Sample records for sagittarius dwarf tidal

  1. A spatial characterization of the Sagittarius dwarf galaxy tidal tails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Matthew; Cole, Nathan; Newberg, Heidi Jo

    2013-06-01

    We measure the spatial density of F turnoff stars in the Sagittarius dwarf tidal stream, from Sloan Digital Sky Survey data, using statistical photometric parallax. We find a set of continuous, consistent parameters that describe the leading Sgr stream's position, direction, and width for 15 stripes in the north Galactic cap, and three stripes in the south Galactic cap. We produce a catalog of stars that has the density characteristics of the dominant leading Sgr tidal stream that can be compared with simulations. We find that the width of the leading (north) tidal tail is consistent with recent triaxial andmore » axisymmetric halo model simulations. The density along the stream is roughly consistent with common disruption models in the north, but possibly not in the south. We explore the possibility that one or more of the dominant Sgr streams has been misidentified, and that one or more of the ''bifurcated'' pieces is the real Sgr tidal tail, but we do not reach definite conclusions. If two dwarf progenitors are assumed, fits to the planes of the dominant and ''bifurcated'' tidal tails favor an association of the Sgr dwarf spheroidal galaxy with the dominant southern stream and the ''bifurcated'' stream in the north. In the north Galactic cap, the best fit Hernquist density profile for the smooth component of the stellar halo is oblate, with a flattening parameter q = 0.53, and a scale length of r {sub 0} = 6.73. The southern data for both the tidal debris and the smooth component of the stellar halo do not match the model fits to the north, although the stellar halo is still overwhelmingly oblate. Finally, we verify that we can reproduce the parameter fits on the asynchronous MilkyWay@home volunteer computing platform.« less

  2. Effects of the Sagittarius dwarf tidal stream on dark matter detectors.

    PubMed

    Freese, Katherine; Gondolo, Paolo; Newberg, Heidi Jo; Lewis, Matthew

    2004-03-19

    The Sagittarius dwarf tidal stream may be showering dark matter onto the solar neighborhood, which can change the results and interpretation of direct detection searches for weakly interacting massive particles (WIMPs). Stars in the stream may already have been detected in the solar neighborhood, and the dark matter in the stream is (0.3-25)% of the local density. Experiments should see an annually modulated steplike feature in the energy recoil spectrum that would be a smoking gun for WIMP detection. The total count rate in detectors is not a cosine curve in time and peaks at a different time of year than the standard case.

  3. Recreating the chemical evolution of the Sagittarius dwarf spheroidal from its tidal debris

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sheffield, Allyson; Cunha, Katia M. L.; Smith, Verne V.

    2018-06-01

    We present a detailed chemical analysis of the Sagittarius (Sgr) tidal stream based on high-resolution Gemini+GRACES spectra of 42 members of the highest surface brightness portions of both the trailing and leading arms of the Sgr stream. We select Sgr tidal stream candidates using a 2MASS+WISE color-color selection, combined with LAMOST radial velocities, allowing us to efficiently select Sgr stream members with little contamination from field stars. Sgr is a recently infallen, currently disrupting dwarf spheroidal galaxy, with roughly 70% of the luminosity of the Sgr system residing in the tidal streams. With this study, we provide a link between the (known) chemical properties in the intact Sgr core and the significant portion of the Sgr system's luminosity that is estimated to currently reside in the streams. In this talk, we focus on abundances of alpha-elements, but we will also analyze neutron-capture (both r- and s-process) and iron-peak species. We compare our chemical abundances to the few existing measurements in the stream as well as the numerous results in the Sgr core.

  4. RR Lyrae in Sagittarius Dwarf Globular Clusters (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Pritzl, B. J.; Gehrman, T. J.; Bell, E.; Salinas, R.; Smith, H. A.; Catelan, M.

    2016-12-01

    (Abstract only) The Milky Way Galaxy was built up in part by the cannibalization of smaller dwarf galaxies. Some of them likely contained globular clusters. The Sagittarius dwarf galaxy provides a unique opportunity to study a system of globular clusters that originated outside the Milky Way. We have investigated the RR Lyrae populations in two Sagittarius globular clusters, Arp 2 and Terzan 8. The RR Lyrae are used to study the properties of the clusters and to compare this system to Milky Way globular clusters. We will discuss whether or not dwarf galaxies similar to the Sagittarius dwarf galaxy could have played a role in the formation of the Milky Way Galaxy.

  5. The globular cluster NGC 7492 and the Sagittarius tidal stream: together but unmixed

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, J. A.; Corral-Santana, J. M.; Catelan, M.; Martínez-Delgado, D.; Muñoz, R. R.; Sollima, A.; Navarrete, C.; Duffau, S.; Côté, P.; Mora, M. D.

    2018-03-01

    We have derived from VIMOS spectroscopy the radial velocities for a sample of 71 stars selected from CFHT/Megacam photometry around the Galactic globular cluster NGC 7492. In the resulting velocity distribution, it is possible to distinguish two relevant non-Galactic kinematic components along the same line of sight: a group of stars at 〈vr〉 ˜ 125 km s-1 which is compatible with the velocity of the old leading arm of the Sagittarius tidal stream, and a larger number of objects at 〈vr〉 ˜ -110 km s-1 that might be identified as members of the trailing wrap of the same stream. The systemic velocity of NGC 7492 set at vr ˜ -177 km s-1 differs significantly from that of both components, thus our results confirm that this cluster is not one of the globular clusters deposited by the Sagittarius dwarf spheroidal in the Galactic halo, even if it is immersed in the stream. A group of stars with 〈vr〉 ˜ - 180 km s-1 might be comprised of cluster members along one of the tidal tails of NGC 7492.

  6. Tracing the properties of the Sagittarius stream across the sky with LAMOST spectra

    NASA Astrophysics Data System (ADS)

    Walder, Madison Victoria; Carlin, Jeffrey

    2018-01-01

    The Sagittarius dwarf galaxy is a satellite that is currently being consumed by the Milky Way’s gravity. Its disruption has created the most prominent and widely studied tidal stream in our halo which wraps around our Galaxy with its leading arm in the northern Galactic hemisphere and its trailing arm in the southern hemisphere. Using optical spectra collected by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey, we identify stars that belong to the Sagittarius tidal stream based on their positions, distances, velocities, stellar parameters, and metallicities. We trace the velocity, metallicity, and distance of the Sagittarius stream over 200 degrees of its extent on the sky using a homogenous spectroscopic data set. In doing this, we will be able to trace the stream in regions where the disk of the Galaxy makes it difficult to distinguish Sagittarius members from the far more numerous foreground stars, and therefore use the entirety of the stream to deepen our understanding of tidal disruption. We use the spectroscopic metallicities from LAMOST to derive the metallicity as a function of position along the stream, providing an important probe of the ongoing process of tidal disruption, and a window into the stellar populations that made up the Sagittarius dwarf before its cannibalization by the Milky Way.

  7. Stellar streams as gravitational experiments. I. The case of Sagittarius

    NASA Astrophysics Data System (ADS)

    Thomas, Guillaume F.; Famaey, Benoit; Ibata, Rodrigo; Lüghausen, Fabian; Kroupa, Pavel

    2017-07-01

    Tidal streams of disrupting dwarf galaxies orbiting around their host galaxy offer a unique way to constrain the shape of galactic gravitational potentials. Such streams can be used as "leaning tower" gravitational experiments on galactic scales. The most well-motivated modification of gravity proposed as an alternative to dark matter on galactic scales is Milgromian dynamics (MOND), and we present here the first ever N-body simulations of the dynamical evolution of the disrupting Sagittarius dwarf galaxy in this framework. Using a realistic baryonic mass model for the Milky Way, we attempt to reproduce the present-day spatial and kinematic structure of the Sagittarius dwarf and its immense tidal stream that wraps around the Milky Way. With very little freedom on the original structure of the progenitor, constrained by the total luminosity of the Sagittarius structure and by the observed stellar mass-size relation for isolated dwarf galaxies, we find reasonable agreement between our simulations and observations of this system. The observed stellar velocities in the leading arm can be reproduced if we include a massive hot gas corona around the Milky Way that is flattened in the direction of the principal plane of its satellites. This is the first time that tidal dissolution in MOND has been tested rigorously at these mass and acceleration scales. The movie associated to Fig. 6 is available at http://www.aanda.org

  8. Assessing the Milky Way Satellites Associated with the Sagittarius Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Law, David R.; Majewski, Steven R.

    2010-08-01

    Numerical models of the tidal disruption of the Sagittarius (Sgr) dwarf galaxy have recently been developed that for the first time simultaneously satisfy most observational constraints on the angular position, distance, and radial velocity trends of both leading and trailing tidal streams emanating from the dwarf. We use these dynamical models in combination with extant three-dimensional position and velocity data for Galactic globular clusters and dSph galaxies to identify those Milky Way satellites that are likely to have originally formed in the gravitational potential well of the Sgr dwarf, and have been stripped from Sgr during its extended interaction with the Milky Way. We conclude that the globular clusters Arp 2, M 54, NGC 5634, Terzan 8, and Whiting 1 are almost certainly associated with the Sgr dwarf, and that Berkeley 29, NGC 5053, Pal 12, and Terzan 7 are likely to be as well (albeit at lower confidence). The initial Sgr system therefore may have contained five to nine globular clusters, corresponding to a specific frequency SN = 5-9 for an initial Sgr luminosity MV = -15.0. Our result is consistent with the 8 ± 2 genuine Sgr globular clusters expected on the basis of statistical modeling of the Galactic globular cluster distribution and the corresponding false-association rate due to chance alignments with the Sgr streams. The globular clusters identified as most likely to be associated with Sgr are consistent with previous reconstructions of the Sgr age-metallicity relation, and show no evidence for a second-parameter effect shaping their horizontal branch morphologies. We find no statistically significant evidence to suggest that any of the recently discovered population of ultrafaint dwarf galaxies are associated with the Sgr tidal streams, but are unable to rule out this possibility conclusively for all systems.

  9. The Sagittarius tidal stream as a gravitationnal experiment in the Milky Way

    NASA Astrophysics Data System (ADS)

    Thomas, G. F.; Famaey, B.; Ibata, R.; Lüghausen, F.; Kroupa, P.

    2015-12-01

    Modified Newtonian Dynamics (MOND or Milgromian dynamics) gives a successful description of many galaxy properties that are hard to understand in the classical framework. The rotation curves of spiral galaxies are, for instance, perfectly reproduced and understood within this framework. Nevertheless, rotation curves only trace the potential in the galactic plane, and it is thus useful to test the shape of the potential outside the plane. Here we use the Sagittarius tidal stream as a gravitational experiment in the Milky Way, in order to check whether MOND can explain both its characteristics and those of the remnant dwarf spheroidal galaxy progenitor. We show that a MOND model of the Sagittarius stream can both perfectly reproduce the observed positions of stars in the stream, and even more strikingly, perfectly reproduce the observed properties of the remnant. Nevertheless, this first model does not reproduce well the observed radial velocities, which could be a signature of a rotating component in the progenitor or of the presence of a massive hot gaseous halo around the Milky Way.

  10. Solo dwarfs I: survey introduction and first results for the Sagittarius dwarf irregular galaxy

    NASA Astrophysics Data System (ADS)

    Higgs, C. R.; McConnachie, A. W.; Irwin, M.; Bate, N. F.; Lewis, G. F.; Walker, M. G.; Côté, P.; Venn, K.; Battaglia, G.

    2016-05-01

    We introduce the Solitary Local dwarfs survey (Solo), a wide-field photometric study targeting every isolated dwarf galaxy within 3 Mpc of the Milky Way. Solo is based on (u)gi multiband imaging from Canada-France-Hawaii Telescope/MegaCam for northern targets, and Magellan/Megacam for southern targets. All galaxies fainter than MV ≃ -18 situated beyond the nominal virial radius of the Milky Way and M31 (≳300 kpc) are included in this volume-limited sample, for a total of 42 targets. In addition to reviewing the survey goals and strategy, we present results for the Sagittarius dwarf irregular galaxy (Sag DIG), one of the most isolated, low-mass galaxies, located at the edge of the Local Group. We analyse its resolved stellar populations and their spatial distributions. We provide updated estimates of its central surface brightness and integrated luminosity, and trace its surface brightness profile to a level fainter than 30 mag arcsec-2. Sag DIG is well described by a highly elliptical (disc-like) system following a single component Sérsic model. However, a low-level distortion is present at the outer edges of the galaxy that, were Sag DIG not so isolated, would likely be attributed to some kind of previous tidal interaction. Further, we find evidence of an extremely low level, extended distribution of stars beyond ˜5 arcmin (>1.5 kpc) that suggests Sag DIG may be embedded in a very low-density stellar halo. We compare the stellar and H I structures of Sag DIG, and discuss results for this galaxy in relation to other isolated, dwarf irregular galaxies in the Local Group.

  11. Mapping the Tidal Destruction of the Hercules Dwarf: A Wide-field DECam Imaging Search for RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Willman, Beth; Sand, David J.; Hargis, Jonathan; Crnojević, Denija; Bechtol, Keith; Carlin, Jeffrey L.; Strader, Jay; Zou, Hu; Zhou, Xu; Nie, Jundan; Zhang, Tianmeng; Zhou, Zhimin; Peng, Xiyan

    2018-01-01

    We investigate the hypothesized tidal disruption of the Hercules ultra-faint dwarf galaxy (UFD). Previous tidal disruption studies of the Hercules UFD have been hindered by the high degree of foreground contamination in the direction of the dwarf. We bypass this issue by using RR Lyrae stars, which are standard candles with a very low field-volume density at the distance of Hercules. We use wide-field imaging from the Dark Energy Camera on CTIO to identify candidate RR Lyrae stars, supplemented with observations taken in coordination with the Beijing–Arizona Sky Survey on the Bok Telescope. Combining color, magnitude, and light-curve information, we identify three new RR Lyrae stars associated with Hercules. All three of these new RR Lyrae stars lie outside its published tidal radius. When considered with the nine RR Lyrae stars already known within the tidal radius, these results suggest that a substantial fraction of Hercules’ stellar content has been stripped. With this degree of tidal disruption, Hercules is an interesting case between a visibly disrupted dwarf (such as the Sagittarius dwarf spheroidal galaxy) and one in dynamic equilibrium. The degree of disruption also shows that we must be more careful with the ways we determine object membership when estimating dwarf masses in the future. One of the three discovered RR Lyrae stars sits along the minor axis of Hercules, but over two tidal radii away. This type of debris is consistent with recent models that suggest Hercules’ orbit is aligned with its minor axis.

  12. The sagittarius tidal stream and the shape of the galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Newby, Matthew T.

    The stellar halo that surrounds our Galaxy contains clues to understanding galaxy formation, cosmology, stellar evolution, and the nature of dark matter. Gravitationally disrupted dwarf galaxies form tidal streams, which roughly trace orbits through the Galactic halo. The Sagittarius (Sgr) dwarf tidal debris is the most dominant of these streams, and its properties place important constraints on the distribution of mass (including dark matter) in the Galaxy. Stars not associated with substructures form the "smooth" component of the stellar halo, the origin of which is still under investigation. Characterizing halo substructures such as the Sgr stream and the smooth halo provides valuable information on the formation history and evolution of our galaxy, and places constraints on cosmological models. This thesis is primarily concerned with characterizing the 3-dimensional stellar densities of the Sgr tidal debris system and the smooth stellar halo, using data from the Sloan Digital Sky Survey (SDSS). F turnoff stars are used to infer distances, as they are relatively bright, numerous, and distributed about a single intrinsic brightness (magnitude). The inherent spread in brightnesses of these stars is overcome through the use of the recently-developed technique of statistical photometric parallax, in which the bulk properties of a stellar population are used to create a probability distribution for a given star's distance. This was used to build a spatial density model for the smooth stellar halo and tidal streams. The free parameters in this model are then fit to SDSS data with a maximum likelihood technique, and the parameters are optimized by advanced computational methods. Several computing platforms are used in this study, including the RPI SUR Bluegene and the Milkyway home volunteer computing project. Fits to the Sgr stream in 18 SDSS data stripes were performed, and a continuous density profile is found for the major Sgr stream. The stellar halo is found to

  13. Chemical evolution and stellar populations in the Sagittarius dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Sbordone, L.; Bonifacio, P.; Giuffrida, G.; Marconi, G.; Monaco, L.; Zaggia, S.

    2007-05-01

    The closest neighbour of the Milky Way (MW), the Sagittarius dwarf Spheroidal Galaxy (Sgr dSph) is being tidally destroyed by the interaction with our Galaxy, losing its stellar content along a huge stream clearly detectable within the Halo. This makes the Sgr dSph an ideal laboratory to study at the same time the chemical evolution of dwarf galaxies and their role in building bigger structures such as the MW. Since some years we are studying the stellar populations of the Sgr main body and stream, with particular attention to their detailed chemical composition. We collected detailed abundances (up to 22 elements, O to Eu) for 27 stars in the Sgr dSph main body, 5 in the associated globular cluster Terzan 7, and 12 more in the trailing Sgr tidal arm (UVES@VLT and SARG@TNG data). We are also conducting a large FLAMES@VLT chemical and dynamical analysis aimed at obtaining metallicities, alpha-elements content and radial velocities from automated analysis of the spectra. Finally, we just completed the first large scale photometric and spectroscopic survey of the stellar populations across all the dSph main body extension with VIMOS@VLT, aimed at exploring the variations in stellar populations and at deriving radial velocity memberships for future high resolution spectroscopic analysis. The picture emerging from all these studies portraits a large and extremely complex object, with signs of a long and still unclear evolution. Metallicity varies across three orders of magnitude ([Fe/H] from -3 to 0), CMDs change surprisingly from the core to the outskirts of the galaxy, and the chemical composition of the most metal rich objects show a very characteristic signature, with underabundant alpha elements, deficient Na, underabundant Fe-peak Mn, Co, Ni, Cu and Zn, and strongly enhanced n-capture elements La and Nd. This highly peculiar "signature" can also be effectively used to recognized stripped populations lost by Sgr in favour of the MW system, as clearly showed by the

  14. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    NASA Astrophysics Data System (ADS)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  15. On the Nature of Ultra-faint Dwarf Galaxy Candidates. II. The Case of Cetus II

    NASA Astrophysics Data System (ADS)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-04-01

    We obtained deep Gemini GMOS-S g, r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity, and stellar population. Cetus II is an important object in the size–luminosity plane, as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (r h ∼ 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the color–magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = ‑1.28 dex, an [α/Fe] = 0.0 dex at a heliocentric distance of 26.3 ± 1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy’s Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.

  16. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    NASA Astrophysics Data System (ADS)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  17. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy System

    NASA Astrophysics Data System (ADS)

    Hasselquist, Sten; Shetrone, Matthew D.; Smith, Verne V.; Holtzman, Jon A.; McWilliam, Andrew; APOGEE Team

    2018-06-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze the chemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] > -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function. We then exploit the unique chemical abundance patters of the Sgr core to trace stars belonging to the Sgr tidal streams elsewhere in the Milky Way.

  18. The Sagittarius dwarf galaxy: Where did all the gas go?

    NASA Astrophysics Data System (ADS)

    Tepper-García, Thor; Bland-Hawthorn, Joss

    2018-05-01

    The remarkable 1994 discovery of the Sagittarius dwarf galaxy (Sgr) revealed that, together with the Magellanic Clouds, there are at least three major dwarf galaxies, each with a total mass of order 1010 - 1011M⊙, falling onto the Galaxy in the present epoch. Beyond a Galactic radius of 300 kpc, dwarfs tend to retain their gas. At roughly 50 kpc, the Magellanic Clouds have experienced substantial gas stripping as evidenced by the Magellanic Stream which extends from them. Since Sgr experienced star formation long after it fell into the Galaxy, it is interesting to explore just how and when this dwarf lost its gas. To date, there has been no definitive detection of an associated gas component. We revisit recent simulations of the stellar and dark matter components of Sgr but, for the first time, include gas that is initially bound to the infalling galaxy. We find that the gas stripping was 30 - 50% complete at its first disc crossing ˜2.7 Gyr ago, then entirely stripped at its last disc crossing ˜1 Gyr ago. Our timeline is consistent with the last substantial burst of star formation in Sgr which occurred about the time of the last disc crossing. We discuss the consequences of gas stripping and conclude that the vast majority of the stripped gas was fully settled onto the Galaxy by ˜300 Myr ago. It is highly unlikely that any of the high- or intermediate-velocity clouds have a direct association with the Sgr dwarf.

  19. Characterizing Milky Way Tidal Streams and Dark Matter with MilkyWay@home

    NASA Astrophysics Data System (ADS)

    Newberg, Heidi Jo; Shelton, Siddhartha; Weiss, Jake

    2018-01-01

    MilkyWay@home is a 0.5 PetaFLOPS volunteer computing platform that is mapping out the density substructure of the Sagittarius Dwarf Tidal Stream, the so-called bifurcated portion of the Sagittarius Stream, and the Virgo Overdensity, using turnoff stars from the Sloan Digital Sky Survey. It is also using the density of stars along tidal streams such as the Orphan Stream to constrain properties of the dwarf galaxy progenitor of this stream, including the dark matter portion. Both of these programs are enabled by a specially-built optimization package that uses differential evolution or particle swarm methods to find the optimal model parameters to fit a set of data. To fit the density of tidal streams, 20 parameters are simultaneously fit to each 2.5-degree-wide stripe of SDSS data. Five parameters describing the stellar and dark matter profile of the Orphan Stream progenitor and the time that the dwarf galaxy has been evolved through the Galactic potential are used in an n-body simulation that is then fit to observations of the Orphan Stream. New results from MilkyWay@home will be presented. This project was supported by NSF grant AST 16-15688, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.

  20. The frequency and properties of young tidal dwarf galaxies in nearby groups

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2017-03-01

    We present the results of a multi-wavelength investigation of the dwarf galaxy populations in three interacting galaxy groups: NGC 871/6/7, NGC 3166/9, NGC 4725/47. Using degree-scale Giant Metrewave Radio Telescope Hi mosaics and deep optical photometry from the Canada-France-Hawaii Telescope, we measured the Hi and stellar properties of the gas-rich low-mass group members to classify each one as a classical dwarf galaxy, a short-lived tidal knot or a tidal dwarf galaxy (TDG). Our observations detect several dwarf irregulars and various tidal knots. We identify four potentially long-lived tidal objects in the three groups, implying that TDGs are not readily produced. The tidal objects examined in this small survey also appear to have a wider variety of properties than TDGs formed in current simulations.

  1. Ultrahigh-energy cosmic rays from tidally-ignited white dwarfs

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Silk, Joseph

    2017-11-01

    Ultrahigh-energy cosmic rays (UHECRs) can be accelerated by tidal disruption events of stars by black holes. We suggest a novel mechanism for UHECR acceleration wherein white dwarfs (WDs) are tidally compressed by intermediate-mass black holes (IMBHs), leading to their ignition and subsequent explosion as a supernova. Cosmic rays accelerated by the supernova may receive an energy boost when crossing the accretion-powered jet. The rate of encounters between WDs and IMBHs can be relatively high, as the number of IMBHs may be substantially augmented once account is taken of their likely presence in dwarf galaxies. Here we show that this kind of tidal disruption event naturally provides an intermediate composition for the observed UHECRs, and suggest that dwarf galaxies and globular clusters are suitable sites for particle acceleration to ultrahigh energies.

  2. Structural parameters and blue stragglers in Sagittarius dwarf spheroidal galaxy globular clusters

    NASA Astrophysics Data System (ADS)

    Salinas, Ricardo; Jílková, Lucie; Carraro, Giovanni; Catelan, Márcio; Amigo, Pía.

    2012-04-01

    We present BV photometry of four Sagittarius dwarf spheroidal galaxy globular clusters: Arp 2, NGC 5634, Palomar 12 and Terzan 8, obtained with the Danish Telescope at ESO La Silla. We measure the structural parameters of the clusters using a King profile fitting, obtaining the first reliable measurements of the tidal radius of Arp 2 and Terzan 8. These two clusters are remarkably extended and with low concentrations; with a concentration of only c= 0.41 ± 0.02, Terzan 8 is less concentrated than any cluster in our Galaxy. Blue stragglers are identified in the four clusters, and their spatial distribution is compared to those of horizontal branch and red giant branch stars. The blue straggler properties do not provide evidence of mass segregation in Terzan 8, while Arp 2 probably shares the same status, although with less confidence. In the case of NGC 5634 and Palomar 12, blue stragglers are significantly less populous, and their analysis suggests that the two clusters have probably undergone mass segregation. References: (1) Peterson (1976); (2) Kron, Hewitt & Wasserman (1984); (3) Chernoff & Djorgovski (1989); (4) Trager, Djorgovski & King (1993); (5) Trager et al. (1995); (6) Rosenberg et al. (1998); (7) Mackey & Gilmore (2003b); (8) McLaughlin & van der Marel (2005) and (9) Carballo-Bello et al. (2012).

  3. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the

  4. The Sagittarius Dwarf Galaxy Survey (SDGS) - II. The stellar content and constraints on the star formation history

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Ferraro, F. R.; Buonanno, R.

    1999-08-01

    A detailed study of the star formation history of the Sagittarius dwarf spheroidal galaxy is performed through the analysis of data from the Sagittarius Dwarf Galaxy Survey (SDGS). Accurate statistical decontamination of the SDGS colour-magnitude diagrams (CMDs) allows us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different regions of the galaxy. A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]~-2.0 to [Fe/H]~-0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the star formation history of the Sgr dSph is derived. According to this scheme, star formation began at a very early time from a low metal content interstellar medium and lasted for severalGyr, coupled with progressive chemical enrichment. The star formation rate (SFR) had a peak from 8 to 10Gyr ago, when the mean metallicity was in the range -1.3<=[Fe/H]<=-0.7. After that maximum, the SFR rapidly decreased and a very low rate of star formation took place until ~1-0.5Gyr ago.

  5. Identifying old Tidal Dwarf Galaxies in Simulations and in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Bournaud, F.; Masset, F. S.

    2004-06-01

    Most Tidal Dwarf Galaxies (TDGs) so-far discussed in the literature may be considered as young ones or even newborns, as they are still physically linked to their parent galaxies by an umbilical cord: the tidal tail at the tip of which they are usually observed. Old Tidal Dwarf Galaxies, completely detached from their progenitors, are still to be found. Using N-body numerical simulations, we have shown that tidal objects as massive as 109 solar masses may be formed in interacting systems and survive for more than one Gyr. Old TDGs should hence exist in the Universe. They may be identified looking at a peculiarity of their ``genetic identity card": a relatively high abundance in heavy elements, inherited from their parent galaxies. Finally, using this technique, we revisit the dwarf galaxies in the local Universe trying to find arguments pro and con a tidal origin.

  6. Dwarf Galaxies Swimming in Tidal Tails

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground.

    Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born.

    The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light.

    This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  7. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Hasselquist, Sten; Shetrone, Matthew; Smith, Verne; Holtzman, Jon; McWilliam, Andrew; Fernández-Trincado, J. G.; Beers, Timothy C.; Majewski, Steven R.; Nidever, David L.; Tang, Baitian; Tissera, Patricia B.; Fernández Alvar, Emma; Allende Prieto, Carlos; Almeida, Andres; Anguiano, Borja; Battaglia, Giuseppina; Carigi, Leticia; Delgado Inglada, Gloria; Frinchaboy, Peter; García-Hernández, D. A.; Geisler, Doug; Minniti, Dante; Placco, Vinicius M.; Schultheis, Mathias; Sobeck, Jennifer; Villanova, Sandro

    2017-08-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  8. Chemistry and Kinematics of the Late-forming Dwarf Irregular Galaxies Leo A, Aquarius, and Sagittarius DIG

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Rizzi, Luca; Held, Enrico V.; Cohen, Judith G.; Cole, Andrew A.; Manning, Ellen M.; Skillman, Evan D.; Weisz, Daniel R.

    2017-01-01

    We present Keck/DEIMOS spectroscopy of individual stars in the relatively isolated Local Group dwarf galaxies Leo A, Aquarius, and the Sagittarius dwarf irregular galaxy. The three galaxies—but especially Leo A and Aquarius—share in common delayed star formation histories (SFHs) relative to many other isolated dwarf galaxies. The stars in all three galaxies are supported by dispersion. We found no evidence of stellar velocity structure, even for Aquarius, which has rotating H I gas. The velocity dispersions indicate that all three galaxies are dark-matter-dominated, with dark-to-baryonic mass ratios ranging from {4.4}-0.8+1.0 (SagDIG) to {9.6}-1.8+2.5 (Aquarius). Leo A and SagDIG have lower stellar metallicities than Aquarius, and they also have higher gas fractions, both of which would be expected if Aquarius were further along in its chemical evolution. The metallicity distribution of Leo A is inconsistent with a closed or leaky box model of chemical evolution, suggesting that the galaxy was pre-enriched or acquired external gas during star formation. The metallicities of stars increased steadily for all three galaxies, but possibly at different rates. The [α/Fe] ratios at a given [Fe/H] are lower than that of the Sculptor dwarf spheroidal galaxy, which indicates more extended SFHs than Sculptor, consistent with photometrically derived SFHs. Overall, the bulk kinematic and chemical properties for the late-forming dwarf galaxies do not diverge significantly from those of less delayed dwarf galaxies, including dwarf spheroidal galaxies. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  9. Tidal disruption of dwarf spheroidal galaxies: the strange case of Crater II

    NASA Astrophysics Data System (ADS)

    Sanders, Jason L.; Evans, N. W.; Dehnen, W.

    2018-05-01

    Dwarf spheroidal galaxies of the Local Group obey a relationship between the line-of-sight velocity dispersion and half-light radius, although there are a number of dwarfs that lie beneath this relation with suppressed velocity dispersion. The most discrepant of these (in the Milky Way) is the `feeble giant' Crater II. Using analytic arguments supported by controlled numerical simulations of tidally-stripped flattened two-component dwarf galaxies, we investigate interpretations of Crater II within standard galaxy formation theory. Heavy tidal disruption is necessary to explain the velocity-dispersion suppression which is plausible if the proper motion of Crater II is (μα*, μδ) = ( - 0.21 ± 0.09, -0.24 ± 0.09)mas yr-1. Furthermore, we demonstrate that the velocity dispersion of tidally-disrupted systems is solely a function of the total mass loss even for weakly-embedded and flattened systems. The half-light radius evolution depends more sensitively on orbital phase and the properties of the dark matter profile. The half-light radius of weakly-embedded cusped systems rapidly decreases producing some tension with the Crater II observations. This tension is alleviated by cored dark matter profiles, in which the half-light radius can grow after tidal disruption. The evolution of flattened galaxies is characterised by two competing effects: tidal shocking makes the central regions rounder whilst tidal distortion produces a prolate tidally-locked outer envelope. After ˜70% of the central mass is lost, tidal distortion becomes the dominant effect and the shape of the central regions of the galaxy tends to a universal prolate shape irrespective of the initial shape.

  10. 3D hydrodynamic simulations of tidal disruption of terrestrial planets around white dwarfs

    NASA Astrophysics Data System (ADS)

    Liu, Shangfei; Zhang, Jinsu; Lin, Douglas N. C.

    2018-01-01

    Recent K2 mission spotted striking variability due to a group of minor bodies transiting white dwarf WD 1145+017 with periods ranging from 4.5 hours to 4.9 hours. One of the formation scenarios is that those transiting objects are the debris of a tidally disrupted minor planet. This scenario is consistent with fact that the white dwarf also hosts a dusty disk and displays strong metal atmospheric pollution. In this work, we perform state-of-the-art three-dimensional hydrodynamic simulations to study the consequences of tidal disruption of planets with various differentiated compositions by a white dwarf. We study the general outcomes of tidal disruption including partially disruption and total disruption. We also apply our results to the WD 1145+017 system to infer the physical and orbital properties of the progenitor.

  11. Tidal dwarf galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Ploeckinger, Sylvia; Sharma, Kuldeep; Schaye, Joop; Crain, Robert A.; Schaller, Matthieu; Barber, Christopher

    2018-02-01

    The formation and evolution of gravitationally bound, star forming substructures in tidal tails of interacting galaxies, called tidal dwarf galaxies (TDG), has been studied, until now, only in idealized simulations of individual pairs of interacting galaxies for pre-determined orbits, mass ratios and gas fractions. Here, we present the first identification of TDG candidates in fully cosmological simulations, specifically the high-resolution simulations of the EAGLE suite. The finite resolution of the simulation limits their ability to predict the exact formation rate and survival time-scale of TDGs, but we show that gravitationally bound baryonic structures in tidal arms already form in current state-of-the-art cosmological simulations. In this case, the orbital parameter, disc orientations as well as stellar and gas masses and the specific angular momentum of the TDG forming galaxies are a direct consequence of cosmic structure formation. We identify TDG candidates in a wide range of environments, such as multiple galaxy mergers, clumpy high-redshift (up to z = 2) galaxies, high-speed encounters and tidal interactions with gas-poor galaxies. We present selection methods, the properties of the identified TDG candidates and a road map for more quantitative analyses using future high-resolution simulations.

  12. The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2016-08-01

    We present high-resolution Giant Metrewave Radio Telescope (GMRT) H I observations and deep Canada-France-Hawaii Telescope (CFHT) optical imaging of two galaxy groups: NGC 4725/47 and NGC 3166/9. These data are part of a multi-wavelength unbiased survey of the gas-rich dwarf galaxy populations in three nearby interacting galaxy groups. The NGC 4725/47 group hosts two tidal knots and one dwarf irregular galaxy (dIrr). Both tidal knots are located within a prominent H I tidal tail, appear to have sufficient mass (Mgas ≈ 108 M⊙) to evolve into long-lived tidal dwarf galaxies (TDGs) and are fairly young in age. The NGC 3166/9 group contains a TDG candidate, AGC 208457, at least three dIrrs and four H I knots. Deep CFHT imaging confirms that the optical component of AGC 208457 is bluer - with a 0.28 mag g - r colour - and a few Gyr younger than its purported parent galaxies. Combining the results for these groups with those from the NGC 871/6/7 group reported earlier, we find that the H I properties, estimated stellar ages and baryonic content of the gas-rich dwarfs clearly distinguish tidal features from their classical counterparts. We optimistically identify four potentially long-lived tidal objects associated with three separate pairs of interacting galaxies, implying that TDGs are not readily produced during interaction events as suggested by some recent simulations. The tidal objects examined in this survey also appear to have a wider variety of properties than TDGs of similar mass formed in current simulations of interacting galaxies, which could be the result of pre- or post-formation environmental influences.

  13. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasselquist, Sten; Holtzman, Jon; Shetrone, Matthew

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars withmore » [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.« less

  14. CHEMODYNAMIC EVOLUTION OF DWARF GALAXIES IN TIDAL FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, David; Martel, Hugo; Romeo, Alessandro B., E-mail: david-john.williamson.1@ulaval.ca

    The mass–metallicity relation shows that the galaxies with the lowest mass have the lowest metallicities. As most dwarf galaxies are in group environments, interaction effects such as tides could contribute to this trend. We perform a series of smoothed particle hydrodynamics simulations of dwarf galaxies in external tidal fields to examine the effects of tides on their metallicities and metallicity gradients. In our simulated galaxies, gravitational instabilities drive gas inwards and produce centralized star formation and a significant metallicity gradient. Strong tides can contribute to these instabilities, but their primary effect is to strip the outer low-metallicity gas, producing amore » truncated gas disk with a large metallicity. This suggests that the effect of tides on the mass–metallicity relation is to move dwarf galaxies to higher metallicities.« less

  15. RBS 1032: A TIDAL DISRUPTION EVENT IN ANOTHER DWARF GALAXY?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksym, W. Peter; Lin, Dacheng; Irwin, Jimmy A., E-mail: wpmaksym@ua.edu

    2014-09-10

    RBS 1032 is a supersoft (Γ ∼ 5), luminous (∼10{sup 43} erg s{sup –1}) ROSAT PSPC source which has been associated with an inactive dwarf galaxy at z = 0.026, SDSS J114726.69+494257.8. We have analyzed an XMM-Newton observation that confirms that RBS 1032 is indeed associated with the dwarf galaxy. Moreover, RBS 1032 has undergone a factor of ∼100-300 decay since 1990 November. This variability suggests that RBS 1032 may not be a steadily accreting intermediate-mass black hole, but rather an accretion flare from the tidal disruption of a star by the central black hole (which may or may notmore » be intermediate-mass). We suggest that additional tidal disruption events may remain unidentified in archival ROSAT data, such that disruption rate estimates based upon ROSAT All-Sky Survey data may need reconsideration.« less

  16. A Tale of Tidal Tales in the Milky Way

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.

    2014-05-01

    Hundreds of globular clusters and dwarf galaxies encircle the Milky Way. Many of these systems have undergone partial disruption due to tidal forces, littering the halo with stellar streams. These tidal tails are sensitive to the Galactic potential, facilitating an excellent laboratory to investigate galaxy formation and evolution. To better understand the emergence of the Milky Way, this thesis examines the dynamics and chemistry of a number of known stellar streams. In particular the Sagittarius, Orphan and Aquarius streams are investigated. Low-resolution spectra for hundreds of stars in the direction of the Virgo Over-Density and the Sagittarius northern leading arms have been obtained. Multiple significant kinematic groups are recovered in this accretion-dominated region, confirming detections by previous studies. A metal-poor population ([Fe/H] = -1.7) in the Sagittarius stream is discovered due to a photometric selection that was inadvertently biased towards more metal-poor stars. Positions and kinematics of Sagittarius stream members are compared with existing best-fitting dark matter models, and a triaxial dark matter halo distribution is favoured. The Orphan stream is appropriately named, as no parent system has yet been identified. The stream has an extremely low surface brightness, which makes distinguishing stream members from field stars particularly challenging. From low-resolution spectra obtained for hundreds of stars, we identify likely Orphan stream red giant branch stars on the basis of velocity, metallicity, surface gravity, and proper motions. A negligible intrinsic velocity dispersion is found, and a wide spread in metallicities is observed, which suggests the undiscovered parent is similar to the present-day dwarf galaxies in the Milky Way. High-resolution spectra were obtained for five Orphan stream candidates, and the intrinsic chemical dispersion found from low-resolution spectra is confirmed from these data. Detailed chemical abundances

  17. The Effects of Ram-pressure Stripping and Supernova Winds on the Tidal Stirring of Disky Dwarfs: Enhanced Transformation into Dwarf Spheroidals

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Stelios; Mayer, Lucio; Callegari, Simone; Dotti, Massimo; Moustakas, Leonidas A.

    2017-02-01

    A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N-body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, f gas, in the disk of the progenitor dwarf. Our numerical experiments incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs (f gas ≳ 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless (f gas = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When f gas ≳ 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.

  18. Tidal dissipation and evolution of white dwarfs around massive black holes: an eccentric path to tidal disruption

    NASA Astrophysics Data System (ADS)

    Vick, Michelle; Lai, Dong; Fuller, Jim

    2017-06-01

    A white dwarf (WD) captured into a high-eccentricity orbit around a massive black hole (MBH) may undergo many pericentre passages before tidal disruption. During these passages, the tidal potential of the MBH excites internal oscillations or waves in the WD, and the dissipation of these oscillations can significantly influence the physical properties of the WD prior to its disruption. We calculate the amplitude of the tidally excited gravity (buoyancy) waves in the WD as a function of the pericentre distance and eccentricity for realistic WD models, under the assumption that these outgoing gravity waves are efficiently dissipated in the outer layers of the WD by non-linear effects or radiative damping. We obtain fitting formulae for the tidal energy and angular momentum transfer rates as well as the tidal heating rate. We find that these dynamical tides are much weaker than gravitational radiation in driving the orbital decay of the WD-MBH binary, and they are also inefficient in changing the WD spin during the orbital evolution. Incorporating our computed tidal dissipation rate into a mesa-based WD evolution code, we find that tidal heating can lead to appreciable brightening of the WD and may induce runaway fusion in the hydrogen envelope well before the WD undergoes tidal disruption.

  19. Low-mass White Dwarfs with Hydrogen Envelopes as a Missing Link in the Tidal Disruption Menu

    NASA Astrophysics Data System (ADS)

    Law-Smith, Jamie; MacLeod, Morgan; Guillochon, James; Macias, Phillip; Ramirez-Ruiz, Enrico

    2017-06-01

    We construct a menu of objects that can give rise to bright flares when disrupted by massive black holes (BHs), ranging from planets to evolved stars. Through their tidal disruption, main sequence and evolved stars can effectively probe the existence of otherwise quiescent supermassive BHs, and white dwarfs can probe intermediate mass BHs. Many low-mass white dwarfs possess extended hydrogen envelopes, which allow for the production of prompt flares in disruptive encounters with moderately massive BHs of 105-{10}7 {M}⊙ —masses that may constitute the majority of massive BHs by number. These objects are a missing link in two ways: (1) for probing moderately massive BHs and (2) for understanding the hydrodynamics of the disruption of objects with tenuous envelopes. A flare arising from the tidal disruption of a 0.17 {M}⊙ white dwarf by a {10}5 {M}⊙ {BH} reaches a maximum between 0.6 and 11 days, with a peak fallback rate that is usually super-Eddington and results in a flare that is likely brighter than a typical tidal disruption event. Encounters stripping only the envelope can provide hydrogen-only fallback, while encounters disrupting the core evolve from H- to He-rich fallback. While most tidal disruption candidates observed thus far are consistent with the disruptions of main sequence stars, the rapid timescales of nuclear transients such as Dougie and PTF10iya are naturally explained by the disruption of low-mass white dwarfs. As the number of observed flares continues to increase, the menu presented here will be essential for characterizing nuclear BHs and their environments through tidal disruptions.

  20. The Effects of Ram-pressure Stripping and Supernova Winds on the Tidal Stirring of Disky Dwarfs: Enhanced Transformation into Dwarf Spheroidals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazantzidis, Stelios; Mayer, Lucio; Callegari, Simone

    A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N -body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, f {sub gas}, in the disk of the progenitor dwarf. Our numerical experimentsmore » incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs ( f {sub gas} ≳ 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless ( f {sub gas} = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When f {sub gas} ≳ 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.« less

  1. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Pairs

    NASA Astrophysics Data System (ADS)

    Knierman, K. A.; Gallagher, S. C.; Charlton, J. C.; Hunsberger, S. D.; Whitmore, B. C.; Kundu, A.; Hibbard, J. E.; Zaritsky, D. F.

    2001-05-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends upon the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence, and include HI--rich and HI--poor environments. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of young clusters lying along both tails, similar to those found in the inner region of the merger. In contrast, NGC 4038/9 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters that are concentrated in certain regions of the tail, and particularly in the prominent tidal dwarfs in the eastern and western tails of NGC 7252. The two cluster--rich tails of NGC 3256 are not distinguished from the others by their ages or by their total HI masses. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  2. The Dark Energy Survey view of the Sagittarius stream: discovery of two faint stellar system candidates

    NASA Astrophysics Data System (ADS)

    Luque, E.; Pieres, A.; Santiago, B.; Yanny, B.; Vivas, A. K.; Queiroz, A.; Drlica-Wagner, A.; Morganson, E.; Balbinot, E.; Marshall, J. L.; Li, T. S.; Neto, A. Fausti; da Costa, L. N.; Maia, M. A. G.; Bechtol, K.; Kim, A. G.; Bernstein, G. M.; Dodelson, S.; Whiteway, L.; Diehl, H. T.; Finley, D. A.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Doel, P.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Martini, P.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2017-06-01

    We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111-1341 and DES J0225+0304, are located at a heliocentric distance of ˜25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ˜1.73 kpc (DES J0111-1341) and ˜0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111-1341 are consistent with it being an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ -1.1) of DES J0225+0304 place it in an ambiguous region of size-luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (-2.18 ≲ [Fe/H] ≲ -0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111-1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Furthermore, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.

  3. Identification of old tidal dwarfs near early-type galaxies from deep imaging and H I observations

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain; Paudel, Sanjaya; McDermid, Richard M.; Cuillandre, Jean-Charles; Serra, Paolo; Bournaud, Frédéric; Cappellari, Michele; Emsellem, Eric

    2014-05-01

    It has recently been proposed that the dwarf spheroidal galaxies located in the Local Group discs of satellites (DoSs) may be tidal dwarf galaxies (TDGs) born in a major merger at least 5 Gyr ago. Whether TDGs can live that long is still poorly constrained by observations. As part of deep optical and H I surveys with the Canada-France-Hawaii Telescope (CFHT) MegaCam camera and Westerbork Synthesis Radio Telescope made within the ATLAS3D project, and follow-up spectroscopic observations with the Gemini-North telescope, we have discovered old TDG candidates around several early-type galaxies. At least one of them has an oxygen abundance close to solar, as expected for a tidal origin. This confirmed pre-enriched object is located within the gigantic, but very low surface brightness, tidal tail that emanates from the elliptical galaxy, NGC 5557. An age of 4 Gyr estimated from its SED fitting makes it the oldest securely identified TDG ever found so far. We investigated the structural and gaseous properties of the TDG and of a companion located in the same collisional debris, and thus most likely of tidal origin as well. Despite several Gyr of evolution close to their parent galaxies, they kept a large gas reservoir. Their central surface brightness is low and their effective radius much larger than that of typical dwarf galaxies of the same mass. This possibly provides us with criteria to identify tidal objects which can be more easily checked than the traditional ones requiring deep spectroscopic observations. In view of the above, we discuss the survival time of TDGs and question the tidal origin of the DoSs.

  4. Tidal double detonation: a new mechanism for the thermonuclear explosion of a white dwarf induced by a tidal disruption event

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru

    2018-03-01

    We suggest tidal double detonation as a new mechanism for the thermonuclear explosion of a white dwarf (WD) induced by a tidal disruption event (TDE). Tidal detonation is also a WD explosion induced by a TDE. In this case, helium (He) and carbon-oxygen (CO) detonation waves incinerate He WDs and CO WDs, respectively. On the other hand, for tidal double detonation, He detonation is first excited in the He shell of a CO WD, which then drives CO detonation in the CO core. We name this mechanism after the double detonation scenario in the context of type Ia supernovae. In this paper, by performing numerical simulations for CO WDs of mass 0.60 M⊙ with and without a He shell, we show that tidal double detonation occurs in the shallower encounter of a CO WD with an intermediate-mass black hole (IMBH) compared to simple tidal detonation. We expect tidal double detonation will increase the possibility of the occurrence of WD TDEs, which can help us to understand IMBHs.

  5. Possible evidence for MeV dark matter in dwarf spheroidals.

    PubMed

    Hooper, Dan; Ferrer, Francesc; Boehm, Céline; Silk, Joseph; Paul, Jacques; Evans, N Wyn; Casse, Michel

    2004-10-15

    The observed 511 keV emission from the galactic bulge could be due to very light (MeV) annihilating dark matter particles. To distinguish this hypothesis from conventional astrophysical sources, we study dwarf spheroidals in the region observed by the International Gamma-Ray Astrophysics Laboratory/SPI such as Sagittarius. As these galaxies have comparatively few stars, the prospects for 511 keV emission from standard astrophysical scenarios are minimal. The dwarf spheroidals do, however, contain copious amounts of dark matter. The observation of 511 keV emission from Sagittarius should be a "smoking gun" for MeV dark matter.

  6. Tidal stripping and the structure of dwarf galaxies in the Local Group

    NASA Astrophysics Data System (ADS)

    Fattahi, Azadeh; Navarro, Julio F.; Frenk, Carlos S.; Oman, Kyle A.; Sawala, Till; Schaller, Matthieu

    2018-05-01

    The shallow faint-end slope of the galaxy mass function is usually reproduced in Λ cold dark matter (ΛCDM) galaxy formation models by assuming that the fraction of baryons that turn into stars drops steeply with decreasing halo mass and essentially vanishes in haloes with maximum circular velocities Vmax < 20-30 km s-1. Dark-matter-dominated dwarfs should therefore have characteristic velocities of about that value, unless they are small enough to probe only the rising part of the halo circular velocity curve (i.e. half-mass radii, r1/2 ≪ 1 kpc). Many dwarfs have properties in disagreement with this prediction: they are large enough to probe their halo Vmax but their characteristic velocities are well below 20 km s-1. These `cold faint giants' (an extreme example is the recently discovered Crater 2 Milky Way satellite) can only be reconciled with our ΛCDM models if they are the remnants of once massive objects heavily affected by tidal stripping. We examine this possibility using the APOSTLE cosmological hydrodynamical simulations of the Local Group. Assuming that low-velocity-dispersion satellites have been affected by stripping, we infer their progenitor masses, radii, and velocity dispersions, and find them in remarkable agreement with those of isolated dwarfs. Tidal stripping also explains the large scatter in the mass discrepancy-acceleration relation in the dwarf galaxy regime: tides remove preferentially dark matter from satellite galaxies, lowering their accelerations below the amin ˜ 10-11 m s-2 minimum expected for isolated dwarfs. In many cases, the resulting velocity dispersions are inconsistent with the predictions from Modified Newtonian Dynamics, a result that poses a possibly insurmountable challenge to that scenario.

  7. GRB060218 as a Tidal Disruption of a White Dwarf by an Intermediate-mass Black Hole

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.; Pe'er, Asaf; Reynolds, Christopher S.; Haas, Roland; Bode, Tanja; Laguna, Pablo

    2013-06-01

    The highly unusual pair of a gamma-ray burst (GRB) GRB060218 and an associated supernova, SN2006aj, has puzzled theorists for years. A supernova shock breakout and a jet from a newborn stellar mass compact object have been proposed to explain this pair's multiwavelength signature. Alternatively, we propose that the source is naturally explained by another channel: the tidal disruption of a white dwarf (WD) by an intermediate-mass black hole (IMBH). This tidal disruption is accompanied by a tidal pinching, which leads to the ignition of a WD and a supernova. Some debris falls back onto the IMBH, forms a disk, which quickly amplifies the magnetic field, and launches a jet. We successfully fit soft X-ray spectra with the Comptonized blackbody emission from a jet photosphere. The optical/UV emission is consistent with self-absorbed synchrotron emission from the expanding jet front. The temporal dependence of the accretion rate \\dot{M}(t) in a tidal disruption provides a good fit to the soft X-ray light curve. The IMBH mass is found to be about 104 M ⊙ in three independent estimates: (1) fitting the tidal disruption \\dot{M}(t) to the soft X-ray light curve, (2) computing the jet base radius in a jet photospheric emission model, and (3) inferring the mass of the central black hole based on the host dwarf galaxy's stellar mass. The position of the supernova is consistent with the center of the host galaxy, while the low supernova ejecta mass is consistent with that of a WD. The high expected rate of tidal disruptions in dwarf galaxies is consistent with one source observed by the Swift satellite over several years at a distance of 150 Mpc measured for GRB060218. Encounters with WDs provide much fuel for the growth of IMBHs.

  8. The Dark Energy Survey view of the Sagittarius stream: Discovery of two faint stellar system candidates

    DOE PAGES

    Luque, E.; Pieres, A.; Santiago, B.; ...

    2017-02-17

    We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111–1341 and DES J0225+0304, are located at a heliocentric distance of ~25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ~1.73 kpc (DES J0111–1341) and ~0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111–1341 are consistent with it beingmore » an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ –1.1) of DES J0225+0304 place it in an ambiguous region of size–luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (–2.18 ≲ [Fe/H] ≲ –0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111–1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Moreover, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.« less

  9. The Dark Energy Survey view of the Sagittarius stream: Discovery of two faint stellar system candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luque, E.; Pieres, A.; Santiago, B.

    We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111–1341 and DES J0225+0304, are located at a heliocentric distance of ~25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ~1.73 kpc (DES J0111–1341) and ~0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111–1341 are consistent with it beingmore » an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ –1.1) of DES J0225+0304 place it in an ambiguous region of size–luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (–2.18 ≲ [Fe/H] ≲ –0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111–1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Moreover, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.« less

  10. An Astrobiological Experiment to Explore the Habitability of Tidally Locked M-Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Angerhausen, Daniel; Sapers, Haley; Simoncini, Eugenio; Lutz, Stefanie; Alexandre, Marcelo da Rosa; Galante, Douglas

    2014-04-01

    We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation.

  11. `Skinny Milky Way please', says Sagittarius

    NASA Astrophysics Data System (ADS)

    Gibbons, S. L. J.; Belokurov, V.; Evans, N. W.

    2014-12-01

    Motivated by recent observations of the Sagittarius stream, we devise a rapid algorithm to generate faithful representations of the centroids of stellar tidal streams formed in a disruption of a progenitor of an arbitrary mass in an arbitrary potential. Our method works by releasing swarms of test particles at the Lagrange points around the satellite and subsequently evolving them in a combined potential of the host and the progenitor. We stress that the action of the progenitor's gravity is crucial to making streams that look almost indistinguishable from the N-body realizations, as indeed ours do. The method is tested on mock stream data in three different Milky Way potentials with increasing complexity, and is shown to deliver unbiased inference on the Galactic mass distribution out to large radii. When applied to the observations of the Sagittarius stream, our model gives a natural explanation of the stream's apocentric distances and the differential orbital precession. We, therefore, provide a new independent measurement of the Galactic mass distribution beyond 50 kpc. The Sagittarius stream model favours a light Milky Way with the mass 4.1 ± 0.4 × 1011 M⊙ at 100 kpc, which can be extrapolated to 5.6 ± 1.2 × 1011 M⊙ at 200 kpc. Such a low mass for the Milky Way Galaxy is in good agreement with estimates from the kinematics of halo stars and from the satellite galaxies (once Leo I is removed from the sample). It entirely removes the `Too Big To Fail Problem'.

  12. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    PubMed

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  13. Young tidal dwarf galaxies around the gas-rich disturbed lenticular NGC 5291

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Mirabel, I. F.

    1998-05-01

    NGC 5291 is an early type galaxy at the edge of the cluster Abell 3574 which drew the attention because of the unusual high amount of atomic gas ( ~ 5 x 10(10) {M_{\\odot}}) found associated to it. The HI is distributed along a huge and fragmented ring, possibly formed after a tidal interaction with a companion galaxy. We present multi-slit optical spectroscopic observations and optical/near-infrared images of the system. We show that NGC 5291 is a LINER galaxy exhibiting several remnants of previous merging events, in particular a curved dust lane and a counter-rotation of the gas with respect to the stars. The atomic hydrogen has undoubtly an external origin and was probably accreted by the galaxy from a gas-rich object in the cluster. It is unlikely that the HI comes from the closest companion of NGC 5291, the so-called ``Seashell'' galaxy, which appears to be a fly-by object at a velocity greater than 400 km s(-1) . We have analyzed the properties of 11 optical counterparts to the clumps observed in the HI ring. The brightest knots show strong similarities with classical blue compact dwarf galaxies. They are dominated by active star forming regions; their most recent starburst is younger than 5 Myr; we did not find evidences for the presence of an old underlying stellar population. NGC 5291 appears to be a maternity of extremely young objects most probably forming their first generation of stars. Born in pre-enriched gas clouds, these recycled galaxies have an oxygen abundance which is higher than BCDGs ({Z_{\\odot}}/3 on average) and which departs from the luminosity-metallicity relation observed for typical dwarf and giant galaxies. We propose this property as a tool to identify tidal dwarf galaxies (TDGs) among the dwarf galaxy population. Several TDGs in NGC 5291 exhibit strong velocity gradients in their ionized gas and may already be dynamically independent galaxies. Based on observations collected at the European Southern Observatory, La Silla, Chile

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, E. A.; Keller, S.; Zucker, D. B.

    Wrapping around the Milky Way, the Sagittarius stream is the dominant substructure in the halo. Our statistical selection method has allowed us to identify 106 highly likely members of the Sagittarius stream. Spectroscopic analysis of metallicity and kinematics of all members provides us with a new mapping of the Sagittarius stream. We find correspondence between the velocity distribution of stream stars and those computed for a triaxial model of the Milky Way dark matter halo. The Sagittarius trailing arm exhibits a metallicity gradient, ranging from −0.59 to −0.97 dex over 142°. This is consistent with the scenario of tidal disruptionmore » from a progenitor dwarf galaxy that possessed an internal metallicity gradient. We note high metallicity dispersion in the leading arm, causing a lack of detectable gradient and possibly indicating orbital phase mixing. We additionally report on a potential detection of the Sextans dwarf spheroidal in our data.« less

  15. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars

    PubMed Central

    Hu, Yongyun; Yang, Jun

    2014-01-01

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere–ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an “eyeball.” For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs’ habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets. PMID:24379386

  16. The Sagittarius Dwarf Galaxy Survey (SDGS): Constraints on the Star Formation History of the Sgr dSph

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Ferraro, F. R.; Buonanno, R.

    1999-01-01

    We present the first results of a large photometric survey devoted to the study of the star formation history in the Sagittarius dwarf spheroidal galaxy (Sgr dSph). Three large (size: 9 x 35 arcmin2) and widely spaced fields located nearly along the Sgr dSph major axis [(l,b) = (6.5 -16);(6-14);(5-12)] have been observed in the V and I passbands with the ESO-NTT 3.5-m telescope (La Silla - Chile). Well-calibrated photometry has been obtained for ˜90000 stars toward Sgr dSph and for ˜9000 stars in a (9 x 24 arcmin2) control field down to a limiting magnitude of V 22. At present this is the largest photometric (CCD) sample of Sgr dSph stars and the wide spacing between field provides the first opportunity of studying the stellar content of different regions of the galaxy (over a range of ˜2 Kpc across). Age and metallicity estimates are obtained for the detected stellar populations and the very first evidences are presented for (a) spatial differences in the stellar content and (b) the detection of a very metal poor population in the field of the Sgr galaxy.

  17. Chemical characterisation of the globular cluster NGC 5634 associated to the Sagittarius dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Lucatello, S.; D'Orazi, V.; Gratton, R. G.; Donati, P.; Sollima, A.; Sneden, C.

    2017-04-01

    As part of our on-going project on the homogeneous chemical characterisation of multiple stellar populations in globular clusters (GCs), we studied NGC 5634, associated to the Sagittarius dwarf spheroidal galaxy, using high-resolution spectroscopy of red giant stars collected with VLT/FLAMES. We present here the radial velocity distribution of the 45 observed stars, 43 of which are cluster members, the detailed chemical abundance of 22 species for the seven stars observed with UVES-FLAMES, and the abundance of six elements for stars observed with GIRAFFE. On our homogeneous UVES metallicity scale, we derived a low-metallicity [Fe/H] =-1.867 ± 0.019 ± 0.065 dex (±statistical ±systematic error) with σ = 0.050 dex (7 stars). We found the normal anticorrelations between light elements (Na and O, Mg and Al), a signature of multiple populations typical of massive and old GCs. We confirm the associations of NGC 5634 to the Sgr dSph, from which the cluster was lost a few Gyr ago, on the basis of its velocity and position, and the abundance ratios of α and neutron capture elements. Based on observations collected at ESO telescopes under programme 093.B-0583.Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A118

  18. THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Corredoira, Martín; Kroupa, Pavel, E-mail: martinlc@iac.es, E-mail: pavel@astro.uni-bonn.de

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarfmore » galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation.« less

  19. Reconstructing the Dwarf Galaxy Progenitor from Tidal Streams Using MilkyWay@home

    NASA Astrophysics Data System (ADS)

    Newberg, Heidi; Shelton, Siddhartha

    2018-04-01

    We attempt to reconstruct the mass and radial profile of stars and dark matter in the dwarf galaxy progenitor of the Orphan Stream, using only information from the stars in the Orphan Stream. We show that given perfect data and perfect knowledge of the dwarf galaxy profile and Milky Way potential, we are able to reconstruct the mass and radial profiles of both the stars and dark matter in the progenitor to high accuracy using only the density of stars along the stream and either the velocity dispersion or width of the stream in the sky. To perform this test, we simulated the tidal disruption of a two component (stars and dark matter) dwarf galaxy along the orbit of the Orphan Stream. We then created a histogram of the density of stars along the stream and a histogram of either the velocity dispersion or width of the stream in the sky as a function of position along the stream. The volunteer supercomputer MilkyWay@home was given these two histograms, the Milky Way potential model, and the orbital parameters for the progenitor. N-body simulations were run, varying dwarf galaxy parameters and the time of disruption. The goodness-of-fit of the model to the data was determined using an Earth-Mover Distance algorithm. The parameters were optimized using Differential Evolution. Future work will explore whether currently available information on the Orphan Stream stars is sufficient to constrain its progenitor, and how sensitive the optimization is to our knowledge of the Milky Way potential and the density model of the dwarf galaxy progenitor, as well as a host of other real-life unknowns.

  20. Relativistic tidal interaction of a white dwarf with a massive black hole

    NASA Technical Reports Server (NTRS)

    Frolov, V. P.; Khokhlov, A. M.; Novikov, I. D.; Pethick, C. J.

    1994-01-01

    We compute encounters of a realistic white dwarf model with a massive black hole in the regime where relativistic effects are important, using a three-dimensional, finite-difference, Eulerian, piecewise parabolic method (PPM) hydrodynamical code. Both disruptive and nondisruptive encounters are considered. We identify and discuss relativistic effects important for the problem: relativistic shift of the pericenter distance, time delay, relativistic precession, and the tensorial structure of the tidal forces. In the nondisruptive case, stripping of matter takes place. In the surface layers of the surviving core, complicated hydrodynamical phenomena are revealed. In both disruptive and nondispruptive encounters, material flows out in the form of two thin, S-shaped, supersonic jets. Our results provide realistic initial conditions for the subsequent investigation of the dynamics of the debris in the field of the black hole. We evaluate the critical conditions for complete disruption of the white dwarf, and compare our results with the corresponding results for nonrelativistic encounters.

  1. Formation of massive clouds and dwarf galaxies during tidal encounters

    NASA Technical Reports Server (NTRS)

    Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.

    1993-01-01

    Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.

