Sample records for saharan dust episodes

  1. The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.

    2016-04-01

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.

  2. Poleward transport of Saharan dust initiated by a Saharan cyclone.

    NASA Astrophysics Data System (ADS)

    Karam Francis, Diana Bou; Chaboureau, Jean-Pierre; Cuesta, Juan

    2016-04-01

    To enhance the understanding of the role of Saharan mineral dust in the Arctic climate system, this study focuses on dust emission and poleward transport associated with an intense Saharan cyclone that occurred over North Africa in early April 2011. Satellites observations at high spatio-temporal resolution are used in this study in order to characterize qualitatively (using MSG-SEVIRI and CALIPSO/CloudSat) and quantitatively (using MODIS and OMI) the dust activity over North Africa associated with the Saharan cyclone as well as the transport of dust toward the northern pole. Beside the observations, a simulation at high resolution is performed using the MesoNh model in order to estimation the dust load transported northward and to evaluate the dust deposition north to 60°N and its impact on the Albedo. In this study, we identify in new and important mechanism for the transport of dust over long distances toward the northern pole: the poleward migration of Saharan cyclones, in which the dust is transported toward the Arctic following a newly identified path; across the Northern Atlantic Ocean around the Icelandic Low. This path is to be added to the two preferable paths mentioned in previous studies i.e. through transport across Northern Europe and across the Atlantic Ocean around the Bermuda High. Key words: Arctic, North Africa, dust storm, dust deposition, surface albedo.

  3. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters.

    PubMed

    Westrich, Jason R; Ebling, Alina M; Landing, William M; Joyner, Jessica L; Kemp, Keri M; Griffin, Dale W; Lipp, Erin K

    2016-05-24

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust-Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  4. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters

    USGS Publications Warehouse

    Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.; Lipp, Erin K.

    2016-01-01

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrioafter natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  5. Impact of Dust on Air Quality and Radiative Forcing : AN Episodic Study for the Megacity Istanbul Using RegCM4.1

    NASA Astrophysics Data System (ADS)

    Agacayak, T.; Kindap, T.; Unal, A.; Mallet, M.; Pozzoli, L.; Karaca, M.; Solmon, F.

    2012-04-01

    Istanbul is a megacity (with population over 15 million) that has significant levels of Particulate Matter concentrations. It is suspected that long-range transport of Saharan dust is one of the main contributors. The purpose of this study is to investigate the relationship between high PM concentrations and dust transport using atmospheric modeling, satellite data as well as in-situ observations. Measurements of PM10 concentrations at 10 different stations in Istanbul for the period 2004-2010 were provided by the Turkish Ministry of Environment. Daily mean PM10 concentrations exceeding the European standard of 50 µg/m3 were found to be, on average, 49 days for the Spring period, 45 days for the Winter period, and 41 days for the Fall period. DREAM model output (Nickovic et al. 2001; Perez et al. 2006) suggests that high PM10 concentrations correlate highly with mineral dust transport episodes from Saharan desert (i.e., 23% for winter and 58% for spring). In this study, we have utilized RegCM4.1 model to further investigate the Saharan dust transport in the selected episodes. During the period between March 21st and 24th, 2008, observed daily mean of PM10 concentrations reach up to 140 µg/m3 in Istanbul. Simulations conducted by RegCM4.1 provides AOD (350-640 nm model band) values ranging between 0.04 and 0.98during this episode. Central Anatolia is affected from the dust transport on 21 and 22 March 2008, with a daily mean AOD of 0.9. On 23th March 2008, the dust plume reaches the Marmara Sea and AOD increases about 1.0 over the region according to both DREAM and RegCM4.1 model outputs. On the fourth day of the episode, the dust event stops and AOD decreases to 0.5 over the region. Asymmetry parameters can be seen as 0.62 during the dust episode, while single scattering albedo is about 0.93 during the entire dust episode over Istanbul. The effect of the dust episode on the regional radiative budget over Istanbul was also estimated. Model results indicate a daily

  6. Cooling of the North Atlantic by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.

    2007-01-01

    Using aerosol optical depth, sea surface temperature, top-of-the-atmosphere solar radiation flux, and oceanic mixed-layer depth from diverse data sources that include NASA satellites, NCEP reanalysis, in situ observations, as well as long-term dust records from Barbados, we examine the possible relationships between Saharan dust and Atlantic sea surface temperature. Results show that the estimated anomalous cooling pattern of the Atlantic during June 2006 relative to June 2005 due to attenuation of surface solar radiation by Saharan dust remarkably resemble observations, accounting for approximately 30-40% of the observed change in sea surface temperature. Historical data analysis show that there is a robust negative correlation between atmospheric dust loading and Atlantic SST consistent with the notion that increased (decreased) Saharan dust is associated with cooling (warming) of the Atlantic during the early hurricane season (July- August-September).

  7. Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions.

    PubMed

    Díaz, Julio; Linares, Cristina; Carmona, Rocío; Russo, Ana; Ortiz, Cristina; Salvador, Pedro; Trigo, Ricardo Machado

    2017-07-01

    A lot of papers have been published about the impact on mortality of Sahara dust intrusions in individual cities. However, there is a lack of studies that analyse the impact on a country and scarcer if in addition the analysis takes into account the meteorological conditions that favour these intrusions. The main aim is to examine the effect of Saharan dust intrusions on daily mortality in different Spanish regions and to characterize the large-scale atmospheric circulation anomalies associated with such dust intrusions. For determination of days with Saharan dust intrusions, we used information supplied by the Ministry of Agriculture, Food & Environment, it divides Spain into 9 main areas. In each of these regions, a representative province was selected. A time series analysis has been performed to analyse the relationship between daily mortality and PM 10 levels in the period from 01.01.04 to 31.12.09, using Poisson regression and stratifying the analysis by the presence or absence of Saharan dust advections. The proportion of days on which there are Saharan dust intrusions rises to 30% of days. The synoptic pattern is characterised by an anticyclonic ridge extending from northern Africa to the Iberian Peninsula. Particulate matter (PM) on days with intrusions are associated with daily mortality, something that does not occur on days without intrusions, indicating that Saharan dust may be a risk factor for daily mortality. In other cases, what Saharan dust intrusions do is to change the PM-related mortality behaviour pattern, going from PM 2.5 . A study such as the one conducted here, in which meteorological analysis of synoptic situations which favour Saharan dust intrusions, is combined with the effect on health at a city level, would seem to be crucial when it comes to analysing the differentiated mortality pattern in situations of Saharan dust intrusions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Saharan dust contribution to PM levels: The EC LIFE+ DIAPASON project

    NASA Astrophysics Data System (ADS)

    Gobbi, G. P.; Wille, H.; Sozzi, R.; Angelini, F.; Barnaba, F.; Costabile, F.; Frey, S.; Bolignano, A.; Di Giosa, A.

    2012-04-01

    The contribution of Saharan-dust advections to both daily and annual PM average values can be significant all over Southern Europe. The most important effects of dust on the number of PM exceedances are mostly observed in polluted areas and large cities. While a wide literature exists documenting episodes of Saharan dust transport towards the Euro-Mediterranean region and Europe in general, a limited number of studies are still available providing statistically significant results on the impact of Saharan dust on the particulate matter loads over the continent. A four-year (2001-2004) study performed in Rome (Italy) found these events to contribute to the average ground PM10 with about 15±10 µg/m3 on about 17% of the days in a year. Since the PM10 yearly average of many traffic stations in Rome is close to 40 μg/m3, these events can cause the PM10 concentration to exceed air quality limit values (50 μg/m3 as daily average) set by the EU Air Quality Directive 2008/50/EC. Although the European legislation allows Member States to subtract the contribution of natural sources before counting PM10 exceedances, definition of an optimal methodology to quantitatively assess such contribution is still in progress. On the basis of the current European Guidelines on the assessment of natural contributions to PM, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs", recently funded under the EC LIFE+ program) has been formulated to provide a robust, user-oriented methodology to assess the presence of desert dust and its contribution to PM levels. To this end, in addition to satellite-based data and model forecasts, the DIAPASON methodology will employ innovative and affordable technologies, partly prototyped within the project itself, as an operational Polarization Lidar-Ceilometer (laser radar) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The DIAPASON Project (2011

  9. Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment

    NASA Astrophysics Data System (ADS)

    Ansmann, A.; Tesche, M.; Althausen, D.; Müller, D.; Seifert, P.; Freudenthaler, V.; Heese, B.; Wiegner, M.; Pisani, G.; Knippertz, P.; Dubovik, O.

    2008-02-01

    Multiwavelength lidar, Sun photometer, and radiosonde observations were conducted at Ouarzazate (30.9°N, 6.9°W, 1133 m above sea level, asl), Morocco, in the framework of the Saharan Mineral Dust Experiment (SAMUM) in May-June 2006. The field site is close to the Saharan desert. Information on the depolarization ratio, backscatter and extinction coefficients, and lidar ratio of the dust particles, estimates of the available concentration of atmospheric ice nuclei at cloud level, profiles of temperature, humidity, and the horizontal wind vector as well as backward trajectory analysis are used to study cases of cloud formation in the dust with focus on heterogeneous ice formation. Surprisingly, most of the altocumulus clouds that form at the top of the Saharan dust layer, which reaches into heights of 4-7 km asl and has layer top temperatures of -8°C to -18°C, do not show any ice formation. According to the lidar observations the presence of a high number of ice nuclei (1-20 cm-3) does not automatically result in the obvious generation of ice particles, but the observations indicate that cloud top temperatures must typically reach values as low as -20°C before significant ice production starts. Another main finding is that liquid clouds are obviously required before ice crystals form via heterogeneous freezing mechanisms, and, as a consequence, that deposition freezing is not an important ice nucleation process. An interesting case with cloud seeding in the free troposphere above the dust layer is presented in addition. Small water clouds formed at about -30°C and produced ice virga. These virga reached water cloud layers several kilometers below the initiating cloud cells and caused strong ice production in these clouds at temperatures as high as -12°C to -15°C.

  10. Saharan Dust on the Move

    NASA Image and Video Library

    2017-12-08

    A piece of Africa—actually lots of them—began to arrive in the Americas in June 2014. On June 23, a lengthy river of dust from western Africa began to push across the Atlantic Ocean on easterly winds. A week later, the influx of dust was affecting air quality as far away as the southeastern United States. This composite image, made with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPP, shows dust heading west toward South America and the Gulf of Mexico on June 25, 2014. The dust flowed roughly parallel to a line of clouds in the intertropical convergence zone, an area near the equator where the trade winds come together and rain and clouds are common. In imagery captured by the Moderate Resolution Imaging Spectroradiometer (MODIS), the dust appeared to be streaming from Mauritania, Senegal, and Western Sahara, though some of it may have originated in countries farther to the east. Saharan dust has a range of impacts on ecosystems downwind. Each year, dust events like the one pictured here deliver about 40 million tons of dust from the Sahara to the Amazon River Basin. The minerals in the dust replenish nutrients in rainforest soils, which are continually depleted by drenching, tropical rains. Research focused on peat soils in the Everglades show that African dust has been arriving regularly in South Florida for thousands of years as well. In some instances, the impacts are harmful. Infusion of Saharan dust, for instance, can have a negative impact on air quality in the Americas. And scientists have linked African dust to outbreaks of certain types of toxic algal blooms in the Gulf of Mexico and southern Florida. Read more: 1.usa.gov/1snkzmS NASA images by Norman Kuring, NASA’s Ocean Color web. Caption by Adam Voiland. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and

  11. Characterization of PM2.5 chemical composition at the Demokritos suburban station, in Athens Greece. The influence of Saharan dust.

    PubMed

    Vasilatou, Vasiliki; Diapouli, Evangelia; Abatzoglou, Dimitrios; Bakeas, Evangelos B; Scoullos, Michael; Eleftheriadis, Konstantinos

    2017-04-01

    The aim of this work is to study the atmospheric concentrations of selected major and trace elements and ions found in PM 2.5 , at a suburban site in Athens, Greece, and discuss on the impact of the different sources. Special focus is given to the influence of Saharan dust episodes. The seasonal variability in the metal and ion concentrations is also examined. The results show that PM 2.5 mass concentrations are significantly influenced by Saharan dust events; it is observed that when the PM 2.5 concentration is higher than 25 μg/m 3 , five out of six times, the air mass crossed North Africa at an altitude within the boundary layer. Fe is found to be the element with the more significant seasonal variability, displaying much higher concentrations during cold period. The frequent Saharan dust intrusions in the cold period of this dataset may explain this result. Mineral dust and secondary aerosol are the main PM 2.5 components (29 and 34%, respectively). During Saharan dust events, the concentration of mineral dust is increased by 35% compared to the days without dust intrusions, while an increase of 68% of the sea salt is also observed. During event days, PM 2.5 concentrations are also increased by 14%. Anthropogenic components do not decrease during those days, while sulfate displays even a slight increase, suggesting enrichment of mineral dust with secondary sulfates. The results indicate that African dust intrusions add a rather significant PM pollution load even in the PM 2.5 fraction, with implication to population exposure and human health.

  12. Trans-Pacific Transport of Saharan Dust to Western North America: A Case Study

    NASA Technical Reports Server (NTRS)

    Kendry, Ian G. M.; Strawbridge, Kevin B.; O'Neill, Norman; Macdonald, Anne Marie; Liu, Peter S. K.; Leaitch, W. Richard; Anlauf, Kurt G.; Jaegle, Lyatt; Fairlie, T. Duncan; Westphal, Douglas L.

    2007-01-01

    The first documented case of long range transport of Saharan dust over a pathway spanning Asia and the Pacific to Western North America is described. Crustal material generated by North African dust storms during the period 28 February - 3 March 2005 reached western Canada on 13-14 March 2005 and was observed by lidar and sunphotometer in the Vancouver region and by high altitude aerosol instrumentation at Whistler Peak. Global chemical models (GEOS-CHEM and NRL NAAPS) confirm the transport pathway and suggest source attribution was simplified in this case by the distinct, and somewhat unusual, lack of dust activity over Eurasia (Gobi and Takla Makan deserts) at this time. Over western North America, the dust layer, although subsiding close to the boundary layer, did not appear to contribute to boundary layer particulate matter concentrations. Furthermore, sunphotometer observations (and associated inversion products) suggest that the dust layer had only subtle optical impact (Aerosol Optical Thickness (Tau(sub a500)) and Angstrom exponent (Alpha(sub 440-870) were 0.1 and 1.2 respectively) and was dominated by fine particulate matter (modes in aerodynamic diameter at 0.3 and 2.5microns). High Altitude observations at Whistler BC, confirm the crustal origin of the layer (rich in Ca(++) ions) and the bi-modal size distribution. Although a weak event compared to the Asian Trans-Pacific dust events of 1998 and 2001, this novel case highlights the possibility that Saharan sources may contribute episodically to the aerosol burden in western North America.

  13. Dust Episodes in Hong Kong (South China) and their Relationship with the Sharav and Mongolian Cyclones and Jet Streams

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Wenig, Mark; Zhang, Zhenxi; Sugimoto, Nobuo; Larko, Dave; Diehl, Thomas

    2012-01-01

    The study presented in this paper analyses two dust episodes in Hong Kong, one occurring in March 2006 and the other on 22 March 2010. The latter is the worst dust episode on Hong Kong record. The focus is on the relationship between the dust episodes and the Sharav/Mongolian cyclones and jet streams. The 16 March 2006 episode is traceable to a continental-scale Saharan dust outbreak of 5-9 March 2006 caused by the cold front of an East Mediterranean Sharav cyclone arriving at north-west Africa on 5 March 2006. The eastward movement of the cyclone along the North African coast is clearly illustrated in the geopotential height contours. Simulations by the chemistry transport model GOCART provide a visible evidence of the transport as well as an estimate of contributions from the Sahara to the aerosol concentration levels in Hong Kong. The transport simulations suggest that the dust is injected to the polar jet north of the Caspian Sea, while it is transported eastward simultaneously by the more southerly subtropical jet. The major source of dust for Hong Kong is usually the Gobi desert. Despite the effect of remote sources, the 16 March 2006 dust episode was still mainly under the influence of the Mongolian cyclone cold fronts. In the recent episode of 22 March 2010, the influence of the Mongolian cyclone predominated as well. It appears that the concurrent influence of the Sharav and Mongolian cyclones on Hong Kong and East Asia is not a common occurrence. Besides transporting dusts from non-East Asian sources to Hong Kong and East Asia, the strong subtropical jet on 21 March 2010 (i.e. 1 day prior to the major dust episode) is believed to have strengthened an easterly monsoon surge to South China causing the transport of voluminous dusts to Taiwan and Hong Kong the following day.

  14. Tank bromeliads capture Saharan dust in El Yunque National Forest, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Royer, Dana L.; Moynihan, Kylen M.; Ariori, Carolyn; Bodkin, Gavin; Doria, Gabriela; Enright, Katherine; Hatfield-Gardner, Rémy; Kravet, Emma; Nuttle, C. Miller; Shepard, Lisa; Ku, Timothy C. W.; O'Connell, Suzanne; Resor, Phillip G.

    2018-01-01

    Dust from Saharan Africa commonly blows across the Atlantic Ocean and into the Caribbean. Most methods for measuring this dust either are expensive if collected directly from the atmosphere, or depend on very small concentrations that may be chemically altered if collected from soil. Tank bromeliads in the dwarf forest of El Yunque National Forest, Puerto Rico, have a structure of overlapping leaves used to capture rainwater and other atmospheric inputs. Therefore, it is likely that these bromeliads are collecting in their tanks Saharan dust along with local inputs. Here we analyze the elemental chemistry, including rare earth elements (REEs), of tank contents in order to match their chemical fingerprint to a provenance of the Earth's crust. We find that the tank contents differ from the local soils and bedrock and are more similar to published values of Saharan dust. Our study confirms the feasibility of using bromeliad tanks to trace Saharan dust in the Caribbean.

  15. Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic

    NASA Astrophysics Data System (ADS)

    Schepanski, Kerstin; Heinold, Bernd; Tegen, Ina

    2017-09-01

    The outflow of dust from the northern African continent towards the North Atlantic is stimulated by the atmospheric circulation over North Africa, which modulates the spatio-temporal distribution of dust source activation and consequently the entrainment of mineral dust into the boundary layer, as well as the transport of dust out of the source regions. The atmospheric circulation over the North African dust source regions, predominantly the Sahara and the Sahel, is characterized by three major circulation regimes: (1) the harmattan (trade winds), (2) the Saharan heat low (SHL), and (3) the West African monsoon circulation. The strength of the individual regimes controls the Saharan dust outflow by affecting the spatio-temporal distribution of dust emission, transport pathways, and deposition fluxes.This study aims at investigating the atmospheric circulation pattern over North Africa with regard to its role favouring dust emission and dust export towards the tropical North Atlantic. The focus of the study is on summer 2013 (June to August), during which the SALTRACE (Saharan Aerosol Long-range TRansport and Aerosol-Cloud interaction Experiment) field campaign also took place. It involves satellite observations by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) flying on board the geostationary Meteosat Second Generation (MSG) satellite, which are analysed and used to infer a data set of active dust sources. The spatio-temporal distribution of dust source activation frequencies (DSAFs) allows for linking the diurnal cycle of dust source activations to dominant meteorological controls on dust emission. In summer, Saharan dust source activations clearly differ from dust source activations over the Sahel regarding the time of day when dust emission begins. The Sahara is dominated by morning dust source activations predominantly driven by the breakdown of the nocturnal low-level jet. In contrast, dust source activations in the Sahel are predominantly

  16. Human thermal perception related to Föhn winds due to Saharan dust outbreaks in Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Bleta, A. G.; Matsangouras, I. T.

    2017-05-01

    Crete Island is located in the southmost border of East Mediterranean basin, facing exacerbating atmospheric conditions (mainly concentrations of particulates) due to Saharan dust outbreaks. It is worth to note that these episodes are more frequent during spring and autumn, when mild biometeorological conditions become intolerable due to the synergy of the so called Föhn winds. Cretan mountains, especially Psiloritis Mt. (summit at 2456 m), are orientated perpendicularly to the southwest air mass flow, generating the Föhn winds. Propagating from the leeward of the mountains, these dry, hot winds have an effect on prevailing biometeorological conditions. While descending to the lowlands on the leeward side of the range, the wind becomes strong, gusty, and desiccating. This wind often lasts less than an hour to several days, with gradual weakening after the first or the second day. Sometimes, it stops very abruptly. In this work, the authors examined and analyzed the abrupt changes of human thermal perception within specific case studies during which Föhn winds appeared in Heraklion city at the leeward of Psiloritis Mt, associated with extreme Saharan dust episodes, observed within the period 2006-2010. In order to verify the development of Föhn winds, Meteorological Terminal Aviation Routine Weather Reports (METARs, meteorological observations every half hour), were acquired from the Heraklion meteorological station installed by the Hellenic National Meteorological Service (HNMS). The biometeorological conditions analyzed are based on human thermal bioclimatic indices such as the Physiologically equivalent temperature (PET) and the Universal Thermal Climate Index (UTCI). METAR recordings of meteorological variables, such as air temperature, vapor pressure, wind speed, and cloudiness, were used as input variables in modeling the aforementioned thermal indices, so that to interpret the grade of the thermo-physiological stress. The PET and UTCI analysis was

  17. Millennial-scale fluctuations in Saharan dust supply across the decline of the African Humid Period

    NASA Astrophysics Data System (ADS)

    Zielhofer, Christoph; von Suchodoletz, Hans; Fletcher, William J.; Schneider, Birgit; Dietze, Elisabeth; Schlegel, Michael; Schepanski, Kerstin; Weninger, Bernhard; Mischke, Steffen; Mikdad, Abdeslam

    2017-09-01

    The Sahara is the world's largest dust source with significant impacts on trans-Atlantic terrestrial and large-scale marine ecosystems. Contested views about a gradual or abrupt onset of Saharan aridity at the end of the African Humid Period dominate the current scientific debate about the Holocene Saharan desiccation. In this study, we present a 19.63 m sediment core sequence from Lake Sidi Ali (Middle Atlas, Morocco) at the North African desert margin. We reconstruct the interaction between Saharan dust supply and Western Mediterranean hydro-climatic variability during the last 12,000 yr based on analyses of lithogenic grain-sizes, XRF geochemistry and stable isotopes of ostracod shells. A robust chronological model based on AMS 14C dated pollen concentrates supports our multi-proxy study. At orbital-scale there is an overall increase in southern dust supply from the Early Holocene to the Late Holocene, but our Northern Saharan dust record indicates that a gradual Saharan desiccation was interrupted by multiple abrupt dust increases before the 'southern dust mode' was finally established at 4.7 cal ka BP. The Sidi Ali record features millennial peaks in Saharan dust increase at about 11.1, 10.2, 9.4, 8.2, 7.3, 6.6, 6.0, and 5.0 cal ka BP. Early Holocene Saharan dust peaks coincide with Western Mediterranean winter rain minima and North Atlantic cooling events. In contrast, Late Holocene dust peaks correspond mostly with prevailing positive phases of the North Atlantic Oscillation. By comparing with other North African records, we suggest that increases in Northern Saharan dust supply do not solely indicate sub-regional to regional aridity in Mediterranean Northwest Africa but might reflect aridity at a trans-Saharan scale. In particular, our findings support major bimillennial phases of trans-Saharan aridity at 10.2, 8.2, 6.0 and 4.2 cal ka BP. These phases coincide with North Atlantic cooling and a weak African monsoon.

  18. Impact of Saharan dust particles on hospital admissions in Madrid (Spain).

    PubMed

    Reyes, María; Díaz, Julio; Tobias, Aurelio; Montero, Juan Carlos; Linares, Cristina

    2014-01-01

    Saharan dust intrusions make a major contribution to levels of particulate matter (PM) present in the atmosphere of large cities. We analysed the impact of different PM fractions during periods with and without Saharan dust intrusions, using time-series analysis with Poisson regression models, based on: concentrations of coarse PM (PM10 and PM10-2.5) and fine PM (PM2.5); and daily all-, circulatory- and respiratory-cause hospital admissions. While periods without Saharan dust intrusions were marked by a statistically significant association between daily mean PM2.5 concentrations and all- and circulatory-cause hospital admissions, periods with such intrusions saw a significant increase in respiratory-cause admissions associated with fractions corresponding to PM10 and PM10-2.5.

  19. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania

    NASA Astrophysics Data System (ADS)

    Friese, Carmen A.; van Hateren, Johannes A.; Vogt, Christoph; Fischer, Gerhard; Stuut, Jan-Berend W.

    2017-08-01

    Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL). In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.

  20. The sensitivity of a general circulation model to Saharan dust heating

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Carlson, T.; Mintz, Y.

    1984-01-01

    During the Northern summer, sporadic outbreaks of wind borne Saharan dust are carried out over the Atlantic by the tropical easterlies. Optical depths due to the dust can reach 3 near the African coast, and the dust cloud can be detected as far west as the Caribbean Sea (Carlson, 1979). In order to obtain insight into the possible effects of Saharan dust on the weather and climate of North Africa and the tropical Atlantic Ocean, simulation experiments have been performed with the Climate Model of the Goddard Laboratory for Atmospheric Sciences. The most recent version of the model is described by Randall (1982). The model produces realistic simulations of many aspects of the observed climate and its seasonal variation.

  1. Following Saharan Dust Outbreak Toward The Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Koren, I.; Rudich, Y.; Flores, M.

    2008-12-01

    The role of the Amazon rainforest on earth climatic system is well recognized. To keep forest wellbeing and the fragile balance between the rainforest and the atmosphere, the Amazon must contain a satisfactory amount of nutrients to support the plants. The extensive rain and floods wash most of the soluble nutrients from the rainforest soil, leaving behind acidic kaolinite clay or sandy soil, with limited minerals for plant growth. It was suggested that lack of mineral in the soil may be replenished by deposition of Saharan mineral dust. Using remote sensing data (from the A-train satellites constellation) following with in-situ measurements (as part of the AMazonian Aerosol CharacteriZation Experiment (AMZE) campaign), ground-based data (from AErosol RObotic NETwork (AERONET)) and back trajectory calculations, we analyzed Saharan dust transport toward the Amazon basin during the AMZE period (Feb 7 to Mar 14, 2008). Dust mass, sink, vertical distribution and surface wind speeds were analyzed over the Bodele depression (located in Chad), where most of the dust is emitted, along the Atlantic Ocean and near the Brazilian coastline. Using an integrated data analysis approach we followed dust packages from their emission in the Sahara to their sink in the Amazon forest.

  2. The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)

    NASA Astrophysics Data System (ADS)

    Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.

    2017-12-01

    Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.

  3. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  4. Recent and past Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation

    NASA Astrophysics Data System (ADS)

    Varga, György

    2016-04-01

    Several hundred tons of windblown dust material are transported every year from Saharan dust source areas into direction of Europe, modifying important climatic and other environmental processes of distant areas. North African aerosols have been also identified several times a year in the Carpathian Basin, where under the influence of certain synoptic meteorological conditions Saharan dust accumulation can clearly be observed. Previous satellite based studies were suitable to estimate the frequency and magnitude of Saharan dust episodes in the investigation area, however, the assessment of North African dust deposition can be done with model simulations. In this study, calculations were made by using the data of BSC-DREAM8b (Barcelona Supercomputing Center's Dust REgional Atmospheric Model) v1.0 and v2.0 database. Simulation results of the BSC-DREAM8b v1.0 are available from 1 January 2000 to 31 December 2012, while the results of the updated v2.0 calculations are ready for the period between 1 January 2006 and 31 December 2014. BSC DREAM8b v1.0 model simulations for the period between 2000 and 2012 provided an annual mean of 0.0285 g/m2/y dry and 0.034 g/m2/y wet deposition values in the Carpathian Basin, which is equivalent to a total of 0.0636 g/m2/y. The updated v2.0 version for the period of 2006-2014 gave significantly larger values: 0.133 g/m2/y dry; 0.085 g/m2/y wet and 0.219 g/m2/y total annual dust deposition. By comparing the results of the overlapping period between 2006 and 2012 of the v1.0 and v2.0 simulations, the updated depositional scheme of the newer version provided ˜3.7-fold values in case of dry deposition and ˜1.9-fold increase in results of the wet deposition. Information available from individual events showed that the simulated wet and dry dust deposition rates are significantly underestimated. This is also suggested by previous model calculations which reported values between 5 and 10 g/m2/y for modern dust flux in the investigated area

  5. Principle Component Analysis of the Evolution of the Saharan Air Layer and Dust Transport: Comparisons between a Model Simulation and MODIS Retrievals

    NASA Technical Reports Server (NTRS)

    Wong, S.; Colarco, P. R.; Dessler, A.

    2006-01-01

    The onset and evolution of Saharan Air Layer (SAL) episodes during June-September 2002 are diagnosed by applying principal component analysis to the NCEP reanalysis temperature anomalies at 850 hPa, where the largest SAL-induced temperature anomalies are located. The first principal component (PC) represents the onset of SAL episodes, which are associated with large warm anomalies located at the west coast of Africa. The second PC represents two opposite phases of the evolution of the SAL. The positive phase of the second PC corresponds to the southwestward extension of the warm anomalies into the tropical-subtropical North Atlantic Ocean, and the negative phase corresponds to the northwestward extension into the subtropical to mid-latitude North Atlantic Ocean and the southwest Europe. A dust transport model (CARMA) and the MODIS retrievals are used to study the associated effects on dust distribution and deposition. The positive (negative) phase of the second PC corresponds to a strengthening (weakening) of the offshore flows in the lower troposphere around 10deg - 20degN, causing more (less) dust being transported along the tropical to subtropical North Atlantic Ocean. The variation of the offshore flow indicates that the subseasonal variation of African Easterly Jet is associated with the evolution of the SAL. Significant correlation is found between the second PC time series and the daily West African monsoon index, implying a dynamical linkage between West African monsoon and the evolution of the SAL and Saharan dust transport.

  6. Modeling of intercontinental Saharan dust transport: What consequences on atmospheric concentrations and deposition fluxes in the Caribbean?

    NASA Astrophysics Data System (ADS)

    Laurent, Benoit; Formenti, Paola; Desboeufs, Karine; Vincent, Julie; Denjean, Cyrielle; Siour, Guillaume; Mayol-Bracero, Olga L.

    2015-04-01

    The Dust Aging and Transport from Africa to the Caribbean (Dust-AttaCk) project aims todocument the physical and optical properties of long-range transported African dust to the Caribbean. A comprehensive field campaign was conducted in Cape San Juan, Puerto Rico (18.38°N 65.62°W) during June-July 2012, offering the opportunity to constrain the way Saharan dust are transported from North Africa to the Caribbean by 3D models. Our main objectives are: (i) to discuss the ability of the CHIMERE Eulerian off-line chemistry-transport model to simulate atmospheric Saharan dust loads observed in the Caribbean during the Dust-AttaCk campaign, as well as the altitude of the dust plumes transport over the North Atlantic Ocean up to the Caribbean, (ii) to study the main Saharan dust emission source areas contributing to the dust loads in the Caribbean, (iii) to estimate the Saharan dust deposition in the Caribbean for deposition events observed during the Dust-AttaCk campaign. The dust model outputs are hourly dust concentration fields in µg m-3 for 12 aerosol size bins up to 30 µm and for each of the 15 sigma pressure vertical levels, column integrated dustaerosol optical depth (AOD), and dry and wet deposition fluxes.The simulations performed for the Dust-AttaCk campaign period as well as satellite observations (MODIS AOD, SEVIRI AOD) are used to identify the Saharan emission source regions activated and to study the evolution of the dust plumes tothe Cape San Juan station. In complement, the vertical transport of dust plumes transported from Saharan dust sources and over the North Atlantic Ocean is investigated combining model simulations and CALIOP observations. Aerosol surface concentrations and AOD simulated with CHIMERE are compared with sin-situ observations at Cape San Juan and AERONET stations. Wet deposition measurements performed allow us to constrain dust deposition flux simulated in the Caribbean after long-range transport.

  7. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    NASA Astrophysics Data System (ADS)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  8. Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Ansmann, Albert; Althausen, Dietrich; Klepel, André; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Mamouri, Rodanthi-Elisavet; Farrell, David A.; Prescod, Damien A.; Marinou, Eleni; Burton, Sharon P.; Gasteiger, Josef; Engelmann, Ronny; Baars, Holger

    2017-09-01

    Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1° N, 59.6° W), 5000-8000 km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June-July 2013, SALTRACE-3, June-July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064 nm with respective dual-wavelength (355, 532 nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12 000 km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252 ± 0.030 at 355 nm, 0.280 ± 0.020 at 532 nm, and 0.225 ± 0.022 at 1064 nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1 µm) have sizes around 1.5-2 µm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust

  9. Community variability of bacteria in alpine snow (Mont Blanc) containing Saharan dust deposition and their snow colonisation potential.

    PubMed

    Chuvochina, Maria S; Marie, Dominique; Chevaillier, Servanne; Petit, Jean-Robert; Normand, Philippe; Alekhina, Irina A; Bulat, Sergey A

    2011-01-01

    Microorganisms uplifted during dust storms survive long-range transport in the atmosphere and could colonize high-altitude snow. Bacterial communities in alpine snow on a Mont Blanc glacier, associated with four depositions of Saharan dust during the period 2006-2009, were studied using 16S rRNA gene sequencing and flow cytometry. Also, sand from the Tunisian Sahara, Saharan dust collected in Grenoble and Mont Blanc snow containing no Saharan dust (one sample of each) were analyzed. The bacterial community composition varied significantly in snow containing four dust depositions over a 3-year period. Out of 61 phylotypes recovered from dusty snow, only three phylotypes were detected in more than one sample. Overall, 15 phylotypes were recognized as potential snow colonizers. For snow samples, these phylotypes belonged to Actinobacteria, Proteobacteria and Cyanobacteria, while for Saharan sand/dust samples they belonged to Actinobacteria, Bacteroidetes, Deinococcus-Thermus and Proteobacteria. Thus, regardless of the time-scale, Saharan dust events can bring different microbiota with no common species set to alpine glaciers. This seems to be defined more by event peculiarities and aeolian transport conditions than by the bacterial load from the original dust source.

  10. Saharan dust - A carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    USGS Publications Warehouse

    Garrison, V.H.; Foreman, W.T.; Genualdi, S.; Griffin, Dale W.; Kellogg, C.A.; Majewski, M.S.; Mohammed, A.; Ramsubhag, A.; Shinn, E.A.; Simonich, S.L.; Smith, G.W.

    2006-01-01

    An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI), Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa) is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs), trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde) and the Caribbean (USVI and Trinidad & Tobago). Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions.

  11. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  12. Determination of Radiative Forcing of Saharan Dust using Combined TOMS and ERBE Data

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Herman, Jay R.; Weaver, Clark

    1999-01-01

    The direct radiative forcing of Saharan dust aerosols has been determined by combining aerosol information derived from Nimbus-7 TOMS with radiation measurements observed at the top of atmosphere (TOA) by NOAA-9 ERBE made during February-July 1985. Cloud parameters and precipitable water derived from the NOAA-9 HIRS2 instrument were used to aid in screening for clouds and water vapor in the analyses. Our results indicate that under "cloud-free" and "dry" conditions there is a good correlation between the ERBE TOA outgoing longwave fluxes and the TOMS aerosol index measurements over both land and ocean in areas under the influence of airborne Saharan dust. The ERBE TOA outgoing shortwave fluxes were also found to correlate well with the dust loading derived from TOMS over ocean. However, the calculated shortwave forcing of Saharan dust aerosols is very weak and noisy over land for the range of solar zenith angle viewed by the NOAA-9 ERBE in 1985. Sensitivity factors of the TOA outgoing fluxes to changes in aerosol index were estimated using a linear regression fit to the ERBE and TOMS measurements. The ratio of the shortwave-to-longwave response to changes in dust loading over the ocean is found to be roughly 2 to 3, but opposite in sign. The monthly averaged "clear-sky" TOA direct forcing of airborne Saharan dust was also calculated by multiplying these sensitivity factors by the TOMS monthly averaged "clear-sky" aerosol index. Both the observational and theoretical analyses indicate that the dust layer height, ambient moisture content as well as the presence of cloud all play an important role in determining the TOA direct radiative forcing due to mineral aerosols.

  13. Short-term effects of particulate matter on total mortality during Saharan dust outbreaks: a case-crossover analysis in Madrid (Spain).

    PubMed

    Tobías, Aurelio; Pérez, Laura; Díaz, Julio; Linares, Cristina; Pey, Jorge; Alastruey, Andrés; Querol, Xavier

    2011-12-15

    The role of Saharan dust outbreaks on the relationship between particulate matter and daily mortality has recently been addressed in studies conducted in Southern Europe, although they have not given consistent results. We investigated the effects of coarse (PM(10-2.5)) and fine particulate matter (PM(2.5)) in Madrid on total mortality during Saharan dust and non-dust days using a case-crossover design. During Saharan dust days, an increase of 10mg/m(3) of PM(10-2.5) raised total mortality by 2.8% compared with 0.6% during non-dust days (P-value for interaction=0.0165). We found evidence of stronger adverse health effects of PM(10-2.5) during Saharan dust outbreaks effects for impacted European populations, but not for PM(2.5). Further research is needed to understand mechanisms by which Saharan dust increases risk of mortality. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Saharan Dust as a Causal Factor of Significant Cloud Cover Along the Saharan Air Layer in the Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, Pavel; Da Silva, Arlindo M.; Starobinet, Boris; Alpert, Pinhas

    2016-01-01

    The tropical Atlantic is frequently affected by Saharan dust intrusions. Based on MODIS cloud fraction (CF) data during the ten-year study period, we found that these dust intrusions contribute to significant cloud cover along the Saharan Air Layer (SAL). Below the temperature inversion at the SAL's base, the presence of large amounts of settling dust particles, together with marine aerosols, produces meteorological conditions suitable for the formation of shallow stratocumulus clouds. The significant cloud fraction along the SAL together with clouds over the Atlantic Inter-tropical Convergence Zone contributes to the 20% hemispheric CF asymmetry between the tropical North and South Atlantic. This leads to the imbalance in strong solar radiation, which reaches the sea surface between the tropical North and South Atlantic, and, consequently, affects climate formation in the tropical Atlantic. Therefore, despite the fact that, over the global ocean, there is no noticeable hemispheric asymmetry in cloud fraction, over the significant area such as the tropical Atlantic the hemispheric asymmetry in CF takes place. Saharan dust is also the major contributor to hemispheric aerosol asymmetry over the tropical Atlantic. The NASA GEOS-5 model with aerosol data assimilation was used to extend the MERRA reanalysis with five atmospheric aerosol species (desert dust, sulfates, organic carbon, black carbon, and sea-salt). The obtained ten-year (2002 - 2012) MERRA-driven aerosol reanalysis dataset (aka MERRAero) showed that, over the tropical Atlantic, dust and carbonaceous aerosols were distributed asymmetrically relative to the equator, while other aerosol species were distributed more symmetrically.

  15. Improving Air Pollution Modeling Over The Po Valley Using Saharan Dust Transport Forecasts

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M.; Nickovic, S.; Alpert, P.

    2012-04-01

    Our study shows that Saharan dust can contribute significantly to PM10 concentrations in the Po Valley. This dust contribution should be taken into account when estimating the exceedance of pollution limits. The DREAM dust model has been used for several years for producing operational dust forecasts at Tel-Aviv University, Israel. DREAM has been producing daily forecasts of 3-D distribution of dust concentrations over the Mediterranean region, Middle East, Europe, and over the Atlantic Ocean (http://wind.tau.ac.il/dust8/dust.html). In the current study, DREAM dust forecasts were used to give better model estimates of the contribution of Saharan dust to PM10 concentration over the Po Valley, in Northern Italy. This was carried out by the integration of daily Saharan dust forecasts into a mesoscale Transport Chemical Aerosol Model (TCAM). The Po Valley in Northern Italy is frequently affected by high PM10 concentrations, where both natural and anthropogenic sources play a significant role. Our study of TCAM and DREAM integration was carried out for the period May 15 - June 30, 2007, when four significant dust events were observed. The integrated TCAM-DREAM model performance was evaluated by comparing PM10 measurements with modeled PM10 concentrations. First, Saharan dust impact on TCAM performance was analyzed at eleven remote PM10 sites which had the lowest level of air pollution (PM10 ≤ 14 μg/m3) over the period under consideration. For those remote sites, the observed high PM10 concentrations during dust events stood prominently on the background of low PM10 concentrations. At the remote sites, such a strong deviation from the background level can not be attributed to anthropogenic aerosol emissions because of their distance from anthropogenic sources. The observed maxima in PM10 concentration during dust events is evidence of dust aerosol near the surface in Northern Italy. During all dust events under consideration, the integrated TCAM-DREAM model produced

  16. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset

    NASA Astrophysics Data System (ADS)

    Marinou, Eleni; Amiridis, Vassilis; Binietoglou, Ioannis; Tsikerdekis, Athanasios; Solomos, Stavros; Proestakis, Emannouil; Konsta, Dimitra; Papagiannopoulos, Nikolaos; Tsekeri, Alexandra; Vlastou, Georgia; Zanis, Prodromos; Balis, Dimitrios; Wandinger, Ulla; Ansmann, Albert

    2017-05-01

    In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007-2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm-1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm-1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during

  17. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  18. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, we investigate the relationships among Saharan dust outbreak and transport, African easterly waves (AEW), African easterly jet (AEJ) and associated convective activities of Atlantic Intertropical Convergence Zone (ITCZ) using Cloudsat-Calipso, MODIS and MERRA data. We find that a major Saharan dust outbreak is associated with the formation of a westward propagating strong cyclone around 15-25N over the western part northern Saharan. The strong cyclonic flow mobilizes and lifts the dust from the desert surface to a high elevation. As the cyclone propagate westward, it transports a thick elevated dust layer between 900 -500 hPa from the African continent to the eastern Atlantic. Cloudiness is reduced within the warm, dry dusty layer, but enhanced underneath it, possibly due to the presence of a shallow inversion layer over the marine boundary layer. The dust outbreak is linked to enhanced deep convection in the northern part of Atlantic ITCZ, abutting the southern flank of the dust layer, and a strengthening of the northward flank of the AEJ. As the dust layer spreads westward, it loses elevation and becomes increasing diffused as it reaches the central and western Atlantic. Using band pass filtered EOF analysis of MERRA winds, we find that AEWs propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are highly correlated with major dust outbreak over North Africa and associated with slower moving systems, with a quasi-periodicity of 6-9 day. On the other hand, easterly waves along the southern track are faster, with quasi-periodicity of 3-5 days. These faster easterly waves are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track by the faster waves generally leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between

  19. Exploring records of Saharan dust transport and hurricanes in the Caribbean and Gulf of Mexico over recent millennia

    NASA Astrophysics Data System (ADS)

    Hayes, C. T.; Wallace, D. J.

    2017-12-01

    Locations in the northern Caribbean and Gulf of Mexico receive aerosol deposition from the summertime Saharan dust plume that is representative of atmospheric conditions over a very large expanse of the North Atlantic Ocean. A recent reconstruction of stable dust deposition in the Bahamas over the past 2 thousand years contrasts other records from the African continent which were impacted by local anthropogenic emissions. Dust deposition in the Bahamas also appeared relatively insensitive to expected changes in intertropical convergence zone position. Here, we will investigate records of Atlantic hurricane activity and Saharan dust transport, parameters which are anti-correlated today, in the Caribbean and Gulf region over the past few thousand years to further probe possible variations in Saharan dust forcings on Atlantic climate.

  20. The contribution of Saharan dust in PM(10) concentration levels in Anatolian Peninsula of Turkey.

    PubMed

    Kabatas, B; Unal, A; Pierce, R B; Kindap, T; Pozzoli, L

    2014-08-01

    Sahara-originated dust is the most significant natural source of particulate matter; however, this contribution is still unclear in the Eastern Mediterranean especially in Western Turkey, where significant industrial sources and metropolitan areas are located. The Real-time Air Quality Modeling System (RAQMS) is utilized to explore the possible effects of Saharan dust on high levels of PM10 measured in Turkey. RAQMS model is compared with 118-air quality stations distributed throughout Turkey (81 cities) for April 2008. MODIS aerosol product (MOD04 for Terra and MYD04 for Aqua) is used to see columnar aerosol loading of the atmosphere at 550 nm (Aerosol optical depth (AOD) values found to be between 0.6 and 0.8 during the episode). High-resolution vertical profiles of clouds and aerosols are provided from CALIOP, on board of CALISPO satellite. The results suggest a significant contribution of Sahara dust to high levels of PM10 in Turkey with RAQMS and in situ time series showing similar patterns. The two data sets are found to be in agreement with a correlation of 0.87. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Microphysical and Optical Properties of Saharan Dust Measured during the ICE-D Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Marenco, Franco; Brooke, Jennifer; Cotton, Richard; Taylor, Jonathan

    2017-04-01

    During August 2015, the UK FAAM BAe146 research aircraft was stationed in Cape Verde off the coast of West Africa. Measurements of Saharan dust, and ice and liquid water clouds, were taken for the ICE-D (Ice in Clouds Experiment - Dust) project - a multidisciplinary project aimed at further understanding aerosol-cloud interactions. Six flights formed part of a sub-project, AER-D, solely focussing on measurements of Saharan dust within the African dust plume. Dust loadings observed during these flights varied (aerosol optical depths of 0.2 to 1.3), as did the vertical structure of the dust, the size distributions and the optical properties. The BAe146 was fully equipped to measure size distributions covering aerosol accumulation, coarse and giant modes. Initial results of size distribution and optical properties of dust from the AER-D flights will be presented, showing that a substantial coarse mode was present, in agreement with previous airborne measurements. Optical properties of dust relating to the measured size distributions will also be presented.

  2. Modeling the Diagnostic Effects of Vegetation, Soil Albedo, and Dust on Mid-Holocene Saharan Climate

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Poulsen, C. J.; Skinner, C. B.

    2017-12-01

    Unlike today, the Mid-Holocene (MH, 6,000 BP) African Sahara comprised of mixed vegetation and permanent lakes that supported human settlements. Climate proxies including leaf wax isotope, pollen, and dust flux records suggest that African monsoonal precipitation reached 31°N, compared to 15°N today. Changes in orbital forcing are partly responsible for the intensification of the African monsoon, but alone cannot explain the more humid MH Sahara. Modeling studies have shown that vegetation and soil albedo feedbacks greatly increase Saharan rainfall but still fall short of levels indicated by proxies. A recent study proposed that reduced Saharan dust concentrations due to greater vegetation coverage further increased MH rainfall. However, this study used idealized dust concentrations to improve proxy agreement and did not include the dust aerosol indirect effects in its model physics. Here we use CESM CAM5-chem to quantify the impact of diagnostic changes in Saharan dust, including indirect effects, on MH Saharan climate and compare it to changes in orbital forcing, soil albedo, and vegetation. Consistent with previous studies, a change in MH orbital forcing alone leads to a 20% increase in summer (June-Sept.) precipitation over Northern Africa (0°-30°N, 20°W-30°E) relative to a pre-industrial control, but still fails to reach the northward extent suggested by proxies. Adding MH soil albedo or vegetation increases summer precipitation by 45% and 52%, and shifts the maximum latitudinal rainfall extent 10° and 12° northward, respectively. These increases are 2.28 and 2.64 times greater than the precipitation increase from MH orbital forcing alone. MH soil albedo results in a dust burden increase of 22%, yet MH vegetation results in a 96% reduction. Both MH soil albedo and vegetation combined increase summer precipitation by 56% and 13° northward, an increase 2.84 times greater than the orbital forcing alone, and reduces dust burden by 97%. An additional

  3. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, William K-M

    2011-01-01

    Saharan dust outbreaks not only transport large amount of dust to the northern Atlantic Ocean, but also alter African easterly jet and wave activities along the jet by changing north-south temperature gradient. Recent modeling and observational studies show that during periods of enhance outbreaks, rainfall on the northern part of ITCZ increases in conjunction with a northward shift of ITCZ toward the dust layer. In this paper, we study the radiative forcing of Saharan dust and its interactions with the Atlantic Inter-tropical Convergence Zone (ITCZ), through African easterly waves (AEW), African easterly jet (AEJ), using the Terra/Aqua observations as well as MERRA data. Using band pass filtered EOF analysis, we find that African easterly waves propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are slower, with propagation speed of 9 ms-1, and highly correlated with major dust outbreak over North Africa. On the other hand, easterly waves along the southern track are faster with propagating speed of 10 ms-1, and are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between Saharan dust layer and Atlantic ITCZ. Possible linkage between two tracks of easterly waves, as well as the long-term change of easterly wave activities and dust outbreaks, are also discussed.

