SFP angle). In group B, PT was predicted by the model with a mean error of 4.6° (SD=4.5°) with a predictive value of 78%. PT can be accurately predicted by the SFP angle using the current model: PT=72.3-0.82×(SFP angle), when the femur heads are poorly visualized on lateral radiographs in patients with AS with thoracolumbar kyphosis. 4.
Shi, Sheng; Zheng, Shuang; Li, Xin-Feng; Yang, Li-Li; Liu, Zu-De; Yuan, Wen
2016-01-01
Cervical disc arthroplasty (CDA) with Discover prosthesis or anterior cervical discectomy and fusion (ACDF) with Zero-P cage has been widely used in the treatment of cervical spondylotic myelopathy (CSM). However, little is known about the comparison of the 2 zero-profile implants in the treatment of single-level CSM. The aim was to compare the clinical outcomes and radiographic parameters of CDA with Discover prosthesis and ACDF with Zero-P cage for the treatment of single-level CSM. A total of 128 consecutive patients who underwent 1-level CDA with Discover prosthesis or ACDF with Zero-P cage for single-level CSM between September 2009 and December 2012 were included in this study. Clinical outcomes were evaluated using the Japanese Orthopaedic Association (JOA) score and Neck Disability Index (NDI). For radiographic assessment, the overall sagittal alignment (OSA), functional spinal unit (FSU) angle, and range of motion (ROM) at the index and adjacent levels were measured before and after surgery. Additionally, the complications were also recorded. Both treatments significantly improved all clinical parameters (P < 0.05), without statistically relevant differences between the 2 groups. The OSA and FSU angle increased significantly in both groups (P <0.05). Compared with Zero-P group, ROMs at the index levels were well maintained in the Discover group (P < 0.05). However, there were no statistical differences in the ROMs of adjacent levels between the 2 groups (P > 0.05). Besides, no significant differences existed in dysphagia, subsidence, or adjacent disc degeneration between the 2 groups (P > 0.05). However, significant differences occurred in prosthesis migration in CDA group. The results of this study showed that clinical outcomes and radiographic parameters were satisfactory and comparable with the 2 techniques. However, more attention to prosthesis migration of artificial cervical disc should be paid in the postoperative early-term follow-up.
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Paloski, W. H. (Principal Investigator)
1996-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.
Merfeld, D M
1996-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.
Sankarasubramanian, Vishwanath; Buitenweg, Jan R; Holsheimer, Jan; Veltink, Peter H
2013-03-01
In spinal cord stimulation for low-back pain, the use of electrode arrays with both low-power requirements and selective activation of target dorsal column (DC) fibers is desired. The aligned transverse tripolar lead configuration offers the best DC selectivity. Electrode alignment of the same configuration using 3 parallel percutaneous leads is possible, but compromised by longitudinal migration, resulting in loss of DC selectivity. This loss might be repaired by using the adjacent anodal contacts on the lateral leads. To investigate if stimulation using adjacent anodal contacts on the lateral percutaneous leads of a staggered transverse tripole can restore DC selectivity. Staggered transverse tripoles with quadripolar lateral anodes were modeled on the low-thoracic vertebral region (T10-T12) of the spinal cord using (a) percutaneous lead with staggered quadripolar lateral anodal configuration (PERC QD) and (b) laminotomy lead with staggered quadripolar lateral anodal configuration (LAM QD), of the same contact dimensions. The commercially available LAM 565 surgical lead with 16 widely spaced contacts was also modeled. For comparison with PERC QD, staggered transverse tripoles with dual lateral anodes were modeled by using percutaneous lead with staggered dual lateral anodal configuration (PERC ST). The PERC QD improved the depth of DC penetration and enabled selective recruitment of DCs in comparison with PERC ST. Mediolateral selectivity of DCs could not be achieved with the LAM 565. Stimulation using PERC QD improves anodal shielding of dorsal roots and restores DC selectivity. Based on our modeling study, we hypothesize that, in clinical practice, LAM QD can provide an improved performance compared with the PERC QD. Our model also predicts that the same configuration realized on the commercial LAM 565 surgical lead with widely spaced contacts cannot selectively stimulate DCs essential in treating low-back pain.
Improved astigmatic focus error detection method
NASA Technical Reports Server (NTRS)
Bernacki, Bruce E.
1992-01-01
All easy-to-implement focus- and track-error detection methods presently used in magneto-optical (MO) disk drives using pre-grooved media suffer from a side effect known as feedthrough. Feedthrough is the unwanted focus error signal (FES) produced when the optical head is seeking a new track, and light refracted from the pre-grooved disk produces an erroneous FES. Some focus and track-error detection methods are more resistant to feedthrough, but tend to be complicated and/or difficult to keep in alignment as a result of environmental insults. The astigmatic focus/push-pull tracking method is an elegant, easy-to-align focus- and track-error detection method. Unfortunately, it is also highly susceptible to feedthrough when astigmatism is present, with the worst effects caused by astigmatism oriented such that the tangential and sagittal foci are at 45 deg to the track direction. This disclosure outlines a method to nearly completely eliminate the worst-case form of feedthrough due to astigmatism oriented 45 deg to the track direction. Feedthrough due to other primary aberrations is not improved, but performance is identical to the unimproved astigmatic method.
Kim, Han Jo; Iyer, Sravisht
2016-05-01
Proximal junctional kyphosis (PJK) is a common complication following adult spinal deformity surgery. It is defined by two criteria: a proximal junctional sagittal Cobb angle (1) ≥ 10° and (2) at least 10° greater than the preoperative measurement. PJK is multifactorial in origin and likely stems from surgical, radiographic, and patient-related risk factors. The diagnosis of PJK represents a broad spectrum of disease ranging from asymptomatic patients with recurrence of deformity to those presenting with increased pain, functional deficit, and, in the most severe cases, neurologic deficits. Recent studies have demonstrated increased pain levels in select patients with PJK. In keeping with the broad spectrum of the disease, classification schemes are needed to better describe and stratify the severity of PJK. The most severe form is proximal junctional failure. A consensus on a uniform definition of proximal junctional failure is needed to allow for more systematic study of this phenomenon.
Korovessis, P; Repanti, M; Katsardis, T; Stamatakis, M
1994-12-01
A very rare case of Aspergillus fumigatus osteomyelitis of the spine is described. The differential diagnosis, medical and operative treatment, and follow-up evaluation are reported. To increase knowledge about the pathogenesis and treatment of vertebral osteomyelitis resulting from Aspergillus and to emphasize that such cases still exist. Vertebral osteomyelitis from Aspergillus species is an infrequently described disease in Europe and only few cases have been previously reported. A 48-year-old woman with Aspergillus fumigatus spondylitis in the lumbar spine and tuberculosis-lung infection and concomitant debilitating systemic disease was afflicted with incomplete paraplegia and underwent successful combined operative and medical treatment. Early anterior decompression with spinal fusion, combined with Amphotericin B therapy, was crucial in bringing about complete neurologic recovery and maintaining the sagittal lumbar profile. Excellent clinical and radiologic results were shown in the 42-month follow-up period.
Transformational mentoring: Leadership behaviors of spinal cord injury peer mentors.
Shaw, Robert B; McBride, Christopher B; Casemore, Sheila; Martin Ginis, Kathleen A
2018-02-01
The purpose of this study was to investigate the leadership behaviors of spinal cord injury (SCI) peer mentors and examine whether behaviors of peer mentors align with the tenets of transformational leadership theory. A total of 12 SCI peer mentors aged 28-75 (M = 49.4) who had between 3 and 56 years (M = 13.9) of mentoring experience were recruited for the study. Utilizing a qualitative methodology (informed by a social constructionist approach), each mentor engaged in a semistructured interview about their experiences as a peer mentor. Interviews were transcribed verbatim and subjected to a directed content analysis. SCI peer mentors reported using mentorship behaviors and engaging with mentees in a manner that closely aligns with the core components of transformational leadership theory: idealized influence, inspirational motivation, individualized consideration, and intellectual stimulation. A new subcomponent of inspirational motivation described as 'active promotion of achievement' was also identified and may be unique to the context of peer mentorship. SCI peer mentors inherently use behaviors associated with transformational leadership theory when interacting with mentees. The results from this study have the potential to inform SCI peer mentor training programs about specific leadership behaviors that mentors could be taught to use and could lead to more effective mentoring practices for people with SCI. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Beam Attenuators and the Risk of Unrecognized Large-Fraction Irradiation of Critical Tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luka, S.; Marks, J.E.