  2. H i in Virgo’s “Red and Dead” Dwarf Ellipticals—A Tidal Tail and Central Star Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallenbeck, Gregory; Koopmann, Rebecca; Giovanelli, Riccardo

    We investigate a sample of three dwarf elliptical galaxies in the Virgo Cluster that have significant reservoirs of H i. We present deep optical imaging (from CFHT and KPNO), H i spectra (Arecibo), and resolved H i imaging (VLA) of this sample. These observations confirm their H i content and optical morphologies, and indicate that the gas is unlikely to be recently accreted. The sample has more in common with dwarf transitionals, though dwarf transitionals are generally lower in stellar mass and gas fraction. VCC 190 has an H i tidal tail from a recent encounter with the massive spiralmore » galaxy NGC 4224. In VCC 611, blue star-forming features are observed that were not seen by shallower SDSS imaging.« less

  3. H I in Virgo’s “Red and Dead” Dwarf Ellipticals—A Tidal Tail and Central Star Formation

    NASA Astrophysics Data System (ADS)

    Hallenbeck, Gregory; Koopmann, Rebecca; Giovanelli, Riccardo; Haynes, Martha P.; Huang, Shan; Leisman, Lukas; Papastergis, Emmanouil

    2017-08-01

    We investigate a sample of three dwarf elliptical galaxies in the Virgo Cluster that have significant reservoirs of H I. We present deep optical imaging (from CFHT and KPNO), H I spectra (Arecibo), and resolved H I imaging (VLA) of this sample. These observations confirm their H I content and optical morphologies, and indicate that the gas is unlikely to be recently accreted. The sample has more in common with dwarf transitionals, though dwarf transitionals are generally lower in stellar mass and gas fraction. VCC 190 has an H I tidal tail from a recent encounter with the massive spiral galaxy NGC 4224. In VCC 611, blue star-forming features are observed that were not seen by shallower SDSS imaging.

  4. Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo; Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone, Luca

    2018-03-01

    Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] \\gtrapprox -1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =‑1 to ‑3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M ⊙. Sgr J190651.47–320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M ⊙ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15–25 M ⊙) is necessary to explain these patterns. The high level (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr. Based on data obtained UVES/VLT ID: 083.B-0774, 075.B-0127.

  5. VISTA variables in the Sagittarius dwarf spheroidal galaxy: pulsation-versus dust-driven winds on the giant branches

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Sloan, G. C.; Kerins, E.; Lagadec, E.; Minniti, D.

    2014-04-01

    Variability is examined in over 2.6 million stars covering 11 square degrees of the core of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) from Visible and Infrared Survey Telescope for Astronomy Z-band observations. Generally, pulsation on the Sgr dSph giant branches appears to be excited by the internal κ mechanism. Pulsation amplitudes appear identical between red and asymptotic (red giant branch/asymptotic giant branch) giant stars, and between unreddened carbon and oxygen-rich stars at the same luminosity. The lack of correlation between infrared excess and variability among oxygen-rich stars indicates that pulsations do not contribute significantly to wind driving in oxygen-rich stars in the Sgr dSph, though the low amplitudes of these stars mean this may not apply elsewhere. The dust-enshrouded carbon stars have the highest amplitudes of the stars we observe. Only in these stars does an external κ-mechanism-driven pulsation seem likely, caused by variations in their more opaque carbon-rich molecules or dust. This may allow pulsation driving of winds to be effective in carbon stars. Variability can be simplified to a power law (A ∝ L/T2), as in other systems. In total, we identify 3026 variable stars (with rms variability of δZ ≳ 0.015 mag), of which 176 are long-period variables associable with the upper giant branches of the Sgr dSph. We also identify 324 candidate RR Lyrae variables in the Sgr dSph and 340 in the outer Galactic bulge.

  6. On the Formation of Ultra-Difuse Galaxies as Tidally-Stripped Systems

    NASA Astrophysics Data System (ADS)

    Carleton, Timothy; Cooper, Michael; Kaplinghat, Manoj; Errani, Raphael; Penarrubia, Jorge

    2018-01-01

    The recent identification of a large population of so-called 'Ultra-Diffuse' Galaxies (UDGs), with stellar masses ~108 M⊙, but half light radii over 1.5 kpc, has challenged our understanding of galaxy evolution. Motivated by the environmental dependence of UDG properties and abundance, I present a model for the formation of UDGs through tidal-stripping of dwarf galaxies in cored dark matter halos. To test this scenario, I utilize results from simulations of tidal stripping, which demonstrate that changes in the stellar profile of a tidally stripped galaxy can be written as a function of the amount of tidal stripping experienced by the halo (tidal tracks). These tracks, however, are different for cored and cuspy halos. Additional simulations show how the halo responds to tidal interactions given the halo orbit within a cluster.In particular, dwarf elliptical galaxies, born in 1010-10.5 M⊙ halos, expand significantly as a result of tidal stripping and produce UDGs. Applying these models to the population of halos in the Bolshoi simulation, I am able to follow the effects of tidal stripping on the dwarf galaxy population in clusters. Using tidal tracks for cuspy halos does not reproduce the observed properties of UDGs. However, using the tidal tracks for cored halos, I reproduce the distribution of sizes, stellar masses, and abundance of UDGs in clusters remarkably well.

  7. Star Formation in Dwarf-Dwarf Mergers: Fueling Hierarchical Assembly

    NASA Astrophysics Data System (ADS)

    Stierwalt, Sabrina; Johnson, K. E.; Kallivayalil, N.; Patton, D. R.; Putman, M. E.; Besla, G.; Geha, M. C.

    2014-01-01

    We present early results from the first systematic study a sample of isolated interacting dwarf pairs and the mechanisms governing their star formation. Low mass dwarf galaxies are ubiquitous in the local universe, yet the efficiency of gas removal and the enhancement of star formation in dwarfs via pre-processing (i.e. dwarf-dwarf interactions occurring before the accretion by a massive host) are currently unconstrained. Studies of Local Group dwarfs credit stochastic internal processes for their complicated star formation histories, but a few intriguing examples suggest interactions among dwarfs may produce enhanced star formation. We combine archival UV imaging from GALEX with deep optical broad- and narrow-band (Halpha) imaging taken with the pre- One Degree Imager (pODI) on the WIYN 3.5-m telescope and with the 2.3-m Bok telescope at Steward Observatory to confirm the presence of stellar bridges and tidal tails and to determine whether dwarf-dwarf interactions alone can trigger significant levels of star formation. We investigate star formation rates and global galaxy colors as a function of dwarf pair separation (i.e. the dwarf merger sequence) and dwarf-dwarf mass ratio. This project is a precursor to an ongoing effort to obtain high spatial resolution HI imaging to assess the importance of sequential triggering caused by dwarf-dwarf interactions and the subsequent affect on the more massive hosts that later accrete the low mass systems.

  8. Testing the Caustic Ring Dark Matter Halo Model Against Observations in the Milky Way

    NASA Astrophysics Data System (ADS)

    Dumas, Julie; Newberg, Heidi Jo; Niedzielski, Bethany; Susser, Adam; Thompson, Jeffery M.; Weiss, Jake; Lewis, Kim M.

    2016-06-01

    One prediction of axion dark matter models is they can form Bose-Einstein condensates and rigid caustic rings as a halo collapses in the non-linear regime. In this thesis, we undertake the first study of a caustic ring model for the Milky Way halo (Duffy & Sikivie 2008), paying particular attention to observational consequences. We first present the formalism for calculating the gravitational acceleration of a caustic ring halo. The caustic ring dark matter theory reproduces a roughly logarithmic halo, with large perturbations near the rings. We show that this halo can reasonably match the known Galactic rotation curve. We are not able to confirm or rule out an association between the positions of the caustic rings and oscillations in the observed rotation curve, due to insufficient rotation curve data. We explore the effects of dark matter caustic rings on dwarf galaxy tidal disruption with N-body simulations. Simulations of the Sagittarius (Sgr) dwarf galaxy in a caustic ring halo potential, with disk and bulge parameters that are tuned to match the Galactic rotation curve, match observations of the Sgr trailing tidal tails as far as 90 kpc from the Galactic center. Like the Navarro-Frenk-White (NFW) halo, they are, however, unable to match the leading tidal tail. None of the caustic, NFW, or triaxial logarithmic halos are able to simultaneously match observations of the leading and trailing arms of the Sagittarius stream. We further show that simulations of dwarf galaxies that move through caustic rings are qualitatively similar to those moving in a logarithmic halo. This research was funded by NSF grant AST 10-09670, the NASA-NY Space Grant, and the American Fellowship from AAUW.

  9. The Distance to M54 using Infrared Photometry of RR Lyrae Variable Stars and the Implications of its Relation to the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Gupta, Arvind F.; Beaton, Rachael L.; Majewski, Steven R.; SMHASH Team

    2018-01-01

    CDM cosmological models predict that dark matter halo density profiles will have central cusps. Yet for many dwarf spheroidal galaxies (dSphs), this expectation is in contrast with observations of cored, rather than cusped, halos. This 'cusp-core problem' is apparent in the Sagittarius Dwarf Galaxy (Sgr), one of the largest satellites of the Milky Way. The globular cluster M54, one of several clusters associated with Sgr, coincides in on-sky position with the center of the main body of Sgr. While several studies find that M54 lies within the center of Sgr, other findings show that M54 is offset from the center by several kiloparsecs along our line of sight. The latter requires Sgr to have a cored dark matter distribution. In the presence of a cuspy halo, the orbit of M54 would have decayed via dynamical friction and the cluster would have fallen to the center of Sgr. A clear determination of the relation of the two bodies may help us better understand the distribution of dark matter in Sgr and other dSphs. Here we present a measurement of the distance modulus to M54 using a set of RR Lyrae variable stars in near-infrared Magellan data mid-infrared Spitzer data. The magnitudes of individual stars are measured using multi-epoch PSF photometry and light curve fitting. From precise RR Lyrae period-luminosity relations at these wavelengths, we then find the mean M54 distance modulus to be 17.126 ± 0.023 (ran) ± 0.080 (sys). Our result is consistent with a distance measurement to Sgr derived via nearly identical methods and thus also consistent with the expectation of a central cusp in the dark matter density profile of Sgr.

  10. Extended stellar substructure surrounding the Boötes I dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Roderick, T. A.; Mackey, A. D.; Jerjen, H.; Da Costa, G. S.

    2016-10-01

    We present deep stellar photometry of the Boötes I dwarf spheroidal galaxy in g- and I-band filters, taken with the Dark Energy Camera at Cerro Tololo in Chile. Our analysis reveals a large, extended region of stellar substructure surrounding the dwarf, as well as a distinct overdensity encroaching on its tidal radius. A radial profile of the Boötes I stellar distribution shows a break radius indicating the presence of extra-tidal stars. These observations strongly suggest that Boötes I is experiencing tidal disruption, although not as extreme as that exhibited by the Hercules dwarf spheroidal. Combined with revised velocity dispersion measurements from the literature, we see evidence suggesting the need to review previous theoretical models of the Boötes I dwarf spheroidal galaxy.

  11. Explosive nucleosynthesis in tidal disruption events of massive white dwarfs, and their debris

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Sato, Yushi; Nomoto, Ken'Ichi; Maeda, Keiichi; Nakasato, Naohito; Hachisu, Izumi

    We perform SPH simulations coupled with nuclear reactions to follow tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate mass black holes (IMBHs). We consider an oxygen-neon-magnesium (ONeMg) WD with 1.2M ⊙ as well as a helium (He) WD with 0.3M ⊙, and a carbon-oxygen (CO) WD with 0.6M ⊙. Our WD models have different numbers of SPH particles, N, up to a few 10 million. We find that nucleosynthesis does not converge against N even for N > 107. For all the WDs, the amount of radioactive nuclei, such as 56Ni, decreases with increasing N. Nuclear reactions might be extinguished for infinitely large N. Our results show that these kinds of TDEs, if solely powered by radioactive decays, are much dimmer optical transients similar to Type Ia supernovae as previously suggested.

  12. A chemical confirmation of the faint Boötes II dwarf spheroidal galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Andreas; Rich, R. Michael, E-mail: akoch@lsw.uni-heidelberg.de

    2014-10-10

    We present a chemical abundance study of the brightest confirmed member star of the ultra-faint dwarf galaxy Boötes II from Keck/HIRES high-resolution spectroscopy at moderate signal-to-noise ratios. At [Fe/H] = –2.93 ± 0.03(stat.) ± 0.17(sys.), this star chemically resembles metal-poor halo field stars and the signatures of other faint dwarf spheroidal galaxies at the same metallicities in that it shows enhanced [α/Fe] ratios, Solar Fe-peak element abundances, and low upper limits on the neutron-capture element Ba. Moreover, this star shows no chemical peculiarities in any of the eight elements we were able to measure. This implies that the chemical outliersmore » found in other systems remain outliers pertaining to the unusual enrichment histories of the respective environments, while Boo II appears to have experienced an enrichment history typical of its very low mass. We also re-calibrated previous measurements of the galaxy's metallicity from the calcium triplet (CaT) and find a much lower value than reported before. The resulting broad metallicity spread, in excess of one dex, the very metal-poor mean, and the chemical abundance patterns of the present star imply that Boötes II is a low-mass, old, metal-poor dwarf galaxy and not an overdensity associated with the Sagittarius Stream as has been previously suggested based on its sky position and kinematics. The low, mean CaT metallicity of –2.7 dex falls right on the luminosity-metallicity relation delineated over four orders of magnitude from the more luminous to the faintest galaxies. Thus Boötes II's chemical enrichment appears representative of the galaxy's original mass, while tidal stripping and other mass loss mechanisms were probably not significant as for other low-mass satellites.« less

  13. The Sagittarius Dwarf Galaxy Survey (SDGS) - I. Colour-magnitude diagrams, reddening and population gradients. First evidence of a very metal-poor population

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Ferraro, F. R.; Buonanno, R.

    1999-04-01

    We present the first results of a large photometric survey devoted to the study of the star formation history of the Sagittarius dwarf spheroidal galaxy (Sgr dSph). Three wide strips (size ~ 9 x 35 arcmin ^2) located at ~ (l deg b deg) = (6.5;-16), (6;-14), (5;-12) have been observed. Each strip is roughly east-west oriented, nearly along the major axis of the galaxy. A control field (size ~ 9 x 24 arcmin ^2), located outside the body of Sgr dSph [~ (l deg b deg) = (354;-14)] has also been observed for statistical decontamination purposes. Accurate and well-calibrated V, I photometry down to V ~ 22 has been obtained for ~ 90 000 stars towards the Sgr dSph and ~ 8000 stars in the control field. This is the largest photometric sample (covering the widest spatial extension) ever observed in the Sgr dSph up to now. The main new results presented in this paper are: (1) the possible discovery of a strong asymmetry in the distribution of stars along the major axis, since the north-western arm of the Sgr galaxy (i.e. the region nearer to the Galactic bulge) apparently shows a significant deficiency of Sgr stars and (2) the first direct detection of a very metal-poor (and presumably old) population in the Sgr stellar content. Hints at a metallicity gradient towards the densest region of the galaxy are also reported.

  14. High-resolution Hydrodynamic Simulation of Tidal Detonation of a Helium White Dwarf by an Intermediate Mass Black Hole

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru

    2018-05-01

    We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.

  15. The Magellanic Inter-Cloud Project (MAGIC) III: first spectroscopic evidence of a dwarf stripping a dwarf

    NASA Astrophysics Data System (ADS)

    Carrera, Ricardo; Conn, Blair C.; Noël, Noelia E. D.; Read, Justin I.; López Sánchez, Ángel R.

    2017-11-01

    The Magellanic Bridge (MB) is a gaseous stream that links the Large (LMC) and Small (SMC) Magellanic Clouds. Current simulations suggest that the MB forms from a recent interaction between the Clouds. In this scenario, the MB should also have an associated stellar bridge formed by stars tidally stripped from the SMC by the LMC. There are several observational evidences for these stripped stars, from the presence of intermediate age populations in the MB and carbon stars, to the recent observation of an over-density of RR Lyrae stars offset from the MB. However, spectroscopic confirmation of stripped stars in the MB remains lacking. In this paper, we use medium resolution spectra to derive the radial velocities and metallicities of stars in two fields along the MB. We show from both their chemistry and kinematics that the bulk of these stars must have been tidally stripped from the SMC. This is the first spectroscopic evidence for a dwarf galaxy being tidally stripped by a larger dwarf.

  16. A giant stream of metal-rich stars in the halo of the galaxy M31.

    PubMed

    Ibata, R; Irwin, M; Lewis, G; Ferguson, A M; Tanvir, N

    2001-07-05

    Recent observations have revealed streams of gas and stars in the halo of the Milky Way that are the debris from interactions between our Galaxy and some of its dwarf companion galaxies; the Sagittarius dwarf galaxy and the Magellanic clouds. Analysis of the material has shown that much of the halo is made up of cannibalized satellite galaxies, and that dark matter is distributed nearly spherically in the Milky Way. It remains unclear, however, whether cannibalized substructures are as common in the haloes of galaxies as predicted by galaxy-formation theory. Here we report the discovery of a giant stream of metal-rich stars within the halo of the nearest large galaxy, M31 (the Andromeda galaxy). The source of this stream could be the dwarf galaxies M32 and NGC205, which are close companions of M31 and which may have lost a substantial number of stars owing to tidal interactions. The results demonstrate that the epoch of galaxy building still continues, albeit at a modest rate, and that tidal streams may be a generic feature of galaxy haloes.

  17. Analyzing the Formation of Ultra-compact Dwarfs through Stellar Populations

    NASA Astrophysics Data System (ADS)

    Seshadri, Anish; Wang, Carolyn; Romanowsky, Aaron J.; Martin-navarro, Ignacio

    2017-01-01

    Since their discovery in 1999, ultra-compact dwarfs (UCDs) have been the subjects of intense study. Their small size, yet tremendous mass, brings into question their place among celestial objects. Are they galaxies or globular clusters? The answer to this question could come from analyzing how they formed. Thus, the goal of this project is to test one of the theories for the formation of UCDs, the theory of tidal stripping.This project approaches the issue by looking at dwarf galaxies currently in the process of stripping to understand formation history. Over twenty such dwarf galaxies were identified and their stellar populations analyzed. Using modeling techniques on spectroscopic and photometric data, the age, metallicity, and color of each object was identified. By objectively categorizing each object into a stage of evolution in the process of tidal stripping, a virtual timeline was built for the formation of UCDs. Data for each object were plotted vs. stage of formation, with pristine dwarfs and UCDs signifying the endpoints. Trends in the data revealed a natural progression over all stages of evolution, showing that tidally stripped dwarfs likely represent an intermediate stage in the formation of UCDs.This research was supported by NSF Grant AST-1515084. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  18. Do Perturbations from Dwarf Galaxies Produce Moving Groups in the Milky Way Disk?

    NASA Astrophysics Data System (ADS)

    Craig, Peter; Newberg, Heidi Jo; Chakrabarti, Sukanya

    2018-01-01

    We compare Solar neighborhood disk moving groups with velocity perturbations produced in hydrodynamic simulations of dwarf galaxy interactions with the disk. The hydrodynamic simulations were generated using Gadget 2, and mimic the interaction of the Sagittarius dwarf galaxy and several others with the Milky Way. The properties of the identified moving groups change as the simulations evolve. We identified moving groups in regions of the simulation that are within 1 kpc of the nominal location of the Sun (8 kpc from the Galactic center) that are similar to moving groups observed within the Milky Way. Such groups are found at locations all the way around the disk. This suggests that some of the groups that are observed near our sun are a result of an interaction between the Milky Way and a colliding dwarf galaxy. It also suggests that the existence of such groups here implies the existence of similar groups in other parts of the Milky Way.

  19. Milky Way red dwarfs in the BoRG survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holwerda, B. W.; Bouwens, R.; Trenti, M.

    2014-06-10

    We present a tally of Milky Way late-type dwarf stars in 68 Wide Field Camera 3 (WFC3) pure-parallel fields (227 arcmin{sup 2}) from the Brightest of Reionizing Galaxies survey for high-redshift galaxies. Using spectroscopically identified M-dwarfs in two public surveys, the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey and the Early Release Science mosaics, we identify a morphological selection criterion using the half-light radius (r {sub 50}), a near-infrared J – H, G – J color region where M-dwarfs are found, and a V – J relation with M-dwarf subtype. We apply this morphological selection of stellar objects, color-color selectionmore » of M-dwarfs, and optical-near-infrared color subtyping to compile a catalog of 274 M-dwarfs belonging to the disk of the Milky Way with a limiting magnitude of m {sub F125W} < 24(AB). Based on the M-dwarf statistics, we conclude that (1) the previously identified north-south discrepancy in M-dwarf numbers persists in our sample; there are more M-dwarfs in the northern fields on average than in southern ones, (2) the Milky Way's single disk scale-height for M-dwarfs is 0.3-4 kpc, depending on subtype, (3) the scale-height depends on M-dwarf subtype with early types (M0-4) high scale-height (z {sub 0} = 3-4 kpc) and later types M5 and above in the thin disk (z {sub 0} = 0.3-0.5 kpc), (4) a second component is visible in the vertical distribution, with a different, much higher scale-height in the southern fields compared to the northern ones. We report the M-dwarf component of the Sagittarius stream in one of our fields with 11 confirmed M-dwarfs, seven of which are at the stream's distance. In addition to the M-dwarf catalog, we report the discovery of 1 T-dwarfs and 30 L-dwarfs from their near-infrared colors. The dwarf scale-height and the relative low incidence in our fields of L- and T-dwarfs in these fields makes it unlikely that these stars will be interlopers in great numbers in color-selected samples of

  20. Ring Structure and Warp of NGC 5907: Interaction with Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Zheng, Zhongyuan; Brinks, Elias; Chen, Jiansheng; Burstein, David; Su, Hongjun; Byun, Yong-ik; Deng, Licai; Deng, Zugan; Fan, Xiaohui; Jiang, Zhaoji; Li, Yong; Lin, Weipeng; Ma, Feng; Sun, Wei-hsin; Wills, Beverley; Windhorst, Rogier A.; Wu, Hong; Xia, Xiaoyang; Xu, Wen; Xue, Suijian; Yan, Haojing; Zhou, Xu; Zhu, Jin; Zou, Zhenlong

    1998-09-01

    The edge-on, nearby spiral galaxy NGC 5907 has long been used as the prototype of a ``noninteracting'' warped galaxy. We report here the discovery of two interactions with companion dwarf galaxies that substantially change this picture. First, a faint ring structure is discovered around this galaxy that is likely due to the tidal disruption of a companion dwarf spheroidal galaxy. The ring is elliptical in shape with the center of NGC 5907 close to one of the ring's foci. This suggests that the ring material is in orbit around NGC 5907. No gaseous component to the ring has been detected either with deep Hα images or in Very Large Array H I 21 cm line maps. The visible material in the ring has an integrated luminosity <=108 Lsolar, and its brightest part has a color R-I~0.9. All of these properties are consistent with the ring being a tidally disrupted dwarf spheroidal galaxy. Second, we find that NGC 5907 has a dwarf companion galaxy, PGC 54419, which is projected to be only 36.9 kpc from the center of NGC 5907, close in radial velocity (ΔV=45 km s-1) to the giant spiral galaxy. This dwarf is seen at the tip of the H I warp and in the direction of the warp. Hence, NGC 5907 can no longer be considered noninteracting but is obviously interacting with its dwarf companions much as the Milky Way interacts with its dwarf galaxies. These results, coupled with the finding by others that dwarf galaxies tend to be found around giant galaxies, suggest that tidal interaction with companions, even if containing a mere 1% of the mass of the parent galaxy, might be sufficient to excite the warps found in the disks of many large spiral galaxies. Partially based on observations taken with the Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated by a cooperative agreement with Associated Universities, Inc.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Andreas; Burkert, Andreas; Rich, R. Michael

    We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGCmore » 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.« less

  2. The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo I: A Tidal Hit and Run?

    NASA Astrophysics Data System (ADS)

    Mateo, Mario; Olszewski, Edward W.; Walker, Matthew G.

    2008-03-01

    We present new kinematic results for 387 stars near the Milky Way satellite dwarf spheroidal galaxy Leo I. Spectra were obtained with the Hectochelle multiobject echelle spectrograph on the MMT, centered in the optical near 5200 Å. From 297 repeat measurements of 108 stars, we estimate the mean velocity error (1 σ) of our sample to be 2.4 km s-1, with a systematic precision of <=1 km s-1. The final sample of 328 Leo I members gives a mean heliocentric velocity of 282.9 +/- 0.5 km s-1 and a dispersion of 9.2 +/- 0.4 km s-1. The dispersion profile of Leo I is flat to beyond its classical "tidal" radius. We fit the profile to various equilibrium dynamical models. We strongly rule out all models where mass follows light. Anisotropic Sérsic+NFW models fit the dispersion profile well, but isotropic models are ruled out at a 95% confidence level. Inside a projected radius of ~1040 pc, the mass and V-band mass-to-light ratio of Leo I from equilibrium models are in the ranges (5-7) × 107 M⊙ and 9-14 (solar units), respectively. Leo I members outside a "break radius" of Rb ~ 400'' (500 pc) exhibit significant velocity anisotropy, whereas stars interior to this radius are consistent with an isotropic velocity distribution. We interpret the break radius as the tidal radius of Leo I at perigalacticon some 1-2 Gyr ago. This interpretation accounts for the complex star formation history of Leo I, population segregation within the galaxy, and Leo I's large outward galactocentric velocity. The lack of evident tidal arms in Leo I suggests that the galaxy may have been injected into its present highly elliptical orbit by a third body a few Gyr before its last perigalacticon. This scenario is plausible within current hierarchical structure formation models.

  3. What triggers starbursts in dwarf galaxies?

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    Ny Titans Survey. The archival UV observations will first allow us to determine the presence of stellar bridges and tidal tails and whether dwarf-dwarf interactions alone can trigger significant levels of star formation and/or remove stars from their host galaxies. We will then use the UV and IR photometry to place age constraints on the stellar populations and to determine stellar mass surface densities, ages, and host galaxy stellar mass as a function of pair separation and dwarf-dwarf mass ratio. We will distinguish tidally triggered star formation from star formation derived from stochastic processes by taking advantage of the wealth of observations available in all three archives for "normal" non-interacting dwarfs that we have carefully selected to be analogs to our paired dwarfs (matched in stellar mass, redshift, and environment) and by comparing the stellar populations of those dwarfs with the interacting dwarfs in our sample. Ultimately, we can combine the UV and IR imaging from this proposal with ground-based optical photometry from our current, ongoing program to model the star formation histories of these dwarfs as part of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. This study will thus characterize evidence for the hierarchical evolution of dwarf galaxies as well as the extent of pre-processing (i.e., dwarf-dwarf interactions occurring before the accretion by a massive host) that occurs.

  4. First detection of the white dwarf cooling sequence of the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamida, A.; Sahu, K. C.; Anderson, J.

    2014-08-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (∼3'× 3'), together with three more Advanced Camera for Surveys and eight Wide-Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for 2 yr, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ≈0.1 mas yr{sup –1} (≈4 km s{sup –1}) at F606W ≈ 25.5 mag, and better than ≈0.5 mas yr{supmore » –1} (≈20 km s{sup –1}) at F606W ≈ 28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (≈30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD-main-sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P ≲ 1 day) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.« less

  5. Nonvalidity of I-Love-Q Relations for Hot White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Quevedo, H.

    2018-05-01

    The equilibrium configurations of uniformly rotating white dwarfs at finite temperatures are investigated, exploiting the Chandrasekhar equation of state for different isothermal cores. The Hartle-Thorne formalism is applied to construct white dwarf configurations in the framework of Newtonian physics. The equations of structure are considered in the slow rotation approximation and all basic parameters of rotating hot white dwarfs are computed to test the so-called moment of inertia, tidal Love number and quadrupole moment (I-Love-Q) relations. It is shown that even within the same equation of state the I-Love-Q relations are not universal for white dwarfs at finite temperatures.

  6. V3885 Sagittarius: A Comparison With a Range of Standard Model Accretion Disks

    DTIC Science & Technology

    2009-10-01

    is greater than that in previous models. Blaes et al. (2006) show that magnetic support has a significant effect on synthetic spectra of black hole ...reserved. Printed in the U.S.A. V3885 SAGITTARIUS : A COMPARISON WITH A RANGE OF STANDARD MODEL ACCRETION DISKS∗ Albert P. Linnell1, Patrick Godon2, Ivan...Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius , on an absolute flux basis, selects a model that

  7. Mapping the tidally disrupting Andromeda XXVII and its stellar stream

    NASA Astrophysics Data System (ADS)

    Preston, Janet; Collins, Michelle; Bonaca, Ana; Ibata, Rodrigo; Tollerud, Erik; Geha, Marla; PAndAS Collaboration

    2017-03-01

    Andromeda XXVII is a dwarf spheroidal galaxy in the outskirts of the Andromeda galaxy (M31). It appears to be dissolving in to the Northern arc of M31, and could be the remnant of a strong tidal disruption. In the upcoming months, our spectroscopic program, which has measured velocities for multiple stars within both the dwarf galaxy progenitor and its stream (using the Keck II DEIMOS telescope, as part of the PAndAS survey), will determine velocity dispersions, scale radii and metallicities of both the dwarf and the stream. This in turn may enable us to ascertain the progenitor mass profile and determine whether it is cusped or cored.

  8. Dynamics of Tidally Locked, Ultrafast Rotating Atmospheres

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam P.

    2017-10-01

    Tidally locked gas giants, which exhibit a novel regime of day-night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying slow rotation and a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects - brown dwarfs orbiting white dwarfs in extremely tight orbits - whose orbital and hence rotation periods are as short as 1-2 hours. Spitzer phase curves and other observations have already been obtained for this fascinating class of objects, which raise fundamental questions about the role of rotation in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work we investigate the dynamics of tidally locked atmospheres in shorter rotation periods down to about two hours. With increasing rotation rate (decreasing rotation period), we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of wave-mean-flow interacting region due to decrease of the equatorial deformation radius. The eastward-shifted equatorial hot spot offset decreases accordingly, and the westward-shifted hot regions poleward of the equatorial jet associated with Rossby gyres become increasingly distinctive. At high latitudes, winds becomes weaker and more geostrophic. The day-night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit small-scale variability, presumably caused by shear instability. Unlike typical hot Jupiters, phase curves of fast-rotating models show an alignment of peak flux to secondary eclipse. Our results have important implications for phase curve observations of brown dwarfs orbiting white dwarfs in ultra tight orbits.

  9. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    NASA Astrophysics Data System (ADS)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  10. The Origins of the Ultra Compact Dwarfs in the halos of the central cluster galaxies in Fornax and Virgo

    NASA Astrophysics Data System (ADS)

    Voggel, Karina Theresia

    2015-08-01

    Ultra-Compact Dwarf Galaxies (UCDs) have filled the size gap (10-100pc) in the scaling relations of early-type stellar systems. Before their discovery, no objects were known in the parameter space between globular clusters (GCs) and dwarf galaxies. The nature of UCDs is widely debated. Two formation channels have been suggested: either UCDs are surviving nuclei of tidally stripped dwarf galaxies, or they constitute the high mass end of the GC population. In this work we establish new strategies to constrain the formation channel of UCDs, looking for the observational signatures of stripped nuclei.Before falling into a galaxy cluster dwarf galaxies initially host their own GC system. Through tidal interaction the GCs outside of the shrinking tidal radius are lost and disperse in the general GC population of the cluster, whereas GCs inside the tidal radius remain bound to the dwarf galaxy. Therefore, we expect to find some GCs close to the stripped nuclei that have not been removed yet, but dragged towards the nucleus via dynamical friction.We tested this prediction in the halo of NGC 1399, the central Fornax cluster galaxy, where we find a local overabundance of GCs on scales of 0.5 to 1 kpc around UCDs. A similar analysis of GC overdensities around UCDs in the halo of M87, the central Virgo cluster galaxy, is ongoing. Such a clustering signal of GCs around UCDs could be a hint that these UCDs formed as nuclei, and what we see is the remnant GC population of the ancestor galaxy.We also have studied the detailed structural composition of ~100 UCDs in the halo of NGC 1399 by analyzing their surface brightness profiles. We present new evidence for faint asymmetric structures and tidal tails around several UCDs, possible tracers for the assembly history of the central cluster galaxy. With new numbers on the abundance of tidal features and close GC companions within large UCD samples, the contribution of each formation channel to the GC/UCD populations in galaxy halos

  11. Exoplanet recycling in massive white-dwarf debris discs

    NASA Astrophysics Data System (ADS)

    van Lieshout, R.; Kral, Q.; Charnoz, S.; Wyatt, M. C.; Shannon, A.

    2018-05-01

    Several tens of white dwarfs are known to host circumstellar discs of dusty debris, thought to arise from the tidal disruption of rocky bodies originating in the star's remnant planetary system. This paper investigates the evolution of such discs if they are very massive, as may be the case if their progenitor was a terrestrial planet, moon, or dwarf planet. Assuming the discs are physically thin and flat, like Saturn's rings, their evolution is governed by Poynting-Robertson drag or viscous spreading, where the disc's effective viscosity is due to self-gravity wakes. For discs with masses ≳ 1026 g, located in the outer parts of the tidal disruption zone, viscous spreading dominates the evolution, and mass is transported both in- and outwards. When outwards-spreading material flows beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of moonlets at the outer edge of Saturn's rings. The newly formed bodies migrate outwards by exchanging angular momentum with the disc and coalesce into larger objects through mutual collisions. Eventually, the disc's Roche-limit overflow recycles tens of percent of the original disc mass; most ends up in a single large body near 2:1 mean-motion resonance with the disc's outer edge. Hence, the recycling of a tidally disrupted super-Earth, for example, could yield an Earth-mass planet on a ˜10-h orbit, located in the habitable zone for 2-to-10-Gyr-old white dwarfs. The recycling process also creates a population of smaller bodies just outside the Roche limit, which may explain the minor planets recently postulated to orbit WD 1145+017.

  12. Towards a population synthesis model of objects formed by self-gravitating disc fragmentation and tidal downsizing

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Rice, Ken

    2013-07-01

    Recently, the gravitational instability (GI) model of giant planet and brown dwarf formation has been revisited and recast into what is often referred to as the `tidal downsizing' hypothesis. The fragmentation of self-gravitating protostellar discs into gravitationally bound embryos - with masses of a few to tens of Jupiter masses, at semimajor axes above 30-40 au - is followed by a combination of grain sedimentation inside the embryo, radial migration towards the central star and tidal disruption of the embryo's upper layers. The properties of the resultant object depends sensitively on the time-scales upon which each process occurs. Therefore, GI followed by tidal downsizing can theoretically produce objects spanning a large mass range, from terrestrial planets to giant planets and brown dwarfs. Whether such objects can be formed in practice, and what proportions of the observed population they would represent, requires a more involved statistical analysis. We present a simple population synthesis model of star and planet formation via GI and tidal downsizing. We couple a semi-analytic model of protostellar disc evolution to analytic calculations of fragmentation, initial embryo mass, grain growth and sedimentation, embryo migration and tidal disruption. While there are key pieces of physics yet to be incorporated, it represents a first step towards a mature statistical model of GI and tidal downsizing as a mode of star and planet formation. We show results from four runs of the population synthesis model, varying the opacity law and the strength of migration, as well as investigating the effect of disc truncation during the fragmentation process. We find that a large fraction of disc fragments are completely destroyed by tidal disruption (typically 40 per cent of the initial population). The tidal downsizing process tends to prohibit low-mass embryos reaching small semimajor axis. The majority of surviving objects are brown dwarfs without solid cores of any kind

  13. Does the dwarf galaxy system of the Milky Way originate from Andromeda?

    NASA Astrophysics Data System (ADS)

    Fouquet, Sylvain; Hammer, François; Yang, Yanbin; Puech, Mathieu; Flores, Hector

    2012-12-01

    The Local Group is often seen to be a quiescent environment without significant merger events. However, an ancient major merger may have occurred in the most massive galaxy as suggested by the M31 classical bulge and its halo haunted by numerous stellar streams. Numerical simulations have shown that tidal tails formed during gas-rich major mergers are long-lived and could be responsible for old stellar streams and likely induce the formation of tidal dwarf galaxies (TDGs). Using several hydrodynamical simulations we have investigated the most prominent tidal tail formed during the first passage, which is gas rich and contains old and metal-poor stars. We discovered several striking coincidences after comparing its location and motion to those of the Milky Way (MW) and of the Magellanic Clouds (MCs). First, the tidal tail is sweeping a relatively small volume in which the MW precisely lies. Because the geometry of the merger is somehow fixed by the anisotropic properties of the giant stream (GS), we evaluate the chance of the MW to be at such a rendezvous with this gigantic tidal tail to be 5 per cent. Secondly, the velocity of the tidal tail matches the Large Magellanic Cloud (LMC) proper motion, and reproduces quite well the geometrical and angular momentum properties of the MW dwarfs, that is, the so-called disc of satellites, also known as the vast polar structure (VPOS). Thirdly, the simulation of the tidal tail reveals one of the formed TDGs with the mass and location almost comparable to those of the LMC. Our present modelling is, however, too limited to study the detailed interaction of gas-rich TDGs with the potential of the MW, and a complementary study is required to test whether the dwarf intrinsic properties can be accounted for by our scenario. Nevertheless this study suggests a causal link between an expected event, an ancient, gas-rich major merger at the M31 location, and several enigmas in the Local Group, namely the GS in the M31 outskirts, the

  14. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittariusmore » are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.« less

  15. Gas dynamics in tidal dwarf galaxies: Disc formation at z = 0

    NASA Astrophysics Data System (ADS)

    Lelli, Federico; Duc, Pierre-Alain; Brinks, Elias; Bournaud, Frédéric; McGaugh, Stacy S.; Lisenfeld, Ute; Weilbacher, Peter M.; Boquien, Médéric; Revaz, Yves; Braine, Jonathan; Koribalski, Bärbel S.; Belles, Pierre-Emmanuel

    2015-12-01

    Tidal dwarf galaxies (TDGs) are recycled objects that form within the collisional debris of interacting and merging galaxies. They are expected to be devoid of non-baryonic dark matter, since they can only form from dissipative material ejected from the discs of the progenitor galaxies. We investigate the gas dynamics in a sample of six bona fide TDGs around three interacting and post-interacting systems: NGC 4694, NGC 5291, and NGC 7252 ("Atoms for Peace"). For NGC 4694 and NGC 5291, we analyse existing H I data from the Very Large Array (VLA), while for NGC 7252 we present new H I observations from the Jansky VLA, together with long-slit and integral-field optical spectroscopy. For all six TDGs, the H I emission can be described by rotating disc models. These H I discs, however, have undergone less than a full rotation since the time of the interaction/merger event, raising the question of whether they are in dynamical equilibrium. Assuming that these discs are in equilibrium, the inferred dynamical masses are consistent with the observed baryonic masses, implying that TDGs are devoid of dark matter. This puts constraints on putative "dark discs" (either baryonic or non-baryonic) in the progenitor galaxies. Moreover, TDGs seem to systematically deviate from the baryonic Tully-Fisher relation. These results provide a challenging test for alternative theories like MOND. Based on observations made with ESO telescopes at Paranal Observatory under programmes 65.O-0563, 67.B-0049, and 083.B-0647.Appendices are available in electronic form at http://www.aanda.orgThe reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A113

  16. Tidally Heated Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  17. Detection of the Intrinsic Size of Sagittarius A* Through Closure Amplitude Imaging

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Falcke, Heino; Herrnstein, Robeson M.; Zhao, Jun-Hui; Goss, W. M.; Backer, Donald C.

    2004-04-01

    We have detected the intrinsic size of Sagittarius A*, the Galactic center radio source associated with a supermassive black hole, showing that the short-wavelength radio emission arises from very near the event horizon of the black hole. Radio observations with the Very Long Baseline Array show that the source has a size of 24 +/- 2 Schwarzschild radii at 7-millimeter wavelength. In one of eight 7-millimeter epochs, we also detected an increase in the intrinsic size of 60+25-17%. These observations place a lower limit to the mass density of Sagittarius A* of 1.4 × 104 solar masses per cubic astronomical unit.

  18. V3885 Sagittarius: A Comparison With a Range of Standard Model Accretion Disks

    NASA Technical Reports Server (NTRS)

    Linnell, Albert P.; Godon, Patrick; Hubeny, Ivan; Sion, Edward M; Szkody, Paula; Barrett, Paul E.

    2009-01-01

    A chi-squared analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7M(solar mass), and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg, is a literature consensus, and is subsequently supported by chi-squared analysis. The mass transfer rate is the remaining parameter to set the accretion disk T(sub eff) profile, and the Hipparcos parallax constrains that parameter to mas transfer = (5.0 +/- 2.0) x 10(exp -9) M(solar mass)/yr by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57,000 +/- 5000 K WD. The model thus provides realistic constraints on mass transfer and T(sub eff) for a large mass transfer system above the period gap.

  19. A gaseous metal disk around a white dwarf.

    PubMed

    Gänsicke, B T; Marsh, T R; Southworth, J; Rebassa-Mansergas, A

    2006-12-22

    The destiny of planetary systems through the late evolution of their host stars is very uncertain. We report a metal-rich gas disk around a moderately hot and young white dwarf. A dynamical model of the double-peaked emission lines constrains the outer disk radius to just 1.2 solar radii. The likely origin of the disk is a tidally disrupted asteroid, which has been destabilized from its initial orbit at a distance of more than 1000 solar radii by the interaction with a relatively massive planetesimal object or a planet. The white dwarf mass of 0.77 solar mass implies that planetary systems may form around high-mass stars.

  20. Evidence for dwarf stars at D of about 100 kiloparsecs near the Sextans dwarf spheroidal galaxy

    NASA Technical Reports Server (NTRS)

    Gould, Andrew; Guhathakurta, Puragra; Richstone, Douglas; Flynn, Chris

    1992-01-01

    A method is presented for detecting individual, metal-poor, dwarf stars at distances less than about 150 kpc - a method specifically designed to filter out stars from among the much more numerous faint background field galaxies on the basis of broad-band colors. This technique is applied to two fields at high Galactic latitude, for which there are deep CCD data in four bands ranging from 3600 to 9000 A. The field in Sextans probably contains more than about five dwarf stars with BJ not greater than 25.5. These are consistent with being at a common distance about 100 kpc and lie about 1.7 deg from the newly discovered dwarf galaxy in Sextans whose distance is about 85 +/- 10 kpc. The stars lie near the major axis of the galaxy and are near or beyond the tidal radius. The second field, toward the south Galactic pole, may contain up to about five extra-Galactic stars, but these show no evidence for being at a common distance. Possible applications of this type technique are discussed, and it is shown that even very low surface brightness star clusters or dwarf galaxies may be detected at distances less than about 1 Mpc.

  1. Resonant Tidal Forcing in Close Binaries: Implications for CVs

    NASA Astrophysics Data System (ADS)

    Ford, K. E. Saavik; McKernan, Barry; Schwab, Elliana

    2018-01-01

    Resonant tidal forcing occurs when the tidal forcing frequency of a binary matches a quadrupolar oscillation mode of one of the binary members and energy is transferred from the orbit of the binary to the mode. Tidal locking permits ongoing resonant driving of modes even as binary orbital parameters change. At small binary separations during tidal lock, a significant fraction of binary orbital energy can be deposited quickly into a resonant mode and the binary decays faster than via the emission of gravitational radiation alone. Here we discuss some of the implications of resonant tidal forcing for the class of binaries known as Cataclysmic Variable (CV) stars. We show that resonant tidal forcing of the donor’s Roche lobe could explain the observed 2‑3hr period gap in CVs, assuming modest orbital eccentricities are allowed (eb ∼ 0.03), and can be complementary or an alternative to, existing models. Sudden collapse of the companion orbit, yielding a Type Ia supernova is disfavoured, since Hydrogen is not observed in Type Ia supernova spectra. Therefore, resonance must generally be truncated, probably via mass loss from the Roche lobe or orbital perturbation, ultimately producing a short period CV containing an ’overheated’ white dwarf.

  2. The Metal-poor non-Sagittarius (?) Globular Cluster NGC 5053: Orbit and Mg, Al, and Si Abundances

    NASA Astrophysics Data System (ADS)

    Tang, Baitian; Fernández-Trincado, J. G.; Geisler, Doug; Zamora, Olga; Mészáros, Szabolcs; Masseron, Thomas; Cohen, Roger E.; García-Hernández, D. A.; Dell’Agli, Flavia; Beers, Timothy C.; Schiavon, Ricardo P.; Sohn, Sangmo Tony; Hasselquist, Sten; Robin, Annie C.; Shetrone, Matthew; Majewski, Steven R.; Villanova, Sandro; Schiappacasse Ulloa, Jose; Lane, Richard R.; Minnti, Dante; Roman-Lopes, Alexandre; Almeida, Andres; Moreno, E.

    2018-03-01

    Metal-poor globular clusters (GCs) exhibit intriguing Al–Mg anti-correlations and possible Si–Al correlations, which are important clues to decipher the multiple-population phenomenon. NGC 5053 is one of the most metal-poor GCs in the nearby universe and has been suggested to be associated with the Sagittarius (Sgr) dwarf galaxy, due to its similarity in location and radial velocity with one of the Sgr arms. In this work, we simulate the orbit of NGC 5053, and argue against a physical connection between Sgr and NGC 5053. On the other hand, the Mg, Al, and Si spectral lines, which are difficult to detect in the optical spectra of NGC 5053 stars, have been detected in the near-infrared APOGEE spectra. We use three different sets of stellar parameters and codes to derive the Mg, Al, and Si abundances. Regardless of which method is adopted, we see a large Al variation, and a substantial Si spread. Along with NGC 5053, metal-poor GCs exhibit different Mg, Al, and Si variations. Moreover, NGC 5053 has the lowest cluster mass among the GCs that have been identified to exhibit an observable Si spread until now.

  3. Confirmation of Faint Dwarf Galaxies in the M81 Group

    NASA Astrophysics Data System (ADS)

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D.

    2013-11-01

    We have followed up on the results of a 65 deg2 CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M_{r^{\\prime }} = -10, we find a galaxy luminosity function slope of -1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size Re ~ 100 pc and total magnitude estimates M_{r^{\\prime }} = -6.8 and MI ~ -9.1.

  4. Galactic Forces Rule the Dynamics of Milky Way Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hammer, Francois; Yang, Yanbin; Arenou, Frederic; Babusiaux, Carine; Wang, Jianling; Puech, Mathieu; Flores, Hector

    2018-06-01

    Dwarf galaxies populating the Galactic halo are assumed to host the largest fractions of dark matter, as calculated from their velocity dispersions. Their major axes are preferentially aligned with the Vast Polar Structure (VPOS) that is perpendicular to the Galactic disk, and we find their velocity gradients aligned as well. This finding results in a probability of random occurrence for the VPOS as low as ∼10‑5. It suggests that tidal forces exerted by the Milky Way are distorting dwarf galaxies. Here we demonstrate on the basis of the impulse approximation that the Galactic gravitational acceleration induces the dwarf line-of-sight velocity dispersion, which is also evidenced by strong dependences between both quantities. Since this result is valid for any dwarf mass value, it implies that dark matter estimates in Milky Way dwarfs cannot be deduced from the product of their radius to the square of their line-of-sight velocity dispersion. This questions the high dark matter fractions reported for these evanescent systems, and the universally adopted total-to-stellar mass relationship in the dwarf regime. It suggests that many dwarfs are at their first passage and are dissolving into the Galactic halo. This gives rise to a promising method to estimate the Milky Way total mass profile at large distances.

  5. Nearby Red Dwarfs are Sexy for Planets and Life

    NASA Astrophysics Data System (ADS)

    Henry, T. J.; Jao, W.-C.; Subasavage, J. P.; RECONS Team

    2005-12-01

    The RECONS group continues to discover many nearby red dwarfs in the southern sky through a combination of proper motion surveys, literature review, and ultimately, our parallax program CTIOPI. Already, we have measured the first accurate parallaxes for 11 of the nearest 100 stellar systems, including four within 5 parsecs of the Sun. These nearby red dwarfs are prime candidates for NASA's Space Interferometry Mission (SIM) because the astrometric perturbations are largest for planets orbiting stars of low mass that are nearby. In addition, new multiple red dwarf systems can be targeted for mass determinations, thereby providing points on a comprehensive mass-luminosity relation for the most populous members of the Galaxy. Recent atmospheric modeling of planets orbiting red dwarfs indicates that even if the planets are tidally locked, heat distribution is highly effective in keeping the worlds balmy over the entire surface. Red dwarfs are therefore "back on the table" as viable hosts of life-bearing planets. Given their ubiquity, red dwarfs are being seriously considered as prime SETI targets, and will allow us to answer not only the question "Are We Alone?" but "Just How Alone Are We?" This work has been supported by the National Science Foundation, NASA's Space Interferometry Mission, and Georgia State University.

  6. Symbolics of the constellations of sagittarius and centaurus in russian traditional culture

    NASA Astrophysics Data System (ADS)

    Bagdasarov, R.

    2001-12-01

    Centaurus falls into the category of 'imaginary animals'. The Russian tradition used not only the symbol Sgr (a result of its acquaintance with the circle of Zodiac), but also the symbol Cen, which fact, as we shall demonstrate, is an evidence of certain mythological-astronomical conceptions. Both the constellations Sagittarius (Sgr) and Centaurus (Cen) are usually represented as versions of the picture of a fantastic being, a Centaur, shaped as man from head to waist, and as an animal, mostly, a horse, from waist down. 'Centaurus' (from the Greek word kev (or kevw)) for 'kill' and o, for 'bull') means 'bull killer', and is probably related to the opposition of the zodiacal constellations Taurus and Sagittarius. When the latter begins to rise on to the night sky, the former disappears completely from view. Sagittarius is represented at ancient monuments related to astronomy as a centaur holding a bow and pointing at certain stars. The constellation of Centaurus is also symbolised by a centaur, but holding not a bow, but a staff or a spear in one hand and an 'animal of sacrifice' in the other (Higinus, Astronomica, III, 37, 1; Chernetsov, 1975, Figure 1). The attributes stand for the Peliases Spear (The Mithological Dictionary, 1991), depicted in astrological maps as The Spear of Centaurus1, The Wolf (Lupus), the Panther or the Beast (Flammarion, 1994).

  7. OPTICAL THERMONUCLEAR TRANSIENTS FROM TIDAL COMPRESSION OF WHITE DWARFS AS TRACERS OF THE LOW END OF THE MASSIVE BLACK HOLE MASS FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Guillochon, James

    In this paper, we model the observable signatures of tidal disruptions of white dwarf (WD) stars using massive black holes (MBHs) of moderate mass, ≈10{sup 3}–10{sup 5} M{sub ⊙}. When the WD passes deep enough within the MBH’s tidal field, these signatures include thermonuclear transients from burning during maximum compression. We combine a hydrodynamic simulation that includes nuclear burning of the disruption of a 0.6 M{sub ⊙} C/O WD with a Monte Carlo radiative transfer calculation to synthesize the properties of a representative transient. The transient’s emission emerges in the optical, with light curves and spectra reminiscent of Type I supernovae. Themore » properties are strongly viewing angle dependent, and key spectral signatures are ≈10,000 km s{sup −1} doppler shifts, due to the orbital motion of the unbound ejecta. Disruptions of He WDs likely produce large quantities of intermediate-mass elements, offering a possible production mechanism for Ca-rich transients. Accompanying multi-wavelength transients are fueled by accretion and arise from the nascent accretion disk and relativistic jet. If MBHs of moderate mass exist with number densities similar to those of supermassive BHs, both high-energy wide-field monitors and upcoming optical surveys should detect tens to hundreds of WD tidal disruptions per year. The current best strategy for their detection may therefore be deep optical follow-up of high-energy transients of unusually long duration. The detection rate or the nondetection of these transients by current and upcoming surveys can thus be used to place meaningful constraints on the extrapolation of the MBH mass function to moderate masses.« less

  8. Spin-orbital Tidal Dynamics and Tidal Heating in the TRAPPIST-1 Multiplanet System

    NASA Astrophysics Data System (ADS)

    Makarov, Valeri V.; Berghea, Ciprian T.; Efroimsky, Michael

    2018-04-01

    We perform numerical simulations of the TRAPPIST-1 system of seven exoplanets orbiting a nearby M dwarf, starting with a previously suggested stable configuration. The long-term stability of this configuration is confirmed, but the motion of planets is found to be chaotic. The eccentricity values are found to vary within finite ranges. The rates of tidal dissipation and tidal evolution of orbits are estimated, assuming an Earth-like rheology for the planets. We find that under this assumption, the planets b, d, and e were captured in the 3:2 or higher spin–orbit resonances during the initial spin-down, but slipped further down into the 1:1 resonance. Depending on its rheology, the innermost planet b may be captured in a stable pseudosynchronous rotation. Nonsynchronous rotation ensures higher levels of tidal dissipation and internal heating. The positive feedback between the viscosity and the dissipation rate—and the ensuing runaway heating—are terminated by a few self-regulation processes. When the temperature is high and the viscosity is low enough, the planet spontaneously leaves the 3:2 resonance. Further heating is stopped either by passing the peak dissipation or by the emergence of partial melt in the mantle. In the post-solidus state, the tidal dissipation is limited to the levels supported by the heat transfer efficiency. The tides on the host star are unlikely to have had a significant dynamical impact. The tides on the synchronized inner planets tend to reduce these planets’ orbital eccentricity, possibly contributing thereby to the system’s stability.

  9. On the Formation of Extended Galactic Disks by Tidally Disrupted Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge; McConnachie, Alan; Babul, Arif

    2006-10-01

    We explore the possibility that extended disks, such as that recently discovered in M31, are the result of a single dwarf (109-1010 Msolar) satellite merger. We conduct N-body simulations of dwarf NFW halos with embedded spheroidal stellar components on coplanar, prograde orbits in an M31-like host galaxy. As the orbit decays due to dynamical friction and the system is disrupted, the stellar particles relax to form an extended, exponential-disk-like structure that spans the radial range 30-200 kpc. The disk scale length Rd correlates with the initial extent of the stellar component within the satellite halo: the more embedded the stars, the smaller the resulting disk scale length. If the progenitors start on circular orbits, the kinematics of the stars that make up the extended disk have an average rotational motion that is 30-50 km s-1 lower than the host's circular velocity. For dwarf galaxies moving on highly eccentric orbits (e~=0.7), the stellar debris exhibits a much lower rotational velocity. Our results imply that extended galactic disks might be a generic feature of the hierarchical formation of spiral galaxies such as M31 and the Milky Way.

  10. TIDAL STIRRING OF SATELLITES WITH SHALLOW DENSITY PROFILES PREVENTS THEM FROM BEING TOO BIG TO FAIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomozeiu, Mihai; Mayer, Lucio; Quinn, Thomas, E-mail: mihai@physik.uzh.ch

    The “too big to fail” problem is revisited by studying the tidal evolution of populations of dwarf satellites with different density profiles. The high-resolution cosmological ΛCDM “ErisMod” set of simulations is used. These simulations can model both the stellar and dark matter components of the satellites, and their evolution under the action of the tides of a Milky Way (MW)-sized host halo at a force resolution better than 10 pc. The stronger tidal mass loss and re-shaping of the mass distribution induced in satellites with γ = 0.6 dark matter density distributions, as those resulting from the effect of feedbackmore » in hydrodynamical simulations of dwarf galaxy formation, are sufficient to bring the circular velocity profiles in agreement with the kinematics of MW’s dSphs. In contrast, in simulations in which the satellites retain cusps at z = 0 there are several “massive failures” with circular velocities in excess of the observational constraints. Various sources of deviations in the conventionally adopted relation between the circular velocity at the half-light radius and the one-dimensional line of sight velocity dispersions are found. Such deviations are caused by the response of circular velocity profiles to tidal effects, which also varies depending on the initially assumed inner density profile and by the complexity of the stellar kinematics, which include residual rotation and anisotropy. In addition, tidal effects naturally induce large deviations in the stellar mass–halo mass relation for halo masses below 10{sup 9} M {sub ⊙}, preventing any reliable application of the abundance matching technique to dwarf galaxy satellites.« less

  11. The Fate of Close-in Planets: Tidal or Magnetic Migration?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strugarek, A.; Bolmont, E.; Mathis, S.

    Planets in close-in orbits interact magnetically and tidally with their host stars. These interactions lead to a net torque that makes close-in planets migrate inward or outward depending on their orbital distance. We systematically compare the strength of magnetic and tidal torques for typical observed star–planet systems (T-Tauri and hot Jupiter, M-dwarf and Earth-like planet, K star and hot Jupiter) based on state-of-the-art scaling laws. We find that depending on the characteristics of the system, tidal or magnetic effects can dominate. For very close-in planets, we find that both torques can make a planet migrate on a timescale as smallmore » as 10–100 thousands of years. Both effects thus have to be taken into account when predicting the evolution of compact systems.« less

  12. Towards a Population Synthesis Model of Objects formed by Self-Gravitating Disc Fragmentation and Tidal Downsizing

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Rice, Ken

    2013-07-01

    Recently, the gravitational instability (GI) model of giant planet and brown dwarf formation has been revisited and recast into what is often referred to as the "tidal downsizing" hypothesis. The fragmentation of self-gravitating protostellar discs into gravitationally bound embryos - with masses of a few to tens of Jupiter masses, at semi major axes above 30 - 40 AU - is followed by a combination of grain sedimentation inside the embryo, radial migration towards the central star and tidal disruption of the embryo's upper layers. The properties of the resultant object depends sensitively on the timescales upon which each process occurs. Therefore, GI followed by tidal downsizing can theoretically produce objects spanning a large mass range, from terrestrial planets to giant planets and brown dwarfs. Whether such objects can be formed in practice, and what proportions of the observed population they would represent, requires a more involved statistical analysis. We present a simple population synthesis model of star and planet formation via GI and tidal downsizing. We couple a semi-analytic model of protostellar disc evolution to analytic calculations of fragmentation, initial embryo mass, grain growth and sedimentation, embryo migration and tidal disruption. While there are key pieces of physics yet to be incorporated, it represents a first step towards a mature statistical model of GI and tidal downsizing as a mode of star and planet formation. We show results from four runs of the population synthesis model, varying the opacity law and the strength of migration, as well as investigating the effect of disc truncation during the fragmentation process.

  13. Evaporation and accretion of extrasolar comets following white dwarf kicks

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas; Metzger, Brian D.; Loeb, Abraham

    2015-03-01

    Several lines of observational evidence suggest that white dwarfs receive small birth kicks due to anisotropic mass-loss. If other stars possess extrasolar analogues to the Solar Oort cloud, the orbits of comets in such clouds will be scrambled by white dwarf natal kicks. Although most comets will be unbound, some will be placed on low angular momentum orbits vulnerable to sublimation or tidal disruption. The dusty debris from these comets will manifest itself as an IR excess temporarily visible around newborn white dwarfs; examples of such discs may already have been seen in the Helix Nebula, and around several other young white dwarfs. Future observations with the James Webb Space Telescope may distinguish this hypothesis from alternatives such as a dynamically excited Kuiper Belt analogue. Although competing hypotheses exist, the observation that ≳15 per cent of young white dwarfs possess such discs, if interpreted as indeed being cometary in origin, provides indirect evidence that low-mass gas giants (thought necessary to produce an Oort cloud) are common in the outer regions of extrasolar planetary systems. Hydrogen abundances in the atmospheres of older white dwarfs can, if sufficiently low, also be used to place constraints on the joint parameter space of natal kicks and exo-Oort cloud models.

  14. Genesis of magnetic fields in isolated white dwarfs

    NASA Astrophysics Data System (ADS)

    Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.

    2018-05-01

    A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.

  15. Genesis of magnetic fields in isolated white dwarfs

    NASA Astrophysics Data System (ADS)

    Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.

    2018-07-01

    A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high-field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc are formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here, we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that the field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture, a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.

  16. Tidal fluctuations influence E. coli concentrations in urban estuaries.

    PubMed

    Jovanovic, Dusan; Coleman, Rhys; Deletic, Ana; McCarthy, David T

    2017-06-15

    This study investigated the influence of water level and velocity on Escherichia coli levels over multiple tidal cycles in an urban microtidal estuary in Melbourne, Australia. Over 3,500 E. coli samples and high resolution water level and velocity measurements from two locations within the estuary were used for the analysis. E. coli negatively correlated with water level in the upper estuary which was proposed to be linked to increased resuspension of estuarine sediments during low tide. No relationship was found in the lower estuary, likely due to wet weather inputs dwarfing subtler tidal-related processes. Removal of wet weather data enabled significant relationships to emerge in the lower estuary: 1) positive with water level (when a 9-h shift applied corresponding to the phase shift between water levels and velocities) and; 2) positive with velocity (no shift applied). This supports a link between increased E. coli levels and tidal-related resuspension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Chaotic Excitation and Tidal Damping in the GJ 876 System

    NASA Astrophysics Data System (ADS)

    Puranam, Abhijit; Batygin, Konstantin

    2018-04-01

    The M-dwarf GJ 876 is the closest known star to harbor a multi-planetary system. With three outer planets locked in a chaotic Laplace-type resonance and an appreciably eccentric short-period super-Earth, this system represents a unique exposition of extrasolar planetary dynamics. A key question that concerns the long-term evolution of this system, and the fate of close-in planets in general, is how the significant eccentricity of the inner-most planet is maintained against tidal circularization on timescales comparable to the age of the universe. Here, we employ stochastic secular perturbation theory and N-body simulations to show that the orbit of the inner-most planet is shaped by a delicate balance between extrinsic chaotic forcing and tidal dissipation. As such, the planet’s orbital eccentricity represents an indirect measure of its tidal quality factor. Based on the system’s present-day architecture, we estimate that the extrasolar super-Earth GJ 876 d has a tidal Q ∼ 104–105, a value characteristic of solar system gas giants.

  18. The Post-merger Magnetized Evolution of White Dwarf Binaries: The Double-degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    NASA Astrophysics Data System (ADS)

    Ji, Suoqing; Fisher, Robert T.; García-Berro, Enrique; Tzeferacos, Petros; Jordan, George; Lee, Dongwook; Lorén-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-08-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths ~2 × 108 G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  19. The Outer Profile of the Draco Dwarf Spheroidal Galaxy: Measuring the Mass-Loss Rate

    NASA Astrophysics Data System (ADS)

    Armandroff, Taft; Pryor, Carlton; Olszewski, Edward

    1999-02-01

    The existence and properties of dark matter in dwarf galaxies have fundamental implications for cosmology and galaxy formation. We are engaged in a long-term effort to observe and model the structure, kinematics, and mass-to-light ratios of the Draco and UMi dwarf spheroidal (dSph) galaxies. Here we propose to extend our work with a search for outlying members and tidal tails of the Draco dSph galaxy, motivated by observational, theoretical, and technical advances. Recent sophisticated modeling of tidal interactions with the Galactic potential clarifies the interpretation of tidal tails and shows how to calculate the rate at which stars have been lost from a dSph or globular from the density profile of the tidal debris. Also, the radius of the transition between bound and unbound stars yields the outer boundary and total mass of the dark matter halos in the dSphs. While central mass densities and central mass-to-light ratios are generally available for dSphs, determination of their total masses (like those of any galaxy) has remained elusive. We will map a 24 square degree area along the major axis of Draco, plus six square degrees of background. Use of a 3-filter technique will result in an unprecedentedly clean census of distant Draco stars and, thus, a major-axis density profile to a radius of ~6°. Our long-term goal is to investigate the kinematics of the outer members and tidal-tail stars in order to compare in detail with the models.