  4. Intense dust episodes in the Mediterranean and possible effects on atmospheric lapse rates

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikos; Gkikas, Antonis; Papadimas, Christos D.; Gavrouzou, Maria

    2016-04-01

    Dust aerosols are major contributor to the atmospheric particulate matter, having significant effects on climate and weather patterns as well as on human health, not to mention others like agriculture or ocean chlorophyll. Moreover, these effects are maximized under conditions of massive dust concentration in the atmosphere, namely dust episodes or events. Such events are caused by uplifting and transport of dust from arid and semi-arid areas under favorable synoptic conditions. The Mediterranean basin, nearby to the greatest world deserts of North Africa and Middle East, frequently undergoes dust episodes. During such Mediterranean episodes, the number and mass concentration of dust is high, due to the proximity of its source areas. The dust episodes, through the direct interaction of dust primarily withthe shortwave but also with longwave radiation can lead to strong local warming in the atmosphere, possibly causing temperature inversion during daytime. The existence of such temperature inversions, associated with intense dust episodes in the Mediterranean, is the focus in this study. The methodology followed to achieve the scientific goal of the study consists in the use of a synergy of different data. This synergy enables: (i) the determination of intense dust episodes over the Mediterranean, (ii) the investigation and specification of temperature lapse rates and inversions during the days of dust episodes and (iii) the identification of vertical distribution of aerosols in the atmosphere over specific locations during the days of the episodes. These objectives are achieved through the use of data from: (i) the AERosol Robotic NETwork (AERONET) network, (ii) the Upper Air Observations (radiosondes) database of the University of Wyoming (UoW) and (iii) the European Aerosol Research Lidar Network (EARLINET) database. The study period spans the years from 2000 to 2013, constrained by the data availability of the databases. A key element of the methodology is the

  5. Meteorological and dust aerosol conditions over the western Saharan region observed at Fennec Supersite-2 during the intensive observation period in June 2011

    NASA Astrophysics Data System (ADS)

    Todd, M. C.; Allen, C. J. T.; Bart, M.; Bechir, M.; Bentefouet, J.; Brooks, B. J.; Cavazos-Guerra, C.; Clovis, T.; Deyane, S.; Dieh, M.; Engelstaedter, S.; Flamant, C.; Garcia-Carreras, L.; Gandega, A.; Gascoyne, M.; Hobby, M.; Kocha, C.; Lavaysse, C.; Marsham, J. H.; Martins, J. V.; McQuaid, J. B.; Ngamini, J. B.; Parker, D. J.; Podvin, T.; Rocha-Lima, A.; Traore, S.; Wang, Y.; Washington, R.

    2013-08-01

    The climate of the Sahara is relatively poorly observed and understood, leading to errors in forecast model simulations. We describe observations from the Fennec Supersite-2 (SS2) at Zouerate, Mauritania during the June 2011 Fennec Intensive Observation Period. These provide an improved basis for understanding and evaluating processes, models, and remote sensing. Conditions during June 2011 show a marked distinction between: (i) a "Maritime phase" during the early part of the month when the western sector of the Sahara experienced cool northwesterly maritime flow throughout the lower troposphere with shallow daytime boundary layers, very little dust uplift/transport or cloud cover. (ii) A subsequent "heat low" phase which coincided with a marked and rapid westward shift in the Saharan heat low towards its mid-summer climatological position and advection of a deep hot, dusty air layer from the central Sahara (the "Saharan residual layer"). This transition affected the entire western-central Sahara. Dust advected over SS2 was primarily from episodic low-level jet (LLJ)-generated emission in the northeasterly flow around surface troughs. Unlike Fennec SS1, SS2 does not often experience cold pools from moist convection and associated dust emissions. The diurnal evolution at SS2 is strongly influenced by the Atlantic inflow (AI), a northwesterly flow of shallow, cool and moist air propagating overnight from coastal West Africa to reach SS2 in the early hours. The AI cools and moistens the western Saharan and weakens the nocturnal LLJ, limiting its dust-raising potential. We quantify the ventilation and moistening of the western flank of the Sahara by (i) the large-scale flow and (ii) the regular nocturnal AI and LLJ mesoscale processes.

  6. Aerosol optical properties during firework, biomass burning and dust episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Yu, Xingna; Shi, Chanzhen; Ma, Jia; Zhu, Bin; Li, Mei; Wang, Jing; Yang, Suying; Kang, Na

    2013-12-01

    In order to characterize the aerosol optical properties during different pollution episodes that occurred in Beijing, the aerosol loading, scattering, and size distributions are presented using solar and sky radiance measurements from 2001 to 2010 in this paper. A much higher aerosol loading than the background level was observed during the pollution episodes. The average aerosol optical depth (AOD) is largest during dust episodes coupled with the lowest Ångström exponent (α), while higher AOD and lower α were more correlated with firework and biomass burning days. The total mean AOD at 440, 675, 870 and 1020 nm were 0.24, 0.49, 0.64 and 1.38 in the clean, firework display, biomass burning and dust days, respectively. The mean α for dust days was 0.51 and exceeded 1.1 for the remaining episodes. The size distribution of the dusty periods was dominated by the coarse mode, but the coarse mode was similar magnitude to the fine mode during the firework and biomass burning days. The volume concentration of the coarse mode during the dust days increased by a magnitude of more than 2-8 times that derived in the other three aerosol conditions, suggesting that dust is the major contributor of coarse mode particles in Beijing. The single scattering albedo (SSA) values also increased during the pollution episodes. The overall mean SSA at the four wavelengths were 0.865, 0.911, 0.922 and 0.931 in clean, firework display, biomass burning, and dust days in Beijing, respectively. However, in the blue spectral range, the dust aerosols exhibited pronounced absorption.

  7. The radiative effects of Saharan dust layer on the marine atmospheric layer

    NASA Astrophysics Data System (ADS)

    Abed, Mohammed

    2017-04-01

    The North African Saharan desert is one of the main sources of atmospheric dust. Since dust can be transported by winds for thousands of miles, reaching the Americas and extending across vast expanses of the tropical Atlantic Ocean, it is important to understand the influence that dust has on the radiative properties and the thermodynamic structure of the atmosphere. For climate models it is important that this is represented since the structure of the atmosphere can have important influences downwind on the development of convection, clouds, storms, precipitation and consequently radiative properties. In this study, we aim to understand the dynamic and thermodynamic properties of Saharan dust on the atmospheric structure of marine environment and to investigate the causes of the observed regions of well-mixed potential temperatures of the marine atmosphere in the presence of Saharan dust layers. We compare the influence of dust to other potentially important influences such as wind shear and air mass. To investigate this, we simulated the marine atmosphere in the presence and absence of dust using the UK Met Office Large Eddy Model (LEM) based the BOMEX case-study that is provided with the LEM and updated with observation taken during the FENNEC experiments of June 2011 and 2012. We performed LEM simulations with and without dust heating rates for an eight-hour time period. Data for meteorological profiles were used from the FENNEC aircraft measurements taken over the Atlantic Ocean near the Canary Islands. Our LEM results show that using a stratified (typical of non-dusty) atmosphere and then apply a dust heating rate the profile of potential temperature tends towards a well-mixed layer where the heating rates were applied and consistent with the observational cases. While LEM simulations for wind shear showed very little difference in the potential temperature profile and it was clear the well-mixed layer would not result. LEM simulations using dust heating

  8. Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps.

    PubMed

    Peter, Hannes; Hörtnagl, Paul; Reche, Isabel; Sommaruga, Ruben

    2014-12-01

    The diversity of airborne microorganisms that potentially reach aquatic ecosystems during rain events is poorly explored. Here, we used a culture-independent approach to characterize bacterial assemblages during rain events with and without Saharan dust influence arriving to a high mountain lake in the Austrian Alps. Bacterial assemblage composition differed significantly between samples with and without Saharan dust influence. Although alpha diversity indices were within the same range in both sample categories, rain events with Atlantic or continental origins were dominated by Betaproteobacteria, whereas those with Saharan dust intrusions were dominated by Gammaproteobacteria. The high diversity and evenness observed in all samples suggests that different sources of bacteria contributed to the airborne assemblage collected at the lake shore. During experiments with bacterial assemblages collected during rain events with Saharan dust influence, cell numbers rapidly increased in sterile lake water from initially ∼3 × 103 cell ml-1 to 3.6-11.1 x105 cells ml-1 within 4-5 days, and initially, rare taxa dominated at the end of the experiment. Our study documents the dispersal of viable bacteria associated to Saharan dust intrusions travelling northwards as far as 47° latitude.

  9. Enhanced Saharan dust input to the Levant during Heinrich stadials

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Stein, Mordechai

    2018-04-01

    The history of dust transport to the Levant during the last glacial period is reconstructed using the isotope ratios of Pb, Sr, Nd, and Hf in sediments of Lake Lisan, the last glacial Dead Sea. Exposed marginal sections of the Lisan Formation were sampled near Masada, the Perazim Valley and from a core drilled at the deep floor of the modern lake. Bulk samples and size fractions display unique isotopic fingerprints: the finest detritus fraction (<5 μm) displays higher 87Sr/86Sr and lower εNd values (0.710-0.713 and -7.0 to -9.8, respectively) relative to the coarser fractions (5-20 μm and <20 μm; 0.708-0.710 and -3.4 to -8.3) and the bulk detritus samples (0.709-0.711 and -6 to -7.5). Similarly, the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios (18.26-19.02, 15.634-15.68, and 38.25-38.82, respectively) are systematically higher in the finest detritus fraction relative to corresponding coarser fractions and bulk samples. The 87Sr/86Sr and εNd values of the finest fraction correspond with those of atmospheric dust originating from the Sahara Desert, while those of the coarse fractions are similar to loess deposits exposed in the Sinai and Negev Deserts. Pronounced excursions in the Sr-Nd-Pb isotope ratios toward more Sahara-like values coincide with the Heinrich (H) stadials 6, 5 and 1, reflecting significant increases in Saharan dust fluxes during regionally arid intervals, reflected by sharp lake level drops. Moreover, during H6 the dust came from different Saharan sources than during H1 and H5. While the relatively wet glacial climate in the Levant suppressed the transport of dust to the lake watershed, short-term hyper-arid spells during H-stadial intervals were accompanied by enhanced supply of fine Sahara dust to this region.

  10. Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; Querol, X.; Alastuey, A.; Kallos, G.; Kakaliagou, O.

    The analysis of PM10 and TSP levels recorded in rural areas from Southern and Eastern Spain (1996-1999) shows that most of the PM10 and TSP peak events are simultaneously recorded at monitoring stations up to 1000 km apart. The study of the atmospheric dynamics by back-trajectory analysis and simulations with the SKIRON Forecast System show that these high PM10 and TSP events occur when high-dust Saharan air masses are transported over the Iberian Peninsula. In the January-June period, this dust transport is mainly caused by cyclonic activity over the West or South of Portugal, whereas in the summer period this is induced by anticyclonic activity over the East or Southeast Iberian Peninsula. Most of the Saharan intrusions which exert a major influence on the particulate levels occur from May to September (63%) and in January and October. In rural areas in Northeast Spain, where the PM10 annual mean is around 18 μg PM10 m -3, the Saharan dust accounts for 4-7 annual daily exceedances of the forthcoming PM10-EU limit value (50 μg PM10 m -3 daily mean). Higher PM10 background levels are recorded in Southern Spain (30 μg PM10 m -3 as annual mean for rural areas) and very similar values are recorded in industrial and urban areas. In rural areas in Southern Spain, the Saharan dust events accounts for 10-23 annual daily exceedances of the PM10 limit value, a high number when compared with the forthcoming EU standard, which states that the limit value cannot be exceeded more than 7 days per year. The proportion of Sahara-induced exceedances with respect to the total annual exceedances is discussed for rural, urban and industrial sites in Southern Spain.

  11. The Fate of Saharan Dust Across the Atlantic and Implications for a Central American Dust Barrier

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, P.; da Silva, A.; Hlavka, D.; McGill, M.

    2011-01-01

    Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modem Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.

  12. Satellite measurements of physical properties of Saharan dust

    NASA Technical Reports Server (NTRS)

    Lee, Tae Young; Fraser, Robert S.; Kaufman, Yoram

    1986-01-01

    The physical properties of Saharan dust obtained from AVHRR and VISSR images are studied. The techniques of Fraser (1976) and Kaufman and Fraser (1985) are used to derive the aerosol optical depth, mass, and single scattering albedo for the region extending from the west coast of Africa to the Barbados Island for the period of June 21-25, 1984. Optical properties measured by satellite are compared to aircraft measurements taken near Barbados Island during the same period. Remote measurement of thermal properties is also discussed.

  13. Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface

    NASA Astrophysics Data System (ADS)

    Herbener, Stephen R.; Saleeby, Stephen M.; Heever, Susan C.; Twohy, Cynthia H.

    2016-10-01

    As a tropical cyclone traverses the Saharan Air Layer (SAL), the storm will spatially redistribute the dust from the SAL. Dust deposited on the surface may affect ocean fertilization, and dust transported to the upper levels of the troposphere may impact radiative forcing. This study explores the relative amounts of dust that are vertically redistributed when a tropical cyclone crosses the SAL. The Regional Atmospheric Modeling System (RAMS) was configured to simulate the passage of Tropical Storm Debby (2006) through the SAL. A dust mass budget approach has been applied, enabled by a novel dust mass tracking capability of the model, to determine the amounts of dust deposited on the ocean surface and transferred aloft. The mass of dust removed to the ocean surface was predicted to be nearly 2 orders of magnitude greater than the amount of dust transported to the upper troposphere.

  14. Dust emission and transport associated with a Saharan depression: February 2007 case

    NASA Astrophysics Data System (ADS)

    Bou Karam, Diana; Flamant, Cyrille; Cuesta, Juan; Pelon, Jacques; Williams, Earle

    2010-01-01

    The dust activity over North Africa associated with the Saharan depression event in February 2007 is investigated by mean of spaceborne observations, ground-based measurements, and mesoscale simulation with Meso-NH. The main characteristics of the cyclone as well as the meteorological conditions during this event are described using the European Centre for Medium-Range Weather Forecasts (ECMWF). The dust storm and cloud cover over North Africa is thoroughly described combining for the first time Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) images for the spatiotemporal evolution and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat observations for the vertical distribution. The Saharan depression formed over Algeria in the lee of the Atlas Mountains on the afternoon of 20 February in response to midlatitude trough intrusion. It migrated eastward with a speed of 11 m s-1 and reached Libya on 22 February before exiting the African continent toward the Mediterranean Sea on 23 February. The horizontal scale of the cyclone at the surface varied between 800 and 1000 km during its lifetime. On the vertical the cyclone extended over 8 km, and a potential vorticity of 2 potential vorticity units (PVU) was reported at its center at 3 km in altitude. The cyclone was characterized by a surface pressure anomaly of about 9 hPa with respect to the environment, a warm front typified at the surface by an increase in surface temperature of 5°C, and a sharp cold front characterized by a drop in surface temperature of 8°C and an increase in 10 m wind speed of 15 m s-1. The cyclone provided dynamical forcing that led to strong near-surface winds and produced a major dust storm over North Africa. The dust was transported all around the cyclone leaving a clear eye at its center and was accompanied by a deep cloud band along the northwestern edge of the cyclone. On the vertical, slanted dust layers were consistently observed during the

  15. Intercomparison of observations and model aerosol parameters during two Saharan dust events over the southern United Kingdom

    NASA Astrophysics Data System (ADS)

    Buxmann, Joelle; Adam, Mariana; Ordonez, Carlos; Tilbee, Marie; Smyth, Tim; Claxton, Bernard; Sugier, Jacqueline; Agnew, Paul

    2015-04-01

    Saharan desert dust lifted by convection over the hot desert surface can reach high altitudes and be transported over great distances. In the UK, Saharan dust episodes occur several times a year, usually during the spring. Dust lifted by cyclonic circulation is often blown into the Atlantic and transported to the UK. This can result in a rapid degradation of air quality due to the increase in the levels of particulate matter (PM). The ability to model the transport and deposition of dust remains an important challenge in order to characterize different pollution events. We present a comparison of observed Aerosol Optical Depth (AOD) with modelled AOD from the Met Office Air Quality Unified Model (AQUM), performed for two dust events in March 2014 (at 380nm, 440nm, 870nm and 1020nm). The observations are derived from five sun photometers located in the southern UK at Exeter, Cardington, Bayfordbury, Chilbolton, and Plymouth. Correlations are investigated between model column integrated PM2.5 and PM10, and observed fine and coarse mode AOD from AERONET. Vertical profiles of attenuated backscatter and extinction from the Jenoptik Nimbus ceilometers part of the Met Office Laser Cloud Base Recorder (LCBR) network are investigated as well (see also session AS3.17/GI2.2 Lidar and Applications). The Met Office air quality model AQUM is an on-line meteorology, chemistry and aerosol modelling system. It runs at a resolution of 12km over a domain covering the UK and north-western Europe. Atmospheric composition modelling employs two-way coupling between aerosol and chemistry evolution, with explicit modelling of sulphate, nitrate, black carbon, organic carbon, biomass burning and wind-blown mineral dust aerosol components. Both the model and observations show an increase in AOD during the first period from 12 -13 March 2014. For example AOD levels of up to 0.52 for the 380nm channel were recorded by the sun photometer in Exeter. This is relatively high compared to average

  16. A Northward Shift of the North Atlantic Ocean Intertropical Convergence Zone in Response to Summertime Saharan Dust Outbreaks

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Lau, K. M.; Kim, Kyu-Myong

    2010-01-01

    The influence on the summertime North Atlantic Ocean inter-tropical convergence zone (ITCZ) of Saharan dust outbreaks is explored using nine years of continuous satellite observations and atmospheric reanalysis products. During dust outbreak events rainfall along the ITCZ shifts northward by 1 to 4 degrees latitude. Dust outbreaks coincide with warmer lower-tropospheric temperatures compared to low dust conditions, which is attributable to advection of the warm Saharan Air Layer, enhanced subtropical subsidence, and radiative heating of dust. The enhanced positive meridional temperature gradient coincident with dust outbreaks is accompanied by an acceleration of the easterly winds on the n011h side of the African Easterly Jet (AEJ). The center of the positive vorticity region south of the AEJ moves north drawing the center of low-level convergence and ITCZ rainfall northward with it. The enhanced precipitation on the north side of the ITCZ occurs in spite of widespread sea surface temperature cooling north of the ITCZ owing to reduced surface solar insolation by dust scattering.

  17. Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution.

    PubMed

    Telloli, Chiara; Chicca, Milvia; Pepi, Salvatore; Vaccaro, Carmela

    2017-12-21

    Southern European countries are often affected in summer by transboundary air pollution from Saharan dust. However, very few studies deal with Saharan dust pollution at high altitudes in winter. In Italy, the exceptional event occurred on February 19, 2014, colored in red the entire mountain range (Alps and Apennines) and allowed to characterize the particulate matter deposited on snow from a morphological and chemical point of view. Snow samples were collected after this event in four areas in the Alps and one in the Apennines. The particulate matter of the melted snow samples was analyzed by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) and by inductively coupled plasma mass spectrometry (ICP-MS). These analyses confirmed the presence of Saharan dust particle components in all areas with similar percentages, supported also by the positive correlations between Mg-Ca, Al-Ca, Al-Mg, and Al-K in all samples.

  18. The formation of a large summertime Saharan dust plume: Convective and synoptic-scale analysis

    PubMed Central

    Roberts, A J; Knippertz, P

    2014-01-01

    Haboobs are dust storms produced by the spreading of evaporatively cooled air from thunderstorms over dusty surfaces and are a major dust uplift process in the Sahara. In this study observations, reanalysis, and a high-resolution simulation using the Weather Research and Forecasting model are used to analyze the multiscale dynamics which produced a long-lived (over 2 days) Saharan mesoscale convective system (MCS) and an unusually large haboob in June 2010. An upper level trough and wave on the subtropical jet 5 days prior to MCS initiation produce a precipitating tropical cloud plume associated with a disruption of the Saharan heat low and moistening of the central Sahara. The restrengthening Saharan heat low and a Mediterranean cold surge produce a convergent region over the Hoggar and Aïr Mountains, where small convective systems help further increase boundary layer moisture. Emerging from this region the MCS has intermittent triggering of new cells, but later favorable deep layer shear produces a mesoscale convective complex. The unusually large size of the resulting dust plume (over 1000 km long) is linked to the longevity and vigor of the MCS, an enhanced pressure gradient due to lee cyclogenesis near the Atlas Mountains, and shallow precipitating clouds along the northern edge of the cold pool. Dust uplift processes identified are (1) strong winds near the cold pool front, (2) enhanced nocturnal low-level jet within the aged cold pool, and (3) a bore formed by the cold pool front on the nocturnal boundary layer. PMID:25844277

  19. Preliminary Results from an Assimilation of Saharan Dust Using TOMS Radiances and the GOCART Model

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; daSilva, Arlindo; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions. Surface mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from .08-10 microns and only simulates Saharan dust. We draw the assimilation to two observables in this study: the TOMS aerosol index (Al) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance alone. The forward model that simulates the observables requires the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer from the GOCART fields. The forward model also requires a refractive index for the dust. We test three index values to see which best fits the TOMS observables. These are 1) for Saharan dust reported by Patterson, 2) for a mixture of Saharan dust and a highly reflective material (sea salt or sulfate) and 3) for pure illite. The assimilation works best assuming either pure illite or the dust mixture. Our assimilation cycle first determines values of the aerosol index (Al) and the radiance at 380 nm based on the GOCART aerosol fields. Differences between the observed and GOCART model calculated Al and 380 nm radiance are first analyzed horizontally using the Physical-space Statistical Analysis System (PSAS). A quasi-Newton iteration is then performed to produce analyzed 3D aerosol fields according to parameterized background and observation error covariances. We only assimilate observations into the the GOCART

  20. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands

    USGS Publications Warehouse

    Muhs, D.R.; Bush, C.A.; Stewart, K.C.; Rowland, T.R.; Crittenden, R.C.

    1990-01-01

    Most previous workers have regarded the insoluble residues of high-purity Quaternary limestones (coral reefs and oolites) as the most important parent material for well-developed, clay-rich soils on Caribbean and western Atlantic islands, but this genetic mechanism requires unreasonable amounts of limestone solution in Quaternary time. Other possible parent materials from external sources are volcanic ash from the Lesser Antilles island arc and Saharan dust carried across the Atlantic Ocean on the northeast trade winds. Soils on Quaternary coral terraces and carbonate eolianites on Barbados, Jamaica, the Florida Keys (United States), and New Providence Island (Bahamas) were studied to determine which, if either, external source was important. Caribbean volcanic ashes and Saharan dust can be clearly distinguished using ratios of relatively immobile elements ( Al2O3 TiO2, Ti Y, Ti Zr, and Ti Th). Comparison of these ratios in 25 soils, where estimated ages range from 125,000 to about 870,000 yr, shows that Saharan dust is the most important parent material for soils on all islands. These results indicate that the northeast trade winds have been an important component of the regional climatology for much of the Quaterary. Saharan dust may also be an important parent material for Caribbean island bauxites of much greater age. ?? 1990.

  1. The linkage between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 ka to 5.5 ka ago (deMenocal et al., 2000; McGee et al., 2013). The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. We present simulation results from a recent sensitivity study, where we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface during the Holocene. We have simulated timeslices of he mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. We prescribe mid-Holocene vegetation cover based on a vegetation reconstruction from pollen data (Hoelzmann et al., 1998) and mid-Holocene lake surface area is determined using a water routing and storage model (Tegen et al., 2002). In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the variation in dust accumulation in marine cores is likely related to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone. Reference: deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid Period:: rapid climate responses to gradual insolation forcing, Quaternary Science Reviews, 19, 347-361, 2000. Hoelzmann, P., Jolly, D., Harrison, S. P., Laarif, F

  2. Summer variability of Saharan dust transport events in mountain areas north and south of Po basin

    NASA Astrophysics Data System (ADS)

    Landi, Tony C.; Marinoni, Angela; Cristofanelli, Paolo; Putero, Davide; Duchi, Rocco; Alborghetti, Marcello; Bonafè, Ubaldo; Calzolari, Francescopiero; Pietro Verza, Gian; Bonasoni, Paolo

    2013-04-01

    Mineral dust intrusions from northern African desert regions have a strong impact on the Mediterranean areas and Italian peninsula as they can cause an anomalous increase of aerosol concentrations in the tropospheric column and often an increase of particulate matter at ground level. The estimate of Saharan dust contribution to aerosols concentrations is therefore a key issue in air quality assessment and policy formulation, since can cause air quality exceedances of the PM10 daily limits (50 μg m-3) set by the European Union (EU/2008/50). This study presents a first identification and characterization of Saharan dust outbreaks observed during summer season at two high mountain stations located both South (Mt. Cimone, 2165 m asl) and North (Rifugio Guasti, Stelvio National Park, 3285 m asl) of Po valley. An estimation of their impact on PM10 concentrations in both sites, and in urban and rural areas of the Po basin is provided. Joining specific measurements (ground and satellite based) and numerical modeling, an investigation into the vertical structure of dust load will be presented. Actually, methodologies conceived for distinguishing dust outbreaks transported above the boundary layer without any impact at the ground level from those causing deposition are currently still lacking. Basically, the approach proposed in this work includes a deep analysis of in-situ measurements starting from long-term observation of Saharan dust carried out at the Mt. Cimone and more recent measurements performed in the framework of SHARE Stelvio Project, as well as the usage of ad hoc model chain (meteorological processor, chemical transport model, and aerosols optical properties calculation) to describe emission, transport and deposition dynamics of mineral dust that - in summertime - often affect the North Italy.

  3. Shape-induced Gravitational Sorting of Saharan Dust During Transatlantic Voyage: Evidence from CALIOP Lidar Depolarization Measurements

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Kostinski, Alexander B.; Varnai, Tamas

    2013-01-01

    Motivated by the physical picture of shape-dependent air resistance and, consequently, shape-induced differential sedimentation of dust particles, we searched for and found evidence of dust particle asphericity affecting the evolution and distribution of dust-scattered light depolarization ratio (delta). Specifically, we examined a large data set of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of Saharan dust from June to August 2007. Observing along a typical transatlantic dust track, we find that (1) median delta is uniformly distributed between 2 and 5?km altitudes as the elevated dust leaves the west coast of Africa, thereby indicating uniformly random mixing of particle shapes with height; (2) vertical homogeneity of median delta breaks down during the westward transport: between 2 and 5?km delta increases with altitude and this increase becomes more pronounced with westward progress; (3) delta tends to increase at higher altitude (greater than 4?km) and decrease at lower altitude (less than 4?km) during the westward transport. All these features are captured qualitatively by a minimal model (two shapes only), suggesting that shape-induced differential settling and consequent sorting indeed contribute significantly to the observed temporal evolution and vertical stratification of dust properties. By implicating particle shape as a likely cause of gravitational sorting, these results will affect the estimates of radiative transfer through Saharan dust layers.

  4. Characterization of Saharan mineral dust transported to the Colle Gnifetti glacier (Southern Alps, Switzerland) during the last centuries.

    NASA Astrophysics Data System (ADS)

    Thevenon, Florian; Poté, John; Adatte, Thierry; Chiaradia, Massimo; Hueglin, Christoph; Collaud Coen, Martine

    2010-05-01

    The Southern Alps act as a barrier to the southwesterly dust-laden winds from the Sahara, and the Colle Gnifetti saddle (45°55'N, 7°52'E, 4455 m asl in the Monte Rosa Massif) satisfactory conserves the history of climatic conditions over the last millennium (Thevenon et al., 2009). Therefore, the Colle Gnifetti glacier is a suitable site for i) studying the composition of past Saharan aeolian dust emissions, and for ii) comparing modern dust emissions with preindustrial emissions. The mineral aerosols entrapped in the ice core have been analyzed for their physical (grain-size by image analysis), mineralogical (by X-ray diffraction), and chemical composition (by ICPMS and by mass spectrometry for Sr and Nd isotopic ratios). The mineral dust characteristics are then compared with present day Saharan dust samples collected at the high altitude research station Jungfraujoch (46°55'N, 7°98E, 3580 asl) and with documented potential dust sources. Results show that i) the increases in atmospheric dustiness correlate with larger mean grain size, and that ii) the dust emissions increase after the industrial revolution, probably as a large-scale atmospheric circulation response to anthropogenic climate forcing (Shindell et al., 2001; Thevenon et al., 2009). However, geochemical variations in aeolian mineral particles also indicate that the source areas of the dust, which are now situated in northern and north-western part of the Saharan desert (Collaud Coen et al., 2004), did not change significantly throughout the past. Therefore, the mineralogy (e.g. illite, kaolinite, chlorite, palygorskite) and the geochemistry of the paleo-dust particles transported to Europe, are relevant to assess past African dust sources. REFERENCES: - Thevenon, F., F. S. Anselmetti, S. M. Bernasconi, and M. Schwikowski (2009). Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J. Geophys. Res., 114, D17102, doi:10

  5. Dust emission and transport associated with a Saharan depression: The February 2007 case

    NASA Astrophysics Data System (ADS)

    Karam, Diana Bou; Flamant, Cyrille; Cuesta, Juan; Pelon, Jacques; Williams, Earle

    2010-05-01

    The dust activity over North Africa associated with the Saharan depression event in February 2007 is investigated by mean of spaceborne observations, ground based measurements and mesoscale simulation with Meso-NH. The main characteristics of the cyclone as well as the meteorological conditions during this event are described using the European Centre for Medium-range Weather Forecasts (ECMWF). The dust storm and cloud cover over North Africa is thoroughly described combining for the first time Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) images for the spatio-temporal evolution and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat observations for the vertical distribution. The Saharan depression formed over Algeria in the lee of the Atlas Mountain on the afternoon of February 20 in response to midlatitude trough intrusion. It migrated eastward with a speed of 11 m s-1 and reached Libya on February 22 before exiting the African continent toward the Mediterranean Sea on February 23. The horizontal scale of the cyclone at the surface varied between 800 km and 1000 km during its lifetime. On the vertical the cyclone extended over 8 km and a potential vorticity of 2 PVU was reported on its centre at 3 km in altitude. The cyclone was characterised by a surface pressure anomaly of about 9 hPa with respect to the environment, a warm front typified at the surface by an increase in surface temperature of 5°C, and a sharp cold front characterized by a drop in surface temperature of 8°C and an increase in 10 m wind speed of 15 m s-1. The cyclone provided a dynamical forcing that led to strong near-surface winds and produced a major dust storm over North Africa. The dust was transported all around the cyclone leaving a clear eye on its centre and was accompanied by a deep cloud band along the northwestern edge of the cyclone. On the vertical, slanted dust layers were consistently observed during the event over North Africa

  6. Health effects from Sahara dust episodes in Europe: literature review and research gaps.

    PubMed

    Karanasiou, A; Moreno, N; Moreno, T; Viana, M; de Leeuw, F; Querol, X

    2012-10-15

    The adverse consequences of particulate matter (PM) on human health have been well documented. Recently, special attention has been given to mineral dust particles, which may be a serious health threat. The main global source of atmospheric mineral dust is the Sahara desert, which produces about half of the annual mineral dust. Sahara dust transport can lead to PM levels that substantially exceed the established limit values. A review was undertaken using the ISI web of knowledge database with the objective to identify all studies presenting results on the potential health impact from Sahara dust particles. The review of the literature shows that the association of fine particles, PM₂.₅, with total or cause-specific daily mortality is not significant during Saharan dust intrusions. However, regarding coarser fractions PM₁₀ and PM₂.₅₋₁₀ an explicit answer cannot be given. Some of the published studies state that they increase mortality during Sahara dust days while other studies find no association between mortality and PM₁₀ or PM₂.₅₋₁₀. The main conclusion of this review is that health impact of Saharan dust outbreaks needs to be further explored. Considering the diverse outcomes for PM₁₀ and PM₂.₅₋₁₀, future studies should focus on the chemical characterization and potential toxicity of coarse particles transported from Sahara desert mixed or not with anthropogenic pollutants. The results of this review may be considered to establish the objectives and strategies of a new European directive on ambient air quality. An implication for public policy in Europe is that to protect public health, anthropogenic sources of particulate pollution need to be more rigorously controlled in areas highly impacted by the Sahara dust. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Observation of a Saharan dust outbreaks in the frame of the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Caccaini, Marco; Veselovskii, Igor; Kolgotin, Alexey

    2009-03-01

    The Raman lidar system BASIL was operational in Achern (Supersite R, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) in the frame of the Convective and Orographically-induced Precipitation Study. BASIL operated continuously over a period of approx. 36 hours from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, to cover IOPs 13 a-b. In this timeframe the signature of a severe Saharan dust outbreak episode was captured. An inversion algorithm was used to retrieve particle size distribution parameters, i.e., mean and effective radius, number, surface area, and volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution, from the multi-wavelength lidar data of particle backscattering and extinction. The inversion method employs Tikhonov's inversion with regularization. Size distribution parameters are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the dominance in the upper dust layer of a coarse mode with radii 3-4 μm. Number density and volume concentration are in the range 100-800 cm-3 and 5-40 μm3/cm3, respectively, while real and imaginary part of the complex refractive index are in the range 1.41-1.53 and 0.003-0.014, respectively.

  8. Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source

    NASA Astrophysics Data System (ADS)

    Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.

    2015-12-01

    In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity

  9. AEROSE 2004 - An Interdisciplinary Atmosphere-Ocean Saharan Dust Expedition

    NASA Astrophysics Data System (ADS)

    Clemente-Colón, P.

    2004-05-01

    The NOAA Center for Atmospheric Sciences (NCAS) is sponsoring a Trans-Atlantic Saharan Dust AERosol and Ocean Science Expedition (AEROSE) aboard the NOAA Ship Ronald H. Brown in March 2004. The fundamental purpose of this aerosol cruise is to study the impacts and microphysical evolution of Saharan dust aerosol as it is transported across the Atlantic Ocean. The mission encompasses both, atmospheric and oceanographic components. Participating institutions include Howard University, NCAS lead institution, the University of Puerto Rico at Mayagüez, the Canary Institute of Marine Sciences, the Spanish Institute of Oceanography, the Laboratory of Atmospheric Physics Siméon Fongang, the University of Miami Rosenstiel School of Marine and Atmospheric Science, the University of Washington Applied Physics Laboratory, NASA Goddard Space Flight Center, the NOAA Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison, NASA Jet Propulsion Laboratory, and the NOAA/NESDIS Office of Research and Applications. This collaboration provides unique atmospheric and oceanic observations across the North Tropical Atlantic during eastward and westward tracks during a period of nearly one month. Characterization of microphysical properties of Saharan dust aerosol is done trough direct observations of mass, size, and particle number distributions, chemical composition, spatial distributions, and air chemistry. Aerosol radiative properties are studied through a suite of sensors that include a Multi-Angle Absorption Photometer (MAAP), the Marine-Atmosphere Emitted Radiance Interferometer (M-AERI), sunphotometers, and an assortment of other radiometers. Characterization of atmospheric conditions is done through a combination of over 250 radiosonde and ozonesonde launches at 3 to 5 hour intervals during the duration of the cruise and in coordination with satellite overpasses. AEROSE is also supporting the collection of bio-optics and oceanographic

  10. PM10 composition during an intense Saharan dust transport event over Athens (Greece).

    PubMed

    Remoundaki, E; Bourliva, A; Kokkalis, P; Mamouri, R E; Papayannis, A; Grigoratos, T; Samara, C; Tsezos, M

    2011-09-15

    The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM(10) monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM(10) concentrations exceeded the EU limit (50 μg/m(3)) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM(10) reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes <2 μm. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles <1 μm. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  12. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    PubMed

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  13. Longwave Radiative Forcing of Saharan Dust Aerosols Estimated from MODIS, MISR and CERES Observations on Terra

    NASA Technical Reports Server (NTRS)

    Zhang, Jiang-Long; Christopher, Sundar A.

    2003-01-01

    Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth's Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean LW forcing for September 2000 is 7 W/sq m and the LW forcing efficiency' (LW(sub eff)) is 15 W/sq m. Using radiative transfer calculations, we also show that the vertical distribution of aerosols and water vapor are critical to the understanding of dust aerosol forcing. Using well calibrated, spatially and temporally collocated data sets, we have combined the strengths of three sensors from the same satellite to quantify the LW radiative forcing, and show that dust aerosols have a "warming" effect over the Saharan desert that will counteract the shortwave "cooling effect" of aerosols.

  14. Integrating Saharan dust forecasts into a regional chemical transport model: a case study over Northern Italy.

    PubMed

    Carnevale, C; Finzi, G; Pisoni, E; Volta, M; Kishcha, P; Alpert, P

    2012-02-15

    The Po Valley in Northern Italy is frequently affected by high PM10 concentrations, where both natural and anthropogenic sources play a significant role. To improve air pollution modeling, 3D dust fields, produced by means of the DREAM dust forecasts, were integrated as boundary conditions into the mesoscale 3D deterministic Transport Chemical Aerosol Model (TCAM). A case study of the TCAM and DREAM integration was implemented over Northern Italy for the period May 15-June 30, 2007. First, the Saharan dust impact on PM10 concentration was analyzed for eleven remote PM10 sites with the lowest level of air pollution. These remote sites are the most sensitive to Saharan dust intrusions into Northern Italy, because of the absence of intensive industrial pollution. At these remote sites, the observed maxima in PM10 concentration during dust events is evidence of dust aerosol near the surface in Northern Italy. Comparisons between modeled PM10 concentrations and measurements at 230 PM10 sites in Northern Italy, showed that the integrated TCAM-DREAM model more accurately reproduced PM10 concentration than the base TCAM model, both in terms of correlation and mean error. Specifically, the correlation median increased from 0.40 to 0.65, while the normalized mean absolute error median dropped from 0.5 to 0.4. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Depletion of tropospheric ozone associated with mineral dust outbreaks.

    PubMed

    Soler, Ruben; Nicolás, J F; Caballero, S; Yubero, E; Crespo, J

    2016-10-01

    From May to September 2012, ozone reductions associated with 15 Saharan dust outbreaks which occurred between May to September 2012 have been evaluated. The campaign was performed at a mountain station located near the eastern coast of the Iberian Peninsula. The study has two main goals: firstly, to analyze the decreasing gradient of ozone concentration during the course of the Saharan episodes. These gradients vary from 0.2 to 0.6 ppb h(-1) with an average value of 0.39 ppb h(-1). The negative correlation between ozone and coarse particles occurs almost simultaneously. Moreover, although the concentration of coarse particles remained high throughout the episode, the time series shows the saturation of the ozone loss. The highest ozone depletion has been obtained during the last hours of the day, from 18:00 to 23:00 UTC. Outbreaks registered during this campaign have been more intense in this time slot. The second objective is to establish from which coarse particle concentration a significant ozone depletion can be observed and to quantify this reduction. In this regard, it has been confirmed that when the hourly particle concentration recorded during the Saharan dust outbreaks is above the hourly particle median values (N > N-median), the ozone concentration reduction obtained is statistically significant. An average ozone reduction of 5.5 % during Saharan events has been recorded. In certain cases, this percentage can reach values of higher than 15 %.

  16. Impact of Saharan dust events on radionuclide levels in Monaco air and in the water column of the northwest Mediterranean Sea.

    PubMed

    Pham, Mai Khanh; Chamizo, Elena; Mas Balbuena, José Luis; Miquel, Juan-Carlos; Martín, Jacobo; Osvath, Iolanda; Povinec, Pavel P

    2017-01-01

    Characterization of atmospheric aerosols collected in Monaco (2004-2008) and in sediment traps at 200 m and 1000 m water depths at the DYFAMED (Dynamics of Atmospheric Fluxes in the Mediterranean Sea) station (2004) was carried out to improve our understanding of the impact of Saharan dust on ground-level air and on the water column. Activity concentrations of natural ( 210 Pb, 210 Po, uranium and radium isotopes) and anthropogenic ( 137 Cs, 239 Pu, 240 Pu, and 239+240 Pu) radionuclides and their isotopic ratios confirmed a Saharan impact on the investigated samples. In association with a large particulate matter deposition event in Monaco on 20 February 2004, the 137 Cs (∼40 Bq kg -1 ) and 239+240 Pu (∼1 Bq kg -1 ) activities were almost a factor of two higher than other Saharan deposition dust events. This single-day particle flux represented 72% of the annual atmospheric deposition in Monaco. The annual deposition of Saharan dust on the sea was 232-407 mBq m -2 for 137 Cs and 6.8-9.8 mBq m -2 for 239+240 Pu and contributed significantly (28-37% for 137 Cs and 34-45% for 239+240 Pu) to the total annual atmospheric input to the northwest Mediterranean Sea. The 137 Cs/ 239+240 Pu activity ratios in dust samples collected during different Saharan dust events confirmed their global fallout origin or mixing with local re-suspended soil particles. In the sediment trap samples the 137 Cs activity varied by a factor of two, while the 239+240 Pu activity was constant, confirming the different behaviors of Cs (dissolved) and Pu (particle reactive) in the water column. The 137 Cs and 239+240 Pu activities of sinking particles during the period of the highest mass flux collected in 20 February 2004 at the 200 m and 1000 m water depths represented about 10% and 15%, respectively, of annual deposition from Saharan dust events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Relative Contributions of the Saharan and Sahelian Sources to the Atmospheric Dust Load Over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Chin, M.; Torres, O.; Prospero, J.; Dubovik, O.; Holben, B.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It has long been recognized that Saharan desert is the major source for long range transport of mineral dust over the Atlantic. The contribution from other natural sources to the dust load over the Atlantic has generally been ignored in previous model studies or been replaced by anthropogenically disturbed soil emissions. Recently, Prospero et.at. have identified the major dust sources over the Earth using TOMS aerosol index. They showed that these sources correspond to dry lakes with layers of sediment deposed in the late Holocene or Pleistocene. One of the most active of these sources seem to be the Bodele depression. Chiapello et al. have analyzed the mineralogical composition of dust on the West coast of Africa. They found that Sahelian dust events are the most intense but are less frequent than Saharan plumes. This suggests that the Bodele depression could contribute significantly to the dust load over the Atlantic. The relative contribution of the Sahel and Sahara dust sources is of importance for marine biogeochemistry or atmospheric radiation, because each source has a distinct mineralogical composition. We present here a model study of the relative contributions of Sahara and Sahel sources to the atmospheric dust aerosols over the North Atlantic. The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate dust distribution in 1996-1997. Dust particles are labeled depending on their sources. In this presentation, we will present the comparison between the model results and observations from ground based measurements (dust concentration, optical thickness and size distribution) and satellite data (TOMS aerosol index). The relative contribution of each source will then be analyzed spatially and temporally.

  18. Influence of atmospheric processes on the solubility and composition of iron in Saharan dust

    DOE PAGES

    Longo, Amelia F.; Feng, Yan; Lai, Barry; ...

    2016-06-10

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation statemore » became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.« less

  19. A Numerical Estimate of The Impact of The Saharan Dust On Medityerranean Trophic Web

    NASA Astrophysics Data System (ADS)

    Crise, A.; Crispi, G.

    A first estimate of the importance of Saharan dust as input of macronutrients on the phytoplankton standing crop concentration and primary production at basin scale is here presented using a three-dimensional numerical model of the Mediterranean Sea. The numerical scheme adopted is a 1/4 degree resolution 31 levels MOM-based eco- hydrodynamical model with climatological ('perpetual year') forcings coupled on-line with a structure including multi-nutrient, size-fractionated phytoplankton functional groups, herbivores and a parametrized recycling detritus submodel, so to (explicitely or implicitely) include the major energy pathways of the upper layer mediterranean ecosystem. This model takes into account as potential limiting factors, among others, Nitrogen (in its oxidized and reduced forms) and Phosphorus. A gridded data setof (wet and dry) dust deposition over Mediterranean derived from SKIRON operational model is used to identify statistically the areas and the duration/intensity of the events. Starting from this averaging process, experiments are carried out to study the dust induced episodes of release of bioavailable phosphorus which is supposed to be the limiting factor in the oligotrophic waters of the surface layer in Med Sea. The metrics for the evaluation of the impact of deposition have been identified in phyto standing crop, primary and export production and switching in the food web functioning. These global parameters, even if cannot exaust the whealth of the informations provided by the model, can help discriminate the sensitivity of food web to the nutrient pulses induced by the deposition. First results of a scenario analysis of typical atmospheric input events, provide evidence of the response of the upper layer ecosystem to assess the sensitivity of the model predictions to the variability to integrated intensity of external input.

  20. Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact

    NASA Astrophysics Data System (ADS)

    Longman, Jack; Veres, Daniel; Ersek, Vasile; Salzmann, Ulrich; Hubay, Katalin; Bormann, Marc; Wennrich, Volker; Schäbitz, Frank

    2017-07-01

    Reconstructions of dust flux have been used to produce valuable global records of changes in atmospheric circulation and aridity. These studies have highlighted the importance of atmospheric dust in marine and terrestrial biogeochemistry and nutrient cycling. By investigating a 10 800-year-long paleoclimate archive from the Eastern Carpathians (Romania) we present the first peat record of changing dust deposition over the Holocene for the Carpathian-Balkan region. Using qualitative (X-ray fluorescence (XRF) core scanning) and quantitative inductively coupled plasma optical emission spectrometer(ICP-OES) measurements of lithogenic (K, Si, Ti) elements, we identify 10 periods of major dust deposition between 9500-9200, 8400-8100, 7720-7250, 6350-5950, 5450-5050, 4130-3770, 3450-2850, 2000-1450, 800-620, and 60 cal yr BP to present. In addition, we used testate amoeba assemblages preserved within the peat to infer local palaeohydroclimatic conditions. Our record highlights several discrepancies between eastern and western European dust depositional records and the impact of highly complex hydrological regimes in the Carpathian region. Since 6100 cal yr BP, we find that the geochemical indicators of dust flux have become uncoupled from the local hydrology. This coincides with the appearance of millennial-scale cycles in the dust input and changes in geochemical composition of dust. We suggest that this is indicative of a shift in dust provenance from local-regional (likely loess-related) to distal (Saharan) sources, which coincide with the end of the African Humid Period and the onset of Saharan desertification.

  1. Satellite Reveals How Much Saharan Dust Feeds Amazon's Plants

    NASA Image and Video Library

    2015-02-24

    What connects Earth's largest, hottest desert to its largest tropical rainforest? The Sahara Desert is a near-uninterrupted brown band of sand and scrub across the northern third of Africa. The Amazon rainforest is a dense green mass of humid jungle that covers northeast South America. But after strong winds sweep across the Sahara, a tan cloud rises in the air, stretches between the continents, and ties together the desert and the jungle. It’s dust. And lots of it. For the first time, a NASA satellite has quantified in three dimensions how much dust makes this trans-Atlantic journey. Scientists have not only measured the volume of dust, they have also calculated how much phosphorus – a natural plant fertilizer present in Saharan sands from part of the desert’s past as a lake bed – gets carried across the ocean from one of the planet’s most desolate places to one of its most fertile. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Cacciani, Marco; Veselovskii, Igor; Dubovik, Oleg; Kolgotin, Alexey

    2012-04-01

    The Raman lidar system BASIL was operational in Achern (Black Forest) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The system performed continuous measurements over a period of approx. 36 h from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, capturing the signature of a severe Saharan dust outbreak episode. The data clearly reveal the presence of two almost separate aerosol layers: a lower layer located between 1.5 and 3.5 km above ground level (a.g.l.) and an upper layer extending between 3.0 and 6.0 km a.g.l. The time evolution of the dust cloud is illustrated and discussed in the paper in terms of several optical parameters (particle backscatter ratio at 532 and 1064 nm, the colour ratio and the backscatter Angström parameter). An inversion algorithm was used to retrieve particle size and microphysical parameters, i.e., mean and effective radius, number, surface area, volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution (PSD), from the multi-wavelength lidar data of particle backscattering, extinction and depolarization. The retrieval scheme employs Tikhonov's inversion with regularization and makes use of kernel functions for randomly oriented spheroids. Size and microphysical parameters of dust particles are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the presence of a fine mode with radii of 0.1-0.2 μm and a coarse mode with radii of 3-5 μm both in the lower and upper dust layers, and the dominance in the upper dust layer of a coarse mode with radii of 4-5 μm. Effective radius varies with altitude in the range 0.1-1.5 μm, while volume concentration is found to not exceed 92 μm3 cm-3. The real and imaginary part of the complex refractive index vary in the range 1.4-1.6 and 0.004-0.008, respectively.

