Sago pondweed (Potamogeton pectinatus L.): A literature review
Kantrud, Harold A.
1990-01-01
Sago pondweed (Potamogeton pectinatus L.) is a submersed macrophyte of nearly cosmopolitan distribution. The plant is of worldwide importance as a waterfowl food but also can be a nuisance in irrigation canals and recreational areas. The plant reproduces by many different means, depending on habitat and environmental stress. Several genetic ecotypes have evolved. Most important as waterfowl food are the turions (tubers), vegetative propagules rich in carbohydrates that are mostly buried in bottom sediments. In temperate wetlands, most turions sprout in spring, making sago behave as an annual. Drupelets (seeds) are the sexual propagules of sago and provide a mechanism for sago to survive periods of drought and excessive water salinity. Drupelets can be washed ashore or carried by birds for long distances. Sago decomposes rapidly at senescence, annually in temperate wetlands.Sago is mostly found in semipermanently or permanently flooded mixosaline lacustrine, palustrine, and riverine wetlands < 2.5 m deep, where fetches are not large or currents are < 1 m/s. Sago seems to prefer stable water levels but can tolerate significant water level fluctuations. Among the Potamogetons, only sago tolerates high salinity, pH, and alkalinity, but it fares poorly among specialist taxa in acidic or nutrient-poor waters. Sago is highly tolerant of eutrophic waters, and it can be the only species of submersed macrophyte present in heavily polluted sites. Sago grows in nearly all bottom substrates. Turbidity is the factor that most frequently limits sago growth.Sago often occurs in monotypic stands but can grow with many other submersed and emergent macrophytes. Dominance by sago in certain wetlands sometimes alternates with dominance by other submersed macrophytes when salinities or other environmental factors change. Sago also can be associated with a large variety of unattached filamentous, planktonic, or epiphytic algae. Increased turbidity caused by planktonic algae often is responsible for lowered sago production. Less common biotic limiting factors are organic pollutants and consumption and uprooting by waterfowl and fish.Sago provides food or shelter for amphibians, reptiles, fish, and mammals. The greatest value of sago in North America is as food for migrant and staging waterfowl, primarily diving ducks and swans. Sago beds also provide habitat for a large complex of invertebrates (an important food source for young waterfowl), but direct consumption of living sago by invertebrates is negligible.Sago has been propagated for many years-indoors, as an experimental organism for work in plant physiology or herbicide testing, and outdoors, for purposes of attracting waterfowl. Much work has also been done developing methods to control excessive sago growth in fishponds and irrigation canals.Future research should concentrate on (1) determining, in a variety of wetland types, the causes of light-limiting turbidity that often suppresses sago growth, (2) understanding the ways in which human activities on and near wetlands affect sago production, and (3) developing reliable and predictable techniques to stimulate sago production for waterfowl by using water level manipulations and other means, in a variety of environmental settings.
Characteristics of Metroxylon sagu resistant starch type III as prebiotic substance.
Zi-Ni, Tan; Rosma, Ahmad; Napisah, Hussin; Karim, Alias A; Liong, Min-Tze
2015-04-01
Resistant starch type III (RS3 ) was produced from sago (Metroxylon sagu) and evaluated for its characteristics as a prebiotic. Two RS3 samples designated sago RS and HCl-sago RS contained 35.71% and 68.30% RS, respectively, were subjected to hydrolyses by gastric juice and digestive enzymes and to absorption. Both sago RS and HCl-sago RS were resistant to 180 min hydrolysis by gastric acidity at pH 1 to 4 with less than 0.85% hydrolyzed. Both samples were also resistant toward hydrolysis by gastrointestinal tract enzymes and intestinal absorption with 96.75% and 98.69% of RS3 were recovered respectively after 3.5 h digestion and overnight dialysis at 37 °C. Sago RS3 supported the growth of both beneficial (lactobacilli and Bifidobacteria) and pathogenic microbes (Escherichia coli, Campylobacter coli, and Clostridium perfringens) in the range of 2.60 to 3.91 log10 CFU/mL. Hence, prebiotic activity score was applied to describe the extent to which sago RS3 supports selective growth of the lactobacilli and bifidobacteria strains over pathogenic bacteria. The highest scores were obtained from Bifidobacterium sp. FTDC8943 grown on sago RS (+0.26) and HCl-sago RS (+0.24) followed by L. bulgaricus FTDC1511 grown on sago RS (+0.21). The findings had suggested that sago RS3 has the prebiotic partial characteristics and it is suggested to further assess the suitability of sago RS3 as a prebiotic material. © 2015 Institute of Food Technologists®
21 CFR 133.186 - Sap sago cheese.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sap sago cheese. 133.186 Section 133.186 Food and... Products § 133.186 Sap sago cheese. (a) Description. (1) Sap sago cheese is the food prepared by the... method described in § 133.5. Sap sago cheese is not less than 5 months old. (2) One or more of the dairy...
Nirmala, Intan R; Trees; Suwarni; Pramono, Mochammad S
2017-06-01
The sago worm Rhynchophorus ferrugineus is a nutritious food source found in the remaining parts of a sago palm trunk after the removal of sago starch by farmers. The effort to increase sago worm consumption is investigated in an intervention study among children aged <5 years. Children aged 1-5 years were allocated to a sago worm inclusive diet (n=10) and to a control group eating a usual diet, but without sago worms (n=13). Snacks were served once per day (100 g) for 45 days and designed to contain similar amounts of vegetables (carrots and long beans) and other ingredients including rice, sticky rice, cassava, sweet potato, banana, or tofu with or without sago worms. Food preference was ascertained by interview. Anthropometric measurements were taken at baseline and the endpoint. After mixing all food stuffs into one product for instance nasi gurih, protein and fat content in the intervention group was higher compared to control group (8.8 g and 7.3 g vs 4.7 g and 0.5 g respectively). In the intervention group receiving complementary feeding with sago worms, children's height changed minimally as did the control group (0.3 vs 0.2 cm); no difference was observed between the groups regarding weight or height. Sago worm consumption can diversify the diet through usage in various dishes, so improving its overall nutritional quality. Worm addition in an intervention program does not compromise, but maintains nutritional value. Local use adds affordability and sustainability to the food and health systems in a sago-consuming culture, so contributing to food security.
21 CFR 133.186 - Sap sago cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sap sago cheese. 133.186 Section 133.186 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.186 Sap sago cheese. (a) Description. (1) Sap sago cheese is the food prepared by the...
21 CFR 133.186 - Sap sago cheese.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sap sago cheese. 133.186 Section 133.186 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.186 Sap sago cheese. (a) Description. (1) Sap sago cheese is the food prepared by the...
Remediation of lead from lead electroplating industrial effluent using sago waste.
Jeyanthi, G P; Shanthi, G
2007-01-01
Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.
NASA Astrophysics Data System (ADS)
Rachmawati; Rohaeti, E.; Rafi, M.
2017-05-01
Taro flour on the market is usually sold at higher price than wheat and sago flour. This situation could be a cause for adulteration of taro flour from wheat and sago flour. For this reason, we will need an identification and authentication. Combination of near infrared (NIR) spectrum with multivariate analysis was used in this study to identify and authenticate taro flour from wheat and sago flour. The authentication model of taro flour was developed by using a mixture of 5%, 25%, and 50% of adulterated taro flour from wheat and sago flour. Before subjected to multivariate analysis, an initial preprocessing signal was used namely normalization and standard normal variate to the NIR spectrum. We used principal component analysis followed by discriminant analysis to make an identification and authentication model of taro flour. From the result obtained, about 90.48% of the taro flour mixed with wheat flour and 85% of taro flour mixed with sago flour were successfully classified into their groups. So the combination of NIR spectrum with chemometrics could be used for identification and authentication of taro flour from wheat and sago flour.
The Utilization of Sago Waste as Cattle Feed
NASA Astrophysics Data System (ADS)
Tiro, B. M. W.; Beding, P. A.; Baliadi, Y.
2018-02-01
This study aimed was to evaluate nutrition value of sago waste and its effect on cattle performance.The collected data were analyzed using analysis of variance. The results of the study showed that of the utilization of sago waste had a positive effect on average daily gain (ADG), where with 2% sago waste of body weight (P2 treatment) gave the highest ADG 0.43 ± 0.02 kg/h/day and cattle which consumed only forage without sago waste (P0) gave the lowest ADG 0.26 ± 0.04 kg/h/day. Statistical analysis showed that the addition of sago waste significantly affected the ADG (P<0.05). The consumption of dry matter (DM) and crude protein (CP) also increased with the supplementation of the sago waste, where the highest consumption of DM was on the treatment P2 (5.09 ± 1.27 kg/day), and the lowest on the treatment P0 (4.25 ± 1.69 kg/day), while consumption of CP was highest at treatment P2 (0.37 ± 0.09 kg/day), and the lowest on the treatment P3 (0.34 ± 0.06 kg/day), while the feed conversionshowed the lowest level on the treatment P2 (12.01 ± 3.35) and highest on the treatment P0 (18.10 ± 7.39). However, supplementation of sago waste were not affect CP consumption (P>0.05), but significant affect(P<0.05) DM consumption and feed conversion. Based on the results of this study it can be concluded that the sago waste as local resources have the potential to be used as a source of energy of feed supplement to beef cattle.
NASA Astrophysics Data System (ADS)
Yusuf, M. A.; Romli, M.; Suprihatin; Wiloso, E. I.
2018-05-01
Industrial activities use material, energy and water resources and generate greenhouse gas (GHG). Currently, various regulations require industry to measure and quantify the emissions generated from its process activity. LCA is a method that can be used to analyze and report the environmental impact of an activity that uses resources and generates waste by an industrial activity. In this work, LCA is used to determine the environmental impact of a semi-mechanical extraction process of sago industry. The data was collected through the sago industry in Cimahpar, Bogor. The extraction of sago starch consists of stem cutting, rasping, mixing, filtration, starch sedimentation, washing, and drying. The scope of LCA study covers the harvesting of sago stem, transportation to extraction site, and the starch extraction process. With the assumption that the average transportation distance of sago stem to extraction site is 200 km, the GHG emission is estimated to be 325 kg CO2 eq / ton of sundried sago starch. This figure is lower than that reported for maize starch (1120 kg CO2 eq), potato starch (2232 kg CO2 eq) and cassava starch (4310 kg CO2 eq). This is most likely due to the uncounted impact from the use of electrical energy on the extraction process, which is currently being conducted. A follow-up study is also underway to formulate several process improvement scenarios to derive the design of sago starch processing that generates the minimum emissions.
Transesterification of sago starch and waste palm cooking oil in densified CO2
NASA Astrophysics Data System (ADS)
Muljana, H.; Sugih, A. K.; Christina, N.; Fangdinata, K.; Renaldo, J.; Rudy; Heeres, H. J.; Picchioni, F.
2017-07-01
In this work, the synthesis of biodegradable and yet renewable thermoplastics materials through a transesterification reaction of sago starch and waste palm cooking oil (WPO) in densified CO2 as the solvent is reported. The aim of this research is to investigate the potential used of sago starch and WPO as raw materials in the thermoplastics starch synthesis. The starch esters was successfully synthesized using sago starch and WPO as reagent in densified CO2 as shown from the presence of carbonyl group (C=O, 1743 cm-1) in the FT-IR spectra coupled with the presence of the proton (1H-NMR) of the fatty acid in the starch backbone (0.8 - 2 ppm). The product crystallinity decreases as shown in XRD results and resulting with a change in the thermal properties (melting and crystalline temperature) of the products. In addition, the products show a different granular morphology and a higher hydrophobicity compared with native sago starch. This research shows the potential used of sago starch and WPO in the thermoplastics starch synthesis and opens a new perspective on the product application.
NASA Astrophysics Data System (ADS)
Laga, A.; Syarifuddin, A.; Dirpan, A.
2018-05-01
Maltodextrins are produced by starch modification in a partial hydrolysis thus altered physical sago properties. Sago as one of starch resources has characteristic with high amylopectin that influences high viscosity during cooking. Partial hydrolysis or liquefaction will influences starch hydrolysis and the size of maltodextrin produced. The aim of this study was to analyze the degree of sago starch hydrolysis during the enzymatic process using single α-amylase and combination with pullulanase The starting solids content was 20% (w/v), with adjusted pH to 6.5, and calcium (Ca2+ ions) addition as high as 50 ppm. The majority of starches used in the study contain 0.2 % (w/v), to combination of 0.2 % (w/w) and 0, 3 gram per kg of sago. The sago suspension temperatures were started from 105 °C lowered to 60 °C for 30 minutes, respectively. Optimum liquefied starch yields, which accounted for virtually all of the starch present, were obtained at temperatures of 80°C and above, for 120 minutes, with each sampling every 20 minutes. Observed parameters were levels of reducing sugars, degree of hydrolysis, and refined sago starch. The result showed that there was a significant increase in reducing sugars, degree of hydrolysis during 120 minutes until liquefaction process for both enzymatic treatments. The amount of reducing sugars was 95.76 g/L at 120 min for the single α-amylase and 98.84 g/L combination with pullulanase. The degree of hydrolysis was 37.93 % at 120 minutes for the single α-amylase and 37.32 % combination with pullulanase, whereas 0.035 % and 0.038 % for refined sago starch value respectively.
Tundra swan habitat preferences during migration in North Dakota
Earnst, Susan L.