2015-01-15
The use of radiation beam attenuators led to radiation injury of the spinal cord in one patient and of the peripheral nerve in another due to unsuspected large-fraction irradiation. The anatomic distribution of radiation dose was reconstructed in the sagittal plane for the patient who developed radiation myelopathy and in the axial plane for the patient who developed peripheral neuropathy. The actual dose delivered to the injured structure in each patient was taken from the dose distribution and recorded along with the time, number of fractions, and dose per fraction. The patient who developed radiation myelopathy received a total ofmore » 46.5 Gy in twenty-three 2.1 Gy fractions in 31 days to the upper cervical spinal cord where the thickness of the neck was less than the central axis thickness due to cervical lordosis and absence of a posterior compensating filter. The patient who developed peripheral neuropathy received 55 Gy in twenty-five 2.2 Gy fractions in 50 days to the femoral nerve using bolus over the groins and an anterior one-half value layer Cerrobend pelvic block to bias the dose anteriorly. Compensating filters and other beam attenuators should be used with caution because they may result in unsuspected large-fraction irradiation and total doses of radiation that exceed the tolerance of critical structures.« less
Validation of spinal motion with the spine reposition sense device
Petersen, Cheryl M; Rundquist, Peter J
2009-01-01
Background A sagittal plane spine reposition sense device (SRSD) has been developed. Two questions were addressed with this study concerning the new SRSD: 1) whether spine movement was occurring with the methodology, and 2) where movement was taking place. Methods Sixty-five subjects performed seven trials of repositioning to a two-thirds full flexion position in sitting with X and Y displacement measurements taken at the T4 and L3 levels. The thoracolumbar angle between the T4 and the L3 level was computed and compared between the positions tested. A two (vertebral level of thoracic and lumbar) by seven (trials) mixed model repeated measures ANOVA indicated whether significant differences were present between the thoracic (T4) and lumbar (L3) angular measurements. Results Calculated thoracolumbar angles between T4 and L3 were significantly different for all positions tested indicating spinal movement was occurring with testing. No interactions were found between the seven trials and the two vertebral levels. No significant findings were found between the seven trials but significant differences were found between the two vertebral levels. Conclusion This study indicated spine motion was taking place with the SRSD methodology and movement was found specific to the lumbar spine. These findings support utilizing the SRSD to evaluate changes in spine reposition sense during future intervention studies dealing with low back pain. PMID:19386126
NASA Astrophysics Data System (ADS)
Guha, Daipayan; Jakubovic, Raphael; Gupta, Shaurya; Yang, Victor X. D.
2017-02-01
Computer-assisted navigation (CAN) may guide spinal surgeries, reliably reducing screw breach rates. Definitions of screw breach, if reported, vary widely across studies. Absolute quantitative error is theoretically a more precise and generalizable metric of navigation accuracy, but has been computed variably and reported in fewer than 25% of clinical studies of CAN-guided pedicle screw accuracy. We reviewed a prospectively-collected series of 209 pedicle screws placed with CAN guidance to characterize the correlation between clinical pedicle screw accuracy, based on postoperative imaging, and absolute quantitative navigation accuracy. We found that acceptable screw accuracy was achieved for significantly fewer screws based on 2mm grade vs. Heary grade, particularly in the lumbar spine. Inter-rater agreement was good for the Heary classification and moderate for the 2mm grade, significantly greater among radiologists than surgeon raters. Mean absolute translational/angular accuracies were 1.75mm/3.13° and 1.20mm/3.64° in the axial and sagittal planes, respectively. There was no correlation between clinical and absolute navigation accuracy, in part because surgeons appear to compensate for perceived translational navigation error by adjusting screw medialization angle. Future studies of navigation accuracy should therefore report absolute translational and angular errors. Clinical screw grades based on post-operative imaging, if reported, may be more reliable if performed in multiple by radiologist raters.
Comparison of custom to standard TKA instrumentation with computed tomography.
Ng, Vincent Y; Arnott, Lindsay; Li, Jia; Hopkins, Ronald; Lewis, Jamie; Sutphen, Sean; Nicholson, Lisa; Reader, Douglas; McShane, Michael A
2014-08-01
There is conflicting evidence whether custom instrumentation for total knee arthroplasty (TKA) improves component position compared to standard instrumentation. Studies have relied on long-limb radiographs limited to two-dimensional (2D) analysis and subjected to rotational inaccuracy. We used postoperative computed tomography (CT) to evaluate preoperative three-dimensional templating and CI to facilitate accurate and efficient implantation of TKA femoral and tibial components. We prospectively evaluated a single-surgeon cohort of 78 TKA patients (51 custom, 27 standard) with postoperative CT scans using 3D reconstruction and contour-matching technology to preoperative imaging. Component alignment was measured in coronal, sagittal and axial planes. Preoperative templating for custom instrumentation was 87 and 79 % accurate for femoral and tibial component size. All custom components were within 1 size except for the tibial component in one patient (2 sizes). Tourniquet time was 5 min longer for custom (30 min) than standard (25 min). In no case was custom instrumentation aborted in favour of standard instrumentation nor was original alignment of custom instrumentation required to be adjusted intraoperatively. There were more outliers greater than 2° from intended alignment with standard instrumentation than custom for both components in all three planes. Custom instrumentation was more accurate in component position for tibial coronal alignment (custom: 1.5° ± 1.2°; standard: 3° ± 1.9°; p = 0.0001) and both tibial (custom: 1.4° ± 1.1°; standard: 16.9° ± 6.8°; p < 0.0001) and femoral (custom: 1.2° ± 0.9°; standard: 3.1° ± 2.1°; p < 0.0001) rotational alignment, and was similar to standard instrumentation in other measurements. When evaluated with CT, custom instrumentation performs similar or better to standard instrumentation in component alignment and accurately templates component size. Tourniquet time was mildly increased for custom compared to standard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnelli, A; Xia, P
2015-06-15
Purpose: Spine stereotactic body radiotherapy requires very conformal dose distributions and precise delivery. Prior to treatment, a KV cone-beam CT (KV-CBCT) is registered to the planning CT to provide image-guided positional corrections, which depend on selection of the region of interest (ROI) because of imperfect patient positioning and anatomical deformation. Our objective is to determine the dosimetric impact of ROI selections. Methods: Twelve patients were selected for this study with the treatment regions varied from C-spine to T-spine. For each patient, the KV-CBCT was registered to the planning CT three times using distinct ROIs: one encompassing the entire patient, amore » large ROI containing large bony anatomy, and a small target-focused ROI. Each registered CBCT volume, saved as an aligned dataset, was then sent to the planning system. The treated plan was applied to each dataset and dose was recalculated. The tumor dose coverage (percentage of target volume receiving prescription dose), maximum point dose to 0.03 cc of the spinal cord, and dose to 10% of the spinal cord volume (V10) for each alignment were compared to the original plan. Results: The average magnitude of tumor coverage deviation was 3.9%±5.8% with external contour, 1.5%±1.1% with large ROI, 1.3%±1.1% with small ROI. Spinal cord V10 deviation from plan was 6.6%±6.6% with external contour, 3.5%±3.1% with large ROI, and 1.2%±1.0% with small ROI. Spinal cord max point dose deviation from plan was: 12.2%±13.3% with external contour, 8.5%±8.4% with large ROI, and 3.7%±2.8% with small ROI. Conclusion: A small ROI focused on the target results in the smallest deviation from planned dose to target and cord although rotations at large distances from the targets were observed. It is recommended that image fusion during CBCT focus narrowly on the target volume to minimize dosimetric error. Improvement in patient setups may further reduce residual errors.« less
Weinberg, Douglas S; Tucker, Braden J; Drain, Joseph P; Wang, David M; Gilmore, Allison; Liu, Raymond W
2016-06-01
Patellofemoral joint osteoarthritis is common, although circumstances dictating its evolution and pathogenesis remain unclear. Advances in surgical technique have improved the ability to modify long-bone alignment in the coronal, sagittal, and axial planes. However, to our knowledge, there is no significant long-term data available in regard to the relationship between anatomic alignment parameters most amenable to surgical modification and patellofemoral joint osteoarthritis. Five-hundred and seventy-one cadaveric skeletons were obtained from the Hamann-Todd osteological collection. Mechanical lateral distal femoral angle, medial proximal tibial angle, tibial slope, femoral version, tibial torsion, the position of the tibial tubercle relative to the width of the tibial plateau, trochlear depth, and patellar size were measured using validated techniques. A previously published grading system for patellofemoral joint arthritis was used to quantify macroscopic signs of degenerative joint disease. Increasing age (standardized beta 0.532, p<0.001), female gender (standardized beta 0.201, p=0.002), and decreasing mechanical lateral distal femoral angle (standardized beta -0.128, p=0.025) were independent correlates of increased patellofemoral joint osteoarthritis. A relatively more laterally positioned tibial tubercle trended towards predicting patellofemoral joint osteoarthritis (standardized beta 0.080, p=0.089). These findings confirm that patellofemoral joint osteoarthritis is strongly associated with increasing age and female gender. Valgus alignment of the distal femur, a relatively more lateral location of the tibial tubercle, and a shallower trochlear grove appear to have modest effects on the development of patellofemoral joint osteoarthritis. Copyright © 2016 Elsevier B.V. All rights reserved.