  3. Can Transport of Saharan Dust Explain Extensive Clay Deposits in the Amazon Basin? A Test Using Radiogenic Isotopes

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Abouchami, W.; Näthe, K.; Kumar, A.; Galer, S. J.; Jochum, K. P.; Williams, E.; Horbe, A. M.; Rosa, J. W.; Adams, D. K.; Balsam, W. R.

    2012-12-01

    The Bodélé Depression, located in the Southern Sahara, is a huge source of atmospheric dust and thus an important element in biogeochemical cycles and the radiative budget of Earth's atmosphere. Previous studies have shown that Saharan dust transport across the Atlantic acts as an important source of mineral nutrients to the Amazon rainforest. The Belterra Clay, which outcrops extensively across the Amazon Basin in Brazil, has been proposed to result from dry deposition of African dusts. We have investigated this hypothesis by measuring the radiogenic isotopic composition (Sr, Nd and Pb) of a suite of samples from the Belterra Clay, the Bodélé Depression, dusts deposits collected at various locations along the airmass transport trajectory, as well as loess from the Cape Verde Islands. Radiogenic isotope systems are powerful tracers of provenance and can be used to fingerprint dust sources and atmospheric transport patterns. Our results identify distinct isotopic signatures in the Belterra Clay samples and the African sources. The Belterra Clay display radiogenic Sr and Pb isotope ratios associated with non-radiogenic Nd isotope signatures. In contrast, Bodélé samples and dusts deposits show lower Pb isotope ratios, variable 87Sr/86Sr, and relatively homogeneous Nd isotopic compositions, albeit more radiogenic than those of the Belterra Clay. Our data show unambiguously that the Belterra Clay is not derived from African dust deposition, nor from the Andean chain, as originally suggested by W. Sombroek. Rather, isotopic compositions and Nd model ages are consistent with simple mixing of Archean and younger Proterozoic terranes within the Amazon Basin as a result of weathering and erosion under humid tropical conditions. Whether Saharan dusts contribute to the fertilization in the Amazon Basin cannot be ruled out, however, since the African dust isotopic signature is expected to be entirely overprinted by local sources. Radiogenic isotope data obtained on

  4. Improving Public Health DSSs by Including Saharan Dust Forecasts Through Incorporation of NASA's GOCART Model Results

    NASA Technical Reports Server (NTRS)

    Berglund, Judith

    2007-01-01

    Approximately 2-3 billion metric tons of soil dust are estimated to be transported in the Earth's atmosphere each year. Global transport of desert dust is believed to play an important role in many geochemical, climatological, and environmental processes. This dust carries minerals and nutrients, but it has also been shown to carry pollutants and viable microorganisms capable of harming human, animal, plant, and ecosystem health. Saharan dust, which impacts the eastern United States (especially Florida and the southeast) and U.S. Territories in the Caribbean primarily during the summer months, has been linked to increases in respiratory illnesses in this region and has been shown to carry other human, animal, and plant pathogens. For these reasons, this candidate solution recommends integrating Saharan dust distribution and concentration forecasts from the NASA GOCART global dust cycle model into a public health DSS (decision support system), such as the CDC's (Centers for Disease Control and Prevention's) EPHTN (Environmental Public Health Tracking Network), for the eastern United States and Caribbean for early warning purposes regarding potential increases in respiratory illnesses or asthma attacks, potential disease outbreaks, or bioterrorism. This candidate solution pertains to the Public Health National Application but also has direct connections to Air Quality and Homeland Security. In addition, the GOCART model currently uses the NASA MODIS aerosol product as an input and uses meteorological forecasts from the NASA GEOS-DAS (Goddard Earth Observing System Data Assimilation System) GEOS-4 AGCM. In the future, VIIRS aerosol products and perhaps CALIOP aerosol products could be assimilated into the GOCART model to improve the results.

  5. Airborne lidar observations of Saharan dust during FENNEC

    NASA Astrophysics Data System (ADS)

    Marenco, Franco; Garcia-Carreras, Luis; Rosenberg, Phil; McQuaid, Jim

    2013-04-01

    In June 2011 and June 2012, the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft took part in the Fennec campaign. The main purpose was to quantify and model boundary layer and aerosol processes over the Saharan "heat low" region, the greatest dust region during summer. Although the central Sahara is extremely remote, the meteorology of this region is vital in driving the West African monsoon, and the dry and dusty air layers are closely related to the formation of Atlantic tropical cyclones. In this presentation, we shall characterise these air layers using data collected with the on-board lidar together with dropsondes. The interpretation of lidar signals in this particular geometry represents a challenge (nadir observations of thick layers), but we shall show that a suitable data inversion framework is possible under certain assumptions. The quality of the lidar data will be assessed using in-situ data from the nephelometer and optical particle counters. Deep air layers containing dust have been observed up to altitude of 5-6 km above mean sea level. The analysis of temperature and dew point profiles are used to identify the boundary layer and residual layer tops, and in conjunction with lidar observations this serves to quantify the dust content of both layers. An aerosol-laden residual layer is usually found during the campaign at an altitude of 2-6 km in the morning hours, with little aerosol below. The aerosol in the boundary layer is seen to develop later when solar heating of the surface induces turbulence until in the late afternoon the top of the boundary layer reaches up to ~ 6 km. Clouds embedded in aerosol layers and aerosol-cloud interactions have also been revealed. Dust aerosol has been observed in most cases, but a thin polluted non-dusty layer has been observed during one flight.

  6. Saharan dust plume charging observed over the UK

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.

    2018-05-01

    A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.

  7. Microbial communities established on Mont Blanc summit with Saharan dust deposition

    NASA Astrophysics Data System (ADS)

    Chuvochina, M.; Alekhina, I.; Normand, P.; Petit, J. R.; Bulat, S.

    2009-04-01

    Dust originating from the Sahara desert can be uplifted during storms, transported across the Mediterranean towards the Alpine region and deposited during snowfalls. The microbes associated with dust particles can be involved in establishing microbiota in icy environments as well as affect ecosystem and human health. Our objective was to use a culture-free DNA-based approach to assess bacterial content and diversity and furthermore, to identify ‘icy' microbes which could be brought on the Mont Blanc (MtBl) summit with Saharan dust and became living in the snow. Saharan dust fallout on MtBl summit from one event (MB5, event June 2006) vs. control libraries and that from another event (May 2008) were collected in Grenoble (SD, 200 m a.s.l.) and at Col du Dome (MB-SD, 4250 m a.s.l.). Soil from Ksar Ghilane (SS, Saharan desert, Tunisia, March 2008) was taken for overall comparison as a possible source population. Fresh snow falling in Grenoble (85) was collected as example of diversity in this area. To assess the microbial diversity 16S rRNA gene libraries (v3-v5 region) were constructed for corresponding dust-snow samples (MB5, SS, SD, 85 and MB-SD) along with clear snow samples and several controls. For both MB5 and MB-SD samples full-gene technique was evoked in attempt to differentiate reproduced bacteria from damaged DNA. Before sequencing the clones were rybotyped. All clone libraries were distinct in community composition except for some single phylotypes (or closely related groups) overlap. Thus, clone libraries from two different events that were collected at Col du Dome area within 2 year interval (MB5 and MB-SD) were different in community composition except one of the abundant phylotype from MB-SD library (Geodermatophilus sp.) which was shared (98% sequence similarity) with single representative from MB-5 library. These bacteria are pigmented and radiation-resistant, so it could be an indicator of desert origin for our sequences. For MB5 library two

  8. Detection of saharan mineral dust aerosol transport over brazilian northeast through a depolarization lidar

    NASA Astrophysics Data System (ADS)

    Guedes, Anderson G.; Landulfo, Eduardo; Montilla-Rosero, Elena; Lopes, Fábio J. S.; Hoelzemann, Judith J.; Fernandez, José Henrique; Silva, Marcos P. A.; Santos, Renata S. S.; Guerrero-Rascado, Juan L.; Alados-Arboledas, Lucas

    2018-04-01

    In this study we present results of linear volume depolarization ratio profiles obtained by a depolarization lidar in operation in Natal, Brazil. The DUSTER system has 4 channels, namely: 1064, 532 s/p and 355 nm. This system is calibrated with a half-wave plate using the Δ90° methodology. The data obtained from this system is correlated with AERONET sunphotometer data, and, when available, CALIPSO satellite data. In addition a trajectory model (HYSPLIT) is used to calculate backward trajectories to assess the origin of the dust polluted air parcels. The objective is to create a transport database of Saharan dust.

  9. Understanding the impact of saharan dust aerosols on tropical cyclones

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron

    Genesis of Tropical Cyclones (TCs) in the main development region for Atlantic hurricanes is tied to convection initiated by African easterly waves (AEWs) during Northern hemisphere summer and fall seasons. The main development region is also impacted by dust aerosols transported from the Sahara. It has been hypothesized that dust aerosols can modulate the development of TCs through aerosol-radiation and aerosol-cloud interaction processes. In this study, we investigate the impact of dust aerosols on TC development using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We first develop a technique to constrain the WRF-Chem model with a realistic three-dimensional spatial distribution of dust aerosols. The horizontal distribution of dust is specified using the Moderate Resolution Imaging Spectroradiometer (MODIS) derived aerosol products and output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The vertical distribution of dust is constrained using the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). We validate our technique through in situ aircraft measurements where both showed aerosol number concentrations from 20-30 cm-3 in the atmosphere for Saharan dust moving over the eastern Atlantic Ocean. Then, we use the satellite data constraint technique to nudge the WRF-Chem aerosol fields throughout the simulation of TC Florence developing over the eastern Atlantic Ocean during September 2006. Three different experiments are conducted where the aerosol-radiation and aerosol-cloud interaction processes are either activated or deactivated in the model while all other model options are identical between the experiments. By comparing the model experiment results, the impact of the aerosol interaction processes on TC development can be understood. The results indicate that dust aerosols can delay or prevent the development of a TC as the minimum sea level pressure of TC Florence was 13 h

  10. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany

    NASA Astrophysics Data System (ADS)

    Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike

    2017-11-01

    The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.

  11. Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect

    NASA Astrophysics Data System (ADS)

    Amiri-Farahani, Anahita; Allen, Robert J.; Neubauer, David; Lohmann, Ulrike

    2017-05-01

    One component of aerosol-cloud interactions (ACI) involves dust and marine stratocumulus clouds (MSc). Few observational studies have focused on dust-MSc interactions, and thus this effect remains poorly quantified. We use observations from multiple sensors in the NASA A-Train satellite constellation from 2004 to 2012 to obtain estimates of the aerosol-cloud radiative effect, including its uncertainty, of dust aerosol influencing Atlantic MSc off the coast of northern Africa between 45° W and 15° E and between 0 and 35° N. To calculate the aerosol-cloud radiative effect, we use two methods following Quaas et al. (2008) (Method 1) and Chen et al. (2014) (Method 2). These two methods yield similar results of -1.5 ± 1.4 and -1.5 ± 1.6 W m-2, respectively, for the annual mean aerosol-cloud radiative effect. Thus, Saharan dust modifies MSc in a way that acts to cool the planet. There is a strong seasonal variation, with the aerosol-cloud radiative effect switching from significantly negative during the boreal summer to weakly positive during boreal winter. Method 1 (Method 2) yields -3.8 ± 2.5 (-4.3 ± 4.1) during summer and 1 ± 2.9 (0.6 ± 1) W m-2 during winter. In Method 1, the aerosol-cloud radiative effect can be decomposed into two terms, one representing the first aerosol indirect effect and the second representing the combination of the second aerosol indirect effect and the semidirect effect (i.e., changes in liquid water path and cloud fraction in response to changes in absorbing aerosols and local heating). The first aerosol indirect effect is relatively small, varying from -0.7 ± 0.6 in summer to 0.1 ± 0.5 W m-2 in winter. The second term, however, dominates the overall radiative effect, varying from -3.2 ± 2.5 in summer to 0.9 ± 2.9 W m-2 during winter. Studies show that the semidirect effect can result in a negative (i.e., absorbing aerosol lies above low clouds like MSc) or positive (i.e., absorbing aerosol lies within low clouds) aerosol

  12. Using operational active remote sensing devices to detect Saharan dust advections and evaluate their contribution to the PM10 levels: The EU LIFE+ "DIAPASON" project

    NASA Astrophysics Data System (ADS)

    Gobbi, Gian Paolo; Wille, Holger; Sozzi, Roberto; Barnaba, Francesca; Costabile, Francesca; Angelini, Federico; Frey, Steffen; Bolignano, Andrea; Morelli, Matteo

    2013-04-01

    The contribution of Saharan-dust advections to both daily and annual PM average mass concentrations can be significant all over Southern Europe. The Directive 2008/50/EC allows subtraction of PM10 exceedances caused by natural contributions from the statistic used to determine air-quality levels in Europe. To this purpose, the Commission Staff Working Paper 6771/11 (EC, 2011) provides specific Guidelines on methods to quantify and subtract the contribution of these sources in the framework of the Air Quality Directive. For Saharan dust, the EC methodology is largely based on a thorough analysis performed over the Iberian Peninsula (Escudero et al, 2007), although revision of the current methodology is in progress. In line with the EC Guidelines, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs"), funded under the EC LIFE+ program, has been formulated to provide a robust, user-oriented, and demonstrated method to assess the presence of desert dust and evaluate its contribution to PM10 levels at the monitoring sites. To this end, in addition to satellite-based data and model forecasts already included in the EC Guidelines, DIAPASON will take advantage, in both the Project implementation and demonstration phase, of innovative and affordable technologies (partly prototyped within the project itself), namely operational Polarization Lidar-Ceilometers (PLC) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The PLC prototypes have been already finalized during the initial phase of the Project. Three of them will be networked in relevant air quality monitoring stations located in the Rome metropolitan area (Italy) during the DIAPASON observational phase (one-year long field campaign) starting in March 2013. The Rome region was chosen as the DIAPASON pilot scale area since highly impacted by urban pollution and frequently affected by Saharan dust transport events. In fact

  13. Single particle chemical composition and shape of fresh and aged Saharan dust in Morocco and at Cape Verde Islands during SAMUM I and II

    NASA Astrophysics Data System (ADS)

    Kandler, K.; Lieke, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Jaenicke, R.; Müller-Ebert, D.; Weinbruch, S.

    2009-04-01

    The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosols were measured. The winter campaign of Saharan Mineral Dust Experiment II was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Aerosol particles between 100 nm and 500 μm (Morocco) respectively 50 μm (Cape Verde) in diameter were collected by nozzle and body impactors and in a sedimentation trap. The particles were investigated by electron microscopic single particle analysis and attached energy-dispersive X-ray analysis. Chemical properties as well as size and shape for each particle were recorded. Three size regimes are identified in the aerosol at Tinfou: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 μm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). At Praia, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as mixtures thereof. During low-dust periods, the aerosol is dominated by sea salt. During dust events, mineral dust takes over the majority of the particle mass up to 90 %. Particles smaller 500 nm in diameter always show a significant abundance of ammonium sulfate. The particle aspect ratio was measured for all analyzed particles. Its size dependence reflects that of the chemical

  14. Impacts of Saharan Dust on the Atmospheric Radiative Balance in the Caribbean during SALTRACE 2013

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gross, S.; Minikin, A.; Freudenthaler, V.; Gasteiger, J.; Mayer, B. C.

    2013-12-01

    Direct and indirect aerosol radiative effects represent one of the largest uncertainties in the modeling of the climate system. To better quantify the effects of aerosols on the Earth's radiative balance and understand important physical effects on small scales such as the influence of aerosols on clouds, detailed measurements of aerosol properties are needed to build a globally representative data set. Mineral dust is among the most abundant aerosols and the Sahara Desert constitutes its largest source. During frequent dust outbreaks thick elevated aerosol layers are formed and transported over large distances -often across the Atlantic Ocean into the Caribbean. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in June/July 2013 continues the SAMUM field experiments conducted in 2006 and 2008. It aims to study the long-range transport of Saharan mineral dust, the properties of aged mineral dust aerosol, and its impact on radiative quantities and cloud processes. The experiment led to an extensive data set on dust layers from Senegal to the Caribbean using airborne in-situ and remote sensing measurements, complemented with ground-based remote sensing and in-situ measurements on sites in Barbados and Puerto Rico as well as satellite remote sensing data. The airborne data were obtained with an extensive aerosol payload aboard the DLR-operated Falcon 20E research aircraft. The measurements cover the entire size range of atmospheric aerosol with a combination of cabin-operated and wing-mounted instruments. In addition, particle properties such as absorption coefficients and volatility are measured. A nadir-looking 2-μm Doppler-lidar system aboard the aircraft was used for wind measurements and served as a path finder for the selection of representative aerosol in-situ levels. In the Caribbean the dust usually arrives in several layers with distinct properties: the mostly undisturbed pure dust layer in altitudes up to 4-5 km

  15. Environmental factors controlling the seasonal variability in particle size distribution of modern Saharan dust deposited off Cape Blanc

    NASA Astrophysics Data System (ADS)

    Friese, Carmen A.; van der Does, Michèlle; Merkel, Ute; Iversen, Morten H.; Fischer, Gerhard; Stuut, Jan-Berend W.

    2016-09-01

    The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxy for trade-wind speed. However, there are still large uncertainties with respect to the seasonality of the particle sizes of deposited Saharan dust off northwestern Africa and the factors influencing this seasonality. We investigated a three-year time-series of grain-size data from two sediment-trap moorings off Cape Blanc, Mauritania and compared them to observed wind-speed and precipitation as well as satellite images. Our results indicate a clear seasonality in the grain-size distributions: during summer the modal grain sizes were generally larger and the sorting was generally less pronounced compared to the winter season. Gravitational settling was the major deposition process during winter. We conclude that the following two mechanisms control the modal grain size of the collected dust during summer: (1) wet deposition causes increased deposition fluxes resulting in coarser modal grain sizes and (2) the development of cold fronts favors the emission and transport of coarse particles off Cape Blanc. Individual dust-storm events throughout the year could be recognized in the traps as anomalously coarse-grained samples. During winter and spring, intense cyclonic dust-storm events in the dust-source region explained the enhanced emission and transport of a larger component of coarse particles off Cape Blanc. The outcome of our study provides important implications for climate modellers and paleo-climatologists.

  16. Profiling lifetime episodes of upper gastrointestinal bleeding among patients from rural Sub-Saharan Africa where schistosoma mansoni is endemic.

    PubMed

    Opio, Christopher Kenneth; Kazibwe, Francis; Ocama, Ponsiano; Rejani, Lalitha; Belousova, Elena Nikolaevna; Ajal, Paul

    2016-01-01

    Severe chronic hepatic schistosomiasis is a common cause of episodes upper gastrointestinal bleeding (UGIB) in sub-Saharan Africa (SSA). However, there is paucity of data on clinical epidemiology of episodes of UGIB from rural Africa despite on going public health interventions to control and eliminate schistosomiasis. Through a cross sectional study we profiled lifetime episodes of upper gastrointestinal bleeding and associated factors at a rural primary health facility in sub-Saharan Africa were schistosomiasis is endemic. The main outcome was number of lifetime episodes of UGIB analyzed as count data. From 107 enrolled participants, 323 lifetime episodes of UGIB were reported. Fifty-seven percent experienced ≥ 2 lifetime episodes of UGIB. Ninety-four percent had severe chronic hepatic schistosomiasis and 80% esophageal varices. Alcohol use and viral hepatitis was infrequent. Eighty-eight percent were previously treated with praziquantel and 70% had a history of blood transfusion. No patient had ever had an endoscopy or treatment for prevention of recurrent variceal bleeding. Multivariable analysis identified a cluster of eight clinical factor variables (age ≥ 40, female sex, history of blood transfusion, abdominal collaterals, esophageal varices, pattern x periportal fibrosis, anemia, and thrombocytopenia) significantly associated (P-value < 0.05) with increased probability of experiencing two or more lifetime episodes of UGIB in our study. Upper gastrointestinal bleeding is a common health problem in this part of rural SSA where schistosomiasis is endemic. The clinical profile described is unique and is important for improved case management, and for future research.

  17. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  18. The transition of North Atlantic dust deposition and Saharan landscape during the Holocene

    NASA Astrophysics Data System (ADS)

    Egerer, S.; Claussen, M.; Stanelle, T.; Reick, C. H.

    2017-12-01

    The sudden increase in North Atlantic dust deposition about 5 ka BP indicated by sediment records along the West African margin has been associated with an abrupt end of the African Humid Period (AHP). We perform several time slice simulations from 8 ka BP until the pre-industrial era to explore changes in the Holocene dust cycle. To do so, we use the coupled aerosol-climate model ECHAM6-HAM2 including interactive vegetation and dust, whereas ocean conditions and lakes are prescribed. The interactive coupling of vegetation, dust and atmosphere allows to set the dynamics of North Atlantic dust deposition in context to Holocene climate and landscape change in North Africa.In agreement with marine sediment records, we find an abrupt increase in simulated dust deposition at the location of the core sites roughly between 6 and 4 ka BP. Accordingly, dust emission in the North-west Sahara increases rapidly indicating that dust was transported by the same wind systems throughout the Holocene. The sudden increase in dust emission in the North-west Sahara is partly a consequence of a fast decline of vegetation cover from 22°N to 18°N due to vegetation-climate feedbacks and the rapid replacement of shrubs by grasses. Additionally, the prescribed strong but gradual reduction of lake surface area enforces accelerated dust release as former areas covered by lakes turn into highly productive dust sources. Changes in the Saharan landscape and dust emission south of 18°N and in the eastern Sahara as well as changes in atmospheric circulation play a minor role in driving the dynamics of North Atlantic dust deposition at the specific core sites. Our study emphasizes spatial and temporal differences in the transition of North African landscape implying that implications from local data records to large scales have to be treated with caution.

  19. Detecting and assessing Saharan dust contribution to PM10 loads: A pilot study within the EU-Life+10 project DIAPASON

    NASA Astrophysics Data System (ADS)

    Gobbi, Gian Paolo; Barnaba, Francesca; Bolignano, Andrea; Costabile, Francesca; Di Liberto, Luca; Dionisi, Davide; Drewnick, Frank; Lucarelli, Franco; Manigrasso, Maurizio; Nava, Silvia; Sauvage, Laurent; Sozzi, Roberto; Struckmeier, Caroline; Wille, Holger

    2015-04-01

    The EC LIFE+2010 DIAPASON Project (Desert dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs, www.diapason-life.eu) intends to contribute new methodologies to assess the role of aerosol advections of Saharan dust to the local PM loads recorded in Europe. To this goal, automated Polarization Lidar-Ceilometers (PLCs) were prototyped within DIAPASON to certify the presence of Saharan dust plumes and support evaluating their mass loadings in the lowermost atmosphere. The whole process also involves operational dust forecasts, as well as satellite and in-situ observations. Demonstration of the Project is implemented in the pilot region of Rome (Central Italy) where three networked DIAPASON PLCs started, in October 2013 a year-round, 24h/day monitoring of the altitude-resolved aerosol backscatter and depolarization profiles. Two intensive observational periods (IOPs) involving chemical analysis and detailed physical characterization of aerosol samples have also been carried out in this year-long campaign, namely in Fall 2013 and Spring 2014. These allowed for an extensive interpretation of the PLC observations, highlighting important synergies between the PLC and the in situ data. The presentation will address capabilities of the employed PLCs, observations agreement with model forecasts of dust advections, retrievals of aerosol properties and methodologies developed to detect Saharan advections and to evaluate the relevant mass contribution to PM10. This latter task is intended to provide suggestions on possible improvements to the current EC Guidelines (2011) on this matter. In fact, specific Guidelines are delivered by the European Commission to provide the Member States a common method to asses the Saharan dust contribution to the currently legislated PM-related Air Quality metrics. The DIAPASON experience shows that improvements can be proposed to make the current EC Methodology more robust and flexible. The methodology DIAPASON

  20. April 2008 Saharan dust event: Its contribution to PM10 concentrations over the Anatolian Peninsula and relation with synoptic conditions.

    PubMed

    Kabatas, B; Pierce, R B; Unal, A; Rogal, M J; Lenzen, A

    2018-08-15

    An online-coupled regional Weather Research and Forecasting model with chemistry (WRF-Chem) is utilized incorporating 0.1°×0.1° spatial resolution HTAP (Hemispheric Transport of Air Pollution) anthropogenic emissions to investigate the spatial and temporal distribution of a Saharan dust outbreak, which contributed to high levels (>50μg/m 3 ) of daily PM 10 concentrations over Turkey in April 2008. Aerosol optical depth and cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board of Aqua satellite are used to better analyze the synoptic conditions that generated the dust outbreak in April 2008. A "Sharav" low pressure system, which transports the dust from Saharan source region over Turkey along the cold front, tends to move faster in WRF-Chem simulations than observed. This causes the predicted dust event to arrive earlier than observed leading to an overestimation of surface PM 10 concentrations in WRF-Chem simulation at the beginning of the event. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Dust sources and atmospheric circulation in concert controlling Saharan dust emission and transport towards the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Schepanski, Kerstin; Mallet, Marc; Heinold, Bernd; Ulrich, Max

    2017-04-01

    Dust transported from north African source regions towards Europe is a ubiquitous phenomenon in the Mediterranean region, a geographic region that is in part densely populated. Besides its impacts on the atmospheric radiation budget, dust suspended in the atmosphere results in reduced air quality, which is generally sensed as a reduction in quality of life. Furthermore, the exposure to dust aerosols enhances the prevalence of respiratory diseases, which reduces the general human wellbeing, and ultimately results in an increased loss of working hours due to illness and hospitalization rates. Characteristics of the atmospheric dust life cycle that determine dust transport will be presented with focus on the ChArMEx special observation period in June and July 2013 using the atmosphere-dust model COSMO-MUSCAT (COSMO: Consortium for Small-scale MOdeling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model). Modes of atmospheric circulation were identified from empirical orthogonal function (EOF) analysis of the geopotential height at 850 hPa for summer 2013 and compared to EOFs calculated from 1979-2015 ERA-Interim reanalysis. Generally, two different phases were identified. They are related to the eastward propagation of the subtropical ridge into the Mediterranean basin, the position of the Saharan heat low, and the predominant Iberian heat low. The relation of these centres of action illustrates a dipole pattern for enhanced (reduced) dust emission fluxes, stronger (weaker) meridional dust transport, and consequent increase (decrease) atmospheric dust concentrations and deposition fluxes. In concert, the results from this study aim at illustrating the relevance of knowing the dust source locations in concert with the atmospheric circulation. Ultimately, this study addresses the question of what is finally transported towards the Mediterranean basin and Europe from which source regions - and fostered by which atmospheric circulation pattern. Outcomes from this study

  2. Identification of mineral dust layers in high alpine snow packs

    NASA Astrophysics Data System (ADS)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne

    2017-04-01

    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  3. The evolution of Saharan dust input in Lanzarote (Canary Islands): Lower Holocene triggering by human activity in the northwest Sahara?

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, H.; Oberhänsli, H.; Faust, D.; Zöller, L.; Hambach, U.; Fuchs, M.

    2009-04-01

    A Holocene increase of Saharan dust input to the area of the Canary islands is accompanied by a strong coarsening of this material during the Early Holocene as recorded in loess-like sediments deposited on Lanzarote. Whereas natural causes can be ruled out for the coarsening that is exceptional during the period of the last 180 ka, it is assumed that anthropogenic activity strongly mobilized dust in an area on the pathway of dust prior to its arrival in Lanzarote comprising parts of Western Sahara and northern Mauritania. Although scarce archaeological data from the coastal area of that region do not point to strong anthropogenic activity during the Early Holocene yet, a high density of unexplored archaeological remains reported from the coastal hinterlands does not exclude this hypothesis. Thus, the results of this study highlight the need of further archaeological investigations in that Saharan region.

  4. [Characteristics of particulate matters and its chemical compositions during the dust episodes in Shanghai in spring, 2011].

    PubMed

    Li, Gui-Ling; Zhou, Min; Chen, Chang-Hong; Wang, Hong-Li; Wang, Qian; Lou, Sheng-Rong; Qiao, Li-ping; Tang, Xi-bin; Li, Li; Huang, Hai-ying; Chen, Ming-hua; Huang, Cheng; Zhang, Gang-Feng

    2014-05-01

    A continuous air quality observation was conducted in the urban area of Shanghai from April 28 to May 18 in 2011. The mass concentration of particle matters and main chemical compositions of fine particle were measured and analyzed. The mass concentrations of PM10 and PM2.5 during the dust episode were much higher than those in non-dust episode, with the maximum daily mass concentrations of PM10 and PM2.5 reaching 787.2 microg.gm-3 and 139.5 microgm(-3) , respectively. The average PM2.5 /PM10 ratio was (32.9 +/-14. 6)% (15. 6% -85.1% ). The total water soluble inorganic ions(TWSII ) contributed (27.2 +/- 19. 2)% (4. 8% -80. 8% ) of total PM2.5, and the secondary water soluble ions (SNA) , including SO(2-)4 , NO-(3) and NH(+)(4) , were (76.9 +/- 13.9)% (41.9%-94.2%) in TWSIl. The concentrations of TWSII and SNA in PM2.5 during dust days became lower than those in non-dust days while the trend of the ratio of Ca2+ to PM2.5, increased. The mean OC/EC value in non-dust days was higher than that in the heavy dust pollution episode, but lower than that in weak dust days. In addition, mineral-rich particle in dust period had an acid-buffer effect, making particle alkaline in dust days stronger. In non-dust days, SO(2-)(4) and NO(-)(3) mainly existed in the form of NH4HSO4, (NH4)SO4, and NH4NO3, and combined with other mineral ions during dust days.

  5. Analysis of Measurements of Saharan Dust by Airborne and Ground-based Remote Sensing Methods during the Puerto Rico Dust Experiment (PRIDE)

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, E. Judd; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James; Christopher, Sundar A.; Jonsson, Haflidi H.

    2003-01-01

    For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on findings on African dust transported into the Caribbean utilizing Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum less than 0.5 and with clean marine periods of _0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged _0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a, weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of Maring et al. that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes which may impact dust vertical distribution and determine and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection couple with mixing by easterly waves and regional subsidence.

  6. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    NASA Technical Reports Server (NTRS)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0

  7. Long-range-transported Saharan dust in the Caribbean - an electron microscopy perspective of aerosol composition and modification

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Hartmann, Markus; Ebert, Martin; Weinbruch, Stephan; Weinzierl, Bernadett; Walser, Adrian; Sauer, Daniel; Wadinga Fomba, Khanneh

    2015-04-01

    From June to July in 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was performed in the Caribbean. Airborne aerosol sampling was performed onboard the DLR Falcon aircraft in altitudes between 300 m and 5500 m. Ground-based samples were collected at Ragged Point (Barbados, 13.165 °N, 59.432 °W) and at the Cape Verde Atmospheric Observatory (Sao Vicente, 16.864 °N, 24.868 °W). Different types of impactors and sedimentation samplers were used to collect particles between 0.1 µm and 4 µm (airborne) and between 0.1 µm and 100 µm (ground-based). Particles were analyzed by scanning electron microscopy with attached energy-dispersive X-ray analysis, yielding information on particle size, particle shape and chemical composition for elements heavier than nitrogen. A particle size correction was applied to the chemical data to yield better quantification. A total of approximately 100,000 particles were analyzed. For particles larger than 0.7 µm, the aerosol in the Caribbean during the campaign was a mixture of mineral dust, sea-salt at different aging states, and sulfate. Inside the Saharan dust plume - outside the marine boundary layer (MBL) - the aerosol is absolutely dominated by mineral dust. Inside the upper MBL, sea-salt exists as minor component in the aerosol for particles smaller than 2 µm in diameter, larger ones are practically dust only. When crossing the Soufriere Hills volcano plume with the aircraft, an extremely high abundance of small sulfate particles could be observed. At Ragged Point, in contrast to the airborne measurements, aerosol is frequently dominated by sea-salt particles. Dust relative abundance at Ragged Point has a maximum between 5 µm and 10 µm particles diameter; at larger sizes, sea-salt again prevails due to the sea-spray influence. A significant number of dust particles larger than 20 µm was encountered. The dust component in the Caribbean - airborne as well as ground

  8. Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales

    PubMed Central

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  9. A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling

    NASA Astrophysics Data System (ADS)

    PéRez, C.; Nickovic, S.; Baldasano, J. M.; Sicard, M.; Rocadenbosch, F.; Cachorro, V. E.

    2006-08-01

    A long Saharan dust event affected the western Mediterranean in the period 12-28 June 2002. Dust was present mainly between 1- and 5-km height affecting most parts of the Iberian Peninsula and reaching western/central Europe. Intensive backscatter lidar observations over Barcelona (Spain) and Sun photometer data from two stations (El Arenosillo, Spain, and Avignon, France) are used to evaluate different configurations the Dust Regional Atmospheric Modeling (DREAM) system. DREAM currently operates dust forecasts over the Mediterranean region (http://www.bsc.es/projects/earthscience/DREAM/) considering four particle size bins while only the first two are relevant for long-range transport analysis since their life time is larger than 12 hours. A more detailed bin method is implemented, and two different dust distributions at sources are compared to the operational version. Evaluations are performed at two wavelengths (532 and 1064 nm). The dust horizontal and vertical structure simulated by DREAM shows very good qualitative agreement when compared to SeaWIFS satellite images and lidar height-time displays over Barcelona. When evaluating the modeled aerosol optical depth (AOD) against Sun photometer data, significant improvements are achieved with the use of the new detailed bin method. In general, the model underpredicts the AOD for increasing Ångström exponents because of the influence of anthropogenic pollution in the boundary layer. In fact, the modeled AOD is highly anticorrelated with the observed Ångström exponents. Avignon shows higher influence of small anthropogenic aerosols which explains the better results of the model at the wavelength of 1064 nm over this location. The uncertainties of backscatter lidar inversions (20-30%) are in the same order of magnitude as the differences between the model experiments. Better model results are obtained when comparing to lidar because most of the anthropogenic effect is removed.

  10. Empirical Model for Evaluating PM10 Concentration Caused by River Dust Episodes

    PubMed Central

    Lin, Chao-Yuan; Chiang, Mon-Ling; Lin, Cheng-Yu

    2016-01-01

    Around the estuary of the Zhuo-Shui River in Taiwan, the waters recede during the winter, causing an increase in bare land area and exposing a large amount of fine earth and sand particles that were deposited on the riverbed. Observations at the site revealed that when northeastern monsoons blow over bare land without vegetation or water cover, the fine particles are readily lifted by the wind, forming river dust, which greatly endangers the health of nearby residents. Therefore, determining which factors affect river dust and constructing a model to predict river dust concentration are extremely important in the research and development of a prototype warning system for areas at risk of river dust emissions. In this study, the region around the estuary of the Zhuo-Shui River (from the Zi-Qiang Bridge to the Xi-Bin Bridge) was selected as the research area. Data from a nearby air quality monitoring station were used to screen for days with river dust episodes. The relationships between PM10 concentration and meteorological factors or bare land area were analyzed at different temporal scales to explore the factors that affect river dust emissions. Study results showed that no single factor alone had adequate power to explain daily average or daily maximum PM10 concentration. Stepwise regression analysis of multiple factors showed that the model could not effectively predict daily average PM10 concentration, but daily maximum PM10 concentration could be predicted by a combination of wind velocity, temperature, and bare land area; the coefficient of determination for this model was 0.67. It was inferred that river dust episodes are caused by the combined effect of multiple factors. In addition, research data also showed a time lag effect between meteorological factors and hourly PM10 concentration. This characteristic was applied to the construction of a prediction model, and can be used in an early warning system for local residents. PMID:27271642

  11. Empirical Model for Evaluating PM10 Concentration Caused by River Dust Episodes.

    PubMed

    Lin, Chao-Yuan; Chiang, Mon-Ling; Lin, Cheng-Yu

    2016-06-02

    Around the estuary of the Zhuo-Shui River in Taiwan, the waters recede during the winter, causing an increase in bare land area and exposing a large amount of fine earth and sand particles that were deposited on the riverbed. Observations at the site revealed that when northeastern monsoons blow over bare land without vegetation or water cover, the fine particles are readily lifted by the wind, forming river dust, which greatly endangers the health of nearby residents. Therefore, determining which factors affect river dust and constructing a model to predict river dust concentration are extremely important in the research and development of a prototype warning system for areas at risk of river dust emissions. In this study, the region around the estuary of the Zhuo-Shui River (from the Zi-Qiang Bridge to the Xi-Bin Bridge) was selected as the research area. Data from a nearby air quality monitoring station were used to screen for days with river dust episodes. The relationships between PM10 concentration and meteorological factors or bare land area were analyzed at different temporal scales to explore the factors that affect river dust emissions. Study results showed that no single factor alone had adequate power to explain daily average or daily maximum PM10 concentration. Stepwise regression analysis of multiple factors showed that the model could not effectively predict daily average PM10 concentration, but daily maximum PM10 concentration could be predicted by a combination of wind velocity, temperature, and bare land area; the coefficient of determination for this model was 0.67. It was inferred that river dust episodes are caused by the combined effect of multiple factors. In addition, research data also showed a time lag effect between meteorological factors and hourly PM10 concentration. This characteristic was applied to the construction of a prediction model, and can be used in an early warning system for local residents.

  12. Could gradual changes in Holocene Saharan landscape have caused the observed abrupt shift in North Atlantic dust deposition?

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2017-09-01

    The abrupt change in North Atlantic dust deposition found in sediment records has been associated with a rapid large scale transition of Holocene Saharan landscape. We hypothesize that gradual changes in the landscape may have caused this abrupt shift in dust deposition either because of the non-linearity in dust activation or because of the heterogeneous distribution of major dust sources. To test this hypothesis, we investigate the response of North Atlantic dust deposition to a prescribed 1) gradual and spatially homogeneous decrease and 2) gradual southward retreat of North African vegetation and lakes during the Holocene using the aerosol-climate model ECHAM-HAM. In our simulations, we do not find evidence of an abrupt increase in dust deposition as observed in marine sediment records along the Northwest African margin. We conclude that such gradual changes in landscape are not sufficient to explain the observed abrupt changes in dust accumulation in marine sediment records. Instead, our results point to a rapid large-scale retreat of vegetation and lakes in the area of significant dust sources.

  13. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air.

    PubMed

    Garrison, V H; Majewski, M S; Konde, L; Wolf, R E; Otto, R D; Tsuneoka, Y

    2014-12-01

    Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure. Published by Elsevier B.V.

  14. Direct Radiative Effect of Mineral Dust on the Development of African Easterly Wave in Late Summer, 2003-2007

    NASA Technical Reports Server (NTRS)

    Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong; Matsui, Toshihisa; Arking, Albert

    2012-01-01

    Episodic events of both Saharan dust outbreaks and African Easterly Waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan Air Layer (SAL) on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting (WRF) model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximum tropical cyclone activity, in years 2003-2007. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, most AEWs intensify in the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. We conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.

  15. Investigating Sensitivity to Saharan Dust in Tropical Cyclone Formation Using Nasa's Adjoint Model

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel

    2015-01-01

    As tropical cyclones develop from easterly waves coming of the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the

  16. Investigating sensitivity to Saharan dust in tropical cyclone formation using NASA's adjoint model

    NASA Astrophysics Data System (ADS)

    Holdaway, Daniel

    2015-04-01

    As tropical cyclones develop from easterly waves coming off the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the

  17. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust

    NASA Astrophysics Data System (ADS)

    Ingall, E. D.; Longo, A.; Feng, Y.; Lai, B.; Landing, W. M.; Shelley, R.; Nenes, A.; Mihalopoulos, N.; Violaki, K.

    2016-12-01

    Iron is a key micronutrient that is vital for all organisms. The supply of bioavailable, soluble iron controls primary productivity in approximately 30% of the world's oceans. The significant contribution of atmospheric aerosols to the bioavailable iron budget in vast ocean regions, underscores the need to understand the controls and transformations of aerosol iron solubility during atmospheric transport. The Sahara Desert contains the largest and most active sources of aerosol dust globally and can be a key source of nutrients to the Mediterranean Sea, much of the North Atlantic Ocean, and even as far as the Gulf of Mexico. Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated aerosol iron in Mediterranean samples. In Atlantic samples, iron(II & III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing, including acidic reactions and photo-reduction, likely influence the form of iron minerals and the oxidation state in Saharan dust aerosols and contribute to increases in aerosol iron solubility. Overall, these findings suggest that a combination of factors affects aerosol iron solubility during long-distance atmospheric transport and emphasize the need to consider reductive mechanisms as well as proton-induced solubilization of aerosol iron in modeling studies.

  18. Saharan dust, convective lofting, aerosol enhancement zones, and potential impacts on ice nucleation in the tropical upper troposphere

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, B. E.; Ferrare, R. A.; Sauter, K. E.; L'Ecuyer, T. S.; van den Heever, S. C.; Heymsfield, A. J.; Ismail, S.; Diskin, G. S.

    2017-08-01

    Dry aerosol size distributions and scattering coefficients were measured on 10 flights in 32 clear-air regions adjacent to tropical storm anvils over the eastern Atlantic Ocean. Aerosol properties in these regions were compared with those from background air in the upper troposphere at least 40 km from clouds. Median values for aerosol scattering coefficient and particle number concentration >0.3 μm diameter were higher at the anvil edges than in background air, showing that convective clouds loft particles from the lower troposphere to the upper troposphere. These differences are statistically significant. The aerosol enhancement zones extended 10-15 km horizontally and 0.25 km vertically below anvil cloud edges but were not due to hygroscopic growth since particles were measured under dry conditions. Number concentrations of particles >0.3 μm diameter were enhanced more for the cases where Saharan dust layers were identified below the clouds with airborne lidar. Median number concentrations in this size range increased from 100 l-1 in background air to 400 l-1 adjacent to cloud edges with dust below, with larger enhancements for stronger storm systems. Integration with satellite cloud frequency data indicates that this transfer of large particles from low to high altitudes by convection has little impact on dust concentrations within the Saharan Air Layer itself. However, it can lead to substantial enhancement in large dust particles and, therefore, heterogeneous ice nuclei in the upper troposphere over the Atlantic. This may induce a cloud/aerosol feedback effect that could impact cloud properties in the region and downwind.

  19. Intensity of African Humid Periods Estimated from Saharan Dust Fluxes.

    PubMed

    Ehrmann, Werner; Schmiedl, Gerhard; Beuscher, Sarah; Krüger, Stefan

    2017-01-01

    North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the intensities and characteristics of pre-Holocene humid periods. Here we present a high-resolution record of fine-grained eastern Saharan dust from the Eastern Mediterranean Sea spanning the last 180 kyr, which is based on the clay mineral composition of the marine sediments, especially the kaolinite/chlorite ratio. Minimum aeolian kaolinite transport occurred during the African Humid Periods because kaolinite deflation was hampered by increased humidity and vegetation cover. Instead, kaolinite weathering from kaolinite-bearing Cenozoic rocks was stored in lake basins, river beds and soils during these periods. During the subsequent dry phases, fine-grained dust was mobilised from the desiccated lakes, rivers and soils resulting in maximum aeolian uptake and transport of kaolinite. The kaolinite transport decreased again when these sediment sources exhausted. We conclude that the amount of clay-sized dust blown out of the Sahara into the Eastern Mediterranean Sea is proportional to the intensity of the kaolinite weathering and accumulation in soils and lake sediments, and thus to the strength of the preceding humid period. These humid periods provided the windows for the migration of modern humans out of Africa, as postulated previously. The strongest humid period occurred during the Eemian and was followed by two weaker phases centred at ca. 100 ka and ca. 80 ka.

  20. Intensity of African Humid Periods Estimated from Saharan Dust Fluxes

    PubMed Central

    Ehrmann, Werner; Schmiedl, Gerhard; Beuscher, Sarah; Krüger, Stefan

    2017-01-01

    North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the intensities and characteristics of pre-Holocene humid periods. Here we present a high-resolution record of fine-grained eastern Saharan dust from the Eastern Mediterranean Sea spanning the last 180 kyr, which is based on the clay mineral composition of the marine sediments, especially the kaolinite/chlorite ratio. Minimum aeolian kaolinite transport occurred during the African Humid Periods because kaolinite deflation was hampered by increased humidity and vegetation cover. Instead, kaolinite weathering from kaolinite-bearing Cenozoic rocks was stored in lake basins, river beds and soils during these periods. During the subsequent dry phases, fine-grained dust was mobilised from the desiccated lakes, rivers and soils resulting in maximum aeolian uptake and transport of kaolinite. The kaolinite transport decreased again when these sediment sources exhausted. We conclude that the amount of clay-sized dust blown out of the Sahara into the Eastern Mediterranean Sea is proportional to the intensity of the kaolinite weathering and accumulation in soils and lake sediments, and thus to the strength of the preceding humid period. These humid periods provided the windows for the migration of modern humans out of Africa, as postulated previously. The strongest humid period occurred during the Eemian and was followed by two weaker phases centred at ca. 100 ka and ca. 80 ka. PMID:28129378

  1. Profiling of Saharan dust from the Caribbean to western Africa - Part 2: Shipborne lidar measurements versus forecasts

    NASA Astrophysics Data System (ADS)

    Ansmann, Albert; Rittmeister, Franziska; Engelmann, Ronny; Basart, Sara; Jorba, Oriol; Spyrou, Christos; Remy, Samuel; Skupin, Annett; Baars, Holger; Seifert, Patric; Senf, Fabian; Kanitz, Thomas

    2017-12-01

    A unique 4-week ship cruise from Guadeloupe to Cabo Verde in April-May 2013 see part 1, Rittmeister et al. (2017) is used for an in-depth comparison of dust profiles observed with a polarization/Raman lidar aboard the German research vessel Meteor over the remote tropical Atlantic and respective dust forecasts of a regional (SKIRON) and two global atmospheric (dust) transport models (NMMB/BSC-Dust, MACC/CAMS). New options of model-observation comparisons are presented. We analyze how well the modeled fine dust (submicrometer particles) and coarse dust contributions to light extinction and mass concentration match respective lidar observations, and to what extent models, adjusted to aerosol optical thickness observations, are able to reproduce the observed layering and mixing of dust and non-dust (mostly marine) aerosol components over the remote tropical Atlantic. Based on the coherent set of dust profiles at well-defined distances from Africa (without any disturbance by anthropogenic aerosol sources over the ocean), we investigate how accurately the models handle dust removal at distances of 1500 km to more than 5000 km west of the Saharan dust source regions. It was found that (a) dust predictions are of acceptable quality for the first several days after dust emission up to 2000 km west of the African continent, (b) the removal of dust from the atmosphere is too strong for large transport paths in the global models, and (c) the simulated fine-to-coarse dust ratio (in terms of mass concentration and light extinction) is too high in the models compared to the observations. This deviation occurs initially close to the dust sources and then increases with distance from Africa and thus points to an overestimation of fine dust emission in the models.

  2. Combined use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of imaginary part of refractive index of desert dust aerosol in UV part of spectrum along with aerosol layer height above the ground. The method uses Total Ozone Mapping Spectrometer' (TOMS) measurements of the top of atmosphere radiances (331 nm, 360 nm) and aerosol optical depth provided by Aerosol Robotic Network (AERONET) (440 nm). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations. The time variability of retrieved values for aerosol layer height is consistent with the predictions of dust transport model.

  3. Impact of a Saharan dust intrusion over southern Spain on DNI estimation with sky cameras

    NASA Astrophysics Data System (ADS)

    Alonso-Montesinos, J.; Barbero, J.; Polo, J.; López, G.; Ballestrín, J.; Batlles, F. J.

    2017-12-01

    To operate Central Tower Solar Power (CTSP) plants properly, solar collector systems must be able to work under varied weather conditions. Therefore, knowing the state of the atmosphere, and more specifically the level of incident radiation, is essential operational information to adapt the electricity production system to atmospheric conditions. In this work, we analyze the impact of a strong Saharan dust intrusion on the Direct normal irradiance (DNI) registered at two sites 35 km apart in southeastern Spain: the University of Almería (UAL) and the Plataforma Solar de Almería (PSA). DNI can be inputted into the European Solar Radiation Atlas (ESRA) clear sky procedure to derive Linke turbidity values, which proved to be extremely high at the UAL. By using the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) at the PSA site, AERONET data from PSA and assuming dust dominated aerosol, DNI estimations agreed strongly with the measured DNI values. At the UAL site, a SMARTS simulation of the DNI values also seemed to be compatible with dust dominated aerosol.

  4. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm     ... ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated ... cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of ...