  20. Future Interstellar Travel Destinations: Assessing the Suitability of Nearby Red Dwarf Stars as Hosts to Habitable Life-bearing Planets

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, S. G.

    2013-01-01

    As part of our NSF/NASA sponsored “Living with a Red Dwarf Star” program, we are carrying out a comprehensive study of red dwarf stars across the electromagnetic spectrum to assess their suitability as hosts for habitable planets. These cool, dim, long-lived, low mass stars comprise >75% of the stars in our Galaxy. Moreover an increasing number of (potentially habitable) large Earth-size planets are being found hosted by red dwarfs. With intrinsically low luminosities (L < 0.02 Lsun), the habitable zones (HZs) of hosted planets are close to their host stars (typically 0.05 AU < HZ <0.4 AU). Our study indicates red dwarf HZ planets without strong (protective) magnetic fields are especially susceptible to atmospheric erosion & loss by the star’s X-UV and wind fluxes. Also, the frequent flaring of young red dwarf stars and tidal-locking of close-in planets could challenge the development of life. But tidal locking of these planets could have some advantages for the developmenet of life. The long lifetimes of the red dwarfs (> 50 BY) could be favorable for the development of complex (possibly even intelligent) life. We discuss our results in the context of nearby red dwarfs as possible destinations for future interstellar missions program. We illustrate this with examples of the red dwarf exoplanet systems: GJ 581 and HD 85512 (both with large HZ Earth-size planets). Also we discuss the nearest star (4.3 LY) - the red dwarf - Proxima Centauri as a potential destination for future interstellar missions such proposed by Icarus Interstellar and the 100-Year Starship and StarVoyager programs. We gratefully acknowledge the support from NSF-Grant AST-10-09903, Chandra Grants GO1-12124X & GO2-13020X and HST Grant GO-10920.

  1. The interacting binary white dwarf systems

    NASA Astrophysics Data System (ADS)

    Provencal, Judith Lucille

    1994-01-01

    Interacting binary white dwarfs are believed to contain two white dwarfs of extreme mass ratio, one of which is filling its Roche Lobe, transferring material to its companion via an accretion disk. The defining characteristic of an IBWD is the nondetection of hydrogen in the system. IBWD's represent the culmination of binary star evolution. In this final death dance, two degenerate objects are entangled, the massive white dwarf tidally stripping and devouring its helpless companion's outer layers. Because a white dwarf expands as it loses mass, the end result of this process is the complete absorption of one star by the other . My goal in the examination of these systems is to understand their photometric behavior and determine the best model of these objects. The IBWD's represent the endpoint of binary evolution. Knowledge of the physical properties of these objects will provide constraints on theories of binary evolution, white dwarf formation, the thermal and physical structure of accreting white dwarfs, and nucleosynthesis. To achieve this goal, I have analyzed the most comprehensive high speed photometric data sets available on 5 of the 6 known objects: AM CVn, PG1346+082, CP Eri, V803 Cen, and G61-29. AM CVn and PG1346+0S2 were targets of the Whole Earth Telescope in 1988 and 1990 respectively. We find a range of variation timescales, from minutes to days, and a range of physical behaviour. Most importantly, we measure a rate of period change of P = 1.68 +/- 0.03 x 10-11s/s for the dominant variation in AM CVn. We also find the differences in behavior can be attributed to a difference in mass transfer rate that may be evolutionary in origin. Finally, I discuss in detail the observational characteristics of each object, and overall properties of the IBWD family. In conclusion, I discuss past and future history of these objects, and touch on their possible influence on our knowledge of white dwarf evolution and formation. The IBWD's are possible progenitors of

  2. Exoplanet recycling in massive white-dwarf debris discs

    NASA Astrophysics Data System (ADS)

    Van Lieshout, Rik

    2017-06-01

    When a star evolves into a white dwarf, the planetary system it hosts can become unstable. Planets in such systems may then be scattered onto star-grazing orbits, leading to their tidal disruption as they pass within the white dwarf’s Roche limit. We study the massive, compact debris discs that may arrise from this process using a combination of analytical estimates and numerical modelling. The discs are gravitationally unstable, resulting in an enhanced effective viscosity due to angular momentum transport associated with self-gravity wakes. For disc masses greater than ~1026 g (corresponding to progenitor objects comparable to the Galilean moons), viscous spreading dominates over Poynting-Robertson drag in the outer parts of the disc. In such massive discs, mass is transported both in- and outwards. When the outward-flowing material spreads beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of Saturn’s innermost moonlets. This process recycles a substantial fraction of the original disc mass (tens of percents), with the bulk of the mass locked in a single large body orbitting in a 2:1 mean-motion resonance with the Roche limit. As such, the recycling of a tidally disrupted super-Earth could yield an Earth-mass planet on a 10--20 hr orbit. For white dwarfs with a temperature below 6000-7000 K (corresponding to a cooling age of >1--2 Gyr), this orbit is located in the white dwarf’s habitable zone. The recycling process also creates a string of smaller bodies just outside the Roche limit. These may account for the collection of minor planets postulated to orbit white dwarf WD 1145+017.

  3. THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Suoqing; Fisher, Robert T.; Garcia-Berro, Enrique

    2013-08-20

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the twomore » white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths {approx}2 Multiplication-Sign 10{sup 8} G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.« less

  4. Tidal Disruption of a White Dwarf by a Black Hole: The Diversity of Nucleosynthesis, Explosion Energy, and the Fate of Debris Streams

    NASA Astrophysics Data System (ADS)

    Kawana, Kojiro; Tanikawa, Ataru; Yoshida, Naoki

    2018-03-01

    We run a suite of hydrodynamics simulations of tidal disruption events (TDEs) of a white dwarf (WD) by a black hole (BH) with a wide range of WD/BH masses and orbital parameters. We implement nuclear reactions to study nucleosynthesis and its dynamical effect through release of nuclear energy. The released nuclear energy effectively increases the fraction of unbound ejecta. This effect is weaker for a heavy WD with 1.2 M⊙, because the specific orbital energy distribution of the debris is predominantly determined by the tidal force, rather than by the explosive reactions. The elemental yield of a TDE depends critically on the initial composition of a WD, while the BH mass and the orbital parameters also affect the total amount of synthesized elements. Tanikawa et al. (2017) find that simulations of WD-BH TDEs with low resolution suffer from spurious heating and inaccurate nuclear reaction results. In order to examine the validity of our calculations, we compare the amounts of the synthesized elements with the upper limits of them derived in a way where we can avoid uncertainties due to low resolution. The results are largely consistent, and thus support our findings. We find particular TDEs where early self-intersection of a WD occurs during the first pericenter passage, promoting formation of an accretion disk. We expect that relativistic jets and/or winds would form in these cases because accretion rates would be super-Eddington. The WD-BH TDEs result in a variety of events depending on the WD/BH mass and pericenter radius of the orbit.

  5. Tidal disruption of a white dwarf by a black hole: the diversity of nucleosynthesis, explosion energy, and the fate of debris streams

    NASA Astrophysics Data System (ADS)

    Kawana, Kojiro; Tanikawa, Ataru; Yoshida, Naoki

    2018-07-01

    We run a suite of hydrodynamic simulations of tidal disruption events (TDEs) of a white dwarf (WD) by a black hole (BH) with a wide range of WD/BH masses and orbital parameters. We implement nuclear reactions to study nucleosynthesis and its dynamical effect through release of nuclear energy. The released nuclear energy effectively increases the fraction of unbound ejecta. This effect is weaker for a heavy WD with 1.2 M⊙, because the specific orbital energy distribution of the debris is predominantly determined by the tidal force, rather than by the explosive reactions. The elemental yield of a TDE depends critically on the initial composition of a WD, while the BH mass and the orbital parameters also affect the total amount of synthesized elements. Tanikawa et al. (2017) find that simulations of WD-BH TDEs with low resolution suffer from spurious heating and inaccurate nuclear reaction results. In order to examine the validity of our calculations, we compare the amounts of the synthesized elements with the upper limits of them derived in a way where we can avoid uncertainties due to low resolution. The results are largely consistent, and thus support our findings. We find particular TDEs where early self-intersection of a WD occurs during the first pericentre passage, promoting formation of an accretion disc. We expect that relativistic jets and/or winds would form in these cases because accretion rates would be super-Eddington. The WD-BH TDEs result in a variety of events depending on the WD/BH mass and pericentre radius of the orbit.

  6. POX 186: A Dwarf Galaxy Under Construction?

    NASA Astrophysics Data System (ADS)

    Corbin, M. R.; Vacca, W. D.

    2000-12-01

    We have obtained deep images of the ultracompact ( ~ 3'') blue compact dwarf galaxy POX 186 in the F336W, F555W, and F814W filters of the Planetary Camera of the Hubble Space Telescope. We have additionally obtained a low-resolution near ultraviolet spectrum of the object with STIS and combine this with a ground-based spectrum covering the visible continuum and emission lines. Our images confirm this object to be highly compact, with a maximum projected size of only ~ 240 pc, making it one of the smallest galaxies known. We also confirm that the outer regions of the galaxy consist of an evolved stellar population, ruling out earlier speculations that POX 186 is a protogalaxy. However, the PC images reveal the galaxy to have a highly irregular morphology, with a pronounced tidal arm on its western side. This morphology is strongly suggestive of a recent collision between two smaller components which has in turn triggered the central starburst. The F336W image also shows that the material in this tidal stream is actively star forming. Given the very small ( ~ 100 pc) sizes of the colliding components, POX 186 may be a dwarf galaxy in the early stages of formation, which would be consistent with current ``downsizing'' models of galaxy formation in which the least massive objects are the last to form. This work is supported by NASA and the Space Telescope Science Institute.

  7. Serendipitous discovery of a dwarf Nova in the Kepler field near the G dwarf KIC 5438845

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alexander; Ayres, Thomas R.; Neff, James E.

    2015-02-01

    The Kepler satellite provides a unique window into stellar temporal variability by observing a wide variety of stars with multi-year, near-continuous, high precision, optical photometric time series. While most Kepler targets are faint stars with poorly known physical properties, many unexpected discoveries should result from a long photometric survey of such a large area of sky. During our Kepler Guest Observer programs that monitored late-type stars for starspot and flaring variability, we discovered a previously unknown dwarf nova that lies within a few arcseconds of the mid-G dwarf star KIC 5438845. This dwarf nova underwent nine outbursts over a 4more » year time span. The two largest outbursts lasted ∼17–18 days and show strong modulations with a 110.8 minute period and a declining amplitude during the outburst decay phase. These properties are characteristic of an SU UMa-type cataclysmic variable. By analogy with other dwarf nova light curves, we associate the 110.8 minute (1.847 hr) period with the superhump period, close to but slightly longer than the orbital period of the binary. No precursor outbursts are seen before the super-outbursts and the overall super-outburst morphology corresponds to Osaki and Meyer “Case B” outbursts, which are initiated when the outer edge of the disk reaches the tidal truncation radius. “Case B” outbursts are rare within the Kepler light curves of dwarf novae. The dwarf nova is undergoing relatively slow mass transfer, as evidenced by the long intervals between outbursts, but the mass transfer rate appears to be steady, because the smaller “normal” outbursts show a strong correlation between the integrated outburst energy and the elapsed time since the previous outburst. At super-outburst maximum the system was at V ∼ 18, but in quiescence it is fainter than V ∼ 22, which will make any detailed quiescent follow-up of this system difficult.« less

  8. Chemical Abundances of Hydrostatic and Explosive Alpha-elements in Sagittarius Stream Stars

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sheffield, Allyson A.; Cunha, Katia; Smith, Verne V.

    2018-05-01

    We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface-brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color–color selection, combined with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) radial velocities. In this Letter, we analyze [Fe/H] and α-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive α-elements [α h/ex] (which we refer to as the “HEx ratio”). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr system’s luminosity that is estimated to currently reside in the streams.

  9. Simulations of Instabilities in Tidal Tails

    NASA Astrophysics Data System (ADS)

    Comparetta, Justin N.; Quillen, A. C.

    2010-05-01

    We use graphics cards to run a hybrid test particle/N-body simulation to integrate 4 million massless particle trajectories within fully self-consistent N-body simulations of 128,000 - 256,000 particles. The number of massless particles allows us to resolve fine structure in the spatial distribution and phase space of a dwarf galaxy that is disrupted in the tidal field of a Milky Way type galaxy. The tidal tails exhibit clumping or a smoke-like appearance. By running simulations with different satellite particle mass, number of massive vs massless particles and with and without a galaxy disk, we have determined that the instabilities are not due to numerical noise or shocking as the satellite passes through the disk of the Galaxy. The instability is possibly a result of self-gravity which indicates it may be due to Jeans instabilities. Simulations involving different halo particle mass may suggest limitations on dark matter halo substructure. We find that the instabilities are visible in velocity space as well as real space and thus could be identified from velocity surveys as well as number counts.

  10. A COMPREHENSIVE, WIDE-FIELD STUDY OF PULSATING STARS IN THE CARINA DWARF SPHEROIDAL GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivas, A. Katherina; Mateo, Mario, E-mail: akvivas@cida.ve, E-mail: mmateo@umich.edu

    2013-12-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dwarf spheroidal galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids (DCs), which are mostly located ∼2.5 mag below the horizontal branch and have very short periods (<0.1 days), typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations ofmore » the galaxy. Several extra-tidal DCs were found in our survey up to a distance of ∼1° from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids, some of which were found outside the galaxy's tidal radius as well. This supports past works that suggest that Carina is undergoing tidal disruption. We use the period-luminosity relationship for DCs to estimate a distance modulus of μ{sub 0} = 20.17 ± 0.10 mag, in very good agreement with the estimate from RR Lyrae stars. We find some important differences in the properties of the DCs of Carina and those in Fornax and the LMC, the only extragalactic samples of DCs currently known. These differences may reflect a metallicity spread, depth along the line of sight, and/or different evolutionary paths of the DC stars.« less

  11. Does tidal capture produce cataclysmic variables?

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Grindlay, Jonathan E.; Garcia, Michael R.

    1990-01-01

    It is shown that earlier estimates of the number of cataclysmic variables (CVs) to be expected from tidal capture in globular clusters may have been considerably too high, since many such binaries will result in unstable mass transfer, and thus not become CVs after all. In particular, CVs with white dwarf masses less than or obout 1.0 solar mass will be supressed. Such unstable mass transfer events may produce some of the cluster mass loss required to stabilize the cluster core. The smaller number of stable CVs predicted may suggest a reconsideration of the nature of some of the low-luminosity cluster X-ray sources.

  12. Wolf 1130: A Nearby Triple System Containing a Cool, Ultramassive White Dwarf

    NASA Astrophysics Data System (ADS)

    Mace, Gregory N.; Mann, Andrew W.; Skiff, Brian A.; Sneden, Christopher; Kirkpatrick, J. Davy; Schneider, Adam C.; Kidder, Benjamin; Gosnell, Natalie M.; Kim, Hwihyun; Mulligan, Brian W.; Prato, L.; Jaffe, Daniel

    2018-02-01

    Following the discovery of the T8 subdwarf WISE J200520.38+542433.9 (Wolf 1130C), which has a proper motion in common with a binary (Wolf 1130AB) consisting of an M subdwarf and a white dwarf, we set out to learn more about the old binary in the system. We find that the A and B components of Wolf 1130 are tidally locked, which is revealed by the coherence of more than a year of V-band photometry phase-folded to the derived orbital period of 0.4967 days. Forty new high-resolution, near-infrared spectra obtained with the Immersion Grating Infrared Spectrometer provide radial velocities and a projected rotational velocity (v sin i) of 14.7 ± 0.7 {km} {{{s}}}-1 for the M subdwarf. In tandem with a Gaia parallax-derived radius and verified tidal locking, we calculate an inclination of i = 29° ± 2°. From the single-lined orbital solution and the inclination we derive an absolute mass for the unseen primary ({1.24}-0.15+0.19 M ⊙). Its non-detection between 0.2 and 2.5 μm implies that it is an old (>3.7 Gyr) and cool (T eff < 7000 K) ONe white dwarf. This is the first ultramassive white dwarf within 25 pc. The evolution of Wolf 1130AB into a cataclysmic variable is inevitable, making it a potential SN Ia progenitor. The formation of a triple system with a primary mass >100 times the tertiary mass and the survival of the system through the common-envelope phase, where ∼80% of the system mass was lost, is remarkable. Our analysis of Wolf 1130 allows us to infer its formation and evolutionary history, which has unique implications for understanding low-mass star and brown dwarf formation around intermediate-mass stars.

  13. Formation and evolution of substructures in tidal tails: spherical dark matter haloes

    NASA Astrophysics Data System (ADS)

    Reinoso, B.; Fellhauer, M.; Véjar, R.

    2018-05-01

    Recently a theory about the formation of overdensities of stars along tidal tails of globular clusters has been presented. This theory predicts the position and the time of the formation of such overdensities and was successfully tested with N-body simulations of globular clusters in a point-mass galactic potential. In this work, we present a comparison between this theory and our simulations using a dwarf galaxy orbiting two differently shaped dark matter haloes to study the effects of a cored and a cuspy halo on the formation and the evolution of tidal tails. We find no difference using a cuspy or a cored halo, however, we find an intriguing asymmetry between the leading arm and the trailing arm of the tidal tails. The trailing arm grows faster than the leading arm. This asymmetry is seen in the distance to the first overdensity and its size as well. We establish a relation between the distance to the first overdensity and the size of this overdensity.

  14. COMPARING THE OBSERVABLE PROPERTIES OF DWARF GALAXIES ON AND OFF THE ANDROMEDA PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Michelle L. M.; Martin, Nicolas F.; Rich, R. M.

    The thin, extended planes of satellite galaxies detected around both the Milky Way and Andromeda are not a natural prediction of the Λ-cold dark matter paradigm. Galaxies in these distinct planes may have formed and evolved in a different way (e.g., tidally) from their off-plane neighbors. If this were the case, one would expect the on- and off-plane dwarf galaxies in Andromeda to have experienced different evolutionary histories, which should be reflected by the chemistries, dynamics, and star formation histories of the two populations. In this work, we present new, robust kinematic observations for two on-plane M31 dwarf spheroidal galaxiesmore » (And XVI and XVII) and compile and compare all available observational metrics for the on- and off-plane dwarfs to search for a signal that would corroborate such a hypothesis. We find that, barring their spatial alignment, the on- and off-plane Andromeda dwarf galaxies are indistinguishable from one another, arguing against vastly different formative and evolutionary histories for these two populations.« less

  15. Chandra X-Ray Observatory Image of Sagittarius A

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A 2 week observation through the optic eye of the Chandra X-Ray Observatory revealed this sturning explosion occurring in the super massive black hole at the Milky Way's center, known as Sagittarius A or Sgr A*. Huge lobes of 20-million degree Centigrade gas ( red loops in image) flank both sides of the black hole and extend over dozens of light years indicating that enormous explosions occurred several times over the last 10 thousand years. Weighing in at 3-million times the mass of the sun, the Sgr A* is a starved black hole, possibly because explosive events in the past have cleared much of the gas around it.

  16. Outskirts of Local Group Dwarf Galaxies Revealed by Subaru Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Komiyama, Yutaka

    2017-03-01

    Local Group galaxies are important targets since their stellar populations can be resolved, and their properties can be investigated in detail with the help of stellar evolutionary models. The newly-built instrument for the 8.2m Subaru Telescope, Hyper Suprime-Cam (HSC), which has a 1 Giga pixel CCD camera with 1.5 degrees field of view, is the best instrument for observing Local Group galaxies. We have carried out a survey for Local Group dwarf galaxies using HSC aiming to shed light on the outskirts of these galaxies. The survey covers target galaxies out beyond the tidal radii down to a depth unexplored by previous surveys. Thanks to the high spatial resolution and high sensitivity provided by the Subaru Telescope, we are able to investigate properties such as spatial distribution and stellar population from the very center of galaxies to the outskirts. In this article, I will show results for the dwarf irregular galaxy NGC 6822 and the dwarf spheroidal galaxy Ursa Minor.

  17. Planetary Engulfment as a Trigger for White Dwarf Pollution

    NASA Astrophysics Data System (ADS)

    Petrovich, Cristobal; Muñoz, Diego J.

    2017-01-01

    The presence of a planetary system can shield a planetesimal disk from the secular gravitational perturbations due to distant outer massive objects (planets or stellar companions). As the host star evolves off the main sequence to become a white dwarf, these planets can be engulfed during the giant phase, triggering secular instabilities and leading to the tidal disruptions of small rocky bodies. These disrupted bodies can feed the white dwarfs with rocky material and possibly explain the high-metallicity material in their atmospheres. We illustrate how this mechanism can operate when the gravitational perturbations are due to the KL mechanism from a stellar binary companion, a process that is activated only after the planet has been removed/engulfed. We show that this mechanism can explain the observed accretion rates if: (1) the planetary engulfment happens rapidly compared to the secular timescale, which is generally the case for wide binaries (> 100 au) and planetary engulfment during the asymptotic giant branch; (2) the planetesimal disk has a total mass of ˜ {10}-4-{10}-2{M}\\oplus . We show that this new mechanism can provide a steady supply of material throughout the entire life of the white dwarfs for all cooling ages and can account for a large fraction (up to nearly half) of the observed polluted white dwarfs.

  18. THE NORTHERN WRAPS OF THE SAGITTARIUS STREAM AS TRACED BY RED CLUMP STARS: DISTANCES, INTRINSIC WIDTHS, AND STELLAR DENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correnti, M.; Ferraro, F. R.; Bellazzini, M.

    2010-09-20

    We trace the tidal Stream of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) using Red Clump (RC) stars from the catalog of the Sloan Digital Sky Survey-Data Release 6, in the range 150{sup 0} {approx}< R.A. {approx}< 220{sup 0}, corresponding to the range of orbital azimuth 220{sup 0} {approx}< {Lambda} {approx}< 290{sup 0}. Substructures along the line of sight (los) are identified as significant peaks in the differential star count profiles (SCPs) of candidate RC stars. A proper modeling of the SCPs allows us to obtain (1) {<=}10% accurate, purely differential distances with respect to the main body of Sgr,more » (2) estimates of the FWHM along the los, and (3) estimates of the local density, for each detected substructure. In the range 255{sup 0} {approx}< {Lambda} {approx}< 290{sup 0} we cleanly and continuously trace various coherent structures that can be ascribed to the Stream, in particular: the well-known northern portion of the leading arm, running from d {approx_equal} 43 kpc at {Lambda} {approx_equal} 290{sup 0} to d {approx_equal} 30 kpc at {Lambda} {approx_equal} 255{sup 0}, and a more nearby coherent series of detections lying at a constant distance d {approx_equal} 25 kpc, that can be identified with a wrap of the trailing arm. The latter structure, predicted by several models of the disruption of Sgr dSph, was never traced before; comparison with existing models indicates that the difference in distance between these portions of the leading and trailing arms may provide a powerful tool to discriminate between theoretical models assuming different shapes of the Galactic potential. A further, more distant wrap in the same portion of the sky is detected only along a couple of los. For {Lambda} {approx}< 255{sup 0} the detected structures are more complex and less easily interpreted. We are confident of being able to trace the continuation of the leading arm down to {Lambda} {approx_equal} 220{sup 0} and d {approx_equal} 20 kpc; the trailing arm

  19. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral Rose

    that can continue to form stars in isolation after reionization. Finally, we perform a systematic Bayesian analysis of rotation vs. dispersion support (vrot/sigma) in 40 dwarf galaxies throughout the Local Volume (LV) over a stellar mass range 103.5 M sun < M* < 108 Msun. We find that the stars in 80% of the LV dwarf galaxies studied -- both satellites and isolated systems -- are dispersion-supported. These results challenge the traditional view that the stars in gas-rich dwarf irregulars (dIrrs) are distributed in cold, rotationally-supported stellar disks, while gas-poor dwarf spheroidals (dSphs) are kinematically distinct in having dispersion supported stars. We apply the same Bayesian analysis to four of the FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dwarf galaxies (109 Msun < M vir < 1010 Msun) and show that the simulated isolated dIrr galaxies have stellar ellipticities and stellar vrot/sigma ratios that are consistent with the observed population of dIrrs and dSphs without the need to subject these dwarfs to any external perturbations or tidal forces. We posit that most dwarf galaxies form as puffy, dispersion-dominated systems, rather than cold, angular momentum-supported disks. If this is the case, then transforming a dIrr into a dSph may require little more than removing its gas.

  20. New Algorithm Identifies Tidal Streams Oriented Along our Line-of-Sight

    NASA Astrophysics Data System (ADS)

    Lin, Ziyi; Newberg, Heidi; Amy, Paul; Martin, Charles Harold; Rockcliffe, Keighley E.

    2018-01-01

    The known dwarf galaxy tidal streams in the Milky Way are primarily oriented perpendicular to our line-of-sight. That is because they are concentrated into an observable higher-surface-brightness feature at a particular distance, or because they tightly cluster in line-of-sight velocity in a particular direction. Streams that are oriented along our line-of-sight are spread over a large range of distances and velocities. However, these distances and velocities are correlated in predicable ways. We used a set of randomly oriented Milky Way orbits to develop a technique that bins stars in combinations of distance and velocity that are likely for tidal streams. We applied this technique to identify previously unknown tidal streams in a set of blue horizontal branch stars in the first quadrant from Data Release 10 of the Sloan Digital Sky Survey (SDSS). This project was supported by NSF grant AST 16-15688, a Rensselaer Presidential Fellowship, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.

  1. ARE ULTRA-LONG GAMMA-RAY BURSTS CAUSED BY BLUE SUPERGIANT COLLAPSARS, NEWBORN MAGNETARS, OR WHITE DWARF TIDAL DISRUPTION EVENTS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioka, Kunihito; Hotokezaka, Kenta; Piran, Tsvi, E-mail: kunihito.ioka@yukawa.kyoto-u.ac.jp

    Ultra-long gamma-ray bursts (ulGRBs) are a new population of GRBs with extreme durations of ∼10{sup 4} s. Leading candidates for their origin are blue supergiant collapsars, magnetars, and white dwarf tidal disruption events (WD-TDEs) caused by massive black holes (BHs). Recent observations of supernova-like (SN-like) bumps associated with ulGRBs challenged both the WD-TDE and the blue supergiant models because of the detection of SNe and the absence of hydrogen lines, respectively. We propose that WD-TDEs can accommodate the observed SN-like bumps if the fallback WD matter releases energy into the unbound WD ejecta. The observed ejecta energy, luminosity, and velocitymore » are explained by the gravitational energy, Eddington luminosity, and escape velocity of the formed accretion disk, respectively. We also show that the observed X-rays can ionize the ejecta, eliminating lines. The SN-like light curves (SN 2011kl) for the ulGRB 111209A are consistent with all three models, although a magnetar model is unnatural because the spin-down time required to power the SN-like bump is a hundred times longer than the GRB. Our results imply that TDEs are a possible energy source for SN-like events in general and for ulGRBs in particular.« less

  2. A violent interaction between the dwarf galaxy UGC 7636 and the giant elliptical galaxy NGC 4472

    NASA Technical Reports Server (NTRS)

    Mcnamara, Brian R.; Sancisi, Renzo; Henning, Patricia A.; Junor, William

    1994-01-01

    We present new U, B, R, and H I imagery of the Virgo Cluster giant elliptical galaxy NGC 4472 and its interacting dwarf companion galaxy UGC 7636. Using a composite image reconstruction technique, we show that a trail of debris approx. 5 arcmin in length and approx. 1 arcmin in width (30x6 kpc for a Virgo cluster distance of 20 Mpc) is projected northward from the dwarf galaxy. A cloud of H I is projected along the northwest edge of the debris between the dwarf and gE. The dwarf's nuclear morphology is irregular and bow-shaped on what appears to be its leading edge. Apart from a number of isolated blue regions, most of of the trailing debris is similar in color to the dwarf's nucleus. Only a modest enhancement of star formation appears to have been induced by the interaction. Although separated by 15 kpc, the H I and stellar morphologies are remarkably similar. The stars and H I appear to have been tidally distorted in situ, prior to the cloud's removal by ram pressure. If the H I has maintained its shape by magnetic support, a magnetic field strength an order of magnitude larger than the galaxy's is required. Ram pressure deceleration due to the cloud's motion through NGC 4472's x-ray-emitting interstellar medium shold be sufficient for the cloud to become gravitationally bound to NGC 4472. The H I cloud is not self-gravitating and may fragment and be destroyed in the interaction. UGC 7636 will probably be disrupted by NGC 4472's strong tidal forces; the stellar debris will disperse into the Virgo cluster or become bound to NGC 4472's halo on eccentric orbits. The debris captured in the collision will have a negligible impact on NGC 4472's stellar and gaseous content. On the other hand, if similar interactions are common in giant elliptical galaxies, they could alter or deplete surrounding dwarf galaxy populations, fuel bursts of nuclear activity, and perhaps provide a source of magnetic energy to their interstellar media.

  3. Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Sato, Yushi; Nomoto, Ken'ichi; Maeda, Keiichi; Nakasato, Naohito; Hachisu, Izumi

    2017-04-01

    We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N, from a few 104 to a few 107 in order to check mass resolution convergence, where SPH simulations with N > 107 (or a space resolution of several 106 cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 104 to 107 cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲106 cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.

  4. Exploding Satellites—The Tidal Debris of the Ultra-faint Dwarf Galaxy Hercules

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Johnston, Kathryn V.; Mieske, Steffen; Collins, Michelle L. M.; Tollerud, Erik J.

    2017-01-01

    The ultra-faint satellite galaxy Hercules has a strongly elongated and irregular morphology with detections of tidal features up to 1.3 deg (3 kpc) from its center. This suggests that Hercules may be dissolving under the Milky Way’s gravitational influence, and hence could be a tidal stream in formation rather than a bound, dark-matter-dominated satellite. Using Bayesian inference in combination with N-body simulations, we show that Hercules has to be on a very eccentric orbit (ɛ ≈ 0.95) within the Milky Way in this scenario. On such an orbit, Hercules “explodes” as a consequence of the last tidal shock at pericenter 0.5 Gyr ago. It is currently decelerating toward the apocenter of its orbit with a velocity of V = 157 km s-1—of which 99% is directed radially outwards. Due to differential orbital plane precession caused by the non-spherical nature of the Galactic potential, its debris fans out nearly perpendicular to its orbit. This explains why Hercules has an elongated shape without showing a distance gradient along its main body: it is in fact a stream that is significantly broader than it is long. In other words, it is moving perpendicular to its apparent major axis. In this scenario, there is a spike in the radial velocity profile created by the dominant debris component that formed through the last pericenter passage. This is similar to kinematic substructure that is observed in the real Hercules. Modeling a satellite on such a highly eccentric orbit is strongly dependent on the form of the Galactic potential. We therefore propose that detailed kinematic investigation of Hercules and other exploding satellite candidates can yield strong constraints on the potential of the Milky Way.

  5. N-Body Simulations of Planetary Accretion Around M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Ogihara, Masahiro; Ida, Shigeru

    2009-07-01

    We have investigated planetary accretion from planetesimals in terrestrial planet regions inside the ice line around M dwarf stars through N-body simulations including tidal interactions with disk gas. Because of low luminosity of M dwarfs, habitable zones (HZs) are located in inner regions (~0.1 AU). In the close-in HZ, type-I migration and the orbital decay induced by eccentricity damping are efficient according to the high disk gas density in the small orbital radii. Since the orbital decay is terminated around the disk inner edge and the disk edge is close to the HZ, the protoplanets accumulated near the disk edge affect formation of planets in the HZ. Ice lines are also in relatively inner regions at ~0.3 AU. Due to the small orbital radii, icy protoplanets accrete rapidly and undergo type-I migration before disk depletion. The rapid orbital decay, the proximity of the disk inner edge, and large amount of inflow of icy protoplanets are characteristic in planetary accretion in terrestrial planet regions around M dwarfs. In the case of full efficiency of type-I migration predicted by the linear theory, we found that protoplanets that migrate to the vicinity of the host star undergo close scatterings and collisions, and four to six planets eventually remain in mutual mean-motion resonances and their orbits have small eccentricities (lsim0.01) and they are stable both before and after disk gas decays. In the case of slow migration, the resonant capture is so efficient that densely packed ~40 small protoplanets remain in mutual mean-motion resonances. In this case, they start orbit crossing, after the disk gas decays and eccentricity damping due to tidal interaction with gas is no more effective. Through merging of the protoplanets, several planets in widely separated non-resonant orbits with relatively large eccentricities (~0.05) are formed. Thus, the final orbital configurations (separations, resonant or non-resonant, eccentricity, and distribution) of the

  6. High-energy cosmic ray nuclei from tidal disruption events: Origin, survival, and implications

    NASA Astrophysics Data System (ADS)

    Zhang, B. Theodore; Murase, Kohta; Oikonomou, Foteini; Li, Zhuo

    2017-09-01

    Tidal disruption events (TDEs) by supermassive or intermediate mass black holes have been suggested as candidate sources of ultrahigh-energy cosmic rays (UHECRs) and high-energy neutrinos. Motivated by the recent measurements from the Pierre Auger Observatory, which indicates a metal-rich cosmic-ray composition at ultrahigh energies, we investigate the fate of UHECR nuclei loaded in TDE jets. First, we consider the production and survival of UHECR nuclei at internal shocks, external forward and reverse shocks, and nonrelativistic winds. Based on the observations of Swift J 1644 +57 , we show that the UHECRs can survive for external reverse and forward shocks, and disk winds. On the other hand, UHECR nuclei are significantly disintegrated in internal shocks, although they could survive for low-luminosity TDE jets. Assuming that UHECR nuclei can survive, we consider implications of different composition models of TDEs. We find that the tidal disruption of main sequence stars or carbon-oxygen white dwarfs does not successfully reproduce UHECR observations, namely the observed composition or spectrum. The observed mean depth of the shower maximum and its deviation could be explained by oxygen-neon-magnesium white dwarfs, although they may be too rare to be the sources of UHECRs.

  7. Ground-based Opportunities for Astrometry

    DTIC Science & Technology

    2013-01-01

    those stars (Dinescu eta/. 2005) leads to a measurement of the tangential velocity of the Sagittarius dwarf and a definitive orbit. Several other...Currently accepted Lambda cold-dark-matter (CDM) cosmological models (see also Chapter 28) predict several hundred merging dwarf galaxies within 1...nination of tations with I) diagrams. o parallaxes lial velocity tarius dwarf of possible eta/. 2005) a definitive ttion of their uti on. :Is

  8. Uncertainties in tidal theory: Implications for bloated hot Jupiters

    NASA Astrophysics Data System (ADS)

    Leconte, Jérémy; Chabrier, Gilles; Baraffe, Isabelle

    2011-11-01

    Thanks to the combination of transit photometry and radial velocity doppler measurements, we are now able to constrain theoretical models of the structure and evolution of objects in the whole mass range between icy giants and stars, including the giant planet/brown dwarf overlapping mass regime (Leconte et al. 2009). In the giant planet mass range, the significant fraction of planets showing a larger radius than predicted by the models suggests that a missing physical mechanism which is either injecting energy in the deep convective zone or reducing the net outward thermal flux is taking place in these objects. Several possibilities have been suggested for such a mechanism:•downward transport of kinetic energy originating from strong winds generated at the planet's surface (Showman & Guillot 2002),•enhanced opacity sources in hot-Jupiter atmospheres (Burrows et al. 2007),•ohmic dissipation in the ionized atmosphere (Batygin & Stevenson 2010),•(inefficient) layered or oscillatory convection in the planet's interior (Chabrier & Baraffe 2007),•Tidal heating due to circularization of the orbit, as originally suggested by Bodenheimer, Lin & Mardling (2001).Here we first review the differences between current models of tidal evolution and their uncertainties. We then revisit the viability of the tidal heating hypothesis using a tidal model which treats properly the highly eccentric and misaligned orbits commonly encountered in exoplanetary systems. We stress again that the low order expansions in eccentricity often used in constant phase lag tidal models (i.e. constant Q) necessarily yields incorrect results as soon as the (present or initial) eccentricity exceeds ~ 0.2, as can be rigorously demonstrated from Kepler's equations.

  9. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  10. New White Dwarf-Brown Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Casewell, S. L.; Geier, S.; Lodieu, N.

    2017-03-01

    We present follow-up spectroscopy to 12 candidate white dwarf-brown dwarf binaries. We have confirmed that 8 objects do indeed have a white dwarf primary (7 DA, 1 DB) and two are hot subdwarfs. We have determined the Teff and log g for the white dwarfs and subdwarfs, and when combining these values with a model spectrum and the photometry, we have 3 probable white dwarf-substellar binaries with spectral types between M6 and L6.

  11. The STREGA survey - II. Globular cluster Palomar 12

    NASA Astrophysics Data System (ADS)

    Musella, I.; Di Criscienzo, M.; Marconi, M.; Raimondo, G.; Ripepi, V.; Cignoni, M.; Bono, G.; Brocato, E.; Dall'Ora, M.; Ferraro, I.; Grado, A.; Iannicola, G.; Limatola, L.; Molinaro, R.; Moretti, M. I.; Stetson, P. B.; Capaccioli, M.; Cioni, M.-R. L.; Getman, F.; Schipani, P.

    2018-01-01

    In the framework of the STREGA (STRucture and Evolution of the GAlaxy) survey, two fields around the globular cluster Pal 12 were observed with the aim of detecting the possible presence of streams and/or an extended halo. The adopted stellar tracers are the main sequence, turn-off and red giant branch stars. We discuss the luminosity function and the star counts in the observed region covering about 2 tidal radii, confirming that Pal 12 appears to be embedded in the Sagittarius Stream. Adopting an original approach to separate cluster and field stars, we do not find any evidence of significant extra-tidal Pal 12 stellar populations. The presence of the Sagittarius stream seems to have mimicked a larger tidal radius in previous studies. Indeed, adopting a King model, a redetermination of this value gives rT = 0.22 ± 0.1 deg.

  12. Chemically-Deduced Star Formation Histories Of Dwarf Galaxies Using Barium

    NASA Astrophysics Data System (ADS)

    Duggan, Gina; Kirby, Evan

    2017-06-01

    Dwarf galaxies offer a unique opportunity to study the competing forces of galaxy evolution. Their simpler history (i.e., small size, fewer major mergers, and lack of active galactic nuclei) enables us to isolate different physical mechanisms more easily. The effects of these mechanisms are imprinted on the galaxy's star formation history. Traditionally, star formation histories are determined from color-magnitude diagrams. However, chemical abundances can increase the precision of this measurement. Here we present a simplistic galactic chemical evolution model to infer the star formation history. Chemical abundances are measured from spectra obtained with Keck/DEIMOS medium-resolution spectroscopy for over a hundred red giant stars from several satellite dwarf spheroidal galaxies and globular clusters. We focus our work on iron and barium abundances because they predominantly trace Type Ia supernovae and asymptotic giant branch stars, respectively. The different timescales of these two nucleosynthetic sources can be used to measure a finely resolved star formation history, especially when combined with existing [α/Fe] measurements. These models will inform the details of early star formation in dwarf galaxies and how it is affected by various physical processes, such as reionization and tidal stripping.

  13. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  14. Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanikawa, Ataru; Sato, Yushi; Hachisu, Izumi

    We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less activemore » with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.« less

  15. Characterising Tidal Flow Within AN Energetic Tidal Environment

    NASA Astrophysics Data System (ADS)

    Neill, S. P.; Goward Brown, A.; Lewis, M. J.

    2016-02-01

    The Pentland Firth is a highly energetic and complex tidal strait separating the north of Scotland with the Orkney Islands and is a key location for tidal energy exploitation. Topographic features including islands and headlands, combined with bathymetric complexities within the Pentland Firth create turbulent hydrodynamic flows which are difficult to observe. Site selection in tidal energy environments historically focuses on tidal current magnitude. Without consideration for the more complex hydrodynamics of tidal energy environments tidal energy developers may miss the opportunity to tune their devices or create environment specific tidal energy converters in order to harness the greatest potential from site. Fully characterising these tidal energy environments ensures economic energy extraction. Understanding the interaction of energy extraction with the environment will reduce uncertainty in site selection and allow mitigation of any potential environmental concerns. We apply the 3D ROMS model to the Pentland Firth with the aim of resolving uncertainties within tidal energy resource assessment. Flow magnitudes and directions are examined with a focus on tidal phasing and asymmetry and application to sediment dynamics. Using the ROMS model, it is possible to determine the extent to which the tidal resource varies temporally and spatially with tidal energy extraction. Accurately modelling the tidal dynamics within this environment ensures that potential consequences of tidal energy extraction on the surrounding environment are better understood.

  16. PAndAS' CUBS: DISCOVERY OF TWO NEW DWARF GALAXIES IN THE SURROUNDINGS OF THE ANDROMEDA AND TRIANGULUM GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Nicolas F.; McConnachie, Alan W.; Irwin, Mike

    We present the discovery of two new dwarf galaxies, Andromeda XXI and Andromeda XXII, located in the surroundings of the Andromeda and Triangulum galaxies (M31 and M33). These discoveries stem from the first year data of the Pan-Andromeda Archaeological Survey, a photometric survey of the M31/M33 group conducted with the Megaprime/MegaCam Wide-Field Camera mounted on the Canada-France-Hawaii Telescope. Both satellites appear as spatial overdensities of stars which, when plotted in a color-magnitude diagram, follow metal-poor, [Fe/H] = -1.8, red giant branches at the distance of M31/M33. Andromeda XXI is a moderately bright dwarf galaxy (M{sub V} = -9.9 +- 0.6),more » albeit with low surface brightness, emphasizing again that many relatively luminous M31 satellites still remain to be discovered. It is also a large satellite, with a half-light radius close to 1 kpc, making it the fourth largest Local Group dwarf spheroidal galaxy after the recently discovered Andromeda XIX, Andromeda II, and Sagittarius around the Milky Way, and supports the trend that M31 satellites are larger than their Milky Way counterparts. Andromeda XXII is much fainter (M{sub V} = -6.5 +- 0.8) and lies a lot closer in projection to M33 than it does to M31 (42 versus 224 kpc), suggesting that it could be the first Triangulum satellite to be discovered. Although this is a very exciting possibility in the context of a past interaction of M33 with M31 and the fate of its satellite system, a confirmation will have to await a good distance estimate to confirm its physical proximity to M33. Along with the dwarf galaxies found in previous surveys of the M31 surroundings, these two new satellites bring the number of dwarf spheroidal galaxies in this region to 20.« less

  17. Innocent Bystanders and Smoking Guns: Dwarf Carbon Stars

    NASA Astrophysics Data System (ADS)

    Green, Paul J.

    2014-01-01

    As far as we know, most carbon throughout the Universe is created and dispersed by AGB stars. So it was at first surprising to find that the carbon stars most prevalent in the Galaxy are in fact dwarfs. We suspect that dC stars are most likely innocent bystanders in post-mass transfer binaries, and may be predominantly metal-poor. Among 1200 C stars found in the SDSS (Green 2013), we confirm 724 dCs, of which a dozen are DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. The dCs likely span absolute magnitudes M_i from about 6.5 to 10.5. G-type dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C_2 bands. Eleven very red C stars with strong red CN bands appear to be N-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Le A. Two such stars within 30arcmin of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We describe follow-up projects to study the spatial, kinematic, and binary properties of these C-enriched dwarfs.

  18. The Evolution of Dwarf Galaxy Satellites with Different Dark Matter Density Profiles in the ErisMod Simulations. I. The Early Infalls

    NASA Astrophysics Data System (ADS)

    Tomozeiu, Mihai; Mayer, Lucio; Quinn, Thomas

    2016-02-01

    We present the first simulations of tidal stirring of dwarf galaxies in the Local Group carried out in a fully cosmological context. We use the ErisDARK cosmological simulation of a Milky Way (MW)-sized galaxy to identify some of the most massive subhalos (Mvir > 108 M⊙) that fall into the main host before z = 2. Subhalos are replaced before infall with extremely high-resolution models of dwarf galaxies comprising a faint stellar disk embedded in a dark matter halo. The set of models contains cuspy halos as well as halos with “cored” profiles (with the cusp coefficient γ = 0.6) consistent with recent results of hydrodynamical simulations of dwarf galaxy formation. The simulations are then run to z = 0 with as many as 54 million particles and resolutions as small as ∼4 pc using the new parallel N-body code ChaNGa. The stellar components of all satellites are significantly affected by tidal stirring, losing stellar mass, and undergoing a morphological transformation toward a pressure supported spheroidal system. However, while some remnants with cuspy halos maintain significant rotational flattening and disk-like features, all the shallow halo models achieve vrot/σ⋆ < 0.5 and round shapes typical of dSph satellites of the MW and M31. Mass loss is also enhanced in the latter, and remnants can reach luminosities and velocity dispersions as low as those of ultra-faint dwarfs.

  19. The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral; Pace, Andrew B.; Bullock, James S.; Boylan-Kolchin, Michael; Oñorbe, Jose; Elbert, Oliver D.; Fitts, Alex; Hopkins, Philip F.; Kereš, Dušan

    2017-02-01

    We perform a systematic Bayesian analysis of rotation versus dispersion support (vrot/σ) in 40 dwarf galaxies throughout the local volume (LV) over a stellar mass range of 10^{3.5} M_{⊙}< M_{star }< 108 M_{⊙}. We find that the stars in ˜80 per cent of the LV dwarf galaxies studied - both satellites and isolated systems - are dispersion-supported. In particular, we show that 6/10 isolated dwarfs in our sample have vrot/σ ≲ 1.0, while all have vrot/σ ≲ 2.0. These results challenge the traditional view that the stars in gas-rich dwarf irregulars (dIrrs) are distributed in cold, rotationally supported stellar discs, while gas-poor dwarf spheroidals (dSphs) are kinematically distinct in having dispersion-supported stars. We see no clear trend between vrot/σ and distance to the closest L⋆ galaxy, nor between vrot/σ and M⋆ within our mass range. We apply the same Bayesian analysis to four FIRE hydrodynamic zoom-in simulations of isolated dwarf galaxies (10^9 M_{⊙}< M_{vir}< 10^{10} M_{⊙}) and show that the simulated isolated dIrr galaxies have stellar ellipticities and stellar vrot/σ ratios that are consistent with the observed population of dIrrs and dSphs without the need to subject these dwarfs to any external perturbations or tidal forces. We posit that most dwarf galaxies form as puffy, dispersion-dominated systems, rather than cold, angular-momentum-supported discs. If this is the case, then transforming a dIrr into a dSph may require little more than removing its gas.

  20. The K Dwarf Advantage for Biosignatures

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Domagal-Goldman, Shawn David; Meadows, Victoria

    2018-01-01

    Biosignature detection is typically studied in the context of an atmosphere in chemical disequilibrium. Oxygen (O2) and methane (CH4) are generally considered the “canonical” biosignature disequilibrium pair. However, the modern CH4 concentration poses a major detection challenge to future direct imaging telescopes, and it has been difficult for Earth to accumulate spectrally detectable quantities of O2 and CH4 over its history (Olson et al 2016, Reinhard et al 2017). Even the lower atmospheric levels of O2 typical of the Earth’s Proterozoic eon (0.01-1% of the modern O2 amount) may have resulted in a reduced photochemical lifetime of CH4 due to decreased UV shielding of CH4 (Claire et al 2006, Goldblatt et al 2006). However, while the above is true for an Earthlike planet orbiting a sunlike star, the situation changes for other stars. For instance, Segura et al (2005) found longer photochemical lifetimes for CH4 in the atmospheres of Earthlike planets orbiting M dwarfs. M dwarfs, however, present several barriers to planetary habitability including desiccation during the stellar super-luminous pre-main sequence phase (Lugar and Barnes 2015) and tidal locking. K dwarfs, which comprise about 12% of all main sequence stars, avoid these M dwarf hazards, and will be important targets for future exoplanet direct imaging missions. Using a photochemical model, we find CH4 and O2 are simultaneously detectable in the atmospheres of K dwarf planets with various O2 concentrations ranging between Proterozoic levels and modern O2 amounts. For instance, for a planet with an Earth-like CH4 surface flux (1 x 1011 molecules/cm2/s) and a Proterozoic-like O2 level (1% of modern), the planet generates a CH4 surface mixing ratio of 1x10-5 for a planet orbiting the sun, and 1.5x10-4 – an order of magnitude more CH4 – for a planet orbiting a K6V star. This is enough to produce detectable CH4 and O2 for the planet orbiting the K6V star. We discuss the implications of this

  1. Dynamical Studies of N-Body Gravity and Tidal Dissipation in the TRAPPIST-1 Star System

    NASA Astrophysics Data System (ADS)

    Nayak, Michael; Kuettel, Donald H.; Stebler, Shane T.; Udrea, Bogdan

    2018-01-01

    To date, we have discovered a total of 2,729 planetary systems that contain more than 3,639 known exoplanets [1]. A majority of these are defined as compact systems, containing multiple exoplanets within 0.25 AU of the central star. It has been shown that tightly packed exoplanets avoid colliding due to long-term resonance-induced orbit stability [2]. However, due to extreme proximity, these planets experience intense gravitational forces from each other that are unprecedented within our own solar system, which makes the existence of exomoons doubtful. We present the results of an initial study evaluating dynamical stability of potential exomoons within such highly compact systems.This work is baselined around TRAPPIST-1, an ultra-cool dwarf star that hosts seven temperate terrestrial planets, three of which are in the habitable zone, orbiting within 0.06 AU [3]. N-body simulations place a grid of test particles varying semi-major axis, eccentricity, and inclination around the three habitable zone planets. We find that most exomoons with semi-major axes less than half the Hill sphere of their respective planet are stable over 10 kyrs, with several stable over 300 kyrs.However, in compact systems, tidal influences from other planets can compete with tidal effects from the primary planet, resulting in possible instabilities and massive amounts of tidal dissipation. We investigate these effects with a large grid search that incorporates exomoon radius, tidal quality factor and a range of planet rigidities. Results of simulations that combine n-body gravity effects with both planetary and satellite tides are presented and contrasted with n-body results. Finally, we examine long-term stability (> 1Myrs) of the stable subset of test particles from the n-body simulation with the addition of tidal dissipation, to determine if exomoons can survive around planets e, f, and g in the TRAPPIST-1 system.[1] Schneider (2017). The Extrasolar Planets Encyclopedia. http

  2. Habitable planets around white and brown dwarfs: the perils of a cooling primary.

    PubMed

    Barnes, Rory; Heller, René

    2013-03-01

    White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10(-6). Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 10(4) K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable.

  3. A remarkable oxygen-rich asymptotic giant branch variable in the Sagittarius Dwarf Irregular Galaxy

    NASA Astrophysics Data System (ADS)

    Whitelock, Patricia A.; Menzies, John W.; Feast, Michael W.; Marigo, Paola

    2018-01-01

    We report and discuss JHKS photometry for Sgr dIG, a very metal-deficient galaxy in the Local Group, obtained over 3.5 years with the Infrared Survey Facility in South Africa. Three large amplitude asymptotic giant branch variables are identified. One is an oxygen-rich star that has a pulsation period of 950 d, which was until recently undergoing hot bottom burning, with Mbol ∼ -6.7. It is surprising to find a variable of this sort in Sgr dIG, given their rarity in other dwarf irregulars. Despite its long period the star is relatively blue and is fainter, at all wavelengths shorter than 4.5 μm, than anticipated from period-luminosity relations that describe hot bottom burning stars. A comparison with models suggests it had a main-sequence mass Mi ∼ 5 M⊙ and that it is now near the end of its asymptotic giant branch evolution. The other two periodic variables are carbon stars with periods of 670 and 503 d (Mbol ∼ -5.7 and -5.3). They are very similar to other such stars found on the asymptotic giant branch of metal-deficient Local Group galaxies and a comparison with models suggests Mi ∼ 3 M⊙. We compare the number of asymptotic giant branch variables in Sgr dIG to those in NGC 6822 and IC 1613, and suggest that the differences may be due to the high specific star formation rate and low metallicity of Sgr dIG.

  4. THE DROP DURING LESS THAN 300 DAYS OF A DUSTY WHITE DWARF'S INFRARED LUMINOSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.; Jura, M., E-mail: sxu@astro.ucla.edu, E-mail: jura@astro.ucla.edu

    2014-09-10

    We report Spitzer/Infrared Array Camera photometry of WD J0959–0200, a white dwarf that displays excess infrared radiation from a disk, likely produced by a tidally disrupted planetesimal. We find that in 2010, the fluxes in both 3.6 μm and 4.5 μm decreased by ∼35% in less than 300 days. The drop in the infrared luminosity is likely due to an increase of the inner disk radius from one of two scenarios: (1) a recent planetesimal impact; (2) instability in the circumstellar disk. The current situation is tantalizing; high-sensitivity, high-cadence infrared studies will be a new tool to study the interplay between a diskmore » and its host white dwarf star.« less

  5. On the Growth and Detectability of Land Plants on Habitable Planets around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Cui, Duo; Tian, Feng; Wang, Yuwei; Li, Changshen; Yu, Chaoqing; Yu, Le

    2017-12-01

    One signature of life on Earth is the vegetation red edge (VRE) feature of land plants, a dramatic change of reflectivity at wavelength near 0.7 μm. Potentially habitable planets around M dwarfs are tidally locked, which can limit the distribution of land plants. In this study, we used a biogeochemical model to investigate the distribution of land plants on potentially habitable planets around M dwarfs driven by climate data produced in a general circulation model (GCM). When considering the effects of clouds, the observation time needed for VRE detection on nearby p = 1 exoplanets around nearby M dwarfs is on the order of days using a 25 m2 telescope if a large continent faces Earth during observations. For p = 1.5 exoplanets, the detection time could be similar if land plants developed the capability to endure a dark/cold environment for extended periods of time and the continent configuration favors observations. Our analysis suggests that hypothetical exovegetation VRE features are easier to detect than Earth vegetation and that VRE detection is possible for nearby exoplanets even under cloudy conditions.

  6. On the Growth and Detectability of Land Plants on Habitable Planets around M Dwarfs.

    PubMed

    Cui, Duo; Tian, Feng; Wang, Yuwei; Li, Changshen; Yu, Chaoqing; Yu, Le

    2017-12-01

    One signature of life on Earth is the vegetation red edge (VRE) feature of land plants, a dramatic change of reflectivity at wavelength near 0.7 μm. Potentially habitable planets around M dwarfs are tidally locked, which can limit the distribution of land plants. In this study, we used a biogeochemical model to investigate the distribution of land plants on potentially habitable planets around M dwarfs driven by climate data produced in a general circulation model (GCM). When considering the effects of clouds, the observation time needed for VRE detection on nearby p = 1 exoplanets around nearby M dwarfs is on the order of days using a 25 m 2 telescope if a large continent faces Earth during observations. For p = 1.5 exoplanets, the detection time could be similar if land plants developed the capability to endure a dark/cold environment for extended periods of time and the continent configuration favors observations. Our analysis suggests that hypothetical exovegetation VRE features are easier to detect than Earth vegetation and that VRE detection is possible for nearby exoplanets even under cloudy conditions. Key Words: Vegetation red edge-Exoplanets-M dwarfs-Biosignature detection. Astrobiology 17, 1219-1232.

  7. Infrared Colors of Dwarf-Dwarf Galaxy Interactions

    NASA Astrophysics Data System (ADS)

    Liss, Sandra; Stierwalt, Sabrina; Johnson, Kelsey; Patton, Dave; Kallivayalil, Nitya

    2015-10-01

    We request Spitzer Warm Mission IRAC Channel 1 & 2 imaging for a sample of 60 isolated dwarf galaxy pairs as a key component of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. A systematic study of dwarf-dwarf mergers has never been done, and we wish to characterize the impact such interactions have on fueling star formation in the nearby universe. The Spitzer imaging proposed here will allow us to determine the extent to which the 3.6 and 4.5 mum bands are dominated by stellar light and investigate a) the extent to which interacting pairs show IR excess and b) whether the excess is related to the pair separation. Second, we will use this IR photometry to constrain the processes contributing to the observed color excess and scatter in each system. We will take advantage of the wealth of observations available in the Spitzer Heritage Archive for 'normal' non-interacting dwarfs by comparing the stellar populations of those dwarfs with the likely interacting dwarfs in our sample. Ultimately, we can combine the Spitzer imaging proposed here with our current, ongoing efforts to obtain groundbased optical photometry to model the star formation histories of these dwarfs and to help constrain the timescales and impact dwarf-dwarf mergers have on fueling star formation. The sensitivity and resolution offered by Spitzer are necessary to determine the dust properties of these interacting systems, and how these properties vary as a function of pair separation, mass ratio, and gas fraction.

  8. Tidal origin of NGC 1427A in the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Serra, P.; Koribalski, B.; Venhola, A.; Iodice, E.; Catinella, B.; Cortese, L.; Peletier, R.; Popping, A.; Keenan, O.; Capaccioli, M.

    2018-02-01

    We present new HI observations from the Australia Telescope Compact Array and deep optical imaging from OmegaCam on the VLT Survey Telescope of NGC 1427A, an arrow-shaped dwarf irregular galaxy located in the Fornax cluster. The data reveal a star-less HI tail that contains ˜10 per cent of the atomic gas of NGC 1427A as well as extended stellar emission that shed new light on the recent history of this galaxy. Rather than being the result of ram pressure induced star formation, as previously suggested in the literature, the disturbed optical appearance of NGC 1427A has tidal origins. The galaxy itself likely consists of two individual objects in an advanced stage of merging. The HI tail may be made of gas expelled to large radii during the same tidal interaction. It is possible that some of this gas is subject to ram pressure, which would be considered a secondary effect and implies a north-west trajectory of NGC 1427A within the Fornax cluster.

  9. STAR FORMATION IN DWARF GALAXIES OF THE NEARBY CENTAURUS A GROUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, Stephanie; Draginda, Adam; Skillman, Evan D.

    2009-10-15

    We present H{alpha} narrow-band imaging of 17 dwarf irregular (dI) galaxies in the nearby Centaurus A Group. Although all large galaxies of the group are or recently have been through a period of enhanced star formation, the dIs have normal star formation rates (SFRs) and do not contain a larger fraction of dwarf starbursts than other nearby groups such as the Sculptor Group or the Local Group. Most of the galaxies in the group now have fairly accurately known distances, which enables us to obtain relative distances between dIs and larger galaxies of the group. We find that the dImore » SFRs do not depend on local environment, and in particular they do not show any correlation with the distance of the dI to the nearest large galaxy of the group. There is a clear morphology-density relation in the Centaurus A Group, similar to the Sculptor Group and Local Group, in the sense that dwarf ellipticals (dEs)/dwarf spheroidals (dSphs) tend to be at small distances from the more massive galaxies of the group, while dIs are on average at larger distances. We find four transition dwarfs in the Group, dwarfs that show characteristics of both dE/dSphs and dIs, and which contain cold gas but no current star formation. Interestingly, the transition dwarfs have an average distance to the more massive galaxies, which is intermediate between those of the dEs/dSphs and dIs and which is quite large: 0.54 {+-} 0.31 Mpc. This large distance poses some difficulty for the most popular scenarios proposed for transforming a dI into a dE/dSph (ram-pressure with tidal stripping or galaxy harassment). If the observed transition dwarfs are indeed missing links between dIs and dE/dSphs, their relative isolation makes it less likely to have been produced by these mechanisms. An inhomogeneous intergalactic medium containing higher density clumps would be able to ram-pressure strip the dIs at larger distances from the more massive galaxies of the group.« less

  10. NuSTAR Detection of High-Energy X-Ray Emission and Rapid Variability from Sagittarius A(star) Flares

    NASA Technical Reports Server (NTRS)

    Barriere, Nicolas M.; Tomsick, John A.; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Dexter, Jason; Grefenstette, Brian; Hailey, Charles J.; Zhang, William W.

    2014-01-01

    Sagittarius A(star) harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A(star) spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum of Sagittarius A(star) X-ray flares extends to high energy, with no evidence for a cut off. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (approx. 55 times quiescence in the 2- 10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse-Compton models. One flare exhibits large and rapid (less than 100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within approx. 10 Schwarzschild radii of the black hole.

  11. Wetlands: Tidal

    USGS Publications Warehouse

    Conner, William H.; Krauss, Ken W.; Baldwin, Andrew H.; Hutchinson, Stephen

    2014-01-01

    Tidal wetlands are some of the most dynamic areas of the Earth and are found at the interface between the land and sea. Salinity, regular tidal flooding, and infrequent catastrophic flooding due to storm events result in complex interactions among biotic and abiotic factors. The complexity of these interactions, along with the uncertainty of where one draws the line between tidal and nontidal, makes characterizing tidal wetlands a difficult task. The three primary types of tidal wetlands are tidal marshes, mangroves, and freshwater forested wetlands. Tidal marshes are dominated by herbaceous plants and are generally found at middle to high latitudes of both hemispheres. Mangrove forests dominate tropical coastlines around the world while tidal freshwater forests are global in distribution. All three wetland types are highly productive ecosystems, supporting abundant and diverse faunal communities. Unfortunately, these wetlands are subject to alteration and loss from both natural and anthropogenic causes.