1994-01-01
I studied tundra swan (Cygnus columbianus columbianus) habitat preference in North Dakota during autumn migration, 1988-89. Many thousand tundra swans stop in the Prairie Pothole region during autumn migration, but swan resource use has not been quantified. I examined habitat preference in relation to an index of sago pondweed (Potamogeton pectinatus) presence, extent of open water, and wetland size. I compared habitat preference derived from counts of all swans to those derived from foraging swans only and cygnets only. Foraging swans preferred wetlands with sago pondweed (P = 0.03); the number of foraging swans per wetland was >4 times higher on wetlands with sago pondweed than on wetlands without sago. In contrast, nonforaging swans did not prefer wetlands with sago pondweed (P = 0.85) but preferred large wetlands (P = 0.02) and those with a high proportion of contiguous open water (P < 0.01). Thus, conclusions about habitat preference derived from counts of all swans, most of which were nonforaging, would not have revealed the importance of sago pondweed. Cygnets were more likely to be feeding than adults (P = 0.03) and occurred proportionately more often in smaller flocks (P = 0.04), but cygnets and adults had similar habitat preferences.
Voon, W W Y; Muhialdin, B J; Yusof, N L; Rukayadi, Y; Meor Hussin, A S
2018-06-19
Bio-cellulose is the microbial extracellular cellulose that is produced by growing several microorganisms on agriculture by-products, and it is used in several food applications. This study aims to utilize sago by-product, coconut water, and the standard medium Hestrin-Schramm as the carbon sources in the culture medium for bio-cellulose production. The bacteria Beijerinkia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 were selected based on their bio-cellulose production activity. The structure was determined by Fourier transform infrared spectroscopy and scanning electron microscopy, while the toxicity safety was evaluated by brine shrimp lethality test. The results of Fourier transform infrared spectroscopy showed that the bio-cellulose produced by B. fluminensis cultivated in sago by-products was of high quality. The bio-cellulose production by B. fluminensis in the sago by-product medium was slightly higher than that in the coconut water medium and was comparable with the production in the Hestrin-Schramm medium. Brine shrimp lethality test confirmed that the bio-cellulose produced by B. fluminensis in the sago by-product medium has no toxicity, which is safe for applications in the food industry. This is the first study to determine the high potential of sago by-product to be used as a new carbon source for the bio-cellulose production.
Measurement and modeling of transfer functions for lightning coupling into the Sago mine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Marvin E.; Higgins, Matthew B.
2007-04-01
This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.
Esterified sago waste for engine oil removal in aqueous environment.
Ngaini, Zainab; Noh, Farid; Wahi, Rafeah
2014-01-01
Agro-waste from the bark of Metroxylon sagu (sago) was studied as a low cost and effective oil sorbent in dry and aqueous environments. Sorption study was conducted using untreated sago bark (SB) and esterified sago bark (ESB) in used engine oil. Characterization study showed that esterification has successfully improved the hydrophobicity, buoyancy, surface roughness and oil sorption capacity of ESB. Sorption study revealed that water uptake of SB is higher (30 min static: 2.46 g/g, dynamic: 2.67 g/g) compared with ESB (30 min static: 0.18 g/g, dynamic: 0.14 g/g). ESB, however, showed higher oil sorption capacity in aqueous environment (30 min static: 2.30 g/g, dynamic: 2.14) compared with SB (30 min static: 0 g/g, dynamic: 0 g/g). ESB has shown great poTENTial as effective oil sorbent in aqueous environment due to its high oil sorption capacity, low water uptake and high buoyancy.
NASA Astrophysics Data System (ADS)
Rendon Santillan, Jojene; Makinano-Santillan, Meriam
2018-04-01
We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa) to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345-1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2). Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.
NASA Astrophysics Data System (ADS)
Ginting, Nurzainah; Pase, E.
2018-03-01
This study aims to examine the effect of incubation times of sago waste by local microorganism (MOL) “Ginta” to the crude protein and crude fiber content in relation to finding a cheap and good quality ruminants feed alternative. Incubation times were 0 hours to 144 hours. The data obtained were analyzed using Completely Randomize Design consisting of seven treatments and three replications. The result showed that the duration of incubation of sago waste by local microorganism (MOL) “Ginta” caused pH reduction, improved crude protein and crude fiber content. pH reduction was from 7.03 at 0 hour to 4.05 at 144 hours incubation. The highest increased in crude protein was H6U3 (5.58%) : 144 hours incubation and the lowest was H0U2 (3.22%) : 0 hour incubation while the highest crude fiber was H0U1 (19.99%) : 0 hour incubation and the lowest was H6U3 (18.23%) : 144 hours incubation. It can be concluded that incubation of sago waste triggered lower pH, higher crude protein and lower crude fiber than uninoculated. A recommendation could be given on using MOL ‘Ginta” in order to produce a cheap and good quality ruminans feed alternative.
Ibrahim, Evra Raunie
2014-01-01
Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258
Acid Pretreatment of Sago Wastewater for Biohydrogen Production
NASA Astrophysics Data System (ADS)
Illi Mohamad Puad, Noor; Rahim, Nurainin Farhan Abd; Suhaida Azmi, Azlin
2018-03-01
Biohydrogen has been recognized to be one of the future renewable energy sources and has the potential in solving the greenhouse effects. In this study, Enterobacter aerogenes (E. aerogenes) was used as the biohydrogen producer via dark fermentation process using sago wastewater as the substrate. However, pretreatment of sago wastewater is required since it consists of complex sugars that cannot be utilized directly by the bacteria. This study aimed to use acid pretreatment method to produce high amount of glucose from sago wastewater. Three different types of acid: sulfuric acid (H2SO4); hydrochloric acid (HCl) and nitric acid (HNO3) were screened for the best acid in producing a maximum amount of glucose. H2SO4 gave the highest amount of glucose which was 9.406 g/L. Design of experiment was done using Face-centred Central Composite Design (FCCCD) tool under Response Surface Methodology (RSM) in Design Expert 9 software. The maximum glucose (9.138 g/L) was recorded using 1 M H2SO4 at 100 °C for 60 min. A batch dark fermentation using E. aerogenes was carried out and it was found that pretreated sago wastewater gave a higher hydrogen concentration (1700 ppm) compared to the raw wastewater (410 ppm).
6. WORKERS COLLECTING SAGO PONDWEED, RED TOP GRASS, LEAFY PONDWEED, ...
6. WORKERS COLLECTING SAGO PONDWEED, RED TOP GRASS, LEAFY PONDWEED, WATER MILFOIL, AND OTHER AQUATIC PLANTS FOR TRANSPLANTING FROM A COULEE SIX MILES AWAY FROM THE REFUGE - Upper Souris National Wildlife Refuge Dams, Souris River Basin, Foxholm, Surrey (England), ND
NASA Astrophysics Data System (ADS)
Ruairuen, W.; Sparrow, E. B.; Fochesatto, G. J.
2016-12-01
Sago palm is one of the most important plants for sustainable agriculture and rural development in tropical swampy and peaty soils. Where no major crops can grow without drainage or soil improvement. It stores large quantities of starch which can be further processed into various basic raw materials for food, animal feed, industrial uses and alternative energy. This study aims to investigate the physicochemical properties of soil across the sago palm growing areas at Surat Thani province Thailand, where major of sago palms growth naturally exists. The soil samples from three districts Khiri Rat Nikhom (KR; 9 sampling sites), Kanchanadit (KD; 5 sampling sites), and Khian Sa (KS; 2 sampling sites) were studied and compared at 0-15 cm depth during March to June 2016. Observations indicated that the physicochemical properties of soil varied in each growing area. Soil bulk densities averages were lower in KD (0.52 g cm-3) than those in KR (0.58 g cm-3) and KS (0.57 g cm-3). Soil texture around KD and KS were dominated by silty loam. While in KR soil texture was dominated by sandy loam. The average soil conductivity in KS (5.68 mS m-1) was higher than KR (2.62 mS m-1) and KD (1.65 mS m-1). Furthermore, we found the sago palms grow well in a range of soil pH from 5.52 to 7.15, average soil pH: KS (6.8) and KD (6.96), while acid in KR (5.84). We also discuss the conservation activities to adequately protect sago palm, most of which are significantly threatened by habitat destruction and unsustainable harvesting.
Analysis and optimization of coagulation and flocculation process
NASA Astrophysics Data System (ADS)
Saritha, V.; Srinivas, N.; Srikanth Vuppala, N. V.
2017-03-01
Natural coagulants have been the focus of research of many investigators through the last decade owing to the problems caused by the chemical coagulants. Optimization of process parameters is vital for the effectiveness of coagulation process. In the present study optimization of parameters like pH, dose of coagulant and mixing speed were studied using natural coagulants sago and chitin in comparison with alum. Jar test apparatus was used to perform the coagulation. The results showed that the removal of turbidity was up to 99 % by both alum and chitin at lower doses of coagulant, i.e., 0.1-0.3 g/L, whereas sago has shown a reduction of 70-100 % at doses of 0.1 and 0.2 g/L. The optimum conditions observed for sago were 6 and 7 whereas chitin was stable at all pH ranges, lower coagulant doses, i.e., 0.1-0.3 g/L and mixing speed—rapid mixing at 100 rpm for 10 min and slow mixing 20 rpm for 20 min. Hence, it can be concluded that sago and chitin can be used for treating water even with large seasonal variation in turbidity.
NASA Astrophysics Data System (ADS)
Silviana, S.; Hadiyanto, H.
2017-06-01
The utilization of green composites by using natural fibres is developed due to their availability, ecological benefits, and good properties in mechanical and thermal. One of the potential sources is bamboo that has relative high cellulose content. This paper was focused on the preparation of sago starch-based reinforced microfribrillated cellulose of bamboo that was assisted by mechanical treatment. Microfibrillated cellulose of bamboo was prepared by isolation of cellulose with chemical treatment. Preparation of bamboo microfibrillated cellulose was conducted by homogenizers for dispersing bamboo cellulose, i.e. high pressure homogenizer and ultrasonic homogenizer. Experiments were elaborated on several variables such as the concentration of bamboo microfibrillated cellulose dispersed in water (1-3 %w) and the volume of microfibrillated cellulose (37.5-75%v). Four %w of sago starch solution was mixed with bamboo microfibrillated cellulose and glycerol with plasticizer and citric acid as cross linker. This paper provided the analysis of tensile strength as well as SEM for mechanical and morphology properties of the biocomposite. The results showed that the preparation of sago starch-based biocomposite reinforced bamboo microfibrillated cellulose by using ultrasonic homogenizer yielded the highest tensile strength and well dispersed in the biocomposite.
Effect of factory effluents on physiological and biochemical contents of Gossypium hirsutum l.
Muthusamy, A; Jayabalan, N
2001-10-01
The effect of sago and sugar factory effluents was studied on Gossypium hirsutum L. var. MCU 5 and MCU 11. Plants were irrigated with 0, 25, 50, 75 and 100% of effluents of both factories. At lower concentration (25%) of sugar factory effluents had stimulatory effect on all biochemical contents observed. Moreover, all concentration of sago factory effluents were found to have inhibitory effect on all biochemical contents except proline content which increased with increasing concentration of both the effluents. Plants growing on adjacent to sago and sugar factories or they irrigated with such type of polluted water, may accumulate the heavy metals found in both the effluents, at higher levels in plant products and if consumed may have similar effect on living organisms.
Characterization of Briquette from the Corncob Charcoal and Sago Stem Alloys
NASA Astrophysics Data System (ADS)
Lestari, Lina; Inda Variani, Viska; Nyoman Sudiana, I.; Purnama Sari, Dewi; Ode Sitti Ilmawati, Wa; Sahaluddin Hasan, Erzam
2017-05-01
The briquettes fabricated from charcoal of corncob (zea mays,L) and sago stem (metroxilon sago rottb) have been produced and characterized. The samples were prepared step by step carefully. The charcoal powder filtered by strainer with mesh size of 70-80 to get the homogeneous particle size. Briquettes are made by mixing corncob charcoal powder, sago stem charcoal and sago adhesive with a mass ratio of 4:5:1, 4.5: 4.5: 1, 5:4:1. The materials are mixed with hot water and stirred to get homogeneous blend. Then they are compacted by pressure of 34.66kg/cm2, 69.32kg/cm2, and 103.98kg/cm2 to form a cylindrical shape with diameter of 4 cm. The cylindrical briquettes then were dried at temperature of 60°C for 48 hours. After dried, the samples where then characterized their density and water, ash, volatile matter, fixed carbon contents. The burning rate, combustion temperature, and ignition time were also determined. The experimental results show that the briquettes have average densities from 0.602 to 0.717gr/cm3. The density increase with the increasing of forming pressure. The increasing of pressure also result in the decreasing of moisture content from 2.669% to 0.842%. The ash content is found from 3.459% to 8.766%. Volatile matter and fixed carbon are varies from 13.658% and 21.168% and 67.667% to 80.758% respectively. The lowest burning rate is 0.0898gr/s and the optimum burning temperature is 499.2°C with the lowest ignition time of 1.58 minutes. These briquette’s parameters agree wit the quality standard of industrial briquette.
Two-steps microwave-assisted treatment on acid hydrolysis of sago pith for bioethanol production
NASA Astrophysics Data System (ADS)
Sunarti, T. C.; Yanti, S. D.; Ruriani, E.
2017-05-01
Sago is a genus of palm that can be utilized to produce fermentable sugars as substrate for bioethanol. Sago pith is a heterogeneous substrate consists of starch and fiber. Acid hydrolysis by microwave heating radiation can break down starch and fibers together in a very short time, so it is considered to be very efficient process. The use of microwave energy (as power level) and variation of heating time can produce fermentable sugar with certain characteristics. This study included the preparation and analysis of sago pith flour; process of acid hydrolysis (0.3 M and 0.5 M H2SO4) using two steps microwave heating, first with power level 30% (1, 2 and 3 min) and second with power level 70% (3 min); and ethanol production. The conventional treatment (autoclaving at 121°C for 15 min) was carried for the comparison. The highest fermentable sugar (105.7 g/l) was resulted from microwave heating with power level 30% for 2 min followed by the power level 70% for 3 min. This hydrolyzate then used as substrate for bioethanol fermentation and partially neutralized (pH 3, 4, 5) by using yeast Issatchenkia orientalis, and the highest ethanol (2.8 g/l) was produced in pH 5.