  5. Direct Radiative Effect of Mineral Dust on the Development of African Easterly Waves in Late Summer, 2003-07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong

    2012-12-19

    Episodic events of both Saharan dust outbreaks and African easterly waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan air layer on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximumtropical cyclone activity, in years 2003–07. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, mostAEWsintensify inmore » the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. The authors conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.« less

  6. Linkages between observed, modeled Saharan dust loading and meningitis in Senegal during 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Diokhane, Aminata Mbow; Jenkins, Gregory S.; Manga, Noel; Drame, Mamadou S.; Mbodji, Boubacar

    2016-04-01

    The Sahara desert transports large quantities of dust over the Sahelian region during the Northern Hemisphere winter and spring seasons (December-April). In episodic events, high dust concentrations are found at the surface, negatively impacting respiratory health. Bacterial meningitis in particular is known to affect populations that live in the Sahelian zones, which is otherwise known as the meningitis belt. During the winter and spring of 2012, suspected meningitis cases (SMCs) were with three times higher than in 2013. We show higher surface particular matter concentrations at Dakar, Senegal and elevated atmospheric dust loading in Senegal for the period of 1 January-31 May during 2012 relative to 2013. We analyze simulated particulate matter over Senegal from the Weather Research and Forecasting (WRF) model during 2012 and 2013. The results show higher simulated dust concentrations during the winter season of 2012 for Senegal. The WRF model correctly captures the large dust events from 1 January-31 March but has shown less skill during April and May for simulated dust concentrations. The results also show that the boundary conditions are the key feature for correctly simulating large dust events and initial conditions are less important.

  7. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Thornhill, Kenneth L., II; Kittaka, Chieko; Ismail, Syed; Chen, Gao; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; hide

    2010-01-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements

  8. Dust episodes in Beirut and their effect on the chemical composition of coarse and fine particulate matter.

    PubMed

    Jaafar, Malek; Baalbaki, Rima; Mrad, Raya; Daher, Nancy; Shihadeh, Alan; Sioutas, Constantinos; Saliba, Najat A

    2014-10-15

    Particles captured during dust episodes in Beirut originated from both the African and Arabian deserts. This particular air mixture showed an increase, over non-dust episodes, in particle volume distribution which was mostly noticed for particles ranging in sizes between 2.25 and 5 μm. It also resulted in an increase in average mass concentration by 48.5% and 14.6%, for the coarse and fine fractions, respectively. Chemical analysis of major aerosol components accounted for 93% of fine PM and 71% of coarse PM. Crustal material (CM) dominated the coarse PM fraction, contributing to 39 ± 15% of the total mass. Sea salt (SS) (11 ± 10%) and secondary ions (SI) (11 ± 7%) were the second most abundant elements. In the fine fraction, SI (36 ± 14%) were the most abundant PM constituent, followed by organic matter (OM) (33 ± 7%) and CM (13 ± 2%). Enrichment factors (EF) and correlation coefficients show that biogenic and anthropogenic sources contribute to the elemental composition of particles during dust episodes. This study emphasizes on the role played by the long-range transport of aerosols in changing the chemical composition of the organic and inorganic constituents of urban coarse and fine PM. The chemical reactions between aged urban and dust aerosols are enhanced during transport, leading to the formation of organo-nitrogenated and -sulfonated compounds. Their oligomeric morphologies are further confirmed by SEM-EDX measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Combined Use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of the imaginary part of refractive index of desert dust aerosol in the near UV part of spectrum. The method uses Total Ozone Mapping Spectrometer (TOMS) measurements of the top of the atmosphere radiances at 331 and 360 run and aerosol optical depth provided by the Aerosol Robotic Network (AERONET). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations.

  10. Understanding the Role of the Saharan Heat Low in Modifying Atmospheric Dust Distributions - Observations From Two Research Aircraft Flying Simultaneously Over Western Africa

    NASA Astrophysics Data System (ADS)

    Engelstaedter, S.; Washington, R.; Allen, C.; Flamant, C.; Chaboureau, J.-P.; Kocha, C.; Lavaysse, C.

    2012-04-01

    The near-surface low pressure system that develops over western Africa in Boreal summer (know as the Saharan Heat Low) is thought to have a significant influence on regional and global climate due to its links with the Monsoon, the Northern Atlantic and the Mediterranean climate system. The SHL is associated with the deepest atmospheric boundary layer on the planet and is co-located with the highest dust loadings in the world. The processes that link the heat low and dust distribution are only poorly understood. Improving the representation of the heat low and the processes that control the emission and atmospheric distribution of dust in climate and NWP models is crucial if we are to reduce known systematic errors in climate predictions and weather forecasts. In collaboration with European partners, the UK-based consortium project "Fennec - The Saharan Climate System" aims at improving our understanding of this complex climate system by integrating for the first time coordinated ground and aircraft observations from the central Sahara, newly developed satellite products, and the application of regional and global models. On 22 June 2011, two research aircraft operating out of Fuerteventura (Spain) surveyed the Saharan Heat Low centred over Mauritania-Mali border. The aircraft flew simultaneously in the morning and in the afternoon on two different tracks thereby sampling each track four times on that day. Both aircraft were equipped with a downward looking LIDAR for aerosol detection. In total, 51 sondes were dropped during the flights making this the most comprehensive dataset to study the spatio-temporal diurnal evolution of the heat low including the interactions between the atmospheric boundary layer and dust distributions. Combining LIDAR observations, satellite imagery and back-trajectory modelling we show that an aged dust layer was present in the heat low region resulting from previous day's dust activity associated with a south-moving density current from

  11. Direct Radiative Forcing from Saharan Mineral Dust Layers from In-situ Measurements and Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.

    2016-12-01

    Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.

  12. Analysis of two Saharan dust events of North Africa in the Mediterranean region by Using SKIRON/Eta model

    NASA Astrophysics Data System (ADS)

    Benaouda, D.; Kallos, G.; Azzi, A.; Louka, P.; Benlefki, A.

    2009-04-01

    As it is well known established that significant ecosystems effects can be produced by pollutants generated many hundreds of kilometres away. Desert is natural laboratories containing valuable mineral deposits that were formed in the arid environment or that were exposed by erosion. Dust is a key species of many biogeochemical. One important effect of the dust cycle is triggering of various biochemical reactions between dust ingredients and the environment. The biogeochemical impact of desert dust also remains a matter of discussion regarding its contribution for different major and minor elements to terrestrial and marine systems and especially its potential fertilising role for remote oceanic areas by supplying micronutrients such as phosphorus and iron. Saharan dust is responsible for the supply of nutrients resulting in the increase of the production of the pelagic system, but competitively may remove phosphorus, through the adsorption on dust particles, contributing to the oligotrophy of the system, in addition, the presence of Si and Fe in the dust deposition may change the phytoplankton communities resulting in fast growth rates leading to blooms. In addition to direct radiative forcing, dust participates in indirect climate forcing through its role as a cloud-condensation nucleus and potential atmospheric CO2 regulator via biospheric nutrient delivery. Scattering and absorption of radiation by dust have impacts on the Earth's radiation budget, the thermal structure of the troposphere, and actinic fluxes, altering dynamical and photochemical processes. Coating of dust particles under polluted conditions can change microphysical properties and promote surface chemical. The Mediterranean Sea is a semi-enclosed basin, which receives substances sporadically from the arid regions of the Sahara desert. In such processes, dust modifies biochemistry of the Mediterranean water, changes features of the terrestrial ecosystems, and neutralises acid rains. Mineral dust

  13. Influences of natural emission sources (wildfires and Saharan dust) on the urban organic aerosol in Barcelona (Western Mediterranean Basis) during a PM event.

    PubMed

    van Drooge, Barend L; Lopez, Jordi F; Grimalt, Joan O

    2012-11-01

    The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM(10) filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6 %. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.

  14. Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.

    2010-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.

  15. The formation and dust lifting processes associated with a large Saharan meso-scale convective system (MCS)

    NASA Astrophysics Data System (ADS)

    Roberts, Alex; Knippertz, Peter

    2013-04-01

    This work focusses on the meteorology that produced a large Mesoscale Convective System (MCS) and the dynamics of its associated cold pool. The case occurred between 8th-10th June 2010 and was initiated over the Hoggar and Aïr Mountains in southern Algeria and northern Niger respectively. The dust plume created covered parts of Algeria, Mali and Mauritania and was later deformed the by background flow and transported over the Atlantic and Mediterranean. This study is based on: standard surface observations (where available), ERA-Interim reanalysis, Meteosat imagery, MODIS imagery, Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat and a high resolution (3.3km) limited area simulation using the Weather Research and Forecasting (WRF) model. A variety of different processes appear to be important for the generation of this MCS and the spreading of the associated dusty cold pool. These include: the presence of a trough on the subtropical jet, the production of a tropical cloud plume, disruption to the structure of the Saharan heat low and the production of a Libyan high. These features produced moistening of the boundary layer and a convergence zone over the region of MCS initiation. Another important factor appears to have been the production of a smaller MCS and cold pool on the evening of the 7th June. This elevated low-level moisture and encouraged convective initiation the following day. Once triggered on the 8th June some cells grew and merged into a single large system that propagated south westward and produced a large cold pool that emanated from its northern edge. The cells on the northern edge of the system over the Hoggar grew and collapsed producing a haboob that spread over a large area. Cells further south continued to develop into the MCS and actively produce a cold pool over the system's lifetime. This undercut the dusty air from the earlier cold pool and

  16. Short-Term Effects of the Particulate Pollutants Contained in Saharan Dust on the Visits of Children to the Emergency Department due to Asthmatic Conditions in Guadeloupe (French Archipelago of the Caribbean)

    PubMed Central

    Cadelis, Gilbert; Tourres, Rachel; Molinie, Jack

    2014-01-01

    Background The prevalence of asthma in children is a significant phenomenon in the Caribbean. Among the etiologic factors aggravating asthma in children, environmental pollution is one of the main causes. In Guadeloupe, pollution is primarily transported by Saharan dust including inhalable particles. Methods This study assesses, over one year (2011), the short-term effects of pollutants referred to as PM10 (PM10: particulate matter <10 µm) and PM2.5–10 (PM2.5–10: particulate matter >2.5 µm and <10 µm) contained in Saharan dust, on the visits of children aged between 5 and 15 years for asthma in the health emergency department of the main medical facility of the archipelago of Guadeloupe. A time-stratified case-crossover model was applied and the data were analysed by a conditional logistic regression for all of the children but also for sub-groups corresponding to different age classes and genders. Results The visits for asthma concerned 836 children including 514 boys and 322 girls. The Saharan dust has affected 15% of the days of the study (337 days) and involved an increase in the average daily concentrations of PM10 (49.7 µg/m3 vs. 19.2 µg/m3) and PM 2.5–10 (36.2 µg/m3 vs. 10.3 µg/m3) compared to days without dust. The excess risk percentages (IR%) for visits related to asthma in children aged between 5 and 15 years on days with dust compared to days without dust were, for PM10, ((IR %: 9.1% (CI95%, 7.1%–11.1%) versus 1.1%(CI95%, −5.9%–4.6%)) and for PM2.5–10 (IR%: 4.5%(CI95%, 2.5%–6.5%) versus 1.6% (CI95%, −1.1%–3.4%). There was no statistical difference in the IR% for periods with Saharan dust among different age group of children and between boys and girls for PM10 and PM2.5–10. Conclusion The PM10 and PM2.5–10 pollutants contained in the Saharan dust increased the risk of visiting the health emergency department for children with asthma in Guadeloupe during the study period. PMID:24603899

  17. Casting Light and Shadows on a Saharan Dust Storm

    NASA Technical Reports Server (NTRS)

    2003-01-01

    On March 2, 2003, near-surface winds carried a large amount of Saharan dust aloft and transported the material westward over the Atlantic Ocean. These observations from the Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's Terra satellite depict an area near the Cape Verde Islands (situated about 700 kilometers off of Africa's western coast) and provide images of the dust plume along with measurements of its height and motion. Tracking the three-dimensional extent and motion of air masses containing dust or other types of aerosols provides data that can be used to verify and improve computer simulations of particulate transport over large distances, with application to enhancing our understanding of the effects of such particles on meteorology, ocean biological productivity, and human health.

    MISR images the Earth by measuring the spatial patterns of reflected sunlight. In the upper panel of the still image pair, the observations are displayed as a natural-color snapshot from MISR's vertical-viewing (nadir) camera. High-altitude cirrus clouds cast shadows on the underlying ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated stereoscopic processing of MISR's multi-angle imagery show the cirrus clouds (yellow areas) to be situated about 12 kilometers above sea level. The distinctive spatial patterns of these clouds provide the necessary contrast to enable automated feature matching between images acquired at different view angles. For most of the dust layer, which is spatially much more homogeneous, the stereoscopic approach was unable to retrieve elevation data. However, the edges of shadows cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of the dust layer's height, and indicate that the top of layer is only about 2.5 kilometers above sea level.

    Motion of the dust and clouds is directly

  18. Concentration Variations in Particulate Matter in Seoul Associated with Asian Dust and Smog Episodes

    DOE PAGES

    Ghim, Young Sung; Kim, Jin Young; Chang, Young -Soo

    2017-01-01

    In this study, particulate species were measured in April–May 2003 at two sites, one in the megacity of Seoul and the other in the Deokjeok Island to the west of Seoul, to examine the effects of long-range transport under the influence of prevailing westerlies. The effects of Asian dust were observed in April, and a severe smog episode occurred in late May. During May, all air pollutants showed negative correlations with wind speed at Seoul, particularly for NO 2 and CO, a large proportion of which result from vehicle emissions. SO 4 2– continued to increase in association with anmore » inflow of air pollutants from China with heavy use of coal, with fluctuations depending on wind speed. The smog episode in late May occurred as emissions from Siberian forest fires were superimposed on pollutant inflows from China that had persisted since early May and local emissions accumulated under stagnant conditions. During the episode, Siberian forest fires increased K + while local emissions primarily from vehicles increased NO 3 –, OC, and EC. The effects of an inflow of air pollutants from the outside were significant at Deokjeok, with small local emissions, resulting in substantial increases in Ca 2+ during the Asian dust event and SO 4 2– during the smog episode, compared to those at Seoul. Because both sites were strongly influenced by the effects of long-range transport in May, PM 2.5 along with SO 4 2– and K + exhibited a strong correlation between Seoul and Deokjeok.« less

  19. Simulation of a dust episode over Eastern Mediterranean using a high-resolution atmospheric chemistry general circulation model

    NASA Astrophysics Data System (ADS)

    Abdel Kader, Mohamed; Zittis, Georgios; Astitha, Marina; Lelieveld, Jos; Tymvios, Fillipos

    2013-04-01

    An extended episode of low visibility took place over the Eastern Mediterranean in late September 2011, caused by a strong increase in dust concentrations, analyzed from observations of PM10 (Particulate Matter with <10μm in diameter). A high-resolution version of the atmospheric chemistry general circulation model EMAC (ECHAM5/Messy2.41 Atmospheric Chemistry) was used to simulate the emissions, transport and deposition of airborne desert dust. The model configuration involves the spectral resolution of T255 (0.5°, ~50Km) and 31 vertical levels in the troposphere and lower stratosphere. The model was nudged towards ERA40 reanalysis data to represent the actual meteorological conditions. The dust emissions were calculated online at each model time step and the aerosol microphysics using the GMXe submodel (Global Modal-aerosol eXtension). The model includes a sulphur chemistry mechanism to simulate the transformation of the dust particles from the insoluble (at emission) to soluble modes, which promotes dust removal by precipitation. The model successfully reproduces the dust distribution according to observations by the MODIS satellite instruments and ground-based AERONET stations. The PM10 concentration is also compared with in-situ measurements over Cyprus, resulting in good agreement. The model results show two subsequent dust events originating from the Negev and Sahara deserts. The first dust event resulted from the transport of dust from the Sahara on the 21st of September and lasted only briefly (hours) as the dust particles were efficiently removed by precipitation simulated by the model and observed by the TRMM (Tropical Rainfall Measuring Mission) satellites. The second event resulted from dust transport from the Negev desert to the Eastern Mediterranean during the period 26th - 30th September with a peak concentration at 2500m elevation. This event lasted for four days and diminished due to dry deposition. The observed reduced visibility over Cyprus

  20. Modification of Saharan Mineral Dust during Transport across the Atlantic Ocean - Overview and Results from the SALTRACE Field Experiment

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Groß, Silke; Sauer, Daniel; Althausen, Dietrich; Toledano, Carlos

    2014-05-01

    At present one of the largest uncertainties in our understanding of global climate concerns the interaction of aerosols with clouds and atmospheric dynamics. In the climate system, mineral dust aerosol is of key importance, because mineral dust contributes to about half of the global annual particle emissions by mass. Although our understanding of the effects of mineral dust on the atmosphere and the climate improved during the past decade, many questions such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds remain open. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013 to investigate the transport and transformation of Saharan mineral dust during long-range transport from the Sahara across the Atlantic Ocean into the Caribbean. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling which involved many national and international partners. During SALTRACE, the DLR Falcon research aircraft was based at Sal, Cape Verde, between 11 and 17 June 2013, and at Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties, with sampling devices for offline particle analysis, with a nadir-looking 2-µm wind lidar, with dropsondes and instruments for standard meteorological parameters. Ground-based lidar and in-situ instruments were deployed in Cape Verde, Barbados and Puerto Rico. During SALTRACE, mineral dust from five dust outbreaks was studied by the Falcon research aircraft between Senegal, the Caribbean and Florida

  1. Atmospheric Dust Modeling from Meso to Global Scales with the Online NMMB/BSC-Dust Model Part 2: Experimental Campaigns in Northern Africa

    NASA Technical Reports Server (NTRS)

    Haustein, K.; Perez, C.; Baldasano, J. M.; Jorba, O.; Basart, S.; Miller, R. L.; Janjic, Z.; Black, T.; Nickovic, S.; Todd, M. C.; hide

    2012-01-01

    The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Perez et al., 2011) develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD) was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6-0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1) in 2006 and the Bodele Dust Experiment (BoDEx) in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ) and the dust AOD over the Bodélé are well reproduced

  2. Long range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the Western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ancellet, G.; Pelon, J.; Totems, J.; Chazette, P.; Bazureau, A.; Sicard, M.; Di Iorio, T.; Dulac, F.; Mallet, M.

    2015-11-01

    Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.

  3. Monitoring of Saharan dust fallout on Crete and its contribution to soil formation

    NASA Astrophysics Data System (ADS)

    Nihlén, Tomas; Mattsson, Jan O.; Rapp, Anders; Gagaoudaki, Chrisoula; Kornaros, Georges; Papageorgiou, John

    1995-07-01

    A series of 6 dust traps was established in 1988 distributed over the island of Crete (Greece). Eolian dust has been collected in the traps each year and in each season during the 4years of investigation which is still going on. The mean deposition rate for the 6 stations and 4years was calculated as 21.3g m-2yr-1. Using the highest and lowest values, the deposition can be extrapolated to 6.6-21.4mm for 1000years, which is in agreement with other researchers' findings. The trapped dust shows a homogeneous grain-size distribution. Its mineralogy is similar to what characterizes soil samples from Psiloritis on Crete and source areas in southern Tunisia. In the fine fraction of the soil (particles < 10µm), the contents of the clay mineral kaolinite and of quartz are high. In addition, the oxygen isotope composition of the 3 types of substrate is similar but differs from the weathering products of the limestone bedrock. Statistics of dust episodes covering the period c. 1955-1990 from 10 meteorological stations in Greece revealed that long-distance transport of dust in combination with winds from a southerly sector is common in the Aegean area during spring.

  4. Saharan Air Layer Interaction with Hurricane Claudette (2003)

    NASA Astrophysics Data System (ADS)

    Rothman, G. S.; Gill, T. E.; Chang, C.

    2004-12-01

    It has long been observed that the Saharan Air Layer (SAL), a large and seasonally-persistent layer of West African aeolian dust suspended over the Atlantic Ocean, may influence the variability and intensity of easterly waves and tropical cyclones in the Atlantic basin. The radiative and conductive properties of the Saharan aerosols may contribute to warming within the dust layer, creating an anomalous baroclinic zone in the tropical North Atlantic. Environmental baroclinic instability is a mechanism for conversion of potential energy to eddy kinetic energy, facilitating wave growth. However, this same baroclinic mechanism, along with the dry properties of the SAL, could also promote asymmetry in a tropical cyclone, limiting its intensity. Detailed investigations of specific cases are necessary to better understand the radiative heating or cooling impact that the Saharan aerosols cause as well as potential influences on cyclone track and intensity stemming from the aeolian dust cloud. Here, we consider the case of Claudette in 2003. On June 29, 2003, an easterly wave embedded near the southern boundary of a broad Saharan dust layer emerged from the West African Coastal Bend region into the Atlantic Ocean. The wave propagated westward, reaching tropical storm intensity as Claudette in the Caribbean and developing into a hurricane just before making landfall on the southern Texas Gulf of Mexico coast on July 15. The SAL propagated in phase with this system throughout almost its entire evolution. Rapid intensification of Claudette into a hurricane in the last 15 hours prior to landfall was concurrent with a decoupling from the Saharan dust intrusion, with the two following separate tracks into North America at the end of the period. We performed an investigation to understand and diagnose the interaction between the Saharan Air Layer and Claudette. HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) along-trajectory potential temperature plots as

  5. Sensitivity of WRF-Chem model to land surface schemes: Assessment in a severe dust outbreak episode in the Central Mediterranean (Apulia Region)

    NASA Astrophysics Data System (ADS)

    Rizza, Umberto; Miglietta, Mario Marcello; Mangia, Cristina; Ielpo, Pierina; Morichetti, Mauro; Iachini, Chiara; Virgili, Simone; Passerini, Giorgio

    2018-03-01

    The Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate a severe Saharan dust outbreak event that took place over Southern Italy in March 2016. Numerical experiments have been performed applying a physics-based dust emission model, with soil properties generated from three different Land Surface Models, namely Noah, RUC and Noah-MP. The model performance in reproducing the severe desert dust outbreak is analysed using an observational dataset of aerosol and desert dust features that includes optical properties from satellite and ground-based sun-photometers, and in-situ particulate matter mass concentration (PM) data. The results reveal that the combination of the dust emission model with the RUC Land Surface Model significantly over-predicts the emitted mineral dust; on the other side, the combination with Noah or Noah-MP Land Surface Model (LSM) gives better results, especially for the daily averaged PM10.

  6. Dust storm off Western Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The impacts of Saharan dust storms reach far beyond Africa. Wind-swept deserts spill airborne dust particles out over the Atlantic Ocean where they can enter trade winds bound for Central and North America and the Caribbean. This Moderate Resolution Imaging Spectroradiometer (MODIS) image shows a dust storm casting an opaque cloud of cloud across the Canary Islands and the Atlantic Ocean west of Africa on June 30, 2002. In general it takes between 5 and 7 days for such an event to cross the Atlantic. The dust has been shown to introduce foreign bacteria and fungi that have damaged reef ecosystems and have even been hypothesized as a cause of increasing occurrences of respiratory complaints in places like Florida, where the amount of Saharan dust reaching the state has been increasing over the past 25 years.

  7. Providing the Caribbean community with VIIRS-derived weather satellite and dust model output in preparation for African dust impacts

    NASA Astrophysics Data System (ADS)

    Kuciauskas, A. P.; Xian, P.; Hyer, E. J.; Oyola, M. I.; Campbell, J. R.

    2016-12-01

    The Naval Research Laboratory Marine Meteorology Division (NRL-MMD) predicts, monitors, and trains Caribbean agencies in preparing for and mitigating unhealthy episodes of Saharan-based dust. Of critical concern is the Saharan Air Layer (SAL), an elevated air mass of hot, dry, and often very dusty conditions that can be environmentally persistent and dangerous to the downstream Caribbean populace, resulting in respiratory illnesses; some of the world's highest asthma rates and associated premature deaths have been documented within the Caribbean islands. The SAL not only impacts the greater Caribbean, but also the Gulf of Mexico, northern South America, and southern and central US. One of the major responsibilities of the National Weather Service forecast office at San Juan, Puerto Rico (NWS-PR) is preparing the public within their area of responsibility for such events. The NRL-MMD has been at the forefront of implementing and demonstrating the positive impact of Suomi-VIIRS during SAL events. In preparation for SAL events, NRL-MMD is currently supporting the NWS-PR with near real time web-based products, primarily from VIIRS datasets. Preliminary studies have shown that VIIRS has demonstrated improvements in the assessment and prediction of dust intensities related to SAL passages. The upcoming launches of JPSS-1 and GOES-R are eagerly anticipated in possibly revolutionizing the R&D related toward further improvements in understanding Saharan dust dynamics and characteristics. Besides NWS-PR, NRL-MMD also collaborates with the Caribbean Institute for Meteorology and Hydrology (CIMH) in both providing and gathering in-situ measurements that stretch from the French Guyana northward through the West Indies island chain. Finally, NRL-MMD is involved with the Caribbean Aerosol Health Network (CAHN),an international network of health and environmental agencies whose mission is to improve the understanding of the impacts (e.g., air quality, health, climate, weather

  8. Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean

    NASA Astrophysics Data System (ADS)

    Ealo, Marina; Alastuey, Andrés; Ripoll, Anna; Pérez, Noemí; Cruz Minguillón, María; Querol, Xavier; Pandolfi, Marco

    2016-10-01

    The study of Saharan dust events (SDEs) and biomass burning (BB) emissions are both topics of great scientific interest since they are frequent and important polluting scenarios affecting air quality and climate. The main aim of this work is evaluating the feasibility of using near-real-time in situ aerosol optical measurements for the detection of these atmospheric events in the western Mediterranean Basin (WMB). With this aim, intensive aerosol optical properties (SAE: scattering Ångström exponent, AAE: absorption Ångström exponent, SSAAE: single scattering albedo Ångström exponent and g: asymmetry parameter) were derived from multi-wavelength aerosol light scattering, hemispheric backscattering and absorption measurements performed at regional (Montseny; MSY, 720 m a.s.l.) and continental (Montsec; MSA, 1570 m a.s.l.) background sites in the WMB. A sensitivity study aiming at calibrating the measured intensive optical properties for SDEs and BB detection is presented and discussed. The detection of SDEs by means of the SSAAE parameter and Ångström matrix (made up by SAE and AAE) depended on the altitude of the measurement station and on SDE intensity. At MSA (mountain-top site) SSAAE detected around 85 % of SDEs compared with 50 % at the MSY station, where pollution episodes dominated by fine anthropogenic particles frequently masked the effect of mineral dust on optical properties during less intense SDEs. Furthermore, an interesting feature of SSAAE was its capability to detect the presence of mineral dust after the end of SDEs. Thus, resuspension processes driven by summer regional atmospheric circulations and dry conditions after SDEs favoured the accumulation of mineral dust at regional level having important consequences for air quality. On average, SAE, AAE and g ranged between -0.7 and 1, 1.3 and 2.5 and 0.5 and 0.75 respectively during SDEs. Based on the aethalometer model, BB contribution to equivalent black carbon (BC) accounted for 36 and 40

  9. SMART-COMMIT Observations and Deep-Blue Retrievals of Saharan Dust Properties during NAMMA

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, N. Christina; Ji, Qiang; Jeong, Myeong-Jae

    2007-01-01

    Monsoon rainfalls sustain the livelihood of more than half of the world's population. The interaction between natural/anthropogenic aerosols, clouds, and precipitation is a critical mechanism that drives the water cycle and fresh water distribution. Analyses of the longterm trend of July-August precipitation anomaly for the last 50 years in the 20" century depict that the largest regional precipitation deficit occurs over the Sahel, where the monsoon water cycle plays an important role. Thus, it is of paramount importance to study how dust aerosols, as well as air pollution and smoke, influence monsoon variability. The NASA African Monsoon Multidisciplinary Activities (NAMMA) was conducted during the international AMMA Special Observation Period (SOP-3) of September 2006 to better comprehend the key attributes of the Saharan Air Layer (SAL) and how they evolve from the source regions to the Atlantic Ocean. The SAL occurs during the late spring through early fall and originates as a result of low-level convergence induced by heat lows over the Sahara that lifts hot, dry, dust laden air aloft into a well mixed layer that extends up to 500mb. This is crucial for understanding the impact of SAL on the key atmospheric processes that determine precipitation over West Africa and tropical cyclogenesis. Results obtained from the synergy of satellite (Deep- Blue) and surface (SMART-COMMIT) observations will be presented and discussed how the physical, optical and radiative properties of the dust in the SAL evolve from the continental to the marine environment.

  10. A detailed characterization of the Saharan dust collected during the Fennec campaign in 2011: in situ ground-based and laboratory measurements

    NASA Astrophysics Data System (ADS)

    Rocha-Lima, Adriana; Vanderlei Martins, J.; Remer, Lorraine A.; Todd, Martin; Marsham, John H.; Engelstaedter, Sebastian; Ryder, Claire L.; Cavazos-Guerra, Carolina; Artaxo, Paulo; Colarco, Peter; Washington, Richard

    2018-01-01

    Millions of tons of mineral dust are lifted by the wind from arid surfaces and transported around the globe every year. The physical and chemical properties of the mineral dust are needed to better constrain remote sensing observations and are of fundamental importance for the understanding of dust atmospheric processes. Ground-based in situ measurements and in situ filter collection of Saharan dust were obtained during the Fennec campaign in the central Sahara in 2011. This paper presents results of the absorption and scattering coefficients, and hence single scattering albedo (SSA), of the Saharan dust measured in real time during the last period of the campaign and subsequent laboratory analysis of the dust samples collected in two supersites, SS1 and SS2, in Algeria and in Mauritania, respectively. The samples were taken to the laboratory, where their size and aspect ratio distributions, mean chemical composition, spectral mass absorption efficiency, and spectral imaginary refractive index were obtained from the ultraviolet (UV) to the near-infrared (NIR) wavelengths. At SS1 in Algeria, the time series of the scattering coefficients during the period of the campaign show dust events exceeding 3500 Mm-1, and a relatively high mean SSA of 0.995 at 670 nm was observed at this site. The laboratory results show for the fine particle size distributions (particles diameter  < 5µm and mode diameter at 2-3 µm) in both sites a spectral dependence of the imaginary part of the refractive index Im(m) with a bow-like shape, with increased absorption in UV as well as in the shortwave infrared. The same signature was not observed, however, in the mixed particle size distribution (particle diameter < 10 µm and mode diameter at 4 µm) in Algeria. Im(m) was found to range from 0.011 to 0.001i for dust collected in Algeria and 0.008 to 0.002i for dust collected in Mauritania over the wavelength range of 350-2500 nm. Differences in the mean elemental

  11. Studies of saharan dust intrusions over bucharest using ceilometer's measurements and satellite data

    NASA Astrophysics Data System (ADS)

    Urlea, Denisa; Boscornea, Andreea; Nicolae Vâjâiac, Sorin; Ţoancă, Florica; Barbu, Nicu; Ştefan, Sabina; Bunescu, Ionuț

    2018-04-01

    Three case studies of Saharan dust intrusions over southern Romania were performed. For these studies the database from the ceilometers located at Magurele and Strejnic was used. In addition, the meteorological conditions were analyzed using the WLK Catalogue based on the Objektive Wetterlagenklassifikation classification of the weather types [1]. This catalogue uses information from three basic tropospheric levels: 925, 700 and 500 hPa, and information on the precipitable water content over the entire atmosphere column. Geopotential fields at 925hPa and 500hPa are used for establishing the cyclonicity or anticyclonicity, while the U and V components of wind at 700hPa for establishing the dominant direction of the wind flow. For better understanding of the atmospheric parameters we performed HYSPLIT dispersion and trajectories analysis in conjunction with DREAM model output data.

  12. Discernible rhythm in the spatio/temporal distributions of transatlantic dust

    NASA Astrophysics Data System (ADS)

    Ben-Ami, Y.; Koren, I.; Altaratz, O.; Kostinski, A. B.; Lehahn, Y.

    2011-08-01

    The differences in North African dust emission regions and transport routes, between the boreal winter and summer are thoroughly documented. Here we re-examine the spatial and temporal characteristics of dust transport over the tropical and subtropical North Atlantic Ocean, using 10 years of satellite data, in order to determine better the different dust transport periods and their characteristics. We see a robust annual triplet: a discernible rhythm of "transatlantic dust weather". The proposed annual partition is composed of two heavy loading periods, associated here with a northern-route period and southern-route period, and one clean, light-loading period, accompanied by unusually low average optical depth of dust. The two dusty periods are quite different in character: their duration, transport routes, characteristic aerosol loading and frequency of pronounced dust episodes. The southern route period lasts about ~4 months, from the end of November to end of March. It is characterized by a relatively steady southern positioning, low frequency of dust events, low background values and high variance in dust loading. The northern-route period lasts ~6.5 months, from the end of March to mid October, and is associated with a steady drift northward of ~0.1 latitude day-1, reaching ~1500 km north of the southern route. The northern period is characterized by higher frequency of dust events, higher (and variable) background and smaller variance in dust loading. It is less episodic than the southern period. Transitions between the periods are brief. Separation between the southern and northern periods is marked by northward latitudinal shift in dust transport and by moderate reduction in the overall dust loading. The second transition between the northern and southern periods commences with an abrupt reduction in dust loading (thereby initiating the clean period) and rapid shift southward of ~0.2 latitude day-1, and 1300 km in total. These rates of northward advance and

  13. Saharan Dust Fertilizing Atlantic Ocean and Amazon Rainforest via Long-range Transport and Deposition: A Perspective from Multiyear Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L. A.; Prospero, J. M.; Omar, A. H.; Winker, D. M.; Yang, Y.; Zhang, Y.; Zhang, Z.; Zhao, C.

    2015-12-01

    Massive dust emitted from Sahara desert is carried by trade winds across the tropical Atlantic Ocean, reaching the Amazon Rainforest and Caribbean Sea. Airborne dust degrades air quality and interacts with radiation and clouds. Dust falling to land and ocean adds essential nutrients that could increase the productivity of terrestrial and aquatic ecosystems and modulate the biogeochemical cycles and climate. The resultant climate change will feed back on the production of dust in Sahara desert and its subsequent transport and deposition. Understanding the connections among the remote ecosystems requires an accurate quantification of dust transport and deposition flux on large spatial and temporal scales, in which satellite remote sensing can play an important role. We provide the first multiyear satellite-based estimates of altitude-resolved across-Atlantic dust transport and deposition based on eight-year (2007-2014) record of aerosol three-dimensional distributions from the CALIPSO lidar. On a basis of the 8-year average, 179 Tg (million tons) of dust leaves the coast of North Africa and is transported across Atlantic Ocean, of which 102, 20, and 28 Tg of dust is deposited into the tropical Atlantic Ocean, Caribbean Sea, and Amazon Rainforest, respectively. The dust deposition adds 4.3 Tg of iron and 0.1 Tg of phosphorus to the tropical Atlantic Ocean and Caribbean Sea where the productivity of marine ecosystem depends on the availability of these nutrients. The 28 Tg of dust provides about 0.022 Tg of phosphorus to Amazon Rainforest yearly that replenishes the leak of this plant-essential nutrient by rains and flooding, suggesting an important role of Saharan dust in maintaining the productivity of Amazon rainforest on timescales of decades or centuries. We will also discuss seasonal and interannual variations of the dust transport and deposition, and comparisons of the CALIOP-based estimates with model simulations.

  14. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ancellet, Gerard; Pelon, Jacques; Totems, Julien; Chazette, Patrick; Bazureau, Ariane; Sicard, Michaël; Di Iorio, Tatiana; Dulac, Francois; Mallet, Marc

    2016-04-01

    Long-range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (i) pure BB layer, (ii) weakly dusty BB, (iii) significant mixture of BB and dust transported from the trade wind region, and (iv) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct northward dust outflow

  15. Enrichment of Mineral Dust Storm Particles with Sea Salt Elements - Using bulk and Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Mamane, Y.; Perrino, C.; Yossef, O.

    2009-12-01

    Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in

  16. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10

    NASA Astrophysics Data System (ADS)

    Chirizzi, Daniela; Cesari, Daniela; Guascito, Maria Rachele; Dinoi, Adelaide; Giotta, Livia; Donateo, Antonio; Contini, Daniele

    2017-08-01

    Exposure to atmospheric particulate matter (PM) leads to adverse health effects although the exact mechanisms of toxicity are still poorly understood. Several studies suggested that a large number of PM health effects could be due to the oxidative potential (OP) of ambient particles leading to high concentrations of reactive oxygen species (ROS). The contribution to OP of specific anthropogenic sources like road traffic, biomass burning, and industrial emissions has been investigated in several sites. However, information about the OP of natural sources are scarce and no data is available regarding the OP during Saharan dust outbreaks (SDO) in Mediterranean regions. This work uses the a-cellular DTT (dithiothreitol) assay to evaluate OP of the water-soluble fraction of PM2.5 and PM10 collected at an urban background site in Southern Italy. OP values in three groups of samples were compared: standard characterised by concentrations similar to the yearly averages; high carbon samples associated to combustion sources (mainly road traffic and biomass burning) and SDO events. DTT activity normalised by sampled air volume (DTTV), representative of personal exposure, and normalised by collected aerosol mass (DTTM), representing source-specific characteristics, were investigated. The DTTV is larger for high PM concentrations. DTTV is well correlated with secondary organic carbon concentration. An increased DTTV response was found for PM2.5 compared to the coarse fraction PM2.5-10. DTTV is larger for high carbon content samples but during SDO events is statistically comparable with that of standard samples. DTTM is larger for PM2.5 compared to PM10 and the relative difference between the two size fractions is maximised during SDO events. This indicates that Saharan dust advection is a natural source of particles having a lower specific OP with respect to the other sources acting on the area (for water-soluble fraction). OP should be taken into account in epidemiological

  17. Nearly a Decade of CALIPSO Observations of Asian and Saharan Dust Properties Near Source and Transport Regions

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Z.; Tackett, J.; Vaughan, M.; Trepte, C.; Winker, D.; H. Yu,

    2015-01-01

    The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol, between 2006-2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on the morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National D'études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.

  18. The Spatio-Temporal Distribution of Particulate Matter during Natural Dust Episodes at an Urban Scale

    PubMed Central

    Krasnov, Helena; Kloog, Itai; Friger, Michael; Katra, Itzhak

    2016-01-01

    Dust storms are a common phenomenon in arid and semi-arid areas, and their impacts on both physical and human environments are of great interest. Number of studies have associated atmospheric PM pollution in urban environments with origin in natural soil/dust, but less evaluated the dust spatial patterns over a city. We aimed to analyze the spatial-temporal behavior of PM concentrations over the city of Beer Sheva, in southern Israel, where dust storms are quite frequent. PM data were recorded during the peak of each dust episode simultaneously in 23 predetermined fixed points around the city. Data were analyzed for both dust days and non-dust days (background). The database was constructed using Geographic Information System and includes distributions of PM that were derived using inverse distance weighted (IDW) interpolation. The results show that the daily averages of atmospheric PM10 concentrations during the background period are within a narrow range of 31 to 48 μg m-3 with low variations. During dust days however, the temporal variations are significant and can range from an hourly PM10 concentration of 100 μg m-3 to more than 1280 μg m-3 during strong storms. IDW analysis demonstrates that during the peak time of the storm the spatial variations in PM between locations in the city can reach 400 μg m-3. An analysis of site and storm contribution to total PM concentration revealed that higher concentrations are found in parts of the city that are proximal to dust sources. The results improve the understanding of the dynamics of natural PM and the dependence on wind direction. This may have implications for environmental and health outcomes. PMID:27513479

  19. Episodic Dust Emission from Alpha Orionis

    NASA Astrophysics Data System (ADS)

    Danchi, W. C.; Greenhill, L. J.; Bester, M.; Degiacomi, C.; Townes, C. H.

    1993-05-01

    The spatial distribution of dust surrounding alpha Orionis has been observed with the Infrared Spatial Interferometer (ISI) operating at a wavelength of 11.15 microns. Radiative transfer modeling of the visibility curves obtained by the ISI has yielded estimates of the physical parameters of the dust surrounding the star and new details of the dust distribution. The visibility curves taken in 1992 can be fitted best by a model with two dust shells. One shell has an inner radius of 1.0+/- 0.1{ }('') , a thickness between 50-200 milliarcsec, and a temperature of about 380 K. The second shell has an inner radius of 2.0+/-0.1{ }('') , a thickness less than about 200 milliarcsec, and a temperature of 265 K. These results are consistent with the recent spatially resolved spectroscopy of alpha Orionis reported by Sloan et al. (1993, Ap.J., 404, 303). The dust was modelled with the MRN size distribution with radius varying from 0.005--0.25 microns. The star was assumed to be a blackbody with a temperature of 3500 K and angular radius of 21.8 milliarcsec, consistent with recent interferometric determinations of its diameter (cf. Dyck et al., 1992, A.J., 104, 1992). For an adopted distance of 150 pc, the model for the 1992 data was evolved backward in time for a comparison with previous visibility data of Sutton (1979, Ph.D. Thesis, U.C. Berkeley) and Howell et al. (1981, Ap.J., 251, L21). The velocities, 11 km \\ s(-1) and 18 km \\ s(-1) , were used for the first and second shells respectively, which are the CO velocities measured by Bernat et al. (1979, Ap.J.,233, L135). We find excellent agreement if the dust shells were at approximately 0.80{ }('') and 1.67{ }('') at the epoch of the previous measurements. The data are consistent with the hypothesis that inner dust shell was emitted during the unusual variations in radial velocity and visual magnitude in the early 1940's, described by Goldberg (1984, PASP, 96, 366).

  20. Satellite Observations from SEVIRI of Saharan dust over West Africa, within the context of the Fennec project

    NASA Astrophysics Data System (ADS)

    Banks, J.; Brindley, H.

    2012-04-01

    During the summer months, the atmosphere over the western half of the Sahara carries some of the highest dust loadings on the planet. This situation develops when intense solar heating over the dry desert creates a deep and hot low pressure system (the Saharan Heat Low, SHL), which allows a strong vertical mixing of dust. The Fennec* consortium project aims to address the deficiency in observations from the sparsely populated western Sahara through the use of field campaign measurements made in June 2011, incorporating observations from ground instruments, aircraft, and from satellite instruments such as SEVIRI, in combination with climate modelling. Fennec aims to study the poorly understood behaviour of the SHL, and the processes which take place within it. Due to their high temporal resolution, observations from SEVIRI can offer new insights into the timing of activation of specific dust sources, and the processes governing their behaviour. Here we employ a multi-year, high time-resolution record of dust detection and aerosol optical depth (AOD) derived from SEVIRI using an algorithm developed at Imperial College to both identify areas of high dust loading and diagnose diurnal patterns in their activation. We will present results from the SEVIRI record alongside results from other satellite instruments such as MODIS, and place these findings in the context of the initial ground-based and in-situ observations available from the Fennec field campaign. We will also identify surface features which can contaminate the dust detection retrieval, due to their emissivities in the 8.7 micron channel. New techniques can be used to filter out these features, based on the difference between the brightness temperatures at 10.8 and 8.7 microns. Using surface visibility measurements and AERONET data, we will evaluate the consequences of this on the dust detection and AOD record. * Fennec is a consortium project which includes groups from the universities of Oxford, Imperial

  1. Contrasting effect of Saharan dust and UVR on autotrophic picoplankton in nearshore versus offshore waters of Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    González-Olalla, J. M.; Medina-Sánchez, J. M.; Cabrerizo, M. J.; Villar-Argáiz, Manuel; Sánchez-Castillo, Pedro M.; Carrillo, Presentación

    2017-08-01

    Autotrophic picoplankton (APP) is responsible for the vast majority of primary production in oligotrophic marine areas, such as the Alboran Sea. The increase in atmospheric dust deposition (e.g., from Sahara Desert) associated with global warming, together with the high UV radiation (UVR) on these ecosystems, may generate effects on APP hitherto unknown. We performed an observational study across the Alboran Sea to establish which factors control the abundance and distribution of APP, and we made a microcosm experiment in two distinct areas, nearshore and offshore, to predict the joint UVR × dust impact on APP at midterm scales. Our observational study showed that temperature (T) was the main factor explaining the APP distribution whereas total dissolved nitrogen positively correlated with APP abundance. Our experimental study revealed that Saharan dust inputs reduced or inverted the UVR damage on the photosynthetic quantum yield (ΦPSII) and picoplanktonic primary production (PPP) in the nearshore area but accentuated it in the offshore. This contrasting effect is partially explained by the nonphotochemical quenching, acting as a photorepair mechanism. Picoeukaryotes reflected the observed effects on the physiological and metabolic variables, and Synechococcus was the only picoprokaryotic group that showed a positive response under UVR × dust conditions. Our study highlights a dual sensitivity of nearshore versus offshore picoplankton to dust inputs and UVR fluxes, just at the time in which these two global-change factors show their highest intensities and may recreate a potential future response of the microbial food web under global-change conditions.

  2. Characterization of Saharan dust properties transported towards Europe in the frame of the FENNEC project: a case study

    NASA Astrophysics Data System (ADS)

    Marnas, F.; Chazette, P.; Flamant, C.; Royer, P.; Sodemman, H.; Derimian, Y.

    2012-04-01

    In the framework of the FENNEC experiment (6 to 30 June 2011) an effort has been dedicated to characterize Saharan dust plumes transported towards southern Europe. Hence, a multi instrumented field campaign has been conducted. Ground based nitrogen Raman LIDAR (GBNRL) has been deployed in southern Spain close to Marbella, simultaneously with airborne lidar (AL) performing measurements over both the tropical Atlantic Ocean and the western Africa (from 2 to 23 June). The GBNRL was equipped with co-polar and cross-polar channels to perform continuous measurements of the dust aerosols trapped in the troposphere. It was developed by LSCE with the support of the LEOSPHERE Company. The French FALCON 20 research aircraft operated by SAFIRE (Service des Avions Francais Instrumentés pour la Recherche en Environnement) carried the AL Leandre Nouvelle Generation (LNG) as well as a dropsonde releasing system and radiometers. A major, one week long, dust event has been sampled over Spain from 25 June to 1 July with high optical depth (>0.5 at 355nm) and particular depolarization ratios (15 to 25%). Backtrajectory studies suggest that the dust particles observed were from dust uplifts that occurred in Southern Morocco and Northern Mauritania. The event has been also documented 3 days before by the AL flying over Mauritania. AERONET sunphotometer measurements of aerosol properties, along the dust plume transport path appear to be coherent with both the lidar and the backtrajectory analysis. These analysis exhibit a likely major contribution from the Western Sahara sources to the Southern Europe. Such a contribution may impact the visibility and then the airtrafic, modify the tropospheric chemistry, and add nutrients to both the Mediterranean Sea and the continental surfaces. It can also affect the health of European populations. We will present strategy of the experiment and the case study built from measurements performed at the end of June.

  3. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Konde, Lassana; Wolf, Ruth E.; Otto, Richard D.; Tsuneoka, Yutaka

    2014-01-01

    Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan–Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 – 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara–Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.

  4. Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie-Raman lidar observations

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Tanre, Didier; da Silva, Arlindo; Colarco, Peter; Castellanos, Patricia; Korenskiy, Mikhail; Hu, Qiaoyun; Whiteman, David N.; Pérez-Ramírez, Daniel; Augustin, Patrick; Fourmentin, Marc; Kolgotin, Alexei

    2018-02-01

    Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke-dust episode over West Africa on 24-27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500-4000 m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The values of modeled and observed aerosol extinction coefficients at both 355 and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km-1 with SD of 0.042 km-1. The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15 % observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70 ± 10) sr. At 532 nm, however, the simulated lidar ratio (about 40 sr) is lower than measurements (55 ± 8 sr). The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization.

  5. Saharan dust and the impact on adult and elderly allergic patients: the effect of threshold values in the northern sector of Gran Canaria, Spain.