  12. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea, E-mail: alis@ucolick.org

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with amore » lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.« less

  13. Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidalmore » captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.« less

  14. Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary

    PubMed Central

    Heller, René

    2013-01-01

    Abstract White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10−6. Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 104 K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone—Tides—Exoplanets. Astrobiology 13, 279–291. PMID:23537137

  15. PAndAS' CUBS: Discovery of Two New Dwarf Galaxies in the Surroundings of the Andromeda and Triangulum Galaxies

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; McConnachie, Alan W.; Irwin, Mike; Widrow, Lawrence M.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Dubinski, John; Babul, Arif; Chapman, Scott; Fardal, Mark; Lewis, Geraint F.; Navarro, Julio; Rich, R. Michael

    2009-11-01

    We present the discovery of two new dwarf galaxies, Andromeda XXI and Andromeda XXII, located in the surroundings of the Andromeda and Triangulum galaxies (M31 and M33). These discoveries stem from the first year data of the Pan-Andromeda Archaeological Survey, a photometric survey of the M31/M33 group conducted with the Megaprime/MegaCam Wide-Field Camera mounted on the Canada-France-Hawaii Telescope. Both satellites appear as spatial overdensities of stars which, when plotted in a color-magnitude diagram, follow metal-poor, [Fe/H] = -1.8, red giant branches at the distance of M31/M33. Andromeda XXI is a moderately bright dwarf galaxy (MV = -9.9 ± 0.6), albeit with low surface brightness, emphasizing again that many relatively luminous M31 satellites still remain to be discovered. It is also a large satellite, with a half-light radius close to 1 kpc, making it the fourth largest Local Group dwarf spheroidal galaxy after the recently discovered Andromeda XIX, Andromeda II, and Sagittarius around the Milky Way, and supports the trend that M31 satellites are larger than their Milky Way counterparts. Andromeda XXII is much fainter (MV = -6.5 ± 0.8) and lies a lot closer in projection to M33 than it does to M31 (42 versus 224 kpc), suggesting that it could be the first Triangulum satellite to be discovered. Although this is a very exciting possibility in the context of a past interaction of M33 with M31 and the fate of its satellite system, a confirmation will have to await a good distance estimate to confirm its physical proximity to M33. Along with the dwarf galaxies found in previous surveys of the M31 surroundings, these two new satellites bring the number of dwarf spheroidal galaxies in this region to 20. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of

  16. The influence of Sagittarius and the Large Magellanic Cloud on the stellar disc of the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Laporte, Chervin F. P.; Johnston, Kathryn V.; Gómez, Facundo A.; Garavito-Camargo, Nicolas; Besla, Gurtina

    2018-06-01

    We present N-body simulations of a Sagittarius-like dwarf spheroidal galaxy (Sgr) that follow its orbit about the Milky Way (MW) since its first crossing of the Galaxy's virial radius to the present day. As Sgr orbits around the MW, it excites vertical oscillations, corrugating and flaring the Galactic stellar disc. These responses can be understood by a two-phase picture in which the interaction is first dominated by torques from the wake excited by Sgr in the MW dark halo before transitioning to tides from Sgr's direct impact on the disc at late times. We show for the first time that a massive Sgr model simultaneously reproduces the locations and motions of arc-like over densities, such as the Monoceros Ring and the Triangulum Andromeda stellar clouds, that have been observed at the extremities of the disc, while also satisfying the solar neighbourhood constraints on the vertical structure and streaming motions of the disc. In additional simulations, we include the Large Magellanic Cloud (LMC) self consistently with Sgr. The LMC introduces coupling through constructive and destructive interference, but no new corrugations. In our models, the excitation of the current structure of the outer disk can be traced to interactions as far back as 6-7 Gyr ago (corresponding to z ≤ 1). Given the apparently quiescent accretion history of the MW over this timescale, this places Sgr as the main culprit behind the vertical oscillations of the disc and the last major accretion event for the Galaxy with the capacity to modulate its chemodynamical structure.

  17. A reappraisal of the habitability of planets around M dwarf stars.

    PubMed

    Tarter, Jill C; Backus, Peter R; Mancinelli, Rocco L; Aurnou, Jonathan M; Backman, Dana E; Basri, Gibor S; Boss, Alan P; Clarke, Andrew; Deming, Drake; Doyle, Laurance R; Feigelson, Eric D; Freund, Friedmann; Grinspoon, David H; Haberle, Robert M; Hauck, Steven A; Heath, Martin J; Henry, Todd J; Hollingsworth, Jeffery L; Joshi, Manoj M; Kilston, Steven; Liu, Michael C; Meikle, Eric; Reid, I Neill; Rothschild, Lynn J; Scalo, John; Segura, Antigona; Tang, Carol M; Tiedje, James M; Turnbull, Margaret C; Walkowicz, Lucianne M; Weber, Arthur L; Young, Richard E

    2007-02-01

    Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.

  18. 7 Millimeter VLBA Observations of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Backer, Donald C.

    1998-04-01

    We present 7 mm Very Long Baseline Array observations of the compact nonthermal radio source in the Galactic center, Sagittarius A*. These observations confirm the hypothesis that the image of Sgr A* is a resolved elliptical Gaussian caused by the scattering of an intervening thermal plasma. The measured major axis of Sgr A* is 0.76+/-0.04 mas, consistent with the predicted scattering size of 0.67+/-0.03. We find an axial ratio of 0.73+/-0.10 and a position angle of 77.0d +/- 7.4d. These results are fully consistent with VLBI observations at longer wavelengths and at 3 mm. We find no evidence for any additional compact structure to a limit of 35 mJy. The underlying radio source must be smaller than 4.1 AU for a Galactocentric distance of 8.5 kpc. This result is consistent with the conclusion that the radio emission from Sgr A* results from synchrotron or cyclo-synchrotron radiation of gas in the vicinity of a black hole with a mass near 106 Msolar.

  19. The Shape of Long Outbursts in U Gem Type Dwarf Novae from AAVSO Data

    NASA Technical Reports Server (NTRS)

    Cannizzo, John K.

    2012-01-01

    We search the American Association of Variable Star Observers (AAVSO) archives of the two best studied dwarf novae in an attempt to find light curves for long out bursts that are extremely well-characterized. The systems are U Gem and S8 Cyg. Our goal is to search for embedded precursors such as those that have been found recently in the high fidelity Kepler data for superoutbursts of some members of the 8U UMa subclass of dwarf novae. For the vast majority of AAV80 data, the combination of low data cadence and large errors associated with individual measurements precludes one from making any strong statement about the shape of the long outbursts. However, for a small number of outbursts, extensive long term monitoring with digital photometry yields high fidelity light curves. We report the finding of embedded precursors in two of three candidate long outbursts. This reinforces van Paradijs' finding that long outbursts in dwarf novae above the period gap and superoutbursts in systems below the period gap constitute a unified class. The thermal-tidal instability to account for superoutbursts in the SU UMa stars predicts embedded precursors only for short orbital period dwarf novae, therefore the presence of embedded precursors in long orbital period systems - U Gem and SS Cyg - argues for a more general mechanism to explain long outbursts.

  20. DEEP IMAGING OF M51: A NEW VIEW OF THE WHIRLPOOL’S EXTENDED TIDAL DEBRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    We present deep, wide-field imaging of the M51 system using CWRU’s Burrell Schmidt Telescope at KPNO to study the faint tidal features that constrain its interaction history. Our images trace M51's tidal morphology down to a limiting surface brightness of μ{sub B,lim} ∼ 30 mag arcsec{sup −2} and provide accurate colors (σ{sub B−V}<0.1) down to μ{sub B} ∼ 28. We identify two new tidal streams in the system (the south and northeast plumes) with surface brightnesses of μ{sub B} = 29 and luminosities of ∼10{sup 6}L{sub ⊙,B}. While the northeast plume may be a faint outer extension of the tidalmore » “crown” north of NGC 5195 (M51b), the south plume has no analog in any existing M51 simulation and may represent a distinct tidal stream or disrupted dwarf galaxy. We also trace the extremely diffuse northwest plume out to a total extent of 20′ (43 kpc) from NGC 5194 (M51a) and show it to be physically distinct from the overlapping bright tidal streams from M51b. The northwest plume’s morphology and red color (B−V=0.8) instead argue that it originated from tidal stripping of M51a’s extreme outer disk. Finally, we confirm the strong segregation of gas and stars in the southeast tail and do not detect any diffuse stellar component in the H i portion of the tail. Extant simulations of M51 have difficulty matching both the wealth of tidal structure in the system and the lack of stars in the H i tail, motivating new modeling campaigns to study the dynamical evolution of this classic interacting system.« less

  1. Disintegrating Planetary Bodies Around a White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Several months ago, the discovery of WD 1145+017 was announced. This white dwarf appears to be orbited by planetary bodies that are actively disintegrating due to the strong gravitational pull of their host. A follow-up study now reveals that this system has dramatically evolved since its discovery.Signs of DisruptionPotential planetary bodies orbiting a white dwarf would be exposed to a particular risk: if their orbits were perturbed and they passed inside the white dwarfs tidal radius, they would be torn apart. Their material could then form a debris disk around the white dwarf and eventually be accreted.Interestingly, we have two pieces of evidence that this actually happens:Weve observed warm, dusty debris disks around ~4% of white dwarfs, andThe atmospheres of ~25-50% of white dwarfs are polluted by heavy elements that have likely accreted recently.But in spite of this indirect evidence of planet disintegration, wed never observed planetary bodies actively being disrupted around white dwarfs until recently.Unusual TransitsIn April 2015, observations by Keplers K2 mission revealed a strange transit signal around WD 1145+017, a white dwarf 570 light-years from Earth that has both a dusty debris disk and a polluted atmosphere. This signal was interpreted as the transit of at least one, and possibly several, disintegrating planetesimals.In a recent follow-up, a team of scientists led by Boris Gnsicke (University of Warwick) obtained high-speed photometry of WD 1145+017 using the ULTRASPEC camera on the 2.4m Thai National Telescope. These observations were taken in November and December of 2015 roughly seven months after the initial photometric observations of the system. They reveal that dramatic changes have occurred in this short time.Rapid EvolutionA sample light curve from TNT/ULTRASPEC, obtained in December 2015 over 3.9 hours. Many varied transits are evident (click for a better view!). Transits labeled in color appear across multiple nights. [Gnsicke et al

  2. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Nicholas M.; Kraus, Adam L.; Street, Rachel

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decomposemore » low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at

  3. Using A New Model for Main Sequence Turnoff Absolute Magnitudes to Measure Stellar Streams in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Weiss, Jake; Newberg, Heidi Jo; Arsenault, Matthew; Bechtel, Torrin; Desell, Travis; Newby, Matthew; Thompson, Jeffery M.

    2016-01-01

    Statistical photometric parallax is a method for using the distribution of absolute magnitudes of stellar tracers to statistically recover the underlying density distribution of these tracers. In previous work, statistical photometric parallax was used to trace the Sagittarius Dwarf tidal stream, the so-called bifurcated piece of the Sagittaritus stream, and the Virgo Overdensity through the Milky Way. We use an improved knowledge of this distribution in a new algorithm that accounts for the changes in the stellar population of color-selected stars near the photometric limit of the Sloan Digital Sky Survey (SDSS). Although we select bluer main sequence turnoff stars (MSTO) as tracers, large color errors near the survey limit cause many stars to be scattered out of our selection box and many fainter, redder stars to be scattered into our selection box. We show that we are able to recover parameters for analogues of these streams in simulated data using a maximum likelihood optimization on MilkyWay@home. We also present the preliminary results of fitting the density distribution of major Milky Way tidal streams in SDSS data. This research is supported by generous gifts from the Marvin Clan, Babette Josephs, Manit Limlamai, and the MilkyWay@home volunteers.

  4. Cool carbon stars in the halo and in dwarf galaxies: Hα, colours, and variability

    NASA Astrophysics Data System (ADS)

    Mauron, N.; Gigoyan, K. S.; Berlioz-Arthaud, P.; Klotz, A.

    2014-02-01

    The population of cool carbon (C) stars located far from the galactic plane is probably made of debris of small galaxies such as the Sagittarius dwarf spheroidal galaxy (Sgr), which are disrupted by the gravitational field of the Galaxy. We aim to know this population better through spectroscopy, 2MASS photometric colours, and variability data. When possible, we compared the halo results to C star populations in the Fornax dwarf spheroidal galaxy, Sgr, and the solar neighbourhood. We first present a few new discoveries of C stars in the halo and in Fornax. The number of spectra of halo C stars is now 125. Forty percent show Hα in emission. The narrow location in the JHK diagram of the halo C stars is found to differ from that of similar C stars in the above galaxies. The light curves of the Catalina and LINEAR variability databases were exploited to derive the pulsation periods of 66 halo C stars. A few supplementary periods were obtained with the TAROT telescopes. We confirm that the period distribution of the halo strongly resembles that of Fornax, and we found that it is very different from the C stars in the solar neighbourhood. There is a larger proportion of short-period Mira/SRa variables in the halo than in Sgr, but the survey for C stars in this dwarf galaxy is not complete, and the study of their variability needs to be continued to investigate the link between Sgr and the cool halo C stars. Based on observations made with the NTT and 3.6 m telescope at the European Southern Observatory (La Silla, Chile; programs 084.D-0302 and 070.D-0203), with the TAROT telescopes at La Silla and at Observatoire de la Côte d'Azur (France), and on the exploitation of the Catalina Sky Survey and the LINEAR variability databases.Appendix A is available in electronic form at http://www.aanda.org

  5. Tidal coupling of a Schwarzschild black hole and circularly orbiting moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Hua; Lovelace, Geoffrey

    2005-12-15

    We describe the possibility of using the laser interferometer space antenna (LISA) 's gravitational-wave observations to study, with high precision, the response of a massive central body (e.g. a black hole or a soliton star) to the tidal gravitational pull of an orbiting, compact, small-mass object (a white dwarf, neutron star, or small-mass black hole). Motivated by this LISA application, we use first-order perturbation theory to study tidal coupling for a special, idealized case: a Schwarzschild black hole of mass M, tidally perturbed by a 'moon' with mass {mu}<>M with orbital angularmore » velocity {omega}. We investigate the details of how the tidal deformation of the hole gives rise to an induced quadrupole moment I{sub ij} in the hole's external gravitational field at large radii, including the vicinity of the moon. In the limit that the moon is static, we find, in Schwarzschild coordinates and Regge-Wheeler gauge, the surprising result that there is no induced quadrupole moment. We show that this conclusion is gauge dependent and that the static, induced quadrupole moment for a black hole is inherently ambiguous, and we contrast this with an earlier result of Suen, which gave, in a very different gauge, a nonzero static induced quadrupole moment with a sign opposite to what one would get for a fluid central body. For the orbiting moon and the central Schwarzschild hole, we find (in agreement with a recent result of Poisson) a time-varying induced quadrupole moment that is proportional to the time derivative of the moon's tidal field, I{sub ij}=(32/45)M{sup 6}E{sub ij} and that therefore is out of phase with the tidal field by a spatial angle {pi}/4 and by a temporal phase shift {pi}/2. This induced quadrupole moment produces a gravitational force on the moon that reduces its orbital energy and angular momentum at the same rate as the moon's tidal field sends energy and angular momentum into the hole's horizon. As a

  6. Tidal Venuses: triggering a climate catastrophe via tidal heating.

    PubMed

    Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René

    2013-03-01

    Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories.

  7. Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    PubMed Central

    Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S.; Kasting, James F.; Heller, René

    2013-01-01

    Abstract Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. Key Words: Extrasolar terrestrial

  8. On feathers, bifurcations and shells: the dynamics of tidal streams across the mass scale

    NASA Astrophysics Data System (ADS)

    Amorisco, N. C.

    2015-06-01

    I present an organic description of the spectrum of regimes of collisionless tidal streams and define the orderings between the relevant physical quantities that shape their morphology. Three fundamental dichotomies are identified and described in the form of dimensionless inequalities. These govern (i) the speed of the stream's growth, (ii) the internal coherence of the stream and (iii) its thickness or opening angle, within and outside the orbital plane. The mechanisms through which such main qualitative properties are regulated and the relevant limiting cases are analysed. For example, the slope of the host's density profile strongly influences the speed of the stream's growth, in both length and width, as steeper density profiles enhance differential streaming. Internal coherence is the natural requirement for the appearance of substructure and overdensities in tidal debris, and I concentrate on the characteristic `feathering' typical of streams of star clusters. Overdensities and substructures are associated with minima in the relative streaming velocity of the stream members. For streams with high circularity, these are caused by the epicyclic oscillations of stars; however, for highly non-circular progenitor's orbits, internal substructure is caused by the oscillating differences in energy and actions with which material is shed at different orbital phases of the progenitor. This modulation results in different streaming speeds along the tidal arm: the streakline of material shed between two successive apocentric passages is folded along its length, pulled at its centre by the faster differential streaming of particles released near pericentre, which are therefore more widely scattered. When the stream is coherent enough, the same mechanism is potentially capable of generating a bimodal profile in the density distributions of the longer wraps of more massive progenitors, which I dub `bifurcations'. The conditions that allow streams to be internally coherent

  9. Superhumps and Repetitive Rebrightenings of the WZ Sge-Type Dwarf Nova, EG Cancri

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Nogami, Daisaku; Matsumoto, Katsura; Baba, Hajime

    2004-03-01

    We report on time-resolved photometric observations of the WZ Sge-type dwarf nova, EG Cnc (Huruhata's variable), during its superoutburst in 1996-1997. EG Cnc, after the main superoutburst accompanied by the development of superhumps typical of a WZ Sge-type dwarf nova, exhibited a series of six major rebrightenings. During these rebrightenings and the following long fading tail, EG Cnc persistently showed superhumps having a period equal to the superhump period observed during the main superoutburst. The persistent superhumps had a constant superhump flux with respect to the rebrightening phase. These findings suggest that the superhumps observed during the rebrightening stage and the fading tail are a ``remnant'' of the usual superhumps, and are not newly triggered by rebrightenings. By a comparison with the 1977 outburst of this object and outbursts of other WZ Sge-type dwarf novae, we propose an activity sequence of WZ Sge-type superoutbursts, in which the current outburst of EG Cnc is placed between a single-rebrightening event and distinct outbursts separated by a dip. The post-superoutburst behavior of WZ Sge-type dwarf novae can be understood in the presence of a considerable amount of remnant matter behind the cooling front in the outer accretion disk, even after the main superoutburst. We consider that a premature quenching of the hot state due to the weak tidal effect under the extreme mass ratio of the WZ Sge-type binary is responsible for the origin of the remnant mass.

  10. Naming Disney's Dwarfs.

    ERIC Educational Resources Information Center

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  11. Cannibalization of Dwarf Galaxies by the Milky Way: Distance to the Leading Arm of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Antwi-Danso, Jacqueline; Barger, Kathleen; Haffner, L. Matthew

    2016-01-01

    Tidal interactions between two dwarf galaxies near the Milky Way, the Large and Small Magellanic Clouds, have caused large quantities of gas to be flung into the halo of the Milky Way. Much of this tidal debris, known as the Magellanic System, is currently headed towards the disk of the Milky Way, spearheaded by the Leading Arm, with the Bridge connecting the two dwarf galaxies, and the trailing Magellanic Stream at the end. Estimates for the amount of gas that the Magellanic System contains are in the range of (2 - 4) × 109 M⊙ and this could supply our Galaxy with (3.7 - 6.7) M⊙ yr-1 (Fox et al. 2014). Although this is higher than the present star-formation rate of the Galaxy, the position of the tidal debris predisposes it to ionizing radiation from the extragalactic background and Galactic disk, as well as ram-pressure stripping from the halo, hindering gas accretion. Some parts of the Leading Arm, however, appear to have already survived the trip to the disk as their morphology is indicative of interaction with the interstellar medium of the Galaxy. The exact amount of gas that this structure contains is uncertain because of weak constrains in its distance. In this study, we made seven pointed Hα observations using the Wisconsin Hα Mapper Telescope and then compared the Hα intensity we obtained to models of the anticipated ionizing flux from the Milky Way and extragalactic background. From this, we calculated the distance from the Sun to the Leading Arm of the Magellanic System at the locations of our observations.

  12. The Fornax Deep Survey with VST. III. Low surface brightness dwarfs and ultra diffuse galaxies in the center of the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Venhola, Aku; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Lisker, Thorsten; Iodice, Enrichetta; Capaccioli, Massimo; Kleijn, Gijs Verdoes; Valentijn, Edwin; Mieske, Steffen; Hilker, Michael; Wittmann, Carolin; van de Ven, Glenn; Grado, Aniello; Spavone, Marilena; Cantiello, Michele; Napolitano, Nicola; Paolillo, Maurizio; Falcón-Barroso, Jesús

    2017-12-01

    Context. Studies of low surface brightness (LSB) galaxies in nearby clusters have revealed a sub-population of extremely diffuse galaxies with central surface brightness of μ0,g' > 24 mag arcsec-2, total luminosity Mg' fainter than -16 mag and effective radius between 1.5 kpc dwarf-sized galaxies in their luminosities, it is important to compare their properties in the same environment. If a continuum is found between the properties of UDGs and the rest of the LSB population, it would be consistent with the idea that they have a common origin. Aims: Our aim is to exploit the deep g', r' and i'-band images of the Fornax Deep Survey (FDS), in order to identify LSB galaxies in an area of 4 deg2 in the center of the Fornax cluster. The identified galaxies are divided into UDGs and dwarf-sized LSB galaxies, and their properties are compared. Methods: We identified visually all extended structures having r'-band central surface brightness of μ0,r' > 23 mag arcsec-2. We classified the objects based on their appearance into galaxies and tidal structures, and perform 2D Sérsic model fitting with GALFIT to measure the properties of those classified as galaxies. We analyzed their radial distribution and orientations with respect of the cluster center, and with respect to the other galaxies in our sample. We also studied their colors and compare the LSB galaxies in Fornax with those in other environments. Results: Our final sample complete in the parameter space of the previously known UDGs, consists of 205 galaxies of which 196 are LSB dwarfs (with Re < 1.5 kpc) and nine are UDGs (Re > 1.5 kpc). We show that the UDGs have (1) g'-r' colors similar to those of LSB dwarfs of the same luminosity; (2) the largest UDGs (Re > 3 kpc) in our sample appear different from the other LSB galaxies, in that they are significantly

  13. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of

  14. A Comparative Analysis of Chemical Abundances in Andromeda's Stellar Halo and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Kirby, Evan N.; Escala, Ivanna; Wojno, Jennifer

    2018-06-01

    Stellar halos provide a record of the earliest stages of a galaxy’s formation as well as the mass growth of later epochs. All stages of accretion are represented in the halo: (1) fully phase-mixed stars accreted at early times, (2) stars in distinct tidal streams, and (3) stars in satellite galaxies that will eventually be tidally incorporated into the halo. Chemical abundances encode information about the environment in which a star formed: specifically, the relative abundances of [Fe/H] and [α/Fe] provide an indication of the amount and duration of star formation. While these abundances have been measured for statistically significant samples of halo and dwarf galaxy stars in the Milky Way, they remain largely unknown in Andromeda. We have undertaken a systematic survey to measure [Fe/H] and [α/Fe] in fields throughout the M31 system, including the halo, tidal streams, satellite galaxies, and the disk. I will provide an overview of the survey and its goals and present first results, including the abundance distributions for five M31 dSphs, measurements of [Fe/H] and [α/Fe] of stars in M31's halo, and comparisons to existing measurements of Milky Way dSph and halo stars.

  15. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free

  16. Tidal and tidally averaged circulation characteristics of Suisun Bay, California

    USGS Publications Warehouse

    Smith, Lawrence H.; Cheng, Ralph T.

    1987-01-01

    Availability of extensive field data permitted realistic calibration and validation of a hydrodynamic model of tidal circulation and salt transport for Suisun Bay, California. Suisun Bay is a partially mixed embayment of northern San Francisco Bay located just seaward of the Sacramento-San Joaquin Delta. The model employs a variant of an alternating direction implicit finite-difference method to solve the hydrodynamic equations and an Eulerian-Lagrangian method to solve the salt transport equation. An upwind formulation of the advective acceleration terms of the momentum equations was employed to avoid oscillations in the tidally averaged velocity field produced by central spatial differencing of these terms. Simulation results of tidal circulation and salt transport demonstrate that tides and the complex bathymetry determine the patterns of tidal velocities and that net changes in the salinity distribution over a few tidal cycles are small despite large changes during each tidal cycle. Computations of tidally averaged circulation suggest that baroclinic and wind effects are important influences on tidally averaged circulation during low freshwater-inflow conditions. Exclusion of baroclinic effects would lead to overestimation of freshwater inflow by several hundred m3/s for a fixed set of model boundary conditions. Likewise, exclusion of wind would cause an underestimation of flux rates between shoals and channels by 70–100%.

  17. An unsuccessful search for brown dwarf companions to white dwarf stars

    NASA Technical Reports Server (NTRS)

    Shipman, Harry L.

    1986-01-01

    The results of a survey to detect excess infrared emission from white dwarf stars which would be attributable to a low mass companion are reviewed. Neither a simple comparison of spectroscopically identified white dwarf stars with the IRAS Point Source Catalog nor the coadding of IRAS survey data resulted in a detection of a brown dwarf. The seven nearest stars where the most stringent limits to the presence of a brown dwarf were obtained are listed, and an effort to detect brown dwarfs in the solar neighborhood is discussed.

  18. The Sagittarius Stream: Probing the Outer Halo Potential

    NASA Astrophysics Data System (ADS)

    Fardal, Mark; HSTPROMO

    2018-01-01

    The Sagittarius Stream should be the premier probe of the outer Milky Way halo potential. Instead it has generated a series of puzzles that have frustrated modelers and prevented us from measuring the halo forces. The latest such puzzle is the factor of two difference between leading and trailing apocenter distances, seen most clearly in a recent sample of RR Lyraes from PS1. Using a set of dynamical models, we explain how to match this feature. The key element are that the debris at apocenter should dynamically young, originating from the last two pericentric passages only. We also explain the important roles played by the mass profile of the halo, dynamical friction, and departures from sphericity. The models show that the separate components already visible in the PS1 data should separate clearly once velocities are obtained, and the youngest component should probe the potential even beyond the observed distances of >~ 100 kpc. We explain what observations would be useful to eliminate remaining degeneracies in the models and fulfill the promise of the stream for understanding the Milky Way.

  19. Extended transiting discs and rings around planets and brown dwarfs: theoretical constraints

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2017-02-01

    Newly formed planets (or brown dwarfs) may possess discs or rings which occupy an appreciable fraction of the planet's Hill sphere and extend beyond the Laplace radius, where the tidal torque from the host star dominates over the torque from the oblate planet. Such a disc/ring can exhibit unique, detectable transit signatures, provided that the disc/ring is significantly misaligned with the orbital plane of the planet. There exists tentative evidence for an extended ring system around the young K5 star 1 SWASP J140747-354542. We present a general theoretical study of the inclination (warp) profile of circumplanetary discs under the combined influences of the tidal torque from the central star, the torque from the oblate planet, and the self-gravity of the disc. We calculate the equilibrium warp profile (`generalized Laplace surface') and investigate the condition for coherent precession of the disc. We find that to maintain a non-negligible misalignment between the extended outer disc and the planet's orbital plane, and to ensure coherent disc precession, the disc surface density must be sufficiently large so that the self-gravity torque overcomes the tidal torque from the central star. Our analysis and quantitative results can be used to constrain the parameters of transiting circumplanetary discs which may be detected in the future.

  20. Modelling the far field hydro-environmental impacts of tidal farms - A focus on tidal regime, inter-tidal zones and flushing

    NASA Astrophysics Data System (ADS)

    Nash, S.; O'Brien, N.; Olbert, A.; Hartnett, M.

    2014-10-01

    The introduction of tidal stream turbines into water bodies can have an impact on the environment due to changes in the hydrodynamic flow fields resulting from the extraction of energy by the tidal turbines. Water levels, tidal currents and flushing characteristics could potentially be significantly altered with the introduction of tidal turbine farms, which could lead to possible loss of habitat and a change in the tidal regime. Therefore, planning of tidal turbines field deployments must take into account possible hydro-environmental impacts. This paper describes research undertaken by the authors in the Shannon Estuary to predict changes in the tidal regime and flushing characteristics, with the introduction of tidal turbine farms of different array configurations. The model was simulated using a 2D hydrodynamic model that was modified to incorporate the effects of tidal turbine fields. Water levels are shown to have been affected with the inclusion of turbines, especially in areas upstream of the turbine farm where inter-tidal zones could become predominately inundated resulting in loss of habitat in the estuary. Flushing parameters were also shown to be altered with the inclusion of turbines, with residence time shown to be increased, which could change pollutant transport in the region.

  1. Dwarf novae

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    Dwarf novae are defined on grounds of their semi-regular brightness variations of some two to five magnitudes on time scales of typically 10 to 100 days. Historically several different classification schemes have been used. Today, dwarf novae are divided into three sub-classes: the U Geminorum stars, the SU Ursae Majoris stars, and the Z Camelopardalis stars. Outbursts of dwarf novae occur at semi-periodic intervals of time, typically every 10 to 100 days; amplitudes range from typically 2 to 5 mag. Within certain limits values are characteristic for each object. Relations between the outburst amplitude, or the total energy released during outburst, and the recurrence time have been found, as well as relations between the orbital period and the outburst decay time, the absolute magnitude during outburst maximum, and the widths of long and short outbursts, respectively. Some dwarf novae are known to have suspended their normal outburst activity altogether for a while. They later resumed it without having undergone any observable changes. The optical colors of dwarf novae all are quite similar during outburst, considerably bluer than during the quiescent state. During the outburst cycle, characteristic loops in the two color diagram are performed. At a time resolution on the order of minutes, strictly periodic photometric changes due to orbital motion become visible in the light curves of dwarf novae. These are characteristic for each system. Remarkably little is known about orbital variations during the course of an outburst. On time-scales of minutes and seconds, further more or less periodic types of variability are seen in dwarf novae. Appreciable flux is emitted by dwarf novae at all wavelengths from the X-rays to the longest IR wavelengths, and in some cases even in the radio. Most dwarf novae exhibit strong emission line spectra in the optical and UV during quiescence, although some have only very weak emissions in the optical and/or weak absorptions at UV

  2. A DEEP STUDY OF THE DWARF SATELLITES ANDROMEDA XXVIII AND ANDROMEDA XXIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Colin T.; Bell, Eric F.; Martin, Nicolas F.

    We present the results of a deep study of the isolated dwarf galaxies Andromeda XXVIII and Andromeda XXIX with Gemini/GMOS and Keck/DEIMOS. Both galaxies are shown to host old, metal-poor stellar populations with no detectable recent star formation, conclusively identifying both of them as dwarf spheroidal galaxies (dSphs). And XXVIII exhibits a complex horizontal branch morphology, which is suggestive of metallicity enrichment and thus an extended period of star formation in the past. Decomposing the horizontal branch into blue (metal-poor, assumed to be older) and red (relatively more metal-rich, assumed to be younger) populations shows that the metal-rich are alsomore » more spatially concentrated in the center of the galaxy. We use spectroscopic measurements of the calcium triplet, combined with the improved precision of the Gemini photometry, to measure the metallicity of the galaxies, confirming the metallicity spread and showing that they both lie on the luminosity–metallicity relation for dwarf satellites. Taken together, the galaxies exhibit largely typical properties for dSphs despite their significant distances from M31. These dwarfs thus place particularly significant constraints on models of dSph formation involving environmental processes such as tidal or ram pressure stripping. Such models must be able to completely transform the two galaxies into dSphs in no more than two pericentric passages around M31, while maintaining a significant stellar population gradient. Reproducing these features is a prime requirement for models of dSph formation to demonstrate not just the plausibility of environmental transformation but the capability of accurately recreating real dSphs.« less

  3. Modeling the Structure and Dynamics of Dwarf Spheroidal Galaxies with Dark Matter and Tides

    NASA Astrophysics Data System (ADS)

    Muñoz, Ricardo R.; Majewski, Steven R.; Johnston, Kathryn V.

    2008-05-01

    We report the results of N-body simulations of disrupting satellites aimed at exploring whether the observed features of dSphs can be accounted for with simple, mass-follows-light (MFL) models including tidal disruption. As a test case, we focus on the Carina dwarf spheroidal (dSph), which presently is the dSph system with the most extensive data at large radius. We find that previous N-body, MFL simulations of dSphs did not sufficiently explore the parameter space of satellite mass, density, and orbital shape to find adequate matches to Galactic dSph systems, whereas with a systematic survey of parameter space we are able to find tidally disrupting, MFL satellite models that rather faithfully reproduce Carina's velocity profile, velocity dispersion profile, and projected density distribution over its entire sampled radius. The successful MFL model satellites have very eccentric orbits, currently favored by CDM models, and central velocity dispersions that still yield an accurate representation of the bound mass and observed central M/L ~ 40 of Carina, despite inflation of the velocity dispersion outside the dSph core by unbound debris. Our survey of parameter space also allows us to address a number of commonly held misperceptions of tidal disruption and its observable effects on dSph structure and dynamics. The simulations suggest that even modest tidal disruption can have a profound effect on the observed dynamics of dSph stars at large radii. Satellites that are well described by tidally disrupting MFL models could still be fully compatible with ΛCDM if, for example, they represent a later stage in the evolution of luminous subhalos.

  4. White Dwarfs

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Wesemael, F.; Murdin, P.

    2000-11-01

    White dwarf stars, also known as degenerate dwarfs, represent the endpoint of the evolution of stars with initial masses ranging from about 0.08 to about 8 solar masses. This large range encompasses the vast majority of stars formed in our Galaxy and thus white dwarf stars represent the most common endpoint of STELLAR EVOLUTION. It is believed that over 95% of the stars of our Galaxy will eventu...

  5. The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sánchez-Janssen, R.; Beasley, M. A.; Candlish, G. N.; Gibson, B. K.; Puzia, T. H.; Janz, J.; Knebe, A.; Aguerri, J. A. L.; Lisker, T.; Hensler, G.; Fellhauer, M.; Ferrarese, L.; Yi, S. K.

    2015-12-01

    We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.

  6. Mass transfer in white dwarf-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.

    2017-05-01

    We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.

  7. Controls on the Climates of Tidally Locked Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Yang, J.; Cowan, N. B.; Abbot, D. S.

    2013-12-01

    Earth-size planets in the habitable zone of M-dwarf stars may be very common. Due to strong tidal forces, these planets in circulate orbits are expected to be tidally locked, with one hemisphere experiencing perpetual day and the other permanent night. Previous studies on the climates of tidally locked planets were primarily based on complex 3D general circulation models (GCMs). The central question to be answered in this work is: what is the minimum necessary physics needed to understand the climates simulated by GCMs? A two-column model, primarily based on the weak temperature gradient (WTG) approximation (Sobel et al. 2001) and the fixed anvil temperature (FAT) hypothesis (Hartmann and Larson 2002) for the tropical climate of Earth, is developed for understanding the climates of tidally locked planets. This highly idealized model well reproduces fundamental features of the climates obtained in complicated GCMs (Yang et al. 2013), including planetary albedo, longwave cloud forcing, outgoing longwave radiation (OLR), and atmospheric energy transport. This suggests that the WTG approximation and the FAT hypothesis may be good approximations for tidally locked habitable planets, which provides strong constraints on the large-scale circulations, diabatic processes, and cloud behaviour on these planets. Both the simple model and the GCMs predict that (i) convection and planetary albedo on the dayside increase as stellar flux is increased; (ii) longwave cloud radiative forcing increases as stellar flux is increased, due to the cloud top temperature remains nearly constant as the climate changes (FAT hypothesis); (iii) for planets at the inner regions of the habitable zone, the dayside--nightside OLR contrast becomes very weak or even reverses, due to the strong longwave absorption by water vapor and clouds on the dayside; (iv) the dayside--to--nightside atmospheric energy transport (AET) increases as stellar flux is increased, and decreases as oceanic energy transport

  8. A Multi-epoch Kinematic Study of the Remote Dwarf Spheroidal Galaxy Leo II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Meghin E.; Mateo, Mario; Walker, Matthew G.

    2017-02-20

    We conducted a large spectroscopic survey of 336 red giants in the direction of the Leo II dwarf galaxy using Hectochelle on the Multiple Mirror Telescope, and we conclude that 175 of them are members based on their radial velocities and surface gravities. Of this set, 40 stars have never before been observed spectroscopically. The systemic velocity of the dwarf is 78.3 ± 0.6 km s{sup −1} with a velocity dispersion of 7.4 ± 0.4 km s{sup −1}. We identify one star beyond the tidal radius of Leo II but find no signatures of uniform rotation, kinematic asymmetries, or streams.more » The stars show a strong metallicity gradient of −1.53 ± 0.10 dex kpc{sup −1} and have a mean metallicity of −1.70 ± 0.02 dex. There is also evidence of two different chemodynamic populations, but the signal is weak. A larger sample of stars would be necessary to verify this feature.« less

  9. IUE observations of the M dwarfs CM Draconis and Rossiter 137 B - Magnetic activity at saturated levels

    NASA Technical Reports Server (NTRS)

    Vilhu, O.; Brandenburg, A.; Ambruster, C. W.; Neff, J. E.; Linsky, J. L.

    1989-01-01

    IUE observations of two active M dwarfs with known rotation rate or age and presumed to be almost totally convective are presented. The first of these stars, CM Draconis (Gl 630.1), is an old Population II binary with its components in tidally induced rapid rotation (P = 1.27 d, dM 4 + dM 4). The other one, Rossiter 137 B, forms with HD 36705 (AB Dor) a visual pair of young active stars. The activity of CM Dra is due to the forced rotation in a close binary, while Rst 137 B is assumed to rotate fast enough to generate its magnetica activity. These results are compared with those for M dwarfs, particularly AU Mic and YZ CMi, that have known rotational periods and measured ultraviolet emission line fluxes. The chromospheric-coronal saturation levels of cool dwarfs between 0.3 less than B-V less than 1.6 is determined. It is found that saturated F stars have stronger chromospheres than saturated M stars, but the opposite is true for the corona. Results of these observations seem to favor a rotation-dependent distributed dynamo generating magnetic flux in totally convective stars.

  10. The frequency of planetary debris around young white dwarfs

    NASA Astrophysics Data System (ADS)

    Koester, D.; Gänsicke, B. T.; Farihi, J.

    2014-06-01

    Context. Heavy metals in the atmospheres of white dwarfs are thought in many cases to be accreted from a circumstellar debris disk, which was formed by the tidal disruption of a rocky planetary body within the Roche radius of the star. The abundance analysis of photospheric elements and conclusions about the chemical composition of the accreted matter are a new and promising method of studying the composition of extrasolar planetary systems. However, ground-based searches for metal-polluted white dwarfs that rely primarily on the detection of the Ca ii K line become insensitive at Teff > 15 000 K because this ionization state depopulates. Aims: We present the results of the first unbiased survey for metal pollution among hydrogen-atmosphere (DA type) white dwarfs with cooling ages in the range 20-200 Myr and 17 000 K dwarfs studied, or 56% show traces of heavy elements. In 25 stars (showing only Si and occasionally C), the elements can be explained by radiative levitation alone, although we argue that accretion has very likely occurred recently. The remaining 23 white dwarfs (27%), however, must be currently accreting. Together with previous studies from the ground and adopting bulk Earth abundances for the debris, accretion rates range from a few 105 g s-1 to a few 108 g s-1, with no evident trend in cooling age from ≈40 Myr to ≈2 Gyr. Only a single, modest case of metal pollution (Ṁ < 106 g s-1) is found among ten white dwarfs with Teff > 23 000 K, in excellent agreement

  11. The history of star formation in nearby dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel Ray

    2010-11-01

    We present detailed analysis of color-magnitude diagrams (CMDs) of resolved stellar populations in nearby dwarf galaxies based on observations taken with the Hubble Space Telescope (HST). From the positions of individual stars on a CMD, we are able to derive the star formation histories (SFHs), i.e., the star formation rate (SFR) as a function of time and metallicity, of the observed stellar populations. Specifically, we apply this technique to a number of nearby dwarf galaxies to better understand the mechanisms driving their evolution. The ACS Nearby Galaxy Survey Treasury program (ANGST) provides multi-color photometry of resolved stars in ˜ 60 nearby dwarf galaxies from images taken with HST. This sample contains 12 dSph, 5 dwarf spiral, 28 dIrr, 12 dSph/dIrr (transition), and 3 tidal dwarf galaxies. The sample spans a range of ˜ 10 in MB and covers a wide range of environments, from highly interacting to truly isolated. From the best fit lifetime SFHs we find three significant results: (1) the average dwarf galaxy formed ˜ 60% of its stars by z ˜ 2 and 70% of its stars by z ˜ 1, regardless of morphological type, (2) the only statistically significant difference between the SFHs of different morphological types is within the most recent 1 Gyr (excluding tidal dwarf galaxies), and (3) the SFHs are complex and the mean values are inconsistent with simple SFH models, e.g., single epoch SF or constant SFH. We then present the recent ( ≲ 1 Gyr) SFHs of nine M81 Group Dwarf Galaxies. Comparing the SFHs, birthrate parameters, fraction of stars formed per time interval, and spatial distribution of stellar components as a function of luminosity, we find only minor differences in SF characteristics among the M81 Group dIs despite a wide range of physical properties. We extend our comparison to select dIs in the Local Group (LG), with similar quality photometry, and again find only minor differences in SF parameters. The lack of a clear trend in SF parameters over

  12. Tidal controls on riverbed denitrification along a tidal freshwater zone

    NASA Astrophysics Data System (ADS)

    Knights, Deon; Sawyer, Audrey H.; Barnes, Rebecca T.; Musial, Cole T.; Bray, Samuel

    2017-01-01

    In coastal rivers, tidal pumping enhances the exchange of oxygen-rich river water across the sediment-water interface, controlling nitrogen cycling in riverbed sediment. We developed a one-dimensional, fluid flow and solute transport model that quantifies the influence of tidal pumping on nitrate removal and applied it to the tidal freshwater zone (TFZ) of White Clay Creek (Delaware, USA). In field observations and models, both oxygenated river water and anoxic groundwater deliver nitrate to carbon-rich riverbed sediment. A zone of nitrate removal forms beneath the aerobic interval, which expands and contracts over daily timescales due to tidal pumping. At high tide when oxygen-rich river water infiltrates into the bed, denitrification rates decrease by 25% relative to low tide. In the absence of tidal pumping, our model predicts that the aerobic zone would be thinner, and denitrification rates would increase by 10%. As tidal amplitude increases toward the coast, nitrate removal rates should decrease due to enhanced oxygen exchange across the sediment-water interface, based on sensitivity analysis. Denitrification hot spots in TFZs are more likely to occur in less permeable sediment under lower tidal ranges and higher rates of ambient groundwater discharge. Our models suggest that tidal pumping is not efficient at removing surface water nitrate but can remove up to 81% of nitrate from discharging groundwater in the TFZ of White Clay Creek. Given the high population densities of coastal watersheds, the reactive riverbeds of TFZs play a critical role in mitigating new nitrogen loads to coasts.

  13. GASP. VIII. Capturing the Birth of a Tidal Dwarf Galaxy in a Merging System at z ˜ 0.05

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; Moretti, Alessia; Poggianti, Bianca M.; Fasano, Giovanni; Fritz, Jacopo; Gullieuszik, Marco; Duc, Pierre-Alain; Jaffé, Yara; Bettoni, Daniela

    2017-12-01

    Within the GAs Stripping Phenomena in galaxies with MUSE (GASP) sample, we identified an ongoing 1:1 merger between 2 galaxies and the consequent formation of a tidal dwarf galaxy (TDG). The system is observed at z = 0.05043 and is part of a poor group. Exploiting the exquisite quality of the Multi Unit Spectroscopic Explorer (MUSE)/Very Large Telescope data, we present the spatially resolved kinematics and physical properties of gas and stars of this object and describe its evolutionary history. An old (luminosity weighted age ˜2 × 109 yr), gas-poor, early-type-like galaxy is merging with a younger (luminosity weighted age ˜2.5 × 108 yr), gas-rich, late-type galaxy. The system has a quite strong metallicity gradient, which is indicative of an early-stage phase. Comparing the spatial extension of the star formation at different epochs, we date the beginning of the merger between 2 × 107 yr < t < 5.7 × 108 yr ago. The gas kinematic pattern reflects that of the late-type object and is distorted in correspondence to the location of the impact. The stellar kinematic instead is more chaotic, as expected for mergers. The gas redistribution in the system induces high levels of star formation between the two components, where we indeed detect the birth of the TDG. This stellar structure has a mass of ˜6 × 109 M ⊙, a radius of ˜2 kpc, and even though it has already accreted large quantities of gas and stars, it is still located within the disk of the progenitor, is characterized by a high velocity dispersion, indicating that it is still forming, is dusty, and has high levels of star formation (star formation rate ˜ 0.3 M ⊙ yr-1). This TDG is originated in an early-stage merger, while these structures usually form in more evolved systems.

  14. Sumo Puff: Tidal debris or disturbed ultra-diffuse galaxy?

    NASA Astrophysics Data System (ADS)

    Greco, Johnny P.; Greene, Jenny E.; Price-Whelan, Adrian M.; Leauthaud, Alexie; Huang, Song; Goulding, Andy D.; Strauss, Michael A.; Komiyama, Yutaka; Lupton, Robert H.; Miyazaki, Satoshi; Takada, Masahiro; Tanaka, Masayuki; Usuda, Tomonori

    2018-01-01

    We report the discovery of a diffuse stellar cloud with an angular extent ≳30″, which we term "Sumo Puff", in data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). While we do not have a redshift for this object, it is in close angular proximity to a post-merger galaxy at redshift z = 0.0431 and is projected within a few virial radii (assuming similar redshifts) of two other ˜L⋆ galaxies, which we use to bracket a potential redshift range of 0.0055 < z < 0.0431. The object's light distribution is flat, as characterized by a low Sérsic index (n ˜ 0.3). It has a low central g-band surface brightness of ˜26.4 mag arcsec-2, large effective radius of ˜13″ (˜11 kpc at z = 0.0431 and ˜1.5 kpc at z = 0.0055), and an elongated morphology (b/a ˜ 0.4). Its red color (g - i ˜ 1) is consistent with a passively evolving stellar population and similar to the nearby post-merger galaxy, and we may see tidal material connecting Sumo Puff with this galaxy. We offer two possible interpretations for the nature of this object: (1) it is an extreme, galaxy-sized tidal feature associated with a recent merger event, or (2) it is a foreground dwarf galaxy with properties consistent with a quenched, disturbed, ultra-diffuse galaxy. We present a qualitative comparison with simulations that demonstrates the feasibility of forming a structure similar to this object in a merger event. Follow-up spectroscopy and/or deeper imaging to confirm the presence of the bridge of tidal material will be necessary to reveal the true nature of this object.

  15. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs.

    PubMed

    Luger, R; Barnes, R; Lopez, E; Fortney, J; Jackson, B; Meadows, V

    2015-01-01

    We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ∼1 M⊕ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

  16. White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2012-10-01

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, MV >~ 8.4 on the SN Ia in SNR 0509-67.5 and MV >~ 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a "magnetic bottle" connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the "nova limit" and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  17. Hunting For Wild Brown Dwarf Companions To White Dwarfs In UKIDSS And SDSS

    NASA Astrophysics Data System (ADS)

    Day-Jones, Avril; Pinfield, D. J.; Jones, H. R. A.; Napiwotzki, R.; Burningham, B.; Jenkins, J. S.; UKIDSS Cool Dwarf Science Working Group

    2008-03-01

    We present findings from our search of the latest releases of SDSS and UKIDSS LAS for very widely separated white dwarf - ultracool dwarf binaries. Ultracool dwarfs found in such binary systems could be used as benchmark objects, whose properties, such as age and distance can be inferred indirectly from the white dwarf primary (with no need to refer to atmospheric models) and can provide a test bed for theoretical models, they can therefore be used observationally pin down how physical properties affect ultracool dwarf spectra.

  18. Rapid Evolution of the Gaseous Exoplanetary Debris around the White Dwarf Star HE 1349–2305

    NASA Astrophysics Data System (ADS)

    Dennihy, E.; Clemens, J. C.; Dunlap, B. H.; Fanale, S. M.; Fuchs, J. T.; Hermes, J. J.

    2018-02-01

    Observations of heavy metal pollution in white dwarf stars indicate that metal-rich planetesimals are frequently scattered into star-grazing orbits, tidally disrupted, and accreted onto the white dwarf surface, offering direct insight into the dynamical evolution of post-main-sequence exoplanetary systems. Emission lines from the gaseous debris in the accretion disks of some of these systems show variations on timescales of decades, and have been interpreted as the general relativistic precession of a recently formed, elliptical disk. Here we present a comprehensive spectroscopic monitoring campaign of the calcium infrared triplet emission in one system, HE 1349–2305, which shows morphological emission profile variations suggestive of a precessing, asymmetric intensity pattern. The emission profiles are shown to vary on a timescale of one to two years, which is an order of magnitude shorter than what has been observed in other similar systems. We demonstrate that this timescale is likely incompatible with general relativistic precession, and consider alternative explanations for the rapid evolution, including the propagation of density waves within the gaseous debris. We conclude with recommendations for follow-up observations, and discuss how the rapid evolution of the gaseous debris in HE 1349–2305 could be leveraged to test theories of exoplanetary debris disk evolution around white dwarf stars.

  19. Tidal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charlier, R.H.

    1982-01-01

    The various methods of extracting energy from the ocean are covered, along with information on what causes tides, how tides are used to generate electricity, and the locations of hundreds of potential sites for tidal power plants. The rehabilitation of old tide mills, new methods of building tidal power plants, and the plastic barrier scheme are described. A world-wide examination is provided of tidal power plant sites and the status of power projects in the US, France, the USSR, England, Canada, North and South Korea, Argentina, Australia, and India. (WHR)

  20. A Pulsar and White Dwarf in an Unexpected Orbit

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D

  1. Cold Brown Dwarfs with WISE: Y Dwarfs and the Field Mass Function

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy

    2012-01-01

    Why study Brown Dwarf stars? They re the lowest mass byproducts of star formation.. They provide time capsules across the age of the Galaxy.. They show what low-T(sub eff) atmospheres look like.. They may be some of our closest neighbors in space..WISE is a 40cm Earth-orbiting telescope. There are 211 stars and only 33 brown dwarfs in this volume.. This means that stars outnumber brown dwarfs by a factor of 6:1 currently.. The number of brown dwarfs will continue to increase if:: (a) more nearby Y dwarf candidates are confirmed, or (b) our distances to known Y s are overestimated, or (c) there are colder BDs invisible to WISE..

  2. THE EFFECTS OF CLOSE COMPANIONS (AND ROTATION) ON THE MAGNETIC ACTIVITY OF M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Dylan P.; West, Andrew A.; Dhital, Saurav

    2012-10-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative techniquemore » that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types {<=} M7. Our results show that early-type M dwarfs ({<=}M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime

  3. The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.; Garcés, Ane; Catalán, Silvia; Dhital, Saurav; Fuchs, Miriam; Silvestri, Nicole M.

    2012-10-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the Hα emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types <= M7. Our results show that early-type M dwarfs (<=M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  4. Polarimetric Imaging of the Relativistic Accretion Flow in Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Liu, Siming; Huang, L.; Shen, Z.; Cai, M. J.; Li, H.; Fryer, C. L.

    2007-12-01

    We perform general relativistic ray-tracing calculations of the transfer of polarized synchrotron radiation through the relativistic accretion flow in Sagittarius A*. The birefringence effects are treated self-consistently. By fitting the spectrum and polarization of Sgr A* from the millimeter to the NIR band with the model, we are able to not only constrain the basic parameters related to the magneto-rotational instability and the electron heating rate, but also limit the orientation of the accretion torus. These constraints lead to unique images of the four Stokes parameters, which may be compared with future mm and sub-mm VLBI observations. In combination with general relativistic MHD simulations, the model can be used to test the theory of the magneto-rotational instability with observations of Sgr A*. This work was funded in part under the auspices of the US Department of Energy, and supported by its contract W-7405-ENG-36 to Los Alamos National Laboratory.

  5. Tidal current and tidal energy changes imposed by a dynamic tidal power system in the Taiwan Strait, China

    NASA Astrophysics Data System (ADS)

    Dai, Peng; Zhang, Jisheng; Zheng, Jinhai

    2017-12-01

    The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.

  6. Porewater biogeochemistry and soil metabolism in dwarf red mangrove habitats (Twin Cays, Belize)

    USGS Publications Warehouse

    Lee, R.Y.; Porubsky, W.P.; Feller, Ilka C.; McKee, K.L.; Joye, S.B.

    2008-01-01

    Seasonal variability in biogeochemical signatures was used to elucidate the dominant pathways of soil microbial metabolism and elemental cycling in an oligotrophic mangrove system. Three interior dwarf mangrove habitats (Twin Cays, Belize) where surface soils were overlain by microbial mats were sampled during wet and dry periods of the year. Porewater equilibration meters and standard biogeochemical methods provided steady-state porewater profiles of pH, chloride, sulfate, sulfide, ammonium, nitrate/nitrite, phosphate, dissolved organic carbon, nitrogen, and phosphorus, reduced iron and manganese, dissolved inorganic carbon, methane and nitrous oxide. During the wet season, the salinity of overlying pond water and shallow porewaters decreased. Increased rainwater infiltration through soils combined with higher tidal heights appeared to result in increased organic carbon inventories and more reducing soil porewaters. During the dry season, evaporation increased both surface water and porewater salinities, while lower tidal heights resulted in less reduced soil porewaters. Rainfall strongly influenced inventories of dissolved organic carbon and nitrogen, possibly due to more rapid decay of mangrove litter during the wet season. During both times of year, high concentrations of reduced metabolites accumulated at depth, indicating substantial rates of organic matter mineralization coupled primarily to sulfate reduction. Nitrous oxide and methane concentrations were supersaturated indicating considerable rates of nitrification and/or incomplete denitrification and methanogenesis, respectively. More reducing soil conditions during the wet season promoted the production of reduced manganese. Contemporaneous activity of sulfate reduction and methanogenesis was likely fueled by the presence of noncompetitive substrates. The findings indicate that these interior dwarf areas are unique sites of nutrient and energy regeneration and may be critical to the overall persistence

  7. Using Close White Dwarf + M Dwarf Stellar Pairs to Constrain the Flare Rates in Close Stellar Binaries

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.; Becker, Andrew C.

    2016-05-01

    We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations <1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing Hα in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz-bands. We find an increase in the overall flaring fraction in the close WD+dM pairs (0.09 ± 0.03%) compared to the field dMs (0.0108 ± 0.0007%) and a lower flaring fraction for active WD+dMs (0.05 ± 0.03%) compared to active dMs (0.28 ± 0.05%). We discuss how our results constrain both the single and binary dM flare rates. Our results also constrain dM multiplicity, our knowledge of the Galactic transient background, and may be important for the habitability of attending planets around dMs with close companions.

  8. POX 4 and Tol 35: Two Peculiar Wolf-Rayet Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Méndez, David I.; Esteban, César

    1999-12-01

    We present results of narrowband (Hα and adjacent continuum) and broadband (U, B, and V) optical CCD imaging together with high-resolution Hα spectroscopy of the blue compact Wolf-Rayet dwarf galaxies POX 4 and Tol 35. POX 4 has a fainter, irregular, and diffuse companion located 20.5" (4.7 kpc) along the minor axis of the galaxy, which is visible also in the Hα emission. The difference in recession velocity between the galaxy and the companion is about 130 km s-1. The observational results lead us to propose that POX 4 could be interpreted as a low-mass ring galaxy, produced by a head-on intrusion of the fainter companion. Regarding the other object, a spectrum taken along the major axis of Tol 35 shows the coexistence of systems of motion with a velocity difference of about 50 km s-1. Moreover, the deep continuum-subtracted Hα image of the galaxy shows very faint features that resemble the beginning of crossed tidal tails or gaseous filaments powered by the mechanical action of the young stellar population. In this sense, Tol 35 could be interpreted either as an object in an intermediate-stage merging process between two gas-rich dwarf galaxies or as an object suffering the effect of a galactic wind.

  9. Distinguishing CDM dwarfs from SIDM dwarfs in baryonic simulations

    NASA Astrophysics Data System (ADS)

    Strickland, Emily; Fitts, Alex B.; Boylan-Kolchin, Michael

    2017-06-01

    Dwarf galaxies in the nearby Universe are the most dark-matter-dominated systems known. They are therefore natural probes of the nature of dark matter, which remains unknown. Our collaboration has performed several high-resolution cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as self-interacting dark matter (SIDM, with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, in order to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark-matter-dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (at stellar masses of ~105 solar masses) provides the clearest window for distinguishing between the two theories. At these low masses, our SIDM galaxies have a cored inner density profile, while their CDM counterparts have “cuspy” centers. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts. Future observations of ultra faint dwarfs with JWST and 30-m telescopes will be able to discern whether such alternate theories of dark matter are viable.

  10. Stellar Oxygen Abundances.V.Abundances of Two Hyades Dwarfs Derived from the 6300 Angstroms [OI] Line

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.; Hiltgen, Daniel D.

    1996-12-01

    We present observations of the 6300 Å [O I] spectral region in two cool Hyades dwarfs, vB 79 and vB 25. We derive a mean iron abundance, [Fe/H]˜+0.11, in good agreement with recent analyses of F and G Hyades dwarfs. The O abundance derived from spectrum synthesis, [O/H]˜+0.15, is between the values deduced by Garcia Lopez et al. (1993, ApJ, 412, 173; [O/H]=-0.05 to -0.10) and King (1993, Ph. D. Dissertation, University of Hawaii; [O/H]=+0.26), who employed the 7774 Å O I triplet in hotter Hyades dwarfs. An accounting of differences between these two 7774 Å analyses is given. Our [O I]-based determination suggests the Hyades O abundance itself is super-solar, though [O/Fe]˜0.0; however, systematic errors as large as 0.10-0.15 dex cannot be ruled out. The Hyades giants show an unexpected ˜0.23 dex O deficit relative to our dwarf value. While some suggestive evidence for non-standard nuclear processing and mixing in the Hyades giants may exist, we find it unconvincing. Rather, model atmosphere deficiencies or [O I] -region blending features that are still unrecognized by laboratory and theoretical efforts may contribute to the giant-dwarf O discrepancy. Finally, our high O abundance is marginally consistent with values claimed to provide a solution to the Hyades Li problem from standard stellar models. However, it is not clear that these models do in fact reproduce the extant Li data. Our Li abundance upper limit for vB 25 is at least 0.5 dex lower than the abundances of two tidally locked binaries of similar Teff. Standard stellar models of uniform composition and age are not able to reproduce such scatter in Li.

  11. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use H α chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of amore » white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.« less

  12. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    NASA Astrophysics Data System (ADS)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  13. Ionized gas clouds near the Sagittarius Arm tangent

    NASA Astrophysics Data System (ADS)

    Hou, Li-Gang; Dong, Jian; Gao, Xu-Yang; Han, Jin-Lin

    2017-04-01

    Radio recombination lines (RRLs) are the best tracers of ionized gas. Simultaneous observations of multi-transitions of RRLs can significantly improve survey sensitivity. We conducted pilot RRL observations near the Sagittarius Arm tangent by using the 65-m Shanghai Tian Ma Radio Telescope (TMRT) equipped with broadband feeds and a digital backend. Six hydrogen RRLs (H96 α - H101α) at C band (6289 MHz-7319 MHz) were observed simultaneously toward a sky area of 2° × 1.2° by using on-the-fly mapping mode. These transitions were then stacked together for detection of ionized gas. Star forming complexes G48.6+0.1 and G49.5-0.3 were detected in the integrated intensity map. We found agreements between our measured centroid velocities and previous results for the 21 known HII regions in the mapped area. For more than 80 cataloged HII region candidates without previous RRL measurements, we obtained new RRL spectra at 30 targeted positions. In addition, we detected 25 new discrete RRL sources with spectral S/N > 5 σ, and they were not listed in the catalogs of previously known HII regions. The distances for 44 out of these 55 new RRL sources were estimated.

  14. Ultra-compact High Velocity Clouds as Minihalos and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Faerman, Yakov; Sternberg, Amiel; McKee, Christopher F.

    2013-11-01

    We present dark matter minihalo models for the Ultra-Compact, High-Velocity H I Clouds (UCHVCs) recently discovered in the 21 cm ALFALFA survey. We assume gravitational confinement of 104 K H I gas by flat-cored dark-matter subhalos within the Local Group. We show that for flat cores, typical (median) tidally stripped cosmological subhalos at redshift z = 0 have dark-matter masses of ~107 M ⊙ within the central 300 pc (independent of total halo mass), consistent with the "Strigari mass scale" observed in low-luminosity dwarf galaxies. Flat-cored subhalos also resolve the mass discrepancy between simulated and observed satellites around the Milky Way. For the UCHVCs, we calculate the photoionization-limited hydrostatic gas profiles for any distance-dependent total observed H I mass and predict the associated (projected) H I half-mass radii, assuming the clouds are embedded in distant (d >~ 300 kpc) and unstripped subhalos. For a typical UCHVC (0.9 Jy km s-1), we predict physical H I half-mass radii of 0.18 to 0.35 kpc (or angular sizes of 0.'6 to 2.'1) for distances ranging from 300 kpc to 2 Mpc. As a consistency check, we model the gas-rich dwarf galaxy Leo T, for which there is a well-resolved H I column density profile and a known distance (420 kpc). For Leo T, we find that a subhalo with M 300 = 8 (± 0.2) × 106 M ⊙ best fits the observed H I profile. We derive an upper limit of P HIM <~ 150 cm-3 K for the pressure of any enveloping hot intergalactic medium gas at the distance of Leo T. Our analysis suggests that some of the UCHVCs may in fact constitute a population of 21 cm-selected but optically faint dwarf galaxies in the Local Group.

  15. 37 NEW T-TYPE BROWN DWARFS IN THE CANADA-FRANCE BROWN DWARFS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Loic; Artigau, Etienne; Delorme, Philippe

    2011-06-15

    The Canada-France Brown Dwarfs Survey is an i'- and z'-band survey realized with MegaCam at the Canada-France-Hawaii Telescope that covers a surface area of 780 deg{sup 2}. Image analysis is now completed while J-band follow-up campaigns are {approx}90% done. The survey identified about 70 T dwarf candidates, of which 43 now have near-infrared spectra obtained with NIRI and GNIRS at Gemini and ISAAC at the Very Large Telescope. Six of these were previously published and we present here the 37 new discoveries, all T dwarfs. They range from T0 to T8.5 with four being of type T7 or later. Bothmore » newly identified T8 dwarfs are possibly high log (g) massive brown dwarfs of thin disk age. One T4.5 dwarf shows signs of sub-metallicity. We present proper motions and near-infrared photometry, and discuss about the most peculiar/interesting objects in some details.« less

  16. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  17. Prospecting in Ultracool Dwarfs: Measuring the Metallicities of Mid- and Late-M Dwarfs

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Deacon, Niall R.; Gaidos, Eric; Ansdell, Megan; Brewer, John M.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.

    2014-06-01

    Metallicity is a fundamental parameter that contributes to the physical characteristics of a star. The low temperatures and complex molecules present in M dwarf atmospheres make it difficult to measure their metallicities using techniques that have been commonly used for Sun-like stars. Although there has been significant progress in developing empirical methods to measure M dwarf metallicities over the last few years, these techniques have been developed primarily for early- to mid-M dwarfs. We present a method to measure the metallicity of mid- to late-M dwarfs from moderate resolution (R ~ 2000) K-band (sime 2.2 μm) spectra. We calibrate our formula using 44 wide binaries containing an F, G, K, or early-M primary of known metallicity and a mid- to late-M dwarf companion. We show that similar features and techniques used for early-M dwarfs are still effective for late-M dwarfs. Our revised calibration is accurate to ~0.07 dex for M4.5-M9.5 dwarfs with -0.58 < [Fe/H] < +0.56 and shows no systematic trends with spectral type, metallicity, or the method used to determine the primary star metallicity. We show that our method gives consistent metallicities for the components of M+M wide binaries. We verify that our new formula works for unresolved binaries by combining spectra of single stars. Lastly, we show that our calibration gives consistent metallicities with the Mann et al. study for overlapping (M4-M5) stars, establishing that the two calibrations can be used in combination to determine metallicities across the entire M dwarf sequence.