NASA Astrophysics Data System (ADS)
Titi, C. S.; Fachrudin, R.; Ruriani, E.; Yuliasih, I.
2018-05-01
Sodium carboxymethyl starch (Sodium CMS) is a modified starch prepared by two successive processes, alkalization and etherification. Alkalization will change the activated hydroxyl group of starch to more reactive alkoxide (St-O-), and then carboxymethyl group will substitute the hydroxyl group into sodium CMS. This research investigated the effect of agitation (1000 rpm of stirring and 4000 rpm of homogenization) in alkalization process to the modification of native starch into sodium CMS. Cassava and sago starches were mixed with sodium hydroxide (1.8 and 1.9 moles per mole anhydrous glucose units). The combination of NaOH and homogenizing gave the highest degrees of substitution for cassava (DS 0.73) and sago (DS 0.55) starches. The sodium CMS characteristics (paste clarity, water and oil absorption capacities, solubility, swelling power) were a function of mixing method but not on the amount of NaOH used.
Subha, B.; Muthukumar, M.
2012-01-01
Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R 2) of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81%) was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87%) was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction. PMID:22593666
Heavy metal bioaccumulation in Great Basin submersed aquatic macrophytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lytle, C.M.
1994-01-01
Seasonal element cycling and nutritional quality were determined in sago pondweed plant tissue. Leaf protein was 27% in July and 15% in December. Sago drupelet protein content was 9% in July and 6.5% in October. Sago plant tissue mineral, trace metal and non-structural carbohydrate content were high in the Fall. Submersed aquatic plant species from the Provo River drainage, Bear River MBR and Utah Lake - Provo Bay were significantly higher in heavy metals than aquatic species from remote wetlands. Extreme sodium concentrations were found in water, sediment and plant tissue in Ibis and Harrison pools (Fish Springs NWR). Boron,more » arsenic and selenium concentrations in plant tissue were much lower than those at Kesterson Reservoir, California. Submersed aquatic plants may act as channels that expedite the trophic movement of metal ions. The chemical structure of accumulated manganese and iron in sago pondweed plant tissue differed with time of year. June plant tissue manganese was fully hydrated. Accumulated manganese in October plant tissue was a Mn(II)Mn(III) mineral oxide. Accumulated iron was Fe(III) in both leaf and root tissue. Methylmercury was toxic to Lesser duckweed at very low doses (>0.1 [mu]g ml[sup [minus]1]). Increased pH improved frond survival in organic and inorganic mercury solutions. Duckweed should be considered as a sensitive phytoassay of methylmercury toxicity. Soil manganese and lead concentrations are correlated with distance from the roadway and traffic volume. Soil lead concentrations have moved deeper into the profile. Roadside aquatic plants were higher in manganese than herbaceous plants and grasses. Roadside snow and water were low in manganese and lead. Roadside soil and plants were apparently contaminated by Mn oxides from motor vehicle exhaust.« less
NASA Astrophysics Data System (ADS)
Arfah, R. A.; Ahmad, A.; Dali, S.; Djide, M. N.; Mahdalia; Arif, A. R.
2018-03-01
The dried sago flour derived from Palopo contains 28.80% amylose and 91.23% total carbohydrate. Based on the data, sago starch has the potential to become an alternative raw material for themaltodextrin production. Maltodextrin is one of the starch derivative products produced by hydrolysis process using the α-amylase enzyme with amaximum DE (dextrose equivalent) value of 20. The use of maltodextrin for food and pharmaceutical industries is increasing because of maltodextrin is widely used as thickener filler, surfactant and sugar substitute in milk powder. The aims of this study are to optimize the addition of enzyme concentration and hydrolysis time of α -amylase enzyme to obtain high quality ofmaltodextrin This study also aimed to characterization the obtained maltodextrin. The first step was isolation and purification α-amylase from the isolate of Bacillus stearothermophilus RSAII1B, followed by determination of the α-amylase concentration (0.05%, 0.07% and 0.09%) in 2.0% starch substrate, and the hydrolysis time ofα-amilase (60, 90, 120, 240 minutes). Maltodextrin characters observed were dextrose equivalent (DE), reducing sugar, moisture content, pH changes, color, solubility, viscosity, and total plate count (TPC). The results showed that the value of DE was 12.31, reducing sugar was 11.4%; water content was 10.92%; pH was 4.85; The color of maltodextrin powder was white bone color; solubility was 153.2 g/L; Viscositywas 210-240 cps, TPCwas 380 cfu/g. Maltodextrins produced from sago starch using the α-amylase enzyme from B.stearothermophillus RSAIIm met the quality requirements of SNI 7599: 2010.
Sago-Type Palms Were an Important Plant Food Prior to Rice in Southern Subtropical China
Yang, Xiaoyan; Barton, Huw J.; Wan, Zhiwei; Li, Quan; Ma, Zhikun; Li, Mingqi; Zhang, Dan; Wei, Jun
2013-01-01
Poor preservation of plant macroremains in the acid soils of southern subtropical China has hampered understanding of prehistoric diets in the region and of the spread of domesticated rice southwards from the Yangtze River region. According to records in ancient books and archaeological discoveries from historical sites, it is presumed that roots and tubers were the staple plant foods in this region before rice agriculture was widely practiced. But no direct evidences provided to test the hypothesis. Here we present evidence from starch and phytolith analyses of samples obtained during systematic excavations at the site of Xincun on the southern coast of China, demonstrating that during 3,350–2,470 aBC humans exploited sago palms, bananas, freshwater roots and tubers, fern roots, acorns, Job's-tears as well as wild rice. A dominance of starches and phytoliths from palms suggest that the sago-type palms were an important plant food prior to the rice in south subtropical China. We also believe that because of their reliance on a wide range of starch-rich plant foods, the transition towards labour intensive rice agriculture was a slow process. PMID:23667584
Evaluating sago as a functional ingredient in dietetic mango ice cream.
Patel, Ashish S; Jana, Atanu H; Aparnathi, Kishore D; Pinto, Suneeta V
2010-10-01
A low fat mango ice cream (2.4% milk fat) was prepared in a mechanized 'ice and salt' type freezer using powdered sago at 2.5% as a natural bulking agent along with sodium alginate at 0.025% as adjunct. The low fat mango ice cream was compared with control mango ice cream having 10% milk fat and 0.15% sodium alginate as stabilizer. Both control as well as experimental ice creams contained 20% mango pulp solids. To impart richness to low fat mango ice cream, flavour enhancers like Cream Plus and Butter Buds were used at levels of 0.2% and 0.05%, respectively. The dietetic low fat ice creams compared well in sensory colour and appearance, flavour, body and texture, and melting quality to that of control ice cream. Incorporation of 2.5% powdered sago and 0.2% Cream Plus as flavour adjunct is recommended in the manufacture of 'low-fat' mango ice cream. The energy values for control and dietetic mango ice cream was 202.8 and 142.9 kcal/100 g, respectively, which represents about 30% reduction in calorie. The cost of ice cream per liter was Rs 39.9, Rs 37.6 and Rs 49.7 for experimental ice creams containing Cream Plus and Butter Bud, and control, respectively.
NASA Astrophysics Data System (ADS)
Maquiling, Joel Tiu; Visaga, Shane Marie
This study investigates the dependence of the critical angle θc of stability on different mass ratios γ of layered bi-phasic granular matter mixtures and on the critical angle of its mono-disperse individual components. It also aims to investigate and explain regime transitions of granular matter flowing down a tilted rough inclined plane. Critical angles and flow regimes for a bi-phasic mixture of sago spheres and bi-phasic pepper mixture of fine powder and rough spheres were observed and measured using video analysis. The critical angles θc MD of mono-disperse granular matter and θc BP of biphasic granular matter mixtures were observed and compared. All types of flow regimes and a supramaximal critical angle of stability exist at mass ratio γ = 0.5 for all biphasic granular matter mixtures. The θc BP of sago spheres was higher than the θc MD of sago spheres. Moreover, the θc BP of the pepper mixture was in between the θc MD of fine pepper and θc MD of rough pepper spheres. Comparison of different granular material shows that θc MD is not simply a function of particle diameter but of particle roughness as well. Results point to a superposition mechanism of the critical angles of biphasic sphere mixtures.
NASA Astrophysics Data System (ADS)
Fadli, A.; Akbar, F.; Prabowo, A.; Hidayah, P. H.
2018-04-01
Hydroxyapatite (HA) is a mineral form of naturally occurring apatite calcium with Ca10(PO4)6(OH)2 formula. One of the major innovations in the field of bone reconstruction is to apply HA as a surface coating on a mechanically strong implant metal and to improve the stability of bone implants thereby increasing the lifetime of the metal implants. Pure hydroxyapatite has poor mechanical properties so it is necessary to add sago starch as a binder to combine the strength and hardness of metal surfaces with bioactive properties of hydroxyapatite by Dip Coating method. Stainless steel 316L is the most commonly used alloy as an implant for bones and teeth due to its excellent corrosion and oxidation resistance and is easily formed. In this study, hydroxyapatite coatings used fixed variables as hydroxyapatite mass (10 grams), aquades mass (20 grams), dipping time (20 seconds), and calcination conditions (800°C, 1 hour). The variables are sago starch mass (1, 1.25, 1.5 gram) and stirring time (16, 20, 24 hours). The shear strength value is higher in the addition of 1.25, 10, 20, and again in the binder ratio of 1.5; 10; 20. The addition of stirring time causes a decrease in shear strength. The highest shear strength value obtained was 3.07 MPa. The layer attached to the substrate is a hydroxyapatite with a composition of 99.4% as evidenced by the results of XRD analysis.
Nouri, Leila; Mohammadi Nafchi, Abdorreza
2014-05-01
The antimicrobial, mechanical and barrier properties and light transmission of sago starch film incorporated with different percentage of Betel leaf extract (5%, 10%, 20%, and 30%) were evaluated. With regard to mechanical properties, tensile strength decreased when the percentage of extract increased. Elongation at break (%) and seal strength (N/m) increased with increasing percentage of extract from 5% to 20%, while decreased for films containing 30% extract due to heterogeneity of films in this percentage. With regard to barrier properties, water vapour and oxygen barrier properties decreased in all samples when percentage of the extract increased. Antimicrobial activity of all the films increased against both Gram positive and Gram negative bacteria as percentage of Betel leaf extract increased, except for Psuedomonas aeruginosa, which was not susceptible at any percentage of the extract. Copyright © 2014 Elsevier B.V. All rights reserved.
76 FR 47262 - Brookwood-Sago Mine Safety Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... industry during the current reporting period. Pre-test and post- test results of trainees. Course... funding ends. 2. Agency creates training Increase number of Pre-test and post- materials and improves quality educational test results of the safety. materials developed. training materials. Provide quality...
75 FR 41531 - Brookwood-Sago Mine Safety Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
... stated goals and current reporting period. objectives for improving safety. Conduct and report pre-test and post- test results of trainees. Course evaluations of trainer and training materials. The extent... pre-test and post- and improves safety. educational materials test results of the training materials...
78 FR 45973 - Brookwood-Sago Mine Safety Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... to Robert Glatter at [email protected] or at 202-693-9570 (this is not a toll-free number) or... toll-free number). SUPPLEMENTARY INFORMATION: This solicitation provides background information and the... requirements for drug-free workplace (financial assistance). 29 CFR Part 95, Grants and agreements with...
77 FR 44685 - Brookwood-Sago Mine Safety Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
..., and prevent unsafe working conditions in and around mines. The focus of these grants for the Fiscal...-month period of performance is $250,000. MSHA may award both annual and renewal (two-year) grants. This... the key for proper and safe emergency response and that all miners working underground should be...
Code of Federal Regulations, 2013 CFR
2013-04-01
... incompletely hydrolyzed starch. It is prepared by dry heating corn, waxy maize, waxy milo, potato, arrowroot, wheat, rice, tapioca, or sago starches, or by dry heating the starches after: (1) Treatment with safe and suitable alkalis, acids, or pH control agents and (2) drying the acid or alkali treated starch. (b...
Code of Federal Regulations, 2012 CFR
2012-04-01
... incompletely hydrolyzed starch. It is prepared by dry heating corn, waxy maize, waxy milo, potato, arrowroot, wheat, rice, tapioca, or sago starches, or by dry heating the starches after: (1) Treatment with safe and suitable alkalis, acids, or pH control agents and (2) drying the acid or alkali treated starch. (b...
Net photosynthesis and respiration of sago pondweed (Potamogeton pectinatus) exposed to herbicides
Fleming, W.J.; Ailstock, M.S.; Momot, J.J.; Hughes, Jane S.; Biddinger, Gregory R.; Mones, Eugene
1995-01-01
We determined net photosynthesis and respiration rates for sago pondweed (potamogeton pectinatus) exposed to various concentrations of 11 herbicides widely used in Maryland during the past decade. Net photosynthesis and respiration were determined by measuring changes in the. oxygen content of solutions containing dilutions of technical grade herbicides. At 20-22? C and 58 umol/m2/sec of photosynthetically active radiation (PAR), oxygen production of undosed plants averaged 0.72-2.03 mg/g fresh wt/h. Respiration rates of undosed plants averaged 0.46-0.60 mg O2/g fresh wt/h. Nominal herbicide concentrations (ng/L) that reduced net photosynthesis by 5O percent (IC5O) were: metribuzin, 8; atrazine, 29; cyanazine, 32; linuron, 70; simazine, 164; and paraquat, 240. IC5O values for 2,4-D, acifluorfen, glyphosate and metolachlor exceeded the maximum test concentration of 10,000 ng/L. The IC5O value for alachlor was estimated to be between 1,000 and 10,000 ng/L. None of the herbicides tested had a significant effect on dark respiration.