    PubMed

    Menéndez, Inmaculada; Derbyshire, Edward; Carrillo, Teresa; Caballero, Elena; Engelbrecht, Johann P; Romero, Lidia E; Mayer, Pablo L; Rodríguez de Castro, Felipe; Mangas, José

    2017-04-01

    Gran Canaria Island is frequently impacted by Saharan dust, a health hazard of particular concern to the island population and health agencies. Airborne mineral dust has the severest impact on the higher age groups of the population, and those with respiratory conditions; despite that, on average, the ambient particulate matter (PM) concentrations fall within international PM guidelines. During 2010 and 2011, an epidemiological survey, in parallel with an air quality study, was conducted at the Dr Negrín hospital in Gran Canaria. This included the quarterly monitoring of outpatients and recording of emergency patients with respiratory diseases, together with the measurement of aerosol, meteorological, and PM-related air quality levels. The finer more toxic particles were collected with PM 2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) aerosol samplers. The filter samples were gravimetrically and chemically analyzed for their elemental, water-soluble ions, carbon, and mineralogical contents. Individual particle morphology was measured by Scanning Electron Microscopy. Statistical analysis of the chemical and clinical data included the analysis of variance and calculation of Spearman correlation coefficients. No statistically significant relations were found between the allergic control group, the emergency room admissions, pulmonary conditions, medication, and elevated Saharan dust levels. However, changing environmental conditions, such as an increase in humidity or a reduction in ambient air temperature made a significant difference to the outcomes recorded on the health statements of the allergic and respiratory illness groups of the Gran Canary population.

  6. Atmospheric aging of dust ice nucleating particles - a combined laboratory and field approach

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Rodríguez, Sergio; García, M. Isabel; Linke, Claudia; Schnaiter, Martin; Zipori, Assaf; Crawford, Ian; Lohmann, Ulrike; Kanji, Zamin A.; Sierau, Berko

    2016-04-01

    We present INP data measured in-situ at two mostly free tropospheric locations: the High Altitude Research Station Jungfraujoch (JFJ) in the Swiss Alps, located at 3580 m above sea level (asl) and the Izaña observatory on Tenerife, off the West African shore (2373 m asl). INP concentrations were measured online with the Portable Ice Nucleation Chamber, PINC, at the Jungfraujoch in the winters of 2012, 2013 and 2014 and at Izaña in the summers of 2013 and 2014. Each measurement period lasted between 2 to 6 weeks. During summer, Izaña is frequently within the Saharan Air Layer and thus often exposed to Saharan dust events. Saharan dust also reaches the Jungfraujoch mainly during spring. For offline ice nucleation analysis in the laboratory under similar thermodynamic conditions, airborne dust was collected a) at Izaña with a cyclone directly from the air and b) collected from the surface of the Aletsch glacier close to the JFJ after deposition. Supporting measurements of aerosol particle size distributions and fluorescence were conducted at both locations, as well as cloud water isotope analysis at the Jungfraujoch and aerosol chemistry at Izaña. For both locations the origin of the INPs was investigated with a focus on dust and biological particles using back trajectories and chemical signature. Results show that dust aerosol is the dominant INP type at both locations at a temperature of 241 K. In addition to Saharan dust, also more local, basaltic dust is found at the Jungfraujoch. Biological particles are not observed to play a role for ice nucleation in clouds during winter at Jungfraujoch but are enriched in INP compared to the total aerosol at Izaña also during dust events. The comparison of the laboratory and the field measurements at Izaña indicates a good reproducibility of the field data by the collected dust samples. Field and laboratory data of the dust samples from both locations show that the dust arriving at JFJ is less ice nucleation active

  7. Coastal Bacterioplankton Metabolism Is Stimulated Stronger by Anthropogenic Aerosols than Saharan Dust

    PubMed Central

    Marín, Isabel; Nunes, Sdena; Sánchez-Pérez, Elvia D.; Txurruka, Estibalitz; Antequera, Carolina; Sala, Maria M.; Marrasé, Cèlia; Peters, Francesc

    2017-01-01

    In oligotrophic regions, such as the Mediterranean Sea, atmospheric deposition has the potential to stimulate heterotrophic prokaryote growth and production in surface waters, especially during the summer stratification period. Previous studies focused on the role of leaching nutrients from mineral particles of Saharan (S) origin, and were restricted to single locations at given times of the year. In this study, we evaluate the effect of atmospheric particles from diverse sources and with a markedly different chemical composition [S dust and anthropogenic (A) aerosols] on marine planktonic communities from three locations of the northwestern Mediterranean with contrasted anthropogenic footprint. Experiments were also carried out at different times of the year, considering diverse initial conditions. We followed the dynamics of the heterotrophic community and a range of biogeochemical and physiological parameters in six experiments. While the effect of aerosols on bacterial abundance was overall low, bacterial heterotrophic production was up to 3.3 and 2.1 times higher in the samples amended with A and S aerosols, respectively, than in the controls. Extracellular enzymatic activities [leu-aminopeptidase (AMA) and β-glucosidase (β-Gl)] were also enhanced with aerosols, especially from A origin. AMA and β-Gl increased up to 7.1 in the samples amended with A aerosols, and up to 1.7 and 2.1 times, respectively, with S dust. The larger stimulation observed with A aerosols might be attributed to their higher content in nitrate. However, the response was variable depending the initial status of the seawater. In addition, we found that both A and S aerosols stimulated bacterial abundance and metabolism significantly more in the absence of competitors and predators. PMID:29187835

  8. Sahara Dust Cloud

    NASA Image and Video Library

    2005-07-15

    In July of 2005, a continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean, captured by the Atmospheric Infrared Sounder onboard NASA Aqua satellite. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. http://photojournal.jpl.nasa.gov/catalog/PIA00448

  9. Dust altitude and infrared optical depth retrieved from 6 years of AIRS observations : a focus on Saharan dust using A-Train synergy (MODIS, CALIOP)

    NASA Astrophysics Data System (ADS)

    Peyridieu, S.; Chédin, A.; Capelle, V.; Pierangelo, C.; Lamquin, N.; Armante, R.

    2009-04-01

    Observation from space, being global and quasi-continuous, is a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the thermal infrared domain still remains marginal. However, knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing. Infrared remote sensing provides a way to retrieve other aerosol characteristics, including their mean altitude. Moreover, observations are possible at night and day, over ocean and over land. In this context, six years (2003-2008) of the 2nd generation vertical sounder AIRS observations have been processed over the tropical belt (30°N-30°S). Our results of the dust optical depth at 10 µm have been compared to the 0.55 µm Aqua/MODIS optical depth product for this period. The detailed study of Atlantic regions shows a very good agreement between the two products, with a VIS/IR ratio around 0.3-0.5 during the Saharan dust season. Comparing these two AOD products should allow separating different aerosols signals, given that our retrieval algorithm is specifically designed for dust coarse mode whereas MODIS retrieves both accumulation and fine aerosol modes. Mean aerosol layer altitude has also been retrieved from AIRS data and we show global maps and time series of altitude retrieved from space. Altitude retrievals are compared to the CALIOP/Calipso Level-2 product starting June 2006. This comparison, for a region located downwind from the Sahara, again shows a good agreement demonstrating that our algorithm effectively allows retrieving reliable mean dust layer altitude. A global climatology of the dust optical depth at 10 µm and of the aerosol layer mean altitude has also been established. An interesting conclusion is the fact that if the AOD decreases from Africa to the Caribbean

  10. Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.

    1998-01-01

    Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  11. Chemical Composition Characteristics of Atmospheric Aerosols in Relation to Haze, Asian Dust and Mixed Haze-Asian Dust Episodes at Background Site of Korea in 2013

    NASA Astrophysics Data System (ADS)

    KO, H.; Song, J. M.; Cha, J. W.; Kang, C. H.; Kim, J.; Ryoo, S. B.

    2016-12-01

    The PM10 and PM2.5 aerosols were collected at the Gosan site of Jeju Island, Korea in 2013 and analyzed, in order to examine the variation characteristics of chemical compositions in relation to haze, Asian dust, and mixed haze-Asian dust episodes. For the haze event, nitrate concentrations increased highly as 8.8 and 25.1 times for PM10 and PM2.5, respectively, possibly caused by the inflow of air mass stagnated in eastern parts of China into Jeju area. For the Asian dust event, the concentrations of nss-Ca2+, NO3- and nss-SO42- increased 6.0, 1.5, 1.8 times for PM10, and 2.3, 1.3, 1.6 times for PM2.5, respectively. Meanwhile, for the mixed haze-Asian dust event, the concentrations of nss-Ca2+ and NO3- increased 13.4 and 3.2 times for PM10, and 1.8 and 3.4 times for PM2.5, respectively. The NH4NO3 content was higher than that of (NH4)2SO4 during the haze event, however it was relatively low during the mixed haze-Asian dust event. NO3-/nss-SO42- concentration ratios of Asian Dust in PM10 and PM2.5 were 0.4 and 0.2, showing less significant effect from automobile and local pollution sources. The aerosols were acidified mostly by inorganic acids, especially the nitric acid contributed highly to the acidification during both haze and mixed haze-Asian dust events. Meanwhile, the neutralization by ammonia was noticeably high during haze event when the stagnated air mass moved from China.

  12. A Long-term Record of Saharan Dust Aerosol Properties from TOMS Observations: Optical Depth and Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Herman, J. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The interaction between the strong Rayleigh scattering in the near UV spectral region (330-380 nm) and the processes of aerosol absorption and scattering, produce a clear spectral signal in the upwelling radiance at the top of the atmosphere. This interaction is the basis of the TOMS (Total Ozone Mapping Spectrometer) aerosol retrieval technique that can be used for their characterization and to differentiate non-absorbing sulfates from strongly UV-absorbing aerosols such as mineral dust. For absorbing aerosols, the characterization is in terms of the optical depth and single scattering albedo with assumptions about the aerosol plume height. The results for non-absorbing aerosols are not dependent on plume height. Although iron compounds represent only between 5% to 8% of desert dust aerosol mass, hematite (Fe2O3) accounts for most of the near UV absorption. Because of the large ultraviolet absorption characteristic of hematite, the near UV method of aerosol sensing is especially suited for the detection and characterization of desert dust aerosols. Using the combined record of near UV measurements by the Nimbus7 (1978-1992) and Earth Probe (1996-present) TOMS instruments, a global longterm climatology of near UV optical depth and single scattering albedo has been produced. The multi-year long record of mineral aerosol properties over the area of influence of the Saharan desert, will be discussed.

  13. A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.

    2009-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0

  14. The Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment (SALTRACE 2013) - An overview

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina

    2015-04-01

    Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.

  15. The pulsating nature of large-scale Saharan dust transport as a result of interplays between mid-latitude Rossby waves and the North African Dipole Intensity

    NASA Astrophysics Data System (ADS)

    Cuevas, E.; Gómez-Peláez, A. J.; Rodríguez, S.; Terradellas, E.; Basart, S.; García, R. D.; García, O. E.; Alonso-Pérez, S.

    2017-10-01

    It was previously shown that during August the export of Saharan dust to the Atlantic was strongly affected by the difference of the 700-hPa geopotential height anomaly between the subtropics and the tropics over North Africa, which was termed the North African Dipole Intensity (NAFDI). In this work a more comprehensive analysis of the NAFDI is performed, focusing on the entire summer dust season (June-September), and examining the interactions between the mid-latitude Rossby waves (MLRWs) and NAFDI. Widespread and notable aerosol optical depth (AOD) monthly anomalies are found for each NAFDI-phase over the dust corridors off the Sahara, indicating that NAFDI presents intra-seasonal variability and drives dust transport over both the Mediterranean basin and the North Atlantic. Those summer months with the same NAFDI-phase show similar AOD-anomaly patterns. Variations in NAFDI-phase also control the displacement of the Saharan Heat Low (SHL) westwards or eastwards through horizontal advection of temperature over Morocco-Western Sahara or eastern Algeria-Western Libya, respectively. The connection between the SHL and the NAFDI is quantified statistically by introducing two new daily indexes that account for their respective phases (NAFDI daily index -NAFDIDI-, and SHL longitudinal shift index -SHLLSI-) and explained physically using the energy equation of the atmospheric dynamics. The Pearson's correlation coefficient between the one-day-lag SHLLSI and the NAFDIDI for an extended summer season (1980-2013) is 0.78. A positive NAFDI is associated with the West-phase of the SHL, dust sources intensification on central Algeria, and positive AOD anomalies over this region and the Subtropical North Atlantic. A negative NAFDI is associated with the East-phase of the SHL, and positive AOD anomalies over central-eastern Sahara and the central-western Mediterranean Sea. The results point out that the phase changes of NAFDI at intra-seasonal time scale are conducted by those

  16. Single particle chemical composition, state of mixing and shape of fresh and aged Saharan dust in Morocco and at Cape Verde Islands during SAMUM I and II

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Emmel, Carmen; Ebert, Martin; Lieke, Kirsten; Müller-Ebert, Dörthe; Schütz, Lothar; Weinbruch, Stephan

    2010-05-01

    The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosol was measured. The winter campaign of Saharan Mineral Dust Experiment II in 2008 was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Ground-based and airborne measurements were performed in the winter season, where mineral dust from the Western Sahara and biomass burning aerosol from the Sahel region occurred. Samples were collected with a miniature impactor system, a sedimentation trap, a free-wing impactor, and a filter sampler. Beryllium discs as well as carbon coated nickel discs, carbon foils, and nuclepore and fiber filters were used as sampling substrates. The size-resolved particle aspect ratio and the chemical composition are determined by scanning electron microscopy and energy-dispersive X-ray microanalysis of single particles. Mineralogical bulk composition is determined by X-ray diffraction analysis. In Morocco, three size regimes are identified in the aerosol: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 µm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 µm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). More detailed results are found in Kandler et al. (2009) At Praia, Cape Verde, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as

  17. Contrasting aerosol optical and radiative properties between dust and urban haze episodes in megacities of Pakistan

    NASA Astrophysics Data System (ADS)

    Iftikhar, Muhammad; Alam, Khan; Sorooshian, Armin; Syed, Waqar Adil; Bibi, Samina; Bibi, Humera

    2018-01-01

    Satellite and ground based remote sensors provide vital information about aerosol optical and radiative properties. Analysis of aerosol optical and radiative properties during heavy aerosol loading events in Pakistan are limited and, therefore, require in-depth examination. This work examines aerosol properties and radiative forcing during Dust Episodes (DE) and Haze Episodes (HE) between 2010 and 2014 over mega cities of Pakistan (Karachi and Lahore). Episodes having the daily averaged values of Aerosol Optical Depth (AOD) exceeding 1 were selected. DE were associated with high AOD and low Ångström Exponent (AE) over Karachi and Lahore while high AOD and high AE values were associated with HE over Lahore. Aerosol volume size distributions (AVSD) exhibited a bimodal lognormal distribution with a noticeable coarse mode peak at a radius of 2.24 μm during DE, whereas a fine mode peak was prominent at a radius 0.25 μm during HE. The results reveal distinct differences between HE and DE for spectral profiles of several parameters including Single Scattering Albedo (SSA), ASYmmetry parameter (ASY), and the real and imaginary components of refractive index (RRI and IRI). The AOD-AE correlation revealed that dust was the dominant aerosol type during DE and that biomass burning and urban/industrial aerosol types were pronounced during HE. Aerosol radiative forcing (ARF) was estimated using the Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) model. Calculations revealed a negative ARF at the Top Of the Atmosphere (ARFTOA) and at the Bottom Of the Atmosphere (ARFBOA), with positive ARF within the Atmosphere (ARFATM) during both DE and HE over Karachi and Lahore. Furthermore, estimations of ARFATM by SBDART were shown to be in good agreement with values derived from AERONET data for DE and HE over Karachi and Lahore.

  18. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    NASA Astrophysics Data System (ADS)

    Papayannis, A.; Mamouri, R. E.; Amiridis, V.; Remoundaki, E.; Tsaknakis, G.; Kokkalis, P.; Veselovskii, I.; Kolgotin, A.; Nenes, A.; Fountoukis, C.

    2012-05-01

    A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E) between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients) properties of aerosols in the troposphere. The aerosol optical depth (AOD) values derived from the CIMEL ranged from 0.33-0.91 (355 nm) to 0.18-0.60 (532 nm), while the lidar ratio (LR) values retrieved from the Raman lidar ranged within 75-100 sr (355 nm) and 45-75 sr (532 nm). Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532) and Ångström-extinction-related (AER355/532) were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively), indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index) inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10) + 0.007( ± 0.007)i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide a possible aerosol composition

  19. African Dust Blows over the Caribbean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shuttle astronauts frequently track Saharan dust storms as they blow from north Africa across the Atlantic Ocean. Dust palls blowing from Africa take about a week to cross the Atlantic. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The top photograph, a classic image showing African dust over the Caribbean, was taken at a time when few scientists had considered the possibility. The image was taken by Space Shuttle astronauts on July 11, 1994 (STS065-75-47). This photograph looks southwest over the northern edge of a large trans-Atlantic dust plume that blew off the Sahara desert in Africa. In this view, Caicos Island in the Bahamas and the mountainous spines of Haiti are partly obscured by the dust. Closer to the foreground, (about 26 degrees north latitude), the skies are clear. The lower photograph (STS105-723-7) was taken by Space Shuttle astronauts while docked to the International Space Station on August 19, 2001. The spacecraft is over the Atlantic Ocean at roughly 45oN, 60oW. The astronauts were looking obliquely to the south; the boundaries of the dust plumes can be traced visually by the abrupt change from clear to hazy atmosphere-the hazy line marks the northern edge of the dust pall near the Caribbean. Images provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  20. Dust loading of the normal atmosphere

    NASA Astrophysics Data System (ADS)

    Hall, F. F., Jr.

    1983-01-01

    Soil dust can contribute to atmospheric turbidity over most of the globe. The major sources of this dust are in the world's arid regions, where loadings of over 1000 micrograms/cu m can occur during strong winds. Saharan dust transported across the Atlantic can produce loadings up to 100 micrograms/cu m in the Western Hemisphere. Asian sources yield springtime loadings of 5-10 micrograms/cu m at Midway Island. Other important sources of dust are agricultural plowing and vehicular traffic on graded roads. The U.S. air quality standard of 75 micrograms/cu m is often exceeded in rural areas.

  1. CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.

    2012-01-01

    CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios during the summer of 2007 are used to study transatlantic dust properties downwind of Saharan sources, and to examine the interaction of clouds and dust. We discuss the following findings: (1) while lidar backscatter doesn't change much with altitude in the Saharan Air Layer (SAL), depolarization and color ratios both increase with altitude in the SAL; (2) lidar backscatter and color ratio increase as dust is transported westward in the SAL; (3) the vertical lapse rate of dust depolarization ratio increases within SAL as plumes move westward; (4) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Finally, (5) the odds of CALIOP finding dust below SAL next to clouds are about 2/3 of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dusty volumes lose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.

  2. An electrified dust storm over the Negev desert, Israel

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Price, C. G.; Yaniv, R.; Katz, S.

    2015-12-01

    We report on atmospheric electrical measurements conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30035'N, 34045'E) during a massive dust storm that occurred over the Eastern Mediterranean region on 10-11 February 2015. The event transported Saharan dust from Egypt and the Sinai Peninsula in advance of the warm front of a Cyprus low pressure system. Satellite images show the dust plume covering the Negev desert and Southern Israel and moving north. The concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 450 μg m-3 and AOT from the AERONET station in Sde-Boker was 1.5 on the 10th. The gradual intensification of the event reached peak values on February 11th of over 1200 μg m-3 and AOT of 1.8. This was the most severe dust event in a decade. Continuous measurements of the fair weather vertical electric field (Ez) and vertical current density (Jz) were conducted with 1 minute temporal resolution. Meteorological data was also recorded at the site. As the dust was advected over the observation site, we noted very large fluctuations in the electrical parameters. Since the onset of the dust storm, the Ez values changed between +1000 and +8000 V m-1 while the Jz fluctuated between -10 pA m2 and +20 pA m2, both on time-scales of a few minutes. These values are a significant departures from the mean fair-weather values measured at the site, which are -~200 V m-1 and ~2 pA m2. The disturbed episodes lasted for several hours on the 10th and 11th and coincided with local meteorological conditions related to the wind direction, which carried large amounts of dust particles. We interpret the rapid changes as caused by the transport of electrically charged dust. Calculation of the total electrical charge during the dust storm will be presented.

  3. Atmospheric response to Saharan dust deduced from ECMWF reanalysis increments

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-04-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data - the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely-sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (> 0.5), low correlation, and high negative correlation (<-0.5). The innermost positive correlation area (PCA) is a large area near the center of the Sahara desert. For some local maxima inside this area the correlation even exceeds 0.8. The outermost negative correlation area (NCA) is not uniform. It consists of some areas over the eastern and western parts of North Africa with a relatively small amount of dust. Inside those areas both positive and negative high correlations exist at pressure levels ranging from 850 to 700 hPa, with the peak values near 775 hPa. Dust-forced heating (cooling) inside the PCA (NCA) is accompanied by changes in the static stability of the atmosphere above the dust layer. The reanalysis data of the European Center for Medium Range Weather Forecast(ECMWF) suggests that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity, and downward (upward) airflow. These facts indicate an interaction between dust-forced heating /cooling and atmospheric circulation. The

  4. Profiling of Saharan dust from the Caribbean to western Africa - Part 1: Layering structures and optical properties from shipborne polarization/Raman lidar observations

    NASA Astrophysics Data System (ADS)

    Rittmeister, Franziska; Ansmann, Albert; Engelmann, Ronny; Skupin, Annett; Baars, Holger; Kanitz, Thomas; Kinne, Stefan

    2017-11-01

    We present final and quality-assured results of multiwavelength polarization/Raman lidar observations of the Saharan air layer (SAL) over the tropical Atlantic. Observations were performed aboard the German research vessel R/V Meteor during the 1-month transatlantic cruise from Guadeloupe to Cabo Verde over 4500 km from 61.5 to 20° W at 14-15° N in April-May 2013. First results of the shipborne lidar measurements, conducted in the framework of SALTRACE (Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment), were reported by Kanitz et al.(2014). Here, we present four observational cases representing key stages of the SAL evolution between Africa and the Caribbean in detail in terms of layering structures and optical properties of the mixture of predominantly dust and aged smoke in the SAL. We discuss to what extent the lidar results confirm the validity of the SAL conceptual model which describes the dust long-range transport and removal processes over the tropical Atlantic. Our observations of a clean marine aerosol layer (MAL, layer from the surface to the SAL base) confirm the conceptual model and suggest that the removal of dust from the MAL, below the SAL, is very efficient. However, the removal of dust from the SAL assumed in the conceptual model to be caused by gravitational settling in combination with large-scale subsidence is weaker than expected. To explain the observed homogenous (height-independent) dust optical properties from the SAL base to the SAL top, from the African coast to the Caribbean, we have to assume that the particle sedimentation strength is reduced and dust vertical mixing and upward transport mechanisms must be active in the SAL. Based on lidar observations on 20 nights at different longitudes in May 2013, we found, on average, MAL and SAL layer mean values (at 532 nm) of the extinction-to-backscatter ratio (lidar ratio) of 17±5 sr (MAL) and 43±8 sr (SAL), of the particle linear depolarization ratio of 0

  5. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean

    DOE PAGES

    Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; ...

    2015-07-09

    Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOTmore » asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS cloud fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant cloud cover (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.« less

  6. CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.

    2014-01-01

    We use CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios, as well as particulate retrievals during the summer of 2007 to study transatlantic dust properties downwind of Saharan sources, and to examine the influence of nearby clouds on dust. Our analysis suggests that (1) under clear skies, while lidar backscatter and color ratio do not change much with altitude and longitude in the Saharan Air Layer (SAL), depolarization ratio increases with altitude and decreases westward in the SAL (2) the vertical lapse rate of dust depolarization ratio, introduced here, increases within SAL as plumes move westward (3) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Moreover, the presence of nearby clouds tends to decrease the depolarization of dust volumes within SAL. Finally, (4) the odds of CALIOP finding dust below SAL next to clouds are about of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dust volumes loose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.

  7. Impact of Radiatively Interactive Dust Aerosols in the NASA GEOS-5 Climate Model: Sensitivity to Dust Particle Shape and Refractive Index

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.

    2013-01-01

    We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a

  8. Dust Storms and Mortality in the United States, 1995-2005

    EPA Science Inventory

    Extreme weather events, such as dust storms, are predicted to become more frequent as the global climate warms through the 21st century. The impact of dust storms on human health has been studied extensively in the context of Asian, Saharan, Arabian, and Australian storms, but t...

  9. A Model for Saharan Dust Transport.

    NASA Astrophysics Data System (ADS)

    D'Almeida, Guillaume A.

    1986-07-01

    In this paper the source strength and the deposition rate of the dust emerging from the Sahara are assessed. For this purpose a multichannel sunphotometer has been developed and a turbidity network covering 11 stations has been set up in the Sahara, in the Sahel region and the surrounding southern area for a duration of about two years. A correlation analysis connecting observed aerosol turbidity parameters and mineral dust mass concentration has been performed during a four-week field campaign in Agadez (Niger). An appropriate box model including the aerosol turbidity parameters, actual wind field data of the source regions, the general circulation pattern over Africa and dry and wet deposition reveals a total mass production of about 630 × 106 and 710 × 106 t yr1 for all suspended particulate matter, 80 × 106 and 90 × 106 t yr1 for aerosol particles smaller than 5 m radius for the years 1981 and 1982 respectively. About 60% of the mass moves southward to the Gulf of Guinea, 28% westward to the equatorial North Atlantic Ocean and 12% northward to Europe. A considerable part is deposited in the Atlantic Ocean and the Mediterranean forming deep-sea sediments.

  10. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    NASA Astrophysics Data System (ADS)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending

  11. Impact of dust and smoke mixing on column-integrated aerosol properties from observations during a severe wildfire episode over Valencia (Spain).

    PubMed

    Gómez-Amo, J L; Estellés, V; Marcos, C; Segura, S; Esteve, A R; Pedrós, R; Utrillas, M P; Martínez-Lozano, J A

    2017-12-01

    The most destructive wildfire experienced in Spain since 2004 occurred close to Valencia in summer 2012. A total of 48.500ha were affected by two wildfires, which were mostly active during 29-30 June. The fresh smoke plume was detected at the Burjassot measurement station simultaneously to a severe dust episode. We propose an empirical method to evaluate the dust and smoke mixing and its impact on the microphysical and optical properties. For this, we combine direct-sun measurements with a Cimel CE-318 sun-photometer with an inversion methodology, and the Mie theory to derive the column-integrated size distribution, single scattering albedo (SSA) and asymmetry parameter (g). The mixing of dust and smoke greatly increased the aerosol load and modified the background aerosol properties. Mineral dust increased the aerosol optical depth (AOD) up to 1, while the smoke plume caused an extreme AOD peak of 8. The size distribution of the mixture was bimodal, with a fine and coarse modes dominated by the smoke particles and mineral dust, respectively. The SSA and g for the dust-smoke mixture show a marked sensitivity on the smoke mixing-ratio, mainly at longer wavelengths. Mineral dust and smoke share a similar SSA at 440nm (~0.90), but with opposite spectral dependency. A small dust contribution to the total AOD substantially affects the SSA of the mixture, and also SSA at 1020nm increases from 0.87 to 0.95. This leads to a different spectral behaviour of SSA that changes from positive (smoke plume) to negative (dust), depending on the dust and smoke mixing-ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Single Particle Analysis by Combined Chemical Imaging to Study Episodic Air Pollution Events in Vienna

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Eitenberger, Elisabeth; Friedbacher, Gernot; Brenner, Florian; Hutter, Herbert; Schauer, Gerhard; Kistler, Magdalena; Greilinger, Marion; Lohninger, Hans; Lendl, Bernhard; Kasper-Giebl, Anne

    2017-04-01

    The aerosol composition of a city like Vienna is characterized by a complex interaction of local emissions and atmospheric input on a regional and continental scale. The identification of major aerosol constituents for basic source appointment and air quality issues needs a high analytical effort. Exceptional episodic air pollution events strongly change the typical aerosol composition of a city like Vienna on a time-scale of few hours to several days. Analyzing the chemistry of particulate matter from these events is often hampered by the sampling time and related sample amount necessary to apply the full range of bulk analytical methods needed for chemical characterization. Additionally, morphological and single particle features are hardly accessible. Chemical Imaging evolved to a powerful tool for image-based chemical analysis of complex samples. As a complementary technique to bulk analytical methods, chemical imaging can address a new access to study air pollution events by obtaining major aerosol constituents with single particle features at high temporal resolutions and small sample volumes. The analysis of the chemical imaging datasets is assisted by multivariate statistics with the benefit of image-based chemical structure determination for direct aerosol source appointment. A novel approach in chemical imaging is combined chemical imaging or so-called multisensor hyperspectral imaging, involving elemental imaging (electron microscopy-based energy dispersive X-ray imaging), vibrational imaging (Raman micro-spectroscopy) and mass spectrometric imaging (Time-of-Flight Secondary Ion Mass Spectrometry) with subsequent combined multivariate analytics. Combined chemical imaging of precipitated aerosol particles will be demonstrated by the following examples of air pollution events in Vienna: Exceptional episodic events like the transformation of Saharan dust by the impact of the city of Vienna will be discussed and compared to samples obtained at a high alpine

  13. Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.

    2002-12-01

    An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.

  14. Dust Storms in the United States are Associated with Increased Cardiovascular Mortality

    EPA Science Inventory

    Background: Extreme weather events such as dust storms are predicted to become more frequent as the global climate warms through the 21st century. Studies of Asian, Saharan, Arabian, and Australian dust storms have found associations with cardiovascular and total non-accidental...

  15. Retrieval of Saharan desert dust optical depth from thermal infrared measurements by IASI

    NASA Astrophysics Data System (ADS)

    Vandenbussche, S.; Kochenova, S.; Vandaele, A.-C.; Kumps, N.; De Mazière, M.

    2012-04-01

    Aerosols are a major actor in the climate system. They are responsible for climate forcing by both direct (by emission, absorption and scattering) and indirect effects (for example, by altering cloud microphysics). A better knowledge of aerosol optical properties, of the atmospheric aerosol load and of aerosol sources and sinks may therefore significantly improve the modeling of climate changes. Aerosol optical depth and other properties are retrieved on an operational basis from daytime measurements in the visible and near infrared spectral range by a number of instruments, like the satellite instruments MODIS, CALIOP, POLDER, MISR and ground-based sunphotometers. Aerosol retrievals from day and night measurements at thermal infrared (TIR) wavelengths (for example, from SEVIRI, AIRS and IASI satellite instruments) are less common, but they receive growing interest in more recent years. Among those TIR measuring instruments, IASI on METOP has one major advantage for aerosol retrievals: its large continuous spectral coverage, allowing to better capture the broadband signature of aerosols. Furthermore, IASI has a high spectral resolution (0.5cm-1 after apodization) which allows retrieving a large number of trace gases at the same time, it will nominally be in orbit for 15 years and offers a quasi global Earth coverage twice a day. Here we will show recently obtained results of desert aerosol properties (concentration, altitude, optical depth) retrieved from IASI TIR measurements, using the ASIMUT software (BIRA-IASB, Belgium) linked to (V)LIDORT (R. Spurr, RTsolutions Inc, US) and to SPHER (M. Mishchenko, NASA GISS, USA). In particular, we will address the case of Saharan desert dust storms, which are a major source of desert dust particles in the atmosphere. Those storms frequently transport sand to Europe, Western Asia or even South America. We will show some test-case comparisons between our retrievals and measurements from other instruments like those listed

  16. On large-scale transport of dust storms and anthropogenic dust-falls over east Asia observed in central Korea in 2009

    NASA Astrophysics Data System (ADS)

    Chung, Y. S.; Kim, Hak-Sung; Chun, Youngsin

    2014-05-01

    Dust air pollution has been routinely monitored in central Korea for the last two decades. In 2009, there were eight typical episodes of significant dust loadings in the air: four were caused by dust storms from deserts in Mongolia and Northern China, while the remaining were typical cases of anthropogenic air pollution masses arriving from the Yellow Sea and East China. These natural dust loadings occurred with cool northwesterly airflows in the forward side of an intense anticyclone coming from Mongolia and Siberia. The mean concentrations of the four natural dustfall cases for TSP, PM10 and PM2.5 were 632, 480 and 100 μg m-3, respectively. In contrast, the anthropogenic dust-pollution episodes occurred with the warm westerly and southwesterly airflows in the rear side of an anticyclone. This produced a favorable atmospheric and chemical condition for the build-up of anthropogenic dust air pollution in the Yellow Sea. The mean concentrations of the four anthropogenic dust loadings for TSP, PM10 and PM2.5 were 224, 187 and 137 μg m-3, respectively. The contents of fine dust loadings of PM2.5 were comparatively high in the cases of anthropogenic air pollution. High atmospheric concentrations of fine particles in the atmosphere cause poor visibility and constitute a health hazard. Satellite observations clearly showed the movement of dust-pollution masses from Mongolia and Northern China and from the Yellow Sea and East China that caused these dust pollution episodes in Korea.

  17. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  18. Longwave radiative effects of Saharan dust during the ICE-D campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie

    2017-04-01

    The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from Ice in Clouds Experiment - Dust (ICE-D) campaign. The ICE-D campaign occurred during August 2015 and was based from Cape Verde. The ICE-D campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. ICE-D encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean ICE-D size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2

  19. Ice nucleating particles in the Saharan Air Layer

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Sierau, Berko; García, M. Isabel; Rodríguez, Sergio; Alastuey, Andrés; Linke, Claudia; Schnaiter, Martin; Kupiszewski, Piotr; Kanji, Zamin A.; Lohmann, Ulrike

    2016-07-01

    This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L-1 in the deposition mode and up to 2500 std L-1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43-0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient

  20. Possible influence of dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Lohmann, Ulrike

    2014-05-01

    Tropical Cyclones (TCs) belong to the most extreme events in nature. In the past decade, the possible impact of dust on Atlantic hurricanes receives growing interest. As mineral dust is able to absorb incoming solar radiation and therefore warm the surrounding air, the presence of dust can lead to a reduction of sea surface temperature (SST) and an increase in atmospheric stability. Furthermore, resulting baroclinic effects and the dry Saharan easterly jet lead to an enhanced vertical shear of the horizontal winds. SST, stability, moisture and vertical wind shear are known to potentially impact hurricane activity. But how Saharan dust influences these prerequisites for hurricane formation is not yet clear. Some dynamical mechanisms induced by the SAL might even strengthen hurricanes. An adequate framework for investigating the possible impact of dust on hurricanes is comparing high resolution simulations (~0.5°x0.5°, 31 vertical levels) with and without radiatively active dust aerosols. To accomplish this task, we are using the general circulation model ECHAM6 coupled to a modified version of the aerosol model HAM, ECHAM6-HAM-Dust. Instead of the five aerosol species HAM normally contains, the modified version takes only insoluble dust into account, but modifies the scavenging parameters in order to have a similar lifetime of dust as in the full ECHAM6-HAM. All remaining aerosols are prescribed. To evaluate the effects of dust on hurricanes, a TC detection and tracking method is applied on the results. ECHAM6-HAM-Dust was used in two configurations, one with radiatively active dust aerosols and one with dust being not radiatively active. For both set-ups, 10 Monte-Carlo simulations of the year 2005 were performed. A statistical method which identifies controlling parameters of hurricane genesis was applied on North Atlantic developing and non-developing disturbances in all simulations, comparing storms in the two sets of simulations. Hereby, dust can be assigned

  1. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  2. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  3. An episode of extremely high PM concentrations over Central Europe caused by dust emitted over the southern Ukraine

    NASA Astrophysics Data System (ADS)

    Birmili, W.; Schepanski, K.; Ansmann, A.; Spindler, G.; Tegen, I.; Wehner, B.; Nowak, A.; Reimer, E.; Mattis, I.; Müller, K.; Brüggemann, E.; Gnauk, T.; Herrmann, H.; Wiedensohler, A.; Althausen, D.; Schladitz, A.; Tuch, T.; Löschau, G.

    2007-08-01

    On 24 March 2007, the atmosphere over Central Europe was affected by an episode of exceptionally high mass concentrations of aerosol particles, most likely caused by a dust storm in the Southern Ukraine on the preceding day. At ground-based measurement stations in Slovakia, the Czech Republic, Poland and Germany PM10 mass concentrations rose to values between 200 and 1400 μg m-3. An evaluation of PM10 measurements from 360 monitoring stations showed that the dust cloud advanced along a narrow corridor at speeds of up to 70 km h-1. According to lidar observations over Leipzig, Germany, the high aerosol concentrations were confined to a homogeneous boundary layer of 1800 m height. The wavelength dependence of light extinction using both lidar and sun photometer measurements suggested the dominance of coarse particles during the main event. At a wavelength of 532 nm, relatively high volume extinction coefficients (300-400 Mm-1) and a particle optical depth of 0.65 was observed. In-situ measurements with an aerodynamic particle sizer at Melpitz, Germany, confirmed the presence of a coarse particle mode with a mode diameter >2 μm, whose maximum concentration coincided with that of PM10. A chemical particle analysis confirmed the dominance of non-volatile and insoluble matter in the coarse mode as well as high enrichments of Ti and Fe, which are characteristic of soil dust. A combination of back trajectory calculations and satellite images allowed to identify the dust source with confidence: On 23 March 2007, large amounts of dust were emitted from dried-out farmlands in the southern Ukraine, facilitated by wind gusts up to 100 km h-1. The unusual vertical stability and confined height of this dust layer as well as the rapid transport under dry conditions led to the conservation of high aerosol mass concentrations along the transect and thus to the extraordinary high aerosol concentrations over Central Europe. Our observations demonstrate the capacity of a combined

  4. The Evolution and Role of the Saharan Air Layer During Hurricane Helene (2006)

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Shie, Chung-Lin; Boller, Ryan A.

    2013-01-01

    The Saharan air layer (SAL) has received considerable attention in recent years as a potential negative influence on the formation and development of Atlantic tropical cyclones. Observations of substantial Saharan dust in the near environment of Hurricane Helene (2006) during the National Aeronautics and Space Administration (NASA) African Monsoon Multidisciplinary Activities (AMMA) Experiment (NAMMA) field campaign led to suggestions about the suppressing influence of the SAL in this case. In this study, a suite of satellite remote sensing data, global meteorological analyses, and airborne data are used to characterize the evolution of the SAL in the environment of Helene and assess its possible impact on the intensity of the storm. The influence of the SAL on Helene appears to be limited to the earliest stages of development, although the magnitude of that impact is difficult to determine observationally. Saharan dust was observed on the periphery of the storm during the first two days of development after genesis when intensification was slow. Much of the dust was observed to move well westward of the storm thereafter, with little SAL air present during the remainder of the storm's lifetime and with the storm gradually becoming a category-3 strength storm four days later. Dry air observed to wrap around the periphery of Helene was diagnosed to be primarily non-Saharan in origin (the result of subsidence) and appeared to have little impact on storm intensity. The eventual weakening of the storm is suggested to result from an eyewall replacement cycle and substantial reduction of the sea surface temperatures beneath the hurricane as its forward motion decreased.

  5. The Association between Dust Storms and Daily Non-Accidental Mortality in the United States, 1993-2005.

    EPA Science Inventory

    Background:The impact of dust storms on human health has been studied in the context of Asian,Saharan, Arabian, and Australian storms,but there has been no recent population-level epidemiological research on the dust storms in North America . The relevance of dust storms to publi...

  6. Effects of Saharan Mineral Dust Aerosols on the Dynamics of an Idealized African Easterly Jet-African Easterly Wave System over North Africa

    NASA Astrophysics Data System (ADS)

    Grogan, Dustin Francis Phillip

    The central objective of this work is to examine the direct radiative effects of Saharan mineral dust aerosols on the dynamics of African easterly waves (AEWs) and the African easterly jet (AEJ). Achieving this objective is built around two tasks that use the Weather Research and Forecasting (WRF) model coupled to an online dust model (WRF-dust model). The first task (Chapter 2) examines the linear dynamics of AEWs; the second task (Chapter 3) examines the nonlinear evolution of AEWs and their interactions with the AEJ. In Chapter 2, the direct radiative effects of dust on the linear dynamics of AEWs are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the generation of eddy available potential energy (APE) by the dust field. The generation of eddy APE is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis calculates the linear dynamics of AEWs using zonally averaged basic states for wind, temperature and dust consistent with summertime conditions over North Africa. For the fastest growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from tau=1.0 to tau=2.5. A local energetics analysis shows that for tau=1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation of APE and conversions of energy are co-located and occur where the meridional dust gradient is maximized near the critical layer, i.e., where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis. In Chapter 3, the direct radiative effects of dust

  7. Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach

    NASA Astrophysics Data System (ADS)

    Hartmann, Markus; Heim, Lars-Oliver; Ebert, Martin; Weinbruch, Stephan; Kandler, Konrad

    2015-04-01

    Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach Markus Hartmann(1), Lars-Oliver Heim(2), Martin Ebert(1), Stephan Weinbruch(1), Konrad Kandler(1) The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) took place at Barbados from June 10 to July 15 2013. During this period, dust was frequently transported from Africa across the Atlantic Ocean toward the Caribbean. In this study, we investigate the atmospheric aging of the dust aerosol based on its hygroscopicity. Aerosol samples were collected ground-based at Ragged Point (13°9'54.4"N, 59°25'55.7"W) with a single round jet cascade impactor on nickel-substrates. The particles from the stage with a 50% efficiency cutoff size of 1 µm were analyzed with an Environmental Scanning Electron Microscope (ESEM) equipped with an energy-dispersive X-ray detector (EDX) and a cooling stage. In an initial automated run, information on particle size and chemical composition for elements heavier than carbon were gathered. Afterwards, electron microscope images of the same sample areas as before were taken during a stepwise increase of relative humidities (between 50 % and 92%), so that the hygroscopic growth of the droplets could be directly observed. The observed hygroscopic growth can be correlated to the chemical composition of the respective particles. For the automated analysis of several hundred images of droplets an image processing algorithm in Python was developed. The algorithm is based on histogram equalization and watershed segmentation. Since SEM images can only deliver two-dimensional information, but the hygroscopic growth factor usually refers to the volume of a drop, Atomic Force Microscopy (AFM) was used to derive an empirical function for the drop volume depending on the apparent drop diameter in the electron images. Aside from the mineral dust, composed of mostly silicates and

  8. Sahara Dust Cloud

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24

    A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean.

    These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward.

    In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005.

    In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie

    The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the

  9. Evaluation of atmospheric dust prediction models using ground-based observations

    NASA Astrophysics Data System (ADS)

    Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco

    2013-04-01

    April 2011, when several dust episodes where recorded. In regions devoid of air quality stations (as Saharan and Arabian deserts), model forecasts are regularly evaluated for 38 dust-prone sites through the use of an empirical relationship between visibility data (obtained from meteorological reports) and dust surface concentration. Finally, active remote sensing with lidar or ceilometers is the only way to inquire about the dust vertical distribution. Analysis of selected cases comparing model forecasts and lidar observations at Santa Cruz de Tenerife (Canary Islands) yields promising results regarding the identification of the dust plume thickness. From the results of this pilot trial, the convenience of a regular evaluation will be assessed.

  10. Desert dust outbreaks and respiratory morbidity in Athens, Greece.

    PubMed

    Trianti, Stavroula-Myrto; Samoli, Evangelia; Rodopoulou, Sophia; Katsouyanni, Klea; Papiris, Spyros A; Karakatsani, Anna

    2017-07-01

    Ambient particulate matter (PM) has an adverse effect on respiratory morbidity. Desert dust outbreaks contribute to increased PM levels but the toxicity of desert dust mixed with anthropogenic pollutants needs clarification. We identified 132 days with desert dust episodes and 177 matched days by day of the week, season, temperature and humidity between 2001 and 2006 in Athens, Greece. We collected data on regulated pollutants and daily emergency outpatient visits and admissions for respiratory causes. We applied Poisson regression models adjusting for confounding effects of seasonality, meteorology, holidays and influenza epidemics. We evaluated the sensitivity of our results to co-pollutant exposures and effect modification by age and sex. A 10 μg/m 3 increase in PM 10 concentration was associated with 1.95% (95% confidence interval (CI): 0.02%, 3.91%) increase in respiratory emergency room visits. No significant interaction with desert dust episodes was observed. Compared with non-dust days, there was a 47% (95% CI: 29%, 68%) increase in visits in dust days not adjusting for PM 10 . Desert dust days were associated with higher numbers of emergency room visits for asthma, chronic obstructive pulmonary disease and respiratory infections with increases of 38%, 57% and 60%, respectively (p < 0.001 for all comparisons). Analyses of respiratory hospital admissions provided similar results. PM 10 effects decreased when adjusting for desert dust days and were further confounded by co-pollutants. Desert dust episode days are associated with higher respiratory emergency room visits and hospital admissions. This effect is insufficiently explained by increased PM 10 levels.

  11. Numerical simulations of windblown dust over complex terrain: the Fiambalá Basin episode in June 2015

    NASA Astrophysics Data System (ADS)

    Mingari, Leonardo A.; Collini, Estela A.; Folch, Arnau; Báez, Walter; Bustos, Emilce; Soledad Osores, María; Reckziegel, Florencia; Alexander, Peter; Viramonte, José G.

    2017-06-01

    On 13 June 2015, the London Volcanic Ash Advisory Centre (VAAC) warned the Buenos Aires VAAC about a possible volcanic eruption from the Nevados Ojos del Salado volcano (6879 m), located in the Andes mountain range on the border between Chile and Argentina. A volcanic ash cloud was detected by the SEVIRI instrument on board the Meteosat Second Generation (MSG) satellites from 14:00 UTC on 13 June. In this paper, we provide the first comprehensive description of this event through observations and numerical simulations. Our results support the hypothesis that the phenomenon was caused by wind remobilization of ancient pyroclastic deposits (ca. 4.5 ka Cerro Blanco eruption) from the Bolsón de Fiambalá (Fiambalá Basin) in northwestern Argentina. We have investigated the spatiotemporal distribution of aerosols and the emission process over complex terrain to gain insight into the key role played by the orography and the condition that triggered the long-range transport episode. Numerical simulations of windblown dust were performed using the ARW (Advanced Research WRF) core of the WRF (Weather Research and Forecasting) model (WRF-ARW) and FALL3D modeling system with meteorological fields downscaled to a spatial resolution of 2 km in order to resolve the complex orography of the area. Results indicate that favorable conditions to generate dust uplifting occurred in northern Fiambalá Basin, where orographic effects caused strong surface winds. According to short-range numerical simulations, dust particles were confined to near-ground layers around the emission areas. In contrast, dust aerosols were injected up to 5-6 km high in central and southern regions of the Fiambalá Basin, where intense ascending airflows are driven by horizontal convergence. Long-range transport numerical simulations were also performed to model the dust cloud spreading over northern Argentina. Results of simulated vertical particle column mass were compared with the MSG-SEVIRI retrieval

  12. Atmospheric response to Saharan dust deduced from ECMWF reanalysis (ERA) temperature increments

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-09-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in the reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the lack of dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (>0.5), low correlation and high negative correlation (<-0.5). The innermost positive correlation area (PCA) is a large area near the center of the Sahara desert. For some local maxima inside this area the correlation even exceeds 0.8. The outermost negative correlation area (NCA) is not uniform. It consists of some areas over the eastern and western parts of North Africa with a relatively small amount of dust. Inside those areas both positive and negative high correlations exist at pressure levels ranging from 850 to 700 hPa, with the peak values near 775 hPa. Dust-forced heating (cooling) inside the PCA (NCA) is accompanied by changes in the static instability of the atmosphere above the dust layer. The reanalysis data of the European Center for Medium Range Weather Forecast (ECMWF) suggest that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity and downward (upward) airflow. These findings are associated with the interaction between dust-forced heating/cooling and

  13. Role of Surface Wind and Vegetation Cover in Multi-decadal Variations of Dust Emission in the Sahara and Sahel

    NASA Technical Reports Server (NTRS)

    Kim, Dong; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas L.; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2016-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  14. Atmospheric dust contribution to budget of U-series nuclides in weathering profiles. The Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Pelt, E.; Chabaux, F. J.; Innocent, C.; Ghaleb, B.