  18. Significance of brown dwarfs

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1986-01-01

    The significance of brown dwarfs for resolving some major problems in astronomy is discussed. The importance of brown dwarfs for models of star formation by fragmentation of molecular clouds and for obtaining independent measurements of the ages of stars in binary systems is addressed. The relationship of brown dwarfs to planets is considered.

  19. Hubble's Slice of Sagittarius

    NASA Image and Video Library

    2017-12-08

    This stunning image, captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), shows part of the sky in the constellation of Sagittarius (The Archer). The region is rendered in exquisite detail — deep red and bright blue stars are scattered across the frame, set against a background of thousands of more distant stars and galaxies. Two features are particularly striking: the colors of the stars, and the dramatic crosses that burst from the centers of the brightest bodies. While some of the colors in this frame have been enhanced and tweaked during the process of creating the image from the observational data, different stars do indeed glow in different colors. Stars differ in color according to their surface temperature: very hot stars are blue or white, while cooler stars are redder. They may be cooler because they are smaller, or because they are very old and have entered the red giant phase, when an old star expands and cools dramatically as its core collapses. The crosses are nothing to do with the stars themselves, and, because Hubble orbits above Earth’s atmosphere, nor are they due to any kind of atmospheric disturbance. They are actually known as diffraction spikes, and are caused by the structure of the telescope itself. Like all big modern telescopes, Hubble uses mirrors to capture light and form images. Its secondary mirror is supported by struts, called telescope spiders, arranged in a cross formation, and they diffract the incoming light. Diffraction is the slight bending of light as it passes near the edge of an object. Every cross in this image is due to a single set of struts within Hubble itself! Whilst the spikes are technically an inaccuracy, many astrophotographers choose to emphasize and celebrate them as a beautiful feature of their images. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science

  20. Brown Dwarf Comparison

    NASA Image and Video Library

    2009-11-17

    NASA Wide-field Infrared Survey Explorer will uncover many failed stars, or brown dwarfs, in infrared light. This diagram shows a brown dwarf in relation to Earth, Jupiter, a low-mass star and the sun.

  1. SAGITTARIUS STREAM THREE-DIMENSIONAL KINEMATICS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koposov, Sergey E.; Belokurov, Vasily; Evans, N. Wyn

    2013-04-01

    Using multi-epoch observations of the Stripe 82 region from the Sloan Digital Sky Survey (SDSS), we measure precise statistical proper motions of the stars in the Sagittarius (Sgr) stellar stream. The multi-band photometry and SDSS radial velocities allow us to efficiently select Sgr members and thus enhance the proper-motion precision to {approx}0.1 mas yr{sup -1}. We measure separately the proper motion of a photometrically selected sample of the main-sequence turn-off stars, as well as spectroscopically selected Sgr giants. The data allow us to determine the proper motion separately for the two Sgr streams in the south found in Koposov etmore » al. Together with the precise velocities from SDSS, our proper motions provide exquisite constraints of the three-dimensional motions of the stars in the Sgr streams.« less

  2. Benchmarking Brown Dwarf Models With a Non-irradiated Transiting Brown Dwarf in Praesepe

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas; Marley, Mark; Line, Michael; Gizis, John

    2018-05-01

    We wish to use 9.4 hours of Spitzer time to observe two eclipses, one each at 3.6um and 4.5um, of the transiting brown dwarf AD 3116b. AD 3116b is a 54.2+/-4.3 MJ, 1.08+/-0.07 RJ object on a 1.98 day orbit about a 3200K M-dwarf. Uniquely, AD 3116 and its host star are both members of Praesepe, a 690+/-60 Myr old open cluster. AD 3116b is thus one of two transiting brown dwarfs for which we have a robust isochronal age that is not dependent upon brown dwarf evolutionary models, and the youngest brown dwarf for which this is the case. Importantly, the flux AD 3116b receives from its host star is only 0.7% of its predicted internal luminosity (Saumon & Marley 2008). This makes AD 3116b the first known transiting brown dwarf that simultaneously has a well-defined age, and that receives a negligible amount of external irradiation, and a unique laboratory to test radius and luminosity predictions from brown dwarf evolutionary models. Our goal is to measure the emission from the brown dwarf. AD 3116b should have large, 25 mmag, eclipse depths in the Spitzer bandpasses, and we expect to measure them with a precision of +/-0.50 mmag at 3.6um and +/-0.54 mmag at 4.5um. This will allow us to make measure AD 3116b?s internal effective temperature to +/-40K. We will also use the upcoming Gaia DR2 parallaxes to measure AD 3116b's absolute IRAC magnitudes and color, and hence determine the cloud properties of the atmosphere. As the only known brown dwarf with an independently measured mass, radius, and age, Spitzer measurements of AD 3116b's luminosity and clouds will provide a critical benchmark for brown dwarf observation and theory.

  3. Marvel-ous Dwarfs: Results from Four Heroically Large Simulated Volumes of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Munshi, Ferah; Brooks, Alyson; Weisz, Daniel; Bellovary, Jillian; Christensen, Charlotte

    2018-01-01

    We present results from high resolution, fully cosmological simulations of cosmic sheets that contain many dwarf galaxies. Together, they create the largest collection of simulated dwarf galaxies to date, with z=0 stellar masses comparable to the LMC or smaller. In total, we have simulated almost 100 luminous dwarf galaxies, forming a sample of simulated dwarfs which span a wide range of physical (stellar and halo mass) and evolutionary properties (merger history). We show how they can be calibrated against a wealth of observations of nearby galaxies including star formation histories, HI masses and kinematics, as well as stellar metallicities. We present preliminary results answering the following key questions: What is the slope of the stellar mass function at extremely low masses? Do halos with HI and no stars exist? What is the scatter in the stellar to halo mass relationship as a function of dwarf mass? What drives the scatter? With this large suite, we are beginning to statistically characterize dwarf galaxies and identify the types and numbers of outliers to expect.

  4. Tidal truncation and barotropic convergence in a channel network tidally driven from opposing entrances

    USGS Publications Warehouse

    Warner, J.C.; Schoellhamer, D.; Schladow, G.

    2003-01-01

    Residual circulation patterns in a channel network that is tidally driven from entrances on opposite sides are controlled by the temporal phasing and spatial asymmetry of the two forcing tides. The Napa/Sonoma Marsh Complex in San Francisco Bay, CA, is such a system. A sill on the west entrance to the system prevents a complete tidal range at spring tides that results in tidal truncation of water levels. Tidal truncation does not occur on the east side but asymmetries develop due to friction and off-channel wetland storage. The east and west asymmetric tides meet in the middle to produce a barotropic convergence zone that controls the transport of water and sediment. During spring tides, tidally averaged water-surface elevations are higher on the truncated west side. This creates tidally averaged fluxes of water and sediment to the east. During neap tides, the water levels are not truncated and the propagation speed of the tides controls residual circulation, creating a tidally averaged flux in the opposite direction. ?? 2003 Elsevier Science B.V. All rights reserved.

  5. PAndAS' PROGENY: EXTENDING THE M31 DWARF GALAXY CABAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Jenny C.; Irwin, Mike J.; Chapman, Scott C.

    2011-05-10

    We present the discovery of five new dwarf galaxies, Andromeda XXIII-XXVII, located in the outer halo of M31. These galaxies were discovered during the second year of data from the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 subgroup conducted with the MegaPrime/MegaCam wide-field camera on the Canada-France-Hawaii Telescope. The current PAndAS survey now provides an almost complete panoramic view of the M31 halo out to an average projected radius of {approx}150 kpc. Here we present for the first time the metal-poor stellar density map for this whole region, not only as an illustration of the discovery spacemore » for satellite galaxies, but also as a birds-eye view of the ongoing assembly process of an L{sub *} disk galaxy. Four of the newly discovered satellites appear as well-defined spatial overdensities of stars lying on the expected locus of metal-poor (-2.5 < [Fe/H] < -1.3) red giant branch stars at the distance of M31. The fifth overdensity, And XXVII, is embedded in an extensive stream of such stars and is possibly the remnant of a strong tidal disruption event. Based on distance estimates from horizontal branch magnitudes, all five have metallicities typical of dwarf spheroidal galaxies ranging from [Fe/H] =-1.7 {+-} 0.2 to [Fe/H] =-1.9 {+-} 0.2 and absolute magnitudes ranging from M{sub V} = -7.1 {+-} 0.5 to M{sub V} = -10.2 {+-} 0.5. These five additional satellites bring the number of dwarf spheroidal galaxies in this region to 25 and continue the trend whereby the brighter dwarf spheroidal satellites of M31 generally have much larger half-light radii than their Milky Way counterparts. With an extended sample of M31 satellite galaxies, we also revisit the spatial distribution of this population and in particular we find that, within the current projected limits of the PAndAS survey, the surface density of satellites is essentially constant out to 150 kpc. This corresponds to a radial density distribution of

  6. Resolved magnetic-field structure and variability near the event horizon of Sagittarius A.

    PubMed

    Johnson, Michael D; Fish, Vincent L; Doeleman, Sheperd S; Marrone, Daniel P; Plambeck, Richard L; Wardle, John F C; Akiyama, Kazunori; Asada, Keiichi; Beaudoin, Christopher; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C; Brinkerink, Christiaan; Broderick, Avery E; Cappallo, Roger; Chael, Andrew A; Crew, Geoffrey B; Dexter, Jason; Dexter, Matt; Freund, Robert; Friberg, Per; Gold, Roman; Gurwell, Mark A; Ho, Paul T P; Honma, Mareki; Inoue, Makoto; Kosowsky, Michael; Krichbaum, Thomas P; Lamb, James; Loeb, Abraham; Lu, Ru-Sen; MacMahon, David; McKinney, Jonathan C; Moran, James M; Narayan, Ramesh; Primiani, Rurik A; Psaltis, Dimitrios; Rogers, Alan E E; Rosenfeld, Katherine; SooHoo, Jason; Tilanus, Remo P J; Titus, Michael; Vertatschitsch, Laura; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H; Zensus, J Anton; Ziurys, Lucy M

    2015-12-04

    Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields. Copyright © 2015, American Association for the Advancement of Science.

  7. Tidal Power Exploitation in Korea

    NASA Astrophysics Data System (ADS)

    Choi, Byung Ho; Kim, Kyeong Ok; Choi, Jae Cheon

    The highest tides in South Korea are found along the northwest coast between latitudes 36-38 degrees and the number of possible sites for tidal range power barrages to create tidal basins is great due to irregular coastlines with numerous bays. At present Lake Sihwa tidal power plant is completed. The plant is consisted of 10 bulb type turbines with 8 sluice gates. The installed capacity of turbines and generators is 254MW and annual energy output expected is about 552.7 GWh taking flood flow generation scheme. Three other TPP projects are being progressed at Garolim Bay (20 turbines with 25.4MW capacity), Kangwha (28 turbines with 25.4MW capacity), Incheon (44 or 48 turbines with 30 MW capacity) and project features will be outlined here. The introduction of tidal barrages into four major TPP projects along the Kyeonggi bay will render wide range of potential impacts. Preliminary attempts were performed to quantify these impacts using 2 D hydrodynamic model demonstrating the changes in tidal amplitude and phase under mean tidal condition, associated changes in residual circulation (indicator for SPM and pollutant dispersion), bottom stress (indicator for bedload movement), and tidal front (positional indicator for bio-productivity) in both shelf scale and local context. Tidal regime modeling system for ocean tides in the seas bordering the Korean Peninsula is designed to cover an area that is broad in scope and size, yet provide a high degree of resolution in strong tidal current region including off southwestern tip of the Peninsula (Uldolmok , Jangjuk, Wando-Hoenggan), Daebang Sudo (Channel) and Kyeonggi Bay. With this simulation system, real tidal time simulation of extended springneap cycles was performed to estimate spatial distribution of tidal current power potentials in terms of power density, energy density and then extrapolated annual energy density.

  8. Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets

    NASA Astrophysics Data System (ADS)

    Renaud, Joe P.; Henning, Wade G.

    2018-04-01

    The advanced rheological models of Andrade and Sundberg & Cooper are compared to the traditional Maxwell model to understand how each affects the tidal dissipation of heat within rocky bodies. We find both Andrade and Sundberg–Cooper rheologies can produce at least 10× the tidal heating compared to a traditional Maxwell model for a warm (1400–1600 K) Io-like satellite. Sundberg–Cooper can cause even larger dissipation around a critical temperature and frequency. These models allow cooler planets to stay tidally active in the face of orbital perturbations—a condition we term “tidal resilience.” This has implications for the time evolution of tidally active worlds and the long-term equilibria they fall into. For instance, if Io’s interior is better modeled by the Andrade or Sundberg–Cooper rheologies, the number of possible resonance-forming scenarios that still produce a hot, modern Io is expanded, and these scenarios do not require an early formation of the Laplace resonance. The two primary empirical parameters that define the Andrade anelasticity are examined in several phase spaces to provide guidance on how their uncertainties impact tidal outcomes, as laboratory studies continue to constrain their real values. We provide detailed reference tables on the fully general equations required for others to insert the models of Andrade and Sundberg–Cooper into standard tidal formulae. Lastly, we show that advanced rheologies can greatly impact the heating of short-period exoplanets and exomoons, while the properties of tidal resilience could mean a greater number of tidally active worlds among all extrasolar systems.

  9. Blue compact dwarfs - Extreme dwarf irregular galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.

    1987-01-01

    Observational data on the most extreme members of the irregular dwarf (dI) galaxy class, the blue compact dwarfs (BCDs), are characterized, reviewing the results of recent investigations. The properties of the young stellar population, the ionized gas, the older star population, and the gas and dust of BCDs are contrasted with those of other dIs; BCD morphology is illustrated with sample images; and the value of BCDs (as nearby 'young' chemically unevolved galaxies) for studies of galaxy formation, galactic evolution, and starburst triggering mechanisms is indicated.

  10. First confirmed ultra-compact dwarf galaxy in the NGC 5044 group

    NASA Astrophysics Data System (ADS)

    Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.

    2017-03-01

    Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5 tidally stripped dwarf galaxies. Aims: NGC 5044 is the central massive elliptical galaxy of the NGC 5044 group. Its GC/UCD system is completely unexplored. Methods: In Gemini+GMOS deep images of several fields around NGC 5044 and in spectroscopic multi-object data of one of these fields, we detected an unresolved source with g' 20.6 mag, compatible with being an UCD. Its radial velocity was obtained with FXCOR and the penalized pixel-fitting (pPXF) code. To study its stellar population content, we measured the Lick/IDS indices and compared them with predictions of single stellar population models, and we used the full spectral fitting technique. Results: The spectroscopic analysis of the UCD revealed a radial velocity that agrees with the velocity of the elliptical galaxy NGC 5044. From the Lick/IDS indices, we have obtained a luminosity-weighted age and metallicity of 11.7+ 1.4-1.2 Gyr and [Z/H] = -0.79 ± 0.04 dex, respectively, as well as [α/ Fe] = 0.30 ± 0.06. From the full spectral fitting technique, we measured a lower age (8.52 Gyr) and a similar total metallicity ([Z/H] = -0.86 dex). Conclusions: Our results indicate that NGC 5044-UCD1 is most likely an extreme GC (MV -12.5 mag) belonging to the GC system of the elliptical galaxy NGC 5044.

  11. Dispersion in tidally averaged transport equation

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.

    1992-01-01

    A general governing inter-tidal transport equation for conservative solutes has been derived without invoking the weakly nonlinear approximation. The governing inter-tidal transport equation is a convection-dispersion equation in which the convective velocity is a mean Lagrangian residual current, and the inter-tidal dispersion coefficient is defined by a dispersion patch. When the weakly nonlinear condition is violated, the physical significance of the Stokes' drift, as used in tidal dynamics, becomes questionable. For nonlinear problems, analytical solutions for the mean Lagrangian residual current and for the inter-tidal dispersion coefficient do not exist, they must be determined numerically. A rectangular tidal inlet with a constriction is used in the first example. The solutions of the residual currents and the computed properties of the inter-tidal dispersion coefficient are used to illuminate the mechanisms of the inter-tidal transport processes. Then, the present formulation is tested in a geometrically complex tidal estuary – San Francisco Bay, California. The computed inter-tidal dispersion coefficients are in the range between 5×104 and 5×106 cm2/sec., which are consistent with the values reported in the literature

  12. Brown Dwarf Microlensing (Illustration)

    NASA Image and Video Library

    2016-11-10

    This illustration depicts a newly discovered brown dwarf, an object that weighs in somewhere between our solar system's most massive planet (Jupiter) and the least-massive-known star. This brown dwarf, dubbed OGLE-2015-BLG-1319, interests astronomers because it may fall in the "desert" of brown dwarfs. Scientists have found that, for stars roughly the mass of our sun, less than 1 percent have a brown dwarf orbiting within 3 AU (1 AU is the distance between Earth and the sun). This brown dwarf was discovered when it and its star passed between Earth and a much more distant star in our galaxy. This created a microlensing event, where the gravity of the system amplified the light of the background star over the course of several weeks. This microlensing was observed by ground-based telescopes looking for these uncommon events, and was the first to be seen by two space-based telescopes: NASA's Spitzer and Swift missions. http://photojournal.jpl.nasa.gov/catalog/PIA21076

  13. Dwarfs in ancient Egypt.

    PubMed

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities. Copyright (c) 2005 Wiley-Liss, Inc.

  14. Beyond the T Dwarfs: Theoretical Spectra, Colors, and Detectability of the Coolest Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Burrows, Adam; Sudarsky, David; Lunine, Jonathan I.

    2003-10-01

    We explore the spectral and atmospheric properties of brown dwarfs cooler than the latest known T dwarfs. Our focus is on the yet-to-be-discovered free-floating brown dwarfs in the Teff range from ~800 to ~130 K and with masses from 25 to 1 MJ. This study is in anticipation of the new characterization capabilities enabled by the launch of the Space Infrared Telescope Facility (SIRTF) and the eventual launch of the James Webb Space Telescope (JWST). In addition, it is in support of the continuing ground-based searches for the coolest substellar objects. We provide spectra from ~0.4 to 30 μm, highlight the evolution and mass dependence of the dominant H2O, CH4, and NH3 molecular bands, consider the formation and effects of water ice clouds, and compare our theoretical flux densities with the putative sensitivities of the instruments on board SIRTF and JWST. The latter can be used to determine the detection ranges from space of cool brown dwarfs. In the process, we determine the reversal point of the blueward trend in the near-infrared colors with decreasing Teff (a prominent feature of the hotter T dwarf family), the Teff's at which water and ammonia clouds appear, the strengths of gas-phase ammonia and methane bands, the masses and ages of the objects for which the neutral alkali metal lines (signatures of L and T dwarfs) are muted, and the increasing role as Teff decreases of the mid-infrared fluxes longward of 4 μm. These changes suggest physical reasons to expect the emergence of at least one new stellar class beyond the T dwarfs. Furthermore, studies in the mid-infrared could assume a new, perhaps transformational, importance in the understanding of the coolest brown dwarfs. Our spectral models populate, with cooler brown dwarfs having progressively more planet-like features, the theoretical gap between the known T dwarfs and the known giant planets. Such objects likely inhabit the Galaxy, but their numbers are as yet unknown.

  15. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.)

    NASA Technical Reports Server (NTRS)

    Bishop, D. L.; Bugbee, B. G.

    1998-01-01

    Efficient use of space and high yields are critical for long-term food production aboard the International Space Station. The selection of a full dwarf wheat (less than 30 cm tall) with high photosynthetic and yield potential is a necessary prerequisite for growing wheat in the controlled, volume-limited environments available aboard long-term spaceflight missions. This study evaluated the photosynthetic capacity and carbon partitioning of a full-dwarf wheat cultivar, Super Dwarf, which is routinely used in spaceflight studies aboard U.S. space shuttle and NASA/Mir missions and made comparisons with other dwarf and semi-dwarf wheat cultivars utilized in other ground-based studies in plant space biology. Photosynthetic capacity of the flag leaf in two dwarf (Super Dwarf, BB-19), and three semi-dwarf (Veery-10, Yecora Rojo, IBWSN 199) wheat cultivars (Triticum aestivum L.) was assessed by measuring: net maximum photosynthetic rate, RuBP carboxylation efficiency, chlorophyll concentration and flag leaf area. Dry mass partitioning of carbohydrates to the leaves, sheaths, stems and ear was also assessed. Plants were grown under controlled environmental conditions in three replicate studies: slightly enriched CO2 (370 micromoles mol-1), high photosynthetic photon flux (1000 micromoles m-2 s-1; 58 mol m-2 d-1) for a 16 h photoperiod, 22/15 degrees C day/night temperatures, ample nutrients and water provided by one-half strength Hoagland's nutrient solution (Hoagland and Arnon, 1950). Photosynthetic capacity of the flag leaf was determined at anthesis using net CO2 exchange rate versus internal CO2 concentration curves measured under saturating light (2000 micromoles m-2 s-1) and CO2 (1000 micromoles mol-1). Dwarf wheat cultivars had greater photosynthetic capacities than the taller semi-dwarfs, they averaged 20% higher maximum net photosynthetic rates compared to the taller semi-dwarfs, but these higher rates occurred only at anthesis, had slightly greater carboxylation

  16. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time

    USGS Publications Warehouse

    Uncles, R.J.; Stephens, J.A.; Smith, R.E.

    2002-01-01

    It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Paros Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing

  17. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time

    USGS Publications Warehouse

    Uncles, R.J.; Stephens, J.A.; Smith, R.E.

    2002-01-01

    It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Patos Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low ‘intrinsic’ SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer

  18. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    EPA Science Inventory

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  19. [Critical tidal level for Kandelia candel forestation in strong tidal range area].

    PubMed

    Qiu, Jian-biao; Huang, Li; Chen, Shao-bo; Chi, Wei; Ding, Wen-yong; Zhou, Chao-sheng; Zheng, Chun-fang; Wang, Wen-qing

    2010-05-01

    Taking Ximen island of Yueqing bay, the biggest tidal range area among the coasts of China, as study site, an investigation was made on the survival rate, growth characteristics, and attached barnacles of 1- and 3-year-old Kandelia candel seedlings at the elevations 1.96, 1.66, 1.35, and 1.03 m above the zero tidal level of Yellow Sea. Significant differences were observed in the survival rate and growth situation of the seedlings among the elevations. There were two barnacle species, Balanus albicostatus and Balanus amphitrite amphitrite, and B. albicostatus was the major species which attached K. candel most seriously at elevation 1.35 m. The critical tidal level for K. candel in the site was 1.66 m above the zero tidal level, i.e., at least 1.29 m higher than the local mean sea level, and the flooding time per tide cycle being less than 3.65 h. Barnacle, strong tide, and extreme weather event were the main reasons for the higher critical tidal level.

  20. Geomorphic Modeling of Macro-Tidal Embayment with Extensive Tidal Flats: Skagit Bay, Washington

    DTIC Science & Technology

    2011-09-30

    tidal flats: Skagit Bay , Washington Lyle Hibler Battelle-Pacific Northwest Division Marine Sciences Laboratory Sequim , WA 98382 phone: (360) 681...3616 fax: (360) 681-4559 email: lyle.hibler@pnnl.gov Adam Maxwell Battelle-Pacific Northwest Division Marine Sciences Laboratory Sequim , WA...Geomorphic modeling of macro-tidal embayment with extensive tidal flats: Skagit Bay , Washington 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  1. Empirical Tidal Dissipation in Exoplanet Hosts From Tidal Spin-up

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan; Bouma, L. G.; Winn, Joshua N.; Hartman, Joel D.

    2018-04-01

    Stars with hot Jupiters (HJs) tend to rotate faster than other stars of the same age and mass. This trend has been attributed to tidal interactions between the star and planet. A constraint on the dissipation parameter {Q}\\star {\\prime } follows from the assumption that tides have managed to spin up the star to the observed rate within the age of the system. This technique was applied previously to HATS-18 and WASP-19. Here, we analyze the sample of all 188 known HJs with an orbital period <3.5 days and a “cool” host star (T eff < 6100 K). We find evidence that the tidal dissipation parameter ({Q}\\star {\\prime }) increases sharply with forcing frequency, from 105 at 0.5 day‑1 to 107 at 2 day‑1. This helps to resolve a number of apparent discrepancies between studies of tidal dissipation in binary stars, HJs, and warm Jupiters. It may also allow for a HJ to damp the obliquity of its host star prior to being destroyed by tidal decay.

  2. Binary Star Orbits. V. The Nearby White Dwarf/Red Dwarf Pair 40 Eri BC

    NASA Astrophysics Data System (ADS)

    Mason, Brian D.; Hartkopf, William I.; Miles, Korie N.

    2017-11-01

    A new relative orbit solution with new dynamical masses is determined for the nearby white dwarf-red dwarf pair 40 Eri BC. The period is 230.09 ± 0.68 years. It is predicted to close slowly over the next half-century, getting as close as 1.″32 in early 2066. We determine masses of 0.575 ± 0.018 {{ M }}⊙ for the white dwarf and 0.2041 ± 0.0064 {{ M }}⊙ for the red dwarf companion. The inconsistency of the masses determined by gravitational redshift and dynamical techniques, due to a premature orbit calculation, no longer exists.

  3. Brown dwarfs as close companions to white dwarfs

    NASA Technical Reports Server (NTRS)

    Stringfellow, Guy S.; Bodenheimer, Peter; Black, David C.

    1990-01-01

    The influence of the radiation flux emitted by a white dwarf primary on the evolution of a closely orbiting brown dwarf (BD) companion is investigated. Full stellar evolutionary calculations are presented for both isolated and thermal bath cases, including effects of large variations in the atmospheric grain opacities. High grain opacities significantly increase the radii of the BDs, but the thermal bath does not. The major influence of the thermal bath is to increase substantially the surface temperature and luminosity of the BD at a given age. These results are compared with the observational properties of the possible BD companion of the white dwarf G29-38. Inclusion of both physical effects, high grain opacities and thermal bath, increases the mass range (0.034-0.063 solar masses) of viable models significantly, yet the final determination of whether the object is indeed a BD requires improvements in the observations of the system's properties.

  4. The ultracool-field dwarf luminosity-function and space density from the Canada-France Brown Dwarf Survey

    NASA Astrophysics Data System (ADS)

    Reylé, C.; Delorme, P.; Willott, C. J.; Albert, L.; Delfosse, X.; Forveille, T.; Artigau, E.; Malo, L.; Hill, G. J.; Doyon, R.

    2010-11-01

    Context. Thanks to recent and ongoing large scale surveys, hundreds of brown dwarfs have been discovered in the last decade. The Canada-France Brown Dwarf Survey is a wide-field survey for cool brown dwarfs conducted with the MegaCam camera on the Canada-France-Hawaii Telescope. Aims: Our objectives are to find ultracool brown dwarfs and to constrain the field brown-dwarf luminosity function and the mass function from a large and homogeneous sample of L and T dwarfs. Methods: We identify candidates in CFHT/MegaCam i' and z' images and follow them up with pointed near infrared (NIR) imaging on several telescopes. Halfway through our survey we found ~50 T dwarfs and ~170 L or ultra cool M dwarfs drawn from a larger sample of 1400 candidates with typical ultracool dwarfs i'-z' colours, found in 780 square degrees. Results: We have currently completed the NIR follow-up on a large part of the survey for all candidates from mid-L dwarfs down to the latest T dwarfs known with utracool dwarfs' colours. This allows us to draw on a complete and well defined sample of 102 ultracool dwarfs to investigate the luminosity function and space density of field dwarfs. Conclusions: We found the density of late L5 to T0 dwarfs to be 2.0+0.8-0.7 × 10-3 objects pc-3, the density of T0.5 to T5.5 dwarfs to be 1.4+0.3-0.2 × 10-3 objects pc-3, and the density of T6 to T8 dwarfs to be 5.3+3.1-2.2 × 10-3 objects pc-3. We found that these results agree better with a flat substellar mass function. Three latest dwarfs at the boundary between T and Y dwarfs give the high density 8.3+9.0-5.1 × 10-3 objects pc-3. Although the uncertainties are very large this suggests that many brown dwarfs should be found in this late spectral type range, as expected from the cooling of brown dwarfs, whatever their mass, down to very low temperature. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by

  5. Superradiance-tidal friction correspondence

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Kapadia, Shasvath J.; Kennefick, Daniel

    2014-01-01

    Since the work of Hartle in the 1970s, and the subsequent development of the membrane paradigm approach to black hole physics it has been widely accepted that superradiant scattering of gravitational waves bears strong similarities with the phenomenon of "tidal friction" (well known from Newtonian gravity) operating in binary systems of viscous material bodies. In this paper we revisit the superradiance-tidal friction analogy within the context of ultracompact relativistic bodies. We advocate that as long as these bodies have nonzero viscosity they should undergo tidal friction that can be construed as a kind of superradiant scattering from the point of view of the dynamics of an orbiting test body. In addition we consider the presence of anisotropic matter, which is required for at least some ultracompact bodies, if they are to sustain a radius very close to the gravitational radius. We find that the tidal friction/superradiance output is enhanced with increasing anisotropy and that strongly anisotropic systems exhibit an unconventional response to tidal and centrifugal forces. Finally, we make contact with the artificial system comprising a black hole with its horizon replaced by a mirror (sometimes used as a proxy for ultracompact material bodies) and discuss superradiance and tidal friction in relation to it.

  6. Slowly Spinning Southern M Dwarfs

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth; Mondrik, Nicholas; Irwin, Jonathan; Charbonneau, David

    2018-01-01

    M dwarf stars are the most common type of star in the galaxy, but their ages are challenging to determine due to their trillion-year lifetimes on the main sequence. Consequently, the evolution of rotation and magnetism at field ages is difficult to investigate observationally. M dwarfs in the Solar Neighborhood provide a unique opportunity to make progress in this area due to the availability of parallaxes and the accessibility of spectroscopy. We have used new rotation period measurements and our compilation of H-alpha emission for nearby M dwarfs to explore two questions: 1) What is the longest rotation period an M dwarf can have? And 2) Do M dwarfs undergo an era of rapid angular momentum evolution? Here, we focus on the view from the Southern hemisphere, presenting approximately 200 new rotation periods for fully convective M dwarfs. Amongst the highest-quality datasets, we identify rotation periods in three-quarters of all stars; of these, half have rotation periods longer than 70 days. The longest rotation period we detect is 148 days, which is for a 0.15 solar-mass star. The lack of M dwarfs with intermediate rotation periods that we previously identified persists, supporting our hypothesis that M dwarfs rapidly spin down from 10-day to 100-day periods.ERN is supported by the National Science Foundation Astronomy & Astrophysics Postdoctoral Fellowship. We gratefully acknowledge support from the David and Lucille Packard Foundation, the National Science Foundation, and the John Templeton Foundation.

  7. Throwing Icebergs at White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Where do the metals come from that pollute the atmospheres of many white dwarfs? Close-in asteroids may not be the only culprits! A new study shows that distant planet-size and icy objects could share some of the blame.Pollution ProblemsArtists impression of rocky debris lying close around a white dwarf star. [NASA/ESA/STScI/G. Bacon]When a low- to intermediate-mass star reaches the end of its life, its outer layers are blown off, leaving behind its compact core. The strong gravity of this white dwarf causes elements heavier than hydrogen and helium to rapidly sink to its center in a process known as sedimentation, leaving an atmosphere that should be free of metallic elements.Therefore its perhaps surprising that roughly 2550% of all white dwarfs are observed to have atmospheric pollution by heavy elements. The short timescales for sedimentation suggest that these elements were added to the white dwarf recently but how did they get there?Bringing Ice InwardIn the generally accepted theory, pre-existing rocky bodies or an orbiting asteroid belt survive the stars evolution, later accreting onto the final white dwarf. But this scenario doesnt explain a few observations that suggest white dwarfs might be accreting larger planetary-size bodies and bodies with ices and volatile materials.Dynamical evolution of a Neptune-like planet (a) and a Kuiper belt analog object (b) in wide binary star systems. Both have large eccentricity excitations during the white dwarf phase. [Stephan et al. 2017]How might you get large or icy objects which would begin on very wide orbits close enough to a white dwarf to become disrupted and accrete? Led by Alexander Stephan, a team of scientists at UCLA now suggest that the key is for the white dwarf to be in a binary system.Influence of a CompanionIn the authors model, the white-dwarf progenitor is orbited by both a distant stellar companion (a common occurrence) and a number of large potential polluters, which could have masses between that

  8. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    USGS Publications Warehouse

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  9. The impact of Faraday effects on polarized black hole images of Sagittarius A*.

    NASA Astrophysics Data System (ADS)

    Jiménez-Rosales, Alejandra; Dexter, Jason

    2018-05-01

    We study model images and polarization maps of Sagittarius A* at 230 GHz. We post-process GRMHD simulations and perform a fully relativistic radiative transfer calculation of the emitted synchrotron radiation to obtain polarized images for a range of mass accretion rates and electron temperatures. At low accretion rates, the polarization map traces the underlying toroidal magnetic field geometry. At high accretion rates, we find that Faraday rotation internal to the emission region can depolarize and scramble the map. We measure the net linear polarization fraction and find that high accretion rate "jet-disc" models are heavily depolarized and are therefore disfavoured. We show how Event Horizon Telescope measurements of the polarized "correlation length" over the image provide a model-independent upper limit on the strength of these Faraday effects, and constrain plasma properties like the electron temperature and magnetic field strength.

  10. Interior structures and tidal heating in the TRAPPIST-1 planets

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Dobos, Vera; Kiss, László L.

    2018-05-01

    Context. With seven planets, the TRAPPIST-1 system has among the largest number of exoplanets discovered in a single system so far. The system is of astrobiological interest, because three of its planets orbit in the habitable zone of the ultracool M dwarf. Aims: We aim to determine interior structures for each planet and estimate the temperatures of their rock mantles due to a balance between tidal heating and convective heat transport to assess their habitability. We also aim to determine the precision in mass and radius necessary to determine the planets' compositions. Methods: Assuming the planets are composed of uniform-density noncompressible materials (iron, rock, H2O), we determine possible compositional models and interior structures for each planet. We also construct a tidal heat generation model using a single uniform viscosity and rigidity based on each planet's composition. Results: The compositions for planets b, c, d, and e remain uncertain given the error bars on mass and radius. With the exception of TRAPPIST-1c, all have densities low enough to indicate the presence of significant H2O. Planets b and c experience enough heating from planetary tides to maintain magma oceans in their rock mantles; planet c may have surface eruptions of silicate magma, potentially detectable with next-generation instrumentation. Tidal heat fluxes on planets d, e, and f are twenty times higher than Earth's mean heat flow. Conclusions: Planets d and e are the most likely to be habitable. Planet d avoids the runaway greenhouse state if its albedo is ≳0.3. Determining the planet's masses within 0.1-0.5 Earth masses would confirm or rule out the presence of H2O and/or iron. Understanding the geodynamics of ice-rich planets f, g, and h requires more sophisticated modeling that can self-consistently balance heat production and transport in both rock and ice layers.

  11. V1006 Cygni: Dwarf nova showing three types of outbursts and simulating some features of the WZ Sge-type behavior

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Pavlenko, Elena P.; Shchurova, Alisa V.; Sosnovskij, Aleksei A.; Babina, Julia V.; Baklanov, Aleksei V.; Shugarov, Sergey Yu.; Littlefield, Colin; Dubovsky, Pavol A.; Kudzej, Igor; Pickard, Roger D.; Isogai, Keisuke; Kimura, Mariko; de Miguel, Enrique; Tordai, Tamás; Chochol, Drahomir; Maeda, Yutaka; Cook, Lewis M.; Miller, Ian; Itoh, Hiroshi

    2016-04-01

    We observed the 2015 July-August long outburst of V1006 Cyg and established this object to be an SU UMa-type dwarf nova in the period gap. Our observations have confirmed that V1006 Cyg is the second established object showing three types of outbursts (normal, long normal, and superoutbursts) after TU Men. We have succeeded in recording the growing stage of superhumps (stage A superhumps) and obtained a mass ratio of 0.26-0.33, which is close to the stability limit of tidal instability. This identification of stage A superhumps demonstrates that superhumps indeed slowly grow in systems near the stability limit, the idea first introduced by Kato et al. (2014, PASJ, 66, 90). The superoutburst showed a temporary dip followed by a rebrightening. The moment of the dip coincided with the stage transition of superhumps, and we suggest that stage C superhumps are related to the start of the cooling wave in the accretion disk. We interpret that the tidal instability was not strong enough to maintain the disk in the hot state when the cooling wave started. We propose that the properties commonly seen in the extreme ends of mass ratios (WZ Sge-type objects and long-period systems) can be understood as a result of weak tidal effect.

  12. The brown dwarf kinematics project

    NASA Astrophysics Data System (ADS)

    Faherty, Jackie K.

    2010-10-01

    Brown dwarfs are a recent addition to the plethora of objects studied in Astronomy. With theoretical masses between 13 and 75 MJupiter , they lack sustained stable Hydrogen burning so they never join the stellar main sequence. They have physical properties similar to both planets and low-mass stars so studies of their population inform on both. The distances and kinematics of brown dwarfs provide key statistical constraints on their ages, moving group membership, absolute brightnesses, evolutionary trends, and multiplicity. Yet, until my thesis, fundamental measurements of parallax and proper motion were made for only a relatively small fraction of the known population. To address this deficiency, I initiated the Brown Dwarf Kinematics (BDKP). Over the past four years I have re-imaged the majority of spectroscopically confirmed field brown dwarfs (or ultracool dwarfs---UCDs) and created the largest proper motion catalog for ultracool dwarfs to date. Using new astrometric information I examined population characteristics such as ages calculated from velocity dispersions and correlations between kinematics and colors. Using proper motions, I identified several new wide co-moving companions and investigated binding energy (and hence formation) limitations as well as the frequency of hierarchical companions. Concurrently over the past four years I have been conducting a parallax survey of 84 UCDs including those showing spectral signatures of youth, metal-poor brown dwarfs, and those within 20 pc of the Sun. Using absolute magnitude relations in J,H, and K, I identified overluminous binary candidates and investigated known flux-reversal binaries. Using current evolutionary models, I compared the MK vs J-K color magnitude diagram to model predictions and found that the low-surface gravity dwarfs are significantly red-ward and underluminous of predictions and a handful of late-type T dwarfs may require thicker clouds to account for their scatter.

  13. Importance of fingering convection for accreting white dwarfs in the framework of full evolutionary calculations: the case of the hydrogen-rich white dwarfs GD 133 and G 29-38

    NASA Astrophysics Data System (ADS)

    Wachlin, F. C.; Vauclair, G.; Vauclair, S.; Althaus, L. G.

    2017-05-01

    Context. A large fraction of white dwarfs show photospheric chemical composition that is polluted by heavy elements accreted from a debris disk. Such debris disks result from the tidal disruption of rocky planetesimals that have survived to whole stellar evolution from the main sequence to the final white dwarf stage. Determining the accretion rate of this material is an important step toward estimating the mass of the planetesimals and understanding the ultimate fate of the planetary systems. Aims: The accretion of heavy material with a mean molecular weight, μ, higher than the mean molecular weight of the white dwarf outer layers, induces a double-diffusive instability producing the fingering convection and an extra-mixing. As a result, the accreted material is diluted deep into the star. We explore the effect of this extra-mixing on the abundance evolution of Mg, O, Ca, Fe and Si in the cases of the two well-studied polluted DAZ white dwarfs: GD 133 and G 29-38. Methods: We performed numerical simulations of the accretion of material that has a chemical composition similar to the bulk Earth composition. We assumed a continuous and uniform accretion and considered a range of accretion rates from 104 g/s to 1010 g/s. Two cases are simulated, one using the standard mixing length theory (MLT) and one including the double-diffusive instability (fingering convection). Results: The double-diffusive instability develops on a very short timescale. The surface abundance rapidly reaches a stationary value while the depth of the zone mixed by the fingering convection increases. In the case of GD 133, the accretion rate needed to reproduce the observed abundances exceeds by more than two orders of magnitude the rate estimated by neglecting the fingering convection. In the case of G 29-38 the needed accretion rate is increased by approximately 1.7 dex. Conclusions: Our numerical simulations of the accretion of heavy elements on the hydrogen-rich white dwarf GD 133 and G 29

  14. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral Rose

    2016-06-01

    The high dark matter content and the shallow potential wells of low mass galaxies (10^3 Msun < Mstar < 10^9.5 Msun) make them excellent testbeds for differing theories of galaxy formation. Additionally, the recent up-tick in the number and detail of Local Group dwarf galaxy observations provides a rich dataset for comparison to simulations that attempt to answer important questions in near field cosmology: why are there so few observed dwarfs compared to the number predicted by simulations? What shuts down star formation in ultra-faint galaxies? Why do dwarfs have inverted age gradients and what does it take to convert a dwarf irregular (dIrrs) into a dwarf spheroidal (dSph) galaxy?We to attempt to answer these questions by running ultra-high resolution cosmological FIRE simulations of isolated dwarf galaxies. We predict that many ultra-faint dwarfs should exist as satellites of more massive isolated Local Group dwarfs. The ultra-faints (Mstar < 10^4 Msun) formed in these simulations have uniformly ancient stellar populations (> 10 Gyr), having had their star formation shut down by reionization. Additionally, we show that the kinematics and ellipticities of isolated simulated dwarf centrals are consistent with observed dSphs satellites without the need for harassment from a massive host. We further show that most (but not all) observed *isolated* dIrrs in the Local Volume also have dispersion-supported stellar populations, contradicting the previous view that these objects are rotating. Finally, we investigate the stellar age gradients in dwarfs — showing that early mergers and strong feedback can create an inverted gradient, with the older stars occupying larger galactocentric radii.These results offer an interesting direction in testing models that attempt to solve dark matter problems via explosive feedback episodes. Can the same models that create large cores in simulated dwarfs preserve the mild stellar rotation that is seen in a minority of isolated d

  15. Widespread Presence of Glycolaldehyde and Ethylene Glycol around Sagittarius B2

    NASA Astrophysics Data System (ADS)

    Li, Juan; Shen, Zhiqiang; Wang, Junzhi; Chen, Xi; Li, Di; Wu, Yajun; Dong, Jian; Zhao, Rongbing; Gou, Wei; Wang, Jinqing; Li, Shanghuo; Wang, Bingru; Zheng, Xingwu

    2017-11-01

    We report the detection of widespread CH2OHCHO and HOCH2CH2OH emission in Galactic center giant molecular cloud Sagittarius B2 using the Shanghai Tianma 65 m Radio Telescope. Our observations show for the first time that the spatial distribution of these two important prebiotic molecules extends over 15 arcmin, corresponding to a linear size of approximately 36 pc. These two molecules are not just distributed in or near the hot cores. The abundance of these two molecules seems to decrease from the cold outer region to the central region associated with star formation activity. Results presented here suggest that these two molecules are likely to form through a low temperature process. Recent theoretical and experimental studies demonstrated that prebiotic molecules can be efficiently formed in icy grain mantles through several pathways. However, these complex ice features cannot be directly observed, and most constraints on the ice compositions come from millimeter observations of desorbed ice chemistry products. These results, combined with laboratory studies, strongly support the existence of abundant prebiotic molecules in ices.

  16. Solidification of carbon-oxygen white dwarfs

    NASA Technical Reports Server (NTRS)

    Schatzman, E.

    1982-01-01

    The internal structure of white dwarfs is discussed. Highly correlated plasmas are reviewed. Implications for phase separation in the core of cooling white dwarfs are considered. The consequences for evolution of white dwarfs are addressed.

  17. New Ultra-Compact Dwarf Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and

  18. RZ Leonis Minoris bridging between ER Ursae Majoris-type dwarf nova and nova-like system

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Ishioka, Ryoko; Isogai, Keisuke; Kimura, Mariko; Imada, Akira; Miller, Ian; Masumoto, Kazunari; Nishino, Hirochika; Kojiguchi, Naoto; Kawabata, Miho; Sakai, Daisuke; Sugiura, Yuki; Furukawa, Hisami; Yamamura, Kenta; Kobayashi, Hiroshi; Matsumoto, Katsura; Wang, Shiang-Yu; Chou, Yi; Ngeow, Chow-Choong; Chen, Wen-Ping; Panwar, Neelam; Lin, Chi-Sheng; Hsiao, Hsiang-Yao; Guo, Jhen-Kuei; Lin, Chien-Cheng; Omarov, Chingis; Kusakin, Anatoly; Krugov, Maxim; Starkey, Donn R.; Pavlenko, Elena P.; Antonyuk, Kirill A.; Sosnjvskij, Aleksei A.; Antonyuk, Oksana I.; Pit, Nikolai V.; Baklanov, Alex V.; Babina, Julia V.; Itoh, Hiroshi; Padovan, Stefano; Akazawa, Hidehiko; Kafka, Stella; de Miguel, Enrique; Pickard, Roger D.; Kiyota, Seiichiro; Shugarov, Sergey Yu.; Chochol, Drahomir; Krushevska, Viktoriia; Sekeráš, Matej; Pikalova, Olga; Sabo, Richard; Dubovsky, Pavol A.; Kudzej, Igor; Ulowetz, Joseph; Dvorak, Shawn; Stone, Geoff; Tordai, Tamás; Dubois, Franky; Logie, Ludwig; Rau, Steve; Vanaverbeke, Siegfried; Vanmunster, Tonny; Oksanen, Arto; Maeda, Yutaka; Kasai, Kiyoshi; Katysheva, Natalia; Morelle, Etienne; Neustroev, Vitaly V.; Sjoberg, George

    2016-12-01

    We observed RZ LMi, which is renowned for its extremely short (˜19 d) supercycle and is a member of a small, unusual class of cataclysmic variables called ER UMa-type dwarf novae, in 2013 and 2016. In 2016, the supercycles of this object substantially lengthened in comparison to the previous measurements to 35, 32, and 60 d for three consecutive superoutbursts. We consider that the object virtually experienced a transition to the nova-like state (permanent superhumper). This observed behavior reproduced the prediction of the thermal-tidal instability model extremely well. We detected a precursor in the 2016 superoutburst and detected growing (stage A) superhumps with a mean period of 0.0602(1) d in 2016 and in 2013. Combined with the period of superhumps immediately after the superoutburst, the mass ratio is not as small as in WZ Sge-type dwarf novae, having orbital periods similar to RZ LMi. By using least absolute shrinkage and selection operator (Lasso) two-dimensional power spectra, we detected possible negative superhumps with a period of 0.05710(1) d. We estimated an orbital period of 0.05792 d, which suggests a mass ratio of 0.105(5). This relatively large mass ratio is even above that of ordinary SU UMa-type dwarf novae, and it is also possible that the exceptionally high mass-transfer rate in RZ LMi may be a result of a stripped secondary with an evolved core in a system evolving toward an AM CVn-type object.

  19. Tidal features of classical Milky Way satellites in a Λ cold dark matter universe

    NASA Astrophysics Data System (ADS)

    Wang, M.-Y.; Fattahi, Azadeh; Cooper, Andrew P.; Sawala, Till; Strigari, Louis E.; Frenk, Carlos S.; Navarro, Julio F.; Oman, Kyle; Schaller, Matthieu

    2017-07-01

    We use the APOSTLE (A Project Of Simulating The Local Environment) cosmological hydrodynamic simulations to examine the effects of tidal stripping on cold dark matter subhaloes that host three of the most luminous Milky Way dwarf satellite galaxies: Fornax, Sculptor and Leo I. We identify simulated satellites that match the observed spatial and kinematic distributions of stars in these galaxies, and track their evolution after infall. We find ˜30 per cent of subhaloes hosting satellites with present-day stellar mass 106-108 M⊙ experience >20 per cent stellar mass-loss after infall. Fornax analogues have earlier infall times compared to Sculptor and Leo I analogues. Star formation in Fornax analogues continues for ˜3-6 Gyr after infall, whereas Sculptor and Leo I analogues stop forming stars <2-3 Gyr after infall. Fornax analogues typically show more significant stellar mass-loss and exhibit stellar tidal tails, whereas Sculptor and Leo I analogues, which are more deeply embedded in their host dark matter haloes at infall, do not show substantial mass-loss due to tides. When additionally comparing the orbital motion of the host subaloes to the measured proper motion of Fornax, we find the matching more difficult; host subhaloes tend to have pericentres smaller than that measured for Fornax itself. From the kinematic and orbital data, we estimate that Fornax has lost 10-20 per cent of its infall stellar mass. Our best estimate for the surface brightness of a stellar tidal stream associated with Fornax is Σ ˜ 32.6 mag arcsec-2, which may be detectable with deep imaging surveys such as DES and LSST.

  20. On the resonant detonation of sub-Chandrasekhar mass white dwarfs during binary inspiral

    NASA Astrophysics Data System (ADS)

    McKernan, B.; Ford, K. E. S.

    2016-12-01

    White dwarfs (WDs) are believed to detonate via explosive Carbon-fusion in a Type Ia supernova (SN) when their temperature and/or density reach the point where Carbon is ignited in a runaway reaction. Observations of the Type Ia SN rate imply that all WD binaries that merge through the emission of gravitational radiation within a Hubble time should result in SNe, regardless of total mass. Here we investigate the conditions under which a single WD in a binary system might extract energy from its orbit, depositing enough energy into a resonant mode such that it detonates before merger. We show that, ignoring non-linear effects in a WD binary in tidal lock at small binary separations, the sustained tidal forcing of a low-order quadrupolar g mode or a harmonic of a low-order quadrupolar p mode could, in principle, drive the average temperature of Carbon nuclei in the mode over the runaway fusion threshold. If growing mode energy is thermalized at a core/atmosphere boundary, rapid Helium burning and inwards-travelling p-waves may result in core detonation. Thermalization at a boundary in the core can also result in detonation. If energy can be efficiently transferred from the orbit to modes as the WD binary passes through resonances, the WD merger time-scale will be shortened by Myr-Gyr compared to expected time-scales from gravitational wave (GW)-emission alone and GW detectors will observe deviations from predicted chirp profiles in resolved WD binaries. Future work in this area should focus on whether tidal locking in WD binaries is naturally driven towards low-order mode frequencies.

  1. Phase lag control of tidally reversing mega-ripple geometry and bed stress in tidal inlets

    NASA Astrophysics Data System (ADS)

    Traykovski, P.

    2016-02-01

    Recent observations in the Columbia River Mouth, New River Inlet, and Wasque Shoals have shown that tidally reversing mega-ripples are an ubiquitous bedform morphology in energetic tidal inlets. As the name implies, these bedforms reverse asymmetry and migration direction in each half tidal cycle. With wavelengths of 2 to 5 m and heights of 0.2 to 0.5 m, these bedforms are larger than current formed ripples, but smaller than dunes. Unlike dunes which have a depth dependent geometry, observations indicate the tidally reversing mega-ripples geometry is related to the time dependent tidal flow and independent of depth. Previous empirical relations for predicting the geometry of ripples or dunes do not successfully predict the geometry of these features. A time dependent geometric model was developed that accounts for the reversal of migration and asymmetry to successfully predict bedform geometry. The model requires sufficient sediment transport in each half tidal cycle to reverse the asymmetry before the bedforms begin to grow. Both the observations and model indicate that the complete reversal of asymmetry and development of a steep lee face occurs near or after maximum flow in each half tidal cycle. This phase lag in bedform response to tidal forcing also has important implications for bed stress in tidal inlets. Observations of frictional drag in the Columbia River mouth based on a tidal momentum balance of surface slope over 10 km regressed against quadratic near bed velocity show drag coefficients that fall off as CD U-1.4. Reynolds stress measurements performed using the dual ADV differencing technique show similar relations. The Reynolds stress measurements also show a dramatic asymmetry between accelerating flows and decelerating flows with a factor of 5 increase during deceleration. Pulse coherent Doppler profiles of near bed turbulence indicate that the turbulence is dominated by energetic fluctuations in separation zones downstream of steep lee faces. The

  2. Asteroseismology of White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    Hansen, Carl J.

    1997-01-01

    The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.

  3. ON THE DYNAMICS AND TIDAL DISSIPATION RATE OF THE WHITE DWARF IN 4U 1820-30

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Snezana; Murray, Norman, E-mail: sprodan@cita.utoronto.ca

    It has been suggested that the 170 day period in the light curve of the low-mass X-ray binary 4U 1820-30 arises from the presence of a third body with a large inclination to the binary orbit. We show that this long-period motion arises if the system is librating around the stable fixed point in a Kozai resonance. We demonstrate that mass transfer drives the system toward this fixed point and calculate, both analytically and via numerical integrations, that the period of libration is of order 170 days when the mutual inclination is near the Kozai critical value. The non-zero eccentricitymore » of the binary, combined with tidal dissipation, implies that the rate of change of the binary period would be slower than, or even of opposite sign to, that implied by standard mass transfer models. If the 170 day period results from libration, then, contrary to appearances, the orbital period of the inner binary is increasing with time; in that case, (e/0.009){sup 2} Q/k{sub 2} {approx}> 2.5 Multiplication-Sign 10{sup 9}, where k{sub 2} Almost-Equal-To 0.01 is the tidal Love number and e = 0.009 is the fiducial eccentricity of the inner binary. It appears unlikely that the observed negative period derivative results from the smaller than expected (but positive) value of P-dot combined with the previously suggested acceleration of the system in the gravitational field of the host globular cluster NGC 6624. The discrepancy between the observed and the expected period derivative requires further investigation.« less

  4. Storm surge and tidal range energy

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew; Angeloudis, Athanasios; Robins, Peter; Evans, Paul; Neill, Simon

    2017-04-01

    The need to reduce carbon-based energy sources whilst increasing renewable energy forms has led to concerns of intermittency within a national electricity supply strategy. The regular rise and fall of the tide makes prediction almost entirely deterministic compared to other stochastic renewable energy forms; therefore, tidal range energy is often stated as a predictable and firm renewable energy source. Storm surge is the term used for the non-astronomical forcing of tidal elevation, and is synonymous with coastal flooding because positive storm surges can elevate water-levels above the height of coastal flood defences. We hypothesis storm surges will affect the reliability of the tidal range energy resource; with negative surge events reducing the tidal range, and conversely, positive surge events increasing the available resource. Moreover, tide-surge interaction, which results in positive storm surges more likely to occur on a flooding tide, will reduce the annual tidal range energy resource estimate. Water-level data (2000-2012) at nine UK tide gauges, where the mean tidal amplitude is above 2.5m and thus suitable for tidal-range energy development (e.g. Bristol Channel), were used to predict tidal range power with a 0D modelling approach. Storm surge affected the annual resource estimate by between -5% to +3%, due to inter-annual variability. Instantaneous power output were significantly affected (Normalised Root Mean Squared Error: 3%-8%, Scatter Index: 15%-41%) with spatial variability and variability due to operational strategy. We therefore find a storm surge affects the theoretical reliability of tidal range power, such that a prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range energy; however, annual resource estimation from astronomical tides alone appears sufficient for resource estimation. Future work should investigate water-level uncertainties on the reliability and

  5. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in

  6. Evolution models of helium white dwarf-main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2018-02-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.

  7. Changing tidal hydrodynamics during different stages of eco-geomorphological development of a tidal marsh: A numerical modeling study

    NASA Astrophysics Data System (ADS)

    Stark, J.; Meire, P.; Temmerman, S.

    2017-03-01

    The eco-geomorphological development of tidal marshes, from initially low-elevated bare tidal flats up to a high-elevated marsh and its typical network of channels and creeks, induces long-term changes in tidal hydrodynamics in a marsh, which will have feedback effects on the marsh development. We use a two-dimensional hydrodynamic model of the Saeftinghe marsh (Netherlands) to study tidal hydrodynamics, and tidal asymmetry in particular, for model scenarios with different input bathymetries and vegetation coverages that represent different stages of eco-geomorphological marsh development, from a low elevation stage with low vegetation coverage to a high and fully vegetated marsh platform. Tidal asymmetry is quantified along a 4 km marsh channel by (1) the difference in peak flood and peak ebb velocities, (2) the ratio between duration of the rising tide and the falling tide and (3) the time-integrated dimensionless bed shear stress during flood and ebb. Although spatial variations in tidal asymmetry are large and the different indicators for tidal asymmetry do not always respond similarly to eco-geomorphological changes, some general trends can be obtained. Flood-dominance prevails during the initial bare stage of a low-lying tidal flat. Vegetation establishment and platform expansion lead to marsh-scale flow concentration to the bare channels, causing an increase in tidal prism in the channels along with a less flood-dominant asymmetry of the horizontal tide. The decrease in flood-dominance continues as the platform grows vertically and the sediment-demand of the platform decreases. However, when the platform elevation gets sufficiently high in the tidal frame and part of the spring-neap cycle is confined to the channels, the discharge in the channels decreases and tidal asymmetry becomes more flood-dominant again, indicating an infilling of the marsh channels. Furthermore, model results suggest that hydro-morphodynamic feedbacks based on tidal prism to channel

  8. A 3.5-million Solar Masses Black Hole in the Centre of the Ultracompact Dwarf Galaxy Fornax UCD3

    NASA Astrophysics Data System (ADS)

    Afanasiev, Anton V.; Chilingarian, Igor V.; Mieske, Steffen; Voggel, Karina T.; Picotti, Arianna; Hilker, Michael; Seth, Anil; Neumayer, Nadine; Frank, Matthias; Romanowsky, Aaron J.; Hau, George; Baumgardt, Holger; Ahn, Christopher; Strader, Jay; den Brok, Mark; McDermid, Richard; Spitler, Lee; Brodie, Jean; Walsh, Jonelle L.

    2018-04-01

    The origin of ultracompact dwarfs (UCDs), a class of compact stellar systems discovered two decades ago, still remains a matter of debate. Recent discoveries of central supermassive black holes in UCDs likely inherited from their massive progenitor galaxies provide support for the tidal stripping hypothesis. At the same time, on statistical grounds, some massive UCDs might be representatives of the high luminosity tail of the globular cluster luminosity function. Here we present a detection of a 3.3^{+1.4}_{-1.2}× 10^6 M_{⊙} black hole (1σ uncertainty) in the centre of the UCD3 galaxy in the Fornax cluster, that corresponds to 4 per cent of its stellar mass. We performed isotropic Jeans dynamical modelling of UCD3 using internal kinematics derived from adaptive optics assisted observations with the SINFONI spectrograph and seeing limited data collected with the FLAMES spectrograph at the ESO VLT. We rule out the zero black hole mass at the 3σ confidence level when adopting a mass-to-light ratio inferred from stellar populations. This is the fourth supermassive black hole found in a UCD and the first one in the Fornax cluster. Similarly to other known UCDs that harbour black holes, UCD3 hosts metal rich stars enhanced in α-elements that supports the tidal stripping of a massive progenitor as its likely formation scenario. We estimate that up to 80 per cent of luminous UCDs in galaxy clusters host central black holes. This fraction should be lower for UCDs in groups, because their progenitors are more likely to be dwarf galaxies, which do not tend to host central black holes.

  9. A 3.5 million Solar masses black hole in the centre of the ultracompact dwarf galaxy fornax UCD3

    NASA Astrophysics Data System (ADS)

    Afanasiev, Anton V.; Chilingarian, Igor V.; Mieske, Steffen; Voggel, Karina T.; Picotti, Arianna; Hilker, Michael; Seth, Anil; Neumayer, Nadine; Frank, Matthias; Romanowsky, Aaron J.; Hau, George; Baumgardt, Holger; Ahn, Christopher; Strader, Jay; den Brok, Mark; McDermid, Richard; Spitler, Lee; Brodie, Jean; Walsh, Jonelle L.

    2018-07-01

    The origin of ultracompact dwarfs (UCDs), a class of compact stellar systems discovered two decades ago, still remains a matter of debate. Recent discoveries of central supermassive black holes in UCDs likely inherited from their massive progenitor galaxies provide support for the tidal stripping hypothesis. At the same time, on statistical grounds, some massive UCDs might be representatives of the high luminosity tail of the globular cluster luminosity function. Here we present a detection of a 3.3^{+1.4}_{-1.2}× 10^6 M_{⊙} black hole (1σ uncertainty) in the centre of the UCD3 galaxy in the Fornax cluster, which corresponds to 4 per cent of its stellar mass. We performed isotropic Jeans dynamical modelling of UCD3 using internal kinematics derived from adaptive optics-assisted observations with the SINFONI spectrograph and seeing limited data collected with the FLAMES spectrograph at the ESO VLT. We rule out the zero black hole mass at the 3σ confidence level when adopting a mass-to-light ratio inferred from stellar populations. This is the fourth supermassive black hole found in a UCD and the first one in the Fornax cluster. Similarly to other known UCDs that harbour black holes, UCD3 hosts metal rich stars enhanced in α-elements that support the tidal stripping of a massive progenitor as its likely formation scenario. We estimate that up to 80 per cent of luminous UCDs in galaxy clusters host central black holes. This fraction should be lower for UCDs in groups, because their progenitors are more likely to be dwarf galaxies, which do not usually host black holes massive enough to be detected.

  10. X-ray flaring from Sagittarius A*: exploring the Milky Way black hole through its brightest flares

    NASA Astrophysics Data System (ADS)

    Nynka, Melania; Haggard, Daryl

    2017-08-01

    Sagittarius A* is the supermassive black hole at the center of our own Milky Way galaxy. Ambitious monitoring campaigns have yielded rich multiwavelength, time-resolved data, which have the power to probe the physical processes that underlie Sgr A*'s quiescent and flare emission. In 2013 and 2014 the Chandra X-ray Observatory captured two extremely luminous flares from Sgr A*, the two brightest ever detected in X-ray. I will describe the spectral and temporal properties of these flares, how they compare to previous analysis, and the possible physical processes driving the Sgr A* variability. I will also discuss the power spectral densities of the flares which may contain information about the black hole's ISCO and spin.