Evaluation of emulsion emulsified by starch nanocrystal: A preliminary study
NASA Astrophysics Data System (ADS)
Ahmad, Azfar Al Ariff; Lazim, Azwan Mat
2018-04-01
The starch nanocrystals (SNC) used in this study were made of sago starch and prepared by using sulfuric acid hydrolysis of sago starch. The aim of this study is to look at the potential of SNC as and emulsifier. Previously, the SNC underwent analytical analysis in order to understand and evaluate the isolated SNC. The ability of SNC as emulsifier was further investigated in this study. Emulsions with low, medium and high oil content has been prepared in function of different wt% of SNC. The emulsion stability against coalescence for two weeks has also been studied. Results showed that the emulsions prepared are steadily stable after one weeks of storage without any separation and changes. From the observation, there are two major factor contributed to the formation of emulsion and its stability, the SNC concentration and oil content. Relatively, higher percentage of SNC resulting a higher emulsion index, whereas no emulsion was formed if oil content exceeding 50% of the systems. The most suitable formulation to prepare Pickering Emulsion is the oil content around 45% and SNC concentration around 2 - 4%.
Swelling and tensile properties of starch glycerol system with various crosslinking agents
NASA Astrophysics Data System (ADS)
Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd
2017-07-01
Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.
Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities
NASA Astrophysics Data System (ADS)
Higgins, Matthew Benjamin
This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (< 100 kHz), electromagnetic energy can readily propagate through hundreds of feet of earth. Indirect transfer function measurements compare extremely well with analytical and computational models developed for the Sago site which take into account measured soil properties.
Code of Federal Regulations, 2014 CFR
2014-04-01
....1277 Dextrin. (a) Dextrin ((C6H10O5)n·H2O, CAS Reg. No. 9004-53-9) is an incompletely hydrolyzed starch..., or sago starches, or by dry heating the starches after: (1) Treatment with safe and suitable alkalis, acids, or pH control agents and (2) drying the acid or alkali treated starch. (b) The ingredient meets...
Validation of the Chinese Version of the Social Achievement Goal Orientation Scale
ERIC Educational Resources Information Center
Zhao, Yanhua; Zhu, Xiangru; Zhao, Guoxiang
2016-01-01
This study examined the validity of a Chinese version of the Social Achievement Goal Orientation Scale (C-SAGOS), a measure testing the trichotomous framework of achievement goal orientations in a social domain. A total of 208 college students (51% female) aged 18 to 23 participated in the study. Factor analyses showed that the three-factor model…
Fleming, W.J.; Ailstock, M.S.; Momot, J.J.; Norman, C.M.; Gorsuch, Joseph W.; Lower, William R.; Wang, Wun-cheng; Lewis, M.A.
1991-01-01
The phytotoxicity of atrazine, paraquat, glyphosate, and alachlor to sago pondweed (Potamogeton pectinatus), a submerged aquatic macrophyte, was tested under three types of laboratory culture conditions. In each case, tests were conducted in static systems, the test period was four weeks, and herbicide exposure was chronic, resulting from a single addition of herbicide to the test vessels at the beginning of the test period. The three sets of test conditions employed were(1) axenic cultures in 125-mL flasks containing a nutrient media and sucrose; (2) a microcosm system employing 18.9-L buckets containing a sand, shell, and peat substrate; and (3) an algae-free system employing O.95-L jars containing reconstituted freshwater and a nutrient agar substrate. The primary variable measured was biomass production. Plants grew well in all three test systems, with biomass of untreated plants increasing by a factor of about 5 to 6.5 during the four-week test period. Biomass production in response to herbicide exposure differed significantly among culture systems, which demonstrates the need for a standardized testing protocol for evaluating the effects of toxics on submerged aquatic plants.
Maizura, M; Fazilah, A; Norziah, M H; Karim, A A
2007-08-01
Edible films were prepared from a mixture of partially hydrolyzed sago starch and alginate (SA). Lemongrass oil (0.1% to 0.4%, v/w) and glycerol (0% and 20%, w/w) were incorporated in the films to act as natural antimicrobial agent and plasticizer, respectively. The films were characterized for antimicrobial activity, water vapor permeability (WVP), tensile strength (TS), percent elongation at break (%E), and water solubility (WS). Fourier transform infrared (FTIR) spectroscopy was conducted to determine functional group interactions between the matrix and lemongrass oil. The zone of inhibition was increased significantly (P < 0.05) by addition of lemongrass oil at all levels in the presence and the absence of glycerol. This indicates that the film containing lemongrass oil was effective against Escherichia coli O157:H7 at all levels. In the absence of glycerol, the tensile strength of film decreased as the oil content increased, but there was no significant (P > 0.05) difference in percent elongation. The percent elongation at break and WVP values for film with 20% glycerol was found to be increased significantly (P < 0.05) with an increase in lemongrass oil content. Addition of lemongrass oil did not have any interaction with the functional groups of films as measured by FTIR.
Hamilton, David B.; Auble, Gregor T.; Farmer, Adrian H.; Roelle, James E.
1987-01-01
The Garrison Diversion Unit (GDU) of the Pick-Sloan Missouri Basin program was authorized in 1965, with the purpose of diverting Missouri River water to the James River for irrigation, municipal and industrial water supply, fish and wildlife habitat, recreation, and flood control. The project was reauthorized in 1986, with the specification that comprehensive studies be conducted to address a variety of issues. One of these ongoing studies addresses potential impacts of GDU construction and operation on lands of the National Wildlife Refuge (NWR) system, including Arrowwood and Sand Lake Refuges (the Refuges) on the James River. A number of concerns at these Refuges have been identified; the primary concerns addressed in this report include increased winter return flows, which would limit control of rough fish; increased turbidity during project construction, which would decrease production of sago pondweed; and increased water level fluctuations in the late spring and early summer, which would destroy the nests of some over-water nesting birds. The facilitated workshop described in this report was conducted February 18-20, 1987, under the joint sponsorship of the U.S. Bureau of Reclamation, the U.S. Fish and Wildlife Service, and the North Dakota Game and Fish Department. The primary objectives of the workshop were to evaluate the feasibility of using simulation modeling techniques to estimate GDU impacts on Arrowwood and Sand Lake Refuges and to suggest enhancements to the James River Refuge monitoring program. The workshop was structured around the formulation of four submodels: a Hydrology and Water Quality submodel to simulate changes in Refuge pool elevations, turnover rates, and water quality parameters (e.g., total dissolved solids, turbidity, dissolved oxygen, nutrients, water temperature, pesticides) due to GDU construction and operation; a Vegetation submodel to simulate concomitant changes in wetland communities (e.g., sago pondweed, wet meadows, deep and shallow marsh); a Fish submodel to estimate changes in abundance or biomass of rough fish (carp, buffalo) and sportfish (northern pike); and a Wildlife submodel to calculate indices of waterfowl abundance or habitat suitability (e.g., for mallards, western grebes, migrating diving ducks, white-faced ibis, egrets, over-water nesters). Submodels considered weekly to monthly changes in pools within a Refuge over a time horizon of 30-50 years. Based on workshop discussions and past experience with impact analysis modeling, a phased modeling approach was recommended for the James River Refuges analysis. The first phase would involve two modeling efforts. The existing Sand Lake hydrology model, and a similar one developed for Arrowwood NWR, would be validated and used to predict changes on pool elevations and winter inflows to each pool for a variety of GDU alternatives. Outputs from simulations would then be evaluated in terms of potential fish and wildlife impacts. For example, the models could generate indices comparing the magnitude and timing of winter inflows for pre- and postproject conditions; fisheries biologists could then use these indices to better quantify their concerns relative to potential changes in the frequency of rough-fish control. The other modeling effort in the first phase would involve developing a sago pondweed growth model to integrate Refuge monitoring data and existing literature and perhaps to address some questions concerning turbidity impacts. A second phase of simulation modeling would be undertaken only if the initial analyses of hydrologic outputs indicated significant potential problems and if monitoring and research projects had clarified some of the biological and physical processes that cannot be modeled reliably at the present time (e.g., resuspension of sediments by carp, immigration and winter mortality of fish, loss of waterfowl nests due to wave action). The second phase would attempt to develop an integrated impact assessment model. In order to address some of the biological and physical processes that presently are not well understood, a number of studies and enhancements to the Refuge monitoring program were suggested. The Hydrology and Water Quality workgroup recommended increasing turbidity and dissolved oxygen sampling, dropping expensive analysis of some trace elements, adding more pesticide analysis (including some biological monitoring), and developing better area-capacity data for the Sand Lake hydrology model. The Vegetation workgroup suggested expanding the number of monitoring stations, monitoring photosynthetically active radiation by depth, and modifying the biomass sampling procedure and schedule. Also suggested were additional analyses of existing Refuge monitoring data and additional field studies concerning sago growth under a variety of environmental conditions and effects of rough fish density on sago. A careful examination of Refuge narrative reports was recommended by the Fish workgroup to characterize conditions that led to various rates of winter-kill. Monitoring enhancement related to a better understanding of fish population dynamics included increasing dissolved oxygen monitoring, continuing present monitoring of fish movement upstream from Jamestown Reservoir into Arrowwood NWR, initiating similar efforts for upstream movement into Sand Lake NWR and downstream movements into both Refuges, and augmenting the present gillnetting program (or replacing it) with sampling for population and age/size structure estimates. The Wildlife workgroup suggested estimating the relative density of mallard nests in over-water and wet meadow nesting areas, estimating the number of western grebe nests lost due to wave action, delineating wet meadows on the Refuge vegetation maps, estimating annual tuber consumption by birds, and monitoring insect/macroinvertebrate abundance. The workgroup also suggested research studies to better understand the relationships between food supplies and the growth and survival of ducklings and young grebes. the workshop discussions also helped identify some suggestions for modifying project features that, if feasible from an engineering and operational standpoint, would reduce impacts on Refuge lands. These suggestions included: designing drains with control structures or small "reregulation" reservoirs to hold winter return flows that might adversely affect rough fish control, spreading construction activities over a number of years to reduce potential impacts of turbidity on sago pondweed in any single year, scheduling construction to occur after the spring sprouting and elongation growth stages to reduce impacts on sago pondweed, and installing "quick acting" control structures at Arrowwood NWR to reduce pool level fluctuations that might destroy nests of some over-water nesting waterfowl.
1984-08-01
Habeck (1975) says that it is the most common nymphuline in Florida. He lists 32 species of host plants in the genera Azolla, Bacopa , Brasenia...Common salvinia 100 2 A 0 Lemna minor Common duckweed 100 2 A 0 Bacopa caroliniana Bacopa 179 4 A, H 0 *Azolla caroliniana Waterfern 150 4 A, B 0...Royle Hygrophila Hygrophila polyaperma (Roxb.) Anderson Lemon bacopa Bacopa caroliniana (Walt.) Robins. Sago pondweed Potamogetonpectinatus L. Southern
2009-08-01
submerged aquatic vegetation (SAV) have been lost from shallow waters of Chesapeake Bay (Orth and Moore 1983) and other coastal ecosystems worldwide...a mixture of ambient estuarine water from the Choptank River (a tributary of Chesapeake Bay) and freshwater (tap) needed to maintain a salinity of 7...with a mixture of freshwater and ambient estuarine water (to maintain a salinity of 10) that was circulated through a closed- loop recirculation system
2007-11-01
availability in the water column, and serve as habitat and food sources for invertebrates, fish, and waterfowl. Many SAV communities in freshwater ...Journal of Freshwater Ecology 10: 19-31. Carr, G. M., H. C. Duthie, and W. D. Taylor. 1997. Models of aquatic plant productivity and growth: A review of...and its effects on aquatic macrophytes in flowing waters . Ecological Applications 1: 249-257. Collins, C. D., and J. H. Wlosinski. 1985. A
NASA Astrophysics Data System (ADS)
Nasution, Halimatuddahliana; Afandy, Yayang; Al-fath, M. Thoriq
2018-04-01
Cellulose has potential applications in new high-performance materials with low environmental impact. Rattan biomass is a fiber waste from processing industry of rattan which contains 37,6% cellulose. The high cellulose contents of rattan biomass make it a source of cellulose nanocrystals as a filler in biocomposite. Isolation of alpha cellulose from biomass rattan was prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3,5% HNO3 and NaNO2, precipitated with 17,5% NaOH, bleaching process with 10% H2O2. Nanocrystals obtained through the hydrolysis of alpha cellulose using 45% H2SO4 and followed by mechanical processes of ultrasonication, centrifugation, and filtration with a dialysis membrane. Sago starch biocomposites were prepared using a solution casting method, which includes 1-4 wt % cellulose nanocrystals rattan biomass as fillers, 10-40 wt% citric acid as co-plasticizer and 30 wt% glycerol as plasticizer. The results of TEM and FTIR characteristic of cellulose nanocrystals show spherical like shape FTIR and chemical composition analysis demonstrated that lignin and hemicellulose structures were successfully removed. Biocomposite characteristic consists of density and water absorption. The results showed the highest density values were 0,266 gram/cm3 obtained at an additional of 3% cellulose nanocrystals rattan biomass and 30% citric acid. The lowest water absorption was 7,893% obtained at an additional of 4% cellulose nanocrystals rattan biomass and 10% citric acid.