Tsirikos, A I; Mataliotakis, G; Bounakis, N
2017-08-01
We present the results of correcting a double or triple curve adolescent idiopathic scoliosis using a convex segmental pedicle screw technique. We reviewed 191 patients with a mean age at surgery of 15 years (11 to 23.3). Pedicle screws were placed at the convexity of each curve. Concave screws were inserted at one or two cephalad levels and two caudal levels. The mean operating time was 183 minutes (132 to 276) and the mean blood loss 0.22% of the total blood volume (0.08% to 0.4%). Multimodal monitoring remained stable throughout the operation. The mean hospital stay was 6.8 days (5 to 15). The mean post-operative follow-up was 5.8 years (2.5 to 9.5). There were no neurological complications, deep wound infection, obvious nonunion or need for revision surgery. Upper thoracic scoliosis was corrected by a mean 68.2% (38% to 48%, p < 0.001). Main thoracic scoliosis was corrected by a mean 71% (43.5% to 8.9%, p < 0.001). Lumbar scoliosis was corrected by a mean 72.3% (41% to 90%, p < 0.001). No patient lost more than 3° of correction at follow-up. The thoracic kyphosis improved by 13.1° (-21° to 49°, p < 0.001); the lumbar lordosis remained unchanged (p = 0.58). Coronal imbalance was corrected by a mean 98% (0% to 100%, p < 0.001). Sagittal imbalance was corrected by a mean 96% (20% to 100%, p < 0.001). The Scoliosis Research Society Outcomes Questionnaire score improved from a mean 3.6 to 4.6 (2.4 to 4, p < 0.001); patient satisfaction was a mean 4.9 (4.8 to 5). This technique carries low neurological and vascular risks because the screws are placed in the pedicles of the convex side of the curve, away from the spinal cord, cauda equina and the aorta. A low implant density (pedicle screw density 1.2, when a density of 2 represents placement of pedicle screws bilaterally at every instrumented segment) achieved satisfactory correction of the scoliosis, an improved thoracic kyphosis and normal global sagittal balance. Both patient satisfaction and functional outcomes were excellent. Cite this article: Bone Joint J 2017;99-B:1080-7. ©2017 The British Editorial Society of Bone & Joint Surgery.
Sagittal crest formation in great apes and gibbons.
Balolia, Katharine L; Soligo, Christophe; Wood, Bernard
2017-06-01
The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfurthii, Gorilla gorilla gorilla, Pongo pygmaeus pygmaeus and Hylobates lar). We investigate whether sagittal crest size increases with age beyond dental maturity in males and females of G. g. gorilla and Po. pyg. pygmaeus, and whether these taxa show sex differences in the timing of sagittal crest development. We evaluate the hypothesis that the larger sagittal crest of males may not be solely due to the requirement for a larger surface area than the un-crested cranial vault can provide for the attachment of the temporalis muscle, and present data on sex differences in temporalis muscle attachment area and sagittal crest size relative to cranial size. Gorilla g. gorilla and Po. pyg. pygmaeus males show significant relationships between tooth wear rank and sagittal crest size, and they show sagittal crest size differences between age groups that are not found in females. The sagittal crest emerges in early adulthood in the majority of G. g. gorilla males, whereas the percentage of G. g. gorilla females possessing a sagittal crest increases more gradually. Pongo pyg. pygmaeus males experience a three-fold increase in the number of specimens exhibiting a sagittal crest in mid-adulthood, consistent with a secondary growth spurt. Gorilla g. gorilla and Po. pyg. pygmaeus show significant sex differences in the size of the temporalis muscle attachment area, relative to cranial size, with males of both taxa showing positive allometry not shown in females. Gorilla g. gorilla males also show positive allometry for sagittal crest size relative to cranial size. Our results suggest that although patterns of sagittal crest expression have limited utility for taxonomy and phylogeny reconstruction, they could be useful for reconstructing aspects of social behaviour in some extinct hominin taxa. In particular, our results in G. g. gorilla and Po. pyg. pygmaeus, which suggest that the size of sagittal crests in males cannot be solely explained by the surface area required for attachment of the temporalis muscle, offer partial support for the hypothesis that large sagittal crests form in response to sexual selection and may play a role in social signalling. © 2017 Anatomical Society.
Imagama, Shiro; Ito, Zenya; Wakao, Norimitsu; Ando, Kei; Hirano, Kenichi; Tauchi, Ryoji; Muramoto, Akio; Matsui, Hiroki; Matsumoto, Tomohiro; Sakai, Yoshihito; Katayama, Yoshito; Matsuyama, Yukihiro; Ishiguro, Naoki
2016-10-01
Prospective clinical case series. To describe our surgical procedure and results for posterior correction and fusion with a hybrid approach using pedicle screws, hooks, and ultrahigh-molecular weight polyethylene tape with direct vertebral rotation (DVR) (the PSTH-DVR procedure) for treatment of adolescent idiopathic scoliosis (AIS) with satisfactory correction in the coronal and sagittal planes. Introduction of segmental pedicle screws in posterior surgery for AIS has facilitated good correction and fusion. However, procedures using only pedicle screws have risks during screw insertion, higher costs, and decreased postoperative thoracic kyphosis. We have obtained good outcomes compared with segmental pedicle screw fixation in surgery for AIS using a relatively simple operative procedure (PSTH-DVR) that uses fewer pedicle screws. The subjects were 30 consecutive patients with AIS who underwent the PSTH-DVR procedure and were followed for a minimum of 2 years. Preoperative flexibility, preoperative and postoperative Cobb angles, correction rates, loss of correction, thoracic kyphotic angles (T5-T12), coronal balance, sagittal balance, and shoulder balance were measured on plain radiographs. Rib hump, operation time, estimated blood loss, spinal cord monitoring findings, complications, and scoliosis research society (SRS)-22 scores were also examined. The mean preoperative curve of 58.0 degrees (range, 40-96 degrees) was corrected to a mean of 9.9 degrees postoperatively, and the correction rate was 83.6%. Fusion was obtained in all patients without loss of correction. In 10 cases with preoperative kyphosis angles (T5-T12) <10 degrees, the preoperative mean of 5.8 degrees improved to 20.2 degrees at the final follow-up. Rib hump and coronal, sagittal and shoulder balances were also improved, and good SRS-22 scores were achieved at final follow-up. The correction of deformity with PSTH-DVR is equivalent to that of all-pedicle screw constructs. The procedure gives favorable correction, is advantageous for kyphosis compared with segmental screw fixation, and uses the minimum number of pedicle screws. Therefore, the PSTH-DVR procedure may be useful for treatment of idiopathic scoliosis.
Lorme, Kenneth J; Naqvi, Syed A
2003-01-01
There is epidemiologic evidence that chiropractors are a high-risk group for low-back disorders. However, to date there are no known biomechanical studies to determine whether their workstations may be a contributing factor. To investigate whether chiropractors' workstation table height or the tasks they perform make them susceptible to low-back strain. As well as investigating low-back strain, a screening was performed to determine whether chiropractors' upper extremities were at risk for undue strain as workstation table height was varied. Experimental pilot study. A university ergonomic laboratory. An adjustable manipulation table was set at 3 different heights: 465 mm, 665 mm and 845 mm. Each of the 7 volunteer chiropractors were fitted with a triaxial electrogoniometer and were videotaped and photographed for analysis while performing spinal manipulation to the cervical, thoracic, and lumbar spine of a volunteer patient at each workstation table height. Two biomechanical models, one static and one dynamic, were used to record the dependent variables. A screening of various upper extremity variables was also performed with the static model. For the subjects under study, a significant difference was found for the variables maximum sagittal flexion, disk compression force, and ligament strain as table height was varied. For the lumbar and thoracic manipulation tasks, the medium table height (655 mm) was found to create the least low-back strain. For the cervical manipulation task, the high table height (845 mm) was found to be the least straining on the low-back. The low height table (465 mm) was the most straining for all tasks. Upper extremities were not significantly affected by changes to table height. Significant differences were found for the task performed for axial rotational velocity, disk compression force, ligament strain, maximum sagittal flexion, dominant (right) elbow moment, and dominant (right) shoulder moment variables. There was no significant interaction between table height and task performed. Workstation table height was found to have a significant effect on low-back load of subjects under study. The results of this study demonstrate an overall unacceptably high amount of sagittal flexion, ligament strain, and disk compression force on the chiropractor subjects in the tasks performed.
Scheer, Justin K; Osorio, Joseph A; Smith, Justin S; Schwab, Frank; Lafage, Virginie; Hart, Robert A; Bess, Shay; Line, Breton; Diebo, Bassel G; Protopsaltis, Themistocles S; Jain, Amit; Ailon, Tamir; Burton, Douglas C; Shaffrey, Christopher I; Klineberg, Eric; Ames, Christopher P
2016-11-15
A retrospective review of large, multicenter adult spinal deformity (ASD) database. The aim of this study was to build a model based on baseline demographic, radiographic, and surgical factors that can predict clinically significant proximal junctional kyphosis (PJK) and proximal junctional failure (PJF). PJF and PJK are significant complications and it remains unclear what are the specific drivers behind the development of either. There exists no predictive model that could potentially aid in the clinical decision making for adult patients undergoing deformity correction. Inclusion criteria: age ≥18 years, ASD, at least four levels fused. Variables included in the model were demographics, primary/revision, use of three-column osteotomy, upper-most instrumented vertebra (UIV)/lower-most instrumented vertebra (LIV) levels and UIV implant type (screw, hooks), number of levels fused, and baseline sagittal radiographs [pelvic tilt (PT), pelvic incidence and lumbar lordosis (PI-LL), thoracic kyphosis (TK), and sagittal vertical axis (SVA)]. PJK was defined as an increase from baseline of proximal junctional angle ≥20° with concomitant deterioration of at least one SRS-Schwab sagittal modifier grade from 6 weeks postop. PJF was defined as requiring revision for PJK. An ensemble of decision trees were constructed using the C5.0 algorithm with five different bootstrapped models, and internally validated via a 70 : 30 data split for training and testing. Accuracy and the area under a receiver operator characteristic curve (AUC) were calculated. Five hundred ten patients were included, with 357 for model training and 153 as testing targets (PJF: 37, PJK: 102). The overall model accuracy was 86.3% with an AUC of 0.89 indicating a good model fit. The seven strongest (importance ≥0.95) predictors were age, LIV, pre-operative SVA, UIV implant type, UIV, pre-operative PT, and pre-operative PI-LL. A successful model (86% accuracy, 0.89 AUC) was built predicting either PJF or clinically significant PJK. This model can set the groundwork for preop point of care decision making, risk stratification, and need for prophylactic strategies for patients undergoing ASD surgery. 3.