  11. Suites of dwarfs around Nearby giant galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I., E-mail: ikar@sao.ru, E-mail: kei@sao.ru, E-mail: dim@sao.ru

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ{sub 1}, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ{sub 1}. Allmore » suite members with positive Θ{sub 1} are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n {sup –2}. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M{sub B} = –18{sup m}. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting

  12. Tidal interactions of inspiraling compact binaries

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars; Cutler, Curt

    1992-01-01

    We discuss the tidal interaction in neutron star-neutron star and neutron star-black hole binaries and argue that they will not be tidally locked during the gravitational inspiral. More specifically, we show that, for inspiraling neutron stars of mass greater than about 1.2 solar mass, the shortest possible tidal synchronization time exceeds the gravitational decay time, so that the neutron star cannot be tidally locked prior to tidal disruption, regardless of its internal viscosity. For smaller mass neutron stars, an implausibly large kinematic viscosity - nearly the speed of light times the stellar radius - is required for tidal locking. We also argue that the mass transfer which occurs when the neutron star reaches the tidal radius will be unstable in neutron star-black hole binaries, and the instability will destroy the neutron star in a few orbital periods. The implications of our work for the detection of these sources by LIGO and other gravitational wave observatories and for the gamma-ray burst scenarios of Paczynski (1986, 1991) are discussed.

  13. On the tidal prism-channel area relations

    NASA Astrophysics Data System (ADS)

    D'Alpaos, Andrea; Lanzoni, Stefano; Marani, Marco; Rinaldo, Andrea

    2010-03-01

    We verify the broad applicability of tidal prism cross-sectional area relationships, originally proposed to relate the total water volume entering a lagoon during a characteristic tidal cycle (the tidal prism) to the size of its inlet, to arbitrary sheltered cross sections within a tidal network. We suggest, with reasonable approximation defining a statistical tendency rather than a pointwise equivalence, that the regime of tidal channels may be anywhere related to local landscape-forming prisms embedded in a characteristic spring tide oscillation. The importance of the proposed extension stems from its potential for quantitative predictions of the long-term morphological evolution of whole tidal landforms, in response to forcings affecting tidal prisms. This is the case, in particular, for alterations of relative mean sea levels possibly driven by climate change. Various 1-D and 2-D morphodynamic and hydrodynamic models are employed to evaluate peak flow rates, bottom shear stresses, and the ensuing local tidal prisms. One-dimensional morphodynamic models describing both the longitudinal and cross-sectional evolution of tidal channels are used to verify the validity of the relationship for sheltered sections. Relevant hydrodynamic features determined through accurate 2-D numerical models are compared with those obtained through time-invariant equivalents, defining a mean watershed by an energy landscape from averaged free surface gradients. Empirical evidence gathered within the lagoon of Venice (Italy) supports the proposed extension. We conclude that the geomorphic law relating tidal prisms to channel cross-sectional areas anywhere within a tidal landscape is a valuable tool for studies on long-term tidal geomorphology.

  14. Gravitoelectromagnetic analogy based on tidal tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, L. Filipe O.; Herdeiro, Carlos A. R.

    2008-07-15

    We propose a new approach to a physical analogy between general relativity and electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, which makes transparent both the similarities and key differences between the two interactions. The following realizations of the analogy are given. The first one matches linearized gravitational tidal tensors to exact electromagnetic tidal tensors in Minkowski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultrastationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. In the third wemore » show that our approach leads to a two-step exact derivation of Papapetrou's equation describing the force exerted on a spinning test particle. Analogous scalar invariants built from tidal tensors of both theories are also discussed.« less

  15. Cooling Models for Old White Dwarfs

    NASA Astrophysics Data System (ADS)

    Hansen, Brad M. S.

    1999-08-01

    We present new white dwarf cooling models that incorporate an accurate outer boundary condition based on new opacity and detailed radiative transfer calculations. We find that helium-atmosphere dwarfs cool considerably faster than has previously been claimed, while old hydrogen-atmosphere dwarfs will deviate significantly from blackbody appearance. We use our new models to derive age limits for the Galactic disk. We find that the Liebert, Dahn, & Monet luminosity function yields an age of only 6 Gyr if it is complete to stated limits. However, age estimates of individual dwarfs and the luminosity function of Oswalt et al. are both consistent with disk ages as large as ~11 Gyr. We have also used our models to place constraints on white dwarf dark matter in the Galactic halo. We find that previous attempts using inadequate cooling models were too severe and that direct detection limits allow a halo that is 11 Gyr old. If the halo is composed solely of helium-atmosphere dwarfs, the lower age limit is only 7.5 Gyr. We also demonstrate the importance of studying the cooling sequences of white dwarfs in globular clusters.

  16. The Origin of Ultra-Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Sand, David

    2017-08-01

    We request 24 orbits of HST/ACS to obtain imaging in F606W and F814W of apparent tidal features in two ultra-faint dwarf galaxies: Hercules and Leo V. This will enable us to test whether the stars in ultra- faint galaxies-as a population-have been affected by Galactic tides. Most of the new dwarfs show signs of tidal interaction in ground-based photometry, several have measured ellipticities greater than 0.5, and kinematics of a subset show velocity gradients. These ubiquitous hints for tidal effects among distant dwarfs is particularly surprising and suggestive. If most ultra-faint dwarfs are disturbed by tides, then recent tests of galaxy formation in the near field have unstable foundations.HST resolution provides an opportunity to assess whether tidal features (accompanied by tentative kinematic gradients) seen in ground-based observations of Hercules and Leo V are genuine or are instead clumps of compact background galaxies masquerading as stellar debris. In Hercules, a further test is possible: searching for a distance gradient along the stretched body of the galaxy. Parallel pointings will sample similar dwarf-centric radii away from the tidal features, assuring an unambiguous result. Whether we confirm or rule out the presence of stellar loss in these objects, the consequences are important-the origin of the ultra-faint dwarfs tells us the lower limit to both galaxy formation and the number of dark matter subhalos inhabiting the Milky Way.This program is only possible with HST: its exquisite resolution can separate compact galaxies from main sequence dwarf stars at faint magnitudes, which even the best multi-band ground-based schemes struggle with.

  17. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroimsky, Michael; Makarov, Valeri V., E-mail: michael.efroimsky@usno.navy.mil, E-mail: vvm@usno.navy.mil

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling themore » gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.« less

  18. [The study of M dwarf spectral classification].

    PubMed

    Yi, Zhen-Ping; Pan, Jing-Chang; Luo, A-Li

    2013-08-01

    As the most common stars in the galaxy, M dwarfs can be used to trace the structure and evolution of the Milky Way. Besides, investigating M dwarfs is important for searching for habitability of extrasolar planets orbiting M dwarfs. Spectral classification of M dwarfs is a fundamental work. The authors used DR7 M dwarf sample of SLOAN to extract important features from the range of 600-900 nm by random forest method. Compared to the features used in Hammer Code, the authors added three new indices. Our test showed that the improved Hammer with new indices is more accurate. Our method has been applied to classify M dwarf spectra of LAMOST.

  19. Tidal Pools--Miniature Oceans

    ERIC Educational Resources Information Center

    Plake, Linda Perry

    1977-01-01

    A comprehensive discussion of the biological activity in tidal pools is provided. The importance of environmental factors such as oxygen supply, temperature, salinity, and light is detailed. Plants and animals that might be found in a tidal pool are identified and described. (BT)

  20. M dwarfs: Theoretical work

    NASA Technical Reports Server (NTRS)

    Mullan, Dermott J.

    1987-01-01

    Theoretical work on the atmospheres of M dwarfs has progressed along lines parallel to those followed in the study of other classes of stars. Such models have become increasingly sophisticated as improvements in opacities, in the equation of state, and in the treatment of convection were incorporated during the last 15 to 20 years. As a result, spectrophotometric data on M dwarfs can now be fitted rather well by current models. The various attempts at modeling M dwarf photospheres in purely thermal terms are summarized. Some extensions of these models to include the effects of microturbulence and magnetic inhomogeneities are presented.

  1. The Hunt for Missing Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    Theories of galaxy formation and evolution predict that there should be significantly more dwarf galaxies than have been observed. Are our theories wrong? Or are dwarf galaxies just difficult to detect? Recent results from a survey of a galaxy cluster 62 million light-years away suggest there may be lots of undiscovered dwarf galaxies hiding throughout the universe!Hiding in FaintnessThe missing dwarf problem has had hints of a resolution with the recent discovery of Ultra-Diffuse Galaxies (UDGs) in the Coma and Virgo galaxy clusters. UDGs have low masses and large radii, resulting in a very low surface brightness that makes them extremely difficult to detect. If many dwarfs are UDGs, this could well explain why weve been missing them!But the Coma and Virgo galaxy clusters are similar in that theyre both very massive. Are there UDGs in other galaxy clusters as well? To answer this question, an international team of scientists is running the Next Generation Fornax Survey (NGFS), a survey searching for faint dwarf galaxies in the central 30 square degrees of the Fornax galaxy cluster.The NGFS uses near-UV and optical observations from the Dark Energy Camera mounted on the 4m Blanco Telescope in Chile. The survey is still underway, but in a recent publication led by Roberto P. Muoz (Institute of Astrophysics at the Pontifical Catholic University of Chile), the team has released an overview of the first results from only the central 3 square degrees of the NGFS field.Surprising DetectionGalaxy radii vs. their absolute i-band magnitudes, for the dwarfs found in NGFS as well as other stellar systems in the nearby universe. The NGFS dwarfs are similar to the ultra-diffuse dwarfs found in the Virgo and Coma clusters, but are several orders of magnitude fainter. [Muoz et al. 2015]In just this small central field, the team has found an astounding 284 low-surface-brightness dwarf galaxy candidates 158 of them previously undetected. At the bright end of this sample are dwarf

  2. An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations

    NASA Astrophysics Data System (ADS)

    Dooley, Gregory A.; Peter, Annika H. G.; Yang, Tianyi; Willman, Beth; Griffen, Brendan F.; Frebel, Anna

    2017-11-01

    A recent surge in the discovery of new ultrafaint dwarf satellites of the Milky Way has inspired the idea of searching for faint satellites, 103 M⊙ dwarf galaxies by applying several abundance-matching models and a reionization model to the dark-matter only Caterpillar simulation suite. For three of the four abundance-matching models used, we find a >99 per cent chance that at least one satellite with stellar mass M* > 105 M⊙ exists around the combined five Local Group field dwarf galaxies with the largest stellar mass. When considering satellites with M* > 104 M⊙, we predict a combined 5-25 satellites for the five largest field dwarfs, and 10-50 for the whole Local Group field dwarf population. Because of the relatively small number of predicted dwarfs, and their extended spatial distribution, a large fraction each Local Group dwarf's virial volume will need to be surveyed to guarantee discoveries. We compute the predicted number of satellites in a given field of view of specific Local Group galaxies, as a function of minimum satellite luminosity, and explicitly obtain such values for the Solitary Local dwarfs survey. Uncertainties in abundance-matching and reionization models are large, implying that comprehensive searches could lead to refinements of both models.

  3. Tidal alignment of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less

  4. Tidal alignment of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš, E-mail: blazek@berkeley.edu, E-mail: zvlah@stanford.edu, E-mail: useljak@berkeley.edu

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less

  5. RADIAL VELOCITY VARIABILITY OF FIELD BROWN DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prato, L.; Mace, G. N.; Rice, E. L.

    2015-07-20

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R ∼ 20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity (RV) precision of ∼2 km s{sup −1}, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties,more » and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1σ upper limit for very low mass binary frequency is 18%. Our targets included seven known, wide brown dwarf binary systems. No significant RV variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.« less

  6. Calculating lunar retreat rates using tidal rhythmites

    USGS Publications Warehouse

    Kvale, E.P.; Johnson, H.W.; Sonett, C.P.; Archer, A.W.; Zawistoski, A.N.N.

    1999-01-01

    Tidal rhythmites are small-scale sedimenta??r}- structures that can preserve a hierarchy of astronomically induced tidal periods. They can also preserve a record of periodic nontidal sedimentation. If properly interpreted and understood, tidal rhjthmites can be an important component of paleoastronomy and can be used to extract information on ancient lunar orbital dynamics including changes in Earth-Moon distance through geologic time. Herein we present techniques that can be used to calculate ancient Earth-Moon distances. Each of these techniques, when used on a modern high-tide data set, results in calculated estimates of lunar orbital periods and an EarthMoon distance that fall well within 1 percent of the actual values. Comparisons to results from modern tidal data indicate that ancient tidal rhythmite data as short as 4 months can provide suitable estimates of lunar orbital periods if these tidal records are complete. An understanding of basic tidal theory allows for the evaluation of completeness of the ancient tidal record as derived from an analysis of tidal rhythmites. Utilizing the techniques presented herein, it appears from the rock record that lunar orbital retreat slowed sometime during the midPaleozoic. Copyright ??1999, SEPM (Society for Sedimentary Geology).

  7. Hubble COS Spectroscopy of the Dwarf Nova CW Mon: The White Dwarf in Quiescence?

    PubMed

    Hause, Connor; Sion, Edward M; Godon, Patrick; Boris, T Gänsicke; Szkody, Paula; de Martino, Domitilla; Pala, Anna

    2017-08-01

    We present a synthetic spectral analysis of the HST COS spectrum of the U Geminorum-type dwarf nova CW Mon, taken during quiescence as part of our COS survey of accreting white dwarfs in Cataclysmic Variables. We use synthetic photosphere and optically thick accretion disk spectra to model the COS spectrum as well as archival IUE spectra obtained decades ago when the system was in an even deeper quiescent state. Assuming a reddening of E(B-V)=0.06, an inclination of 60° (CW Mon has eclipses of the accretion disk, and a white dwarf mass of 0.8 M ⊙ , our results indicate the presence of a 22-27,000 K white dwarf and a low mass accretion rate [Formula: see text], for a derived distance o ~200 to ~300 pc.

  8. GRMHD formulation of highly super-Chandrasekhar magnetized white dwarfs: stable configurations of non-spherical white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Upasana; Mukhopadhyay, Banibrata, E-mail: upasana@physics.iisc.ernet.in, E-mail: bm@physics.iisc.ernet.in

    The topic of magnetized super-Chandrasekhar white dwarfs is in the limelight, particularly in the last few years, since our proposal of their existence. By full-scale general relativistic magnetohydrodynamic (GRMHD) numerical analysis, we confirm in this work the existence of stable, highly magnetized, significantly super-Chandrasekhar white dwarfs with mass more than 3 solar mass. While a poloidal field geometry renders the white dwarfs oblate, a toroidal field makes them prolate retaining an overall quasi-spherical shape, as speculated in our earlier work. These white dwarfs are expected to serve as the progenitors of over-luminous type Ia supernovae.

  9. NGC 5291: Implications for the Formation of Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  10. Global tidal phasing potential

    NASA Astrophysics Data System (ADS)

    Neill, S. P.; Cooper, M. M.; Lewis, M. J.

    2016-02-01

    Tidal energy is characterised by intermittency over a range of timescales, from semi-diurnal and lunar periods through to annual and decadal. Therefore, the electricity that can be generated by the tides will be characterised by similar scales of intermittency. However, with knowledge of the phase relationship between sites, it may be possible to reduce intermittency, particularly at the semi-diurnal timescale, by aggregating the electricity generated by discrete regions suitable for the conversion of tidal energy into electricity. In this study, we make use of a global tidal atlas (FES2012) to make a preliminary assessment of regions of the globe where it could be possible to combine the electricity generated at a number of discrete sites to provide firmer power to regional electricity networks. In contrast to the northwest European shelf, where the high tidal stream sites tend to either be in phase or 180 out-of-phase with one-another, we find numerous regions around the globe with potential for regional tidal phasing. However, development of higher resolution regional models, or the examination of field data, are required to fully characterise the phasing potential of these regions. In addition, technical and economical constraints on the resource should be considered such as water depth and distance to shore.

  11. Habitability of planets around red dwarf stars.

    PubMed

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  12. Spin Dependence in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Stone, Nicholas; van Velzen, Sjoert

    2018-01-01

    A supermassive black hole (SBH) can tidally disrupt stars when its tidal field overwhelms the stars’ self-gravity. The stellar debris produced in such tidal disruption events (TDEs) evolves into tidal streams that can self-intersect. These inelastic stream collisions dissipate orbital energy, both circularizing the tidal stream and contributing to the emission observed during the TDE. Once circularized into a disk, the stellar debris can be viscously accreted by the SBH powering additional luminous emission. We explore how SBH spin can affect the tidal disruption process. Tidal forces are spin dependent, as is the minimum orbital angular momentum below which stars are directly captured by the SBH. This implies that the TDE rate will be spin dependent, particularly for more massive SBHs for which relativistic effects are more significant. SBH spin also affects TDE light curves through the initial debris orbits, the nature of the stream collisions, the viscous evolution of the accretion disk, and the possibility of launching jets. We explore the spin dependence of these phenomena to identify promising signatures for upcoming surveys expected to discover hundreds of TDE candidates in the next decade.

  13. No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers

    NASA Astrophysics Data System (ADS)

    Fenn, D.; Plewa, T.; Gawryszczak, A.

    2016-11-01

    We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a corotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multigrid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here, the detonation occurs in the primary's core and relies on the combined action of tidal heating, accretion heating, and self-heating due to nuclear burning. The exploding structure is compositionally stratified, with a reverse shock formed at the surface of the dense ejecta. The existence of such a shock has not been reported elsewhere. The explosion energy (1.6 × 1051 erg) and 56Ni mass (0.86 M⊙) are consistent with an SN Ia at the bright end of the luminosity distribution, with an approximated decline rate of Δm15(B) ≈ 0.99. Our study does not support double-detonation scenarios in the case of a system with a 0.6 M⊙ helium secondary and a 0.9 M⊙ primary. Although the accreted helium detonates, it fails to ignite carbon at the base of the boundary layer or in the primary's core.

  14. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    NASA Astrophysics Data System (ADS)

    Hammer, Derek M.

    in the process of being quenched or were only recently quenched. We modeled the quenching timescales for transition galaxies, or “green valley” objects, and found that the majority are quenched in less than 1 Gyr. This timescale is consistent with rapid dynamical processes that are active in the cluster environment as opposed to the more gradual quenching mechanisms that exist in the group environment. For the passive galaxy population, we have measured an average stellar age of 6-8 Gyr for the red sequence which is consistent with previous studies based on spectroscopic observations. We note that the star formation properties of Coma member galaxies were established from photometry alone, as opposed to using spectroscopic data which are more challenging to obtain for dwarf galaxies. We have measured the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are 3.5 mag fainter than previous studies in Coma, and are sufficiently deep that we reach the dwarf passive galaxy population for the first time. We have introduced a new technique for measuring the LF which avoids color selection effects associated with previous methods. The UV LFs constructed separately for star-forming and passive galaxies follow a similar distribution at faint magnitudes, which suggests that the recent quenching of infalling dwarf star-forming galaxies is sufficient to build the dwarf passive population in Coma. The Coma UV LFs show a turnover at faint magnitudes as compared to the field, owing to a deficit of dwarf galaxies with stellar masses below M∗ = 108 M⊙ . We show that the UV LFs for the field behind the Coma cluster are nearly identical to the average field environment, and do not show evidence for a turnover at faint magnitudes. We suspect that the missing dwarf galaxies in Coma are severely disrupted by tidal processes as they are accreted onto the cluster, just prior to reaching the infall region studied here.

  15. Gaia Reveals Evidence for Merged White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Hambly, N. C.; Bergeron, P.; Genest-Beaulieu, C.; Rowell, N.

    2018-06-01

    We use Gaia Data Release 2 to identify 13,928 white dwarfs within 100 pc of the Sun. The exquisite astrometry from Gaia reveals for the first time a bifurcation in the observed white dwarf sequence in both Gaia and the Sloan Digital Sky Survey (SDSS) passbands. The latter is easily explained by a helium atmosphere white dwarf fraction of 36%. However, the bifurcation in the Gaia colour-magnitude diagram depends on both the atmospheric composition and the mass distribution. We simulate theoretical colour-magnitude diagrams for single and binary white dwarfs using a population synthesis approach and demonstrate that there is a significant contribution from relatively massive white dwarfs that likely formed through mergers. These include white dwarf remnants of main-sequence (blue stragglers) and post-main sequence mergers. The mass distribution of the SDSS subsample, including the spectroscopically confirmed white dwarfs, also shows this massive bump. This is the first direct detection of such a population in a volume-limited sample.

  16. The Metallicity of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  17. Building Magnetic Fields in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  18. Calibrating Detailed Chemical Analysis of M dwarfs

    NASA Astrophysics Data System (ADS)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  19. Observations of Superwinds in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Marlowe, A. T.; Heckman, T. M.; Wyse, R.; Schommer, R.

    1993-12-01

    Dwarf galaxies are important in developing our understanding of the formation and evolution of galaxies, and of the structure in the universe. The concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarfs galaxies. We have begun a detailed multi-waveband search for outflows in starbursting dwarf galaxies, and have obtained Fabry-Perot images and Echelle spectra of 20 nearby actively-star-forming dwarf galaxies. In about half the sample, the Fabry-Perot Hα images show loops and filaments with sizes of one to a few kpc. The Echelle spectra taken through the loops and filaments show kinematics consistent with expanding bubble-like structures. We describe these data, and present seven dwarfs in our sample that have the strongest evidence of outflows.

  20. Tidal Boundary Conditions in SEAWAT

    USGS Publications Warehouse

    Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.

  1. The Unevenly Distributed Nearest Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Bihain, Gabriel; Scholz, Ralf-Dieter

    2016-08-01

    To address the questions of how many brown dwarfs there are in the Milky Way, how do these objects relate to star formation, and whether the brown dwarf formation rate was different in the past, the star-to-brown dwarf number ratio can be considered. While main sequence stars are well known components of the solar neighborhood, lower mass, substellar objects increasingly add to the census of the nearest objects. The sky projection of the known objects at <6.5 pc shows that stars present a uniform distribution and brown dwarfs a non-uniform distribution, with about four times more brown dwarfs behind than ahead of the Sun relative to the direction of rotation of the Galaxy. Assuming that substellar objects distribute uniformly, their observed configuration has a probability of 0.1 %. The helio- and geocentricity of the configuration suggests that it probably results from an observational bias, which if compensated for by future discoveries, would bring the star-to-brown dwarf ratio in agreement with the average ratio found in star forming regions.

  2. Tidal controls on earthquake size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Ide, S.; Yabe, S.; Tanaka, Y.

    2016-12-01

    The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.

  3. PREFACE: 16th European White Dwarfs Workshop

    NASA Astrophysics Data System (ADS)

    Garcia-Berro, Enrique; Hernanz, Margarita; Isern, Jordi; Torres, Santiago

    2009-07-01

    The 16th European Workshop on White Dwarfs was held in Barcelona, Spain, from 30 June to 4 July 2008 at the premises of the UPC. Almost 120 participants from Europe (France, Germany, United Kingdom, Italy, and several others), America (USA, Canada, Argentina, Brazil, and Chile), and other continents (Australia, South Africa, . . . ) attended the workshop. Among these participants were the most relevant specialists in the field. The topics covered by the conference were: White dwarf structure and evolution Progenitors and Planetary Nebulae White dwarfs in binaries: cataclysmic variables, double degenerates and other binaries White dwarfs, dust disks and planetary systems Atmospheres, chemical composition, magnetic fields Variable white dwarfs White dwarfs in stellar clusters and the halo White Dwarfs as SNIa progenitors The programme included 54 talks, and 45 posters. The oral presentations were distributed into the following sessions: Luminosity function, mass function and populations White dwarf structure and evolution White dwarf ages White dwarf catalogs and surveys Central stars of planetary nebulae Supernovae progenitors White dwarfs in novae and CVs Physical processes in white dwarfs and magnetic white dwarfs Disks, dust and planets around white dwarfs Pulsating white dwarfs Additionally we had a special open session about Spitzer and white dwarfs. The Proceedings of the 16th European Workshop on White Dwarfs are representative of the current state-of-the-art of the research field and include new and exciting results. We acknowledge the very positive attitude of the attendants to the workshop, which stimulated very fruitful discussions that took place in all the sessions and after the official schedule. Also, the meeting allowed new collaborations tp start that will undoubtedly result in significant advances in the research field. We also acknowledge the willingness of the participants to deliver their contributions before the final deadline. We sincerely

  4. Could Ultracool Dwarfs Have Sun-Like Activity?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Solar-like stars exhibit magnetic cycles; our Sun, for instance, displays an 11-year period in its activity, manifesting as cyclic changes in radiation levels, the number of sunspots and flares, and ejection of solar material. Over the span of two activity cycles, the Suns magnetic field flips polarity and then returns to its original state.An artists illustration comparing the Sun to TRAPPIST-1, an ultracool dwarf star known to host several planets. [ESO]But what about the magnetic behavior of objects near the cooler end of the stellar main sequence do they exhibit similar activity cycles?Effects of a Convecting InteriorDwarf stars have made headlines in recent years due to their potential to harbor exoplanets. Because these cooler stars have lower flux levels compared to the Sun, their habitable zones lie much closer to the stars. The magnetic behavior of these stars is therefore important to understand: could ultracool dwarfs exhibit solar-like activity cycles that would affect planets with close orbits?The differences in internal structure between different mass stars. Ultracool dwarfs have fully convective interiors. [www.sun.org]Theres a major difference between ultracool dwarfs (stars of spectral type higher than M7 and brown dwarfs) and Sun-like stars: their internal structures. Sun-like stars have a convective envelope that surrounds a radiative core. The interiors of cool, low-mass objects, on the other hand, are fully convective.Based on theoretical studies of how magnetism is generated in stars, its thought that the fully convective interiors of ultracool dwarfs cant support large-scale magnetic field formation. This should prevent these stars from exhibiting activity cycles like the Sun. But recent radio observations of dwarf stars have led scientist Matthew Route (ITaP Research Computing, Purdue University) to question these models.A Reversing Field?During observations of the brown dwarf star J1047+21 in 20102011, radio flares were detected with

  5. Field migration rates of tidal meanders recapitulate fluvial morphodynamics

    NASA Astrophysics Data System (ADS)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-01

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.

  6. Assessment of tidal circulation and tidal current asymmetry in the Iroise sea with specific emphasis on characterization of tidal energy resources around the Ushant Island.

    NASA Astrophysics Data System (ADS)

    Thiébaut, Maxime; Sentchev, Alexei

    2015-04-01

    We use the current velocity time series recorded by High Frequency Radars (HFR) to study circulation in highly energetic tidal basin - the Iroise sea. We focus on the analysis of tidal current pattern around the Ushant Island which is a promising site of tidal energy. The analysis reveals surface current speeds reaching 4 m/s in the North of Ushant Island and in the Fromveur Strait. In these regions 1 m/s is exceeded 60% of time and up to 70% of time in center of Fromveur. This velocity value is particularly interesting because it represents the cut-in-speed of the most of marine turbine devices. Tidal current asymmetry is not always considered in tidal energy site selection. However, this quantity plays an important role in the quantification of hydrokinetic resources. Current velocity times series recorded by HFR highlights the existence of a pronounced asymmetry in current magnitude between the flood and ebb tide ranging from -0.5 to more 2.5. Power output of free-stream devices depends to velocity cubed. Thus a small current asymmetry can generate a significant power output asymmetry. Spatial distribution of asymmetry coefficient shows persistent pattern and fine scale structure which were quantified with high degree of accuracy. The particular asymmetry evolution on both side of Fromveur strait is related to the spatial distribution of the phase lag of the principal semi-diurnal tidal constituent M2 and its higher order harmonics. In Fromveur, the asymmetry is reinforced due to the high velocity magnitude of the sixth-diurnal tidal harmonics. HF radar provides surface velocity speed, however the quantification of hydrokinetic resources has to take into account the decreasing of velocity with depth. In order to highlight this phenomenon, we plot several velocity profiles given by an ADCP which was installed in the HFR study area during the same period. The mean velocity in the water column calculated by using the ADCP data show that it is about 80% of the

  7. The luminosities of the coldest brown dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinney, C. G.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy

    2014-11-20

    In recent years, brown dwarfs have been extended to a new Y-dwarf class with effective temperatures colder than 500 K and masses in the range of 5-30 Jupiter masses. They fill a crucial gap in observable atmospheric properties between the much colder gas-giant planets of our own solar system (at around 130 K) and both hotter T-type brown dwarfs and the hotter planets that can be imaged orbiting young nearby stars (both with effective temperatures in the range of 1500-1000 K). Distance measurements for these objects deliver absolute magnitudes that make critical tests of our understanding of very cool atmospheres.more » Here we report new distances for nine Y dwarfs and seven very late T dwarfs. These reveal that Y dwarfs do indeed represent a continuation of the T-dwarf sequence to both fainter luminosities and cooler temperatures. They also show that the coolest objects display a large range in absolute magnitude for a given photometric color. The latest atmospheric models show good agreement with the majority of these Y-dwarf absolute magnitudes. This is also the case for WISE0855-0714, the coldest and closest brown dwarf to the Sun, which shows evidence for water ice clouds. However, there are also some outstanding exceptions, which suggest either binarity or the presence of condensate clouds. The former is readily testable with current adaptive optics facilities. The latter would mean that the range of cloudiness in Y dwarfs is substantial with most hosting almost no clouds—while others have dense clouds, making them prime targets for future variability observations to study cloud dynamics.« less

  8. M Dwarf Mysteries

    NASA Astrophysics Data System (ADS)

    Henry, Todd J.; Jao, Wei-Chun; Irwin, Jonathan; Dieterich, Sergio; Finch, Charlie T.; Riedel, Adric R.; Subasavage, John P.; Winters, Jennifer; RECONS Team

    2017-01-01

    During RECONS' 17-year (so far) astrometry/photometry program at the CTIO/SMARTS 0.9m, we have observed thousands of the ubiquitous red dwarfs in the solar neighborhood. During this reconnaissance, a few mysterious characters have emerged ...The Case of the Mercurial Stars: One M dwarf has been fading steadily for more than a decade, at last measure 6% fainter than when it was first observed. Another has grown brighter by 7% over 15 years. Are these brightness changes part of extremely long stellar cycles, or something else entirely?The Case of Identical Stellar Twins that Aren't: Two M dwarfs seem at first to be identical siblings traveling together through the Galaxy. They have virtually identical spectra at optical wavelengths and identical colors throughout the VRIJHK bands. Long-term astrometry indicates that they are, indeed, at the same distance via parallax measurements, and their proper motions match precisely. Yet, one of the twins is FOUR times brighter than the other. Followup work has revealed that the brighter component is a very close spectroscopic double, but no other stars are seen. So, the mystery may be half solved, but why do the close stars remain twice as bright as their widely-separated twin?The Case of the Great Kaboom!: After more than 1000 nights of observing on the reliable 0.9m telescope, with generally routine frames reading out upon the screen, one stellar system comprised of five red dwarfs flared in stunning fashion. Of the two distinct sources, the fainter one (an unresolved double) surpassed the brightness of the brighter one (an unresolved triple), increasing by more than three full magnitudes in the V filter. Which component actually flared? Is this magnificent outburst an unusual event, or in fact typical for this system and other M dwarfs?At the AAS meeting, we hope to probe the cognoscenti who study the Sun's smaller cousins to solve these intriguing M Dwarf Mysteries.This effort has been supported by the NSF through grants

  9. THE SPECTRAL EVOLUTION OF CONVECTIVE MIXING WHITE DWARFS, THE NON-DA GAP, AND WHITE DWARF COSMOCHRONOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Eugene Y.; Hansen, Brad M. S., E-mail: eyc@mail.utexas.edu, E-mail: hansen@astro.ucla.edu

    The spectral distribution of field white dwarfs shows a feature called the 'non-DA gap'. As defined by Bergeron et al., this is a temperature range (5100-6100 K) where relatively few non-DA stars are found, even though such stars are abundant on either side of the gap. It is usually viewed as an indication that a significant fraction of white dwarfs switch their atmospheric compositions back and forth between hydrogen-rich and helium-rich as they cool. In this Letter, we present a Monte Carlo model of the Galactic disk white dwarf population, based on the spectral evolution model of Chen and Hansen.more » We find that the non-DA gap emerges naturally, even though our model only allows white dwarf atmospheres to evolve monotonically from hydrogen-rich to helium-rich through convective mixing. We conclude by discussing the effects of convective mixing on the white dwarf luminosity function and the use thereof for Cosmochronology.« less

  10. Larch Dwarf Mistletoe (FIDL)

    Treesearch

    Jerome S. Beatty; Gregory M. Filip; Robert L. Mathiason

    1997-01-01

    Larch dwarf mistletoe (Arceuthobium laricis (Piper) St. John) is a common and damaging parasite of western larch (Larix occidentalis Nutt.) in the Pacific Northwest and southern British Columbia. Larch dwarf mistletoe occurs commonly throughout the range of western larch in British Columbia, northern and central Idaho, western Montana and east of the Cascades in...

  11. Tidal river dynamics: Implications for deltas

    NASA Astrophysics Data System (ADS)

    Hoitink, A. J. F.; Jay, D. A.

    2016-03-01

    Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity intrusion, a realm that can extend inland hundreds of kilometers. One key phenomenon resulting from this interaction is the emergence of large fortnightly tides, which are forced long waves with amplitudes that may increase beyond the point where astronomical tides have become extinct. These can be larger than the linear tide itself at more landward locations, and they greatly influence tidal river water levels and wetland inundation. Exploration of the spectral redistribution and attenuation of tidal energy in rivers has led to new appreciation of a wide range of consequences for fluvial and coastal sedimentology, delta evolution, wetland conservation, and salinity intrusion under the influence of sea level rise and delta subsidence. Modern research aims at unifying traditional harmonic tidal analysis, nonparametric regression techniques, and the existing understanding of tidal hydrodynamics to better predict and model tidal river dynamics both in single-thread channels and in branching channel networks. In this context, this review summarizes results from field observations and modeling studies set in tidal river environments as diverse as the Amazon in Brazil, the Columbia, Fraser and Saint Lawrence in North America, the Yangtze and Pearl in China, and the Berau and Mahakam in Indonesia. A description of state-of-the-art methods for a comprehensive analysis of water levels, wave propagation, discharges, and inundation extent in tidal rivers is provided. Implications for lowland river deltas are also discussed in terms of sedimentary deposits, channel bifurcation, avulsion, and salinity intrusion, addressing contemporary research challenges.

  12. Tidal disruption of inviscid planetesimals

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Cameron, A. G. W.; Benz, W.

    1991-01-01

    In view of previous efforts' demonstration that strongly dissipative planetesimals are immune to tidal disruption, an examination is presently conducted of the complementary case of inviscid planetesimals arising from collisions that are sufficiently energetic to entirely melt the resulting planetesimal and debris. The tidal disruption is numerically simulated by means of the smoothed particle hydrodynamics (SPH) code of Cameron and Benz (1991), concentrating on the tidal disruption of 0.01 earth-mass planetesimals passing by the earth with variations in the impact parameter at perigee and velocity at infinity. The SPH models show that tidal forces during a close encounter can efficiently convert orbital angular momentum into spin angular momentum, thereby initiating equatorial mass-shedding to inviscid planetesimals that have been spun up beyond the limit of rotational stability.

  13. Hemlock Dwarf Mistletoe (FIDL)

    Treesearch

    Paul E. Hennon; Jerome S. Beatty; Diane Hildebrand

    2001-01-01

    Hemlock dwarf mistletoe, Arceuthobium tsugense (Rosendahl) G.N. Jones, causes a serious disease of western hemlock and several other tree species along the Pacific Coast of North America. This small, seed-bearing plant lives exclusively as a parasite on living trees. Throughout its range, hemlock dwarf mistletoe occurs in patch-like patterns in the forests. Some...

  14. The effects of tidal range on saltmarsh morphology

    NASA Astrophysics Data System (ADS)

    Goodwin, Guillaume; Mudd, Simon

    2017-04-01

    Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.

  15. Flaring Red Dwarf Star (Illustration)

    NASA Image and Video Library

    2017-06-06

    This illustration shows a red dwarf star orbited by a hypothetical exoplanet. Red dwarfs tend to be magnetically active, displaying gigantic arcing prominences and a wealth of dark sunspots. Red dwarfs also erupt with intense flares that could strip a nearby planet's atmosphere over time, or make the surface inhospitable to life as we know it. By mining data from the Galaxy Evolution Explorer (GALEX) spacecraft, a team of astronomers identified dozens of flares at a range of durations and strengths. The team measured events with less total energy than many previously detected flares from red dwarfs. This is important because, although individually less energetic and therefore less hostile to life, smaller flares might be much more frequent and add up over time to produce a cumulative effect on an orbiting planet. https://photojournal.jpl.nasa.gov/catalog/PIA21473

  16. Brown dwarfs in young stellar clusters

    NASA Technical Reports Server (NTRS)

    Stringfellow, Guy S.

    1991-01-01

    The present calculations of the early evolution of brown dwarfs and very low mass stars (LMSs) yield isochrones spanning 0.01-0.2 solar masses for ages in the 1 to 300 million year range. Since the brown dwarfs remain sharply segregated in T(eff) from LMSs for ages of less than 100 million years, it follows that for coeval populations of known age, a domain exists in the H-R diagram in which only brown dwarfs exist. These theoretical results are compared with recent observations of the Pleiades brown dwarf candidates, using two new sets of color-T(eff) transformations. Both sets yield consistent interpretations.

  17. Merging white dwarfs and thermonuclear supernovae.

    PubMed

    van Kerkwijk, M H

    2013-06-13

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and the suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar-mass remnants. I then turn to possible observational tests, in particular, those that test the absence or presence of electron captures during the burning.

  18. A radio-pulsing white dwarf binary star.

    PubMed

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  19. White Dwarfs in the SDSS Photometric Footprint

    NASA Astrophysics Data System (ADS)

    Gentile Fusillo, N. P.; Girven, J.; Gänsicke, B.

    2013-01-01

    Attempts to create a homogeneous catalogue of white dwarfs have always been faced with the challenge posed by the intrinsic faintness of these objects. In recent years, thanks to large area surveys like the Sloan Digital Sky Survey (SDSS), the size of the known white dwarf population has increased dramatically, but, in order to carry out a statical study on the population of white dwarfs, it is necessary to have a reliable and well-defined selection method. We present a method which uses cuts in colour-colour space to select from DR7 16785 bright (g ≤ 19) photometric DA white dwarf candidates (Girven et al. 2011). The selection is 62% efficient in returning DA white dwarfs and produces a DA sample which is 95% complete for Teff > 8000 K. This sample contains 4636 spectroscopically confirmed DA white dwarfs; i.e. a ˜70% increase compared to Eisenstein et al.'s sample. As a first application of the SDSS DR7 DA candidates sample we cross correlated it with Data Release 8 of UKIDSS Large Area Survey with the aim of identifying white dwarfs which exhibit an infrared excess consistent with the presence of low mass stellar companions or dusty debris discs. Our current work aims to extend the photometric selection to all types of white dwarfs, using reduced proper motion as a further constrain. We expect to find a total of ˜20 000 photometric white dwarf candidates with g ≤ 19 in the footprint of SDSS DR8.

  20. Response of dwarf mistletoe-infested ponderosa pine to thinning: 2. Dwarf mistletoe propagation.

    Treesearch

    Lewis F. Roth; James W. Barrett

    1985-01-01

    Propagation of dwarf mistletoe in ponderosa pine saplings is little influenced by thinning overly dense stands to 250 trees per acre. Numerous plants that appear soon after thinning develop from formerly latent plants in the suppressed under-story. Subsequently, dwarf mistletoe propagates nearly as fast as tree crowns enlarge but the rate differs widely among trees....

  1. Multiplicity among Young Brown Dwarfs and Very Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Ahmic, Mirza; Jayawardhana, Ray; Brandeker, Alexis; Scholz, Alexander; van Kerkwijk, Marten H.; Delgado-Donate, Eduardo; Froebrich, Dirk

    2007-12-01

    We report on a near-infrared adaptive optics imaging survey of 31 young brown dwarfs and very low mass (VLM) stars, 28 of which are in the Chamaeleon I star-forming region, using the ESO Very Large Telescope. We resolve the suspected 0.16'' (~26 AU) binary Cha Hα 2 and present two new binaries, Hn 13 and CHXR 15, with separations of 0.13'' (~20 AU) and 0.30'' (~50 AU), respectively; the latter is one of the widest VLM systems known. We find a binary frequency of 11+9-6%, thus confirming the trend for a lower binary frequency with decreasing mass. By combining our work with previous surveys, we arrive at the largest sample of young VLM objects (72) with high angular resolution imaging to date. Its multiplicity fraction is in statistical agreement with that for VLM objects in the field. Furthermore, we note that many field stellar binaries with lower binding energies and/or wider cross sections have survived dynamical evolution and that statistical models suggest tidal disruption by passing stars is unlikely to affect the binary properties of our systems. Thus, we argue that there is no significant evolution of multiplicity with age among brown dwarfs and VLM stars in OB and T associations between a few megayears to several gigayears. Instead, the observations so far suggest that VLM objects are either less likely to be born in fragile multiple systems than solar-mass stars or such systems are disrupted very early. We dedicate this paper to the memory of our coauthor, Eduardo Delgado-Donate, who died in a hiking accident in Tenerife earlier this year.

  2. Hubble COS Spectroscopy of the Dwarf Nova CW Mon: The White Dwarf in Quiescence?1

    PubMed Central

    Hause, Connor; Sion, Edward M.; Godon, Patrick; Boris, T. Gänsicke; Szkody, Paula; de Martino, Domitilla; Pala, Anna

    2018-01-01

    We present a synthetic spectral analysis of the HST COS spectrum of the U Geminorum-type dwarf nova CW Mon, taken during quiescence as part of our COS survey of accreting white dwarfs in Cataclysmic Variables. We use synthetic photosphere and optically thick accretion disk spectra to model the COS spectrum as well as archival IUE spectra obtained decades ago when the system was in an even deeper quiescent state. Assuming a reddening of E(B−V)=0.06, an inclination of 60° (CW Mon has eclipses of the accretion disk, and a white dwarf mass of 0.8M⊙, our results indicate the presence of a 22–27,000 K white dwarf and a low mass accretion rate (M˙≲10−10M⊙/yr), for a derived distance o ~200 to ~300 pc. PMID:29430023

  3. PAndAS' Progeny: Extending the M31 Dwarf Galaxy Cabal

    NASA Astrophysics Data System (ADS)

    Richardson, Jenny C.; Irwin, Mike J.; McConnachie, Alan W.; Martin, Nicolas F.; Dotter, Aaron L.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Chapman, Scott C.; Lewis, Geraint F.; Tanvir, Nial R.; Rich, R. Michael

    2011-05-01

    We present the discovery of five new dwarf galaxies, Andromeda XXIII-XXVII, located in the outer halo of M31. These galaxies were discovered during the second year of data from the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 subgroup conducted with the MegaPrime/MegaCam wide-field camera on the Canada-France-Hawaii Telescope. The current PAndAS survey now provides an almost complete panoramic view of the M31 halo out to an average projected radius of ~150 kpc. Here we present for the first time the metal-poor stellar density map for this whole region, not only as an illustration of the discovery space for satellite galaxies, but also as a birds-eye view of the ongoing assembly process of an L * disk galaxy. Four of the newly discovered satellites appear as well-defined spatial overdensities of stars lying on the expected locus of metal-poor (-2.5 < [Fe/H] < -1.3) red giant branch stars at the distance of M31. The fifth overdensity, And XXVII, is embedded in an extensive stream of such stars and is possibly the remnant of a strong tidal disruption event. Based on distance estimates from horizontal branch magnitudes, all five have metallicities typical of dwarf spheroidal galaxies ranging from [Fe/H] =-1.7 ± 0.2 to [Fe/H] =-1.9 ± 0.2 and absolute magnitudes ranging from MV = -7.1 ± 0.5 to MV = -10.2 ± 0.5. These five additional satellites bring the number of dwarf spheroidal galaxies in this region to 25 and continue the trend whereby the brighter dwarf spheroidal satellites of M31 generally have much larger half-light radii than their Milky Way counterparts. With an extended sample of M31 satellite galaxies, we also revisit the spatial distribution of this population and in particular we find that, within the current projected limits of the PAndAS survey, the surface density of satellites is essentially constant out to 150 kpc. This corresponds to a radial density distribution of satellites varying as r -1, a result

  4. DETERMINING THE NATURE OF THE EXTENDED H I STRUCTURE AROUND LITTLE THINGS DWARF GALAXY NGC 1569

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Megan, E-mail: mjohnson@nrao.edu; National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24915

    2013-06-15

    This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9 Degree-Sign Multiplication-Sign 2 Degree-Sign region in H I line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569.more » A large, half-degree diameter H I cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1. Degree-Sign 5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0. Degree-Sign 5 H I cloud, filaments, and main body of the galaxy. The 0. Degree-Sign 5 H I cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H I bridge but more data are needed to determine if this is the case.« less

  5. Identification and genetic mapping for rht-DM, a dominant dwarfing gene in mutant semi-dwarf maize using QTL-seq approach.

    PubMed

    Chen, Qian; Song, Jun; Du, Wen-Ping; Xu, Li-Yuan; Jiang, Yun; Zhang, Jie; Xiang, Xiao-Li; Yu, Gui-Rong

    2018-06-27

    Semi-dwarfism is an agronomically important trait in breeding for stable high yields and for resistance to damage by wind and rain (lodging resistance). Many QTLs and genes causing dwarf phenotype have been found in maize. However, because of the yield loss associated with these QTLs and genes, they have been difficult to use in breeding for dwarf stature in maize. Therefore, it is important to find the new dwarfing genes or materials without undesirable characters. The objectives of this study were: (1) to figure out the inheritance of semi-dwarfism in mutants; (2) mapping dwarfing gene or QTL. Maize inbred lines '18599' and 'DM173', which is the dwarf mutant derived from the maize inbred line '173' through 60 Co-γ ray irradiation. F 2 and BC 1 F 1 population were used for genetic analysis. Whole genome resequencing-based technology (QTL-seq) were performed to map dwarfing gene and figured out the SNP markers in predicted region using dwarf bulk and tall bulk from F 2 population. Based on the polymorphic SNP markers from QTL-seq, we were fine-mapping the dwarfing gene using F 2 population. In F 2 population, 398 were dwarf plants and 135 were tall plants. Results of χ 2 tests indicated that the ratio of dwarf plants to tall plants was fitted to 3:1 ratio. Furthermore, the χ 2 tests of BC 1 F 1 population showed that the ratio was fitted to 1:1 ratio. Based on QTL-seq, the dwarfing gene was located at the region from 111.07 to 124.56 Mb of chromosome 9, and we named it rht-DM. Using traditional QTL mapping with SNP markers, the rht-DM was narrowed down to 400 kb region between SNP-21 and SNP-24. The two SNPs were located at 0.43 and 0.11 cM. Segregation analysis of F 2 and BC 1 F 1 indicated that the dwarfing gene was likely a dominant gene. This dwarfing gene was located in the region between 115.02 and 115.42 Mb on chromosome 9.

  6. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina: Chapter 9

    USGS Publications Warehouse

    Conner, William H.; Krauss, Ken W.; Doyle, Thomas W.

    2007-01-01

    , Great Pee Dee, and Savannah) that arise in the mountains and along the numerous blackwater rivers (Ashepoo, Combahee, Cooper, and Waccamaw) that arise in the coastal regions. Most of the tidal freshwater forests were converted to tidal rice fields in the 1700s (Porcher 1995). Canopy members of the present day forests include baldcypress, water tupelo, swamp tupelo (N. biflora Walt.), red maple, and Carolina ash (Fraxinus caroliniana Miller). Subcanopy and shrub species include Virginia sweetspire (Itea virginica L.), dwarf palmetto (Sabal minor (Jacquin) Pers.), coastal plain willow (Salix caroliniana Michx.), redbay, and water-elm (Planera aquatica Gmel.).

  7. Low Surface Brightness Imaging of the Magellanic System: Imprints of Tidal Interactions between the Clouds in the Stellar Periphery

    NASA Astrophysics Data System (ADS)

    Besla, Gurtina; Martínez-Delgado, David; van der Marel, Roeland P.; Beletsky, Yuri; Seibert, Mark; Schlafly, Edward F.; Grebel, Eva K.; Neyer, Fabian

    2016-07-01

    We present deep optical images of the Large and Small Magellanic Clouds (LMC and SMC) using a low cost telephoto lens with a wide field of view to explore stellar substructure in the outskirts of the stellar disk of the LMC (<10° from the LMC center). These data have higher resolution than existing star count maps, and highlight the existence of stellar arcs and multiple spiral arms in the northern periphery, with no comparable counterparts in the south. We compare these data to detailed simulations of the LMC disk outskirts, following interactions with its low mass companion, the SMC. We consider interaction in isolation and with the inclusion of the Milky Way tidal field. The simulations are used to assess the origin of the northern structures, including also the low density stellar arc recently identified in the Dark Energy Survey data by Mackey et al. at ˜15°. We conclude that repeated close interactions with the SMC are primarily responsible for the asymmetric stellar structures seen in the periphery of the LMC. The orientation and density of these arcs can be used to constrain the LMC’s interaction history with and impact parameter of the SMC. More generally, we find that such asymmetric structures should be ubiquitous about pairs of dwarfs and can persist for 1-2 Gyr even after the secondary merges entirely with the primary. As such, the lack of a companion around a Magellanic Irregular does not disprove the hypothesis that their asymmetric structures are driven by dwarf-dwarf interactions.

  8. White Dwarfs in the GALEX Survey

    NASA Technical Reports Server (NTRS)

    Kawka, Adela; Vennes, Stephane

    2007-01-01

    We have cross-correlated the 2dF QSO Redshift Survey (2QZ) white dwarf catalog with the GALEX 2nd Data Release and the Sloan Digital Sky Survey (SDSS) data release 5 to obtain ultraviolet photometry (FUV, NUV) for approximately 700 objects and optical photometry (ugriz) for approximately 800 objects. We have compared the optical-ultraviolet colors to synthetic white dwarf colors to obtain temperature estimates for approximately 250 of these objects. These white dwarfs have effective temperatures ranging from 10 000 K (cooling age of about 1Gyr) up to about 40000 K (cooling age of about 3 Myrs), with a few that have even higher temperatures. We found that to distinguish white dwarfs from other stellar luminosity classes both optical and ultraviolet colors are necessary, in particular for the hotter objects where there is contamination from B and 0 main-sequence stars. Using this sample we build a luminosity function for the DA white dwarfs with Mv < 12 mag.

  9. Building an Unusual White-Dwarf Duo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three

  10. Tidal dissipiation in Europa - A correction

    NASA Technical Reports Server (NTRS)

    Cassen, P.; Reynolds, R. T.; Peale, S. J.

    1980-01-01

    The possibility that tidal dissipation in a thin ice crust was sufficient to preserve liquid water on Jupiter's satellite Europa was suggested by Cassen et al. (1979). However, their calculation of the tidal heating rate for that situation is in error; for the same parameter values, the actual heating rate would be much less than given in their paper. Thus, their conclusion regarding the possibility that liquid water exists today on Europa is considerably weakened. This paper corrects the calculation of the tidal dissipation rate in a Europan ice crust, and discusses the implications for Europa's thermal history, and clarifies certain aspects of the tidal heating problem.

  11. STELLAR POPULATIONS IN COMPACT GALAXY GROUPS: A MULTI-WAVELENGTH STUDY OF HCGs 16, 22, AND 42, THEIR STAR CLUSTERS, AND DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.

    2013-06-20

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to bemore » double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 ''associates'' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.« less

  12. Stellar Populations in Compact Galaxy Groups: a Multi-wavelength Study of HCGs 16, 22, and 42, Their Star Clusters, and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; hide

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  13. Tidal energetics: Studies with a barotropic model

    NASA Astrophysics Data System (ADS)

    Stewart, James Scott

    The tidal energy from luni-solar gravitational forcing is dissipated principally through the dissipation of oceanic tides. Recent estimates using disparate methods, including analysis of satellite orbits and the timing of ancient eclipses, now indicate that this dissipation totals approximately 3.5 terawatts. However, the mechanisms and spatial distribution of this dissipation is not yet fully understood. In this work, three different aspects of tidal energetics are investigated with a variable resolution barotropic tidal model. The distribution of tidal energy, dissipation and energy flux are examined using high resolution models of several marginal seas: the European shelf, the Sea of Okhotsk, the Yellow and East China Seas, the South China Sea and the Bering Sea. Most modern tide models dissipate tidal energy with a quadratic friction parameterization of bottom friction. Since such dissipation depends nonlinearly on the velocity of the tidal current, these models dissipate primarily in shallow seas where current magnitudes are high. Without assimilating observational data, such tidal models have unreasonably high levels of tidal-period averaged kinetic and potential energies. I have added a linear friction parameterization to the traditional quadratic formulation and am able to obtain realistic tidal energy levels with an unassimilated model. The resulting model is used to investigate the tidal energetics of the recent geological past when sea level was 50 meters higher and 120 meters lower than at the present time. Long-period tides are of small enough amplitude that their energetics are an almost negligible part of the total tidal energy budget. However, the behavior of these tides yields insights into the response of the ocean to large scale forcing. We have modeled the lunar fortnightly (M f) and lunar monthly (Mm) tidal components and determined that the ratio of the Mf potential-to-kinetic energy ratio to that of Mm is about 3.9, consistent with values

  14. White Dwarf Critical Tests for Modified Gravity.

    PubMed

    Jain, Rajeev Kumar; Kouvaris, Chris; Nielsen, Niklas Grønlund

    2016-04-15

    Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique setup to test beyond Horndeski theories of G^{3} type. We obtain stringent and independent constraints on the parameter ϒ characterizing the deviations from Newtonian gravity using the mass-radius relation, the Chandrasekhar mass limit, and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on ϒ than red and brown dwarfs.

  15. The origin of neap-spring tidal cycles

    USGS Publications Warehouse

    Kvale, E.P.

    2006-01-01

    The origin of oceanic tides is a basic concept taught in most introductory college-level sedimentology/geology, oceanography, and astronomy courses. Tides are typically explained in the context of the equilibrium tidal theory model. Yet this model does not take into account real tides in many parts of the world. Not only does the equilibrium tidal model fail to explicate amphidromic circulation, it also does not explain diurnal tides in low latitude positions. It likewise fails to explain the existence of tide-dominated areas where neap-spring cycles are synchronized with the 27.32-day orbital cycle of the Moon (tropical month), rather than with the more familiar 29.52-day cycle of lunar phases (synodic month). Both types of neap-spring cycles can be recognized in the rock record. A complete explanation of the origin of tides should include a discussion of dynamic tidal theory. In the dynamic tidal model, tides resulting from the motions of the Moon in its orbit around the Earth and the Earth in its orbit around the Sun are modeled as products of the combined effects of a series of phantom satellites. The movement of each of these satellites, relative to the Earth's equator, creates its own tidal wave that moves around an amphidromic point. Each of these waves is referred to as a tidal constituent. The geometries of the ocean basins determine which of these constituents are amplified. Thus, the tide-raising potential for any locality on Earth can be conceptualized as the result of a series of tidal constituents specific to that region. A better understanding of tidal cycles opens up remarkable opportunities for research on tidal deposits with implications for, among other things, a more complete understanding of the tidal dynamics responsible for sediment transport and deposition, changes in Earth-Moon distance through time, and the possible influences tidal cycles may exert on organisms. ?? 2006 Elsevier B.V. All rights reserved.

  16. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D., E-mail: henning@fas.harvard.ed

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and themore » Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.« less

  17. L' AND M' Photometry Of Ultracool Dwarfs

    NASA Technical Reports Server (NTRS)

    Marley, M. S.; Tsvetanov, Z. I.; Vrba, F. J.; Henden, A. A.; Luginbuhl, C. B.

    2004-01-01

    We have compiled L' (3.4-4.1 microns) and M' (4.6- 4.8 microns) photometry of 63 single and binary M, L, and T dwarfs obtained at the United Kingdom Infrared Telescope using the Mauna Kea Observatory filter set. This compilation includes new L' measurements of eight L dwarfs and 13 T dwarfs and new M' measurements of seven L dwarfs, five T dwarfs, and the M1 dwarf Gl 229A. These new data increase by factors of 0. 6 and 1.6, respectively, the numbers of ultracool dwarfs T (sub eff) dwarfs whose flux-calibrated JHK spectra, L' photometry, and trigonometric parallaxes are available, and we estimate these quantities for nine other dwarfs whose parallaxes and flux-calibrated spectra have been obtained. BC(SUB K) is a well-behaved function of near-infrared spectral type with a dispersion of approx. 0.1 mag for types M6-T5 it is significantly more scattered for types T5-T9. T (sub eff) declines steeply and monotonically for types M6-L7 and T4-T9, but it is nearly constant at approx. 1450 K for types L7-T4 with assumed ages of approx. 3 Gyr. This constant T(sub eff) is evidenced by nearly unchanging values of L'-M' between types L6 and T3. It also supports recent models that attribute the changing near-infrared luminosities and spectral features across the L-T transition to the rapid migration, disruption, and/or thinning of condensate clouds over a narrow range of T(sub eff). The L' and M' luminosities of early-T dwarfs do not exhibit the pronounced humps or inflections previously noted in l through K bands, but insufficient data exist for types L6-T5 to assert that M(Sub L') and M(sub M') are strictly monotonic within this range of typew. We compare the observed K, L', and M' luminosities of L and T dwarfs in our sample with those predicted by precipitation-cloud-free models for varying surface gravities and sedimentation efficiencies.

  18. Dwarf galaxy populations in present-day galaxy clusters - II. The history of early-type and late-type dwarfs

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Weinmann, Simone M.; Janz, Joachim; Meyer, Hagen T.

    2013-06-01

    How did the dwarf galaxy population of present-day galaxy clusters form and grow over time? We address this question by analysing the history of dark matter subhaloes in the Millennium II cosmological simulation. A semi-analytic model serves as the link to observations. We argue that a reasonable analogue to early morphological types or red-sequence dwarf galaxies are those subhaloes that experienced strong mass-loss, or alternatively those that have spent a long time in massive haloes. This approach reproduces well the observed morphology-distance relation of dwarf galaxies in the Virgo and Coma clusters, and thus provides insight into their history. Over their lifetime, present-day late types have experienced an amount of environmental influence similar to what the progenitors of dwarf ellipticals had already experienced at redshifts above 2. Therefore, dwarf ellipticals are more likely to be a result of early and continuous environmental influence in group- and cluster-size haloes, rather than a recent transformation product. The observed morphological sequences of late-type and early-type galaxies have developed in parallel, not consecutively. Consequently, the characteristics of today's late-type galaxies are not necessarily representative for the progenitors of today's dwarf ellipticals. Studies aiming to reproduce the present-day dwarf population thus need to start at early epochs, model the influence of various environments, and also take into account the evolution of the environments themselves.

  19. Relativistic theory of tidal Love numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binnington, Taylor; Poisson, Eric

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and providemore » precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.« less

  20. 1I/‘Oumuamua as a Tidal Disruption Fragment from a Binary Star System

    NASA Astrophysics Data System (ADS)

    Ćuk, Matija

    2018-01-01

    1I/‘Oumuamua is the first known interstellar small body, probably being only about 100 m in size. Against expectations based on comets, ‘Oumuamua does not show any activity and has a very elongated figure, and it also exhibits undamped rotational tumbling. In contrast, ‘Oumuamua’s trajectory indicates that it was moving with the local stars, as expected from a low-velocity ejection from a relatively nearby system. Here, I assume that ‘Oumuamua is typical of 100 m interstellar objects and speculate on its origins. I find that giant planets are relatively inefficient at ejecting small bodies from inner solar systems of main-sequence stars, and that binary systems offer a much better opportunity for ejections of non-volatile bodies. I also conclude that ‘Oumuamua is not a member of a collisional population, which could explain its dramatic difference from small asteroids. I observe that 100 m small bodies are expected to carry little mass in realistic collisional populations and that occasional events, when whole planets are disrupted in catastrophic encounters, may dominate the interstellar population of 100 m fragments. Unlike the Sun or Jupiter, red dwarf stars are very dense and are capable of thoroughly tidally disrupting terrestrial planets. I conclude that ‘Oumuamua may have originated as a fragment from a planet that was tidally disrupted and then ejected by a dense member of a binary system, which could explain its peculiarities.

  1. The RSA survey of dwarf galaxies, 1: Optical photometry

    NASA Technical Reports Server (NTRS)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    We present detailed surface photometry, based on broad B-band charge coupled device (CCD) images, of about 80 dwarf galaxies. Our sample represents approximately 10% of all dwarf galaxies identified in the vicinity of Revised Shapley-Ames (RSA) galaxies on high resolution blue photographic plates, referred to as the RSA survey of dwarf galaxies. We derive global properties and radial surface brightness profiles, and examine the morphologies. The radial surface brightness profiles of dwarf galaxies, whether early or late type, display the same varieties in shape and complexity as those of classical giant galaxies. Only a few are well described by a pure r(exp 1/4) law. Exponential profiles prevail. Features typical of giant disk galaxies, such as exponential profiles with a central depression, lenses, and even, in one case (IC 2041), a relatively prominent bulge are also found in dwarf galaxies. Our data suggest that the central region evolves from being bulge-like, with an r(exp 1/4) law profile, in bright galaxies to a lens-like structure in dwarf galaxies. We prove detailed surface photometry to be a helpful if not always sufficient tool in investigating the structure of dwarf galaxies. In many cases kinematic information is needed to complete the picture. We find the shapes of the surface brightness profiles to be loosely associated with morphological type. Our sample contains several new galaxies with properties intermediate between those of giant and dwarf ellipticals (but no M32-like objects). This shows that such intermediate galaxies exist so that at least a fraction of early-type dwarf ellipticals is structurally related to early-type giants instead of belonging to a totally unrelated, disjunct family. This supports an origin of early-type dwarf galaxies as originally more massive systems that acquired their current morphology as a result of substantial, presumable supernova-driven, mass loss. On the other hand, several early-type dwarfs in our sample are

  2. Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain

    NASA Astrophysics Data System (ADS)

    Olariu, Cornel; Steel, Ronald J.; Dalrymple, Robert W.; Gingras, Murray K.