Conservation and Management of the Endangered Fiji Sago Palm, Metroxylon vitiense, in Fiji
NASA Astrophysics Data System (ADS)
Morrison, Clare; Rounds, Isaac; Watling, Dick
2012-05-01
Recovery planning is a key component of many threatened species conservation initiatives and can be a powerful awareness raising tool. One of the largest impediments to conservation efforts in the Pacific region however, is the lack of ecological data and its subsequent effects on the development of feasible and useful recovery plans for threatened species. Without these plans, the understaffed, underfunded and often technically ill-equipped conservation agencies face huge difficulties in planning, prioritizing and conducting conservation activities to adequately protect biodiversity. The Fiji sago palm, Metroxylon vitiense, is an endemic endangered palm species whose survival is heavily dependent on a feasible species recovery plan. It is geographically restricted and threatened by habitat destruction and overexploitation for thatch for the tourism industry and palm heart consumption by local consumers. Despite its threatened status, M. vitiense is not currently protected by national or international legislation. Recent field surveys and extensive stakeholder consultation have resulted in the production of a species recovery plan highlighting the importance of the species and advocating sustainable harvesting rather than complete bans to promote conservation. This article summarizes the recovery plan and its current effects on the status of M. vitiense in Fiji. We also discuss the role of different stakeholders in the conservation of M. vitiense, including the absence of significant behavioral changes by the largest consumer - the tourism industry, and the importance of recovery plans for biodiversity conservation in the Pacific.
Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Melling, Lulie; Hatano, Ryusuke; Goh, Kah Joo
2005-02-01
Soil CO2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO2 flux ranged from 100 to 533 mg C m
2 h
1 for the forest ecosystem, 63 to 245 mg C m
2 h
1 for the sago and 46 to 335 mg C m
2 h
1 for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C m
2 yr
1 followed by oil palm at 1.5 kg C m
2 yr
1 and sago at 1.1 kg C m
2 yr
1. The different dominant controlling factors in CO2 flux among the studied ecosystems suggested that land use affected the exchange of CO2 between tropical peatland and the atmosphere.
A survey of fungi associated with lesioned and chlorotic sago pondweed (Potamogeton pectinatus)
Lumsden, R.D.; Ellis, D.E.; Sincock, J.L.
1963-01-01
Isolations from 1000 Potamogeton pectinatus plants collected from six major stands in Back Bay, Virginia and 13 in Currituck Sound, North Carolina yielded Pythium spp. consistently and in relatively high frequency. Although specific determination of these isolates was unsuccessful, they were separated into three groups according to morphological and cultural characteristics. Rhizoctonia solani Kuehn was isolated in rare instances. In inoculation studies, isolates of R. solani were pathogenic to P. pectinatus, whereas inoculations with Pythium spp. proved inconclusive, even though one group of isolates exhibited pathogenic tendencies.
Frequency-domain algorithm for the Lorenz-gauge gravitational self-force
NASA Astrophysics Data System (ADS)
Akcay, Sarp; Warburton, Niels; Barack, Leor
2013-11-01
State-of-the-art computations of the gravitational self-force (GSF) on massive particles in black hole spacetimes involve numerical evolution of the metric perturbation equations in the time domain, which is computationally very costly. We present here a new strategy based on a frequency-domain treatment of the perturbation equations, which offers considerable computational saving. The essential ingredients of our method are (i) a Fourier-harmonic decomposition of the Lorenz-gauge metric perturbation equations and a numerical solution of the resulting coupled set of ordinary equations with suitable boundary conditions; (ii) a generalized version of the method of extended homogeneous solutions [L. Barack, A. Ori, and N. Sago, Phys. Rev. D 78, 084021 (2008)] used to circumvent the Gibbs phenomenon that would otherwise hamper the convergence of the Fourier mode sum at the particle’s location; (iii) standard mode-sum regularization, which finally yields the physical GSF as a sum over regularized modal contributions. We present a working code that implements this strategy to calculate the Lorenz-gauge GSF along eccentric geodesic orbits around a Schwarzschild black hole. The code is far more efficient than existing time-domain methods; the gain in computation speed (at a given precision) is about an order of magnitude at an eccentricity of 0.2, and up to 3 orders of magnitude for circular or nearly circular orbits. This increased efficiency was crucial in enabling the recently reported calculation of the long-term orbital evolution of an extreme mass ratio inspiral [N. Warburton, S. Akcay, L. Barack, J. R. Gair, and N. Sago, Phys. Rev. D 85, 061501(R) (2012)]. Here we provide full technical details of our method to complement the above report.
Raw Starch Degrading Amylase Production by Various Fungal Cultures Grown on Cassava Waste
Balaji, P.; Eyini, M.
2006-01-01
The solid waste of sago industry using cassava was fermented by Aspergillus niger, Aspergillus terreus and Rhizopus stolonifer in solid state fermentation. Cassava waste contained 52 per cent starch and 2.9 per cent protein by dry weight. The amylase activity was maintained at a high level and the highest amylase activity was observed on the 8th day in R. stolonifer mediated fermentation. R. stolonifer was more efficient than Aspergillus niger and Aspergillus terreus in bioconverting cassava waste into fungal protein (90.24 mg/g) by saccharifying 70% starch and releasing 44.5% reducing sugars in eight days of solid state fermentation. PMID:24039485
Tang, Sui-Yan; Hara, Shintaro; Melling, Lulie; Goh, Kah-Joo; Hashidoko, Yasuyuki
2010-01-01
Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h(-1) in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.
Preparation and evaluation of biocomposites as wound dressing material.
Ramnath, V; Sekar, S; Sankar, S; Sankaranarayanan, C; Sastry, T P
2012-12-01
Collagen was isolated from the chrome containing leather waste (CCLW) which is a major solid waste in leather industry. Composite films were made using sago starch (SG), soya protein (SY), and collagen (C) and were cross linked with glutaraldehyde (G).The films prepared were characterized for their physico chemical properties like tensile strength, infrared spectra, thermogravimetric analysis, surface morphology, and water absorption studies. Better mechanical properties and surface morphology were observed for SG-SY-G-C films compared to other films prepared using collagen. The composite films prepared were used as wound dressing material on the experimental wounds of rats and healing pattern was evaluated using planimetric, biochemical, and histopathological studies. These studies have revealed better wound healing capacity of SG-SY-G-C film and utilization of CCLW in the preparation of value added product like wound dressing material.
Soselisa, Hermien L; Ellen, Roy
2013-01-01
Over a period of 150 years the Kei Islands have undergone environmental change, from rainforest to dryland savanna woodland. This has been accompanied by a shift in starch staple from sago, tubers, and grain to cassava. We show how this has been an effective ecological adaptation with social ramifications, not least the adoption of bitter cassava as a cultural identity marker. One of the problems of bitter cassava diets where people have become dependent upon them in poor parts of the Old World tropics are the effects of toxicity. We show how through a combination of factors and strategies this has not been a major issue in the Kei Islands, and how through a government-assisted agricultural project, attempts are being made to build upon this successful transition. The viability of present trends are evaluated.
NASA Astrophysics Data System (ADS)
Ono, Eisuke; Umemura, Mitsutoshi; Ishida, Takuya; Takenaka, Chisato
2015-12-01
Seven gouge cores in the middle Sepik Plain (northern Papua New Guinea) were bored to clarify the depositional age and the chemical characteristics of the tropical peat. The weakly-acidic peat layer (3-4 m thick) is distributed around the south bank of the Blackwater Lakes. The peat layer consists mainly of sago palm and grass remains within a mineral matrix of very fine sand and clay. Radiocarbon dating indicates that the peat's formation had commenced by 3,710-3,560 cal BP. Nitrogen and exchangeable potassium reach their highest values in the upper 60 cm of the peat column. Conversely, exchangeable sodium, calcium and magnesium, as well as carbon, increase their values with depth in the peat. These differences in the exchangeable cations' contribution suggest changes in the plant species, which were decomposed during the peat's formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favata, Marc
2011-01-15
Barack and Sago [Phys. Rev. Lett. 102, 191101 (2009)] have recently computed the shift of the innermost stable circular orbit (ISCO) of the Schwarzschild spacetime due to the conservative self-force that arises from the finite-mass of an orbiting test-particle. This calculation of the ISCO shift is one of the first concrete results of the self-force program, and provides an exact (fully relativistic) point of comparison with approximate post-Newtonian (PN) computations of the ISCO. Here this exact ISCO shift is compared with nearly all known PN-based methods. These include both 'nonresummed' and 'resummed' approaches (the latter reproduce the test-particle limit bymore » construction). The best agreement with the exact (Barack-Sago) result is found when the pseudo-4PN coefficient of the effective-one-body (EOB) metric is fit to numerical relativity simulations. However, if one considers uncalibrated methods based only on the currently known 3PN-order conservative dynamics, the best agreement is found from the gauge-invariant ISCO condition of Blanchet and Iyer [Classical Quantum Gravity 20, 755 (2003)], which relies only on the (nonresummed) 3PN equations of motion. This method reproduces the exact test-particle limit without any resummation. A comparison of PN methods with the ISCO in the equal-mass case (computed via sequences of numerical relativity initial-data sets) is also performed. Here a (different) nonresummed method also performs very well (as was previously shown). These results suggest that the EOB approach - while exactly incorporating the conservative test-particle dynamics and having several other important advantages - does not (in the absence of calibration) incorporate conservative self-force effects more accurately than standard PN methods. I also consider how the conservative self-force ISCO shift, combined in some cases with numerical relativity computations of the ISCO, can be used to constrain our knowledge of (1) the EOB effective metric, (2) phenomenological inspiral-merger-ringdown templates, and (3) 4PN- and 5PN-order terms in the PN orbital energy. These constraints could help in constructing better gravitational-wave templates. Lastly, I suggest a new method to calibrate unknown PN terms in inspiral templates using numerical-relativity calculations.« less
Ailstock, M.S.; Fleming, W.J.; Cooke, T.J.
1991-01-01
Clonal lines of the submersed aquatic angiosperm Potamogeton pectinatus were grown in three culture systems. The first, which used sucrose as a carbon source in a liquid medium, supported vigorous vegetative growth and can be used to propagate large numbers of plants in axenic conditions. In this culture system, plants were responsive to increasing photosynthetically active radiation (PAR) photon flux density (PFD) and were photosynthetically competent. However, their growth was heterotrophic and root development was poor. When these plants were transferred to a second nonaxenic culture system, which used 16-l buckets containing artificial sediments and tap water, growth was autotrophic and plants were morphologically identical to field-harvested P. pectinatus. The last culture system which consisted of a sand substrate and inorganic nutrient bathing solution aerated with 135 ml min-1 ambient air enhanced to 3.0% CO2 was axenic and supported autotrophic growth by plants that were also morphologically normal.
Petrus, Auldry Chaddy; Ahmed, Osumanu Haruna; Muhamad, Ab Majid Nik; Nasir, Hassan Mohammad; Jiwan, Make
2010-07-06
Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to form Ca phosphate, an insoluble compound of phosphate that is generally not available to plants, especially roots. Mixing soil with humin produced from composted SW before application of fertilizers (T5 and T6) significantly increased maize dry matter production and nutrient use efficiency. Additionally, this practice does not only improve N, P, and K use efficiency, but it also helps to reduce the use of N-, P-, and K-based fertilizers by 50%.
High thermal behavior of a new glass ceramic developed from silica xerogel/SnO{sub 2} composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aripin, H., E-mail: aripin@unsil.ac.id; Mitsudo, Seitaro, E-mail: mitsudo@fir.u-fukui.ac.jp; Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com
2016-02-08
In this investigation, a new glass ceramics have been produced by mixing SnO{sub 2} and amorphous silica xerogel (ASX) extracted from sago waste ash. The composition has been prepared by adding 10 mol% of SnO{sub 2} into SX. The samples have been dry pressed and sintered in the temperature range between 800 °C and 1500 °C. The effects of temperature on the crystallization of silica xerogel after adding SnO{sub 2} and their relationship to bulk density have been studied. The crystallization process of the silica xerogel/SnO{sub 2} composite has been examined by an X-ray diffraction (XRD) and the bulk density hasmore » been characterized on the basis of the experimental data obtained using Archimedes′ principle. It has been found that an addition of SnO{sub 2} confers an appreciable effect on the grain and from the interpretation of XRD patterns allow one to explain the increase in the density by an increased crystallite size of SnO{sub 2} in the composite.« less
High thermal behavior of a new glass ceramic developed from silica xerogel/SnO2 composite
NASA Astrophysics Data System (ADS)
Aripin, H.; Mitsudo, Seitaro; Sudiana, I. Nyoman; Priatna, Edvin; Sabchevski, Svilen
2016-02-01
In this investigation, a new glass ceramics have been produced by mixing SnO2 and amorphous silica xerogel (ASX) extracted from sago waste ash. The composition has been prepared by adding 10 mol% of SnO2 into SX. The samples have been dry pressed and sintered in the temperature range between 800 °C and 1500 °C. The effects of temperature on the crystallization of silica xerogel after adding SnO2 and their relationship to bulk density have been studied. The crystallization process of the silica xerogel/SnO2 composite has been examined by an X-ray diffraction (XRD) and the bulk density has been characterized on the basis of the experimental data obtained using Archimedes' principle. It has been found that an addition of SnO2 confers an appreciable effect on the grain and from the interpretation of XRD patterns allow one to explain the increase in the density by an increased crystallite size of SnO2 in the composite.
Development of Keropok Keping Drying Machine for Small & Medium Enterprises (SMEs)
NASA Astrophysics Data System (ADS)
Mohamaddan, S.; Mohd Mohtar, A. M. A. A.; Junaidi, N.; Mohtadzar, N. A. A.; Mohamad Suffian, M. S. Z.