    2009-12-01

    Analysis of U-series nuclides in weathering profiles is developed today for constraining time scale of soil and weathering profile formation (e.g., Chabaux et al., 2008). These studies require the understanding of U-series nuclides sources and fractionation in weathering systems. For most of these studies the impact of aeolian inputs on U-series nuclides in soils is usually neglected. Here, we propose to discuss such an assumption, i.e., to evaluate the impact of dust deposition on U-series nuclides in soils, by working on present and paleo-soils collected on the Mount Cameroon volcano. Recent Sr, Nd, Pb isotopic analyses performed on these samples have indeed documented significant inputs of Saharan dusts in these soils (Dia et al., 2006). We have therefore analyzed 238U-234U-230Th nuclides in the same samples. Comparison of U-Th isotopic data with Sr-Nd-Pb isotopic data indicates a significant impact of the dust input on the U and Th budget of the soils, around 10% for both U and Th. Using Sr-Nd-Pb isotopic data of Saharan dusts given by Dia et al. (2006) we estimate U-Th concentrations and U-Th isotope ratios of dusts compatible with U-Th data obtained on Saharan dusts collected in Barbados (Rydell H.S. and Prospero J.M., 1972). However, the variations of U/Th ratios along the weathering profiles cannot be explained by a simple mixing scenario between material from basalt and from the defined atmospheric dust pool. A secondary uranium migration associated with chemical weathering has affected the weathering profiles. Mass balance calculation suggests that U in soils from Mount Cameroon is affected at the same order of magnitude by both chemical migration and dust accretion. Nevertheless, the Mount Cameroon is a limit case were large dust inputs from continental crust of Sahara contaminate basaltic terrain from Mount Cameroon volcano. Therefore, this study suggests that in other contexts were dust inputs are lower, or the bedrocks more concentrated in U and Th

  15. Effective and Accurate Morphology Models for Asian and Saharan Mineral Dust Scattering Properties

    NASA Astrophysics Data System (ADS)

    Stegmann, P.; Yang, P.

    2017-12-01

    It is well known that mineral dust particles from desert sources can have a significant influence on the planetary radiation balance. In order to determine the sign and magnitude of the dust radiative forcing effect, complex models have been and continue to be developed. Key factors which influence the single-scattering properties of mineral dust are dust source regions and thus mineralogical composition, and its mixture with water, sea salt, and products of human activity, such as soot. The ensemble of mineral dust scattering particles may then be modeled either as a simple placeholder shape, often ellipsoidal, through the utilization of an appropriate effective medium refractive index scheme. On the other hand, the scattering particles may be represented in a more rigorous manner, such as Voronoi-tessellated aggregates including fractal soot chains. The consequences and differences of either choice are investigated in the project at hand. It will be shown that the effective medium model indicates a drastic dependence of the mineral dust particle composition on the particle size. Thus the refractive index of a dust particle is in fact a function of its size, amongst other factors. Regional differences between African and Asian mineral dust are also of significance.

  16. Chemical characteristics of PM2.5-0.3 and PM0.3 and consequence of a dust storm episode at an urban site in Lebanon

    NASA Astrophysics Data System (ADS)

    Borgie, Mireille; Ledoux, Frédéric; Dagher, Zeina; Verdin, Anthony; Cazier, Fabrice; Courcot, Lucie; Shirali, Pirouz; Greige-Gerges, Hélène; Courcot, Dominique

    2016-11-01

    Located on the eastern side of the Mediterranean Basin at the intersection of air masses circulating between three continents, the agglomeration of Beirut, capital of Lebanon is an important investigating area for air pollution and more studies are needed to elucidate the composition of the smallest particles classified as carcinogenic to humans. PM2.5-0.3 and PM0.3 samples were collected during the spring-summer period in an urban background site of Beirut, after a dust storm episode occurred, and their chemical composition was determined. Our findings showed that components formed by gas to particle conversion (SO42 - and NH4+) and related to combustion processes are mainly found in the PM0.3 fraction. Typical crustal (Ca2+, Fe, Ti, Mg2+), sea-salt (Na+, Cl-, Mg2+, Sr) species, and NO3- are mainly associated with the PM2.5-0.3 fraction. We have also evidenced that the dust episode which occurred in Lebanon in May 2011 originated from the Iraqian and Syrian deserts, which are the least studied, and had a direct influence on the composition of PM2.5-0.3 during the beginning of the first sampling period, and then an indirect and persistent influence by the re-suspension of deposited dust particles. Moreover, PAHs concentrations were much higher in PM0.3 than in PM2.5-0.3 and their composition appeared influenced by diesel (buses, trucks and generator sets) and gasoline (private cars) emissions.

  17. Dust Storm, Sahara Desert, Algeria/Niger Border, Africa

    NASA Image and Video Library

    1992-05-16

    STS049-92-071 (13 May 1992) --- The STS-49 crew aboard the Earth-orbiting Space Shuttle Endeavour captured this Saharan dust storm on the Algeria-Niger border. The south-looking, late-afternoon view shows one of the best examples in the Shuttle photo data base of a dust storm. A series of gust fronts, caused by dissipating thunderstorms have picked up dust along the outflow boundaries. Small cumulus clouds have formed over the most vigorously ascending parts of the dust front, enhancing the visual effect of the front. The storm is moving roughly north-northwest, at right angles to the most typical path for dust storms in this part of the Sahara (shown by lines of sand on the desert surface in the foreground). Storms such as this can move out into the Atlantic, bringing dust even as far as the Americas on some occasions. A crewmember used a 70mm handheld Hasselblad camera with a 100mm lens to record the frame.

  18. Desert dust suppressing precipitation: A possible desertification feedback loop

    PubMed Central

    Rosenfeld, Daniel; Rudich, Yinon; Lahav, Ronen

    2001-01-01

    The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process. PMID:11353821

  19. Seventeen-year systematic measurements of dust aerosol optical properties using the eole ntua lidar system (2000-2016)

    NASA Astrophysics Data System (ADS)

    Soupiona, Ourania; Mylonaki, Maria; Papayannis, Alexandros; Argyrouli, Athina; Kokkalis, Panayotis; Tsaknakis, Georgios

    2018-04-01

    A comprehensive analysis of the seasonal variability of the optical properties of Saharan dust aerosols over Athens, Greece, is presented for a 17-year time period (2000-2016), as derived from multi-wavelength Raman lidar measurements (57 dust events with more than 80 hours of measurements). The profiles of the derived aerosol optical properties (aerosol backscatter and extinction coefficients, lidar ratio and aerosol Ångström exponent) at 355 nm are presented. For these dust events we found a mean value of the lidar ratio of 52±13 sr at 355 nm and of 58±8 sr (not shown) at 532 nm (2-4 km a.s.l. height). For our statistical analysis, presented here, we used monthly-mean values and time periods under cloud-free conditions. The number of dust events was greatest in late spring, summer, and early autumn periods. In this paper we also present a selected case study (04 April 2016) of desert dust long-range transport from the Saharan desert.

  20. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode.

  1. Ground-Based Lidar Measurements of Aerosols During ACE-2 Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Maring, Hal; Smirnov, Alexander; Holben, Brent; Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; hide

    2000-01-01

    A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution or aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18'N, 16 deg 30'W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and in analysis of aerosol optical profiles acquired during ACE-2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO. and that the dust layers extended to 5 km asl. The value of the dust backscatter-extinction ratio was determined to be 0.027 + 0.007 per sr. Comparisons of the MPL data with data from other co-located instruments showed good agreement during the dust episode.

  2. Ground-Based Lidar Measurements of Aerosols During ACE-2: Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Maring, Hal; Smirnov, Alexander; Holben, Brent; Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.

    2000-01-01

    A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution of aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18 min N, 16 deg 30 min W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and an analysis of aerosol optical profiles acquired during ACE-2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO, and that the dust layers extended to 5 km asl. The value of the dust backscatter-extinction ratio was determined to be 0.027 +/- 0.007 sr(exp -1). Comparisons of the MPL data with data from other collocated instruments showed good agreement during the dust episode.

  3. Wet Dust Deposition Across Texas, USA

    NASA Astrophysics Data System (ADS)

    Collins, J. D., Jr.; Ponette-González, A.; Gill, T. E.; Glass, G. A.; Weathers, K. C.

    2016-12-01

    Atmospheric dust deposition is of critical importance in terrestrial biogeochemical cycles, supplying essential limiting nutrients, such as calcium and phosphorus as well as pollutants, such as lead, to ecosystems. Dust particles are delivered to terrestrial ecosystems directly as dry deposition or in precipitation (wet deposition) as a result of rainout (particles incorporated into cloud droplets) and washout (particles that collide with raindrops as they fall). Compared to dry deposition, wet dust deposition (dissolved + particulate) is a poorly understood yet potentially significant pathway for dust input, especially in humid regions. We quantified wet dust deposition to two National Atmospheric Deposition Monitoring (NADP) sites across Texas-one in west (Guadalupe Mountains) and one in east (near Houston) Texas-with contrasting climate/dust regimes and land cover. We focused on 2012 during one of the most severe droughts in Texas since 1895. Dust event days (DEDs) were identified using meteorological data for stations within 150 km of the NADP sites where wet deposition was sampled weekly. DEDs were defined using the following criteria: visibility <10 km, <30% relative humidity, and wind speed >50 km, supplemented with other Saharan dust incursion and dust observations. A total of 34 DEDs (20 sample weeks) were identified for the west and 5 DEDs (4 sample weeks) for the east Texas sites. Bulk elemental composition of washout particles is analyzed using Particle Induced X-ray Emission (PIXE) spectroscopy and X-ray Fluorescence (XRF) spectroscopy. Using these data, we will examine differences in the chemical composition of rainwater and aerosol particles filtered from rain samples for dust versus non-dust event days at each study site. Deposition fluxes for dust and non-dust event weeks are also compared. Quantifying the magnitude of wet dust deposition is necessary to improve evaluation of dust impacts on biogeochemical cycles.

  4. Interactive Soil Dust Aerosol Model in the GISS GCM. Part 1; Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Tegen, Ina; Miller, Ron L.

    2000-01-01

    The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably

  5. Sensitivity of Sahelian Precipitation to Desert Dust under ENSO variability: a regional modeling study

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.

    2016-12-01

    Mineral dust is estimated to comprise over half the total global aerosol burden, with a majority coming from the Sahara and Sahel region. Bounded by the Sahara Desert to the north and the Sahelian Savannah to the south, the Sahel experiences high interannual rainfall variability and a short rainy season during the boreal summer months. Observation-based data for the past three decades indicates a reduced dust emission trend, together with an increase in greening and surface roughness within the Sahel. Climate models used to study regional precipitation changes due to Saharan dust yield varied results, both in sign convention and magnitude. Inconsistency of model estimates drives future climate projections for the region that are highly varied and uncertain. We use the NASA-Unified Weather Research and Forecasting (NU-WRF) model to quantify the interaction and feedback between desert dust aerosol and Sahelian precipitation. Using nested domains at fine spatial resolution we resolve changes to mesoscale atmospheric circulation patterns due to dust, for representative phases of El Niño-Southern Oscillation (ENSO). The NU-WRF regional earth system model offers both advanced land surface data and resolvable detail of the mechanisms of the impact of Saharan dust. Results are compared to our previous work assessed over the Western Sahel using the Geophysical Fluid Dynamics Laboratory (GFDL) CM2Mc global climate model, and to other previous regional climate model studies. This prompts further research to help explain the dust-precipitation relationship and recent North African dust emission trends. This presentation will offer a quantitative analysis of differences in radiation budget, energy and moisture fluxes, and atmospheric dynamics due to desert dust aerosol over the Sahel.

  6. Airborne Sunphotometry of African Dust and Marine Boundary Layer Aerosols in PRIDE

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Redemann, Jens; Russell, Philip; Schmid, Beat; Reid, Jeff; Pilewskie, Peter; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during summer 2000 to study the radiative, microphysical and transport properties of Saharan dust in the Caribbean region. During PRIDE, NASA Ames Research Center's six-channel airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane based at Roosevelt Roads Naval Station on the northeast coast of Puerto Rico. AATS-6 measurements were taken during 21 science flights off the coast of Puerto Rico in the western Caribbean. Data were acquired within and above the Marine Boundary Layer (MBL) and the Saharan Aerosol Layer (SAL) up to 5.5 km altitude tinder a wide range of dust loadings. Aerosol optical depth (AOD) spectra and columnar water vapor (CWV) values have been calculated from the AATS-6 measurements by using sunphotometer calibration data obtained at Mauna Loa Observatory (3A kin ASL) before (May) and after (October) PRIDE. Mid-visible AOD values measured near the surface during PRIDE ranged from 0.07 on the cleanest day to 0.55 on the most turbid day. Values measured above the MBL were as high as 0.35; values above the SAL were as low as 0.01. The fraction of total column AOD due to Saharan dust cannot be determined precisely from AATS-6 AOD data alone due to the uncertainty in the extent of vertical mixing of the dust down through the MBL. However, analyses of ground-based and airborne in-situ aerosol sampling measurements and ground-based aerosol lidar backscatter data should yield accurate characterization of the vertical mixing that will enable calculation of the Saharan dust AOD component from the sunphotometer data. Examples will be presented showing measured AATS-6 AOD spectra, calculated aerosol extinction and water vapor density vertical profiles, and aerosol size distributions retrieved by inversion of the AOD spectra. Near sea-surface AOD spectra acquired by AATS-6 during horizontal flight legs at 30 m ASL are available for validation of AOD derived from coincident

  7. The uranium-isotopic composition of Saharan dust collected over the central Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Aciego, Sarah M.; Aarons, Sarah M.; Sims, Kenneth W. W.

    2015-06-01

    Uranium isotopic compositions, (234U/238U)activity , are utilized by earth surface disciplines as chronometers and source tracers, including in soil science where aeolian dust is a significant source to the total nutrient pool. However, the (234U/238U)activity composition of dust is under characterized due to material and analytical constraints. Here we present new uranium isotope data measured by high precision MC-ICP-MS on ten airborne dust samples collected on the M55 trans-Atlantic cruise in 2002. Two pairs of samples are presented with different size fractions, coarse (1-30 μm) and fine (<1 μm), and all samples were processed to separate the water soluble component in order to assess the controls on the (234U/238U)activity of mineral aerosols transported from the Sahara across the Atlantic. Our results indicate (234U/238U)activity above one for both the water soluble (1.13-1.17) and the residual solid (1.06-1.18) fractions of the dust; no significant correlation is found between isotopic composition and travel distance. Residual solids indicate a slight dependance of (234U/238U)activity on particle size. Future modeling work that incorporates dust isotopic compositions into mixing or isotopic fractionation models will need to account for the wide variability in dust (234U/238U)activity .

  8. Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005

    NASA Astrophysics Data System (ADS)

    Todd, Martin C.; Washington, Richard; Martins, José Vanderlei; Dubovik, Oleg; Lizcano, Gil; M'bainayel, Samuel; Engelstaedter, Sebastian

    2007-03-01

    Mineral dust in the atmosphere is an important component of the climate system but is poorly quantified. The Bodélé Depression of northern Chad stands out as the world's greatest source region of mineral dust into the atmosphere. Frequent dust plumes are a distinguishing feature of the region's climate. There is a need for more detailed information on processes of dust emission/transport and dust optical properties to inform model simulations of this source. During the Bodélé Dust Experiment (BoDEx) in 2005, instrumentation was deployed to measure dust properties and boundary layer meteorology. Observations indicate that dust emission events are triggered when near-surface wind speeds exceed 10 ms-1, associated with synoptic-scale variability in the large-scale atmospheric circulation. Dust emission pulses in phase with the diurnal cycle of near-surface winds. Analysis of dust samples shows that the dust consists predominantly of fragments of diatomite sediment. The particle size distribution of this diatomite dust estimated from sun photometer data, using a modified Aeronet retrieval algorithm, indicates a dominant coarse mode (radius centered on 1-2 μm) similar to other Saharan dust observations. Single-scattering albedo values are high, broadly in line with other Saharan dust even though the diatomite composition of dust from the Bodélé is likely to be unusual. The radiative impact of high dust loadings results in a reduction in surface daytime maximum temperature of around 7°C in the Bodélé region. Using optical and physical properties of dust obtained in the field, we estimate the total dust flux emitted from the Bodélé to be 1.18 ± 0.45 Tg per day during a substantial dust event. We speculate that the Bodélé Depression (˜10,800 km2) may be responsible for between 6-18% of global dust emissions, although the uncertainty in both the Bodélé and global estimates remains high.

  9. Dust Deposition Events on Mt. Elbrus, Caucasus Mountains in the 21st Century Reconstructed from the Shallow Firn and Ice Cores (Invited)

    NASA Astrophysics Data System (ADS)

    Shahgedanova, M.; Kutuzov, S.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.

    2013-12-01

    This paper presents and discusses a record of dust deposition events reconstructed from the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus, Caucasus Mountains, Russia. A combination of SEVIRI imagery, HYSPLIT trajectory model, meteorological and atmospheric optical depth data were used to establish timing of deposition events and source regions of dust with very high temporal (hours) and spatial (c. 50-100 km) resolution. The source regions of the desert dust transported to Mt. Elbrus were primarily located in the Middle East, in particular in eastern Syria and in the Syrian Desert at the border between Saudi Arabia, Iraq and Jordan. Northern Sahara, the foothills of the Djebel Akhdar Mountains in eastern Libya and the border region between Libya and Algeria were other important sources of desert dust. Dust sources in the Sahara were natural (e.g. palaeolakes and alluvial deposits in the foothills) while in the Middle East, dust entrainment occurred from both natural (e.g. dry river beds) and anthropogenic (e.g. agricultural fields) sources. The overall majority of dust deposition events occurred between March and June and, less frequently, dust deposition events occurred in February and October. In all cases, dust deposition was associated with depressions causing strong surface wind and dust uplift in the source areas, transportation of dust to the Caucasus with a strong south-westerly flow from the Sahara or southerly flow from the Middle East, merging of the dust clouds with precipitation-bearing weather fronts and precipitation over the Caucasus region. The Saharan depressions were vigorous and associated with stronger daily wind speeds of 20-30 m/s at the 700 hPa level; depressions forming over the Middle East and the associated wind speeds were weaker at 12-15 m/s. The Saharan depressions were less frequent than those carrying dust from the Middle East but higher dust loads were associated with the Saharan depressions. A higher

  10. Does the long-range transport of African mineral dust across the Atlantic enhance their hygroscopicity?

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Caquineau, Sandrine; Desboeufs, Karine; Laurent, Benoit; Quiñones Rosado, Mariana; Vallejo, Pamela; Mayol-Bracero, Olga; Formenti, Paola

    2015-04-01

    Influence of mineral dust on radiation balance is largely dependent on their ability to interact with water. While fresh mineral dusts are highly hydrophobic, various transformation processes (coagulation, heterogeneous chemical reaction) can modify the dust physical and chemical properties during long-range transport, which, in turn, can change the dust hygroscopic properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of dust hygroscopic properties, and their temporal evolution during long-range transport. We present the first direct surface measurements of the hygroscopicity of Saharan dust after long-range transport over the Atlantic Ocean, their relationship with chemical composition, their influence on particle size and shape and implications for optical properties. Particles were collected during the DUST Aging and TransporT from Africa to the Caribbean (Dust-AttaCk) campaign at the Cape San Juan Puerto Rico station in June-July 2012. Environmental scanning electron microscopy (ESEM) was used to analyze the size, shape, chemical composition and hygroscopic properties of individual particles. At different levels of concentrations in summertime, the coarse mode of atmospheric aerosols in Puerto Rico is dominated by Saharan mineral dust. Most of aged dust particles survived atmospheric transport intact with no observed internal mixture with other species and did not show hygroscopic growth up to 94% relative humidity. This is certainly due to the fact that in summertime dust is mostly transported above the marine boundary layer. A minor portion of mineral dust (approximately 19-28% by number) were involved in atmospheric heterogeneous reactions with acidic gases (likely SO2 and HCl) and sea salt aggregation. While sulfate- and chloride-coated dust remained extremely hydrophobic, dust particles in internal mixing with NaCl underwent profound changes in their hygroscopicity, therefore in size and shape. We

  11. Characterization and quantification of bioaerosols in Saharan dust transported across the Atlantic

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Maier, Stefanie; Rodriguez-Caballero, Emilio; Ditas, Florian; Klimach, Thomas; Prass, Maria; Hrabe de Angelis, Isabella; Blades, Edmund; Holanda, Bruna; Pöhlker, Mira; Maurus, Isabel; Kopper, Gila; Farrell, David; Stevens, Bjorn; Prospero, Joseph M.; Ulrich, Pöschl; Andreae, Meinrat O.; Fröhlich-Nowoisky, Janine; Pöhlker, Christopher; Weber, Bettina

    2017-04-01

    Primary biological aerosols (bioaerosols), forming a subset of atmospheric particles, are directly released from the biosphere into the atmosphere. They comprise living and dead organisms (e.g., algae, bacteria, archaea), reproduction units (e.g., pollen, seeds, spores) as well as organism fragments and excretions. They play a key role in the dispersal of otherwise mostly sessile organisms (e.g. plants), but also in the spread of pathogens and diseases. Recently, also soil dust has been described to frequently occur in a close connection with biological particles (Conen et al., 2011). Bioaerosols can serve as nuclei for cloud droplets and ice crystals and may influence the radiative properties of the atmosphere, thus influencing the hydrological cycle and climate (Fröhlich-Nowoisky et al., 2016). It has been well described that dust masses are transported across the Atlantic comprising a large variety of bacteria and fungi, but the origin of the biological material remained largely unknown (Prospero et al., 2005). In the present study we aim to accomplish three major tasks, i.e., 1) Thorough identification and quantification of bioaerosol particles, 2) Characterization of ice nucleating (IN) properties of bioaerosols, and 3) Evaluation of similarities between bioaerosols and biological material in source regions of dust. For our field work we utilized filter techniques to collect aerosol samples of transatlantically transported dust at the easternmost site (Ragged Point) on the Caribbean island Barbados. Sampling took place from July to August 2016, when dust transport volumes were expected to reach peak amounts. Total suspended particles were collected ˜30 m above sea level using a high volume sampler (˜ 500 L min-1) and a micro-orifice uniform deposit impactor (MOUDI™) to obtain size-resolved samples. Directly after sampling at different time intervals (i.e. 24-hour, 48-hour, and 7-day samples) the filters were frozen until further analyses. In a

  12. Dust Concentrations and Composition During African Dust Incursions in the Caribbean Region

    NASA Astrophysics Data System (ADS)

    Mayol-Bracero, O. L.; Santos-Figueroa, G.; Morales-Garcia, F.

    2016-12-01

    The World Health Organization (WHO) indicates that exposure to PM10 concentrations higher than 50 µg/m³ 24-hour mean in both developed and developing countries could have an adverse impact on public health. Recent studies showed that in the Caribbean region the PM10 concentrations often exceed the WHO guidelines for PM10. These exceedances are largely driven by the presence of African Dust particles that reach the Caribbean region every year during the summer months. These dust particles also influence the Earth's radiative budget directly by scattering solar radiation in the atmosphere and indirectly by affecting cloud formation and, thus, cloud albedo. In order to have a better understanding of the impacts of African Dust on public health and climate, we determine the concentration of dust particles, the carbonaceous fraction (total, elemental and organic carbon: TC, EC, and OC) and water-soluble ions (e.g., Na+, Cl-, Ca+2, NH4+, SO4-2) of aerosol samples in the presence and absence of African Dust. Samples were collected using a Hi-Vol and Stacked-Filter Units for the sampling of total suspended particles (TSP) at two stations in Puerto Rico: a marine site located at Cabezas de San Juan (CSJ) Nature Reserve, in Fajardo, and an urban site located at the University of Puerto Rico, in San Juan. The presence of African Dust was supported with Saharan Air Layer (SAL) imagery and with the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Preliminary results showed that the total mass concentration of aerosols obtained at the urban site is about two times that at the marine site for SFU samples during African Dust incursions. The average dust concentration obtained at CSJ for Hi Vol samples was 22 µg/m³ during the summer 2015. African Dust concentrations, TC, EC, OC, and ionic speciation results for the marine and urban sites will be presented at the conference.

  13. The summer 2012 Saharan dust season in the western Mediterranean with focus on the intense event of late June during the Pre-ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Dulac, François; Nicolas, José B.; Sciare, Jean; Mallet, Marc; Léon, Jean-François; Pont, Véronique; Sicard, Michaël; Renard, Jean-Baptiste; Nabat, Pierre; El Amraoui, Laaziz; Jaumouillé, Elodie; Roberts, Greg; Attié, Jean-Luc; Somot, Samuel; Laurent, Benoît; Losno, Rémi; Vincent, Julie; Formenti, Paola; Bergametti, Gilles; Ravetta, François

    2013-04-01

    Saharan dust is an usual aerosol over the Mediterranean basin that contributes to the high average aerosol load during summer in the western Mediterranean marine environment. Satellite monitoring shows that dust events were numerous during summer 2012. Even though most of the transport of dust particles occurs in altitude, as shown by surface lidars and airborne data, dust events significantly impact surface PM10 concentrations even in urban traffic type of air quality monitoring stations, and background stations are needed to assess the contribution of desert dust. During the pre-ChArMEx field campaign and associated field campaigns TRAQA and VESSAER in the north-western Mediterranean, a large scale African dust event occurred in late June-early July with optical depth levels in the visible up to 0.5-0.7 rather unusual in that area according to long time remote sensing AERONET or satellite series. We have performed measurements in the dust plume for several days with a particularly large variety of both ground-based and airborne (from sounding balloons, an aircraft and an ultra-light aircraft) remote sensing and in situ instruments. In addition to satellite aerosol products including MSG/SEVIRI, which provides the spatial distribution of the aerosol optical depth over the basin up to 4 times per hour, POLDER and CALIOP, this yields a complete set of unusual quantitative constraints for model simulations of this event, combining data on aerosol optical depth, vertical distribution, particle size distribution, chemical, optical and microphysical properties. We shall provide an overview of the data set that includes original measurements of the vertical profile of the aerosol size distribution with a new small balloon borne OPC called LOAC (Light Optical Aerosol Counter) showing large dust particles (up to 30 µm in diameter) within a thick dust layer between 1 and 5 km above south-eastern France, and original network measurement of weekly dust deposition with a new

  14. Sensitivity of surface characteristics on the simulation of wind-blown-dust source in North America

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Gong, S. L.; Gong, W.; Makar, P. A.; Moran, M. D.; Stroud, C. A.; Zhang, J.

    Recently, a wind-blown-dust-emission module has been built based on a state-of-the-art wind erosion theory and evaluated in a regional air-quality model to simulate a North American dust storm episode in April 2001 (see Park, S.H., Gong, S.L., Zhao, T.L., Vet, R.J., Bouchet, V.S., Gong, W., Makar, P.A., Moran, M.D., Stroud, C., Zhang, J. 2007. Simulation of entrainment and transport of dust particles within North America in April 2001 ("Red Dust episode"). J. Geophys. Res. 112, D20209, doi:10.1029/2007JD008443). A satisfactorily detailed assessment of that module, however, was not possible because of a lack of information on some module inputs, especially soil moisture content. In this paper, the wind-blown-dust emission was evaluated for two additional dust storms using improved soil moisture inputs. The surface characteristics of the wind-blown-dust source areas in southwestern North America were also investigated, focusing on their implications for wind-blown-dust emissions. The improved soil moisture inputs enabled the sensitivity of other important surface characteristics, the soil grain size distribution and the land-cover, to dust emission to be investigated with more confidence. Simulations of the two 2003 dust storm episodes suggested that wind-blown-dust emissions from the desert areas in southwestern North America are dominated by emissions from dry playas covered with accumulated alluvial deposits whose particle size is much smaller than usual desert sands. As well, the source areas in the northwestern Texas region were indicated to be not desert but rather agricultural lands that were "activated" as a wind-blown-dust sources after harvest. This finding calls for revisions to the current wind-blown-dust-emission module, in which "desert" is designated to be the only land-cover category that can emit wind-blown dust.

  15. Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study

    NASA Astrophysics Data System (ADS)

    Long, Xin; Tie, Xuexi; Li, Guohui; Cao, Junji; Feng, Tian; Zhao, Shuyu; Xing, Li; An, Zhisheng

    2018-05-01

    In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs) to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the Green Great Wall (GGW). Both the grass GGW and forest GGW are located between the dust source region (DSR) and the densely populated North China Plain (NCP). To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust) is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 µm) during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei). When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from -5 to -15 % in the NCP, with a maximum reduction of -12.4 % (-19.2 µg m-3) in BTH and -7.6 % (-10.1 µg m-3) in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the dominant reason for [PMC] decrease in the

  16. Overview of Dust Model Inter-comparison (DMIP) in East Asia

    NASA Astrophysics Data System (ADS)

    Uno, I.

    2004-12-01

    Dust transport modeling plays an important role in understanding the recent increase of Asian Dust episodes and its impact to the regional climate system. Several dust models have been developed in several research institutes and government agencies independently since 1990s. Their numerical results either look very similar or different. Those disagreements are caused by difference in dust modules (concepts and basic mechanisms) and atmospheric models (meteorological and transport models). Therefore common understanding of performance and uncertainty of dust erosion and transport models in the Asian region becomes very important. To have a better understanding of dust model application, we proposed the dust model intercomparison under the international cooperation networks as a part of activity of ADEC (Aeolian Dust Experiment on Climate Impact) project research. Current participants are Kyusyu Univ. (Japan), Meteorological Research Institute (Japan), Hong-Kong City Univ. (China), Korean Meteorological Agency METRI (Korea), US Naval Research Laboratory (USA), Chinese Meteorological Agency (China), Institute of Atmospheric Physics (China), Insular Coastal Dynamics (Malta) and Meteorological Service of Canada (Canada). As a case study episode, we set two huge dust storms occurred in March and April 2002. Results from the dust transport model from all the participants are compiled on the same methods and examined the model characteristics against the ground and airborne measurement data. We will also examine the dust model results from the horizontal distribution at specified levels, vertical profiles, concentration at special check point and emission flux at source region, and show the important parameters for dust modeling. In this paper, we will introduce the general overview of this DMIP activity and several important conclusions from this activity.

  17. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    NASA Astrophysics Data System (ADS)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  18. Evaluation of coral pathogen growth rates after exposure to atmospheric African dust samples

    USGS Publications Warehouse

    Lisle, John T.; Garrison, Virginia H.; Gray, Michael A.

    2014-01-01

    Laboratory experiments were conducted to assess if exposure to atmospheric African dust stimulates or inhibits the growth of four putative bacterial coral pathogens. Atmospheric dust was collected from a dust-source region (Mali, West Africa) and from Saharan Air Layer masses over downwind sites in the Caribbean [Trinidad and Tobago and St. Croix, U.S. Virgin Islands (USVI)]. Extracts of dust samples were used to dose laboratory-grown cultures of four putative coral pathogens: Aurantimonas coralicida (white plague type II), Serratia marcescens (white pox), Vibrio coralliilyticus, and V. shiloi (bacteria-induced bleaching). Growth of A. coralicida and V. shiloi was slightly stimulated by dust extracts from Mali and USVI, respectively, but unaffected by extracts from the other dust sources. Lag time to the start of log-growth phase was significantly shortened for A. coralicida when dosed with dust extracts from Mali and USVI. Growth of S. marcescens and V. coralliilyticus was neither stimulated nor inhibited by any of the dust extracts. This study demonstrates that constituents from atmospheric dust can alter growth of recognized coral disease pathogens under laboratory conditions.

  19. An anomalous African dust event and its impact on aerosol radiative forcing on the Southwest Atlantic coast of Europe in February 2016.

    PubMed

    Sorribas, M; Adame, J A; Andrews, E; Yela, M

    2017-04-01

    A desert dust (DD) event that had its origin in North Africa occurred on the 20th-23rd of February 2016. The dust transport phenomenon was exceptional because of its unusual intensity during the coldest season. A historical dataset (2006-2015) of February meteorological scenarios using ECMWF fields, meteorological parameters, aerosol optical properties, surface O 3 and AOD retrieved from MODIS at the El Arenosillo observatory (southwestern Spain) were analysed and compared with the levels during the DD event to highlight its exceptionality. Associated with a low-pressure system in western North Africa, flows transported air from the Sahel to Algeria and consequently increased temperatures from the surface to 700hPa by up to 7-9°C relative to the last decade. These conditions favoured the formation of a Saharan air layer. Dust was transported to the north and reached the Western Mediterranean Basin and the Iberian Peninsula. The arrival of the DD event at El Arenosillo did not affect the surface weather conditions or ozone but did impact the aerosol radiative forcing at the top of atmosphere (RF TOA ). Aerosol radiative properties did not change relative to historical; however, the particle size and the amount of the aerosol were significantly higher. The DD event caused an increase (in absolute terms) of the mean aerosol RF TOA to a value of -8.1Wm -2 (long-term climatological value ~-1.5Wm -2 ). The aerosol RF TOA was not very large relative other DD episodes; however, our analysis of the historical data concluded that the importance of this DD event lay in the month of occurrence. European phenological datasets related to extreme atmospheric events predominantly reflect changes that are probably associated with climate change. This work is an example of this phenomenon, showing an event that occurred in a hotspot, the Saharan desert, and its impact two thousand km away. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dust on Snow Processes and Impacts in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Okin, G. S.

    2015-12-01

    In the Upper Colorado River Basin episodic deposition of mineral dust onto mountain snow cover frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau, and deposition rates have increased since the intensive settlement in the western USA in the mid 1880s. Dust deposition darkens the snow surface, and accelerates snowmelt through reduction of albedo and further indirect reduction of albedo by accelerating the growth of snow grain size. Observation and modeling of dust-on-snow processes began in 2005 at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, work which has shown that dust advances melt, shifts runoff timing and intensity, and reduces total water yield. The consistency of deposition and magnitude of impacts highlighted the need for more detailed understanding of the radiative impacts of dust-on-snow in this region. Here I will present results from a novel, high resolution, daily snow property dataset, collected at SBBSA over the 2013 ablation season, to facilitate physically based radiative transfer and snowmelt modeling. Measurements included snow albedo and vertical profiles of snow density, optical snow grain size, and dust/black carbon concentrations. This dataset was used to assess the relationship between episodic dust events, snow grain growth, and albedo over time, and observe the relation between deposited dust and melt water. Additionally, modeling results include the determination of the regionally specific dust-on-snow complex refractive index and radiative forcing partitioning between dust and black carbon, and dust and snow grain growth.

  1. Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.

    2005-03-01

    Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect

  2. Importance of mineral dust and anthropogenic pollutants mixing during a long-lasting high PM event over East Asia.

    PubMed

    Wang, Zhe; Pan, Xiaole; Uno, Itsushi; Chen, Xueshun; Yamamoto, Shigekazu; Zheng, Haitao; Li, Jie; Wang, Zifa

    2018-03-01

    A long-lasting high particulate matter (PM) concentration episode persisted over East Asia from May 24 to June 3, 2014. The Nested Air Quality Prediction Model System (NAQPMS) was used to investigate the mixing of dust and anthropogenic pollutants during this episode. Comparison of observations revealed that the NAQPMS successfully reproduced the time series PM 2.5 and PM 10 concentrations, as well as the nitrate and sulfate concentrations in fine (aerodynamic diameter ≤ 2.5 μm) and coarse mode (2.5 μm < aerodynamic diameter ≤ 10 μm). This episode originated from two dust events that occurred in the inland desert areas of Mongolia and China, and then the long-range transported dust and anthropogenic pollutants were trapped over the downwind region of East Asia for more than one week due to the blocked north Pacific subtropical high-pressure system over the east of Japan. The model results showed that mineral dust accounted for 53-83% of PM 10 , and 39-67% of PM 2.5 over five cities in East Asia during this episode. Sensitivity analysis indicated that the Qingdao and Seoul regions experienced dust and pollution twice, by direct transport from the dust source region and from dust detoured over the Shanghai area. The results of the NAQPMS model confirmed the importance of dust heterogeneous reactions (HRs) over East Asia. Simulated dust NO 3 - concentrations accounted for 75% and 84% of total NO 3 - in fine and coarse mode, respectively, in Fukuoka, Japan. The horizontal distribution of model results revealed that the ratio of dust NO 3 - /dust concentration increased from about 1% over the Chinese land mass to a maximum of 8% and 6% respectively in fine and coarse mode over the ocean to the southeast of Japan, indicating that dust NO 3 - was mainly formed over the Yellow Sea and the East China Sea before reaching Japan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. AERONET-Based Nonspherical Dust Optical Models and Effects on the VIIRS Deep Blue/SOAR Over Water Aerosol Product

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Hsu, N. Christina; Sayer, Andrew M.; Bettenhausen, Corey; Yang, Ping

    2017-10-01

    Aerosol Robotic Network (AERONET)-based nonspherical dust optical models are developed and applied to the Satellite Ocean Aerosol Retrieval (SOAR) algorithm as part of the Version 1 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA "Deep Blue" aerosol data product suite. The optical models are created using Version 2 AERONET inversion data at six distinct sites influenced frequently by dust aerosols from different source regions. The same spheroid shape distribution as used in the AERONET inversion algorithm is assumed to account for the nonspherical characteristics of mineral dust, which ensures the consistency between the bulk scattering properties of the developed optical models and the AERONET-retrieved microphysical and optical properties. For the Version 1 SOAR aerosol product, the dust optical model representative for Capo Verde site is used, considering the strong influence of Saharan dust over the global ocean in terms of amount and spatial coverage. Comparisons of the VIIRS-retrieved aerosol optical properties against AERONET direct-Sun observations at five island/coastal sites suggest that the use of nonspherical dust optical models significantly improves the retrievals of aerosol optical depth (AOD) and Ångström exponent by mitigating the well-known artifact of scattering angle dependence of the variables, which is observed when incorrectly assuming spherical dust. The resulting removal of these artifacts results in a more natural spatial pattern of AOD along the transport path of Saharan dust to the Atlantic Ocean; that is, AOD decreases with increasing distance transported, whereas the spherical assumption leads to a strong wave pattern due to the spurious scattering angle dependence of AOD.

  4. Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean.

    PubMed

    Mazar, Yinon; Cytryn, Eddie; Erel, Yigal; Rudich, Yinon

    2016-04-19

    We evaluated the impact of Saharan dust storms on the local airborne microbiome in a city in the Eastern Mediterranean area. Samples of particles with diameter less than 10 μm were collected during two spring seasons on both dusty and nondusty days. DNA was extracted, and partial 16S rRNA gene amplicons were sequenced using the Illumina platform. Bioinformatic analysis showed the effect of dust events on the diversity of the atmospheric microbiome. The relative abundance of desert soil-associated bacteria increased during dust events, while the relative abundance of anthropogenic-influenced taxa decreased. Quantitative polymerase chain reaction measurements of selected clinically significant antibiotic resistance genes (ARGs) showed that their relative abundance decreased during dust events. The ARG profiles on dust-free days were similar to those in aerosol collected in a poultry house, suggesting a strong agricultural influence on the local ambient profiles. We conclude that dust storms enrich the ambient airborne microbiome with new soil-derived bacteria that disappear as the dust settles, suggesting that the bacteria are transported attached to the dust particles. Dust storms do not seem to be an important vector for transport of probed ARGs.

  5. Ionic composition of TSP and PM 2.5 during dust storms and air pollution episodes at Xi'an, China

    NASA Astrophysics Data System (ADS)

    Shen, Zhenxing; Cao, Junji; Arimoto, Richard; Han, Zhiwei; Zhang, Renjian; Han, Yuemei; Liu, Suixin; Okuda, Tomoaki; Nakao, Shunsuke; Tanaka, Shigeru

    TSP and PM 2.5 samples were collected at Xi'an, China during dust storms (DSs) and several types of pollution events, including haze, biomass burning, and firework displays. Aerosol mass concentrations were up to 2 times higher during the particulate matter (PM) events than on normal days (NDs), and all types of PM led to decreased visibility. Water-soluble ions (Na +, NH 4+, K +, Mg 2+, Ca 2+, F -, Cl -, NO 3-, and SO 42-). were major aerosol components during the pollution episodes, but their concentrations were lower during DSs. NH 4+, K +, F -, Cl -, NO 3-, and SO 42- were more abundant in PM 2.5 than TSP but the opposite was true for Mg 2+ and Ca 2+. PM collected on hazy days was enriched with secondary species (NH 4+, NO 3-, and SO 42) while PM from straw combustion showed high K + and Cl -. Firework displays caused increases in K + and also enrichments of NO 3- relative to SO 42-. During DSs, the concentrations of secondary aerosol components were low, but Ca 2+ was abundant. Ion balance calculations indicate that PM from haze and straw combustion was acidic while the DSs samples were alkaline and the fireworks' PM was close to neutral. Ion ratios (SO 42-/K +, NO 3-/SO 42-, and Cl -/K +) proved effective as indicators for different pollution episodes.

  6. Influence of mineral dust transport on the chemical composition and physical properties of the Eastern Mediterranean aerosol

    NASA Astrophysics Data System (ADS)

    Koçak, M.; Theodosi, C.; Zarmpas, P.; Séguret, M. J. M.; Herut, B.; Kallos, G.; Mihalopoulos, N.; Kubilay, N.; Nimmo, M.

    2012-09-01

    Bulk aerosol samples were collected from three different coastal rural sites located around the Eastern Mediterranean, (i) Erdemli (ER), Turkey, (ii) Heraklion (HR), Crete, Greece, and (iii) Tel Shikmona (TS), Israel, during two distinct mineral dust periods (October, 2007 and April, 2008) in order to explore the temporal and geographical variability in the aerosol chemical composition. Samples were analyzed for trace elements (Al, Fe, Mn, Ca, Cr, Zn, Cu, V, Ni, Cd, Pb) and water-soluble ions (Cl-, NO3-, SO42-, C2O42-, Na+, NH4+, K+, Mg2+ and Ca2+). The dust events were categorized on the basis of Al concentrations >1000 ng m-3, SKIRON dust forecast model and 3-day back trajectories into three groups namely, Middle East, Mixed and Saharan desert. ER and TS were substantially affected by dust events originating from the Middle East, particularly in October, whilst HR was not influenced by dust transport from the Middle East. Higher AOT values were particularly associated with higher Al concentrations. Contrary to the highest Al concentration: 6300 ng m-3, TS showed relatively lower AI and AOT. Al concentrations at ER were similar for October and April, whilst OMI-AI and AOT values were ˜2 times higher in April. This might be attributed to the weak sensitivity of the TOMS instrument to absorbing aerosols near the ground and optical difference between Middle East and Saharan desert dusts. The lowest enhancement of anthropogenic aerosol species was observed at HR during dust events (nssSO42-/nssCa2+ ˜ 0.13). These species were particularly enhanced when mineral dust arrived at sites after passing through populated and industrialized urban areas.

  7. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling.

    PubMed

    Guo, Jianping; Lou, Mengyun; Miao, Yucong; Wang, Yuan; Zeng, Zhaoliang; Liu, Huan; He, Jing; Xu, Hui; Wang, Fu; Min, Min; Zhai, Panmao

    2017-11-01

    East Asia is one of the world's largest sources of dust and anthropogenic pollution. Dust particles originating from East Asia have been recognized to travel across the Pacific to North America and beyond, thereby affecting the radiation incident on the surface as well as clouds aloft in the atmosphere. In this study, integrated analyses are performed focusing on one trans-Pacific dust episode during 12-22 March 2015, based on space-borne, ground-based observations, reanalysis data combined with Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). From the perspective of synoptic patterns, the location and strength of Aleutian low pressure system largely determined the eastward transport of dust plumes towards western North America. Multi-sensor satellite observations reveal that dust aerosols in this episode originated from the Taklimakan and Gobi Deserts. Moreover, the satellite observations suggest that the dust particles can be transformed to polluted particles over the East Asian regions after encountering high concentration of anthropogenic pollutants. In terms of the vertical distribution of polluted dust particles, at the very beginning, they were mainly located in the altitudes ranging from 1 km to 7 km over the source region, then ascended to 2 km-9 km over the Pacific Ocean. The simulations confirm that these elevated dust particles in the lower free troposphere were largely transported along the prevailing westerly jet stream. Overall, observations and modeling demonstrate how a typical springtime dust episode develops and how the dust particles travel over the North Pacific Ocean all the way to North America. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. PERSPECTIVE: Dust, fertilization and sources

    NASA Astrophysics Data System (ADS)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  9. A high-resolution peat record from NW Iran reveals several episodes of enhanced atmospheric dust during the last 14000 years

    NASA Astrophysics Data System (ADS)

    Sharifi, O.; Pourmand, A.

    2010-12-01

    West Asia, which extends from Iran and the Arabian Peninsula to eastern Mediterranean Sea, is one of the most climatically dynamic regions in the northern hemisphere. The interactions between the mid-latitude Westerlies, the Siberian Anticyclone (SA) and the Indian Ocean Summer Monsoon (IOSM) control precipitation and atmospheric dust content across West Asia. There is mounting evidence that rise and fall of some of the earliest human societies in the “Fertile Crescent” may be related to periods of abrupt climate change during the Holocene. Nevertheless, high-resolution records of climate variability are scarce from this region and the existing archives are, in part, contradictory; while pollen and planktonic abundances from lakes in central and east Turkey and western Iran suggest dry conditions during the early-middle Holocene, geochemical data indicate relatively wet conditions prevailed during this interval. In order to address these discrepancies and study the interplay between major synoptic regimes in West Asia, we propose a multi-proxy approach to reconstruct changes in moisture and atmospheric dust at interannual to decadal time-scales during the last glacial termination and the Holocene using peat records. X-ray florescent analyses of conservative lithogenic elements (e.g., Al, Zr, Ti) in a 772-cm peat core from Neor mire in NW Iran reveal periods of elevated dust input to this region since 14272 ± 372 cal yr B.P. The intensity patterns of redox-sensitive elements (e.g., Fe, K, Rb, Zn, Cu, Co, and V) are similar to refractory metals, which indicate an aeolian source for these elements. In addition, significant correlations between the intensity of potentially mobile elements, such as K and Rb, and Ti (K/Ti R2=0.85, Rb/Ti R2=0.95) confirm that ombrotrophic condition were sustained throughout the record. At least seven major episodes of enhanced dust deposition can be identified that may be related to southward expansion of the SA accompanied by weaker

  10. Satellite and Ground-based Radiometers Reveal Much Lower Dust Absorption of Sunlight than Used in Climate Models

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Dubovik, O.; Karnieli, A.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The ability of dust to absorb solar radiation and heat the atmosphere is one of the main uncertainties in climate modeling and the prediction of climate change. Dust absorption is not well known due to limitations of in situ measurements. New techniques to measure dust absorption are needed in order to assess the impact of dust on climate. Here we report two new independent remote sensing techniques that provide sensitive measurements of dust absorption. Both are based on remote sensing. One uses satellite spectral measurements, the second uses ground based sky measurements from the AERONET network. Both techniques demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. Dust cooling of the earth system in the solar spectrum is therefore significantly stronger than recent calculations indicate. We shall also address the issue of the effects of dust non-sphericity on the aerosol optical properties.

  11. The episodic influx of tin-rich cosmic dust particles during the last ice age

    NASA Astrophysics Data System (ADS)

    LaViolette, Paul A.