    2012-11-01

    The Lower Eocene Baronia Formation in the Ager Basin is interpreted as a series of stacked compound dunes confined within a tectonically generated embayment or tidal seaway. This differs from the previous interpretation of lower Baronia sand bodies as tidal bars in the front of a delta. The key architectural building block of the succession, the deposit of a single compound dune, forms a 1-3 m-thick, upward coarsening succession that begins with highly bioturbated, muddy, very fine to fine grained sandstone that contains an open-marine Cruziana ichnofacies. This is overlain gradationally by ripple-laminated sandstone that is commonly bioturbated and contains mud drapes. The succession is capped by fine- to coarse-grained sandstones that contain both planar and trough cross-strata with unidirectional or bi-directional paleocurrent directions and occasional thin mud drapes on the foresets. The base of a compound dune is gradational where it migrated over muddy sandstone deposited between adjacent dunes, but is sharp and erosional where it migrated over the stoss side of a previous compound dune. The cross strata that formed by simple superimposed dunes dip in the same direction as the inclined master bedding planes within the compound dune, forming a forward-accretion architecture. This configuration is the fundamental reason why these sandbodies are interpreted as compound tidal dunes rather than as tidal bars, which, in contrast, generate lateral-accretion architecture. In the Baronia, fields of compound dunes generated tabular sandbodies 100s to 1000s of meters in extent parallel to the paleocurrent direction and up to 6 m thick that alternate vertically with highly bioturbated muddy sandstones (up to 10 m thick) that represent the low-energy fringes of the dune fields or periods of high sea level when current speeds decreased. Each cross-stratified sandstone sheet (compound-dune complexes) contains overlapping lenticular "shingles" formed by individual compound

  3. Recent progress in tidal modeling

    NASA Technical Reports Server (NTRS)

    Vial, F.; Forbes, J. M.

    1989-01-01

    Recent contributions to tidal theory during the last five years are reviewed. Specific areas where recent progress has occurred include: the action of mean wind and dissipation on tides, interactions of other waves with tides, the use of TGCM in tidal studies. Furthermore, attention is put on the nonlinear interaction between semidiurnal and diurnal tides. Finally, more realistic thermal excitation and background wind and temperature models have been developed in the past few years. This has led to new month-to-month numerical simulations of the semidiurnal tide. Some results using these models are presented and compared with ATMAP tidal climatologies.

  4. Investigating the FUV Emission of Young M dwarfs with FUMES: the Far Ultraviolet M-dwarf Evolution Survey

    NASA Astrophysics Data System (ADS)

    Pineda, John

    2016-10-01

    M dwarf stars have become attractive candidates for exoplanet searches and will be a main focus of the upcoming TESS mission, with the continued search for nearby potentially habitable worlds. However, the atmospheric characterization of these exoplanetary systems depends critically on the high energy stellar radiation environment from X-ray to NUV. Strong radiation at these energies can lead to atmospheric mass loss and is a strong driver of photochemistry in planetary atmospheres. Recently, the MUSCLES Treasury Survey (Cycles 19, 22) provided the first comprehensive assessment of the high energy radiation field around old, planet hosting M dwarfs. However, the habitability and potential for such exoplanetary atmospheres to develop life also depends on the evolution of the atmosphere and hence the evolution of the incident radiation field. The strong high energy spectrum of young M dwarfs can have devastating consequences for the potential habitability of a given system. We, thus, propose the Far Ultraviolet M-dwarf Evolution Survey (FUMES) to measure the strong FUV coronal/chromospheric emission features of young M dwarfs (12 - 650 Myr), e.g. He II, C IV, and S IV. FUMES will observe objects with a wide range of rotation rates to directly connect the emission features to the evolution of coronal heating and upper atmospheric structure, and provide observational benchmarks at young ages for models of M dwarf upper atmospheres. Building on results from MUSCLES, we will be able to estimate the whole high energy radiation field and establish the evolutionary picture of the incident radiation throughout the lifetime of exoplanetary systems around early-mid M dwarf hosts.

  5. A Spectral Analysis of a Rare "Dwarf Eat Dwarf" Cannibalism Event

    NASA Astrophysics Data System (ADS)

    Theakanath, Kuriakose; Toloba, E.; Guhathakurta, P.; Romanowsky, A. J.; Ramachandran, N.; Arnold, J.

    2014-01-01

    We have used Keck/DEIMOS to conduct the first detailed spectroscopic study of the recently discovered stellar stream in the Large Magellanic Cloud analog NGC 4449. Martinez-Delgado et al. (2012), using the tip of the red giant branch (TRGB), found that both objects, the stream and NGC 4449, are at the same distance, which suggests that this stream is the remnant of the first ongoing dwarf-dwarf cannibalism event known so far. Learning about the orbital properties of this event is a powerful tool to constrain the physical conditions involved in dwarf-dwarf merger events. The low surface-brightness of this structure makes impossible to obtain integrated light spectroscopic measurements, and its distance (3.8 Mpc) is too large as to observe stars individually. In the color-magnitude diagram of the stellar stream there is an excess of objects brighter than the TRGB which are potential star blends. We designed our DEIMOS mask to contain as many of these objects as possible and, while some of them turned out to be background galaxies, a handful happened to be star blends in the stream. Our velocity measurements along the stream prove that it is gravitationally bound to NGC 4449 and put strong constraints on the orbital properties of the infall. This research was carried out under the auspices of UCSC's Science Internship Program. We thank the National Science Foundation for funding support. ET was supported by a Fulbright fellowship.

  6. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, HongBae

    2015-08-01

    We performed an analysis of the structure of nearby dwarf galaxies based on a 2-dimensional decomposition of galaxy images using GALFIT. The present sample consists of ~1,100 dwarf galaxies with redshift less than z = 0.01, which is is derived from the morphology catalog of the Visually classified galaxies in the local universe (Ann, Seo, and Ha 2015). In this catalog, dwarf galaxies are divided into 5 subtypes: dS0, dE, dSph, dEbc, dEblue with distinction of the presence of nucleation in dE, dSph, and dS0. We found that dSph and dEblue galaxies are fainter than other subtypes of dwarf galaxies. In most cases, single component, represented by the Sersic profile with n=1~1.5, well describes the luminosity distribution of dwarf galaxies in the present sample. However, a significant fraction of dS0, dEbc, and dEbue galaxies show sub-structures such as spiral arms and rings. We will discuss the morphology dependent evolutionary history of the local dwarf galaxies.

  7. Estimating the Mass of the Milky Way Using the Ensemble of Classical Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Patel, Ekta; Besla, Gurtina; Mandel, Kaisey; Sohn, Sangmo Tony

    2018-04-01

    High precision proper motion (PM) measurements are available for approximately 20% of all known dwarf satellite galaxies of the Milky Way (MW). Here we extend the Bayesian framework of Patel et al. to include all MW satellites with measured 6D phase-space information and apply it with the Illustris-Dark simulation to constrain the MW’s mass. Using the properties of each MW satellite individually, we find that the scatter among mass estimates is reduced when the magnitude of specific orbital angular momentum (j) is adopted, rather than their combined instantaneous positions and velocities. We also find that high j satellites (i.e., Leo II) constrain the upper limits for the MW’s mass and low j satellites, rather than the highest speed satellites (i.e., Leo I and Large Magellanic Cloud), set the lower mass limits. When j of all classical satellites is used to simultaneously estimate the MW’s mass, we conclude the halo mass is 0.85+0.23 ‑0.26 × 1012 {M}ȯ (including Sagittarius dSph) and 0.96+0.29 ‑0.28 × 1012 {M}ȯ (excluding Sagittarius dSph), cautioning that low j satellites on decaying orbits like Sagittarius dSph may bias the distribution. These estimates markedly reduce the current factor of two spread in the mass range of the MW. We also find a well-defined relationship between host halo mass and satellite j distribution, which yields the prediction that upcoming PMs for ultra-faint dwarfs should reveal j within 5 × 103–104 kpc km s‑1. This is a promising method to significantly constrain the cosmologically expected mass range for the MW and eventually M31 as more satellite PMs become available.

  8. Probing M Dwarf Model-Data Discrepancies via Precise, Empirical Characterization of a Long-Period F+M Binary

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel; Gaudi, Scott; Beatty, Thomas; Siverd, Robert

    2018-05-01

    Double-lined eclipsing binaries (EBs) have been the gold standard for direct, precise (less than a few percent), and accurate measurements of stellar masses and radii. However, with the availability of Gaia parallaxes and nearly complete spectral energy distributions (SEDs) of millions of stars, it will soon be possible to make such measurements for the much larger number of single-lined EBs such as high mass-ratio systems and transiting planets, both of which are routinely found by transit surveys. Combining high-precision eclipse photometry and radial velocity (RV) observations of the primary star enables measurements of the primary star's density, the ratio of stellar radii, and a combination of the stars' masses. Broad-band photometry from the ultraviolet to the infrared plus a Gaia parallax and an effective temperature of the primary from either the SED or high-resolution spectra, allow one to measure the radius (and mass via the density) of the primary. The radius and mass of the secondary can then be determined in the usual way with the radius ratio and RVs, and the companion's effective temperature can be determined from a secondary eclipse measurement and the primary star's effective temperature. For single-lined EBs, the precision of ingress/egress duration measurements dominates the error budget of the masses and companion radius. We propose to observe one primary and secondary eclipse of the F+M binary TYC 4223-1012-1, an M dwarf on a 16.5-day orbit around an F dwarf. Ground-based data poorly constrain TYC 4223-1012-1's masses due to the near-impossibility of observing the full 10-hr eclipse from the ground. By combining extant RV and SED data with the Spitzer data, we expect to measure the mass, radius, and effective temperature of the M dwarf to a few percent. This is comparable to the precision of the best-characterized literature M dwarfs, but at an orbital period far beyond the majority of such systems, where tidal effects should be negligible.

  9. Simultaneous Monitoring of X-ray and Radio Variability in Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Haggard, Daryl; Capellupo, Daniel M.; Choux, Nicolas; Baganoff, Frederick K.; Bower, Geoffrey C.; Cotton, William D.; Degenaar, Nathalie; Dexter, Jason; Falcke, Heino; Fragile, P. Christopher Christopher; Heinke, Craig O.; Law, Casey J.; Markoff, Sera; Neilsen, Joseph; Ponti, Gabriele; Rea, Nanda; Yusef-Zadeh, Farhad

    2017-08-01

    We report on joint X-ray/radio campaigns targeting Sagittarius A*, including 9 contemporaneous Chandra and VLA observations. These campaigns are the most extensive of their kind and have allowed us to test whether the black hole’s variations in different parts of the electromagnetic spectrum are due to the same physical processes. We detect significant radio variability peaking >176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also identify other potentially associated X-ray and radio variability, with radio peaks appearing <80 minutes after weaker X-ray flares. These results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and at radio wavelengths are not temporally correlated, and show that the radio variations occurring around the time of X-ray flaring are not significantly greater than the overall radio flux variations. We also cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray-radio monitoring of Sgr A*.

  10. Catalog of worldwide tidal bore occurrences and characteristics

    USGS Publications Warehouse

    Bartsch-Winkler, S.; Lynch, David K.

    1988-01-01

    Documentation of tidal bore phenomena occurring throughout the world aids in defining the typical geographical setting of tidal bores and enables prediction of their occurrence in remote areas. Tidal bores are naturally occurring, tidally generated, solitary, moving water waves up to 6 meters in height that form upstream in estuaries with semidiurnal or nearly semidiurnal tide ranges exceeding 4 meters. Estuarine settings that have tidal bores typically include meandering fluvial systems with shallow gradients. Bores are well defined, having amplitudes greater than wind- or turbulence-caused waves, and may be undular or breaking. Formation of a bore is dependent on depth and velocity of the incoming tide and river outflow. Bores may occur in series (in several channels) or in succession (marking each tidal pulse). Tidal bores propagate up tidal estuaries a greater distance than the width of the estuary and most occur within 100 kilometers upstream of the estuary mouth. Because they are dynamic, bores cause difficulties in some shipping ports and are targets for eradication. Tidal bores are known to occur, or to have occurred in the recent past, in at least 67 localities in 16 countries at all latitudes, including every continent except Antarctica. Parts of Argentina, Canada, Central America, China, Mozambique, Madagascar, Northern Europe, North and South Korea, the United Kingdom, and the U.S.S.R. probably have additional undiscovered or unreported tidal bores. In Turnagain Arm estuary in Alaska, bores cause an abrupt increase in salinity, suspended sediment, surface character, and bottom pressure, a decrease in illumination of the water column, and a change in water temperature. Tidal bores occurring in Turnagain Arm, Alaska, have the

  11. Tidally influenced alongshore circulation at an inlet-adjacent shoreline

    USGS Publications Warehouse

    Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.

    2013-01-01

    The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.

  12. Tidal influence on subtropical estuarine methane emissions

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period

  13. Geomorphic Modeling of Macro-Tidal Embayment with Extensive Tidal Flats: Skagit Bay, Washington

    DTIC Science & Technology

    2010-09-30

    Geomorphic modeling of macro-tidal embayment with extensive tidal flats: Skagit Bay , Washington Lyle Hibler Battelle-Pacific Northwest Division...Marine Sciences Laboratory Sequim , WA 98382 phone: (360) 681-3616 fax: (360) 681-4559 email: lyle.hibler@pnl.gov Adam Maxwell Battelle-Pacific...Northwest Division Marine Sciences Laboratory Sequim , WA 98382 phone: (360) 681-4591 fax: (360) 681-4559 email: adam.maxwell@pnl.gov Award

  14. A Survey for Hα Emission from Late L Dwarfs and T Dwarfs

    NASA Astrophysics Data System (ADS)

    Pineda, J. Sebastian; Hallinan, Gregg; Kirkpatrick, J. Davy; Cotter, Garret; Kao, Melodie M.; Mooley, Kunal

    2016-07-01

    Recently, studies of brown dwarfs have demonstrated that they possess strong magnetic fields and have the potential to produce radio and optical auroral emissions powered by magnetospheric currents. This emission provides the only window on magnetic fields in the coolest brown dwarfs and identifying additional benchmark objects is key to constraining dynamo theory in this regime. To this end, we conducted a new red optical (6300-9700 Å) survey with the Keck telescopes looking for Hα emission from a sample of late L dwarfs and T dwarfs. Our survey gathered optical spectra for 29 targets, 18 of which did not have previous optical spectra in the literature, greatly expanding the number of moderate-resolution (R ˜ 2000) spectra available at these spectral types. Combining our sample with previous surveys, we confirm an Hα detection rate of 9.2±{}2.13.5% for L and T dwarfs in the optical spectral range of L4-T8. This detection rate is consistent with the recently measured detection rate for auroral radio emission from Kao et al., suggesting that geometrical selection effects due to the beaming of the radio emission are small or absent. We also provide the first detection of Hα emission from 2MASS 0036+1821, previously notable as the only electron cyclotron maser radio source without a confirmed detection of Hα emission. Finally, we also establish optical standards for spectral types T3 and T4, filling in the previous gap between T2 and T5. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  15. Reflection features in the Galactic Center and past activity of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Clavel, Maïca; Terrier, Regis; Goldwurm, Andrea; Morris, Mark; Jin, Chichuan; Ponti, Gabriele; Chuard, Dimitri

    2016-07-01

    X-ray observations carried out over the past two decades have captured an increasing number of reflection features within the molecular clouds located in the inner regions of our Galaxy. The intensity of these structures along with the correlated variations which are detected over the entire central molecular zone are strong evidence that this diffuse emission is created by the past activity of the supermassive black hole at the Galactic center, Sagittarius A*. In particular, within the last centuries, Sgr A* is likely to have experienced several short outbursts during which the black hole was at least a million times brighter than today. However, the precise description of the corresponding past catastrophic events is difficult to assess, mainly because the properties of the reflection features that they create while propagating away from Sgr A* depend on the line-of-sight distance, the geometry, and the size of the reflecting clouds, all of which are poorly known. I will review the different attempts to reconstruct Sgr A*'s past activity from the constraints obtained through the observation of the reflection features in the Galactic center, including the current Chandra monitoring.

  16. Hunting for brown dwarf binaries with X-Shooter

    NASA Astrophysics Data System (ADS)

    Manjavacas, E.; Goldman, B.; Alcalá, J. M.; Zapatero-Osorio, M. R.; Béjar, B. J. S.; Homeier, D.; Bonnefoy, M.; Smart, R. L.; Henning, T.; Allard, F.

    2015-05-01

    The refinement of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Peculiar brown dwarf spectra or discrepancy between optical and near-infrared spectral type classification of brown dwarfs may indicate unresolved brown dwarf binary systems. We obtained medium-resolution spectra of 22 brown dwarfs of potential binary candidates using X-Shooter at the VLT. We aimed to select brown dwarf binary candidates. We also tested whether BT-Settl 2014 atmospheric models reproduce the physics in the atmospheres of these objects. To find different spectral type spectral binaries, we used spectral indices and we compared the selected candidates to single spectra and composition of two single spectra from libraries, to try to reproduce our X-Shooter spectra. We also created artificial binaries within the same spectral class, and we tried to find them using the same method as for brown dwarf binaries with different spectral types. We compared our spectra to the BT-Settl models 2014. We selected six possible candidates to be combination of L plus T brown dwarfs. All candidates, except one, are better reproduced by a combination of two single brown dwarf spectra than by a single spectrum. The one-sided F-test discarded this object as a binary candidate. We found that we are not able to find the artificial binaries with components of the same spectral type using the same method used for L plus T brown dwarfs. Best matches to models gave a range of effective temperatures between 950 K and 1900 K, a range of gravities between 4.0 and 5.5. Some best matches corresponded to supersolar metallicity.

  17. A DARK SPOT ON A MASSIVE WHITE DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilic, Mukremin; Gianninas, Alexandros; Curd, Brandon

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips mustmore » be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.« less

  18. The T dwarf population in the UKIDSS LAS .

    NASA Astrophysics Data System (ADS)

    Cardoso, C. V.; Burningham, B.; Smith, L.; Smart, R.; Pinfield, D.; Magazzù, A.; Ghinassi, F.; Lattanzi, M.

    We present the most recent results from the UKIDSS Large Area Survey (LAS) census and follow up of new T brown dwarfs in the local field. The new brown dwarf candidates are identified using optical and infrared survey photometry (UKIDSS and SDSS) and followed up with narrow band methane photometry (TNG) and spectroscopy (Gemini and Subaru) to confirm their brown dwarf nature. Employing this procedure we have discovered several dozens of new T brown dwarfs in the field. Using methane differential photometry as a proxy for spectral type for T brown dwarfs has proved to be a very efficient technique. This method can be useful in the future to reliably identify brown dwarfs in deep surveys that produce large samples of faint targets where spectroscopy is not feasible for all candidates. With this statistical robust sample of the mid and late T brown dwarf field population we were also able to address the discrepancies between the observed field space density and the expected values given the most accepted forms of the IMF of young clusters.

  19. Tidal triggering of moonquakes.

    NASA Technical Reports Server (NTRS)

    Hamilton, W. L.

    1972-01-01

    It is argued that the moonquakes recorded by sensors at the Apollo 12 landing site between December 1969 and December 1970, and which according to Latham et al. (1971) are believed to be triggered by the anomalistic lunar tide, could be triggered just as well by the latitudinal (or declination) tidal wave. Considerations are set forth which indicate that a combined latitudinal-anomalistic tidal mechanism is supported by Latham's data.

  20. Stormy seas in Sagittarius

    NASA Image and Video Library

    2017-12-08

    Some of the most breathtaking views in the Universe are created by nebulae — hot, glowing clouds of gas. This new NASA/ESA Hubble Space Telescope image shows the centre of the Lagoon Nebula, an object with a deceptively tranquil name. The region is filled with intense winds from hot stars, churning funnels of gas, and energetic star formation, all embedded within an intricate haze of gas and pitch-dark dust. Nebulae are often named based on their key characteristics — particularly beautiful examples include the Ring Nebula (heic1310), the Horsehead Nebula (heic1307) and the Butterfly Nebula (heic0910). This new NASA/ESA Hubble Space Telescope image shows the centre of the Lagoon Nebula, otherwise known as Messier 8, in the constellation of Sagittarius (The Archer). The inspiration for this nebula’s name may not be immediately obvious — this is because the image captures only the very heart of the nebula. The Lagoon Nebula’s name becomes much clearer in a wider field view (opo0417i) when the broad, lagoon-shaped dust lane that crosses the glowing gas of the nebula can be made out. Another clear difference between this new image and others is that this image combines both infrared and optical light rather than being purely optical(heic1015). Infrared light cuts through thick, obscuring patches of dust and gas, revealing the more intricate structures underneath and producing a completely different landscape [1]. However, even in visible light, the tranquil name remains misleading as the region is packed full of violent phenomena. The bright star embedded in dark clouds at the centre of this image is known as Herschel 36. This star is responsible for sculpting the surrounding cloud, stripping away material and influencing its shape. Herschel 36 is the main source of ionising radiation [2] for this part of the Lagoon Nebula. This central part of the Lagoon Nebula contains two main structures of gas and dust connected by wispy twisters, visible in the middle

  1. Tidal disruption of fuzzy dark matter subhalo cores

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David

    2018-03-01

    We study tidal stripping of fuzzy dark matter (FDM) subhalo cores using simulations of the Schrödinger-Poisson equations and analyze the dynamics of tidal disruption, highlighting the differences with standard cold dark matter. Mass loss outside of the tidal radius forces the core to relax into a less compact configuration, lowering the tidal radius. As the characteristic radius of a solitonic core scales inversely with its mass, tidal stripping results in a runaway effect and rapid tidal disruption of the core once its central density drops below 4.5 times the average density of the host within the orbital radius. Additionally, we find that the core is deformed into a tidally locked ellipsoid with increasing eccentricities until it is completely disrupted. Using the core mass loss rate, we compute the minimum mass of cores that can survive several orbits for different FDM particle masses and compare it with observed masses of satellite galaxies in the Milky Way.

  2. DUSTiNGS. III. Distribution of Intermediate-age and Old Stellar Populations in Disks and Outer Extremities of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Boyer, Martha L.; Mitchell, Mallory B.; Skillman, Evan D.; Gehrz, R. D.; Groenewegen, Martin A. T.; McDonald, Iain; Sloan, G. C.; van Loon, Jacco Th.; Whitelock, Patricia A.; Zijlstra, Albert A.

    2017-01-01

    We have traced the spatial distributions of intermediate-age and old stars in nine dwarf galaxies in the distant parts of the Local Group, using multi-epoch 3.6 and 4.5 μm data from the DUST in Nearby Galaxies with Spitzer (DUSTiNGS) survey. Using complementary optical imaging from the Hubble Space Telescope, we identify the tip of the red giant branch (TRGB) in the 3.6 μm photometry, separating thermally pulsating asymptotic giant branch stars from the larger red giant branch populations. Unlike the constant TRGB in the I band, at 3.6 μm, the TRGB magnitude varies by ˜0.7 mag, making it unreliable as a distance indicator. The intermediate-age and old stars are well mixed in two-thirds of the sample, with no evidence of a gradient in the ratio of the intermediate-age to old stellar populations outside the central ˜1‧-2‧. Variable AGB stars are detected in the outer extremities of the galaxies, indicating that chemical enrichment from these dust-producing stars may occur in the outer regions of galaxies with some frequency. Theories of structure formation in dwarf galaxies must account for the lack of radial gradients in intermediate-age populations and the presence of these stars in the outer extremities of dwarfs. Finally, we identify unique features in individual galaxies, such as extended tidal features in Sex A and Sag DIG and a central concentration of AGB stars in the inner regions of NGC 185 and NGC 147.

  3. Contribution to the theory of tidal oscillations of an elastic earth. External tidal potential

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1974-01-01

    The differential equations of the tidal oscillations of the earth were established under the assumption that the interior of the earth is laterally inhomogeneous. The theory was developed using vectorial and dyadic symbolism to shorten the exposition and to reduce the differential equations to a symmetric form convenient for programming and for numerical integration. The formation of tidal buldges on the surfaces of discontinuity and the changes in the internal density produce small periodic variations in the exterior geopotential which are reflected in the motion of artificial satellites. The analoques of Love elastic parameters in the expansion of exterior tidal potential reflect the asymmetric and inhomogeneous structure of the interior of the earth.

  4. Tidal frequency estimation for closed basins

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1978-01-01

    A method was developed for determining the fundamental tidal frequencies for closed basins of water, by means of an eigenvalue analysis. The mathematical model employed, was the Laplace tidal equations.

  5. The L dwarf/T dwarf transition: Multiplicity, magnetic activity and mineral meteorology across the hydrogen burning limit

    NASA Astrophysics Data System (ADS)

    Burgasser, A. J.

    2013-02-01

    The transition between the L dwarf and T dwarf spectral classes is one of the most remarkable along the stellar/brown dwarf main sequence, separating sources with photospheres containing mineral condensate clouds from those containing methane and ammonia gases. Unusual characteristics of this transition include a 1 μm brightening between late L and early T dwarfs observed in both parallax samples and coeval binaries; a spike in the multiplicity fraction; evidence of increased photometric variability, possibly arising from patchy cloud structures; and a delayed transition for young, planetary-mass objects. All of these features can be explained if this transition is governed by the ``rapid'' (nonequlibrium) rainout of clouds from the photosphere, triggered by temperature, surface gravity, metallicity and (perhaps) rotational effects. While the underlying mechanism of this rainout remains under debate, the transition is now being exploited to discover and precisely characterize tight (<1 AU) very low-mass binaries that can be used to test brown dwarf evolutionary and atmospheric theories, and resolved binaries that further constrain the properties of this remarkable transition.

  6. A distinctly disorganised dwarf

    NASA Image and Video Library

    2016-03-28

    Despite being less famous than their elliptical and spiral galactic cousins, irregular dwarf galaxies, such as the one captured in this NASA/ESA Hubble Space Telescope image, are actually one of the most common types of galaxy in the Universe. Known as UGC 4459, this dwarf galaxy is located approximately 11 million light-years away in the constellation of Ursa Major (The Great Bear), a constellation that is also home to the Pinwheel Galaxy (M101), the Owl Nebula (M97), Messier 81, Messier 82 and several other galaxies all part of the M81 group. UGC 4459’s diffused and disorganised appearance is characteristic of an irregular dwarf galaxy. Lacking a distinctive structure or shape, irregular dwarf galaxies are often chaotic in appearance, with neither a nuclear bulge — a huge, tightly packed central group of stars — nor any trace of spiral arms — regions of stars extending from the centre of the galaxy. Astronomers suspect that some irregular dwarf galaxies were once spiral or elliptical galaxies, but were later deformed by the gravitational pull of nearby objects. Rich with young blue stars and older red stars, UGC 4459 has a stellar population of several billion. Though seemingly impressive, this is small when compared to the 200 to 400 billion stars in the Milky Way! Observations with Hubble have shown that because of their low masses, star formation is very low compared to larger galaxies. Only very little of their original gas has been turned into stars. Thus, these small galaxies are interesting to study to better understand primordial environments and the star formation process.

  7. Tidal evolution of close binary asteroid systems

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.; Margot, Jean-Luc

    2010-12-01

    We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than 5 times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent. This work has possible implications for the determination of the Roche limit and for spin-state alteration during close flybys.

  8. Serendipitous discovery of a faint dwarf galaxy near a Local Volume dwarf

    NASA Astrophysics Data System (ADS)

    Makarova, L. N.; Makarov, D. I.; Antipova, A. V.; Karachentsev, I. D.; Tully, R. B.

    2018-03-01

    A faint dwarf irregular galaxy has been discovered in the HST/ACS field of LV J1157+5638. The galaxy is resolved into individual stars, including the brightest magnitude of the red giant branch. The dwarf is very likely a physical satellite of LV J1157+5638. The distance modulus of LV J1157+5638 using the tip of the red giant branch (TRGB) distance indicator is 29.82 ± 0.09 mag (D = 9.22 ± 0.38 Mpc). The TRGB distance modulus of LV J1157+5638 sat is 29.76 ± 0.11 mag (D = 8.95 ± 0.42 Mpc). The distances to the two galaxies are consistent within the uncertainties. The projected separation between them is only 3.9 kpc. LV J1157+5638 has a total absolute V magnitude of -13.26 ± 0.10 and linear Holmberg diameter of 1.36 kpc, whereas its faint satellite LV J1157+5638 sat has MV = -9.38 ± 0.13 mag and Holmberg diameter of 0.37 kpc. Such a faint dwarf was discovered for the first time beyond the nearest 4 Mpc from us. The presence of main-sequence stars in both galaxies unambiguously indicates the classification of the objects as dwarf irregulars with recent or ongoing star formation events in both galaxies.

  9. Stellar Population Properties of Ultracompact Dwarfs in M87: A Mass–Metallicity Correlation Connecting Low-metallicity Globular Clusters and Compact Ellipticals

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Xin; Puzia, Thomas H.; Peng, Eric W.; Liu, Chengze; Côté, Patrick; Ferrarese, Laura; Duc, Pierre-Alain; Eigenthaler, Paul; Lim, Sungsoon; Lançon, Ariane; Muñoz, Roberto P.; Roediger, Joel; Sánchez-Janssen, Ruben; Taylor, Matthew A.; Yu, Jincheng

    2018-05-01

    We derive stellar population parameters for a representative sample of ultracompact dwarfs (UCDs) and a large sample of massive globular clusters (GCs) with stellar masses ≳ 106 M ⊙ in the central galaxy M87 of the Virgo galaxy cluster, based on model fitting to the Lick-index measurements from both the literature and new observations. After necessary spectral stacking of the relatively faint objects in our initial sample of 40 UCDs and 118 GCs, we obtain 30 sets of Lick-index measurements for UCDs and 80 for GCs. The M87 UCDs have ages ≳ 8 Gyr and [α/Fe] ≃ 0.4 dex, in agreement with previous studies based on smaller samples. The literature UCDs, located in lower-density environments than M87, extend to younger ages and smaller [α/Fe] (at given metallicities) than M87 UCDs, resembling the environmental dependence of the stellar nuclei of dwarf elliptical galaxies (dEs) in the Virgo cluster. The UCDs exhibit a positive mass–metallicity relation (MZR), which flattens and connects compact ellipticals at stellar masses ≳ 108 M ⊙. The Virgo dE nuclei largely follow the average MZR of UCDs, whereas most of the M87 GCs are offset toward higher metallicities for given stellar masses. The difference between the mass–metallicity distributions of UCDs and GCs may be qualitatively understood as a result of their different physical sizes at birth in a self-enrichment scenario or of galactic nuclear cluster star formation efficiency being relatively low in a tidal stripping scenario for UCD formation. The existing observations provide the necessary but not sufficient evidence for tidally stripped dE nuclei being the dominant contributors to the M87 UCDs.

  10. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the

  11. Mystery of a Dimming White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    In the wake of the recent media attention over an enigmatic, dimming star, another intriguing object has been discovered: J1529+2928, a white dwarf that periodically dims. This mystery, however, may have a simple solution with interesting consequences for future surveys of white dwarfs.Unexpected VariabilityJ1529+2928 is an isolated white dwarf that appears to have a mass of slightly more than the Sun. But rather than radiating steadily, J1529+2928 dims once every 38 minutes almost as though it were being eclipsed.The team that discovered these variations, led by Mukremin Kilic (University of Oklahoma), used telescopes at the Apache Point Observatory and the McDonald Observatory to obtain follow-up photometric data of J1529+2928 spread across 66 days. The team also took spectra of the white dwarf with the Gemini North telescope.Kilic and collaborators then began, one by one, to rule out possible causes of this objects variability.Eliminating OptionsThe period of the variability is too long for J1529+2928 to be a pulsating white dwarf with luminosity variation caused by gravity-wave pulsations.The variability cant be due to an eclipse by a stellar or brown-dwarf companion, because there isnt any variation in J1529+2928s radial velocity.Its not due to the orbit of a solid-body planetary object; such a transit would be too short to explain observations.It cant be due to the orbit of a disintegrated planet; this wouldnt explain the light curves observed in different filters plus the light curve doesnt change over the 66-day span.Spotty SurfaceTop and middle two panels: light curves from three different nights observing J1529+2928s periodic dimming. Bottom panel: The Fourier transform shows a peak at 37.7 cycles/day (and another, smaller peak at its first harmonic). [Kilic et al. 2015]So what explanation is left? The authors suggest that J1529+2928s variability is likely caused by a starspot on the white dwarfs surface that rotates into and out of our view. Estimates

  12. Brown Dwarf Companion Frequencies and Dynamical Interactions

    NASA Astrophysics Data System (ADS)

    Sterzik, Michael F.; Durisen, Richard H.

    2003-06-01

    Numerical simulations are used to explore how gravitational interactions within young multiple star systems may determine the binary properties of brown dwarfs. We compare different scenarios for cluster formation and decay and find that brown dwarf binaries, although possible, generally have a low frequency. We also discuss the frequencies of brown dwarf companions to normal stars expected from these models.

  13. Limber Pine Dwarf Mistletoe (FIDL)

    Treesearch

    Jane E. Taylor; Robert L. Mathiason

    1999-01-01

    Limber pine dwarf mistletoe (Arceuthobium cyanocarpum (A. Nelson ex Rydberg) Coulter & Nelson) is a damaging parasite of limber pine (Pinus flexilis James), whitebark pine (P. albicaulis Engelm.), Rocky Mountain bristlecone pine (P. aristata Engelm.) and Great Basin bristlecone pine (P. longaeva D.K. Bailey). Limber pine dwarf mistletoe occurs in the Rocky...

  14. The DART Imaging And CaT Survey of the Fornax Dwarf Spheroidal Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, Giuseppina; Tolstoy, E.; Helmi, A.

    2006-08-28

    As part of the DART project we have used the ESO/2.2m Wide Field Imager in conjunction with the VLT/FLAMES* GIRAFFE spectrograph to study the detailed properties of the resolved stellar population of the Fornax dwarf spheroidal galaxy out to and beyond its tidal radius. Fornax dSph has had a complicated evolution and contains significant numbers of young, intermediate age and old stars. We investigate the relation between these different components by studying their photometric, kinematic and abundance distributions. We re-derived the structural parameters of the Fornax dwarf spheroidal using our wide field imaging covering the galaxy out to its tidalmore » radius, and analyzed the spatial distribution of the Fornax stars of different ages as selected from Colour-Magnitude Diagram analysis. We have obtained accurate velocities and metallicities from spectra in the Ca II triplet wavelength region for 562 Red Giant Branch stars which have velocities consistent with membership in Fornax dwarf spheroidal. We have found evidence for the presence of at least three distinct stellar components: a young population (few 100 Myr old) concentrated in the center of the galaxy, visible as a Main Sequence in the Colour-Magnitude Diagram; an intermediate age population (2-8 Gyr old); and an ancient population (> 10Gyr), which are distinguishable from each other kinematically, from the metallicity distribution and in the spatial distribution of stars found in the Colour-Magnitude Diagram. From our spectroscopic analysis we find that the ''metal rich'' stars ([Fe/H] > -1.3) show a less extended and more concentrated spatial distribution, and display a colder kinematics than the ''metal poor'' stars ([Fe/H] < -1.3). There is tentative evidence that the ancient stellar population in the center of Fornax does not exhibit equilibrium kinematics. This could be a sign of a relatively recent accretion of external material, such as the merger of another galaxy or other means of gas

  15. Complete tidal evolution of Pluto-Charon

    NASA Astrophysics Data System (ADS)

    Cheng, W. H.; Lee, Man Hoi; Peale, S. J.

    2014-05-01

    Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we follow Pluto’s tidal evolution from an initial state having the current total angular momentum of the system but with Charon in an eccentric orbit with semimajor axis a≈4RP (where RP is the radius of Pluto), consistent with its impact origin. Two tidal models are used, where the tidal dissipation function Q∝1/frequency and Q = constant, where details of the evolution are strongly model dependent. The inclusion of the gravitational harmonic coefficient C22 of both bodies in the analysis allows smooth, self consistent evolution to the dual synchronous state, whereas its omission frustrates successful evolution in some cases. The zonal harmonic J2 can also be included, but does not cause a significant effect on the overall evolution. The ratio of dissipation in Charon to that in Pluto controls the behavior of the orbital eccentricity, where a judicious choice leads to a nearly constant eccentricity until the final approach to dual synchronous rotation. The tidal models are complete in the sense that every nuance of tidal evolution is realized while conserving total angular momentum-including temporary capture into spin-orbit resonances as Charon’s spin decreases and damped librations about the same.

  16. Tidal effects on stellar activity

    NASA Astrophysics Data System (ADS)

    Poppenhaeger, K.

    2017-10-01

    The architecture of many exoplanetary systems is different from the solar system, with exoplanets being in close orbits around their host stars and having orbital periods of only a few days. We can expect interactions between the star and the exoplanet for such systems that are similar to the tidal interactions observed in close stellar binary systems. For the exoplanet, tidal interaction can lead to circularization of its orbit and the synchronization of its rotational and orbital period. For the host star, it has long been speculated if significant angular momentum transfer can take place between the planetary orbit and the stellar rotation. In the case of the Earth-Moon system, such tidal interaction has led to an increasing distance between Earth and Moon. For stars with Hot Jupiters, where the orbital period of the exoplanet is typically shorter than the stellar rotation period, one expects a decreasing semimajor axis for the planet and enhanced stellar rotation, leading to increased stellar activity. Also excess turbulence in the stellar convective zone due to rising and subsiding tidal bulges may change the magnetic activity we observe for the host star. I will review recent observational results on stellar activity and tidal interaction in the presence of close-in exoplanets, and discuss the effects of enhanced stellar activity on the exoplanets in such systems.

  17. Discovery of a Very Low Mass Triple with Late-M and T Dwarf Components: LP 704-48/SDSS J0006-0852AB

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Luk, Christopher; Dhital, Saurav; Bardalez Gagliuffi, Daniella; Nicholls, Christine P.; Prato, L.; West, Andrew A.; Lépine, Sébastien

    2012-10-01

    We report the identification of the M9 dwarf SDSS J000649.16-085246.3 as a spectral binary and radial velocity (RV) variable with components straddling the hydrogen-burning mass limit. Low-resolution near-infrared spectroscopy reveals spectral features indicative of a T dwarf companion, and spectral template fitting yields component types of M8.5 ± 0.5 and T5 ± 1. High-resolution near-infrared spectroscopy with Keck/NIRSPEC reveals pronounced RV variations with a semi-amplitude of 8.2 ± 0.4 km s-1. From these we determine an orbital period of 147.6 ± 1.5 days and eccentricity of 0.10 ± 0.07, making SDSS J0006-0852AB the third tightest very low mass binary known. This system is also found to have a common proper motion companion, the inactive M7 dwarf LP 704-48, at a projected separation of 820 ± 120 AU. The lack of Hα emission in both M dwarf components indicates that this system is relatively old, as confirmed by evolutionary model analysis of the tight binary. LP 704-48/SDSS J0006-0852AB is the lowest-mass confirmed triple identified to date, and one of only seven candidate and confirmed triples with total masses below 0.3 M ⊙ currently known. We show that current star and brown dwarf formation models cannot produce triple systems like LP 704-48/SDSS J0006-0852AB, and we rule out Kozai-Lidov perturbations and tidal circularization as a viable mechanism to shrink the inner orbit. The similarities between this system and the recently uncovered low-mass eclipsing triples NLTT 41135AB/41136 and LHS 6343ABC suggest that substellar tertiaries may be common in wide M dwarf pairs. Portions of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  18. A white dwarf with an oxygen atmosphere.

    PubMed

    Kepler, S O; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs. Copyright © 2016, American Association for the Advancement of Science.

  19. Rapid Rotation of a Heavy White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    New Kepler observations of a pulsating white dwarf have revealed clues about the rotation of intermediate-mass stars.Learning About ProgenitorsStars weighing in at under 8 solar masses generally end their lives as slowly cooling white dwarfs. By studying the rotation of white dwarfs, therefore, we are able to learn about the final stages of angular momentum evolution in these progenitor stars.Most isolated field white dwarfs cluster in mass around 0.62 solar masses, which corresponds to a progenitor mass of around 2.2 solar masses. This abundance means that weve already learned a good deal about the final rotation of low-mass (13 solar-mass) stars. Our knowledge about the angular momentum of intermediate-mass (38 solar-mass) stars, on the other hand, remains fairly limited.Fourier transform of the pulsations from SDSSJ0837+1856. The six frequencies of stellar variability, marked with red dots, reveal a rotation period of 1.13 hours. [Hermes et al. 2017]Record-Breaking FindA newly discovered white dwarf, SDSSJ0837+1856, is now helping to shed light on this mass range. SDSSJ0837+1856 appears to be unusually massive: its measured at 0.87 solar masses, which corresponds to a progenitor mass of roughly 4.0 solar masses. Determining the rotation of this white dwarf would therefore tell us about the final stages of angular momentum in an intermediate-mass star.In a new study led by J.J. Hermes (Hubble Fellow at University of North Carolina, Chapel Hill), a team of scientists presents a series of measurements of SDSSJ0837+1856 that suggest its the highest-mass and fastest-rotating isolated pulsating white dwarf known.Histogram of rotation rates determined from the asteroseismology of pulsating white dwarfs (marked in red). SDSSJ0837+1856 (indicated in black) is more massive and rotates faster than any other known pulsating white dwarf. [Hermes et al. 2017]Rotation from PulsationsWhy pulsating? In the absence of measurable spots and other surface features, the way we

  20. Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan

    This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s -1, and turbulence intensity of 15% at a reference mean current of 2 m s -1. Flood and ebb flow directionsmore » are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.« less

  1. Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York

    DOE PAGES

    Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan

    2014-06-22

    This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s -1, and turbulence intensity of 15% at a reference mean current of 2 m s -1. Flood and ebb flow directionsmore » are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.« less

  2. An intriguing young-looking dwarf galaxy

    NASA Image and Video Library

    2015-03-16

    The bright streak of glowing gas and stars in this NASA/ESA Hubble Space Telescope image is known as PGC 51017, or SBSG 1415+437. It is type of galaxy known as a blue compact dwarf. This particular dwarf is well studied and has an interesting star formation history. Astronomers initially thought that SBS 1415+437 was a very young galaxy currently undergoing its very first burst of star formation, but more recent studies have suggested that the galaxy is in fact a little older, containing stars over 1.3 billion years old. Starbursts are an area of ongoing research for astronomers — short-lived and intense periods of star formation, during which huge amounts of gas within a galaxy are hungrily used up to form newborn stars. They have been seen in gas-rich disc galaxies, and in some lower-mass dwarfs. However, it is still unclear whether all dwarf galaxies experience starbursts as part of their evolution. It is possible that dwarf galaxies undergo a star formation cycle, with bursts occurring repeatedly over time. SBS 1415+437 is an interesting target for another reason. Dwarf galaxies like this are thought to have formed early in the Universe, producing some of the very first stars before merging together to create more massive galaxies. Dwarf galaxies which contain very few of the heavier elements formed from having several generations of stars, like SBS 1415+437, remain some of the best places to study star-forming processes similar to those thought to occur in the early Universe. However, it seems that our nearby patch of the Universe may not contain any galaxies that are currently undergoing their first burst of star formation. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Nick Rose.

  3. A new benchmark T8-9 brown dwarf and a couple of new mid-T dwarfs from the UKIDSS DR5+ LAS

    NASA Astrophysics Data System (ADS)

    Goldman, B.; Marsat, S.; Henning, T.; Clemens, C.; Greiner, J.

    2010-06-01

    Benchmark brown dwarfs are those objects for which fiducial constraints are available, including effective temperature, parallax, age and metallicity. We searched for new cool brown dwarfs in 186deg2 of the new area covered by the data release DR5+ of the UKIRT Deep Infrared Sky Survey (UKIDSS) Large Area Survey. Follow-up optical and near-infrared broad-band photometry, and methane imaging of four promising candidates, revealed three objects with distinct methane absorption, typical of mid- to late-T dwarfs and one possibly T4 dwarf. The latest-type object, classified as T8-9, shares its large proper motion with Ross 458 (BD+13o2618), an active M0.5 binary which is 102arcsec away, forming a hierarchical low-mass star+brown dwarf system. Ross 458C has an absolute J-band magnitude of 16.4, and seems overluminous, particularly in the K band, compared to similar field brown dwarfs. We estimate the age of the system to be less than 1Gyr, and its mass to be as low as 14 Jupiter masses for the age of 1Gyr. At 11.4pc, this new late-T benchmark dwarf is a promising target to constrain the evolutionary and atmospheric models of very low-mass brown dwarfs. We present proper motion measurements for our targets and for 13 known brown dwarfs. Two brown dwarfs have velocities typical of the thick disc and may be old brown dwarfs. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andaluc'a (CSIC), and on observations made with ESO/MPG Telescope at the La Silla Observatory under programme ID 081.A-9012 and 081.A-9014. E-mail: goldman@mpia.de

  4. General relativistic calculations for white dwarfs

    NASA Astrophysics Data System (ADS)

    Mathew, Arun; Nandy, Malay K.

    2017-05-01

    The mass-radius relations for white dwarfs are investigated by solving the Newtonian as well as Tolman-Oppenheimer-Volkoff (TOV) equations for hydrostatic equilibrium assuming the electron gas to be non-interacting. We find that the Newtonian limiting mass of 1.4562{M}⊙ is modified to 1.4166{M}⊙ in the general relativistic case for {}_2^4{{He}} (and {}_612{{C}}) white dwarfs. Using the same general relativistic treatment, the critical mass for {}2656{{Fe}} white dwarfs is obtained as 1.2230{M}⊙ . In addition, departure from the ideal degenerate equation of state (EoS) is accounted for by considering Salpeter’s EoS along with the TOV equation, yielding slightly lower values for the critical masses, namely 1.4081{M}⊙ for {}_2^4{{He}}, 1.3916{M}⊙ for {}_612{{C}} and 1.1565{M}⊙ for {}2656{{Fe}} white dwarfs. We also compare the critical densities for gravitational instability with the neutronization threshold densities to find that {}_2^4{{He}} and {}_612{{C}} white dwarfs are stable against neutronization with the critical values of 1.4081{M}⊙ and 1.3916{M}⊙ , respectively. However, the critical masses for {}_816{{O}}, {}1020{{Ne}}, {}1224{{Mg}}, {}1428{{Si}}, {}1632{{S}} and {}2656{{Fe}} white dwarfs are lower due to neutronization. Corresponding to their central densities for neutronization thresholds, we obtain their maximum stable masses due to neutronization by solving the TOV equation coupled with the Salpeter EoS.

  5. Tidal capture of stars by a massive black hole

    NASA Technical Reports Server (NTRS)

    Novikov, I. D.; Pethick, C. J.; Polnarev, A. G.

    1992-01-01

    The processes leading to tidal capture of stars by a massive black hole and the consequences of these processes in a dense stellar cluster are discussed in detail. When the amplitude of a tide and the subsequent oscillations are sufficiently large, the energy deposited in a star after periastron passage and formation of a bound orbit cannot be estimated directly using the linear theory of oscillations of a spherical star, but rather numerical estimates must be used. The evolution of a star after tidal capture is discussed. The maximum ratio R of the cross-section for tidal capture to that for tidal disruption is about 3 for real systems. For the case of a stellar system with an empty capture loss cone, even in the case when the impact parameter for tidal capture only slightly exceeds the impact parameter for direct tidal disruption, tidal capture would be much more important than tidal disruption.

  6. WHITE DWARFS IN LOCAL STAR STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Burkhard; Dettbarn, Christian

    2011-01-15

    We have studied the fine structure of the phase space distribution of white dwarfs in the solar neighborhood. White dwarfs have kinematics that are typical for the stellar population of the old thin disk of the Milky Way. Using a projection of the space velocities of stars onto vertical angular momentum components and eccentricities of the stellar orbits we demonstrate that stellar streams can be identified in the phase space distribution of the white dwarfs. These correspond to the well-known Sirius, Pleiades, and Hercules star streams. Membership of white dwarfs, which represent the oldest population in the Galaxy, in thesemore » streams lends support to the interpretation that the streams owe their existence to dynamical resonance effects of the stars with Galactic spiral arms or the Galactic bar, because these indiscriminately affect all stellar populations.« less

  7. A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound

    DOE PAGES

    Wang, Taiping; Yang, Zhaoqing

    2017-03-25

    Previously, a major focus of tidal energy studies in Puget Sound were the deep channels such as Admiralty Inlet that have a larger power potential. Our paper focuses on the possibility of extracting tidal energy from minor tidal channels of Puget Sound by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the study site and validated for tidal elevations andmore » currents. Here, we examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. Model results suggest that with the level of energy extraction in the three energy extraction scenarios, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.« less

  8. A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Taiping; Yang, Zhaoqing

    Previously, a major focus of tidal energy studies in Puget Sound were the deep channels such as Admiralty Inlet that have a larger power potential. Our paper focuses on the possibility of extracting tidal energy from minor tidal channels of Puget Sound by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the study site and validated for tidal elevations andmore » currents. Here, we examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. Model results suggest that with the level of energy extraction in the three energy extraction scenarios, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.« less

  9. A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Taiping; Yang, Zhaoqing

    Previous tidal energy projects in Puget Sound have focused on major deep channels such as Admiralty Inlet that have a larger power potential but pose greater technical challenges than minor tidal channels connecting to small sub-basins. This paper focuses on the possibility of extracting energy from minor tidal channels by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the studymore » site and calibrated for tidal elevations and currents. We examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. The model suggests that with the proposed level of energy extraction, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.« less

  10. On inter-tidal transport equation

    USGS Publications Warehouse

    Cheng, Ralph T.; Feng, Shizuo; Pangen, Xi

    1989-01-01

    The transports of solutes, sediments, nutrients, and other tracers are fundamental to the interactive physical, chemical, and biological processes in estuaries. The characteristic time scales for most estuarine biological and chemical processes are on the order of several tidal cycles or longer. To address the long-term transport mechanism meaningfully, the formulation of an inter-tidal conservation equation is the main subject of this paper. The commonly used inter-tidal conservation equation takes the form of a convection-dispersion equation in which the convection is represented by the Eulerian residual current, and the dispersion terms are due to the introduction of a Fickian hypothesis, unfortunately, the physical significance of this equation is not clear, and the introduction of a Fickian hypothesis is at best an ad hoc approximation. Some recent research results on the Lagrangian residual current suggest that the long-term transport problem is more closely related to the Lagrangian residual current than to the Eulerian residual current. With the aid of additional insight of residual current, the inter-tidal transport equation has been reformulated in this paper using a small perturbation method for a weakly nonlinear tidal system. When tidal flows can be represented by an M2 system, the new intertidal transport equation also takes the form of a convective-dispersion equation without the introduction of a Fickian hypothesis. The convective velocity turns out to be the first order Lagrangian residual current (the sum of the Eulerian residual current and the Stokes’ drift), and the correlation terms take the form of convection with the Stokes’ drift as the convective velocity. The remaining dispersion terms are perturbations of lower order solution to higher order solutions due to shear effect and turbulent mixing.

  11. Is EG 50 a White or Strange Dwarf?

    NASA Astrophysics Data System (ADS)

    Hajyan, G. S.; Vartanyan, Yu. L.

    2017-12-01

    The time dependences of the luminosity of a white dwarf and four strange dwarfs with masses of 0.5 M (the mass of the white dwarf EG 50 with a surface temperature of 2.1·104 K) are determined taking neutrino energy losses into account. It was assumed that these configurations radiate only at the expense of thermal energy reserves. It is shown that the sources of thermal energy owing to nonequilibrium b-processes and the phenomenon of crystallization of electron-nuclear matter are insignificant in determining the cooling time of white and strange dwarfs with masses of 0.5 M⨀. It is shown that in this approximation the time dependences of the luminosity of white and strange dwarfs with masses of 0.5 M⨀ differ significantly only for surface temperatures TR≥7·104 K, so it is impossible to determine whether EG 50 is a white or strange dwarf based on the cooling time.

  12. Accretional Heating by Periodic Dwarf Nova Outburst Events

    NASA Astrophysics Data System (ADS)

    Godon, P.; Sion, E. M.

    2001-12-01

    We carry out simulations of evolutionary models of accreting white dwarfs in dwarf novae to assess the combined effect of boundary layer irradiation and compressional heating on the accreting star. We focus on the behavior of the surface observables of the accreting white dwarf for different value of the mass accretion rate and accretor mass. Outburst of days to weeks are followed by a shut off of the radial infall during quiescences lasting weeks to months. Preliminary results indicate that after a long evolution time of many accretion cycles, the effective surface temperature of the white dwarf will increase substantially. The purpose of this work is to generate a grid of models that will then be used to compared with observations of white dwarf heating and cooling in dwarf nova systems. This work is supported by NASA HST grant GO-8139 and in part by NSF grant AST99-01955 and NASA grant NAG5-8388.

  13. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  14. Conditions for tidal bore formation in convergent alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario

    2016-04-01

    Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater

  15. Tidal Response of Europa's Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Comblen, R.; Deleersnijder, E.; Dehant, V. M.

    2010-12-01

    Time-variable tides in the subsurface oceans of icy satellites cause large periodic surface displacements and tidal dissipation can become a major energy source that can affect long-term orbital and internal evolution. In the present study, we investigate the response of the subsurface ocean of Europa to a time-varibale tidal potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities,dissipation and surface displacements will be presented.

  16. Searching for chemical signatures of brown dwarf formation

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Villaver, E.

    2017-06-01

    Context. Recent studies have shown that close-in brown dwarfs in the mass range 35-55 MJup are almost depleted as companions to stars, suggesting that objects with masses above and below this gap might have different formation mechanisms. Aims: We aim to test whether stars harbouring massive brown dwarfs and stars with low-mass brown dwarfs show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra (R 57 000) from 2-3 m class telescopes. We determine the fundamental stellar parameters, as well as individual abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn for a large sample of stars known to have a substellar companion in the brown dwarf regime. The sample is divided into stars hosting massive and low-mass brown dwarfs. Following previous works, a threshold of 42.5 MJup was considered. The metallicity and abundance trends of the two subsamples are compared and set in the context of current models of planetary and brown dwarf formation. Results: Our results confirm that stars with brown dwarf companions do not follow the well-established gas-giant planet metallicity correlation seen in main-sequence planet hosts. Stars harbouring massive brown dwarfs show similar metallicity and abundance distribution as stars without known planets or with low-mass planets. We find a tendency of stars harbouring less-massive brown dwarfs of having slightly higher metallicity, [XFe/Fe] values, and abundances of Sc II, Mn I, and Ni I than the stars having the massive brown dwarfs. The data suggest, as previously reported, that massive and low-mass brown dwarfs might present differences in period and eccentricity. Conclusions: We find evidence of a non-metallicity dependent mechanism for the formation of massive brown dwarfs. Our results agree with a scenario in which massive brown dwarfs are formed as stars. At high metallicities, the core

  17. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as wellmore » as considering the path forward for smaller community scale projects.« less

  18. A low-temperature companion to a white dwarf star

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Zuckerman, B.

    1988-01-01

    An infrared object located about 120 AU from the white dwarf GD165 has been discovered. With the exception of the possible brown dwarf companion to Giclas 29-38 reported last year, the companion to GD165 is the coolest (2100 K) dwarf star ever reported and, according to some theoretical models, it should be a substellar brown dwarf with a mass between 0.06 and 0.08 solar mass. These results, together with newly discovered low-mass stellar companions to white dwarfs, change the investigation of very low-mass stars from the study of a few chance objects to that of a statistical distribution. In particular, it appears that very low-mass stars and perhaps even brown dwarfs could be quite common in the Galaxy.

  19. 2 Micron Spectroscopy within 0&farcs;3 of Sagittarius A*

    PubMed

    Figer; Becklin; McLean; Gilbert; Graham; Larkin; Levenson; Teplitz; Wilcox; Morris

    2000-04-10

    We present moderate- (R approximately 2700) and high-resolution (R approximately 22,400) 2.0-2.4 µm spectroscopy of the central 0.1 arcsec2 of the Galaxy obtained with the facility near-infrared spectrometer (NIRSPEC) for the Keck II telescope. The composite spectra do not have any features attributable to the brightest stars in the central cluster; i.e., after background subtraction, W12CO&parl0;2-0&parr0;<2 Å. This stringent limit leads us to conclude that the majority, if not all, of the stars are hotter than typical red giants. Coupled with previously reported photometry, we conclude that the sources are likely OB main-sequence stars. In addition, the continuum slope in the composite spectrum is bluer than that of a red giant and is similar to that of the nearby hot star IRS 16NW. It is unlikely that they are late-type giants stripped of their outer envelopes because such sources would be much fainter than those observed. Given their inferred youth (tauage<20 Myr), we suggest the possibility that the stars have formed within 0.1 pc of the supermassive black hole. We find a newly identified broad-line component (VFWHM approximately 1000 km s-1) toward the 2.2178 µm [Fe iii] line located within a few arcseconds of Sagittarius A*. A similar component is not seen in the Brgamma emission.

  20. Tides and tidal stress: Applications to Europa

    NASA Astrophysics Data System (ADS)

    Hurford, Terry Anthony, Jr.

    A review of analytical techniques and documentation of previously inaccessible mathematical formulations is applied to study of Jupiter's satellite Europa. Compared with numerical codes that are commonly used to model global tidal effects, analytical models of tidal deformation give deeper insight into the mechanics of tides, and can better reveal the nature of the dependence of observable effects on key parameters. I develop analytical models for tidal deformation of multi-layered bodies. Previous studies of Europa, based on numerical computation, only to show isolated examples from parameter space. My results show a systematic dependence of tidal response on the thicknesses and material parameters of Europa's core, rocky mantle, liquid water ocean, and outer layer of ice. As in the earlier work, I restrict these studies to incompressible materials. Any set of Love numbers h 2 and k 2 which describe a planet's tidal deformation, could be fit by a range of ice thickness values, by adjusting other parameters such as mantle rigidity or core size, an important result for mission planning. Inclusion of compression into multilayer models has been addressed analytically, uncovering several issues that are not explicit in the literature. Full evaluation with compression is here restricted to a uniform sphere. A set of singularities in the classical solution, which correspond to instabilities due to self-gravity has been identified and mapped in parameter space. The analytical models of tidal response yield the stresses anywhere within the body, including on its surface. Crack patterns (such as cycloids) on Europa are probably controlled by these stresses. However, in contrast to previous studies which used a thin shell approximation of the tidal stress, I consider how other tidal models compare with the observed tectonic features. In this way the relationship between Europa's surface tectonics and the global tidal distortion can be constrained. While large-scale tidal

  1. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobos, Vera; Turner, Edwin L., E-mail: dobos@konkoly.hu

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than themore » widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.« less

  2. Monitoring Tidal Currents with a Towed ADCP System

    DTIC Science & Technology

    2015-12-22

    these make tidal stream energy a more reliable source than other forms of ma- rine energy, such as waves and offshore wind. The place of tidal stream...big tidal range (9 m), relatively strong (2 m/s) currents, and moderate wind waves (less than 3 m in the an- nual mean), it is considered to be a...Monitoring tidal currents with a towed ADCP system Alexei Sentchev1 & Max Yaremchuk2 Received: 22 September 2015 /Accepted: 10 December 2015

  3. Ridges and tidal stress on Io

    USGS Publications Warehouse

    Bart, G.D.; Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; Greenberg, R.

    2004-01-01

    Sets of ridges of uncertain origin are seen in twenty-nine high-resolution Galileo images, which sample seven locales on Io. These ridges are on the order of a few kilometers in length with a spacing of about a kilometer. Within each locale, the ridges have a consistent orientation, but the orientations vary from place to place. We investigate whether these ridges could be a result of tidal flexing of Io by comparing their orientations with the peak tidal stress orientations at the same locations. We find that ridges grouped near the equator are aligned either north-south or east-west, as are the predicted principal stress orientations there. It is not clear why particular groups run north-south and others east-west. The one set of ridges observed far from the equator (52?? S) has an oblique azimuth, as do the tidal stresses at those latitudes. Therefore, all observed ridges have similar orientations to the tidal stress in their region. This correlation is consistent with the hypothesis that tidal flexing of Io plays an important role in ridge formation. ?? 2004 Elsevier Inc. All rights reserved.

  4. Impact of Tidal-Stream Turbines on the Generation of the Higher Tidal Harmonics

    NASA Astrophysics Data System (ADS)

    Potter, Daniel; Ilic, Suzana; Folkard, Andrew

    2016-04-01

    The higher tidal harmonics result from the interaction of the astronomic tides with both themselves and each other through non-linear processes. In shallower waters such as those near the coast these non-linear processes become more significant and thus, so too do the higher tidal harmonics become more significant. The interaction of the tide with tidal-stream turbines (TSTs), through thrust and drag processes will be non-linear and as such will contribute to the generation of higher tidal harmonics, thus changing the nature of the tide downstream of the turbines. The change to the tide may potentially impact on the downstream energy resource (Robins et al. 2015) and sediment transport processes (Pingree & Griffiths 1979). This paper will present analytical results, which suggest that TSTs will impact on the generation of all higher harmonics but with odd overtides being impacted more than even overtides, the most important examples of which are the M6 and M4 tides respectively, which are the first odd and even overtides of the M2 tide. Change in phase and amplitude of the M6 tide by TSTs will distort the tide but will not cause an asymmetry between the flood and ebb of the tide. Change in the phase and amplitude of the M4 can not only distort the tide but also cause asymmetry. Hence any change to the M4 tide by the turbines is more significant, despite the magnitude of change to the M6 being greater. In order to gain a fuller understanding of the way in which TSTs change the tide downstream and the significance of any change for transport processes or energy resource, a numerical modelling study will be carried out, which will be presented in a future paper. Robins, P.E., Neill, S.P., Lewis, M. & Ward, S.L., 2015. Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147: 510-522. Pingree, R.D. & Griffiths, D.K., 1979. Sand transport paths around the British Isles resulting

  5. ON THE TIDAL DISSIPATION OF OBLIQUITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; Lin, D. N. C., E-mail: tami@lpl.arizona.edu, E-mail: lin@ucolick.org

    2013-05-20

    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde, or 90 Degree-Sign orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot Jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.

  6. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    NASA Astrophysics Data System (ADS)

    Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan

    2015-10-01

    We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.

  7. X-Rays Found From a Lightweight Brown Dwarf

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Using NASA's Chandra X-ray Observatory, scientists have detected X-rays from a low mass brown dwarf in a multiple star system, which is as young as 12 million years old. This discovery is an important piece in an increasingly complex picture of how brown dwarfs - and perhaps the very massive planets around other stars - evolve. Chandra's observations of the brown dwarf, known as TWA 5B, clearly resolve it from a pair of Sun-like stars known as TWA 5A. The system is about 180 light years from the Sun and a member of a group of about a dozen young stars in the southern constellation Hydra. The brown dwarf orbits the binary stars at a distance about 2.75 times that of Pluto's orbit around the Sun. This is first time that a brown dwarf this close to its parent star(s) has been resolved in X-rays. "Our Chandra data show that the X-rays originate from the brown dwarf's coronal plasma which is some 3 million degrees Celsius," said Yohko Tsuboi of Chuo University in Tokyo and lead author of the April 10th issue of Astrophysical Journal Letters paper describing these results. "The brown dwarf is sufficiently far from the primary stars that the reflection of X-rays is unimportant, so the X-rays must come the brown dwarf itself." TWA 5B is estimated to be only between 15 and 40 times the mass of Jupiter, making it one of the least massive brown dwarfs known. Its mass is rather near the currently accepted boundary (about 12 Jupiter masses) between planets and brown dwarfs. Therefore, these results may also have implications for very massive planets, including those that have been discovered as extrasolar planets in recent years. Brown Dwarf size comparison schematic Brown Dwarf size comparison schematic "This brown dwarf is as bright as the Sun today in X-ray light, while it is fifty times less massive than the Sun," said Tsuboi. "This observation, thus, raises the possibility that even massive planets might emit X-rays by themselves during their youth!" This research on TWA 5

  8. Tidal Energy.

    ERIC Educational Resources Information Center

    Impact of Science on Society, 1987

    1987-01-01

    States that tidal power projects are feasible in a relatively limited number of locations around the world. Claims that together they could theoretically produce the energy equivalent to more than one million barrels of oil per year. (TW)

  9. Oscillations of Accretion Disks in Cataclysmic Variable Stars

    NASA Astrophysics Data System (ADS)

    Osaki, Y.