2016-02-01
Keropok is a traditional cracker product in Southeast Asia. Keropok is made from fish, squid or shrimp mixed with starch or sago flour and eggs. In Malaysia, keropok industry is widely operated at the coastal areas where the fish/seafood supply can be easily accessed. Keropok need to be dried before the packaging process. At the moment, conventional method was used where the keropok is arranged under the sunlight on a board called pemidai. The method is considered less hygienic since it exposed to the dirt and dust and less practical especially during the raining season. This research is focusing on a new automation technique to solve the problems. Rotary drum with internal holder was developed as the drying machine. Keropok keping (types of keropok) was selected to be experimented using the machine with three different rotating speeds. Preliminary experiment result shows that the broken rate of the keropok keping was around 27% of the total weight. The development of new automation system is hoped to improve the small medium enterprises (SMEs) in Malaysia.
Body size mediated coexistence in swans.
Engelhardt, Katharina A M; Ritchie, Mark E; Powell, James A
2014-01-01
Differences in body sizes may create a trade-off between foraging efficiency (foraging gains/costs) and access to resources. Such a trade-off provides a potential mechanism for ecologically similar species to coexist on one resource. We explored this hypothesis for tundra (Cygnus columbianus) and trumpeter swans (Cygnus buccinator), a federally protected species, feeding solely on sago pondweed (Stuckenia pectinata) tubers during fall staging and wintering in northern Utah. Foraging efficiency was higher for tundra swans because this species experienced lower foraging and metabolic costs relative to foraging gains; however, trumpeter swans (a) had longer necks and therefore had access to exclusive resources buried deep in wetland sediments and (b) were more aggressive and could therefore displace tundra swans from lucrative foraging locations. We conclude that body size differentiation is an important feature of coexistence among ecologically similar species feeding on one resource. In situations where resources are limiting and competition for resources is strong, conservation managers will need to consider the trade-off between foraging efficiency and access to resources to ensure ecologically similar species can coexist on a shared resource.
Body Size Mediated Coexistence in Swans
Engelhardt, Katharina A. M.; Ritchie, Mark E.; Powell, James A.
2014-01-01
Differences in body sizes may create a trade-off between foraging efficiency (foraging gains/costs) and access to resources. Such a trade-off provides a potential mechanism for ecologically similar species to coexist on one resource. We explored this hypothesis for tundra (Cygnus columbianus) and trumpeter swans (Cygnus buccinator), a federally protected species, feeding solely on sago pondweed (Stuckenia pectinata) tubers during fall staging and wintering in northern Utah. Foraging efficiency was higher for tundra swans because this species experienced lower foraging and metabolic costs relative to foraging gains; however, trumpeter swans (a) had longer necks and therefore had access to exclusive resources buried deep in wetland sediments and (b) were more aggressive and could therefore displace tundra swans from lucrative foraging locations. We conclude that body size differentiation is an important feature of coexistence among ecologically similar species feeding on one resource. In situations where resources are limiting and competition for resources is strong, conservation managers will need to consider the trade-off between foraging efficiency and access to resources to ensure ecologically similar species can coexist on a shared resource. PMID:24672347
Physical and mechanical properties of LDPE incorporated with different starch sources
NASA Astrophysics Data System (ADS)
Kormin, Shaharuddin; Kormin, Faridah; Dalour Hossen Beg, Mohammad; Bijarimi Mat Piah, Mohd
2017-08-01
In this study it was investigated the incorporation of different starches, such as sago starch, corn starch, potato starch, tapioca starch and wheat starch, in low-density polyethylene matrix (LDPE) to enhanced mechanical properties and to obtain partially biodegradable product with the aim to reduce the plastics wastes in the environment. For comparison, virgin LDPE, LDPE with different sources of starch blends were prepared and characterized under the same conditions. The starches were mixed to the LDPE using a twin screw extruder to guarantee the homogeneity of the formulations. The compound were shaping processed by injection moulding. The characterization of those compounds was done by physical (density, MFI), mechanical (Universal tensile machine). The addition of starch to LDPE reduced the MFI values, the tensile strength, elongation at break and impact strength, whereas the elastic modulus, flexural modulus and flexural strength increased. LDPE/SS show the good mechanical behavior compared to other formulation. The physical and mechanical properties were evident when 5 and 30 wt% were added. Water uptake increased with increased starch content and immersion time. The time taken for the composites to equilibrate was about one month even when they were immersed completely in water.
NASA Astrophysics Data System (ADS)
Bini, Donato; Damour, Thibault; Geralico, Andrea
2016-03-01
We analytically compute, through the six-and-a-half post-Newtonian order, the second-order-in-eccentricity piece of the Detweiler-Barack-Sago gauge-invariant redshift function for a small mass in eccentric orbit around a Schwarzschild black hole. Using the first law of mechanics for eccentric orbits [A. Le Tiec, First law of mechanics for compact binaries on eccentric orbits, Phys. Rev. D 92, 084021 (2015).] we transcribe our result into a correspondingly accurate knowledge of the second radial potential of the effective-one-body formalism [A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D 59, 084006 (1999).]. We compare our newly acquired analytical information to several different numerical self-force data and find good agreement, within estimated error bars. We also obtain, for the first time, independent analytical checks of the recently derived, comparable-mass fourth-post-Newtonian order dynamics [T. Damour, P. Jaranowski, and G. Schaefer, Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems, Phys. Rev. D 89, 064058 (2014).].
Interpreting the Acoustic Characteristics of Rpw Towards Its Detection- A Review
NASA Astrophysics Data System (ADS)
Leena Nangai, V.; Martin, Betty, Dr.
2017-08-01
Red palm weevil (Rhynchophorus ferrugineus) is also known as Asian palm weevil or Sago weevil. This is a lethal pest of palms which can attack about 17 varieties of palm trees. The growth rate of the weevil depends upon the type of palm tree it feeds on. It attacks the palm trees which is less than 20 years. The presence of the weevil in the palm tree is not evident when seen by the naked eye. Hence palm tree cultivation is affected very badly by the red palm weevil larvae. The larva bores the trunk of the palm trees by feeding on the soft tissues which is present at the centre. The chewing activity produces a kind of sound. Other movements like crawling, emission also produces very feeble sound. The sound produced by the larvae lies between specific ranges of frequency and has its own spectral features. The spectral features extracted from the acoustic movement of the RPW larvae helps the early detection and protect the palm tree from further infestation. Here a survey on acoustic detection and development of instrument or sensors based on acoustic characteristic of RPW larvae is conducted.
The boson expansion theory as the nuclear structure theory for the heavy nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H.B.
1987-01-01
Sometime sago, Kishimoto and Tamura developed a formalism of boson expansion theory (BET), and then Weeks and Tamura showed that it fitted many experimental data of collective nuclei. This formalism has recently been simplified significantly be Pedrocchi, Jamaluddin and Tamura. The new and old theories are very closely related but are not exactly the same. It has thus been desired to see whether the new theory can also fit data, and to show that it indeed works well constitutes a major part of this thesis. It is in fact seen that a number of data of Sm, Os and Ptmore » isotopes are explained nicely. Since the new form of the theory is rather simple, it permits us to take into account easily the effects of noncollective states to the behavior of collective states. This thesis shows that are remarkably improved fit to data of magnetic moments of SM isotopes is achieved in this way. The thesis discusses one additional subject. It is a result of an effort made to improve the BET by removing as much as possible the error due to the use of the BCS theory. This was done by applying a method developed by Li to the Dyson form of BET. A way to develop this work further is suggested.« less
Kim, Chu Hyun; Park, Ju Ok; Park, Chang Bae; Kim, Seong Chun; Kim, Soo Jin; Hong, Ki Jeong
2014-01-01
We aimed to determine the scientific framework for research on disaster and mass casualty incident (MCI) in Korea, especially Korean terminology, feasible definition, and epidemiologic indices. The two staged policy Delphi method was performed by instructors of National Disaster Life Support (NDLS®) with the constructed questionnaire containing items based on the literature review. The first-stage survey was conducted by 11 experts through two rounds of survey for making issue and option. The second-stage survey was conducted by 35 experts for making a generalized group based consensus. Experts were selected among instructors of National Disaster Life Support Course. Through two staged Delphi survey experts made consensus: 1) the Korean terminology "jaenan" with "disaster" and "dajung-sonsang-sago" with "MCI"; 2) the feasible definition of "disaster" as the events that have an effect on one or more municipal local government area (city-county-district) or results in ≥ 10 of death or ≥ 50 injured victims; 3) the feasible definition of MCI as the events that result in ≥ 6 casualties including death; 4) essential 31 epidemiologic indices. Experts could determine the scientific framework in Korea for research on disaster medicine, considering the distinct characteristics of Korea and current research trends.
Implementation of Temperature Sequential Controller on Variable Speed Drive
NASA Astrophysics Data System (ADS)
Cheong, Z. X.; Barsoum, N. N.
2008-10-01
There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.
NASA Astrophysics Data System (ADS)
Davis, C. O.; Tufillaro, N.
2016-02-01
Landsat-8's high spatial resolution ( 30 nm nominal), improved signal-to-noise (12bit digitizer) and expanded band set open up new applications for coastal and in-land waters. We use a recent ocean color processor for Landsat-8 created by Vanhellemont and Ruddick (RSE, 2015)to examine changes in the Northern San Francisco Bay, in particular looking for possiblechanges due to the on-going California drought. For instance, a temporary drought barrier to prevent salt water intrusion was placed during May of 2015 at West False River in the Sacramento-San Joaquin Delta. Using the new Landsat-8 ocean color products, we illustrate how to monitor changes in macro algae and plants (Sago pondweed (native), Curly pondweed (non-native)) in regions directly effected,such as the Franks Track region. Product maps using panchromatic enhancement ( 15 m resolution) andscene based atmospheric correction allow a detailed synoptic look every 16 days during theSpring, Summer, and Fall of 2015. This work is part of a larger NASA funded project aimed atimproving the modeling and predictive capabilities of the biogeochemical state for the San Francisco Bay(Davis, PI: Impacts of Population Growth on the San Francisco Bay and Delta Ecosystem, 2014-2017).
Tan, Jun; Zhao, Zeping; Wang, Yuehui; Zhang, Zhike; Liu, Jianguo; Zhu, Ninghua
2018-01-22
A wide-spectrum, ultra-stable optical frequency comb (OFC) module with 100 GHz frequency intervals based on a quantum dot mode locked (QDML) laser is fabricated by our lab, and a scheme with 12.5 Gb/s multi-channel broadcasting transmission for free-space optical (FSO) communication is proposed based on the OFC module. The output power of the OFC is very stable, with the specially designed circuit and the flatness of the frequency comb over the span of 6 nm, which can be limited to 1.5 dB. Four channel wavelengths are chosen to demonstrate one-to-many channels for FSO communication, like optical wireless broadcast. The outdoor experiment is established to test the bit error rate (BER) and eye diagrams with 12.5 Gb/s on-off keying (OOK). The indoor experiment is used to test the highest traffic rate, which is up to 21 Gb/s for one-hop FSO communication. To the best of our knowledge, this scheme is the first to propose the realization of one-to-many broadcasting transmission for FSO communication based on the OFC module. The advantages of integration, miniaturization, channelization, low power consumption, and unlimited bandwidth of one-to-many broadcasting communication scheme, shows promising results on constructing the future space-air-ground-ocean (SAGO) FSO communication networks.
Savitha, S; Sadhasivam, S; Swaminathan, K
2010-01-01
The fungal strains Graphium putredinis and Trichoderma harzianum were selected as parents for fusant development. Protoplasts were isolated using the combination of lysing enzymes Novozym 234 and cellulase with 0.6M KCl as osmotic stabilizer. The optimum conditions for release of viable protoplasts from the fungal mycelium viz. age of the mycelium, lytic enzymes, osmotic stabilizers, pH, incubation period and regeneration medium were determined. Intergeneric protoplast fusion was carried out using 50% polyethylene glycol with calcium chloride (CaCl(2)) and glycine buffer and the conditions for effective protoplast fusion, viz. fusogen, osmotic stabilizer, pH, incubation period and regeneration medium were optimized. At optimum conditions, the regeneration frequency of the fused protoplasts on potato dextrose agar (PDA) medium and fusion frequency were calculated. The regeneration frequency on non-selective (PDA) and selective media (PDA amended with starch) was determined for the parental and fusant strains in which, fusant showed a higher rate of regeneration. Fusant formation was confirmed by morphological markers (colony morphology and spore size and shape) and genetical markers like, mycelial protein pattern, restriction digestion pattern and random amplified polymorphic DNA (RAPD) analysis. The efficiency of these parental strains and their intergeneric fusant in the production of hydrolytic enzymes - amylases (treatment plant for sago factory effluent), cellulases (bioethanol), xylanases (bleaching agents for waste paper pulp) and proteases (additives in commercial detergents) - have probable applications in various industrial processes. (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nasution, Halimatuddahliana; Harahap, Hamidah; Afandy, Yayang; Fath, M. Thoriq Al
2017-11-01
Biocomposite containing cellulose nanocrystals (CNC) from rattan biomass as fillers and citric acid as co-plasticizer. Rattan biomass is a fiber waste from processing industry of rattan which contains 37.6% cellulose. Isolation of alpha cellulose from rattan biomass was prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3.5% HNO3 and NaNO2, precipitated with 17.5% NaOH, bleaching process with 10% H2O2. The preparation of CNC includes acid hydrolysis using 45% H2SO4 and followed by mechanical processes of ultrasonication, centrifugation, and filtration with a dialysis membrane. Biocomposite was prepared using a solution casting method, which includes 1-4 wt % CNC as fillers, 10-40 wt% citric acid as co-plasticizer and 30 wt% glycerol as plasticizer. The results of TGA, SEM and XRD characteristic of CNC show that CNC has low residue mass, rod like and network like shape with crystallinity index 84.46%. Biocomposite characteristic consists of SEM, tensile strength and elongation at break. The resultshows that biocomposites by addition of CNC and citric acid have a smooth surface and homogeneous distribution of fillers. The tensile strength of biocomposites was increased by addition CNC and citric acid. The addition of CNC decreases the elongation at break but by addition of citric acid, the elongation at break was increased.