    2015-12-01

    This paper presents evidence of the first detection of interstellar dust in ice age polar ice. Neutron activation analysis (NAA) results are reported for 15 elements found in dust filtered from eight samples of Camp Century Greenland ice dating from 40 to 78 kyrs BP. High concentrations of Sn, Sb, Au, Ag, Ir, and Ni were found to be present in three out of these eight samples. One compositionally anomalous dust sample from an ice core depth of 1230.5 m (age ∼49 kyrs BP, near the beginning of D/O stadial No. 13) was found to contain tin with an average weight percent of 49% as determined by energy dispersive X-ray analysis (EDS). This sample was also found to contain high concentrations of Pb with an average weight abundance of 8.4% and matching the Sn:Pb ratio observed in interstellar spectra. Dust particles in this sample generally have a platy morphology and range from submicron size up to a size as large as 120 μm, a particle consisting almost entirely of SnO2 and being the largest monomineralic extraterrestrial dust particle so far discovered. One porous aggregate tin-bearing particle was found to contain nanometer sized chondrules indicating an extraterrestrial origin. The extraterrestrial origin for the tin is also indicated by the presence of isotopic anomalies in the 114Sn, 115Sn and 117Sn isotopes. Follow up isotopic measurements of this tin-rich dust need to be performed to improve confidence in the anomalies reported here. High abundances of the low melting point elements Ag, Au, and Sb are also present in this tin-rich sample along with elevated abundances of the siderophiles Ir, Ni, Fe, and Co, the latter being present in chondritic proportions and indicating that about 9% of the dust has a C1 chondrite component. Measurements indicate that about 97% of this dust is of extraterrestrial origin with a 3% residual being composed of terrestrial windblown dust. EDS analysis of another tin-rich Camp Century ice core dust sample dating to ∼130 kyrs BP

  12. African dust outbreaks over the Mediterranean Basin during 2001-2011: concentrations, phenomenology and trends

    NASA Astrophysics Data System (ADS)

    Pey, Jorge; Querol, Xavier; Alastuey, Andres; Forastiere, Franceso; Stafoggia, Massimo

    2013-04-01

    Concentrations, phenomenology and trends of African dust outbreaks over the whole Mediterranean Basin werestudied on an 11-year period (2001-2011). This work has been performed in the context of the MED-PARTICLES (LIFE programme, EU) project, devoted to quantify short-term health effects of particulate matter over the Mediterranean region by distinguishing different particle sizes, chemical components and sources, with emphasis in the effects of African dust. In order to evaluate conduct this investigation, PM10 data from 19 regional and suburban background sites West to East in the Mediterranean area were compiled. After identifying the daily occurrence of African dust outbreaks, a methodology for estimating natural dust contributions on daily PM10 concentrations was applied. Our findings point out that African dust outbreaks are sensibly more frequent in southern sitesacross the Mediterranean, from 30 to 37 % of the annual days, whereas they occur less than 20% of the annual days in northern sites. The central Mediterranean emerges as a transitional area, with slightly higher frequency of dust episodes in its lower extreme when compared to similar latitudinal positions in western and eastern sides of the Basin. A decreasing south to north gradient of African dust contribution to PM10, driven by the latitudinal position of the monitoring sites at least 25°E westwards across the Basin,is patent across the Mediterranean. From 25°E eastwards, higher annual dust contributions are encountered due to the elevated annual occurrence of severe episodesof dust but also because of inputs from Middle Eastern deserts. Concerning seasonality patterns and intensity characteristics, a clear summer prevalence is observed in the western part, with low occurrence of severe episodes (daily dust averages over 100 µg m-3 in PM10); no seasonal trend is detected in the central region, with moderate-intensity episodes; and significantly higher contributions are common in autumn

  13. Evidence of a Weakly Absorbing Intermediate Mode of Aerosols in AERONET Data from Saharan and Sahelian Sites

    NASA Technical Reports Server (NTRS)

    Gianelli, Scott M.; Lacis, Andrew A.; Carlson, Barbara E.; Hameed, Sultan

    2013-01-01

    Accurate retrievals of aerosol size distribution are necessary to estimate aerosols' impact on climate and human health. The inversions of the Aerosol Robotic Network (AERONET) usually retrieve bimodal distributions. However, when the inversion is applied to Saharan and Sahelian dust, an additional mode of intermediate size between the coarse and fine modes is sometimes seen. This mode explains peculiarities in the behavior of the Angstrom exponent, along with the fine mode fraction retrieved using the spectral deconvolution algorithm, observed in a March 2006 dust storm. For this study, 15 AERONET sites in northern Africa and on the Atlantic are examined to determine the frequency and properties of the intermediate mode. The mode is observed most frequently at Ilorin in Nigeria. It is also observed at Capo Verde and multiple sites located within the Sahel but much less frequently at sites in the northern Sahara and the Canary Islands. The presence of the intermediate mode coincides with increases in Angstrom exponent, fine mode fraction, single-scattering albedo, and to a lesser extent percent sphericity. The Angstrom exponent decreases with increasing optical depth at most sites when the intermediate mode is present, but the fine mode fraction does not. Single-scattering albedo does not steadily decrease with fine mode fraction when the intermediate mode is present, as it does in typical mixtures of dust and biomass-burning aerosols. Continued investigation is needed to further define the intermediate mode's properties, determine why it differs from most Saharan dust, and identify its climate and health effects.

  14. Observation of Dust Aging Processes During Transport from Africa into the Caribbean - A Lagrangian Case Study

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Walser, A.; Dollner, M.; Reitebuch, O.; Gross, S.; Chouza, F.; Ansmann, A.; Toledano, C.; Freudenthaler, V.; Kandler, K.; Schäfler, A.; Baumann, R.; Tegen, I.; Heinold, B.

    2014-12-01

    Aerosol particles are regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. During transport, particle properties are modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. In June/July 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted to study the transport and transformation of Saharan mineral dust. Besides ground-based lidar and in-situ instruments deployed on Cape Verde, Barbados and Puerto Rico, the DLR research aircraft Falcon was equipped with an extended aerosol in-situ instrumentation, a nadir-looking 2-μm wind lidar and instruments for standard meteorological parameters. During SALTRACE, five large dust outbreaks were studied by ground-based, airborne and satellite measurements between Senegal, Cape Verde, the Caribbean, and Florida. Highlights included the Lagrangian sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados. Between Cape Verde and Barbados, the aerosol optical thickness (500 nm) decreased from 0.54 to 0.26 and the stratification of the dust layers changed significantly from a rather homogenous structure near Africa to a 3-layer structure with embedded cumulus clouds in the Caribbean. In the upper part of the dust layers in the Caribbean, the aerosol properties were similar to the observations near Africa. In contrast, much more variability in the dust properties was observed between 0.7 and 2.5 km altitude probably due to interaction of the mineral dust with clouds. In our

  15. Characterization of Aerosol Episodes in the Greater Mediterranean Sea Area from Satellite Observations (2000-2007)

    NASA Technical Reports Server (NTRS)

    Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Torres, O.

    2015-01-01

    An algorithm able to identify and characterize episodes of different aerosol types above sea surfaces of the greater Mediterranean basin (GMB), including the Black Sea and the Atlantic Ocean off the coasts of Iberia and northwest Africa, is presented in this study. Based on this algorithm, five types of intense (strong and extreme) aerosol episodes in the GMB are identified and characterized using daily aerosol optical properties from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMIAura. These aerosol episodes are: (i) biomass-burning/urban-industrial (BU), (ii) desert dust (DD), (iii) dust/sea-salt (DSS), (iv) mixed (MX) and (v) undetermined (UN). The identification and characterization is made with our algorithm using a variety of aerosol properties, namely aerosol optical depth (AOD), Angstrom exponent (a), fine fraction (FF), effective radius (reff) and Aerosol Index (AI). During the study period (2000e2007), the most frequent aerosol episodes are DD, observed primarily in the western and central Mediterranean Sea, and off the northern African coasts, 7 times/year for strong episodes and 4 times/year for extreme ones, on average. The DD episodes yield 40% of all types of strong aerosol episodes in the study region, while they account for 71.5% of all extreme episodes. The frequency of occurrence of strong episodes exhibits specific geographical patterns, for example the BU are mostly observed along the coasts of southern Europe and off the Atlantic coasts of Portugal, the MX episodes off the Spanish Mediterranean coast and over the Adriatic and northern Aegean Sea, while the DSS ones over the western and central Mediterranean Sea. On the other hand, the extreme episodes for all but DD aerosol display more patchy spatial patterns. The strong episodes exhibit AOD at 550 nm as high as 1.6 in the southernmost parts of central and eastern Mediterranean Sea, which rise up to 5 for the extreme, mainly DD and DSS, episodes. Although more than

  16. CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM10

    NASA Astrophysics Data System (ADS)

    Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Custódio, D.; Cerqueira, M.; Patoilo, D.; Almeida, S. M.; Freitas, M. C.

    2012-04-01

    Every year, billions of tons of eroded mineral soils from the Saharan Desert and the Sahel region, the largest dust source in the world, cross Mediterranean towards Europe, western Asia and the tropical North Atlantic Ocean as far as the Caribbean and South America. Many aspects of the direct and indirect effects of dust on climate are not well understood and the bulk and surface chemistry of the mineral dust particles determines interactions with gaseous and other particle species. The quantification of the magnitude of warming or cooling remains open because of the strong variability of the atmospheric dust burden and the lack of representative data for the spatial and temporal distribution of the dust composition. CV-Dust is a project that aims at provide a detailed data on the size distribution and the size-resolved chemical and mineralogical composition of dust emitted from North Africa using a natural laboratory like Cape Verde. This archipelago is located in an area of massive dust transport from land to ocean, and is thus ideal to set up sampling devices that are able to characterize and quantify dust transported from Africa. Moreover, Cape Verde's future economic prospects depend heavily on the encouragement of tourism, therefore it is essential to elucidate the role of Saharan dust may play in the degradation of Cape Verde air quality. The main objectives of CV-Dust project are: 1) to characterize the chemical and mineralogical composition of dust transported from Africa by setting up an orchestra of aerosol sampling devices in the strategic archipelago of Cape Verde; 2) to identify the sources of particles in Cape Verde by using receptor models; 3) to elucidate the role Saharan dust may play in the degradation of Cape Verde air quality; 4) to model processes governing dust production, transport, interaction with the radiation field and removal from the atmosphere. Here we present part of the data obtained throughout the last year, involving a set of more

  17. Investigations of Desert Dust and Smoke in the North Atlantic in Support of the TOMS Instrument

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    2005-01-01

    During the initial period of the work we concentrated on Saharan dust storms and published a sequence of papers (Colarco et a1 2002,2003a,b, Toon, 2004). The U.S. Air Force liked the dust model so well that they appropriated it for operational dust storm forecasting (Barnum et al., 2004). The Air Force has used it for about 5 yrs in the Middle East where dust storms cause significant operational problems. The student working on this project, Peter Colarco, has graduated and is now a civil servant at Goddard where he continues to interact with the TOMS team. This work helped constrain the optical properties of dust at TOMS wavelengths, which is useful for climate simulations and for TOMS retrievals of dust properties such as optical depth. We also used TOMS data to constrain the sources of dust in Africa and the Middle East, to determine the actual paths taken by Saharan dust storms, to learn more about the mechanics of variations in the optical depths, and to learn more about the mechanisms controlling the altitudes of the dust. During the last two years we have been working on smoke from fires. Black carbon aerosols are one of the leading factors in radiative forcing. The US Climate Change Science Program calls this area out for specific study. It has been suggested by Jim Hansen, and Mark Jacobsen among others, that by controlling emissions of black carbon we might reduce greenhouse radiative forcing in a relatively painless manner. However, we need a greatly improved understanding of the amount of black carbon in the atmosphere, where it is located, where it comes from, how it is mixed with other particles, what its actual optical properties are, and how it evolves. In order to learn about these issues we are using a numerical model of smoke. We have applied this model to the SAFARI field program data, and used the TOMS satellite observations in that period (Sept. 2000). Our goal is to constrain source function estimates for black carbon, and smoke optical

  18. Episodic Aging and End States of Comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    2008-01-01

    It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.

  19. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; di Girolamo, P.; Summa, D.; Whiteman, D. N.; Mishchenko, M.; Tanré, D.

    2010-11-01

    Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event.

  20. Using thermal infrared (TIR) data to characterize dust sources, dust fall and the linkage to climate in the Middle East

    NASA Astrophysics Data System (ADS)

    Mohammad, R.; Ramsey, M.; Scheidt, S. P.

    2010-12-01

    Prior to mineral dust deposition affecting albedo, aerosols can have direct and indirect effects on local to regional scale climate by changing both the shortwave and longwave radiative forcing. In addition, mineral dust causes health hazards, such as respiratory-related illnesses and deaths, loss of agricultural soil, and safety hazards to aviation and motorists due to reduced visibility. Previous work utilized satellite and ground-based TIR data to describe the direct longwave radiative effect of the Saharan Air Layer (SAL) over the Atlantic Ocean originating from dust storms in the Western Sahara. TIR emission spectroscopy was used to identify the spectral absorption features of that dust. The current research focuses on Kuwait and utilizes a comprehensive set of spatial, analytical and geological tools to characterize dust emissions and its radiative effects. Surface mineral composition maps for the Kuwait region were created using ASTER images and GIS datasets in order to identify the possible sources of wind-blown dust. Backward trajectory analysis using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggests the dust source areas were located in Iraq, Syria, Jordan and Saudi Arabia. Samples collected from two dust storms (May and July 2010) were analyzed for their mineral composition and to validate the dust source areas identified by the modeling and remote sensing analysis. These air fall dust samples were collected in glass containers on a 13 meter high rooftop in the suburb of Rumaithiya in Kuwait. Additional samples will be collected to expand the analysis and their chemical compositions will be characterized by a combination of laboratory X-ray fluorescence (XRF), Scanning Electron Microscopy (SEM) and TIR emission spectroscopy. The overarching objective of this ongoing research is to both characterize the effects of mineral dust on climate as well as establish a predictive tool that can identify dust storm sources and

  1. Biological response to coastal upwelling and dust deposition in the area off Northwest Africa

    NASA Astrophysics Data System (ADS)

    Ohde, T.; Siegel, H.

    2010-05-01

    Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll- a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll- a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll- a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll- a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll- a was caused by Saharan dust input and not by

  2. The Association between Dust Storms and Daily Non ...

    EPA Pesticide Factsheets

    Background:The impact of dust storms on human health has been studied in the context of Asian,Saharan, Arabian, and Australian storms,but there has been no recent population-level epidemiological research on the dust storms in North America . The relevance of dust storms to public health is likely to increase as extreme weather events are predicted to become more frequent with anticipated changes in climate through the 21st century.Objectives: We examined the association between dust storms and county-level non-accidental mortality in the United States from 1993 through 2005.Methods:Dust storm incidence data, including date and approximate location. are taken from the U.S. National Weather Service storm database. County-level mortality data for the years 1993-2005 were acquired from the National Center for Health Statistics. Distributed lag conditionallogistic regression models under a time-stratified case-crossover design were used to study the relationship between dust storms and daily mortality counts over the whole United States and in Arizona and California specifically. End points included total non-accidental mortality and three mortality subgroups (cardiovascular, respiratory, and other non-acc idental).Results: We estimated that for the United States as a whole, total non-accidental mortality increased by 7.4% (95% Cl: 1.6, 13.5; p = 0.011) and 6.7% (95% Cl: 1.1,12.6; p = 0.018) at 2- and 3-day lags, respectively, and by an average of 2.7% (95% Cl: 0.4,

  3. Lunar Dust Separation for Toxicology Studies

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.

    2010-01-01

    During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.

  4. Impact of aerosols, dust, water vapor and clouds on fair weather PG and implications for the Carnegie curve

    NASA Astrophysics Data System (ADS)

    Kourtidis, Konstantinos; Georgoulias, Aristeidis

    2017-04-01

    We studied the impact of anthropogenic aerosols, fine mode natural aerosols, Saharan dust, atmospheric water vapor, cloud fraction, cloud optical depth and cloud top height on the magnitude of fair weather PG at the rural station of Xanthi. Fair weather PG was measured in situ while the other parameters were obtained from the MODIS instrument onboard the Terra and Aqua satellites. All of the above parameteres were found to impact fair weather PG magnitude. Regarding aerosols, the impact was larger for Saharan dust and fine mode natural aerosols whereas regarding clouds the impact was larger for cloud fraction while less than that of aerosols. Water vapour and ice precipitable water were also found to influence fair weather PG. Since aerosols and water are ubiquitous in the atmosphere and exhibit large spatial and temporal variability, we postulate that our understanding of the Carnegie curve might need revision.

  5. Dust Optical Properties Over North Africa and Arabian Peninsula Derived from the AERONET Dataset

    NASA Technical Reports Server (NTRS)

    Kim, D.; Chin, M.; Yu, H.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Holben, B. N.

    2011-01-01

    Dust optical properties over North Africa and the Arabian Peninsula are extracted from the quality assured multi-year datasets obtained at 14 sites of the Aerosol Robotic Network (AERONET). We select the data with (a) large aerosol optical depth (AOD >= 0.4 at 440 nm) and (b) small Angstrom exponent (A(sub ext)<= 0.2) for retaining high accuracy and reducing interference of non-dust aerosols. The result indicates that the major fraction of high aerosol optical depth days are dominated by dust over these sites even though it varies depending on location and time. We have found that the annual mean and standard deviation of single scattering albedo, asymmetry parameter, real refractive index, and imaginary refractive index for Saharan and Arabian desert dust is 0.944 +/- 0.005, 0.752 +/- 0.014, 1.498 +/- 0.032, and 0.0024 +/- 0.0034 at 550 nm wavelength, respectively. Dust aerosol selected by this method is less absorbing than the previously reported values over these sites. The weaker absorption of dust from this study is consistent with the studies using remote sensing techniques from satellite. These results can help to constrain uncertainties in estimating global dust shortwave radiative forcing.

  6. Chemical characteristics of atmospheric PM2.5 loads during air pollution episodes in Giza, Egypt

    NASA Astrophysics Data System (ADS)

    Hassan, Salwa K.; Khoder, Mamdouh I.

    2017-02-01

    Several types of pollution episodes, including dust storm (DSs), haze dust (HDs), straw rice combustions (SRCs) are common phenomena and represent severe environmental hazard in Egypt. This study provides the first comprehensive analysis of the chemical characteristics of aerosol during air pollution episodes at an urban area in Giza, Egypt. PM2.5 samples during various PM episodes during 2013-2014 were collected and analyzed. Results indicate that the highest PM2.5 mass concentrations were found during DSs (250 μg/m3), followed by HDs (130 μg/m3) and SRCs (103 μg/m3). Average PM2.5 mass concentrations were 1.91, 3.68 and 1.68 times higher than on normal days (NDs) during HDs, DSs and SRCs, respectively. The highest total water-soluble ions concentration was 61.1 μg/m3 during HDs, followed by SRCs (41.9 μg/m3) and DSs (35.2 μg/m3). SO42- is the most abundant chemical components on the three PM episodes. Secondary inorganic ions (NO3-, SO42-, and NH4+) were enriched during HDs. The total secondary inorganic ions concentrations were 3.17, 1.39 and 1.75 times higher than NDs during HDs days, DSs days and SRCs days, respectively. PM from SRCs showed high K+ and Cl-. SO42-/K+, NO3-/SO42- and Cl-/K+ ratios proved effective as indicators for different pollution episodes. A Ca2+/Al ratio indicates that soil dust was dominant during DSs. Ion balance calculations indicated that PM2.5 from HDs was acidic, while the DSs and SRCs particles were alkaline and the NDs particle's was nearly neutral. The total crustal and anthropogenic metals concentrations were higher in DSs than other PM episodes and normal days. The enrichment factors values in PM episodes and normal days indicate that Fe and Mn in NDs, HDs, DSs and SRCs as well as Cr and Ni in DSs come mainly from crustal sources, whereas Cr, Ni, Co, Cu, Zn, Pb and Cd in PM episodes and NDs are anthropogenic.

  7. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  8. Long-range Transported African Dust in the Caribbean Region: Dust Concentrations and Water-soluble Ions

    NASA Astrophysics Data System (ADS)

    Santos-Figueroa, G.; Avilés-Piñeiro, G. M.; Mayol-Bracero, O. L.

    2017-12-01

    Long-range transported African dust (LRTAD) particles reach the Caribbean region every year during the summer months causing an increase in PM10 concentrations and by consequence degradation of air quality. During African dust (AD) incursions at the Caribbean region, PM10 concentration could exceeds the exposure limit of 50 µg/m³ 24-hour mean established by the World Health Organization (WHO). To have a better understanding of the impacts of AD particles to climate and public health at the Caribbean region it is necessary to study and determine the spatial and temporal distribution of dust particles. In order to address this, aerosols samples were collected during and absence of AD incursions during the summer of 2017 using a Hi-Volume (Hi-Vol) sampler for total suspended particles (TSP) at two sampling stations in Puerto Rico. The first station is a marine site located at Cabezas de San Juan (CSJ) Nature Reserve in Fajardo, and the second station is an urban site located at the Facundo Bueso (FB) building at the University of Puerto Rico-Rio Piedras. Aerosol samples were collected using Whatman 41 grade filters from which we determined the concentration of dust particles and the water-soluble ions (e.g., Na+, NH4+, Ca+2, Cl-, SO4-2) in the presence and absence of LRTAD particles. Saharan Air Layer (SAL) imagery, the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the spectral coefficients from measurements at CSJ were used to monitor and confirm the presence of air masses coming from North Africa. Average dust concentrations using the Stacked-Filter Units (SFUs) at CSJ are around 4 μg/m3. LRTAD concentrations and ionic speciation results using the Hi-Vol for the marine and urban sites will be presented at the conference.

  9. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Abouchami, W.; Galer, S. J. G.; Garrison, V. H.; Williams, E.; Andreae, M. O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers - Sr, Nd and Pb - to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  10. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    USGS Publications Warehouse

    Kumar, A.; Abouchami, W.; Galer, S.J.G.; Garrison, V.H.; Williams, E.; Andreae, M.O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers – Sr, Nd and Pb – to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  11. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    PubMed Central

    Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación

    2016-01-01

    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks. PMID:27775100

  12. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wen, Hui; Shi, Jinsen; Bi, Jianrong; Huang, Zhongwei; Zhang, Beidou; Zhou, Tian; Fu, Kaiqi; Chen, Quanliang; Xin, Jinyuan

    2018-02-01

    Mineral dust aerosols (MDs) not only influence the climate by scattering and absorbing solar radiation but also modify cloud properties and change the ecosystem. From 3 April to 16 May 2014, a ground-based mobile laboratory was deployed to measure the optical and microphysical properties of MDs near dust source regions in Wuwei, Zhangye, and Dunhuang (in chronological order) along the Hexi Corridor over northwestern China. Throughout this dust campaign, the hourly averaged (±standard deviation) aerosol scattering coefficients (σsp, 550 nm) of the particulates with aerodynamic diameters less than 2.5 µm (PM2.5) at these three sites were sequentially 101.5 ± 36.8, 182.2 ± 433.1, and 54.0 ± 32.0 Mm-1. Correspondingly, the absorption coefficients (σap, 637 nm) were 9.7 ± 6.1, 6.0 ± 4.6, and 2.3 ± 0.9 Mm-1; single-scattering albedos (ω, 637 nm) were 0.902 ± 0.025, 0.931 ± 0.037, and 0.949 ± 0.020; and scattering Ångström exponents (Åsp, 450-700 nm) of PM2.5 were 1.28 ± 0.27, 0.77 ± 0.51, and 0.52 ± 0.31. During a severe dust storm in Zhangye (i.e., from 23 to 25 April), the highest values of σsp2.5 ( ˜ 5074 Mm-1), backscattering coefficient (σbsp2.5, ˜ 522 Mm-1), and ω637 ( ˜ 0.993) and the lowest values of backscattering fraction (b2.5, ˜ 0.101) at 550 nm and Åsp2.5 ( ˜ -0.046) at 450-700 nm, with peak values of aerosol number size distribution (appearing at the particle diameter range of 1-3 µm), exhibited that the atmospheric aerosols were dominated by coarse-mode dust aerosols. It is hypothesized that the relatively higher values of mass scattering efficiency during floating dust episodes in Wuwei and Zhangye are attributed to the anthropogenic soil dust produced by agricultural cultivations.

  13. Large Contribution of Coarse Mode to Aerosol Microphysical and Optical Properties: Evidence from Ground-Based Observations of a Transpacific Dust Outbreak at a High-Elevation North American Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, E.; Pekour, M.; Flynn, C.

    Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented bymore » quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.« less

  14. Water-soluble part of the aerosol in the dust storm season—evidence of the mixing between mineral and pollution aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhuang, Guoshun; Sun, Yele; An, Zhisheng

    Six dust episodes were observed in Beijing in 2002. Both TSP (Total Suspended Particulate, particle size smaller than 100 μm) and PM 2.5 (particle size smaller than 2.5 μm) aerosol samples in these episodes were collected and their characteristics of water-soluble part were elaborated in demonstrating the mixing of mineral aerosol with pollution aerosol in the long-range transport of Asia aerosols with various sources and different paths. The dust storm peaked on 20 March, in which the highest concentrations of TSP and PM 2.5 were 10.9 and 1.4 mg m -3, respectively. The mass fraction of water-soluble part generally decreased with the increase of dust intensity. SO 42- contributed 38-70% to the total anions and Ca 2+ contributed 37-80% to the total cations, indicating that SO 42- and Ca 2+ were the most abundant anion and cation, respectively. The major ions of the water-soluble parts could be classified into three groups, i.e., the crust ions (Ca 2+, Na +, and Mg 2+), the pollution-crust ions (SO 42-, Cl -, and K +), and the pollution ions (NO 3-, NH 4+, NO 2-, and F -). Crust ions and pollution ions were the main ion fractions in super dust and non-dust days, respectively, whereas the pollution-crust ions were the main ion fractions in both dust days of various dust intensity and non-dust days, which demonstrated clearly that the mixing between mineral and pollution aerosols was ubiquitous during the dust seasons (even in the super dust storm days) although it was more obvious in those normal and weak dust episodes. The main chemical species of the water-soluble part of the aerosols were CaCO 3 in the super dust storm, CaSO 4 in the normal and the weak dust events, and NH 4NO 3 in the non-dust event days. The secondary transformation of sulfate and nitrate occurred on dust particles both during and after dust days provided the strong evidence of the mixing between mineral and pollution aerosols during the long-range transport of dust.

  15. Variations on morphology and elemental composition of mineral dust particles from local, regional, and long-range transport meteorological scenarios

    NASA Astrophysics Data System (ADS)

    Coz, Esther; Gómez-Moreno, Francisco J.; Casuccio, Gary S.; ArtíñAno, BegoñA.

    2010-06-01

    Mineral dust is the second major source of PM10 in Madrid, reaching up to 80% of the PM10 mass during certain long-range dust transport events. Three different types of scenarios have been found to be associated with the high particle concentration episodes in the city: local anthropogenic, regional recirculation, and African dust transport processes. The present study focuses on the characterization of the individual mineral dust particles related to some chemical and morphological features during these three types of episodes, with special attention to local and regional episodes. To achieve this purpose, four different samples were selectively collected during the 2004-2005 period campaigns, one corresponding to each type of scenario and other sample from an Atlantic ventilated one. Meteorological situation, dust source identification, impact on ambient concentrations, size range distribution, and particle individual analysis have been characterized for each of them. Elemental composition and morphology of more than 30,000 mineral particles were analyzed by computer-controlled scanning electron microscopy. Particles were grouped into clusters based on their elemental composition, and the aspect ratio (AR) of each cluster or category was compared for each type of episode. The AR was related to the mineralogical crystal structure of each chemical cluster. The dates chosen for microscopy analysis were in good agreement in size distribution and chemical composition with the average of the dates in the entire campaign and with those from previous campaigns. Major differences between local/regional and long-range transported mineral dust were found in the relative abundance between carbonates and silicates, with much higher abundance of calcium carbonates in the first ones. These differences between silicate and carbonate contents were consistent with the results found in previous campaigns and were directly related to the composition of the parent topsoil by studying

  16. Ice nucleation of natural desert dust including organics sourced from nine deserts worldwide

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Welti, André; Atkinson, James; Danielczok, Anja; Bingemer, Heinz; Plötze, Michael; Lohmann, Ulrike; Kanji, Zamin A.

    2017-04-01

    The extraordinary high ice nucleation (IN) potential of microcline, a K-feldspar mineral, at temperatures (T) above 248 and up to 271 K has been show recently. However, it is unclear if microcline is also found at the surface of airborne mineral dust particles or if chemical and mechanical aging processes lead to its destruction or shielding and thus reduced IN ability in the atmosphere. It is suggested that instead organic material mixed with inorganic minerals is responsible for cloud glaciation at T ≥ 253 K. We collected airborne Saharan dust at 4 locations at different distances from the desert and 11 samples from the surface of 9 of the major deserts worldwide. We studied immersion IN on these samples between 235 - 263 K using the IMCA-ZINC (immersion mode cooling chamber - Zurich ice nucleation chamber) setup and the FRIDGE (Franfurt Ice Nuclei Deposition Freezing Experiment) instrument run in droplet freezing mode. By correlating the results with the bulk mineralogy of the dust samples, determined by X-ray diffraction analysis, we show that at 253 K, K-feldspar indeed predicts best the IN behavior of the samples. At lower T (238 - 245 K) however, quartz and the total feldspar contents correlate best. Furthermore, microcline is only found in one of the airborne Saharan dust samples (3.9 wt%) while in the others the amount is below the detection limit or completely absent. Relative humidity (RH) scans at constant T = 238, 240 and 242 K were additionally performed with the portable ice nucleation counter, PINC. Above and below water saturation a similar prominent role of quartz is found as in the immersion mode. To investigate the role of organic material on the IN ability, we heated some of the samples at 573 K for 10 h and repeated the RH-scans. Furthermore, we performed thermogravimetric analysis of the dusts. The two tested airborne Saharan samples loose between 2.8 and 7.5 % of their mass at T ≤ 573 K, partly due to water release, partly due to

  17. Polluted Dust Classification and Its Optical Properties Analysis Using CALIPSO Data and Simulation

    NASA Astrophysics Data System (ADS)

    Ding, J.; Yang, P.; Holz, R.; Vaughan, M. A.; Hu, Y.

    2015-12-01

    In CALIPSO Level 2 aerosol data, dust particles are classified into two subtypes, namely, pure dust and polluted dust based on lidar backscatter, depolarization ratio and surface types. In this research, the polluted dust subtype is found to have two distinct modes in terms of integrated depolarization ratio (IDR) and integrated total color ratio (ICR). Dust with smaller IDR and ICR occurs mainly over areas with strong smoke emissions such as industrial cities. This kind of polluted dust originating from East Asia is also found over the Pacific Ocean. In contrast, the other type originating from the Saharan desert with larger IDR and ICR occurs mainly over the Atlantic Ocean. The disparities of IDR and ICR may result from different pollutants. The polluted dust with smaller ICR and IDR should have stronger absorption of light and may contain black carbon. Other chemical compounds such as sea salts may account for polluted dust with larger ICR and IDR. To further separate the types of polluted dust, cluster analysis is applied to determine the centroid of each type in terms of IDR and ICR. Furthermore, scattering models of dust mixed with various pollutants are constructed to be included in a CALIPSO simulator. The simulated IDR and ICR values are compared with data to retrieve the chemical compositions of polluted dust. The difference of polluted dust over the Pacific and Atlantic Ocean provides new evidence about long-range transport of Asian dust to North America. The distribution of dust polluted by black carbon is determined, which can improve knowledge about the effect of black carbon on the earth's radiation budget.

  18. Onset of frequent dust storms in northern China at ~AD 1100.

    PubMed

    He, Yuxin; Zhao, Cheng; Song, Mu; Liu, Weiguo; Chen, Fahu; Zhang, Dian; Liu, Zhonghui

    2015-11-26

    Dust storms in northern China strongly affect the living and health of people there and the dusts could travel a full circle of the globe in a short time. Historically, more frequent dust storms occurred during cool periods, particularly the Little Ice Age (LIA), generally attributed to the strengthened Siberian High. However, limited by chronological uncertainties in proxy records, this mechanism may not fully reveal the causes of dust storm frequency changes. Here we present a late Holocene dust record from the Qaidam Basin, where hydrological changes were previously reconstructed, and examine dust records from northern China, including the ones from historical documents. The records, being broadly consistent, indicate the onset of frequent dust storms at ~AD 1100. Further, peaked dust storm events occurred at episodes of high total solar irradiance or warm-dry conditions in source regions, superimposed on the high background of frequent dust storms within the cool LIA period. We thus suggest that besides strong wind activities, the centennial-scale dust storm events over the last 1000 years appear to be linked to the increased availability of dust source. With the anticipated global warming and deteriorating vegetation coverage, frequent occurrence of dust storms in northern China would be expected to persist.

  19. Dating Saharan dust deposits on Lanzarote (Canary Islands) by luminescence dating techniques and their implication for palaeoclimate reconstruction of NW Africa

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, H.; Fuchs, M.; ZöLler, L.

    2008-02-01

    Lava flow dammed valleys (Vegas) on Lanzarote (Canary Islands) represent unique sediment traps, filled with autochthonous volcanic material and allochthonous Saharan dust. These sediments and the intercalated palaeosoil sediments document past environmental change of the last glacial-interglacial cycles, both on Lanzarote and in NW Africa. A reliable chronology must be established to use these sediment archives for palaeoclimate reconstructions. Owing to the lack of organic material and the limiting time range of the 14C-dating method, luminescence dating is the most promising method for these sediments. However, the fluvio-eolian character of these sediments is a major problem for luminescence dating, because these sediments are prone to insufficient resetting of the parent luminescence signal (bleaching) prior to sedimentation. To check for the best age estimates, we compare the bleaching behavior of (1) different grain sizes (coarse- versus fine-grain quartz OSL) and (2) different minerals (fine-grain feldspar IRSL versus fine-grain quartz OSL). The results show that owing to its bleaching characteristics, quartz is the preferable mineral for luminescence dating. On the basis of the fine- and coarse-grain quartz OSL age estimates, a chronostratigraphy up to 100 ka could be established. Beyond this age limit for OSL quartz, the chronostratigraphy could be extended up to 180 ka by correlating the vega sediments with dated marine sediment archives.

  20. Changes in Stratiform Clouds of Mesoscale Convective Complex Introduced by Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Lin, B.; Min, Q.-L.; Li, R.

    2010-01-01

    Aerosols influence the earth s climate through direct, indirect, and semi-direct effects. There are large uncertainties in quantifying these effects due to limited measurements and observations of aerosol-cloud-precipitation interactions. As a major terrestrial source of atmospheric aerosols, dusts may serve as a significant climate forcing for the changing climate because of its effect on solar and thermal radiation as well as on clouds and precipitation processes. Latest satellites measurements enable us to determine dust aerosol loadings and cloud distributions and can potentially be used to reduce the uncertainties in the estimations of aerosol effects on climate. This study uses sensors on various satellites to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective complex (MCC). A trans-Atlantic dust outbreak of Saharan origin occurring in early March 2004 is considered. For the observed MCCs under a given convective strength, small hydrometeors were found more prevalent in the dusty stratiform regions than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust regions, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of clouds and precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the size spectrum of precipitation-sized hydrometeors from heavy precipitation to light precipitation and ultimately to suppress precipitation and increase the lifecycle of cloud systems, especially over stratiform areas.

  1. Inhalation Toxicity of Ground Lunar Dust Prepared from Apollo-14 Soil

    NASA Technical Reports Server (NTRS)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.; Cooper, Bonnie L.

    2011-01-01

    Within the decade one or more space-faring nations intend to return humans to the moon for more in depth exploration of the lunar surface and subsurface than was conducted during the Apollo days. The lunar surface is blanketed with fine dust, much of it in the respirable size range (<10 micron). Eventually, there is likely to be a habitable base and rovers available to reach distant targets for sample acquisition. Despite designs that could minimize the entry of dust into habitats and rovers, it is reasonable to expect lunar dust to pollute both as operations progress. Apollo astronauts were exposed briefly to dust at nuisance levels, but stays of up to 6 months on the lunar surface are envisioned. Will repeated episodic exposures to lunar dust present a health hazard to those engaged in lunar exploration? Using rats exposed to lunar dust by nose-only inhalation, we set out to investigate that question.

  2. A 13000-year, high-resolution multi-proxy record of climate variability with episodes of enhanced atmospheric dust in Western Asia: Evidence from Neor peat complex in NW Iran

    NASA Astrophysics Data System (ADS)

    Sharifi, O.; Pourmand, A.; Canuel, E. A.; Peterson, L. C.

    2011-12-01

    The regional climate over West Asia, extending between Iran and the Arabian Peninsula to the eastern Mediterranean Sea, is governed by interactions between three major synoptic systems; mid-latitude Westerlies, the Siberian Anticyclone and the Indian Ocean Summer Monsoon. In recent years, a number of paleoclimate studies have drawn potential links between episodes of abrupt climate change during the Holocene, and the rise and fall of human civilizations across the "Fertile Crescent" of West Asia. High-resolution archives of climate variability from this region, however, are scarce, and at times contradicting. For example, while pollen and planktonic data from lakes in Turkey and Iran suggest that dry, continental conditions prevailed during the early-middle Holocene, oxygen isotope records indicate that relatively wet conditions dominated during this interval over West Asia. We present interannual to decadal multi-proxy records of climate variability from a peat complex in NW Iran to reconstruct changes in moisture and atmospheric dust content during the last 13000 years. Radiocarbon dating on 20 samples from a 775-cm peat core show a nearly constant rate of accumulation (1.7 mm yr-1, R2=0.99) since 13356 ± 116 cal yr B.P. Down-core X-ray fluorescence measurements of conservative lithogenic elements (e.g., Al, Zr, Ti) as well as redox-sensitive elements (e.g., Fe, K, Rb, Zn, Cu, and Co) at 2 mm intervals reveal several periods of elevated dust input to this region since the early Holocene. Down-core variations of total organic carbon and total nitrogen co-vary closely and are inversely correlated with conservative lithogenic elements (Al, Si, Ti), indicating a potential link between climate change and accumulation of organic carbon in the Neor peat mire. Major episodes of enhanced dust deposition (13000-12000, 11700-11200, 9200-8800, 7000-6000, 4200-3200, 2800-2200 and 1500-600 cal yr B.P) are in good agreement with other proxy records that document more arid

  3. Regional transport of anthropogenic pollution and dust aerosols in spring to Tianjin - A coastal megacity in China.

    PubMed

    Su, Xiaoli; Wang, Qiao; Li, Zhengqiang; Calvello, Mariarosaria; Esposito, Francesco; Pavese, Giulia; Lin, Meijing; Cao, Junji; Zhou, Chunyan; Li, Donghui; Xu, Hua

    2017-04-15

    Simultaneous measurements of columnar aerosol microphysical and optical properties, as well as PM 2.5 chemical compositions, were made during two types of spring pollution episodes in Tianjin, a coastal megacity of China. The events were investigated using field observations, satellite data, model simulations, and meteorological fields. The lower Ångström Exponent and the higher aerosol optical depth on 29 March, compared with the earlier event on 26 March, implied a dominance of coarse mode particles - this was consistent with the differences in volume-size distributions. Based on the single scattering spectra, the dominant absorber (at blue wavelength) changed from black carbon during less polluted days to brown carbon on 26 March and dust on 29 March. The concentrations of major PM 2.5 species for these two episodes also differed, with the earlier event enriched in pollution-derived substances and the later with mineral dust elements. The formation mechanisms of these two pollution episodes were also examined. The 26 March episode was attributed to the accumulation of both local emissions and anthropogenic pollutants transported from the southwest of Tianjin under the control of high pressure system. While the high aerosol loading on 29 March was caused by the mixing of transported dust from northwest source region with local urban pollution. The mixing of transported anthropogenic pollutants and dust with local emissions demonstrated the complexity of springtime pollution in Tianjin. The synergy of multi-scale observations showed excellent potential for air pollution study. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Saharan Dust During the NAMMA Field Campaign

    NASA Technical Reports Server (NTRS)

    Hansell, R. A.; Tsay, S. C.; Ji, Q.; Hsu, N. C.; Jeong, M. J.; Wang, S. H.; Reid, J. S.; Liou, K. N.; Ou, S. C.

    2010-01-01

    In September 2006, NASA Goddard s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73degN, 22.93degW) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadow-band radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu-Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRE(sub LW)) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRE(sub LW) and longwave heating rate profiles are also evaluated. Instantaneous surface DRE(sub LW) ranges from 2 to 10 W/sq m and exhibits a strong linear dependence with dust AOT yielding a DRE(sub LW) of 16 W/sq m per unit dust AOT. The DRE(sub LW) is estimated to be approx.42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRE(sub LW) can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.

  5. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms.

    PubMed

    Weil, Tobias; De Filippo, Carlotta; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Pavarini, Lorenzo; Carotenuto, Federico; Pasqui, Massimiliano; Poto, Luisa; Gabrieli, Jacopo; Barbante, Carlo; Sattler, Birgit; Cavalieri, Duccio; Miglietta, Franco

    2017-03-10

    A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.

  6. An automatic collector to monitor insoluble atmospheric deposition: application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-07-01

    Deposition is one of the key terms of the mineral dust cycle. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims to present an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programmed sampling frequency (from 1 day to 2 weeks respectively). This collector is used to sample atmospheric deposition of Saharan dust on the Frioul islands in the Gulf of Lions in the Western Mediterranean. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Almost 2 years of continuous deposition measurements performed on a weekly sampling basis on Frioul Island are presented and discussed with air mass trajectories and satellite observations of dust. Insoluble mineral deposition measured on Frioul Island was 2.45 g m-2 for February to December 2011 and 3.16 g m-2 for January to October 2012. Nine major mineral deposition events, measured during periods with significant MODIS aerosol optical depths, were associated with air masses coming from the southern Mediterranean Basin and North Africa.

  7. Sulfate and nitrate in Asian dust particles observed in desert, coastal and marine air

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Wu, F.; Junji, C.

    2016-12-01

    Sulfate and nitrate in dust particles are believed to be two key species which can largely alter the physical and chemical properties of the particles in the atmosphere, in particular under humid conditions. Their occurrence in the particles has usually been considered to be the consequence of particles' aging during their long-distance travel in the air although they are present in some crustal minerals. Our observations at two deserts in China during dust episodes revealed that there were soil-derived sulfate and background-like nitrate in atmospheric dust samples. Sulfate in dust samples was proportional to samples' mass and comprised at steady mass percentages in differently sized samples. In contrast, nitrate concentration was approximately stable and independent from dust loading. Our observations at inland and coastal areas of China during dust episodes revealed that sulfate and nitrate were hardly produced on the surface of dust particles that were originated from the deserts areas in northwestern China. This is because the dust particles were in the postfrontal air, where the temperature was low and the relative humidity was small due to the adiabatic properties of the air mass. There are a number studies reporting that sulfate and nitrate had been efficiently produced on mineral particles in inland areas of China. However, those mineral particles were more likely from the local areas rather than from the desert areas. Our observations in the coastal areas of Japan, which is located in the downstream areas of the Asian continent and surrounded by sea areas revealed that dust particles appearing there frequently contained sulfate and nitrate, indicating sulfate and nitrate had been efficiently produced on the surface of the particles when the particles traveled in the marine air between China and Japan.

  8. WMO SDS-WAS NAMEE Regional Center: Towards continuous evaluation of dust models in Northern Africa

    NASA Astrophysics Data System (ADS)

    Basart, Sara; García-Castillo, Gerardo; Cuevas, Emilio; Terradellas, Enric

    2016-04-01

    frequently affected by intrusions of Saharan dust. Regional Node are evaluated during two years (2013-2014) with observations recorded in the Sahelian region and Canary Islands. Additionally, since the data sets of weather records have an excellent spatial and temporal coverage, observations of horizontal visibility included in meteorological reports are used as an alternative way to monitor dust events in near-real-time (NRT). Recently, a new visibility product that includes more than 1,500 METAR stations has implemented in the SDS-WAS NAMEE Regional Center. The present contribution also will demonstrate how the visibility can complement the information provided by other observing systems (air quality monitoring stations, sun photometers, vertical profilers or satellite products) and numerical simulations presenting its application in tracking several dust episodes. Otherwise, the vertical distribution of aerosol also influences the radiative effect at the top of the atmosphere, especially when aerosols have strong absorption of shortwave radiation. The free troposphere contribution to aerosol optical depth (AOD) and the altitude of lofted layers are provided thanks to the vertical profiling capability of the lidar/ceilomenter technique. Currently, a lidar located in Dakar (Senegal) and a ceilometer in Santa Cruz de Tenerife (Canary Islands, Spain) provide near-real-time (NRT) vertical profiles of aerosols, which are compared with those simulated by models.

  9. Characterisation of nutrients wet deposition under influence of Saharan dust at Puerto-Rico in Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Desboeufs, Karine; Formenti, Paola; Triquet, Sylvain; Laurent, Benoit; Denjean, Cyrielle; Gutteriez-Moreno, Ian E.; Mayol-Bracero, Olga L.

    2015-04-01

    Large quantities of African dust are carried across the North Atlantic toward the Caribbean every summer by Trade Winds. Atmospheric deposition of dust aerosols, and in particular wet deposition, is widely acknowledged to be the major delivery pathway for nutrients to ocean ecosystems, as iron, phosphorus and various nitrogen species. The deposition of this dustis so known to have an important impact on biogeochemical processes in the Tropical and Western Atlantic Ocean and Caribbean including Puerto-Rico. However, very few data exists on the chemical composition in nutrients in dusty rain in this region. In the framework of the Dust-ATTAcK project, rainwater was collected at the natural reserve of Cape San Juan (CSJ) (18.38°N, 65.62°W) in Puerto-Ricobetween 20 June 2012 and 12 July 2012 during thedusty period. A total of 7 rainwater events were sampled during various dust plumes. Complementary chemical analyses on aerosols in suspension was also determined during the campaign. The results on dust composition showed that no mixing with anthropogenic material was observed, confirming dust aerosols were the major particles incorporated in rain samples. The partitioning between soluble and particulate nutrients in rain samples showed that phosphorous solubility ranged from 30 and 80%. The average Fe solubility was around 0.5%, in agreement with Fe solubility observed in rains collected in Niger during African monsoon. That means that the high solubility measurements previously observed in Caribbean was probably due to an anthropogenic influence. Atmospheric wet deposition fluxes of soluble and total nutrients (N, P, Si, Fe, Co, Cu, Mn, Ni, Zn) to Caribbean Sea were determined. Atmospheric P and N inputs were strongly depleted relative to the stoichiometry of phytoplankton Fe, N, P and Si requirements.The nitrogen speciation was also determined and showed the predominance of ammonium form. 3-D modeling was used to estimate the spatial extend of these fluxes over the

  10. "Nuisance dust": unprotective limits for exposure to coal mine dust in the United States, 1934-1969.

    PubMed

    Derickson, Alan

    2013-02-01

    I examine the dismissal of coal mine dust as a mere nuisance, not a potentially serious threat to extractive workers who inhaled it. In the 1930s, the US Public Health Service played a major role in conceptualizing coal mine dust as virtually harmless. Dissent from this position by some federal officials failed to dislodge either that view or the recommendation of minimal limitations on workplace exposure that flowed from it. Privatization of regulatory authority after 1940 ensured that miners would lack protection against respiratory disease. The reform effort that overturned the established misunderstanding in the late 1960s critically depended upon both the production of scientific findings and the emergence of a subaltern movement in the coalfields. This episode illuminates the steep challenges often facing advocates of stronger workplace health standards.

  11. WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations

    NASA Astrophysics Data System (ADS)

    Rizza, Umberto; Barnaba, Francesca; Marcello Miglietta, Mario; Mangia, Cristina; Di Liberto, Luca; Dionisi, Davide; Costabile, Francesca; Grasso, Fabio; Gobbi, Gian Paolo

    2017-01-01

    In this study, the Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate an intense Saharan dust outbreak event that took place over the Mediterranean in May 2014. Comparison of a simulation using a physics-based desert dust emission scheme with a numerical experiment using a simplified (minimal) emission scheme is included to highlight the advantages of the former. The model was found to reproduce well the synoptic meteorological conditions driving the dust outbreak: an omega-like pressure configuration associated with a cyclogenesis in the Atlantic coasts of Spain. The model performances in reproducing the atmospheric desert dust load were evaluated using a multi-platform observational dataset of aerosol and desert dust properties, including optical properties from satellite and ground-based sun photometers and lidars, plus in situ particulate matter mass concentration (PM) data. This comparison allowed us to investigate the model ability in reproducing both the horizontal and the vertical displacement of the dust plume, as well as its evolution in time. The comparison with satellite (MODIS-Terra) and sun photometers (AERONET) showed that the model is able to reproduce well the horizontal field of the aerosol optical depth (AOD) and its evolution in time (temporal correlation coefficient with AERONET of 0.85). On the vertical scale, the comparison with lidar data at a single site (Rome, Italy) confirms that the desert dust advection occurs in several, superimposed "pulses" as simulated by the model. Cross-analysis of the modeled AOD and desert dust emission fluxes further allowed for the source regions of the observed plumes to be inferred. The vertical displacement of the modeled dust plume was in rather good agreement with the lidar soundings, with correlation coefficients among aerosol extinction profiles up to 1 and mean discrepancy of about 50 %. The model-measurement comparison for PM10 and PM2.5 showed a

  12. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    PubMed

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  13. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.

    2014-06-01

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion freezing

  14. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.

    2015-01-01

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration

  15. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S.

    PubMed

    Creamean, Jessie M; Suski, Kaitlyn J; Rosenfeld, Daniel; Cazorla, Alberto; DeMott, Paul J; Sullivan, Ryan C; White, Allen B; Ralph, F Martin; Minnis, Patrick; Comstock, Jennifer M; Tomlinson, Jason M; Prather, Kimberly A

    2013-03-29

    Winter storms in California's Sierra Nevada increase seasonal snowpack and provide critical water resources and hydropower for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation, whereas few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols probably serve as IN and play an important role in orographic precipitation processes over the western United States.

  16. Risk of Adverse Health and Performance Effects of Celestial Dust Exposure

    NASA Technical Reports Server (NTRS)

    Scully, Robert R.; Meyers, Valerie E.