Feng, Qiang; Jiang, Chongmin; Zhou, Yu; Huang, Yun; Zhang, Ming
2017-01-01
Non-specific back pain has become a public health problem affecting adolescent health. To examine the relationships between abnormalities in spinal morphology and non-specific back pain among adolescents. Cross-sectional study. Junior and senior high schools. Participants were screened using a questionnaire regarding back pain. Students in the pain group (n= 273, 121 boys and 152 girls) reported experiencing upper and/or lower back pain within the previous month, and those who did not report pain were assigned to the group without pain (n= 127, 63 boys and 64 girls). Participants who had experienced acute upper and/or lower back injuries within the previous month or received a definitive diagnose of disease were excluded. The SpinalMouse® was used to measure the thoracic kyphosis angle (TKA), lumbar lordosis angle (LLA), sacrum/hip angle (SA), and incline angle (INA) in both the standing position and sitting position. The SpinalMouse® also was used to measure the sacral, thoracic, and lumbar range of motion (ROM) in the fully flexed position and fully extended position in the sagittal plane. The thoracic and lumbar ROM in left/right lateral flexion was recorded. The Matthiass test was used to assess changes in the measured angles upon loading. Among junior high school students, 47.0% of boys and 53% of girls had an abnormal TKA. Among senior high school students, 52.6% of boys and 46.99% of girls had an abnormal TKA. The incidence of LLA abnormality was significantly higher among junior high boys than girls (p< 0.05), as was the incidence of hypolordosis (p< 0.05). Significantly fewer senior high boys than girls had a normal LLA value (p< 0.05). An excessive TKA (p< 0.05, odds ratio = 1.236) and limited lumbar ROM (p< 0.01, odds ratio = 0.975) were correlated with back pain in adolescents. The incidences of TKA and LLA abnormality are high among Chinese adolescents, and an excessive TKA and insufficient total lumbar ROM may be risk factors for non-specific back pain in adolescents.
Sureka, Binit; Mittal, Aliza; Mittal, Mahesh K; Agarwal, Kanhaiya; Sinha, Mukul; Thukral, Brij Bhushan
2018-01-01
Accurate and detailed measurements of spinal canal diameter (SCD) and transverse foraminal morphometry are essential for understanding spinal column-related diseases and for surgical planning, especially for transpedicular screw fixation. This is especially because lateral cervical radiographs do not provide accurate measurements. This study was conducted to measure the dimensions of the transverse foramen sagittal and transverse diameters (SFD, TFD), SCD, and the distance of spinal canal from the transverse foramina (dSC-TF) at C1-C7 level in the Indian population. The study population comprised 84 male and 42 female subjects. The mean age of the study group was 44.63 years (range, 19-81 years). A retrospective study was conducted, and data were collected and analyzed for patients who underwent cervical spine computed tomography (CT) imaging for various reasons. One hundred and twenty-six patients were included in the study. Detailed readings were taken at all levels from C1-C7 for SCD, SFD, TFD, and dSc-TF. Values for male and female subjects were separately calculated and compared. For both the groups, the widest SCD were measured at the C1 level and the narrowest SCD at the C4 level. The narrowest SFD was measured at C7 for both male and female subjects on the right and left sides. The widest SFD was measured at C1 both for male and female subjects on the right and left side. The narrowest TFD on the left side was measured at C7 for male and at C1 for female subjects. The narrowest mean distance of dSC-TF was found to be at C4 for both male and female subjects on both left and right side. The computed tomographic (CT) imaging is better than conventional radiographs for the preoperative evaluation of cervical spine and for better understanding cervical spine morphometry. Care must be taken during transpedicular screw fixation, especially in female subjects, more so at the C2, C4, and C6 levels due to a decrease in the distance of dSC-TF.
Lin, Qiuping; Huang, Xiaoqiong; Xu, Yue; Yang, Xiaoping
2016-01-01
Purpose Facial asymmetry often persists even after mandibular deviation corrected by the bilateral sagittal split ramus osteotomy (BSSRO) operation, since the reference facial sagittal plane for the asymmetry analysis is usually set up before the mandibular menton (Me) point correction. Our aim is to develop a predictive and quantitative method to assess the true asymmetry of the mandible after a midline correction performed by a virtual BSSRO, and to verify its availability by evaluation of the post-surgical improvement. Patients and Methods A retrospective cohort study was conducted at the Hospital of Stomatology, Sun Yat-sen University (China) of patients with pure hemi-mandibular elongation (HE) from September 2010 through May 2014. Mandibular models were reconstructed from CBCT images of patients with pre-surgical orthodontic treatment. After mandibular de-rotation and midline alignment with virtual BSSRO, the elongation hemi-mandible was virtually mirrored along the facial sagittal plane. The residual asymmetry, defined as the superimposition and boolean operation of the mirrored elongation side on the normal side, was calculated, including the volumetric differences and the length of transversal and vertical asymmetry discrepancy. For more specific evaluation, both sides of the hemi-mandible were divided into the symphysis and parasymphysis (SP), mandibular body (MB), and mandibular angle (MA) regions. Other clinical variables include deviation of Me point, dental midline and molar relationship. The measurement of volumetric discrepancy between the two sides of post-surgical hemi-mandible were also calculated to verify the availability of virtual surgery. Paired t-tests were computed and the P value was set at .05. Results This study included 45 patients. The volume differences were 407.8±64.8 mm3, 2139.1±72.5 mm3, and 422.5±36.9 mm3; residual average transversal discrepancy, 1.9 mm, 1.0 mm, and 2.2 mm; average vertical discrepancy, 1.1 mm, 2.2 mm, and 2.2 mm (before virtual surgery). The post-surgical volumetric measurement showed no statistical differences between bilateral mandibular regions. Conclusions Mandibular asymmetry persists after Me point correction. A 3D quantification of mandibular residual asymmetry after Me point correction and mandible de-rotation with virtual BSSRO sets up a true reference mirror plane for comprehensive asymmetry assessment of bilateral mandibular structure, thereby providing an accurate guidance for orthognathic surgical planning. PMID:27571364
Lin, Han; Zhu, Ping; Lin, Qiuping; Huang, Xiaoqiong; Xu, Yue; Yang, Xiaoping
2016-01-01
Facial asymmetry often persists even after mandibular deviation corrected by the bilateral sagittal split ramus osteotomy (BSSRO) operation, since the reference facial sagittal plane for the asymmetry analysis is usually set up before the mandibular menton (Me) point correction. Our aim is to develop a predictive and quantitative method to assess the true asymmetry of the mandible after a midline correction performed by a virtual BSSRO, and to verify its availability by evaluation of the post-surgical improvement. A retrospective cohort study was conducted at the Hospital of Stomatology, Sun Yat-sen University (China) of patients with pure hemi-mandibular elongation (HE) from September 2010 through May 2014. Mandibular models were reconstructed from CBCT images of patients with pre-surgical orthodontic treatment. After mandibular de-rotation and midline alignment with virtual BSSRO, the elongation hemi-mandible was virtually mirrored along the facial sagittal plane. The residual asymmetry, defined as the superimposition and boolean operation of the mirrored elongation side on the normal side, was calculated, including the volumetric differences and the length of transversal and vertical asymmetry discrepancy. For more specific evaluation, both sides of the hemi-mandible were divided into the symphysis and parasymphysis (SP), mandibular body (MB), and mandibular angle (MA) regions. Other clinical variables include deviation of Me point, dental midline and molar relationship. The measurement of volumetric discrepancy between the two sides of post-surgical hemi-mandible were also calculated to verify the availability of virtual surgery. Paired t-tests were computed and the P value was set at .05. This study included 45 patients. The volume differences were 407.8±64.8 mm3, 2139.1±72.5 mm3, and 422.5±36.9 mm3; residual average transversal discrepancy, 1.9 mm, 1.0 mm, and 2.2 mm; average vertical discrepancy, 1.1 mm, 2.2 mm, and 2.2 mm (before virtual surgery). The post-surgical volumetric measurement showed no statistical differences between bilateral mandibular regions. Mandibular asymmetry persists after Me point correction. A 3D quantification of mandibular residual asymmetry after Me point correction and mandible de-rotation with virtual BSSRO sets up a true reference mirror plane for comprehensive asymmetry assessment of bilateral mandibular structure, thereby providing an accurate guidance for orthognathic surgical planning.