NASA Astrophysics Data System (ADS)
Nasution, H.; Harahap, H.; Fath, M. T. Al; Afandy, Y.
2018-02-01
Rattan biomass is an abundant bioresources from processing industry of rattan which contains 37.6% cellulose. The high cellulose contents of rattan biomass make it a source of nanocrystalline cellulose as a filler in biocomposites. Isolation of alpha cellulose from rattan biomass was being prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3.5% HNO3 and NaNO2, precipitated with 17.5% NaOH, bleaching process with 10% H2O2. Nanocrystal obtained through the hydrolysis of alpha cellulose using 45% H2SO4 and followed by mechanical steps of ultrasonication, centrifugation, and filtration with a dialysis membrane. Biocomposite was being prepared by using a solution casting method, which includes 1-4 wt% nanocrystalline cellulose from rattan biomass as fillers, 10-40 wt% acetic acid as co-plasticizer and 30 wt% glycerol as plasticizer. The biocomposite characteristic consists of density, water absorption, and water vapors transmission rate. The results showed the highest density values was 0.266 gram/cm3 obtained at an additional of 3 wt% nanocrystalline cellulose from rattan biomass and 30 wt% acetic acid. The lowest water absorption was 9.37% at an additional of 3 wt% nanocrystalline cellulose from rattan biomass and 10 wt% acetic acid. It was observed by the addition of nanocrystalline cellulose might also decrease the rate of water vapor transmission that compared to the non-filler biocomposite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sago, Norichika; Barack, Leor; Detweiler, Steven
2008-12-15
Recently, two independent calculations have been presented of finite-mass ('self-force') effects on the orbit of a point mass around a Schwarzschild black hole. While both computations are based on the standard mode-sum method, they differ in several technical aspects, which makes comparison between their results difficult--but also interesting. Barack and Sago [Phys. Rev. D 75, 064021 (2007)] invoke the notion of a self-accelerated motion in a background spacetime, and perform a direct calculation of the local self-force in the Lorenz gauge (using numerical evolution of the perturbation equations in the time domain); Detweiler [Phys. Rev. D 77, 124026 (2008)] describesmore » the motion in terms a geodesic orbit of a (smooth) perturbed spacetime, and calculates the metric perturbation in the Regge-Wheeler gauge (using frequency-domain numerical analysis). Here we establish a formal correspondence between the two analyses, and demonstrate the consistency of their numerical results. Specifically, we compare the value of the conservative O({mu}) shift in u{sup t} (where {mu} is the particle's mass and u{sup t} is the Schwarzschild t component of the particle's four-velocity), suitably mapped between the two orbital descriptions and adjusted for gauge. We find that the two analyses yield the same value for this shift within mere fractional differences of {approx}10{sup -5}-10{sup -7} (depending on the orbital radius)--comparable with the estimated numerical error.« less
Phytoremediation of explosives in groundwater using innovative wetlands-based treatment technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikora, F.J.; Behrends, L.L.; Coonrod, H.S.
1997-12-31
Many army ammunition plants across the country have problems with groundwater contaminated with explosives. A field demonstration was initiated at the Milan Army Ammunition Plant near Milan, Tennessee early in 1996 to demonstrate the feasibility of treating contaminated groundwater with constructed wetlands. Two different systems were designed and installed. A lagoon system consisted of two cells in series with each cell having dimensions of 24 x 9.4 x 0.6 m (L x W x H). A gravel-bed system consisted of three gravel-beds operated in series with a primary anaerobic cell having dimensions of 32 x 11 x 1.4 m (Lmore » x W x H), followed by a pair of secondary cells each with dimensions of 5.5 x 11 x 1.4 m (L x W x H). The primary cell is maintained anaerobic by adding powdered milk to the water every two weeks. The secondary cells are maintained aerobic via reciprocation, whereby water is pumped back and forth from one cell to another to cause a recurrent fill and drain action. The lagoons were planted with sago pond weed, water stargrass, elodea, and parrot feather. The gravel-bed wetlands were planted with canary grass, wool grass, sweet flag, and parrot feather. Water began flowing to each of the wetland treatment systems at 19 L min{sup {minus}1} starting in June 1996. The design hydraulic retention time through each treatment system was approximately 10 days. Influent and effluent water samples were collected every 2 weeks. Intensive sampling of water interior to the wetlands occurred every 2 months.« less
Measurement of Moisture Sorption Isotherm by DVS Hydrosorb
NASA Astrophysics Data System (ADS)
Kurniawan, Y. R.; Purwanto, Y. A.; Purwanti, N.; Budijanto, S.
2018-05-01
Artificial rice made from corn flour, sago, glycerol monostearate, vegetable oil, water and jelly powder was developed by extrusion method through the process stages of material mixing, extrusion, drying, packaging and storage. Sorption isotherm pattern information on food ingredients used to design and optimize the drying process, packaging, storage. Sorption isotherm of water of artificial rice was measured using humidity generating method with Dynamic Vapor Sorption device that has an advantage of equilibration time is about 10 to 100 times faster than saturated salt slurry method. Relative humidity modification technique are controlled automatically by adjusting the proportion of mixture of dry air and water saturated air. This paper aims to develop moisture sorption isotherm using the Hydrosorb 1000 Water Vapor Sorption Analyzer. Sample preparation was conducted by degassing sample in a heating mantle of 65°C. Analysis parameters need to be fulfilled were determination of Po, sample data, selection of water activity points, and equilibrium conditions. The selected analytical temperatures were 30°C and 45°C. Analysis lasted for 45 hours and curves of adsorption and desorption were obtained. Selected bottom point of water activity 0.05 at 30°C and 45°C yielded adsorbed mass of 0.1466 mg/g and 0.3455 mg/g, respectively, whereas selected top water activity point 0.95 at 30°C and 45°C yielded adsorbed mass of 190.8734 mg/g and 242.4161mg/g, respectively. Moisture sorption isotherm measurements of articial rice made from corn flour at temperature of 30°C and 45°C using Hydrosorb showed that the moisture sorption curve approximates sigmoid-shaped type II curve commonly found in corn-based foodstuffs (high- carbohydrate).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopper, Seth; Evans, Charles R.
2010-10-15
We calculate the gravitational perturbations produced by a small mass in eccentric orbit about a much more massive Schwarzschild black hole and use the numerically computed perturbations to solve for the metric. The calculations are initially made in the frequency domain and provide Fourier-harmonic modes for the gauge-invariant master functions that satisfy inhomogeneous versions of the Regge-Wheeler and Zerilli equations. These gravitational master equations have specific singular sources containing both delta function and derivative-of-delta function terms. We demonstrate in this paper successful application of the method of extended homogeneous solutions, developed recently by Barack, Ori, and Sago, to handle sourcemore » terms of this type. The method allows transformation back to the time domain, with exponential convergence of the partial mode sums that represent the field. This rapid convergence holds even in the region of r traversed by the point mass and includes the time-dependent location of the point mass itself. We present numerical results of mode calculations for certain orbital parameters, including highly accurate energy and angular momentum fluxes at infinity and at the black hole event horizon. We then address the issue of reconstructing the metric perturbation amplitudes from the master functions, the latter being weak solutions of a particular form to the wave equations. The spherical harmonic amplitudes that represent the metric in Regge-Wheeler gauge can themselves be viewed as weak solutions. They are in general a combination of (1) two differentiable solutions that adjoin at the instantaneous location of the point mass (a result that has order of continuity C{sup -1} typically) and (2) (in some cases) a delta function distribution term with a computable time-dependent amplitude.« less
Insect (food) allergy and allergens.
de Gier, Steffie; Verhoeckx, Kitty
2018-05-03
Insects represent an alternative for meat and fish in satisfying the increasing demand for sustainable sources of nutrition. Approximately two billion people globally consume insects. They are particularly popular in Asia, Latin America, and Africa. Most research on insect allergy has focussed on occupational or inhalation allergy. Research on insect food safety, including allergenicity, is therefore of great importance. The objective of this review is to provide an overview of cases reporting allergy following insect ingestion, studies on food allergy to insects, proteins involved in insect allergy including cross-reactive proteins, and the possibility to alter the allergenic potential of insects by food processing and digestion. Food allergy to insects has been described for silkworm, mealworm, caterpillars, Bruchus lentis, sago worm, locust, grasshopper, cicada, bee, Clanis bilineata, and the food additive carmine, which is derived from female Dactylopius coccus insects. For cockroaches, which are also edible insects, only studies on inhalation allergy have been described. Various insect allergens have been identified including tropomyosin and arginine kinase, which are both pan-allergens known for their cross-reactivity with homologous proteins in crustaceans and house dust mite. Cross-reactivity and/or co-sensitization of insect tropomyosin and arginine kinase has been demonstrated in house dust mite and seafood (e.g. prawn, shrimp) allergic patients. In addition, many other (allergenic) species (various non-edible insects, arachnids, mites, seafoods, mammals, nematoda, trematoda, plants, and fungi) have been identified with sequence alignment analysis to show potential cross-reactivity with allergens of edible insects. It was also shown that thermal processing and digestion did not eliminate insect protein allergenicity. Although purified natural allergens are scarce and yields are low, recombinant allergens from cockroach, silkworm, and Indian mealmoth are readily available, giving opportunities for future research on diagnostic allergy tests and vaccine candidates. Copyright © 2018 Elsevier Ltd. All rights reserved.
Impact on molecular organization of amylopectin in starch granules upon annealing.
Vamadevan, Varatharajan; Bertoft, Eric; Soldatov, Dmitriy V; Seetharaman, Koushik
2013-10-15
This study investigated the influence of the internal structure of amylopectin on annealing (3h, 24h) of starches from four different types of amylopectin (Bertoft, Koch, & Aman, 2012; Bertoft, Piyachomkwan, Chatakanonda, & Sriroth, 2008). Regardless of the starch source and incubation time, annealing significantly increased the onset gelatinization temperature (To) and narrowed and deepened the amylopectin endotherm. However, the extent of the change in the melting temperature (Tm) and the enthalpy of gelatinization (ΔH) differed among the types. In terms of the To and Tm, starches from type 1 (oat, rye, barley, and waxy barley) showed the most significant response to annealing. The Tm of starches belonging to type 2 (waxy maize, rice, waxy rice, and sago) remained unchanged after 3h of annealing. Type 1 and type 2 starches with the lowest gelatinization temperatures showed the greatest increase in melting temperature after annealing. However, type 3 (tapioca, mung bean, and arrowroot) and type 4 (potato, waxy potato, canna, and yam) starches were not in line with these observations. Instead, starches from type 3 and type 4 showed a pronounced increase in the ΔH. The inter-block chain length (IB-CL) (distance between tightly branched units within a cluster) correlated positively (r=0.93, p<0.01) with the change in enthalpy after 24h of annealing. These data indicate that a short IB-CL affects the optimum registration of double helices within the crystalline lamellae. The relationship between the gelatinization parameters before and after annealing suggests that type 1 and 2 starches might possess a high number of unpacked double helices (type 1>type 2) compared to other types. Longer IB-CLs, which facilitate the parallel packing of splayed double helices, and the lengthening of double helices likely increased the ΔH in type 3 and type 4 starches. It is concluded that annealing can be used as a probe for visualizing the organization of glucan chains (alignment of double helices/degree of perfection) within crystalline lamellae. Copyright © 2013 Elsevier Ltd. All rights reserved.
Movement of foraging Tundra Swans explained by spatial pattern in cryptic food densities.