    2013-12-01

    The disk instability model for the outbursts of dwarf novae is reviewed, with particular attention given to the superoutburst of SU UMa stars. Two intrinsic instabilities in accretion disks of dwarf novae are known; the thermal instability and the tidal instability. The thermal-tidal instability model (abbreviated the TTI model), which combines these two instabilities, was first proposed in 1989 by Osaki (1989) to explain the superoutburst phenomenon of SU UMa stars. Recent Kepler observations of one SU UMa star, V1504 Cyg, have dramatically demonstrated that the superoutburst phenomenon of the SU UMa stars is explained by the thermal-tidal instability model.

  10. The Origin and Evolution of the White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Clemens, J. C.

    1994-05-01

    The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using asteroseismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we call the Whole Earth Telescope (WET). By combining data from the WET with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer; it is about 10(-4) times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties, and the mass of the hydrogen layer measured for the DAVs, we have concluded that the helium surface white dwarfs do not form via

  11. Two T dwarfs from the UKIDSS early data release

    NASA Astrophysics Data System (ADS)

    Kendall, T. R.; Tamura, M.; Tinney, C. G.; Martín, E. L.; Ishii, M.; Pinfield, D. J.; Lucas, P. W.; Jones, H. R. A.; Leggett, S. K.; Dye, S.; Hewett, P. C.; Allard, F.; Baraffe, I.; Barrado Y Navascués, D.; Carraro, G.; Casewell, S. L.; Chabrier, G.; Chappelle, R. J.; Clarke, F.; Day-Jones, A.; Deacon, N.; Dobbie, P. D.; Folkes, S.; Hambly, N. C.; Hodgkin, S. T.; Nakajima, T.; Jameson, R. F.; Lodieu, N.; Magazzù, A.; McCaughrean, M. J.; Pavlenko, Y. V.; Tadashi, N.; Zapatero Osorio, M. R.

    2007-05-01

    Context: We report on the first ultracool dwarf discoveries from the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey Early Data Release (LAS EDR), in particular the discovery of T dwarfs which are fainter and more distant than those found using the 2MASS and SDSS surveys. Aims: We aim to show that our methodologies for searching the ~27 deg2 of the LAS EDR are successful for finding both L and T dwarfs via cross-correlation with the Sloan Digital Sky Survey (SDSS) DR4 release. While the area searched so far is small, the numbers of objects found shows great promise for near-future releases of the LAS and great potential for finding large numbers of such dwarfs. Methods: Ultracool dwarfs are selected by combinations of their YJH(K) UKIDSS colours and SDSS DR4 z-J and i-z colours, or, lower limits on these red optical/infrared colours in the case of DR4 dropouts. After passing visual inspection tests, candidates have been followed up by methane imaging and spectroscopy at 4 m and 8 m-class facilities. Results: Our main result is the discovery following CH4 imaging and spectroscopy of a T4.5 dwarf, ULAS J 1452+0655, lying ~80 pc distant. A further T dwarf candidate, ULAS J 1301+0023, has very similar CH4 colours but has not yet been confirmed spectroscopically. We also report on the identification of a brighter L0 dwarf, and on the selection of a list of LAS objects designed to probe for T-like dwarfs to the survey J-band limit. Conclusions: Our findings indicate that the combination of the UKIDSS LAS and SDSS surveys provide an excellent tool for identifying L and T dwarfs down to much fainter limits than previously possible. Our discovery of one confirmed and one probable T dwarf in the EDR is consistent with expectations from the previously measured T dwarf density on the sky.

  12. Relevance of Tidal Heating on Large TNOs

    NASA Technical Reports Server (NTRS)

    Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry A.

    2017-01-01

    We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100 s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.

  13. Relevance of tidal heating on large TNOs

    NASA Astrophysics Data System (ADS)

    Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry

    2018-03-01

    We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100‧s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.

  14. No Snowball on Habitable Tidally Locked Planets

    NASA Astrophysics Data System (ADS)

    Checlair, Jade; Menou, Kristen; Abbot, Dorian S.

    2017-08-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  15. IUE spectrophotometry of the DA4 primary in the short-period white dwarf-red dwarf spectroscopic binary Case 1

    NASA Technical Reports Server (NTRS)

    Sion, E. M.; Guinan, E. F.; Wesemael, F.

    1984-01-01

    Low-resolution ultraviolet International Ultraviolet Explorer spectra of the DA white dwarf Case 1 are presented. The spectra show the presence of the 1400 A feature, already discovered in several other DA stars, and of a shallower trough in the 1550-1700 A range. A model atmosphere analysis of the ultraviolet energy distribution of the Ly-alpha red wing yields T(e) = 13,000 + or - 500 K. Possible interpretations of the 1400 A feature are reviewed. Case 1 is the coolest white dwarf found in a short-period, detached white dwarf-red dwarf binary, and its cooling time is consistent with estimates of the efficiency of angular momentum removal mechanisms in the phases subsequent to common envelope binary evolution.

  16. Observation and numerical modeling of tidal dune dynamics

    NASA Astrophysics Data System (ADS)

    Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry

    2018-05-01

    Tidal sand dune dynamics is observed for two tidal cycles in the Arcachon tidal inlet, southwest France. An array of instruments is deployed to measure bathymetric and current variations along dune profiles. Based on the measurements, dune crest horizontal and vertical displacements are quantified and show important dynamics in phase with tidal currents. We observed superimposed ripples on the dune stoss side and front, migrating and changing polarity as tidal currents reverse. A 2D RANS numerical model is used to simulate the morphodynamic evolution of a flat non-cohesive sand bed submitted to a tidal current. The model reproduces the bed evolution until a field of sand bedforms is obtained that are comparable with observed superimposed ripples in terms of geometrical dimensions and dynamics. The model is then applied to simulate the dynamics of a field of large sand dunes of similar size as the dunes observed in situ. In both cases, simulation results compare well with measurements qualitatively and quantitatively. This research allows for a better understanding of tidal sand dune and superimposed ripple morphodynamics and opens new perspectives for the use of numerical models to predict their evolution.

  17. Connecting Variability and Metals in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin

    2016-10-01

    The Kepler and K2 missions have revealed that about half of the observed white dwarfs with sufficient signal-to-noise ratio light curves have low-level photometric variations at hour to day timescales. Potential explanations for the observed variability include the relativistic beaming effect, ellipsodial variations, eclipses, and reflection off of giant planets in close orbits. However, these are all rare events. Roughly 10% of white dwarfs are magnetic, and magnetic fields can explain part of this puzzle. However, the high incidence (50%) of variability is currently unexplained. HST COS spectroscopy of nearby white dwarfs show that about half of them have metals on their surface. Hence, we propose that the observed variability is due to the rotation of the star coupled with an inhomogeneous surface distribution of accreted metals. We have recently discovered an ideal system to test this hypothesis. J1529 is an apparently non-magnetic white dwarf that shows 5.9% photometric dips in the optical every 38 min. We propose to obtain COS TIME-TAG spectroscopy of J1529 over 4 orbits to search for surface abundance differences throughout the orbit and look for the flux redistribution effect in the optical. These observations will confirm or rule out the idea that inhomogeneous metal accretion on white dwarfs can explain the high incidence of variability. We predict that the LSST will identify 100,000 variable white dwarfs. Hence, understanding the source of variability in white dwarfs has implications for the current and future transient surveys.

  18. White dwarf stars with carbon atmospheres.

    PubMed

    Dufour, P; Liebert, J; Fontaine, G; Behara, N

    2007-11-22

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch.

  19. Tidal characteristics of the gulf of Tonkin

    NASA Astrophysics Data System (ADS)

    Minh, Nguyen Nguyet; Patrick, Marchesiello; Florent, Lyard; Sylvain, Ouillon; Gildas, Cambon; Damien, Allain; Van Uu, Dinh

    2014-12-01

    The Gulf of Tonkin, situated in the South China Sea, is a zone of strong ecological, touristic and economic interest. Improving our knowledge of its hydro-sedimentary processes is of great importance to the sustainable development of the area. The scientific objective of this study is to revisit the dominant physical processes that characterize tidal dynamics in the Gulf of Tonkin using a high-resolution model and combination of all available data. Particular attention is thus given to model-data cross-examination using tidal gauges and coastal satellite altimetry and to model calibration derived from a set of sensitivity experiments to model parameters. The tidal energy budget of the gulf (energy flux and dissipation) is then analyzed and its resonance properties are evaluated and compared with idealized models and observations. Then, the tidal residual flow in both Eulerian and Lagrangian frameworks is evaluated. Finally, the problem of tidal frontogenesis is addressed to explain the observed summer frontal structures in chlorophyll concentrations.

  20. Ultracool Dwarfs in the Ukirt Infrared Deep Sky Survey (UKIDSS)

    NASA Astrophysics Data System (ADS)

    Burningham, Ben; Pinfield, D.; Leggett, S. K.; Lodieu, N.; Warren, S. J.; Lucas, P. W.; Tamura, M.; Mortlock, D.; Kendall, T. R.; Jones, H. R.; Jameson, R. F.; Richard, M.; Martin, E. L.; UKIDSS Cool Dwarf Science Working Group

    2007-05-01

    The UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) presents an unparallelled resource for the study of field brown dwarfs. The UKIDSS Cool Dwarf Science Working Group (CDSWG) is carrying out a search for the lowest temperature brown dwarfs ever discovered, with the possibility of identifying a new spectral class of ultracool dwarf: the Y dwarf. CDSWG members identified 10 new T dwarfs in the early and first data releases of the LAS, including 2 objects with spectral types later than T7.5. One of these is thought to be the coolest T dwarf ever found with a spectral type of T8.5, and an estimated temperature of 650K. Data release 2 (DR2) took place on 1st March 2007, and already the most promising objects have been selected and followed-up photometrically and spectroscopically. In this contribution I will discuss the capabilities of UKIDSS for identifying ultracool dwarfs and summarise our latest results.

  1. Spatial Shifts in Tidal-Fluvial Environments

    NASA Astrophysics Data System (ADS)

    Dykstra, S. L.; Dzwonkowski, B.

    2017-12-01

    Fresh water discharge damps tidal propagation and increases the phase lag, which has important impacts on system-wide sediment transport process and ecological structure. Here, the role of discharge on spatial variability in the dynamics of tidal rivers is investigated in Mobile Bay and Delta, a microtidal diurnal system where discharge ranges multiple orders of magnitude. Long-term observations at 7 velocity stations and 20 water level stations, ranging over 260km along the system, were analyzed. Observations of the tidal extinguishing point in both velocity and water level were highly variable with significant shifts in location covering a distance over 140km. The velocity stations also allowed for measuring the extent of flood (i.e. point where tidal flow is arrested by discharge) shifting 100km. With increased discharge, flow characteristics at station locations can transition from an estuary (i.e. bidirectional tidal flow) to a tidal river to a traditional fluvial environment. This revealed systematic discharge induced damping and an increase in phase lag. Interestingly, before damping occurs, the tide amplifies ( 15%) seaward of the extent of flood. Another consistent pattern is the higher sensitivity of the velocity signal to discharge than water level. This causes the velocity to lag more and create progressive tides. In a microtidal diurnal system, the signal propagates further inland than a semidiurnal tide due to its lower frequency but is easily damped due to the small amplitude, creating large shifts. Previous research has focused on environments dominated by semidiurnal tides with similar magnitudes to discharge using water level observations. For example, the well studied Columbia and the St. Lawrence rivers have small shifts in their tidal extinguishing point O(10km) (Jay 2016, Matte 2014). These shifts are not large enough to observe process like discharge-induced amplification and damping at the same site like in the Mobile system, but they may

  2. Asteroid Geophysics through a Tidal-BYORP Equilibrium

    NASA Astrophysics Data System (ADS)

    Jacobson, S. A.; Scheeres, D. J.

    2012-12-01

    There exists a long-term stable orbital equilibrium for singly synchronous binary asteroids balancing the contractive BYORP (binary Yarkovsky-O'Keefe-Radzievskii-Paddack) effect and the expansive tidal torque from the secondary onto the primary [Jacobson & Scheeres 2011]. Observations of 1996 FG3 determined that this object is consistent with occupying the predicted equilibrium [Scheirich, et al., 2012]. From the torque balance, the important tidal parameters of the primary and BYORP coefficient of the secondary can be directly determined for the first time, albeit degenerately. Singly synchronous systems consist of a rapidly spinning primary and a tidally locked secondary. Two torques evolve the mutual orbit of the system. First, the secondary raises a tidal torque on the primary, and this process expands the semi-major axis of the mutual orbit according to two parameters. The tidal Love number k is related to the strength (rigidity) of the body. The tidal dissipation number Q describes the mechanical energy dissipation. Second, the BYORP torque is the summed torques from all of the incident and exigent photons on the secondary acting on the barycenter of the system. Unless there is a spin-orbit resonance, the torques sum to zero. McMahon & Scheeres [2010] showed that showed that to first order in eccentricity the evolution of the semi-major axis and eccentricity depends only upon a single constant coefficient B determined by the shape of the secondary (size-independent). The BYORP torque can either contract or expand the mutual orbit, however it evolves the eccentricity with the opposite sign. Jacobson & Scheeres [2011] determined that when the BYORP torque is contractive, it can balance the expansive tidal torque. The system evolves to an equilibrium semi-major axis that is stable in eccentricity due to tidal decay overcoming BYORP excitation. If the singly synchronous population occupies this equilibrium, then the three unknown (i.e. unobserved) parameters: Bs

  3. A Brown Dwarf Census from the SIMP Survey

    NASA Astrophysics Data System (ADS)

    Robert, Jasmin; Gagné, Jonathan; Artigau, Étienne; Lafrenière, David; Nadeau, Daniel; Doyon, René; Malo, Lison; Albert, Loïc; Simard, Corinne; Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.

    2016-10-01

    We have conducted a near-infrared (NIR) proper motion survey, the Sondage Infrarouge de Mouvement Propre, in order to discover field ultracool dwarfs (UCD) in the solar neighborhood. The survey was conducted by imaging ˜28% of the sky with the Caméra PAnoramique Proche-InfraRouge both in the southern hemisphere at the Cerro Tololo Inter-American Observatory 1.5 m telescope, and in the northern hemisphere at the Observatoire du Mont-Mégantic 1.6 m telescope and comparing the source positions from these observations with the Two Micron All-Sky Survey Point Source Catalog (2MASS PSC). Additional color criteria were used to further discriminate unwanted astrophysical sources. We present the results of an NIR spectroscopic follow-up of 169 M, L, and T dwarfs. Among the sources discovered are 2 young field brown dwarfs, 6 unusually red M and L dwarfs, 25 unusually blue M and L dwarfs, 2 candidate unresolved L+T binaries, and 24 peculiar UCDs. Additionally, we add 9 L/T transition dwarfs (L6-T4.5) to the already known objects.

  4. Analyzing the Effects of Stellar Evolution on White Dwarf Ages

    NASA Astrophysics Data System (ADS)

    Moss, Adam; Von Hippel, Ted, Dr.

    2018-01-01

    White dwarfs are among the oldest objects in our Galaxy, thus if we can determine their ages, we can derive the star formation history of our Galaxy. As part of a larger project that will use Gaia parallaxes to derive the ages of tens of thousands of white dwarfs, we explore the impact on the total white dwarf age of various modern models of main sequence and red giant branch stellar evolution, as well as uncertainties in progenitor metallicity. In addition, we study the effect on white dwarf ages caused by uncertainties in the Initial Final Mass Relation, which is the mapping between zero age main sequence and white dwarf masses. We find that for old and high mass white dwarfs, uncertainties in these factors have little effect on the total white dwarf age.

  5. Distinguishing cold dark matter dwarfs from self-interacting dark matter dwarfs in baryonic simulations

    NASA Astrophysics Data System (ADS)

    Strickland, Emily; Fitts, Alex; Boylan-Kolchin, Michael

    2018-01-01

    Our collaboration has simulated several high-resolution (mbaryon = 500Mo, mdm = 2500Mo) cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as a self-interacting dark matter (SIDM) (with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass (MFM) hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark matter dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (UFDs) (at ~105 Mo) provides the clearest window for distinguishing between the two theories. Here our SIDM galaxies continue to display a cored inner profile unlike their CDM counterparts. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts.

  6. The Second Nucleus of NGC 7727: Direct Evidence for the Formation and Evolution of an Ultracompact Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Schweizer, François; Seitzer, Patrick; Whitmore, Bradley C.; Kelson, Daniel D.; Villanueva, Edward V.

    2018-01-01

    We present new observations of the late-stage merger galaxy NGC 7727, including Hubble Space Telescope/WFPC2 images and long-slit spectra obtained with the Clay telescope. NGC 7727 is relatively luminous ({M}V = ‑21.7) and features two unequal tidal tails, various bluish arcs and star clusters, and two bright nuclei 480 pc apart in projection. These two nuclei have nearly identical redshifts, yet are strikingly different. The primary nucleus, hereafter Nucleus 1, fits smoothly into the central luminosity profile of the galaxy and appears—at various wavelengths—“red and dead.” In contrast, Nucleus 2 is very compact, has a tidal radius of 103 pc, and exhibits three signs of recent activity: a post-starburst spectrum, an [O III] emission line, and a central X-ray point source. Its emission-line ratios place it among Seyfert nuclei. A comparison of Nucleus 2 ({M}V = ‑15.5) with ultracompact dwarf galaxies (UCDs) suggests that it may be the best case yet for a massive UCD having formed through tidal stripping of a gas-rich disk galaxy. Evidence for this comes from its extended star formation history, long blue tidal stream, and elevated dynamical-to-stellar-mass ratio. While the majority of its stars formed ≳ 10 {Gyr} ago, ∼1/3 formed during starbursts in the past 2 Gyr. Its weak active galactic nucleus activity is likely driven by a black hole of mass 3× {10}6-8 {M}ȯ . We estimate that the former companion’s initial mass was less than half that of then NGC 7727, implying a minor merger. By now this former companion has been largely shredded, leaving behind Nucleus 2 as a freshly minted UCD that probably moves on a highly eccentric orbit. Based in part on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. Quantification of tidal parameters from Solar System data

    NASA Astrophysics Data System (ADS)

    Lainey, Valéry

    2016-11-01

    Tidal dissipation is the main driver of orbital evolution of natural satellites and a key point to understand the exoplanetary system configurations. Despite its importance, its quantification from observations still remains difficult for most objects of our own Solar System. In this work, we overview the method that has been used to determine, directly from observations, the tidal parameters, with emphasis on the Love number k_2 and the tidal quality factor Q. Up-to-date values of these tidal parameters are summarized. Last, an assessment on the possible determination of the tidal ratio k_2/Q of Uranus and Neptune is done. This may be particularly relevant for coming astrometric campaigns and future space missions focused on these systems.

  8. THE NEXT GENERATION VIRGO CLUSTER SURVEY. VI. THE KINEMATICS OF ULTRA-COMPACT DWARFS AND GLOBULAR CLUSTERS IN M87

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong-Xin; Peng, Eric W.; Li, Biao

    2015-03-20

    The origin of ultra-compact dwarfs (UCDs; r{sub h} ≳ 10 pc)—objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies—has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme star clusters, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs and 911 GCs associated with the central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M {sub *} ≳ 2× 10{sup 6} M {sub ☉} and 92% are as blue asmore » the classic blue GCs, nearly triple the confirmed sample of Virgo UCDs, providing by far the best opportunity for studying global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of blue GCs in the inner ∼70 kpc and as steep as that of red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than GCs, and blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have an orbital anisotropy profile that is tangentially biased at radii ≲40 kpc and radially biased farther out, whereas blue GCs become more tangentially biased at larger radii beyond ∼40 kpc; (4) GCs with M {sub *} ≳ 2 × 10{sup 6} M {sub ☉} have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially biased orbital structure of UCDs at large radii is in general agreement with the 'tidally threshed dwarf galaxy' scenario.« less

  9. The Next Generation Virgo Cluster Survey. VI. The Kinematics of Ultra-compact Dwarfs and Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Xin; Peng, Eric W.; Côté, Patrick; Liu, Chengze; Ferrarese, Laura; Cuillandre, Jean-Charles; Caldwell, Nelson; Gwyn, Stephen D. J.; Jordán, Andrés; Lançon, Ariane; Li, Biao; Muñoz, Roberto P.; Puzia, Thomas H.; Bekki, Kenji; Blakeslee, John P.; Boselli, Alessandro; Drinkwater, Michael J.; Duc, Pierre-Alain; Durrell, Patrick; Emsellem, Eric; Firth, Peter; Sánchez-Janssen, Rubén

    2015-03-01

    The origin of ultra-compact dwarfs (UCDs; rh >~ 10 pc)—objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies—has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme star clusters, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs and 911 GCs associated with the central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M sstarf gsim 2× 106 M ⊙ and 92% are as blue as the classic blue GCs, nearly triple the confirmed sample of Virgo UCDs, providing by far the best opportunity for studying global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of blue GCs in the inner ~70 kpc and as steep as that of red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than GCs, and blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have an orbital anisotropy profile that is tangentially biased at radii lsim40 kpc and radially biased farther out, whereas blue GCs become more tangentially biased at larger radii beyond ~40 kpc (4) GCs with M sstarf gsim 2 × 106 M ⊙ have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially biased orbital structure of UCDs at large radii is in general agreement with the "tidally threshed dwarf galaxy" scenario.

  10. Influence of tidal range on the stability of coastal marshland

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.

    2010-01-01

    Early comparisons between rates of vertical accretion and sea level rise across marshes in different tidal ranges inspired a paradigm that marshes in high tidal range environments are more resilient to sea level rise than marshes in low tidal range environments. We use field-based observations to propose a relationship between vegetation growth and tidal range and to adapt two numerical models of marsh evolution to explicitly consider the effect of tidal range on the response of the marsh platform channel network system to accelerating rates of sea level rise. We find that the stability of both the channel network and vegetated platform increases with increasing tidal range. Our results support earlier hypotheses that suggest enhanced stability can be directly attributable to a vegetation growth range that expands with tidal range. Accretion rates equilibrate to the rate of sea level rise in all experiments regardless of tidal range, suggesting that comparisons between accretion rate and tidal range will not likely produce a significant relationship. Therefore, our model results offer an explanation to widely inconsistent field-based attempts to quantify this relationship while still supporting the long-held paradigm that high tidal range marshes are indeed more stable.

  11. Dwarf Hosts of Low-z Supernovae

    NASA Astrophysics Data System (ADS)

    Pyotr Kolobow, Craig; Perlman, Eric S.; Strolger, Louis

    2018-01-01

    Hostless supernovae (SNe), or SNe in dwarf galaxies, may serve as excellent beacons for probing the spatial density of dwarf galaxies (M < 10^8M⊙), which themselves are scarcely detected beyond only a few Mpc. Depending on the assumed model for the stellar-mass to halo mass relation for these galaxies, LSST might see 1000s of SNe (of all types) from dwarf galaxies alone. Conversely, one can take the measured rates of these SNe and test the model predictions for the density of dwarf galaxies in the local universe. Current “all-sky” surveys, like PanSTARRS and ASAS-SN, are now finding hostless SNe at a number sufficient to measure their rate. What missing is the appropriate weighting of their host luminosities. Here we seek to continue a successful program to recover the luminosities of these hostless SNe, to z = 0.15, to use their rate to constrain the faint-end slope of the low-z galaxy luminosity function.

  12. M Dwarf Flares: Exoplanet Detection Implications

    NASA Astrophysics Data System (ADS)

    Tofflemire, B. M.; Wisniewski, J. P.; Hilton, E. J.; Kowalski, A. F.; Kundurthy, P.; Schmidt, S. J.; Hawley, S. L.; Holtzman, J. A.

    2011-12-01

    Low mass stars such as M dwarfs have become prime targets for exoplanet transit searches as their low luminosities and small stellar radii could enable the detection of super-Earths residing in their habitable zones. While promising transit targets, M dwarfs are also inherently variable and can exhibit up to ˜6 magnitude flux enhancements in the optical U-band. This is significantly higher than the predicted transit depths of habitable zone super-Earths (0.005 magnitude flux decrease). The behavior of flares at infrared (IR) wavelengths, particularly those likely to be used to study and characterize M dwarf exoplanets using facilities such as the James Web Space Telescope (JWST), remains largely unknown. To address these uncertainties, we are executing a coordinated, contemporaneous monitoring program of the optical and IR flux of M dwarfs known to regularly flare. A suite of telescopes located at the Kitt Peak National Observatory and the Apache Point Observatory are used for the observations. We present the initial results of this program.

  13. POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faherty, Jacqueline K.; Gagne, Jonathan; Weinberger, Alycia

    2016-07-01

    We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes (including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions. We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their low surface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bona fide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects that are non-members. Using this age-calibrated sample, we investigate trends in gravity classification, photometric color, absolute magnitude, color–magnitude, luminosity, and effective temperature.more » We find that gravity classification and photometric color clearly separate 5–130 Myr sources from >3 Gyr field objects, but they do not correlate one to one with the narrower 5–130 Myr age range. Sources with the same spectral subtype in the same group have systematically redder colors, but they are distributed between 1 and 4 σ from the field sequences and the most extreme outlier switches between intermediate- and low-gravity sources either confirmed in a group or not. The absolute magnitudes of low-gravity sources from the J band through W 3 show a flux redistribution when compared to equivalently typed field brown dwarfs that is correlated with spectral subtype. Low-gravity, late-type L dwarfs are fainter at J than the field sequence but brighter by W 3. Low-gravity M dwarfs are >1 mag brighter than field dwarfs in all bands from J through W 3. Clouds, which are a far more dominant opacity source for L dwarfs, are the likely cause. On color–magnitude diagrams, the latest-type, low-gravity L dwarfs drive the elbow of the L/T transition up to 1 mag redder and 1 mag fainter than field dwarfs at M{sub J} but are consistent with or brighter than the elbow at M{sub W1} and M{sub W2}. We conclude that low-gravity dwarfs carry an extreme version of the cloud conditions of field

  14. Infrared spectrum of an extremely cool white-dwarf star

    PubMed

    Hodgkin; Oppenheimer; Hambly; Jameson; Smartt; Steele

    2000-01-06

    White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the 'dark matter' in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.

  15. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  16. Faint Dwarf Galaxies in Hickson Compact Group 90

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Y.; Taylor, M. A.; Puzia, T. H.; Muñoz, R. P.

    2017-07-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies, which share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. Among them, we find a pair of candidates with ˜2 kpc projected separation and a nucleated dwarf candidate, with nucleus size of reff≅46-63 pc.

  17. ROSAT Pointed Observations of Cool Magnetic White Dwarfs

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Porter, J. G.; Davis, J. M.

    1995-01-01

    Observational evidence for the existence of a chromosphere on the cool magnetic white dwarf GD 356 has been reported. In addition, there has been theoretical speculations that cool magnetic white dwarfs may be sources of coronal X-ray emission. This emission, if it exists, would be distinct from the two types of X-ray emission (deep photospheric and shocked wind) that have already been observed from hot white dwarfs. We have used the PSPC instrument on ROSAT to observe three of the most prominent DA white dwarf candidates for coronal X-ray emission: GD 356, KUV 2316+123, and GD 90. The data show no significant emission for these stars. The derived upper limits for the X-ray luminosities provide constraints for a revision of current theories of the generation of nonradiative energy in white dwarfs.

  18. VLA Detects Unexplained Radio Emission From Three Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Astronomers have discovered three brown dwarfs -- enigmatic objects that are neither stars nor planets -- emitting radio waves that scientists cannot explain. The three newly-discovered radio-emitting brown dwarfs were found as part of a systematic study of nearby brown dwarfs using the National Science Foundation's Very Large Array (VLA) radio telescope. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) Until 2001, scientists believed that brown dwarfs, which are intermediate in mass between stars and planets, could not emit detectable amounts of radio waves. That year, summer students at the VLA made the first discovery of radio emission from a brown dwarf. Subsequently, as many as a half- dozen more radio-emitting brown dwarfs were discovered. "It clearly had become time to make a systematic study and try to find out just what percentage of brown dwarfs are emitting radio waves," said Rachel Osten, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Osten was assisted in the project in the summer of 2004 by Lynnae Quick, a student at North Carolina Agricultural and Technical State University; Tim Bastian, also an astronomer at NRAO; and Suzanne Hawley, an astronomer at the University of Washington. The research team presented their results to the American Astronomical Society's meeting in San Diego, CA. The three new detections of radio-emitting brown dwarfs are just the first results from the systematic study, which aims to observe all the known brown dwarfs within about 45 light-years of Earth. "We want to be able to say definitively just how common radio emission is among brown dwarfs," Osten explained. The study involves observing 65 individual brown dwarfs, so these new detections represent just the beginning of the results expected from the study. Brown dwarfs are too big to be planets but too small to be true stars, as they have too little mass to trigger hydrogen fusion reactions

  19. No Snowball on Habitable Tidally Locked Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checlair, Jade; Abbot, Dorian S.; Menou, Kristen, E-mail: jadecheclair@uchicago.edu

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of globalmore » glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO{sub 2} outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.« less

  20. Variable Stars in the M31 Dwarf Spheroidal Companion Cassiopeia

    NASA Astrophysics Data System (ADS)

    Pritzl, Barton J.; Armandroff, T. E.; Jacoby, G. H.; Da Costa, G. S.

    2007-12-01

    Dwarf spheroidal galaxies show very diverse star formation histories. For the Galactic dwarf spheroidal galaxies, a correlation exists between Galactocentric distance and the prominence of intermediate-age ( 2 - 10 Gyr) populations. To test whether this correlation exists for the M31 dwarf spheroidal galaxies, we observed the Cassiopeia (And VII) dwarf galaxy, which is one of the most distant M31 dwarf spheroidal galaxies. We will present the results of a variable star search using HST/ACS data, along with a preliminary color-magnitude diagram. From the RR Lyrae stars we can obtain an independent distance and metallicity estimate for the dwarf galaxy. These results will be compared to those found for the other M31 dwarf spheroidal galaxies.This research is supported in part by NASA through grant number GO-11081.11 from the Space Telescope Science Institute.

  1. ROBO-AO M DWARF MULTIPLICITY SURVEY

    NASA Astrophysics Data System (ADS)

    Lamman, Claire; Berta-Thompson, Zachory; Baranec, Christoph; Law, Nicholas; Schonhut, Jessica

    2018-01-01

    We analyzed over 7,000 observations from Robo-AO’s field M dwarf survey taken on the 2.1m Kitt Peak telescope. Results will help determine the multiplicity fraction of M dwarfs as a function of primary mass, which is a crucial step towards understanding their evolution and formation mechanics. Through its robotic, laser-guided, and automated system, the Robo-AO instrument has yielded the largest adaptive-optics M dwarf survey to date. I developed a graphical user interface to quickly analyze this data. Initial data analysis included assessing data quality, checking the result from Robo-AO’s automatic reduction pipeline, and determining existence as well as the relative position of companions through a visual inspection. This program can be applied to other datasets and was successfully tested by re-analyzing observations from a separate Robo-AO survey. Following the preliminary results from this data analysis tool, further observations were done with the Keck II telescope by using its NIRC2 imager to follow up on ten select targets for the existence and physical association of companions. After a conservative initial cut for quality, 356 companions were found within 4” of a primary star out of 2,746 high quality Robo-AO M dwarf observations, including four triple systems. We will present a preliminary estimate for the multiplicity rate of wide M dwarf companions after accounting for observation limitations and the completeness of our search. Future research will yield insights into low-mass stellar formation and provide a database of nearby M dwarf multiples that will potentially assist ongoing and future surveys for planets around these stars, such as the NASA TESS mission.

  2. Life and death of a hero - lessons learned from modelling the dwarf spheroidal Hercules: an incorrect orbit?

    NASA Astrophysics Data System (ADS)

    Blaña, M.; Fellhauer, M.; Smith, R.; Candlish, G. N.; Cohen, R.; Farias, J. P.

    2015-01-01

    Hercules is a dwarf spheroidal satellite of the Milky Way, found at a distance of ≈138 kpc, and showing evidence of tidal disruption. It is very elongated and exhibits a velocity gradient of 16 ± 3 km s-1 kpc-1. Using these data a possible orbit of Hercules has previously been deduced in the literature. In this study, we make use of a novel approach to find a best-fitting model that follows the published orbit. Instead of using trial and error, we use a systematic approach in order to find a model that fits multiple observables simultaneously. As such, we investigate a much wider parameter range of initial conditions and ensure we have found the best match possible. Using a dark matter free progenitor that undergoes tidal disruption, our best-fitting model can simultaneously match the observed luminosity, central surface brightness, effective radius, velocity dispersion, and velocity gradient of Hercules. However, we find it is impossible to reproduce the observed elongation and the position angle of Hercules at the same time in our models. This failure persists even when we vary the duration of the simulation significantly, and consider a more cuspy density distribution for the progenitor. We discuss how this suggests that the published orbit of Hercules is very likely to be incorrect.

  3. Initial Dynamical Evolution of Star Clusters with Tidal Field

    NASA Astrophysics Data System (ADS)

    Park, So-Myoung; Goodwin, Simon P.; Kim, Sungsoo S.

    2017-03-01

    Observations have been suggested that star clusters could form from the rapid collapse and violent relaxation of substructured distributions. We investigate the collapse of fractal stellar distributions in no, weak, and very strong tidal fields. We find that the rapid collapse of substructure into spherical clusters happens quickly with no or a weak tidal field, but very strong tidal fields prevent a cluster forming. However, we also find that dense Plummer spheres are also rapidly destroyed in strong tidal fields. We suggest that this is why the low-mass star clusters cannot survive near the galactic centre which has strong tidal field.

  4. The Origin and Evolution of the White-Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Clemens, J. C.

    1994-12-01

    The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using "asteroseismology," a procedure analogous to terrestrial seismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we developed for this purpose, the Whole Earth Telescope. By combining data from the Whole Earth Telescope with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer; it is about 10^-4 times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties, and the mass of the hydrogen layer measured

  5. The origin and evolution of the white dwarf stars

    NASA Astrophysics Data System (ADS)

    Clemens, James Christopher

    1994-01-01

    The secret of how white dwarf stars form and evolve is hidden in their interiors. There, gravity separates the constituent elements into layers; the lighter elements float to the top and the heavier ones sink. Consequently, a white dwarf's structure depends on the quantity of the elements present. Measuring that structure can tell Us about the processes which formed white dwarfs and allow us to calculate how fast they cool. The latter is indispensable for measuring the age of our galaxy using the oldest white dwarfs as chronometers. Because some white dwarfs pulsate, we can exploit the resulting luminosity variations to measure their internal structure using 'asteroseismology', a procedure analogous to terrestrial seismology. Exploring white dwarf structure via asteroseismology poses a difficult observational task: acquiring essentially uninterrupted time series measurements of the brightness changes of pulsating white dwarf stars. We have accomplished this task using an instrument we developed for this purpose, the Whole Earth Telescope. By combining data from the Whole Earth Telescope with published measurements, we have detected a common pattern in the pulsation spectra of all the variable, hydrogen spectra white dwarfs (DAVs), implying that they have similar surface hydrogen layer masses. Because we have identified the degree (l) and the radial overtone (k) of the modes in the pattern detected, we have been able to compare their periods to published pulsation models to find the mass of the hydrogen layer, it is about 10-4 times the total stellar mass. This result will require adjustments to published estimates of the age of the galaxy which use theoretical cooling times of the oldest white dwarfs as a time standard; the theoretical models typically assume much thinner hydrogen layers. We have also investigated the two classes of pulsating helium spectra white dwarfs (DOVs and DBVs). From their pulsation properties and the mass of the hydrogen layer measured for

  6. A stand-alone tidal prediction application for mobile devices

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Han; Fan, Ren-Ye; Yang, Yi-Chung

    2017-04-01

    It is essential for people conducting fishing, leisure, or research activities at the coasts to have timely and handy tidal information. Although tidal information can be found easily on the internet or using mobile device applications, this information is all applicable for only certain specific locations, not anywhere on the coast, and they need an internet connection. We have developed an application for Android devices, which allows the user to obtain hourly tidal height anywhere on the coast for the next 24 hours without having to have any internet connection. All the necessary information needed for the tidal height calculation is stored in the application. To develop this application, we first simulate tides in the Taiwan Sea using the hydrodynamic model (MIKE21 HD) developed by the DHI. The simulation domain covers the whole coast of Taiwan and the surrounding seas with a grid size of 1 km by 1 km. This grid size allows us to calculate tides with high spatial resolution. The boundary conditions for the simulation domain were obtained from the Tidal Model Driver of the Oregon State University, using its tidal constants of eight constituents: M2, S2, N2, K2, K1, O1, P1, and Q1. The simulation calculates tides for 183 days so that the tidal constants for the above eight constituents of each water grid can be extracted by harmonic analysis. Using the calculated tidal constants, we can predict the tides in each grid of our simulation domain, which is useful when one needs the tidal information for any location in the Taiwan Sea. However, for the mobile application, we only store the eight tidal constants for the water grids on the coast. Once the user activates the application, it reads the longitude and latitude from the GPS sensor in the mobile device and finds the nearest coastal grid which has our tidal constants. Then, the application calculates tidal height variation based on the harmonic analysis. The application also allows the user to input location and

  7. Brown Dwarf Weather (Artist's Concept)

    NASA Image and Video Library

    2017-08-17

    This artist's concept animation shows a brown dwarf with bands of clouds, thought to resemble those seen on Neptune and the other outer planets in the solar system. By using NASA's Spitzer Space Telescope, astronomers have found that the varying glow of brown dwarfs over time can be explained by bands of patchy clouds rotating at different speeds. Videos are available at https://photojournal.jpl.nasa.gov/catalog/PIA21752

  8. Co-infection and disease severity of Ohio Maize dwarf mosaic virus and Maize chlorotic dwarf virus strains

    USDA-ARS?s Scientific Manuscript database

    Two major maize viruses have been reported in the United States: Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV). These viruses co-occur in regions where maize is grown such that co-infections are likely. Co-infection of different strains of MCDV is also observed frequently...

  9. The complete nucleotide sequence of the Barley yellow dwarf virus-RMV genome reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses

    USDA-ARS?s Scientific Manuscript database

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All ...

  10. Dusty Dwarfs Galaxies Occulting A Bright Background Spiral

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2017-08-01

    The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.

  11. A disintegrating minor planet transiting a white dwarf.

    PubMed

    Vanderburg, Andrew; Johnson, John Asher; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R; Dufour, Patrick; Ciardi, David R; Angus, Ruth; Schaefer, Laura; Latham, David W; Charbonneau, David; Beichman, Charles; Eastman, Jason; McCrady, Nate; Wittenmyer, Robert A; Wright, Jason T

    2015-10-22

    Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres, even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System. This fact, together with the existence of warm, dusty debris disks surrounding about four per cent of white dwarfs, suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars. The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System. However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf--WD 1145+017--being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star's brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star's spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets.

  12. "Missing Mass" Found in Recycled Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Astronomers studying dwarf galaxies formed from the debris of a collision of larger galaxies found the dwarfs much more massive than expected, and think the additional material is "missing mass" that theorists said should not be present in this kind of dwarf galaxy. Multiwavelength Image of NGC 5291 Multiwavelength image of NGC 5291 and dwarf galaxies around it. CREDIT: P-A Duc, CEA-CNRS/NRAO/AUI/NSF/NASA. Click on image for page of more graphics and full information The scientists used the National Science Foundation's Very Large Array (VLA) radio telescope to study a galaxy called NGC 5291, 200 million light-years from Earth. This galaxy collided with another 360 million years ago, and the collision shot streams of gas and stars outward. Later, the dwarf galaxies formed from the ejected debris. "Our detailed studies of three 'recycled' dwarf galaxies in this system showed that the dwarfs have twice as much unseen matter as visible matter. This was surprising, because they were expected to have very little unseen matter," said Frederic Bournaud, of the French astrophysics laboratory AIM of the French CEA and CNRS. Bournaud and his colleagues announced their discovery in the May 10 online issue of the journal Science. "Dark matter," which astronomers can detect only by its gravitational effects, comes, they believe, in two basic forms. One form is the familiar kind of matter seen in stars, planets, and humans -- called baryonic matter -- that does not emit much light or other type of radiation. The other form, called non-baryonic dark matter, comprises nearly a third of the Universe but its nature is unknown. The visible portion of spiral galaxies, like our own Milky Way, lies mostly in a flattened disk, usually with a bulge in the center. This visible portion, however, is surrounded by a much larger halo of dark matter. When spiral galaxies collide, the material expelled outward by the interaction comes from the galaxies' disks. For this reason, astronomers did

  13. A BROWN DWARF CENSUS FROM THE SIMP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, Jasmin; Gagné, Jonathan; Artigau, Étienne

    We have conducted a near-infrared (NIR) proper motion survey, the Sondage Infrarouge de Mouvement Propre, in order to discover field ultracool dwarfs (UCD) in the solar neighborhood. The survey was conducted by imaging ∼28% of the sky with the Caméra PAnoramique Proche-InfraRouge both in the southern hemisphere at the Cerro Tololo Inter-American Observatory 1.5 m telescope, and in the northern hemisphere at the Observatoire du Mont-Mégantic 1.6 m telescope and comparing the source positions from these observations with the Two Micron All-Sky Survey Point Source Catalog (2MASS PSC). Additional color criteria were used to further discriminate unwanted astrophysical sources. Wemore » present the results of an NIR spectroscopic follow-up of 169 M, L, and T dwarfs. Among the sources discovered are 2 young field brown dwarfs, 6 unusually red M and L dwarfs, 25 unusually blue M and L dwarfs, 2 candidate unresolved L+T binaries, and 24 peculiar UCDs. Additionally, we add 9 L/T transition dwarfs (L6–T4.5) to the already known objects.« less

  14. Tidal Marshes: The Boundary between Land and Ocean.

    ERIC Educational Resources Information Center

    Gosselink, James

    An overview of the ecology of the tidal marshes along the gulf coast of the United States is presented. The following topics are included: (1) the human impact on tidal marshes; (2) the geologic origins of tidal marshes; (3) a description of the physical characteristics and ecosystem of the marshlands; (4) a description of the marshland food chain…

  15. Modeling tidal exchange and dispersion in Boston Harbor

    USGS Publications Warehouse

    Signell, Richard P.; Butman, Bradford

    1992-01-01

    Tidal dispersion and the horizontal exchange of water between Boston Harbor and the surrounding ocean are examined with a high-resolution (200 m) depth-averaged numerical model. The strongly varying bathymetry and coastline geometry of the harbor generate complex spatial patterns in the modeled tidal currents which are verified by shipboard acoustic Doppler surveys. Lagrangian exchange experiments demonstrate that tidal currents rapidly exchange and mix material near the inlets of the harbor due to asymmetry in the ebb/flood response. This tidal mixing zone extends roughly a tidal excursion from the inlets and plays an important role in the overall flushing of the harbor. Because the tides can only efficiently mix material in this limited region, however, harbor flushing must be considered a two step process: rapid exchange in the tidal mixing zone, followed by flushing of the tidal mixing zone by nontidal residual currents. Estimates of embayment flushing based on tidal calculations alone therefore can significantly overestimate the flushing time that would be expected under typical environmental conditions. Particle-release simulations from point sources also demonstrate that while the tides efficiently exchange material in the vicinity of the inlets, the exact nature of dispersion from point sources is extremely sensitive to the timing and location of the release, and the distribution of particles is streaky and patchlike. This suggests that high-resolution modeling of dispersion from point sources in these regions must be performed explicitly and cannot be parameterized as a plume with Gaussian-spreading in a larger scale flow field.

  16. Satellite Tidal Magnetic Signals Constrain Oceanic Lithosphere-Asthenosphere Boundary Earth Tomography with Tidal Magnetic Signals

    NASA Technical Reports Server (NTRS)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  17. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  18. A novel approach to flow estimation in tidal rivers

    NASA Astrophysics Data System (ADS)

    Moftakhari, H. R.; Jay, D. A.; Talke, S. A.; Kukulka, T.; Bromirski, P. D.

    2013-08-01

    Reliable estimation of river discharge to the ocean from large tidal rivers is vital for water resources management and climate analyses. Due to the difficulties inherent in measuring tidal-river discharge, flow records are often limited in length and/or quality and tidal records often predate discharge records. Tidal theory indicates that tides and river discharge interact through quadratic bed friction, which diminishes and distorts the tidal wave as discharge increases. We use this phenomenon to develop a method of estimating river discharge for time periods with tidal data but no flow record. Employing sequential 32 day harmonic analyses of tidal properties, we calibrate San Francisco (SF), CA tide data to the Sacramento River delta outflow index from 1930 to 1990, and use the resulting relationship to hindcast river flow from 1858 to 1929. The M2 admittance (a ratio of the observed M2 tidal constituent to its astronomical forcing) best reproduces high flows, while low-flow periods are better represented by amplitude ratios based on higher harmonics (e.g.,M4/M22). Results show that the annual inflow to SF Bay is now 30% less than before 1900 and confirm that the flood of January 1862 was the largest since 1858.

  19. ANDROMEDA DWARFS IN LIGHT OF MODIFIED NEWTONIAN DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGaugh, Stacy; Milgrom, Mordehai

    We compare the recently published velocity dispersions for 17 Andromeda dwarf spheroidals with estimates of the modified Newtonian dynamics predictions, based on the luminosities of these dwarfs, with reasonable stellar mass-to-light values and no dark matter. We find that the two are consistent within the uncertainties. We further predict the velocity dispersions of another 10 dwarfs for which only photometric data are currently available.

  20. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  1. Dwarf Galaxies in the Chandra COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille

    2018-01-01

    The existence of intermediate mass black holes (100 < MBH < 106 Msun) has been invoked to explain the finding of extremely massive black holes at z>7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 <= M* <= 3x109 Msun) at z <=2.4, selected from the Chandra COSMOS-Legacy survey. Once the star formation contribution to the X-ray emission is subtracted, the AGN luminosities of the 40 dwarf galaxies are in the range L(0.5-10 keV)~1039 - 1044 erg/s. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.

  2. ON THE EVOLUTION OF MAGNETIC WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay, P.-E.; Fontaine, G.; Brassard, P.

    We present the first radiation magnetohydrodynamic simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-β parameter, the thermal-to-magnetic-pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1–50 kG, which is much smaller than the typical 1–1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirelymore » suppressed during the full evolution (B ≳ 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (T{sub eff}) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection due to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, the effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with T{sub eff} ≲ 10,000 K cool significantly slower than non-magnetic degenerates.« less

  3. Dissipation of Tidal Energy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  4. Gravitational Interactions of White Dwarf Double Stars

    NASA Astrophysics Data System (ADS)

    McKeough, James; Robinson, Chloe; Ortiz, Bridget; Hira, Ajit

    2016-03-01

    In the light of the possible role of White Dwarf stars as progenitors of Type Ia supernovas, we present computational simulations of some astrophysical phenomena associated with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.5 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We will extend our computational studies to blue giant and red giant stars in the future. Funding from National Science Foundation.

  5. Carbon sequestration by Australian tidal marshes

    PubMed Central

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-01-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha−1 (range 14–963 Mg OC ha−1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha−1 yr−1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr−1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes. PMID:28281574

  6. Carbon sequestration by Australian tidal marshes.

    PubMed

    Macreadie, Peter I; Ollivier, Q R; Kelleway, J J; Serrano, O; Carnell, P E; Ewers Lewis, C J; Atwood, T B; Sanderman, J; Baldock, J; Connolly, R M; Duarte, C M; Lavery, P S; Steven, A; Lovelock, C E

    2017-03-10

    Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO 2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha -1 (range 14-963 Mg OC ha -1 ). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha -1 yr -1 . Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO 2 -equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr -1 , with a CO 2 -equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO 2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  7. Tidal Response of Preliminary Jupiter Model

    NASA Astrophysics Data System (ADS)

    Wahl, Sean M.; Hubbard, William B.; Militzer, Burkhard

    2016-11-01

    In anticipation of improved observational data for Jupiter’s gravitational field, from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms, using the non-perturbative concentric Maclaurin Spheroid method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal and rotational perturbations, which we find to be important for a rapidly rotating planet like Jupiter. Our predicted static tidal Love number, {k}2=0.5900, is ˜10% larger than previous estimates. The value is, as expected, highly correlated with the zonal harmonic coefficient J 2, and is thus nearly constant when plausible changes are made to the interior structure while holding J 2 fixed at the observed value. We note that the predicted static k 2 might change, due to Jupiter’s dynamical response to the Galilean moons, and find reasons to argue that the change may be detectable—although we do not present here a theory of dynamical tides for highly oblate Jovian planets. An accurate model of Jupiter’s tidal response will be essential for interpreting Juno observations and identifying tidal signals from effects of other interior dynamics of Jupiter’s gravitational field.

  8. Dwarf mistletoes: Biology, pathology, and systematics

    Treesearch

    Frank G. Hawksworth; Delbert Wiens

    1996-01-01

    Arceuthobium (dwarf mistletoes), a well defined but morphologically reduced genus of the family Viscaceae, is parasitic on Pinaceae in the Old and New Worlds and on Cupressaceae in the Old World. Although conifer forests in many parts of the Northern Hemisphere are infested with dwarf mistletoes, those most commonly infested are in western North...

  9. Brown Dwarfs: Discovery and Detailed Studies

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    2001-01-01

    We obtained the optical and IR spectra of Gliese 229B and identified Cs, I, and CO features - as expected in theoretical models. Our optical IR spectrum showed that most of the refractory metals have condensed out of the atmosphere and the presence of Cs, I and CO shows evidence for disequilibrium chemistry. We reported orbital evidence for Gliese 229B. The HST measured optical magnitudes provide additional evidence for the absence of dust in the atmosphere of this cool object. The luminosity of brown dwarfs depend on their masses and ages and in order to interpret the results of the survey we have carried out an extensive Monte Carlo analysis. Our conclusion is that warm brown dwarfs are rare, as companions in the orbital period range beyond approximately 30 - 50 AU. The Palomer survey poses no constraint for brown dwarfs in planetary orbits similar to those of the outer planets. We have just started a program of imaging nearby stars with the newly commissioned AO system at Palomar and Keck and have already found a brown dwarf candidate.

  10. Race to the Top: Transiting Brown Dwarfs and Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas G.

    2015-12-01

    There are currently twelve known transiting brown dwarfs, nine of which orbit single main-sequence stars. These systems give us one of the only ways in which we may directly measure the masses and radii brown dwarfs, which in turn provides strong constraints on theoretical models of brown dwarf interiors and atmospheres. In addition, the transiting brown dwarfs allow us to forge a link between our understanding of transiting hot Jupiters, and our understanding of the field brown dwarf population. Comparing the two gives us a unique avenue to explore the role and interaction of surface gravity and stellar irradiation in the atmospheres of sub-stellar objects. It also allows us to leverage the detailed spectroscopic information we have for field brown dwarfs to interpret the broadband colors of hot Jupiters. This provides us with insight into the L/T transition in brown dwarfs, and the atmospheric chemistry changes that occur in hot Jupiter atmospheres as they cool. I will discuss recent observational results, with a particular focus on the transiting brown dwarf KELT-1b, and suggest how more of these important systems may be discovered in the future.

  11. Galaxy disruption in a halo of dark matter.

    PubMed

    Forbes, Duncan A; Beasley, Michael A; Bekki, Kenji; Brodie, Jean P; Strader, Jay

    2003-08-29

    The relics of disrupted satellite galaxies have been found around the Milky Way and Andromeda, but direct evidence of a satellite galaxy in the early stages of disruption has remained elusive. We have discovered a dwarf satellite galaxy in the process of being torn apart by gravitational tidal forces as it merges with a larger galaxy's dark matter halo. Our results illustrate the morphological transformation of dwarf galaxies by tidal interaction and the continued buildup of galaxy halos.

  12. Effects of inhalational anaesthesia with low tidal volume ventilation on end-tidal sevoflurane and carbon dioxide concentrations: prospective randomized study.

    PubMed

    de la Matta-Martín, M; López-Herrera, D; Luis-Navarro, J C; López-Romero, J L

    2014-02-01

    We investigated how ventilation with low tidal volumes affects the pharmacokinetics of sevoflurane uptake during the first minutes of inhaled anaesthesia. Forty-eight patients scheduled for lung resection were randomly assigned to three groups. Patients in group 1, 2 and 3 received 3% sevoflurane for 3 min via face mask and controlled ventilation with a tidal volume of 2.2, 8 and 12 ml kg(-1), respectively (Phase 1). After tracheal intubation (Phase 2), 3% sevoflurane was supplied for 2 min using a tidal volume of 8 ml kg(-1) (Phase 3). End-tidal sevoflurane concentrations were significantly higher in group 1 at the end of phase 1 and lower at the end of phase 2 than in the other groups as follows: median of 2.5%, 2.2% and 2.3% in phase 1 for groups 1, 2 and 3, respectively (P<0.001); and 1.7%, 2.1% and 2.0% in phase 2, respectively (P<0.001). End-tidal carbon dioxide values in group 1 were significantly lower at the end of phase 1 and higher at the end of phase 2 than in the other groups as follows: median of 16.5, 31 and 29.5 mm Hg in phase 1 for groups 1, 2 and 3, respectively (P<0.001); and 46.2, 36 and 33.5 mm Hg in phase 2, respectively (P<0.001). When sevoflurane is administered with tidal volume approximating the airway dead space volume, end-tidal sevoflurane and end-tidal carbon dioxide may not correctly reflect the concentration of these gases in the alveoli, leading to misinterpretation of expired gas data. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  13. White dwarfs in the Gaia era

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Gentile-Fusillo, N.; Cummings, J.; Jordan, S.; Gänsicke, B. T.; Kalirai, J. S.

    2018-04-01

    The vast majority of stars will become white dwarfs at the end of the stellar life cycle. These remnants are precise cosmic clocks owing to their well constrained cooling rates. Gaia Data Release 2 is expected to discover hundreds of thousands of white dwarfs, which can then be observed spectroscopically with WEAVE and 4MOST. By employing spectroscopically derived atmospheric parameters combined with Gaia parallaxes, white dwarfs can constrain the stellar formation history in the early developing phases of the Milky Way, the initial mass function in the 1.5 to 8 M ⊙ range, and the stellar mass loss as well as the state of planetary systems during the post main-sequence evolution.

  14. V471 Tauri, ballerina of the Hyades

    NASA Astrophysics Data System (ADS)

    Skillman, David R.; Patterson, Joseph

    1988-09-01

    Orbital light curves for V471 Tauri, the red dwarf-white dwarf binary in the Hyades, were obtained for the 1980-1983 observing seasons based on photometric and spectroscopic data. The results reveal the effects of tidal distortion of the secondary and a slow, transient wave which may originate from darker areas on the star's surface. A consistent ephemeris is derived. A Ca II line emission similar to that of rapidly rotating late-type stars and an additional component arising from the stellar region bathed in the white dwarf's UV-radiation field are found. An overall orbital-period decrease is noted which may be due to the strong braking of the K star's rotation by its own stellar wind, coupled with the enforcement of synchronous rotation by the tidal interaction with the white dwarf.

  15. DISCOVERY OF FOUR HIGH PROPER MOTION L DWARFS, INCLUDING A 10 pc L DWARF AT THE L/T TRANSITION {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, Philip J.; Gizis, John E.; Harris, Hugh C.

    2013-10-20

    We discover four high proper motion L dwarfs by comparing the Wide-field Infrared Survey Explorer (WISE) to the Two Micron All Sky Survey. WISE J140533.32+835030.5 is an L dwarf at the L/T transition with a proper motion of 0.85 ± 0.''02 yr{sup –1}, previously overlooked due to its proximity to a bright star (V ≈ 12 mag). From optical spectroscopy we find a spectral type of L8, and from moderate-resolution J band spectroscopy we find a near-infrared spectral type of L9. We find WISE J140533.32+835030.5 to have a distance of 9.7 ± 1.7 pc, bringing the number of L dwarfsmore » at the L/T transition within 10 pc from six to seven. WISE J040137.21+284951.7, WISE J040418.01+412735.6, and WISE J062442.37+662625.6 are all early L dwarfs within 25 pc, and were classified using optical and low-resolution near-infrared spectra. WISE J040418.01+412735.6 is an L2 pec (red) dwarf, a member of the class of unusually red L dwarfs. We use follow-up optical and low-resolution near-infrared spectroscopy to classify a previously discovered fifth object WISEP J060738.65+242953.4 as an (L8 Opt/L9 NIR), confirming it as an L dwarf at the L/T transition within 10 pc. WISEP J060738.65+242953.4 shows tentative CH{sub 4} in the H band, possibly the result of unresolved binarity with an early T dwarf, a scenario not supported by binary spectral template fitting. If WISEP J060738.65+242953.4 is a single object, it represents the earliest onset of CH{sub 4} in the H band of an L/T transition dwarf in the SpeX Library. As very late L dwarfs within 10 pc, WISE J140533.32+835030.5 and WISEP J060738.65+242953.4 will play a vital role in resolving outstanding issues at the L/T transition.« less

  16. Detection of main tidal frequencies using least squares harmonic estimation method

    NASA Astrophysics Data System (ADS)

    Mousavian, R.; Hossainali, M. Mashhadi

    2012-11-01

    In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is investigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same. Moreover, in contrary to the Workington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained results, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies with maximum amplitude; the power spectrums derived from two aforementioned methods are the same. These results demonstrate the ability of LS-HE for identifying the frequencies with maximum amplitude in both tidal records.

  17. A Dark Spot on a Massive White Dwarf

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Gianninas, Alexandros; Bell, Keaton J.; Curd, Brandon; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick; Wisniewski, John P.; Winget, D. E.; Winget, K. I.

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope. This work is based on observations obtained at the Gemini Observatory, McDonald Observatory, and the Apache Point Observatory 3.5-m telescope. The latter is owned and operated by the Astrophysical Research Consortium. Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  18. Morphology of Dwarf Galaxies in Isolated Satellite Systems

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae

    2017-08-01

    The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.

  19. Faint dwarf galaxies in Hickson Compact Group 90*

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Yasna; Taylor, Matthew A.; Puzia, Thomas H.; Muñoz, Roberto P.; Eigenthaler, Paul; Georgiev, Iskren Y.; Goudfrooij, Paul; Hilker, Michael; Lançon, Ariane; Mamon, Gary; Mieske, Steffen; Miller, Bryan W.; Peng, Eric W.; Sánchez-Janssen, Rubén

    2016-12-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with Very Large Telescope/Visible Multi-Object Spectrograph. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies. We measure spheroid half-light radii in the range 0.7 ≲ reff/kpc ≲ 1.5 with luminosities of -11.65 ≲ MU ≲ -9.42 and -12.79 ≲ MI ≲ -10.58 mag, corresponding to a colour range of (U - I)0 ≃ 1.1-2.2 mag and surface brightness levels of μU ≃ 28.1 mag arcsec-2 and μI ≃ 27.4 mag arcsec-2. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z⊙ metallicities we obtain stellar masses in the range M*|Z⊙ ≃ 105.7 - 6.3 M⊙ and M_{*}|_{0.02 Z_{⊙} ≃ 10^{6.3-8} M_{⊙}. Three dwarfs are older than 1 Gyr, while the other two significantly bluer dwarfs are younger than ˜2 Gyr at any mass/metallicity combination. Altogether, the new LSB dwarf galaxy candidates share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. We find a pair of candidates with ˜2 kpc projected separation, which may represent one of the closest dwarf galaxy pairs found. We also find a nucleated dwarf candidate, with a nucleus size of reff ≃ 46-63 pc and magnitude MU, 0 = -7.42 mag and (U - I)0 = 1.51 mag, which is consistent with a nuclear stellar disc with a stellar mass in the range 104.9 - 6.5 M⊙.

  20. THE BROWN DWARF KINEMATICS PROJECT (BDKP). IV. RADIAL VELOCITIES OF 85 LATE-M AND L DWARFS WITH MagE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgasser, Adam J.; Logsdon, Sarah E.; Gagné, Jonathan

    2015-09-15

    Radial velocity measurements are presented for 85 late M- and L-type very low-mass stars and brown dwarfs obtained with the Magellan Echellette spectrograph. Targets primarily have distances within 20 pc of the Sun, with more distant sources selected for their unusual spectral energy distributions. We achieved precisions of 2–3 km s{sup −1}, and combined these with astrometric and spectrophotometric data to calculate UVW velocities. Most are members of the thin disk of the Galaxy, and velocity dispersions indicate a mean age of 5.2 ± 0.2 Gyr for sources within 20 pc. We find signficantly different kinematic ages between late-M dwarfsmore » (4.0 ± 0.2 Gyr) and L dwarfs (6.5 ± 0.4 Gyr) in our sample that are contrary to predictions from prior simulations. This difference appears to be driven by a dispersed population of unusually blue L dwarfs which may be more prevalent in our local volume-limited sample than in deeper magnitude-limited surveys. The L dwarfs exhibit an asymmetric U velocity distribution with a net inward flow, similar to gradients recently detected in local stellar samples. Simulations incorporating brown dwarf evolution and Galactic orbital dynamics are unable to reproduce the velocity asymmetry, suggesting non-axisymmetric perturbations or two distinct L dwarf populations. We also find the L dwarfs to have a kinematic age-activity correlation similar to more massive stars. We identify several sources with low surface gravities, and two new substellar candidate members of nearby young moving groups: the astrometric binary DENIS J08230313–4912012AB, a low-probability member of the β Pictoris Moving Group; and 2MASS J15104786–2818174, a moderate-probability member of the 30–50 Myr Argus Association.« less