Kintzelé, Laurent; Rehnitz, Christoph; Kauczor, Hans-Ulrich; Weber, Marc-André
2018-06-06
To identify whether standard sagittal MRI images result in underestimation of the neuroforaminal stenosis grade compared to oblique sagittal MRI images in patients with cervical spine disc herniation. 74 patients with a total of 104 cervical disc herniations compromising the corresponding nerve root were evaluated. Neuroforaminal stenosis grades were evaluated in standard and oblique sagittal images by one senior and one resident radiologist experienced in musculoskeletal imaging. Oblique images were angled 30° towards the standard sagittal plane. Neuroforaminal stenosis grades were classified from 0 (no stenosis) to 3 (high grade stenosis). Average neuroforaminal stenosis grades of both readers were significantly lower in standard compared to oblique sagittal images (p < 0.001). For 47.1 % of the cases, one or both readers reported a stenosis grade, which was at least 1 grade lower in standard compared to oblique sagittal images. There was also a significant difference when looking at patients who had neurological symptoms (p = 0.002) or underwent cervical spine surgery subsequently (p = 0.004). Interreader reliability, as measured by kappa value, and accordance rates were better for oblique sagittal images (0.94 vs. 0.88 and 99 % vs. 93 %). Standard sagittal images tend to underestimate neuroforaminal stenosis grades compared to oblique sagittal images and are less reliable in the evaluation of disc herniations within the cervical spine MRI. In order to assess the potential therapeutic consequence, oblique images should therefore be considered as a valuable adjunct to the standard MRI protocol for patients with a radiculopathy. · Neuroforaminal stenosis grades are underestimated in standard compared to oblique sagittal images. · Interreader reliability is higher for oblique sagittal images. · Oblique sagittal images should be performed in patients with a cervical radiculopathy. · Kintzele L, Rehnitz C, Kauczor H et al. Oblique Sagittal Images Prevent Underestimation of the Neuroforaminal Stenosis Grade Caused by Disc Herniation in Cervical Spine MRI. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0612-8205. © Georg Thieme Verlag KG Stuttgart · New York.
Sun, Lin; Song, Yueming; Liu, Limin; Gong, Quan; Zhou, Chunguang
2013-08-01
The treatment goals of tuberculous spondylitis are to eradicate infection and to prevent or treat instability, deformity, and neurologic deficit. The purpose of this study was to evaluate the clinical outcomes following chemotherapy with 1-stage posterior debridement, correction, and instrumentation and fusion for the treatment of lumbosacral tuberculosis with major vertebral body loss and kyphosis. Fourteen patients with lumbosacral tuberculosis with major vertebral body loss and kyphosis underwent 1-stage posterior surgery. Clinical assessments included low back ache, Oswestry Disability Index, Scoliosis Research Society-22 scores, neurologic deficit, erythrocyte sedimentation rate, and C-reactive protein level. Radiographic parameters included kyphosis angle, anteroposterior translation, local scoliosis, lumbar lordosis, pelvic parameters, sagittal offset, and fusion. Thorough debridement was performed. Patients were followed for an average of 39.3 months. Constitutional symptoms, low back ache, and functional outcome improved in all patients postoperatively. At final follow-up, Frankel Grade improved by 0 to 2 grades, mean kyphosis angle improvement was 44.3°, and satisfactory spinopelvic and sagittal balance were achieved. Spinal posterolateral fusion was obtained in all patients and no fixation loosening was found at 2-year follow-up. Differences existed between the pre- and postoperative radiographic parameters (P<.05). Correction loss at last follow-up was not statistically significant (P>.05). No surgical complications or infection recurrence occurred. Tuberculosis can be cured and effective correction of kyphosis can be achieved for lumbosacral tuberculosis with major vertebral body loss and kyphosis by performing 1-stage posterior surgery and chemotherapy. Copyright 2013, SLACK Incorporated.
Retroclival collections associated with abusive head trauma in children.
Silvera, V Michelle; Danehy, Amy R; Newton, Alice W; Stamoulis, Catherine; Carducci, Chiara; Grant, P Ellen; Wilson, Celeste R; Kleinman, Paul K
2014-12-01
Retroclival collections are rare lesions reported almost exclusively in children and strongly associated with trauma. We examine the incidence and imaging characteristics of retroclival collections in young children with abusive head trauma. We conducted a database search to identify children with abusive head trauma ≤ 3 years of age with brain imaging performed between 2007 and 2013. Clinical data and brain images of 65 children were analyzed. Retroclival collections were identified in 21 of 65 (32%) children. Ten (48%) were subdural, 3 (14%) epidural, 2 (10%) both, and 6 (28%) indeterminate. Only 8 of 21 retroclival collections were identifiable on CT and most were low or intermediate in attenuation. Eighteen of 21 retroclival collections were identifiable on MRI: 3 followed cerebral spinal fluid in signal intensity and 15 were bloody/proteinaceous. Additionally, 2 retroclival collections demonstrated a fluid-fluid level and 2 enhanced in the 5 children who received contrast material. Sagittal T1-weighted images, sagittal fluid-sensitive sequences, and axial FLAIR (fluid-attenuated inversion recovery) images showed the retroclival collections best. Retroclival collections were significantly correlated with supratentorial and posterior fossa subdural hematomas and were not statistically correlated with skull fracture or parenchymal brain injury. Retroclival collections, previously considered rare lesions strongly associated with accidental injury, were commonly identified in this cohort of children with abusive head trauma, suggesting that retroclival collections are an important component of the imaging spectrum in abusive head trauma. Retroclival collections were better demonstrated on MRI than CT, were commonly identified in conjunction with intracranial subdural hematomas, and were not significantly correlated with the severity of brain injury or with skull fractures.
Multiple Channel Bridges for Spinal Cord Injury: Cellular Characterization of Host Response
Yang, Yang; Laporte, Laura De; Zelivyanskaya, Marina L.; Whittlesey, Kevin J.; Anderson, Aileen J.; Cummings, Brian J.
2009-01-01
Bridges for treatment of the injured spinal cord must stabilize the injury site to prevent secondary damage and create a permissive environment that promotes regeneration. The host response to the bridge is central to creating a permissive environment, as the cell types that respond to the injury have the potential to secrete both stimulatory and inhibitory factors. We investigated multiple channel bridges for spinal cord regeneration and correlated the bridge structure to cell infiltration and axonal elongation. Poly(lactide-co-glycolide) bridges were fabricated by a gas foaming/particulate leaching process. Channels within the bridge had diameters of 150 or 250 μm, and the main body of the bridge was highly porous with a controllable pore size. Upon implantation in a rat spinal cord hemisection site, cells infiltrated into the bridge pores and channels, with the pore size influencing the rate of infiltration. The pores had significant cell infiltration, including fibroblasts, macrophages, S-100β-positive cells, and endothelial cells. The channels of the bridge were completely infiltrated with cells, which had aligned axially, and consisted primarily of fibroblasts, S-100β-positive cells, and endothelial cells. Reactive astrocytes were observed primarily outside of the bridge, and staining for chondroitin sulfate proteoglycans was decreased in the region surrounding the bridge relative to studies without bridges. Neurofilament staining revealed a preferential growth of the neural fibers within the bridge channels relative to the pores. Multiple channel bridges capable of supporting cellular infiltration, creating a permissive environment, and directing the growth of neural fibers have potential for promoting and directing spinal cord regeneration. PMID:19382871
Improving access to emergent spinal care through knowledge translation: an ethnographic study.
Webster, Fiona; Fehlings, Michael G; Rice, Kathleen; Malempati, Harsha; Fawaz, Khaled; Nicholls, Fred; Baldeo, Navindra; Reeves, Scott; Singh, Anoushka; Ahn, Henry; Ginsberg, Howard; Yee, Albert J
2014-04-14
For patients and family members, access to timely specialty medical care for emergent spinal conditions is a significant stressor to an already serious condition. Timing to surgical care for emergent spinal conditions such as spinal trauma is an important predictor of outcome. However, few studies have explored ethnographically the views of surgeons and other key stakeholders on issues related to patient access and care for emergent spine conditions. The primary study objective was to determine the challenges to the provision of timely care as well as to identify areas of opportunities to enhance care delivery. An ethnographic study of key administrative and clinical care providers involved in the triage and care of patients referred through CritiCall Ontario was undertaken utilizing standard methods of qualitative inquiry. This comprised 21 interviews with people involved in varying capacities with the provision of emergent spinal care, as well as qualitative observations on an orthopaedic/neurosurgical ward, in operating theatres, and at CritiCall Ontario's call centre. Several themes were identified and organized into categories that range from inter-professional collaboration through to issues of hospital-level resources and the role of relationships between hospitals and external organizations at the provincial level. Underlying many of these issues is the nature of the medically complex emergent spine patient and the scientific evidentiary base upon which best practice care is delivered. Through the implementation of knowledge translation strategies facilitated from this research, a reduction of patient transfers out of province was observed in the one-year period following program implementation. Our findings suggest that competing priorities at both the hospital and provincial level create challenges in the delivery of spinal care. Key stakeholders recognized spinal care as aligning with multiple priorities such as emergent/critical care, medical through surgical, acute through rehabilitative, disease-based (i.e. trauma, cancer), and wait times initiatives. However, despite newly implemented strategies, there continues to be increasing trends over time in the number of spinal CritiCall Ontario referrals. This reinforces the need for ongoing inter-professional efforts in care delivery that take into account the institutional contexts that may constrain individual or team efforts.