Klaassen, Raymond H G; Nolet, Bart A; Bankert, Daniëlle
2006-09-01
We tested whether Tundra Swans use information on the spatial distribution of cryptic food items (below ground Sago pondweed tubers) to shape their movement paths. In a continuous environment, swans create their own food patches by digging craters, which they exploit in several feeding bouts. Series of short (<1 m) intra-patch movements alternate with longer inter-patch movements (>1 m). Tuber biomass densities showed a positive spatial auto-correlation at a short distance (<3 m), but not at a larger distance (3-8 m). Based on the spatial pattern of the food distribution (which is assumed to be pre-harvest information for the swan) and the energy costs and benefits for different food densities at various distances, we calculated the optimal length of an inter-patch movement. A swan that moves to the patch with the highest gain rate was predicted to move to the adjacent patch (at 1 m) if the food density in the current patch had been high (>25 g/m2) and to a more distant patch (at 7-8 m) if the food density in the current patch had been low (<25 g/m2). This prediction was tested by measuring the response of swans to manipulated tuber densities. In accordance with our predictions, swans moved a long distance (>3 m) from a low-density patch and a short distance (<3 m) from a high-density patch. The quantitative agreement between prediction and observation was greater for swans feeding in pairs than for solitary swans. The result of this movement strategy is that swans visit high-density patches at a higher frequency than on offer and, consequently, achieve a 38% higher long-term gain rate. Swans also take advantage of spatial variance in food abundance by regulating the time in patches, staying longer and consuming more food from rich than from poor patches. We can conclude that the shape of the foraging path is a reflection of the spatial pattern in the distribution of tuber densities and can be understood from an optimal foraging perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favata, Marc
2011-01-15
The innermost stable circular orbit (ISCO) delimits the transition from circular orbits to those that plunge into a black hole. In the test-mass limit, well-defined ISCO conditions exist for the Kerr and Schwarzschild spacetimes. In the finite-mass case, there are a large variety of ways to define an ISCO in a post-Newtonian (PN) context. Here I generalize the gauge-invariant ISCO condition of Blanchet and Iyer [Classical Quantum Gravity 20, 755 (2003)] to the case of spinning (nonprecessing) binaries. The Blanchet-Iyer ISCO condition has two desirable and unexpected properties: (1) it exactly reproduces the Schwarzschild ISCO in the test-mass limit, andmore » (2) it accurately approximates the recently calculated shift in the Schwarzschild ISCO frequency due to the conservative-piece of the gravitational self-force [L. Barack and N. Sago, Phys. Rev. Lett. 102, 191101 (2009)]. The generalization of this ISCO condition to spinning binaries has the property that it also exactly reproduces the Kerr ISCO in the test-mass limit (up to the order at which PN spin corrections are currently known). The shift in the ISCO due to the spin of the test-particle is also calculated. Remarkably, the gauge-invariant PN ISCO condition exactly reproduces the ISCO shift predicted by the Papapetrou equations for a fully relativistic spinning particle. It is surprising that an analysis of the stability of the standard PN equations of motion is able (without any form of 'resummation') to accurately describe strong-field effects of the Kerr spacetime. The ISCO frequency shift due to the conservative self-force in Kerr is also calculated from this new ISCO condition, as well as from the effective-one-body Hamiltonian of Barausse and Buonanno [Phys. Rev. D 81, 084024 (2010)]. These results serve as a useful point of comparison for future gravitational self-force calculations in the Kerr spacetime.« less
NASA Astrophysics Data System (ADS)
Rodríguez-Fernandez, Diana; Torrentó, Clara; Rosell, Mònica; Audí-Miró, Carme; Soler, Albert
2014-05-01
A complex mixture of chlorinated organic compounds is located in an unconfined carbonated bedrock aquifer with low permeability in a former industrial area next to Barcelona (NE Spain). The site exhibited an especially high complexity due to the presence of multiple contaminant sources, wide variety of pollutants (mainly chlorinated ethenes but also chlorinated methanes) and unknown system of fractures (Palau et al., 2014). Interception trenches were installed in the place of the removed pollution sources and were filled with construction wastes with the aim of retaining and treating the accumulated contaminated recharge water before reaching the aquifer. Recycled concrete-based aggregates from a construction and demolition waste recycling plant were used to maintain alkaline conditions in the water accumulated in the trenches (pH 11.6±0.3) and thus induce chloroform (CF) degradation by alkaline hydrolysis. An efficacy of around 30-40% CF degradation in the interception trenches was calculated from the significant and reproducible CF carbon isotopic fractionation (-53±3o obtained in batch experiments (Torrentó et al., 2014). Surprisingly, although hydrolysis of carbon tetrachloride (CT) is extremely slow, a significant CT carbon isotopic enrichment was also observed in the trenches. The laboratory experiments verified the low capability of concrete to hydrolyze the CT and showed the high adsorption of CT on the concrete particles (73% after 50 days) with invariability in its δ13C values. Therefore, the significant CT isotopic fractionation observed in the interception trenches could point out the occurrence of other degradation processes distinct than alkaline hydrolysis. Geochemical speciation modelling using the code PHREEQC showed that water collected at the trenches is supersaturated with respect to several iron oxy-hydroxides and therefore, CT degradation processes related to these iron minerals cannot be discarded. In addition, the combination of alkaline conditions in the trenches with in situ chemical oxidation (ISCO), which would be able to remove the rest of the accompanying pollutants, is proposed and merits evaluation. Preliminary batch experiments were performed to evaluate the feasibility of different chemical oxidation reactions (permanganate, persulphate, hydrogen peroxide and Fenton) on the complex contaminated recharge water which were, in general, more effective for degrading the chlorinated ethenes than for the chlorinated methanes (Torrentó et al. EGU 2012). Therefore, this study seeks to improve the understanding of CF and CT degradation mechanisms/processes that are going on in the interception trenches as well as to select between the two most effective chemical oxidation remediation treatments (persulphate and permanganate) taking into account their efficiency respect the chlorinated methanes removal, the generated acute toxicity and the applicability of the carbon isotopic fractionation as an indicator of the effectiveness of the future in situ remediation. Additionally, ongoing batch experiments are expected to elucidate if CT is undergoing abiotic reductive dechlorination by Fe-bearing minerals such as hydrophobic green rust (Ayala-Luis et al., 2012) which transform CT into non-chlorinated substances such as formic acid and carbon monoxide. This unstable iron compound might be formed in the interception trenches during chloride induced corrosion of iron mineral phases present in the concrete-based construction wastes (Sagoe-Crentsil and Glasser, 1993). The role of other minerals like iron oxy-hydroxides, carbonates or sulphides cannot be discarded at all. The potential of δ13C values to assess the efficiency of this abiotic CT degradation reaction will be also evaluated. References Ayala-Luis, K.; Cooper, N.; Bender C. and Hansen. H. (2012) Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercaled with dodecanoate anions. Environmental Science & Technology 46, 3390-3397. Palau, J.; Marchesi, M.: Chambon, J.: Aravena, R.; Canals, A.; Binning, P. J., Bjerg P. L.; Otero, N.; Soler, A. (2014) Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes. Science of the Total Environment 475, 61-70. Sagoe-Crentsil, K.K.; Glasser, F.P. (1993) 'Green Rust', Iron Solubility and the Role of Chloride in the Corrosion of Steel at High pH,' Cement and Concrete Research, 23(4), 785-91. Torrentó, C., Audí-Miró, C., Marchesi, M., Otero, N. and Soler, A. (2012) Comparison of four oxidation processes for the treatment of water contaminated with a mixture of chlorinated volatile organic compounds. EGU General Assembly 2012. Vienna. Geophysical Research Abstracts, 14: EGU2012-11310. Torrentó, C.; Audí-Miró, C.; Bordeleau, G.; Marchesi, M.; Rosell, M.; Otero, N.; Soler, A. (2014) The use of alkaline hydrolysis as a novel strategy for chloroform remediation: the feasibility of using construction wastes and evaluation of carbon isotopic fractionation. Environmental Science & Technology, Just Accepted Manuscript (DOI: 10.1021/es403838t)
The Hydrochemical Evolution of Water-Filled Sinkholes at Bitter Lake NWR, Roswell, NM
NASA Astrophysics Data System (ADS)
Premo, E.; Crossey, L. J.
2013-12-01
Bitter Lake National Wildlife Refuge in Roswell, NM houses one of the most ecologically significant wetlands in the US-SW including approximately 52 water-filled sinkholes each supporting a unique biological assemblage, including several endangered and endemic species (e.g., Pecos pupfish and Noel's amphipod, respectively). Forming in the karst landscape adjacent to the Pecos River where the regional dual-aquifer system discharges through a network of springs and seeps, these sinkholes are recharged by saline groundwater that is subject to anthropogenic withdrawals for irrigation and hydrocarbon production and chemically altered by a complex series of evaporation-precipitation reactions after discharge. This study investigates the hydrochemical differences among these sinkholes while considering the evolutionary processes affecting water column structure, geochemical mixing and ecological sustainability. Two major sampling suites, pre- and post-irrigation, yielded waters from 1.0m increments along the water columns of 10 representative sinkholes. Samples were analyzed for major ions, stable isotopes [δ18O, δD ], and dissolved gases; PHREEQc was used to model mineral saturation and speciation. An in-situ mineral precipitation experiment provided growth rate and mineral morphological (SEM) data. Source water is chemically similar to shallow springs found at the Refuge (Sago Spring). Sinkholes exhibit bimodal water column structure (well-mixed or stratified) organized in response to water density (with ~1.035 g/cm3 forming the modal transition threshold). By measuring the density, TDS or conductivity at sinkhole surface it is possible to predict modality of water column structure. Sinkhole waters - regardless of depth or season - fall along a common isotopic evaporation trajectory (δ D = 3.387*δ18O - 19.38), and adopt a Na-Cl chemical endmember facies. Driven primarily by physical sinkhole geometry (e.g., depth and surface area), sinkhole water follows a predictable evolutionary progression from spring-like well-mixed ('young'), to moderately saline well-mixed ('transitional'), to saline and stratified ('old' or 'evolved'), based on the relative volume of water that has entered and subsequently evaporated from the system. Simple geochemical models reveal calcium- and sulfate-bearing minerals (calcite, gypsum) precipitate early in the reaction while halite and magnesium-containing minerals precipitate late, rendering increased Cl- and Mg+ concentrations in fluids subjected to prolonged evaporation. This water is also high in CO2 content and may contain traces of He, suggesting emergent water is a combination of groundwater (dominant) and deeply sourced fluids (minor). Both PO4 and NH4 are present in biologically-significant concentrations in sinkholes with chemically controlled water columns, and photosynthetic bacteria were found to organize at the bottom of the photic zone. High NH4 and CO2 accompanying low O2 dissolved gas values confirm the increased biological control in stratified sinkholes. Resident fish populations are affected by water chemistry which reduces reproductive success or exceed the survivable range of habitable conditions. Results of this study serve as a geochemical baseline survey of Refuge sinkholes and may be used to both aid with biological resource management and predict stratified conditions using measurable proxies.
Hamilton, David B.; Auble, Gregor T.; Ellison, Richard A.; Roelle, James E.
1985-01-01
Malheur Lake is the largest freshwater marsh in the western contiguous United States and is one of the main management units of the Malheur National Wildlife Refuge in southeastern Oregon. The marsh provides excellent waterfowl production habitat as well as vital migration habitats for birds in the Pacific flyway. Water shortages have typically been a problem in this semiarid area; however, record snowfalls and cool summers have recently caused Malheur Lake to rise to its highest level in recorded history. This has resulted in the loss of approximately 57,000 acres of important wildlife habitat as well as extensive flooding of local ranches, roads, and railroad lines. Because of the importance of the Refuge, any water management plan for the Malheur-Harney Lakes Basin needs to consider the impact of management alternatives on the hydrology of Malheur Lake. The facilitated modeling workshop described in this report was conducted January 14-18, 1985, under the joint sponsorship of the Portland Ecological Services Field Office and the Malheur National Wildlife Refuge, Region 1, U.S. Fish and Wildlife Service (FWS). The Portland Field Office is responsible for FWS reporting requirements on Federal water resource projects while the Refuge staff has management responsibility for much of the land affected by high water levels in the Malheur-Harney Lakes Basin. The primary objective of the workshop was to begin gathering and analyzing information concerning potential fish and wildlife impacts, needs, and opportunities associated with proposed U.S. Army Corps of Engineers (COE) flood control alternatives for Malheur Lake. The workshop was structured around the formulation of a computer model that would simulate the hydrologic effects of the various alternatives and any concommitant changes in vegetation communities and wildlife use patterns. The simulation model is composed of three connected submodels. The Hydrology submodel calculates changes in lake volume, elevation, and surface area, as well as changes in water quality, that result from the proposed water management projects (upstream storage, upstream diversions, drainage canals) and the no action alternative. The Vegetation submodel determines associated changes in the areal extent of wetland and upland vegetation communities. Finally, the Wildlife submodel calculates indices of abundance or habitat suitability for colonial nesting birds (great egret, double-crested cormorant, white-faced ibis), greater sandhill crane, diving ducks, tundra swan, dabbling ducks, and Canada goose based on hydrologic and vegetation conditions. The model represents the Malheur-Harney Lakes Basin, but provides water quantity and quality indicators associated with additional flows that might occur in the Malheur River Basin. Several management scenarios, representing various flood control alternatives and assumptions concerning future runoff, were run to analyze model behavior. Scenario results are not intended as an analysis of all potential management actions or assumptions concerning future runoff. Rather, they demonstrate the type of analysis that could be conducted if the model was sufficiently refined and tested. Early in a model development project, the process of building the model is usually of greater benefit than the model itself. The model building process stimulates interaction among agencies, assists in integrating existing information, and helps identify research needs. These benefits usually accrue even in the absence of real predictive power in the resulting model. This workshop initiated interaction among the primary State and Federal resource and development agencies in a nonadversarial forum. The exchange of information and expertise among agencies provided the FWS with the best information currently available for use in the Planning Aid Letter it will develop at the Reconnaissance state of the COE study. If the COE subsequently initiates a Feasability Study, this information will be refined further and will aid the FWS in preparing its Coordination Act Report on any flood control alternative proposed by the COE. The model building and testing process also helped identify model limitations and more general information needs that should be evaluated for further study prior to preparation of an FWS Coordination Act Report. Major needs associated with the Hydrology submodel include a more detailed representation of hydrologic units (separately consider Harney Lake, Mud Lake, and Malheur Lake or the three hydrological units within Malheur Lake, rather than a combined lake system) and explicitly representation of groundwater storage and discharge in water budget calculations. A better representation of the hydrological units will require more detailed topographic data for the basin, capacity-elevation and elevation-surface area curves for each unit, and better water flow data between the units. Additional water quality parameters and constraints on proposed canal operation due to conditions in the Malheur River might also be added. Key Vegetation submodel needs include fine-tuning existing vegetation relationships in the model and adding relationships to address the influence of historical conditions on vegetation development, effects of very rapid changes in lake level, effects of wildlife populations (e.g., carp, muskrat), responses of vegetation to habitat management actions (e.g, haying, grazing, burning), and better representation of sago pondweed dynamics. A complementary geographic information system might also be developed for spatial analyses. Major needs that should be evaluated for the Wildlife submodel include addition of other wildlife species that have important effects on habitat on the Refuge (e.g., carp, muskrat) and consideration of additional life-cycle requisites and controlling variable for species presently in the model. Some of these limitations could perhaps be overcome if historical data on habitat conditions were developed to use with historical data on wildlife populations.