Knutson, Gary A
2005-01-01
Background Part II of this review examines the functional "short leg" or unloaded leg length alignment asymmetry, including the relationship between an anatomic and functional leg-length inequality. Based on the reviewed evidence, an outline for clinical decision making regarding functional and anatomic leg-length inequality will be provided. Methods Online databases: Medline, CINAHL and Mantis. Plus library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion The evidence suggests that an unloaded leg-length asymmetry is a different phenomenon than an anatomic leg-length inequality, and may be due to suprapelvic muscle hypertonicity. Anatomic leg-length inequality and unloaded functional or leg-length alignment asymmetry may interact in a loaded (standing) posture, but not in an unloaded (prone/supine) posture. Conclusion The unloaded, functional leg-length alignment asymmetry is a likely phenomenon, although more research regarding reliability of the measurement procedure and validity relative to spinal dysfunction is needed. Functional leg-length alignment asymmetry should be eliminated before any necessary treatment of anatomic LLI. PMID:16080787
Lee, Young Jun; Lee, Joo Kang; Jung, Soo Chang; Lee, Hwang-woo; Yin, Chang Shik; Lee, Young Jin
2013-01-01
Objective. The objective of this study was to investigate the effect of a holistic intraoral appliance (OA) on cervical spine alignment and subjective symptom severity. Design. An observational study on case series with holistic OA therapy. Setting. An outpatient clinic for holistic temporomandibular joint (TMJ) therapy under the supervision of the Pain Center, CHA Biomedical center, CHA University. Subjects. Ambulatory patients presenting with diverse chief complaints in the holistic TMJ clinic. Main Measures. Any immediate change in the curvature of cervical spine and the degree of atlantoaxial rotation was investigated in the images of simple X-ray and computed tomography of cervical spine with or without OA. Changes of subjective symptom severity were also analyzed for the holistic OA therapy cases. Results. A total of 59 cases were reviewed. Alignment of upper cervical spine rotation showed an immediate improvement (P < 0.001). Changes of subjective symptom severity also showed significant improvement (P < 0.05). Conclusion. These cases revealed rudimentary clinical evidence that holistic OA therapy may be related to an alleviated symptom severity and an improved cervical spinal alignment. These results show that further researches may warrant for the holistic TMJ therapy. PMID:23935655
Does the application of kinesiotape change scapular kinematics in healthy female handball players?
Van Herzeele, M; van Cingel, R; Maenhout, A; De Mey, K; Cools, A
2013-11-01
Elastic taping is widely used in sports medicine for correcting functional alignment and muscle recruitment. However, evidence regarding its influence on scapular dynamic positioning is scarce. This study aimed to investigate the effect of a specific kinesiotaping method on scapular kinematics in female elite handball players without shoulder complaints. 25 athletes (18.0±1.5 years) active in the highest national division were recruited. All subjects received an elastic adhesive tape (K-active tape©) with the purpose to correct scapular position. 3-dimensional scapular motion measurements were performed (Fastrak®) during humeral elevation in the sagittal, frontal and scapular plane. The results showed that taping has a moderate to large effect (Cohen's d>0.7) towards scapular posterior tilting, in all 3 planes of humeral movement and for all angles of elevation (mean posteriorizing effect of 4.23 °, 3.23 ° and 4.33 ° respectively for elevation in the sagittal, frontal and scapular plane, p<0.001). In addition, taping also moderately increased the scapular upward rotation at 30 °, 60 ° and 90 ° of humeral abduction (mean increase of 2.90 °, Cohen's d>0.7). Together these results suggest that kinesiotape application causes positive changes in scapular motion. This could support its use in sports medicine for preventing shoulder problems in overhead athletes. © Georg Thieme Verlag KG Stuttgart · New York.
Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.
Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2016-01-01
Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (P<0.05). Our study demonstrated that in UKA, cutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.
Biomechanics-based active control of bedding support properties and its influence on sleep.
Van Deun, D; Verhaert, V; Willemen, T; Wuyts, J; Verbraecken, J; Exadaktylos, V; Haex, B; Vander Sloten, J
2012-01-01
Proper body support plays an import role in the recuperation of our body during sleep. Therefore, this study uses an automatically adapting bedding system that optimises spinal alignment throughout the night by altering the stiffness of eight comfort zones. The aim is to investigate the influence of such a dynamic sleep environment on objective and subjective sleep parameters. The bedding system contains 165 sensors that measure mattress indentation. It also includes eight actuators that control the comfort zones. Based on the measured mattress indentation, body movements and posture changes are detected. Control of spinal alignment is established by fitting personalized human models in the measured indentation. A total of 11 normal sleepers participated in this study. Sleep experiments were performed in a sleep laboratory where subjects slept three nights: a first night for adaptation, a reference night and an active support night (in counterbalanced order). Polysomnographic measurements were recorded during the nights, combined with questionnaires aiming at assessing subjective information. Subjective information on sleep quality, daytime quality and perceived number of awakenings shows significant improvements during the active support (ACS) night. Objective results showed a trend towards increased slow wave sleep. On the other hand, it was noticed that % N1-sleep was significantly increased during ACS night, while % N2-sleep was significantly decreased. No prolonged N1 periods were found during or immediately after steering.
Freedman, Benjamin R; Sheehan, Frances T; Lerner, Amy L
2015-10-01
Several factors are believed to contribute to patellofemoral joint function throughout knee flexion including patellofemoral (PF) kinematics, contact, and bone morphology. However, data evaluating the PF joint in this highly flexed state have been limited. Therefore, the purpose of this study was to evaluate patellofemoral contact and alignment in low (0°), moderate (60°), and deep (140°) knee flexion, and then correlate these parameters to each other, as well as to femoral morphology. Sagittal magnetic resonance images were acquired on 14 healthy female adult knees (RSRB approved) using a 1.5 T scanner with the knee in full extension, mid-flexion, and deep flexion. The patellofemoral cartilage contact area, lateral contact displacement (LCD), cartilage thickness, and lateral patellar displacement (LPD) throughout flexion were defined. Intra- and inter-rater repeatability measures were determined. Correlations between patellofemoral contact parameters, alignment, and sulcus morphology were calculated. Measurement repeatability ICCs ranged from 0.94 to 0.99. Patellofemoral cartilage contact area and thickness, LCD, and LPD were statistically different throughout all levels of flexion (p<0.001). The cartilage contact area was correlated to LPD, cartilage thickness, sulcus angle, and epicondylar width (r=0.47-0.72, p<0.05). This study provides a comprehensive analysis of the patellofemoral joint throughout its range of motion. This study agrees with past studies that investigated patellofemoral measures at a single flexion angle, and provides new insights into the relationship between patellofemoral contact and alignment at multiple flexion angles. The study provides a detailed analysis of the patellofemoral joint in vivo, and demonstrates the feasibility of using standard clinical magnetic resonance imaging scanners to image the knee joint in deep flexion. Copyright © 2015 Elsevier B.V. All rights reserved.
Postural alignment in children with Duchenne muscular dystrophy and its relationship with balance
Baptista, Cyntia R. J. A.; Costa, Andreia A.; Pizzato, Tatiana M.; Souza, Francine B.; Mattiello-Sverzut, Ana C.
2014-01-01
Background In Duchenne muscular dystrophy, functional deficits seem to arise from body misalignment, deconditioning, and obesity secondary to weakness and immobility. The question remains about the effects of postural deviations on the functional balance of these children. Objectives To identify and quantify postural deviations in children with DMD in comparison to non-affected children (eutrophic and overweight/obese), exploring relationships between posture and function. Method This case-control study evaluated 29 participants aged 6 to 11 years: 10 DMD (DG), 10 eutrophic (EG), and 9 overweight/obese (OG). Digital photogrammetry and SAPo program were used to measure postural alignment and the Pediatric Balance Scale (PBS) was used to measure balance. The Kruskall-Wallis and Dunn post-hoc tests were used for inter-group comparison of posture and balance. Spearman's coefficient tested the correlation between postural and balance variables. Results The horizontal pelvic alignment data indicated that the anteversion of the DG was similar to that of the OG and twice that of the EG (p<0.05). Compared to the EG, the DG and OG showed an increased forward position of the center of mass (p<0.05). There was a moderate and weak correlation between the PBS score and horizontal pelvic alignment (0.58 and 0.47-left/right). The PBS showed a weak correlation with asymmetries in the sagittal plane (-0.39). The PBS scores for the OG and EG suggest that obesity did not have a deleterious effect on balance. Conclusions The balance deficit in children with DMD was accompanied by an increased forward position of the center of mass and significant pelvic anteversion that constitutes a compensatory strategy to guarantee similar performance to the children not affected by the disease. PMID:24838810
Characterization of cartilage defects detected by MRI in Kellgren-Lawrence grade 0 or 1 knees.
Taguchi, Kenji; Chiba, Ko; Okazaki, Narihiro; Kido, Yasuo; Miyamoto, Takashi; Yonekura, Akihiko; Tomita, Masato; Uetani, Masataka; Osaki, Makoto
2017-09-01
Osteoarthritis of the knee is generally evaluated by plain X-rays, which are incapable of detecting small cartilage damage. There are some patients who have small cartilage defects on MRI with no abnormal findings on plain X-rays. In this study, the prevalence and regional characteristics of cartilage defects detected by MRI were studied in cases with normal X-ray findings (Kellgren-Lawrence grade 0 and 1). Relationships between the cartilage defects and OA risk factors such as obesity and leg alignment were also investigated. A total of 51 knees of Kellgren-Lawrence grade 0 or 1 without knee joint pain were included. Fat-suppressed spoiled-gradient recalled (SPGR) sagittal images were scanned by 3 T MRI, and the presence of cartilage damage was confirmed. Cartilage damage was visualized three-dimensionally, and its location and morphology were analyzed. On a full length standing radiograph of the lower extremities, leg alignment and other parameters were measured, and their associations with cartilage damage were analyzed. Cartilage defects were detected in 26% of women aged >50 years. Cartilage damage was located on the medial femoral condyle near the intercondylar notch, and was mostly elliptically shaped in the anteroposterior direction. Subjects with damaged cartilage were not obese and did not have abnormal leg alignment. It should be borne in mind that some elderly women may have damaged cartilage on the intercondylar notch side of the medial joint, even though plain X-rays appear normal, and this cannot be predicted by obesity or leg alignment. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Lionberger, David R; Weise, Jennifer; Ho, David M; Haddad, John L
2008-06-01
Forty-six primary total knee arthroplasties were performed using either an electromagnetic (EM) or infrared (IR) navigation system. In this IRB-approved study, patients were evaluated clinically and for accuracy using spiral computed tomographic imaging and 36-in standing radiographs. Although EM navigation was subject to metal interference, it was not as drastic as line-of-sight interference with IR navigation. Mechanical alignment was ideal in 92.9% of EM and 90.0% of IR cases based on spiral computed tomographic imaging and 100% of EM and 95% of IR cases based on x-ray. Individual measurements of component varus/valgus and sagittal measurements showed EM to be equivalent to IR, with both systems producing subdegree accuracy in 95% of the readings.
Major, Matthew J; Howard, David; Jones, Rebecca; Twiste, Martin
2012-06-01
Unlike sagittal plane prosthesis alignment, few studies have observed the effects of transverse plane alignment on gait and prosthesis behaviour. Changes in transverse plane rotation angle will rotate the points of loading on the prosthesis during stance and may alter its mechanical behaviour. This study observed the effects of increasing the external transverse plane rotation angle, or toe-out, on foot compression and effective lever arm of three commonly prescribed prosthetic feet. The roll-over shape of a SACH, Flex and single-axis foot was measured at four external rotation angle conditions (0°, 5°, 7° and 12° relative to neutral). Differences in foot compression between conditions were measured as average distance between roll-over shapes. Increasing the transverse plane rotation angle did not affect foot compression. However, it did affect the effective lever arm, which was maximized with the 5° condition, although differences between conditions were small. Increasing the transverse plane rotation angle of prosthetic feet by up to 12° beyond neutral has minimal effects on their mechanical behaviour in the plane of walking progression during weight-bearing.
Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook
2012-03-01
Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.
Tamai, Koji; Romanu, Joshua; Grisdela, Phillip; Paholpak, Permsak; Zheng, Pengfei; Nakamura, Hiroaki; Buser, Zorica; Wang, Jeffrey C
2018-01-31
Cervical sagittal vertical axis (cSVA) of ≥40 mm is recognized as the key factor of poor health-related quality of life, poor surgical outcomes, and correction loss after surgery for cervical deformity. However, little is known about the radiological characteristics of patients with cSVA≥40 mm. The purpose of this study was to identify the radiological characteristics of patients with cervical imbalance. Retrospective analysis of weight-bearing cervical magnetic resonance (MR) images. Consecutive 1,500 MR images of symptomatic patients in weight-bearing position. Cervical sagittal vertical axis, cervical alignment, cervical balance parameters (T1 slope, Co-C2 angle, C2-C7 angle, C7-T1 angle, neck tilt, and thoracic inlet angle), disc degeneration (Pfirmann and Suzuki classification), end plate degeneration (Modic change), spondylolisthesis (antero- and retrolisthesis), anteroposterior (AP) diameter of dural sac, cross-sectional area (CSA), and fat infiltration ratio of the transversospinalis muscles at C4 and C7 levels. Patients were divided into two groups: cSVA≥40 mm and cSVA<40 mm. Gender, age, and cervical alignment were analyzed. Subsequently, matched imbalance (cSVA≥40 mm) and control (<40 mm) groups were created using the propensity score to adjust for age, gender, and cervical alignment. Cervicothoracic angular parameters, disc degeneration, Modic change, spondylolisthesis, and degeneration of the transversospinalis muscles at C4 and C7 were compared. Variables with p<.05 were included in the multinomial logistic regression model to identify factors that relate to the cervical balance grouping. The incidence of patients with cervical imbalance was 2.5% (37 patients). Those patients had a higher incidence of kyphosis, were older, and there were more male patients. In the matched imbalance group, the T1 slope was greater (p=.028), C7-T1 lordotic angle was smaller (p<.001), the number of anterolisthesis was greater (p=.012), and the fat infiltration ratio at C4 and C7 was higher (p=.023, 0.030) compared with the control. Logistic regression analysis showed that the C7-T1 angle (adjusted odds ratio [aOR]=0.592, p=.001) and fat infiltration ratio at C7 level (aOR=1.178, p=.030) were significant independent variables. Smaller C7-T1 lordotic angle and severe muscle degeneration at C7 level were independent characteristics of patients with cervical imbalance. Copyright © 2018 Elsevier Inc. All rights reserved.
Sielatycki, John A; Armaghani, Sheyan; Silverberg, Arnold; McGirt, Matthew J; Devin, Clinton J; O'Neill, Kevin
2016-08-01
In cervical spondylotic myelopathy (CSM), cervical sagittal alignment (CSA) is associated with disease severity. Increased kyphosis and C2-C7 sagittal vertical axis (SVA) correlate with worse myelopathy and poor outcomes. However, when alignment is lordotic, it is unknown whether these associations persist. The study aimed to investigate the associations between CSA parameters and patient-reported outcomes (PROs) following posterior decompression and fusion for CSM when baseline lordosis is maintained. This is an analysis of a prospective surgical cohort at a single academic institution. The sample includes adult patients undergoing primary cervical laminectomy and fusion for CSM over a 3-year period. The PROs included EuroQol-5D, Short-Form-12 (SF-12) physical composite (PCS) and mental composite scales (MCS), Neck Disability Index, and the modified Japanese Orthopaedic Association scores. Radiographic CSA parameters measured included C1-C2 Cobb, C2-C7 Cobb, C1-C7 Cobb, C2-C7 SVA, C1-C7 SVA, and T1 slope. The PROs were recorded at baseline and at 3 and 12 months postoperatively. The CSA parameters were measured on standing radiographs in the neutral position at baseline and 3 months. Wilcoxon rank test was used to test for changes in PROs and CSA parameters, and Pearson correlation coefficients were calculated for CSA parameters and PROs preoperatively and at 12 months. No external sources of funding were used for this work. There were 45 patients included with an average age of 63 years who underwent posterior decompression and fusion of 3.7±1.3 levels. Significant improvements were found in all PROs except SF-12 MCS (p=.06). Small but statistically significant changes were found in C2-C7 Cobb (mean change: +3.6°; p=.03) and C2-C7 SVA (mean change: +3 mm; p=.01). At baseline, only C2-C7 SVA associated with worse SF-12 PCS scores (r=-0.34, p=.02). Postoperatively, there were no associations found between PROs and any CSA parameters. Similarly, no CSA parameters were associated with changes in PROs. Although creating more lordosis and decreasing SVA are associated with improved myelopathy and outcomes in patients with kyphosis, our study did not find such associationsin patients with lordosis undergoing posterior laminectomy and fusion for CSM. This suggests that any amount of lordosis may be sufficient. Copyright © 2016 Elsevier Inc. All rights reserved.
Bjerkefors, A; Tinmark, F; Nilsson, J; Arndt, A
2013-02-01
This study aimed to evaluate biomechanics during seated double-poling exercises in individuals with spinal cord injury (SCI) and to compare these with those of able-bodied persons (AB). 26 participants volunteered for the study; 13 with SCI (injury levels C7-T12), and 13 AB. A seated double-poling ergometer (SDPE) was developed. 3-dimensional kinematics was measured and piezoelectric force sensors were used to register force in both poles for calculation of power during incremental intensities. Significantly lower power outputs, (143.2 ± 51.1 vs. 198.3 ± 74.9 W) and pole forces (137.1 ± 43.1 vs. 238.2 ± 81.2 N) were observed during maximal effort in SCI compared to AB. Sagittal upper trunk range of motion increased with intensity and ranged from 6.1-34.8° for SCI, and 6.9-31.3° for AB, with larger peak amplitudes in flexion for AB (31.4 ± 12.9°) compared to SCI (10.0 ± 8.0°). All subjects with SCI were able to exercise on the SDPE. Upper body kinematics, power and force outputs increased with intensity in both groups, but were in general, lower in SCI. In conclusion, the SDPE could be successfully used at low to high work intensities enabling both endurance and strength training for individuals with SCI. © Georg Thieme Verlag KG Stuttgart · New York.
Wada, Osamu; Tateuchi, Hiroshige; Ichihashi, Noriaki
2014-01-01
Body rotation is associated with many activities. The concomitant movement of the center of mass (COM) is essential for effective body rotation. This movement is considered to be influenced by kinematic changes in the spine, pelvis, and hip joints. However, there is no research on the association between COM movement and kinematic changes during body rotation. We aimed to investigate the association between COM movement and the kinematics of the spine, pelvis, and hip joints during body rotation in standing. Twenty-four healthy men were included in the study. COM movement during active body rotation in a standing position was measured. We evaluated pelvic shift and changes in the angles of the spine, pelvis, and hip joints. We calculated the Pearson correlation coefficients to analyze the relationship between COM movement and kinematic changes in the spine, pelvis, and hip joints. There were significant correlations between lateral COM movement to the rotational side and pelvic shift to the rotational side, and between posterior COM movement and pelvic shift to the posterior side. In addition, lateral COM movement to the rotational side showed significant and negative correlation with spinal flexion and was significantly and positively correlated with the change in anterior pelvic tilt. Clinicians need to take particular note of both spinal and pelvic motion in the sagittal plane, as well as the pelvic shift, to speculate COM movement during body rotation in standing. Copyright © 2013 Elsevier B.V. All rights reserved.
Krieger, Elena; Drechsler, Thomas; Schmidtmann, Irene; Jacobs, Collin; Haag, Simeon; Wehrbein, Heinrich
2013-08-14
Objective of this study was to investigate the incidence and severity of apical root resorptions (ARR) during orthodontic treatment with aligners. The sample comprised 100 patients (17-75 years of age) with a class I occlusion and anterior crowding before treatment, treated exclusively with aligners (Invisalign®, Align Technologies, Santa Clara, CA, USA). The following teeth were assessed: upper and lower anterior teeth and first molars. Root and crown lengths of a total of 1600 teeth were measured twice in pre- and post-treatment panoramic radiographs. Afterwards, relative changes of the root length during treatment were calculated by a root-crown-ratio taking pre- and post-treatment root and crown lengths into consideration. A reduction of this ratio was considered as a shortening of the initial root length. Additionally, tooth movements of the front teeth were assessed by lateral cephalograms and the 3-dimensonal set up of each patient. All patients had a reduction of the pre-treatment root length with a minimum of two teeth. On average 7.36 teeth per patient were affected. 54% of 1600 measured teeth showed no measurable root reduction. A reduction of >0%-10% of the pre-treatment root length was found in 27.75%, a distinct reduction of >10%-20% in 11.94%. 6.31% of all teeth were affected with a considerable reduction of >20%. We found no statistically significant correlation between relative root length changes and the individual tooth, gender, age or sagittal and vertical orthodontic tooth movement; except for extrusion of upper front teeth, which was considered as not clinical relevant due to the small amount of mean 4% ARR. The present study is the first analyzing ARR in patients with a fully implemented orthodontic treatment with aligners (i.e. resolving anterior crowding). The variety was high and no clinical relevant influence factor could be detected. A minimum of two teeth with a root length reduction was found in every patient. On average, 7.36 teeth per patient were affected.
Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Kimura, Tomoatsu
2012-11-01
We developed a new technique for cervical pedicle screw and Magerl screw insertion using a 3-dimensional image guide. In posterior cervical spinal fusion surgery, instrumentation with screws is virtually routine. However, malpositioning of screws is not rare. To avoid complications during cervical pedicle screw and Magerl screw insertion, the authors developed a new technique which is a mold shaped to fit the lamina. Cervical pedicle screw fixation and Magerl screw fixation provide good correction of cervical alignment, rigid fixation, and a high fusion rate. However, malpositioning of screws is not a rare occurrence, and thus the insertion of screws has a potential risk of neurovascular injury. It is necessary to determine a safe insertion procedure for these screws. Preoperative computed tomographic (CT) scans of 1-mm slice thickness were obtained of the whole surgical area. The CT data were imported into a computer navigation system. We developed a 3-dimensional full-scale model of the patient's spine using a rapid prototyping technique from the CT data. Molds of the left and right sides at each vertebra were also constructed. One hole (2.0 mm in diameter and 2.0 cm in length) was made in each mold for the insertion of a screw guide. We performed a simulated surgery using the bone model and the mold before operation in all patients. The mold was firmly attached to the surface of the lamina and the guide wire was inserted using the intraoperative image of lateral vertebra. The proper insertion point, direction, and length of the guide were also confirmed both with the model bone and the image intensifier in the operative field. Then, drilling using a cannulated drill and tapping using a cannulated tapping device were carried out. Eleven consecutive patients who underwent posterior spinal fusion surgery using this technique since 2009 are included. The screw positions in the sagittal and axial planes were evaluated by postoperative CT scan to check for malpositioning. The screw insertion was done in the same manner as the simulated surgery. With the aid of this guide the pedicle screws and Magerl screws could be easily inserted even at the level where the pedicle seemed to be very thin and sclerotic on the CT scan. Postoperative CT scan showed that there were no critical breaches of the screws. This method employing the device using a 3-dimensional image guide seems to be easy and safe to use. The technique may improve the safety of pedicle screw and Magerl screw insertion even in difficult cases with narrow sclerotic pedicles.
Lam, Nicholas C K; Baker, Elizabeth B; Fishburn, Steven J; Hammer, Angie R; Petersen, Timothy R; Mariano, Edward R
2016-07-01
Learning ultrasound-guided regional anesthesia skills, especially needle/ beam alignment, can be especially difficulty for trainees, who can often become frustrated. We hypothesized that teaching novices to orient the transducer and needle perpendicular to their shoulders will improve performance on a standardized task, compared to holding the transducer and needle parallel to the shoulders. This study compared the effects of transducer orientation on trainees' ability to complete a standardized ultrasound-guided nerve block simulation. The time to task completion and percentage of the attempt time without adequate needle visualization were measured. Participants were right-handed healthy adults with no previous ultrasound experience and were randomly assigned to training in either transducer and needle alignment in a coronal plane, parallel to the shoulders (parallel group) or transducer and needle alignment in a sagittal plane, perpendicular to the shoulders (perpendicular group). Participants used ultrasound to direct a needle to 3 targets in a standardized gelatin phantom and repeated this task 3 times. Their efforts were timed and evaluated by an assessor, who was blinded to group assignment. Data were analyzed on 28 participants. The perpendicular group was able to complete the task more quickly (P < .001) and with a smaller proportion of time lost to inadequate needle visualization (P < .001). Ultrasound-guided regional anesthesia trainees complete a standardized task more quickly and efficiently when instructed to hold the transducer and needle in an orientation perpendicular to their shoulders.
Knikou, Maria; Kay, Elizabeth; Schmit, Brian D.
2007-01-01
Spinal integration of sensory signals associated with hip position, muscle loading, and cutaneous sensation of the foot contributes to movement regulation. The exact interactive effects of these sensory signals under controlled dynamic conditions are unknown. The purpose of the present study was to establish the effects of combined plantar cutaneous afferent excitation and hip movement on the Hoffmann (H) and flexion reflexes in people with a spinal cord injury (SCI). The flexion and H-reflexes were elicited through stimulation of the right sural (at non-nociceptive levels) and posterior tibial nerves respectively. Reflex responses were recorded from the ipsilateral tibialis anterior (TA) (flexion reflex) and soleus (H-reflex) muscles. The plantar cutaneous afferents were stimulated at three times the perceptual threshold (200 Hz, 24-ms pulse train) at conditioning–test intervals that ranged from 3 to 90 ms. Sinusoidal movements were imposed to the right hip joint at 0.2 Hz with subjects supine. Control and conditioned reflexes were recorded as the hip moved in flexion and extension. Leg muscle activity and sagittal-plane joint torques were recorded. We found that excitation of plantar cutaneous afferents facilitated the soleus H-reflex and the long latency flexion reflex during hip extension. In contrast, the short latency flexion reflex was depressed by plantar cutaneous stimulation during hip flexion. Oscillatory joint forces were present during the transition phase of the hip movement from flexion to extension when stimuli were delivered during hip flexion. Hip-mediated input interacts with feedback from the foot sole to facilitate extensor and flexor reflex activity during the extension phase of movement. The interactive effects of these sensory signals may be a feature of impaired gait, but when they are appropriately excited, they may contribute to locomotion recovery in these patients. PMID:17543951