    2015-01-01

    Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline

  17. Electrified atmospheric dust during disturbed weather conditions in the Negev desert

    NASA Astrophysics Data System (ADS)

    Katz, Shai; Yair, Yoav; Price, Colin; Yaniv, Roy

    2017-04-01

    Dust storms over the Negev Desert in southern Israel are common and become frequent during the spring and autumn, depending on synoptic conditions and local effects. These storms are often accompanied by significant dust electrification, most likely due to saltation and triboelectric processes. We present new atmospheric electrical measurements conducted at the Wise Observatory (WO) in Mizpe-Ramon (30035'N, 34045'E) Israel, during two strong dust storms that occurred over the Negev desert on October 27-28th and December 1st, 2016. The first event generated a local gust front due to strong downdrafts from an active Cumulonimbus cloud (known as Haboob). In the second event, a Cyprus Low with strong synoptic-scale winds lifted the local sand particles at the Negev and lowered the visibility. During the passage of the dust storms above our instruments, very large fluctuations in the electric field (Ez) and current density (Jz) were measured. In the October Haboob event, the Ez data showed a superposition of signatures generated by lightning and by the dust aloft. The Ez values fluctuated between +123 to +2144 and -15336 to +19788 V m-1 for several hour-long episodes. The respective values of the vertical current density [Jz] were between -18 and +18 pA m-2. During the December dust storm we measured Ez values up to +4000 V m-1 lasting for 3.5 hours and another episode with values up to +668 V m-1 lasting for approximately 1.5 hours. These values were accompanied by changes in the Jz values between -16.5 and +17 pA m-2. The electric field and current density variability and amplitude are significantly different from the average fair-weather values measured at the Wise Observatory (Yaniv et al., 2016), which are 180 V m-1 and 2 pA m-1. We will show that these differences in the electrical behavior between these two dust storms may be related to the speed and direction of the wind near the surface.

  18. Satellite Observations of Desert Dust-induced Himalayan Snow Darkening

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Hsu, N. Christina; Lau, William K.-M.; Yasunari, Teppei J.

    2013-01-01

    The optically thick aerosol layer along the southern edge of the Himalaya has been subject of several recent investigations relating to its radiative impacts on the South Asian summer monsoon and regional climate forcing. Prior to the onset of summer monsoon, mineral dust from southwest Asian deserts is transported over the Himalayan foothills on an annual basis. Episodic dust plumes are also advected over the Himalaya, visible as dust-laden snow surface in satellite imagery, particularly in western Himalaya. We examined spectral surface reflectance retrieved from spaceborne MODIS observations that show characteristic reduction in the visible wavelengths (0.47 nm) over western Himalaya, associated with dust-induced solar absorption. Case studies as well as seasonal variations of reflectance indicate a significant gradient across the visible (0.47 nm) to near-infrared (0.86 nm) spectrum (VIS-NIR), during premonsoon period. Enhanced absorption at shorter visible wavelengths and the resulting VIS-NIR gradient is consistent with model calculations of snow reflectance with dust impurity. While the role of black carbon in snow cannot be ruled out, our satellite-based analysis suggests the observed spectral reflectance gradient dominated by dust-induced solar absorption during premonsoon season. From an observational viewpoint, this study underscores the importance of mineral dust deposition toward darkening of the western Himalayan snow cover, with potential implications to accelerated seasonal snowmelt and regional snow albedo feedbacks.

  19. The case for a southeastern Australian Dust Bowl, 1895-1945

    NASA Astrophysics Data System (ADS)

    Cattle, Stephen R.

    2016-06-01

    Australia has an anecdotal history of severe wind erosion and dust storm activity, but there has been no lasting public perception of periods of extreme dust storm activity in this country, such as that developed in the USA following the Dust Bowl of the 1930s. Newspaper accounts of droughts and dust storms in southeastern (SE) Australia between 1895 and 1945 suggest that, at various times, the scale of these events was comparable to those experienced in the USA Dust Bowl. During this 50-year period, average annual rainfall values in this region were substantially below long-term averages, air temperatures were distinctly warmer, marginal lands were actively cropped and grazed, and rabbits were a burgeoning grazing pest. From the beginning of the Federation Drought of 1895-1902, dust storm activity increased markedly, with the downwind coastal cities of Sydney and Melbourne experiencing dust hazes, dust storms and falls of red rain relatively regularly. Between 1935 and 1945, Sydney and Melbourne received ten and nine long-distance dust events, respectively, with the years of 1938 and 1944/45 being the most intensely dusty. Entire topsoil horizons were blown away, sand drift was extreme, and crops and sheep flocks were destroyed. Although these periods of extreme dust storm activity were not as sustained as those experienced in the USA in the mid-1930s, there is a strong case to support the contention that SE Australia experienced its own extended, somewhat episodic version of a Dust Bowl, with a similar combination of causal factors and landscape effects.

  20. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor.

    PubMed

    Moreno, Teresa; Querol, Xavier; Castillo, Sonia; Alastuey, Andrés; Cuevas, Emilio; Herrmann, Ludger; Mounkaila, Mohammed; Elvira, Josep; Gibbons, Wes

    2006-10-01

    The Sahara-Sahel Dust Corridor runs from Chad to Mauritania and expels huge amounts of mineral aerosols into the Atlantic Ocean. Data on samples collected from Algeria, Chad, Niger, and Western Sahara illustrate how corridor dust mineralogy and chemistry relate to geological source and weathering/transport history. Dusts sourced directly from igneous and metamorphic massifs are geochemically immature, retaining soluble cations (e.g., K, Na, Rb, Sr) and accessory minerals containing HFSE (e.g., Zr, Hf, U, Th) and REE. In contrast, silicate dust chemistry in desert basins (e.g., Bodélé Depression) is influenced by a longer history of transport, physical winnowing (e.g., loss of Zr, Hf, Th), chemical leaching (e.g., loss of Na, K, Rb), and mixing with intrabasinal materials such as diatoms and evaporitic salts. Mineral aerosols blown along the corridor by the winter Harmattan winds mix these basinal and basement materials. Dusts blown into the corridor from sub-Saharan Africa during the summer monsoon source from deeply chemically weathered terrains and are therefore likely to be more kaolinitic and stripped of mobile elements (e.g., Na, K, Mg, Ca, LILE), but retain immobile and resistant elements (e.g., Zr, Hf, REE). Finally, dusts blown southwestwards into the corridor from along the Atlantic Coastal Basin will be enriched in carbonate from Mesozoic-Cenozoic marine limestones, depleted in Th, Nb, and Ta, and locally contaminated by uranium-bearing phosphate deposits.

  1. Re-evaluation of Dust Absorption and Radiative Forcing of Climate Using Satellite and Ground Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption and scattering properties. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo w = 0.88), almost no absorption, w = 0.98, was found for wavelengths > 0.6 microns. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 micron, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode. In the talk I shall also discuss recent observation of the impact of dust shape on the dust scattering properties.

  2. Optical properties of mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  3. How Saharan Dust Slows River Knickpoints: Coupling Vegetation Canopy, Soils and the Foundation of the Critical Zone

    NASA Astrophysics Data System (ADS)

    Brocard, G. Y.; Willenbring, J. K.; Harrison, E. J.; Scatena, F. N.

    2015-12-01

    Forest succession theory maintains that trees drape existing landscapes as passive niche optimizers, but in the Luquillo Mountains in Puerto Rico, the forest exerts a powerful control on erosion. The Luquillo Critical Zone observatory is set in the Luquillo Mountains, an isolated massif at the northeastern tip of Puerto Rico Island which receives up to five meters of rainfall annually. Most of the rainfall received in the mountains is conveyed as quick flow through soil macropores, inhibiting soil erosion by overland flow. Physical erosion is kept low, occurring in the form of infrequent shallow landslides, thus increasing the residence time of minerals in the near-surface environment. The extensive chemical alteration of minerals generates a thick saprolite covered by fine-grained soil. Over the quartz diorite bedrock that characterizes the southern side of the mountains, the weathering process generates saprolite tens of meters deep that is almost completely devoid of weatherable minerals. Soils forming over this saprolite are nutrient-poor, forcing the rainforest to retrieve its nutrients from atmospheric fluxes, such as Saharan dust and marine aerosols. These atmospheric inputs are thus indirectly essential for the forest to be able to maintain slow erosion rates over the mountains. At lower elevation, using cosmogenic nuclide-derived denudation rates, we identified a wave of incision which has been propagating upstream over the past 4 My in the form of very steep and slowly migrating knickpoints. Bedrock abrasion and plucking are infrequent along the knickpoint faces, because the bedrock is massive and because rivers are bedload-starved. This situation is due to the highly weathered upland soils and slow erosion rates and high weathering rate upstream, which acts to reduce bedload grain size and limits bedload fluxes to the knickpoint, respectively. The soils change radically where the wave of erosion has passed and has increased erosion rates. There, nutrient

  4. Impacts of crystal metal on secondary aliphatic amine aerosol formation during dust storm episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Liu, Qingyang; Bei, Yiling

    2016-03-01

    Trimethylamine (TMA) enters the atmosphere from a variety of sources and is a ubiquitous atmospheric organic base. The atmospheric reaction mechanism of TMA with key atmospheric oxidants is important to predict its distribution and environmental behavior in the particle phase. While previous studies have extensively focused on the production of particle amine salts (i.e. trimethylamine-N-oxide (TMAO)) using chamber experiments, the atmospheric behavior of TMAO in the environment is still poorly understood. Ambient fine particulate matter (PM2.5) was collected at two sampling sites in Beijing from March 10 to May 10, 2012. We analyzed the samples for water-soluble ions, crystal metals, TMA, and TMAO. Water-soluble ions (e.g. SO42-, NO3- , NH4+), TMA, and TMAO were measured using ion chromatography, while crystal metal (e.g. Al, Fe, Mn) in PM2.5 was quantified by inductively coupled plasma mass spectrometry (ICP-MS). Two dust storms (DS) occurred during the sampling period on March 28 and April 28. Mineral dust impacted PM2.5 mass and composition greatly during dust storm days, as it contributed approximately 1.2-4.0 times greater on dust storm days versus non-dust storm days. We found TMAO concentrations were highly associated with aluminum in PM2.5. Further, we applied the density functional theory (DFT) method to confirm that aluminum plays a catalytic effect in the reaction of TMA with ozone (O3). Our work improves understanding of the effect of crystal metals on secondary aliphatic amine aerosol formation in the atmosphere.

  5. Study of Desert Dust Events over the Southwestern Iberian Peninsula in Year 2000: Two Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cachorro, V. E.; Vergaz, R.; de Frutos, A. M.

    2006-03-07

    Strong desert dust events occurring in 2000 over the southwestern Atlantic coast of the Iberian Peninsula are detected and evaluated by means of the TOMS Aerosol Index (A.I.) at three different sites, Funchal (Madeira Island, Portugal), Lisboa (Portugal), and El Arenosillo (Huelva, Spain). At the El Arenosillo station, measurements from an AERONET Cimel sunphotometer allow more retrieval of the spectral AOD and the derived alpha ''angstrom'' coefficient. After using different threshold values of these parameters, we conclude that it is difficult to establish reliable and robust criteria for an automatic estimation of the number of dust episodes and the totalmore » number of dusty days per year. As a result, additional information, such as airmass trajectories, were used to improve the estimation, from which reasonable results were obtained (although some manual editing was still needed). A detailed characterization of two selected desert dust episodes, a strong event in winter and another of less intensity in summer, was carried out using AOD derived from Brewer spectrometer measurements. Size distribution parameters and radiative properties, such as refractive index and the aerosol single scattering albedo derived from Cimel data, were analyzed in detail for one of these two case studies. Although specific to this dust episode, the retrieved range of values of these parameters clearly reflect the characteristics of desert aerosols. Back-trajectory analysis, synoptic weather maps and satellite images were also considered together, as supporting data to assess the aerosol desert characterization in this region of study.« less

  6. Evaluation of Dust Absorption and Radiative Forcing of Climate Using Satellite and Ground Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    1999-01-01

    Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo wo = 0.88), almost no absorption, wo = 0.98, was found for 1 greater than 0.6 microns. The results are in agreement with dust radiative measurements reported in the literature, and explain some previously reported but unexplained dust radiative properties. Therefore, the new finding should be of general relevance. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 @im, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode.

  7. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Abouchami, W.; Galer, S. J. G.; Singh, Satinder Pal; Fomba, K. W.; Prospero, J. M.; Andreae, M. O.

    2018-04-01

    In order to assess the impact of mineral dust on climate and biogeochemistry, it is paramount to identify the sources of dust emission. In this regard, radiogenic isotopes have recently been used successfully for tracing North African dust provenance and its transport across the tropical Atlantic to the Caribbean. Here we present two time series of radiogenic isotopes (Pb, Sr and Nd) in dusts collected at the Cape Verde Islands and Barbados in order to determine the origin of the dust and examine the seasonality of westerly dust outflow from Northern Africa. Aerosol samples were collected daily during two campaigns - February 2012 (winter) and June-July 2013 (summer) - at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente (16.9°N, 24.9°W). A one-year-long time series of aerosols from Barbados (13.16°N, 59.43°W) - a receptor region in the Caribbean - was sampled at a lower, monthly resolution. Our results resolve a seasonal isotopic signal at Cape Verde shown by daily variations, with a larger radiogenic isotope variability in winter compared to that in summer. This summer signature is also observed over Barbados, indicating similar dust provenance at both locations, despite different sampling years. This constrains the isotope fingerprint of Saharan Air Layer (SAL) dust that is well-mixed during its transport. This result provides unequivocal evidence for a permanent, albeit of variable strength, long-range transport of African dust to the Caribbean and is in full agreement with atmospheric models of North African dust emission and transport across the tropical Atlantic in the SAL. The seasonal isotopic variability is related to changes in the dust source areas - mainly the Sahara and Sahel regions - that are active all-year-round, albeit with variable contributions in summer versus the winter months. Our results provide little support for much dust contributed from the Bodélé Depression in Chad - the "dustiest" place on Earth

  8. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...

    2014-06-27

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterizationmore » developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion

  9. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...

    2015-01-13

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. Themore » parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including

  10. Physical and Chemical Characteristics of Desert Dust Deposited on Mt. Elbrus, Caucasus as Documented in Snow Pit and Shallow Core Records

    NASA Astrophysics Data System (ADS)

    Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Popov, G.

    2013-12-01

    We present a study of dust deposition events and its physical and chemical characteristics in Caucasus Mountains as documented by snow and firn pack at Mt Elbrus. Dust samples were collected from the shallow ice cores and snow pits in 2009-2013 at the western Elbrus plateau (5150 m a.s.l.). Particle size distribution and chemical analysis (major ions, trace elements) were completed for each sample using Coulter Counter Multisizer III, scanning electron microscopy (SEM), IC and ICPMS analysis. It was shown that desert dust deposition occurred in Caucasus 4-8 times a year and originates from the Northern Sahara and the deserts of the Middle East. Analysis of volumetric particle size distributions showed that the modal values ranged between 2 μm and 4 μm although most samples were characterised by modal values of 2.0-2.8 μm with an average of 2.6 μm. These values are lower than those obtained from the ice cores in central and southern Asia following the deposition of long-travelled dust and are closer to those reported for the European Alps and the polar ice cores. All samples containing dust have a single mode which is usually interpreted as a single source region. They do not reveal any significant differences between the Saharan and the Middle Eastern sources. The annual average dust mass concentrations were 10-15 mg kg-1 which is higher than the average concentrations reported for other mountain regions and this was strongly affected by dust deposition events. The deposition of dust resulted in elevated concentrations of most ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from multiple sources in the Middle East including Mesopotamia or passing over the Middle East was characterised by the elevated concentrations of nitrates and ammonia which is related to a high atmospheric loads of ammonium emitted by agricultural sources and high concentrations of ammonium in dust originating from this region. By contrast, samples of the Saharan dust showed

  11. Observation of nitrate coatings on atmospheric mineral dust particles

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Shao, L. Y.

    2009-03-01

    Nitrate compounds have received much attention because of their ability to alter the hygroscopic properties and cloud condensation nuclei (CCN) activity of mineral dust particles in the atmosphere. However, very little is known about specific characteristics of ambient nitrate-coated mineral particles on an individual particle scale. In this study, sample collection was conducted during brown haze and dust episodes between 24 May and 21 June 2007 in Beijing, northern China. Sizes, morphologies, and compositions of 332 mineral dust particles together with their coatings were analyzed using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray (EDX) microanalyses. Structures of some mineral particles were verified using selected-area electron diffraction (SAED). TEM observation indicates that approximately 90% of the collected mineral particles are covered by visible coatings in haze samples whereas only 5% are coated in the dust sample. 92% of the analyzed mineral particles are covered with Ca-, Mg-, and Na-rich coatings, and 8% are associated with K- and S-rich coatings. The majority of coatings contain Ca, Mg, O, and N with minor amounts of S and Cl, suggesting that they are possibly nitrates mixed with small amounts of sulfates and chlorides. These nitrate coatings are strongly correlated with the presence of alkaline mineral components (e.g., calcite and dolomite). CaSO4 particles with diameters from 10 to 500 nm were also detected in the coatings including Ca(NO3)2 and Mg(NO3)2. Our results indicate that mineral particles in brown haze episodes were involved in atmospheric heterogeneous reactions with two or more acidic gases (e.g., SO2, NO2, HCl, and HNO3). Mineral particles that acquire hygroscopic nitrate coatings tend to be more spherical and larger, enhancing their light scattering and CCN activity, both of which have cooling effects on the climate.

  12. Forecasting the Northern African Dust Outbreak Towards Europe in April 2011: A Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J.-J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Pérez García-Pando, C.; Pejanovic, G.; Nickovic, S.

    2016-01-01

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 hours using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distribution was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. Our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.

  13. Characterization of east Asian dust outbreaks in the spring of 2001 using ground-based and satellite data

    NASA Astrophysics Data System (ADS)

    Darmenova, Kremena; Sokolik, Irina N.; Darmenov, Anton

    2005-01-01

    This study presents a detailed examination of east Asian dust events during March-April of 2001, by combining satellite multisensor observation (Total Ozone Mapping Spectrometer (TOMS), Moderate-Resolution Imaging Spectroradiometer (MODIS), and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)) meteorological data from weather stations in China and Mongolia and the Pennsylania State University/National Center for Atmospheric Research Mesoscale Modeling System (MM5) driven by the National Centers for Environmental Prediction Reanalysis data. The main goal is to determine the extent to which the routine surface meteorological observations (including visibility) and satellite data can be used to characterize the spatiotemporal distribution of dust plumes at a range of scales. We also examine the potential of meteorological time series for constraining the dust emission schemes used in aerosol transport models. Thirty-five dust events were identified in the source region during March and April of 2001 and characterized on a case-by-case basis. The midrange transport routes were reconstructed on the basis of visibility observations and observed and MM5-predicted winds with further validation against satellite data. We demonstrate that the combination of visibility data, TOMS aerosol index, MODIS aerosol optical depth over the land, and a qualitative analysis of MODIS and SeaWiFS imagery enables us to constrain the regions of origin of dust outbreaks and midrange transport, though various limitations of individual data sets were revealed in detecting dust over the land. Only two long-range transport episodes were found. The transport routes and coverage of these dust episodes were reconstructed by using MODIS aerosol optical depth and TOMS aerosol index. Our analysis reveals that over the oceans the presence of persistent clouds poses a main problem in identifying the regions affected by dust transport, so only partial reconstruction of dust transport routes reaching the

  14. VARIABLE WINDS AND DUST FORMATION IN R CORONAE BOREALIS STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Geoffrey C.; Zhang Wanshu; Geballe, T. R., E-mail: gclayton@fenway.phys.lsu.edu, E-mail: wzhan21@lsu.edu, E-mail: tgeballe@gemini.edu

    2013-08-01

    We have observed P-Cygni and asymmetric, blue-shifted absorption profiles in the He I {lambda}10830 lines of 12 R Coronae Borealis stars over short (1 month) and long (3 yr) timescales to look for variations linked to their dust-formation episodes. In almost all cases, the strengths and terminal velocities of the line vary significantly and are correlated with dust formation events. Strong absorption features with blue-shifted velocities {approx}400 km s{sup -1} appear during declines in visible brightness and persist for about 100 days after recovery to maximum brightness. Small residual winds of somewhat lower velocity are present outside of the declinemore » and recovery periods. The correlations support models in which recently formed dust near the star is propelled outward at high speed by radiation pressure and drags the gas along with it.« less

  15. PM(10) episodes in Greece: Local sources versus long-range transport-observations and model simulations.

    PubMed

    Matthaios, Vasileios N; Triantafyllou, Athanasios G; Koutrakis, Petros

    2017-01-01

    Periods of abnormally high concentrations of atmospheric pollutants, defined as air pollution episodes, can cause adverse health effects. Southern European countries experience high particulate matter (PM) levels originating from local and distant sources. In this study, we investigated the occurrence and nature of extreme PM 10 (PM with an aerodynamic diameter ≤10 μm) pollution episodes in Greece. We examined PM 10 concentration data from 18 monitoring stations located at five sites across the country: (1) an industrial area in northwestern Greece (Western Macedonia Lignite Area, WMLA), which includes sources such as lignite mining operations and lignite power plants that generate a high percentage of the energy in Greece; (2) the greater Athens area, the most populated area of the country; and (3) Thessaloniki, (4) Patra, and (5) Volos, three large cities in Greece. We defined extreme PM 10 pollution episodes (EEs) as days during which PM 10 concentrations at all five sites exceeded the European Union (EU) 24-hr PM 10 standards. For each EE, we identified the corresponding prevailing synoptic and local meteorological conditions, including wind surface data, for the period from January 2009 through December 2011. We also analyzed data from remote sensing and model simulations. We recorded 14 EEs that occurred over 49 days and could be grouped into two categories: (1) Local Source Impact (LSI; 26 days, 53%) and (2) African Dust Impact (ADI; 23 days, 47%). Our analysis suggested that the contribution of local sources to ADI EEs was relatively small. LSI EEs were observed only in the cold season, whereas ADI EEs occurred throughout the year, with a higher frequency during the cold season. The EEs with the highest intensity were recorded during African dust intrusions. ADI episodes were found to contribute more than local sources in Greece, with ADI and LSI fraction contribution ranging from 1.1 to 3.10. The EE contribution during ADI fluctuated from 41 to 83

  16. Desert Dust Satellite Retrieval Intercomparison

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; hide

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify and understand the differences between current algorithms, and hence improve future retrieval algorithms. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as as20 sumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, at least as significant as these differences are sampling issues related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset.

  17. Dust Transport, Deposition and Radiative Effects Observed from MODIS

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Koren, I.; Remer, L. A.; Tanre, D.; Ginoux, P.; Fan, S.

    2003-01-01

    Carlson (1977) used satellite (AVHRR) observation of dust episodes 3 estimate that 90 tg of dust are emitted from Africa (0-30 N) to the Atlantic Ocean between June and August. MODIS systematic measurements of aerosol optical thickness (AOT) and the fraction of the AOT (f) due to the fine mode (see Remer et al abstract), are used to derive the column concentration, flux and deposition of African dust over the Atlantic Ocean. The main data set is for 2001 but the results are consistent with MODIS measurements from 2002. The analysis first determines the properties of maritime baseline aerosol (AOT=0.06, f=0.5); followed by linear scaling of the dust AOT and the anthropogenic AOT, based on MODIS measured values of the fraction "f" being 0.9 for anthropogenic aerosol and 0.5 for dust. NCEP winds are used in the analysis and are evaluated against observed dust movements between the Terra and Aqua passes (see Koren et al. abstract). Monthly values of dust transport and deposition are calculated. Preliminary results show that 280 tg of dust are emitted annually from Africa to the Atlantic Ocean between 20s and 30N, with 40 tg returning to Africa and Europe between 30N and 50N. 85 tg reach the Americas, with 130-150 tg are deposited in the Atlantic Ocean. The results are compared with dust transport models that indicate 110-230 tg of dust being deposited in the Ocean. It is interesting to note that the early estimates of Carlson (1977) and Carlson & Prosper0 (1972) are very close to our estimate from MODIS of 100 tg for the same latitude range and monthly period.

  18. Radiative Energetics of Mineral Dust Aerosols from Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hansell, Richard A.

    2011-01-01

    Airborne dust aerosols worldwide contribute a significant part to air quality problems and, to some extent, regional climatic issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in oceans). Evaluating the direct solar radiative effect of dust aerosols is relatively straightforward due in part to the relatively large SIN ratio in broadband irradiance measurements. The longwave (LW) impact, on the other hand, is rather difficult to ascertain since the measured dust signal level (approx.10 W/sq m) is on the same order as the instrumental uncertainties. Although the magnitude of the LW impact is much smaller than that of the shortwave (SW), it can still have a noticeable influence on the energy distribution of Earth-atmosphere system, particularly due to the strong light-absorptive properties commonly found in many terrestrial minerals. The current effort is part of an ongoing research study to perform a global assessment of dust direct aerosol radiative effects (DARE) during major field deployments of key dust source regions worldwide. In this work we present results stemming from two previous field deployments: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years, both utilizing NASA Goddard's mobile ground-based facility. The former study focused on transported Saharan dust at Sal (16.73degN, 22.93degW), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye (39.082degN, 100.276degE), China near the source between the Taklimakan and Gobi deserts. Due to the compelling variability in spatial and temporal scale of dust properties during field experiments, a deterministic I-D radiative transfer model constrained by local measurements (i.e., spectral photometry/interferometry and lidar for physical/microphysical, mineralogy, and single-scattering properties) is employed to evaluate dust's local instantaneous SW/LW DARE both at the surface and at the top of

  19. Chemical characteristics of atmospheric fallout in the south of Xi'an during the dust episodes of 2001-2012 (NW China)

    NASA Astrophysics Data System (ADS)

    Li, Xiaoping; Feng, Linna; Huang, Chunchang; Yan, Xiangyang; Zhang, Xu

    2014-02-01

    Atmospheric fallouts (AFs) were collected in the south of Xi'an, NW China, during the dust episodes of 2001-2012. The chemical characteristics of total 68 AF samples including their chemical compositions, size distribution and magnetic susceptibility were studied. The contamination degree and the source of heavy metals in AF were also explored with enrichment factor method and multivariate statistical analysis. The results showed that the particle mass size distribution of AFs dominated by coarse particles (PM10-50) in dust days. The concentrations of 26 elements associated with AFs determined by wavelength dispersive X-ray fluorescence spectrometry (WDXRF) in studied sites varied from 92.90 to 188.10 mg kg-1 for Cr, 31.40 and 63.00 mg kg-1 for Cu, 16.60 to 167.30 for Pb and 106.60 to 196.80 for Zn. Their average concentrations found in this study were 139.22 ± 29.41 mg kg-1, 46.93 ± 10.56 mg kg-1, 78.42 ± 46.52 mg kg-1 and 150.61 ± 32.84 mg kg-1, respectively, which exceeded their corresponding recommended background values more than two times. While, other elements, such as Br varied from 1.10 to 5.90 with 3.34 ± 1.60 mg kg-1 mean, Cs from 2.90 to 10.90 with mean of 7.23 ± 2.47 mg kg-1, Ga between 6.90 and 20.80 with 15.23 ± 3.59 mg kg-1, Rb in the range of 62.10-124.20 with the average of 80.69 ± 16.89 mg kg-1, Y from 9.90 to 35.00 with 20.43 ± 6.27 mg kg-1 average, La from 29.60 to 54.20 with mean of 37.28 ± 8.28 mg kg-1 and V with average of 81.97 ± 8.93 mg kg-1 in the 57.7-92.10 mg kg-1. Multivariate statistical analysis (principal component analysis and clustering analysis) was suggested that the principal element elements, Al, Fe, Si, K, Ca, Na, Mg, coupled with the trace elements Co, V, Ce, Mn, Ni, Ga, Y, Rb, La, Br, Cs were predominated by crustal material sources, whereas, Cr, Cu, Ba, Sr, As, Pb and Zn were highly influenced by anthropogenic activities. Simultaneously, the water-soluble ions (WS-ions) of NH4+, SO42-, SO32-, NO3-, SiO44-, HSO4

  20. From Nuclei to Dust Grains: How the AGB Machinery Works

    NASA Astrophysics Data System (ADS)

    Gobrecht, D.; Cristallo, S.; Piersanti, L.

    2015-12-01

    With their circumstellar envelopes AGB stars are marvelous laboratories to test our knowledge of microphysics (opacities, equation of state), macrophysics (convection, rotation, stellar pulsations, magnetic fields) and nucleosynthesis (nuclear burnings, slow neutron capture processes, molecules and dust formation). Due to the completely different environments those processes occur, the interplay between stellar interiors (dominated by mixing events like convection and dredge-up episodes) and stellar winds (characterized by dust formation and wind acceleration) is often ignored. We intend to develop a new approach involving a transition region, taking into consideration hydrodynamic processes which may drive AGB mass-loss. Our aim is to describe the process triggering the mass-loss in AGB stars with different masses, metallicities and chemical enrichments, possibly deriving a velocity field of the outflowing matter. Moreover, we intend to construct an homogeneous theoretical database containing detailed abundances of atomic and molecular species produced by these objects. As a long term goal, we will derive dust production rates for silicates, alumina and silicon carbides, in order to explain laboratory measurements of isotopic ratios in AGB dust grains.

  1. Long-term systematic profiling of dust aerosol optical properties using the EOLE NTUA lidar system over Athens, Greece (2000-2016)

    NASA Astrophysics Data System (ADS)

    Soupiona, O.; Papayannis, A.; Kokkalis, P.; Mylonaki, M.; Tsaknakis, G.; Argyrouli, A.; Vratolis, S.

    2018-06-01

    We present a comprehensive analysis of the seasonal variability of the vertical profiles of the optical and geometrical properties of Saharan dust aerosols, observed in the height region between 1000 and 6000 m, over the city of Athens, Greece, from February 2000 to December 2016. These observations were performed by a multi-wavelength (355-387-532-1064 nm) Raman lidar system under cloud-free conditions. The statistical analysis (using aerosol monthly mean values) is based on nighttime vertical Raman measurements of range-resolved aerosol optical properties (backscatter and extinction coefficients, lidar ratio, Ångström exponent) at 355 nm (57 dust events during more than 80 measurement hours). We found that the number of dust events was highest in spring, summer, and early autumn periods and that during spring the dust layers were moved at higher altitudes (∼4500 m) than in other seasons. The number of the forecasted dusty days (on monthly basis) by the BSC-DREAM8b model compared to those of the performed lidar measurements were found to have a quite strong correlation (R2 = 0.81), with a maximum occurrence predicted for the spring season. In the worst case scenario, at least 50% of the model-forecasted dust events can be observed by lidar under cloudless skies over Athens. For the sampled dust plumes we found mean lidar ratios of 52 ± 13 sr at 355 nm in the height range 2000-4000 m a.s.l. Moreover, the dust layers had a mean thickness of 2497 ± 1026 m and a center of mass of 2699 ± 1017 m. An analysis performed regarding the air mass back-trajectories arriving over Athens revealed two main clusters: one pathway from south-west to north-east, with dust emission areas in Tunisia, Algeria and Libya and a second one from south, across the Mediterranean Sea with emission areas over Libya and the remaining part of Algeria and Tunisia. This clustering enabled us to differentiate between the aerosol optical properties between the two clusters, based on their

  2. Exploring Dust Impacts on Tropical Systems from the NASA HS-3 Field Campaign

    NASA Technical Reports Server (NTRS)

    Nowottnick, Ed; Colarco, Pete; da Silva, Arlindo; Barahona, Donifan; Hlavka, Dennis

    2015-01-01

    One of the overall scientific goals of the NASA Hurricane and Severe Storm Sentinel (HS-3) field campaign is to better understand the role of the Saharan Air Layer (SAL) in tropical storm development. During the 2012 HS-3 deployment, the Cloud Physics Lidar (CPL) observed dust within SAL air in close proximity to a developing Nadine (September 11, 2012). Throughout the mission, the NASA GEOS-5 modeling system supported HS-3 by providing 0.25 degrees resolution 5-day global forecasts of aerosols, which were used to support mission planning. The aerosol module was radiatively interactive within the GEOS-5 model, but aerosols were not directly coupled to cloud and precipitation processes. In this study we revisit the aerosol forecasts with an updated version of the GEOS-5 model. For the duration of Hurricane Nadine, we run multiday climate simulations leading up to each respective Global Hawk flight with and without aerosol direct interaction. For each set of simulations, we compare simulated dust mass fluxes to identify differences in SAL entrainment related to the interaction between dust aerosols and the atmosphere. We find that the direct effects of dust induce a low level anticyclonic circulation that temporarily shields Nadine from the intrusion of dry air, leading to a more intense storm.

  3. The footprints of Saharan Air Layer and lightning on the formation of tropical depressions over the eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Centeno Delgado, Diana C.

    In this study, the results of an observational analysis and a numerical analysis on the role of the Saharan Air Layer during tropical cyclogenesis (TC-genesis) are described. The observational analysis investigates the interaction of dust particles and lightning during the genesis stage of two developed cases (Hurricanes Helene 2006 and Julia 2010). The Weather Research and Forecasting (WRF) and WRF-Chemistry models were used to include and monitor the aerosols and chemical processes that affect TC-genesis. The numerical modeling involved two developed cases (Hurricanes Helene 2006 and Julia 2010) and two non-developed cases (Non-Developed 2011 and Non-Developed 2012). The Aerosol Optical Depth (AOD) and lightning analysis for Hurricane Helene 2006 demonstrated the time-lag connection through their positive contribution to TC-genesis. The observational analyses supported the fact that both systems developed under either strong or weak dust conditions. From the two cases, the location of strong versus weak dust outbreaks in association with lightning was essential interactions that impacted TC-genesis. Furthermore, including dust particles, chemical processes, and aerosol feedback in the simulations with WRF-CHEM provides results closer to observations than regular WRF. The model advantageously shows the location of the dust particles inside of the tropical system. Overall, the results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones.

  4. Forecasting the northern African dust outbreak towards Europe in April 2011: A model intercomparison

    DOE PAGES

    Huneeus, N.; Basart, S.; Fiedler, S.; ...

    2016-04-21

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 h using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distributionmore » was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. In this paper, our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.« less

  5. The retrieval of the Asian dust depolarization ratio in Korea with the correction of the polarization-dependent transmission

    NASA Astrophysics Data System (ADS)

    Shin, Sungkyun; Müller, Detlef; Kim, Y. J.; Tatarov, Boyan; Shin, Dongho; Seifert, Patric; Noh, Young Min

    2013-01-01

    The linear particle depolarization ratios were retrieved from the observation with a multiwavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea (35.11°N, 126.54°E). The measurements were carried out in spring (March to May) 2011. The transmission ratio measurements were performed to solve problems of the depolarization-dependent transmission at a receiver of the lidar and applied to correct the retrieved depolarization ratio of Asian dust at first time in Korea. The analyzed data from the GIST multiwavelength Raman lidar were classified into three categories according to the linear particle depolarization ratios, which are pure Asian dust on 21 March, the intermediate case which means Asian dust mixed with urban pollution on 13 May, and haze case on 10 April. The measured transmission ratios were applied to these cases respectively. We found that the transmission ratio is needed to be used to retrieve the accurate depolarization ratio of Asian dust and also would be useful to distinguish the mixed dust particles between intermediate case and haze. The particle depolarization ratios of pure Asian dust were approximately 0.25 at 532 nm and 0.14 at 532 nm for the intermediate case. The linear particle depolarization ratios of pure Asian dust observed with the GIST multiwavelength Raman lidar were compared to the linear particle depolarization ratios of Saharan dust observed in Morocco and Asian dust observed both in Japan and China.

  6. Spatial distribution of mineral dust single scattering albedo based on DREAM model

    NASA Astrophysics Data System (ADS)

    Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka

    2016-04-01

    Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.

  7. Permissible Exposure Level for Lunar Dusts: Gaps are Closing

    NASA Technical Reports Server (NTRS)

    James, John T.; Lam, Chiu-Wing; Scully Robert; Santana, Patricia; Cooper, Bonnie; McKay, David; Zeidler-Erdely, Patti C.; Castranova, Vincent

    2010-01-01

    Space faring nations plan to return human explorers to the moon within the next decade. Experience during the Apollo flights suggests that lunar dust will invariably get into the habitat where the finest portion (less than 5 micrometers) could be inhaled by the crew before it is cleared from the atmosphere. NASA is developing a database from which a 6-month, episodic exposure standard for lunar dust can be set. Three kinds of moon dust were prepared from a parent sample of Apollo 14 regolith #14003,96. Our goal was to prepare each type of dust sample with a mean diameter less than 2 m, which is suitable for instillation into the lungs of rats. The three samples were prepared as follows: separation from the parent sample using a fluidized bed, grinding using a jet mill grinder, or grinding with a ball-mill grinder. Grinding simulated restoration of surface activation of dust expected to occur at the surface of the moon on native lunar dust. We used two grinding methods because they seemed to produce different modes of activation. The effects of grinding were preserved by maintaining the dust in ultra-pure nitrogen until immediately before it was placed in suspension for administration to rats. The dust was suspended in physiological saline with 10% Survanta, a lung surfactant. Rats were given intratrachael instillations of the dust suspension at three doses. In addition to the three moon dusts (A, C and E), we instilled the same amount of a negative control (TiO2, B) and a highly-toxic, positive control (quartz, D). These additional mineral dusts were selected because they have well-established and very different permissible exposure levels (PELs). Our goal was to determine where lunar dusts fit between these extremes, and then estimate a PEL for each lunar dust. We evaluated many indices of toxicity to the lung. The figure shows the changes in lactate dehydrogenase (LDH), a marker of cell death, for the five dusts. Benchmark dose software (Version 2.1.2) from the

  8. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    NASA Astrophysics Data System (ADS)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  9. Dust transport and deposition observed from the Terra-MODIS space observations

    NASA Astrophysics Data System (ADS)

    Kaufman, Y. J.; Koren, I.; Tanre, D.; Fan, S.; Remer, L.; Ginoux, P.

    2003-12-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius * 12 m. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  10. Dust Transport and Deposition Observed from the Terra-MODIS Space Observations

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Koren, I.; Remer, L. A.; Tanre, D.; Fan, Ginoux; Fan, S.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230+/-80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120+/-40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  11. Introduction to project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    NASA Astrophysics Data System (ADS)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2014-01-01

    The main goal of project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of eolian mineral dust. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension after atmospheric deposition at the sea surface. This introductory paper describes the objectives of DUNE and the implementation plan of a series of mesocosm experiments conducted in the Mediterranean Sea in 2008 and 2010 during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated based on the production of dust analogs from erodible soils of a source region. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented. From laboratory results on the solubility of trace elements in dust to biogeochemical results from the mesocosm experiments and associated modeling, these papers describe how the strong simulated dust deposition events impacted the marine biogeochemistry. Those multidisciplinary results are bringing new insights into the role of atmospheric deposition on oligotrophic ecosystems and its impact on the carbon budget. The dissolved trace metals with crustal origin - Mn, Al and Fe - showed different behaviors as a function of time after the seeding. The increase in dissolved Mn and Al concentrations was attributed to dissolution processes. The observed decrease in dissolved Fe was due to scavenging on sinking dust particles and aggregates. When a second dust seeding followed, a dissolution of Fe from the dust particles was then observed due to the excess Fe binding ligand concentrations present at that time. Calcium nitrate and sulfate were formed in the dust

  12. Global dust model intercomparison in AeroCom phase I

    NASA Astrophysics Data System (ADS)

    Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Kinne, S.; Prospero, J.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; Diehl, T.; Easter, R.; Fillmore, D.; Ghan, S.; Ginoux, P.; Grini, A.; Horowitz, L.; Koch, D.; Krol, M. C.; Landing, W.; Liu, X.; Mahowald, N.; Miller, R.; Morcrette, J.-J.; Myhre, G.; Penner, J. E.; Perlwitz, J.; Stier, P.; Takemura, T.; Zender, C.

    2010-10-01

    Desert dust plays an important role in the climate system through its impact on Earth's radiative budget and its role in the biogeochemical cycle as a source of iron in high-nutrient-low-chlorophyll regions. A large degree of diversity exists between the many global models that simulate the dust cycle to estimate its impact on climate. We present the results of a broad intercomparison of a total of 15 global aerosol models within the AeroCom project. Each model is compared to observations focusing on variables responsible for the uncertainties in estimating the direct radiative effect and the dust impact on the biogeochemical cycle, i.e., aerosol optical depth (AOD) and dust deposition. Additional comparisons to Angström Exponent (AE), coarse mode AOD and dust surface concentration are included to extend the assessment of model performance. These datasets form a benchmark data set which is proposed for model inspection and future dust model developments. In general, models perform better in simulating climatology of vertically averaged integrated parameters (AOD and AE) in dusty sites than they do with total deposition and surface concentration. Almost all models overestimate deposition fluxes over Europe, the Indian Ocean, the Atlantic Ocean and ice core data. Differences among the models arise when simulating deposition at remote sites with low fluxes over the Pacific and the Southern Atlantic Ocean. This study also highlights important differences in models ability to reproduce the deposition flux over Antarctica. The cause of this discrepancy could not be identified but different dust regimes at each site and issues with data quality should be considered. Models generally simulate better surface concentration at stations downwind of the main sources than at remote ones. Likewise, they simulate better surface concentration at stations affected by Saharan dust than at stations affected by Asian dust. Most models simulate the gradient in AOD and AE between the

  13. Exploring the Longwave Radiative Effects of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Hansell, Richard A., Jr.

    2012-01-01

    Dust aerosols not only affect air quality and visibility where they pose a significant health and safety risk, but they can also play a role in modulating the energy balance of the Earth-atmosphere system by directly interacting with local radiative fields. Consequently, dust aerosols can impact regional climate patterns such as changes in precipitation and the evolution of the hydrological cycle. Assessing the direct effect of dust aerosols at the solar wavelengths is fairly straightforward due in part to the relatively large signal-to-noise ratio in broadband irradiance measurements. The longwave (LW) impacts, on the other hand, are rather difficult to ascertain since the measured dust signal level (10 Wm-2) is on the same order as the instrumental uncertainties. Moreover, compared to the shortwave (SW), limited experimental data on the LW optical properties of dust makes it a difficult challenge for constraining the LW impacts. Owing to the strong absorption features found in many terrestrial minerals (e.g., silicates and clays), the LW effects, although much smaller in magnitude compared to the SW, can still have a sizeable impact on the energetics of the Earth-atmosphere system, which can potentially trigger changes in the heat and moisture surface budgets, and dynamics of the atmosphere. The current endeavor is an integral part of an on-going research study to perform detailed assessments of dust direct aerosol radiative effects (DARE) using comprehensive global datasets from NASA Goddards mobile ground-based facility (cf. http://smartlabs.gsfc.nasa.gov/) during previous field experiments near key dust source regions. Here we examine and compare the results from two of these studies: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years. The former study focused on transported Saharan dust at Sal Island (16.73N, 22.93W), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye China (39

  14. Structural and functional localization of airway effects from episodic exposure of infant monkeys to allergen and/or ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    2006-08-01

    Both allergen and ozone exposure increase asthma symptoms and airway responsiveness in children. Little is known about how these inhalants may differentially modify airway responsiveness in large proximal as compared to small distal airways. We evaluated whether bronchi and respiratory bronchioles from infant monkeys exposed episodically to allergen and/or ozone differentially develop intrinsic hyperresponsiveness to methacholine and whether eosinophils and/or pulmonary neuroendocrine cells play a role. Infant monkeys were exposed episodically for 5 months to: (1) filtered air, (2) aerosolized house dust mite allergen, (3) ozone 0.5 ppm, or (4) house dust mite allergen + ozone. Studying the function/structure relationshipmore » of the same lung slices, we evaluated methacholine airway responsiveness and histology of bronchi and respiratory bronchioles. In bronchi, intrinsic responsiveness was increased by allergen exposure, an effect reduced by bombesin antagonist. In respiratory bronchioles, intrinsic airway responsiveness was increased by allergen + ozone exposure. Eosinophils were increased by allergen and allergen + ozone exposure in bronchi and by allergen exposure in respiratory bronchioles. In both airways, exposure to allergen + ozone resulted in fewer tissue eosinophils than did allergen exposure alone. In bronchi, but not in respiratory bronchioles, the number of eosinophils and neuroendocrine cells correlated with airway responsiveness. We conclude that episodically exposing infant monkeys to house dust mite allergen with or without ozone increased intrinsic airway responsiveness to methacholine in bronchi differently than in respiratory bronchioles. In bronchi, eosinophils and neuroendocrine cells may play a role in the development of airway hyperresponsiveness.« less

  15. Middle East Health and Air Quality Utilizing NASA EOS in the Saharan and Arabian Deserts to Examine Dust Particle Size and Mineralogy of Aerosols

    NASA Technical Reports Server (NTRS)

    Keeton, Tiffany; Barrick, Bradley; Cooksey, Kirstin; Cowart, Kevin; Florence, Victoria; Herdy, Claire; Padgett-Vasquez, Steve; Luvall, Jeffrey; Molthan, Andrew

    2012-01-01

    Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5micron (PM2.5) can cause long-term damage to the human respiratory system. NASA fs Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles and dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angstrom Exponent. Brightness Temperature Difference (BTD) equation was used to determine the area of the dust storm. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the JPL Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodele Depression in the Sahara Desert on 7 June 2003.

  16. Seasonal and occupational trends of five organophosphate pesticides in house dust.

    PubMed

    Smith, Marissa N; Workman, Tomomi; McDonald, Katie M; Vredevoogd, Melinda A; Vigoren, Eric M; Griffith, William C; Thompson, Beti; Coronado, Gloria D; Barr, Dana; Faustman, Elaine M

    2017-07-01

    Since 1998, the University of Washington's Center for Child Environmental Health Risks Research has followed a community-based participatory research strategy in the Lower Yakima Valley of Washington State to assess pesticide exposure among families of Hispanic farmworkers. As a part of this longitudinal study, house dust samples were collected from both farmworker and non-farmworker households, across three agricultural seasons (thinning, harvest and non-spray). The household dust samples were analyzed for five organophosphate pesticides: azinphos-methyl, phosmet, malathion, diazinon, and chlorpyrifos. Organophosphate pesticide levels in house dust were generally reflective of annual use rates and varied by occupational status and agricultural season. Overall, organophosphate pesticide concentrations were higher in the thinning and harvest seasons than in the non-spray season. Azinphos-methyl was found in the highest concentrations across all seasons and occupations. Farmworker house dust had between 5- and 9-fold higher concentrations of azinphos-methyl than non-farmworker house dust. Phosmet was found in 5-7-fold higher concentrations in farmworker house dust relative to non-farmworker house dust. Malathion and chlorpyriphos concentrations in farmworker house dust ranged between 1.8- and 9.8-fold higher than non-farmworker house dust. Diazinon showed a defined seasonal pattern that peaked in the harvest season and did not significantly differ between farmworker and non-farmworker house dust. The observed occupational differences in four out of five of the pesticide residues measured provides evidence supporting an occupational take home pathway, in which workers may bring pesticides home on their skin or clothing. Further, these results demonstrate the ability of dust samples to inform the episodic nature of organophosphate pesticide exposures and the need to collect multiple samples for complete characterization of exposure potential.

  17. The footprints of Saharan air layer and lightning on the formation of tropical depressions over the eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Centeno Delgado, Diana C.; Chiao, Sen

    2015-02-01

    The roles of the Saharan Air Layer (SAL) and lightning during genesis of Tropical Depression (TD) 8 (2006) and TD 12 (2010) were investigated in relation to the interaction of the dust outbreaks with each system and their surrounding environment. This study applied data collected from the 2006 NASA African Monsoon Multidisciplinary Analysis and 2010 Genesis and Rapid Intensification Processes projects. Satellite observations from METEOSAT and Moderate Resolution Imaging Spectroradiometer (MODIS)—Aerosol Optical Depth (AOD) were also employed for the study of the dust content. Lightning activity data from the Met Office Arrival Time Difference (ATD) system were used as another parameter to correlate moist convective overturning and a sign of cyclone formation. The AOD and lightning analysis for TD 8 demonstrated the time-lag connection through their positive contribution to TC-genesis. TD 12 developed without strong dust outbreak, but with lower wind shear (2 m s-1) and an organized Mesoscale Convective System (MCS). Overall, the results from the combination of various data analyses in this study support the fact that both systems developed under either strong or weak dust conditions. From these two cases, the location (i.e., the target area) of strong versus weak dust outbreaks, in association with lightning, were essential interactions that impacted TC-genesis. While our dust footprints hypothesis applied under strong dust conditions (i.e., TD 8), other factors (e.g., vertical wind shear, pre-existing vortex and trough location, thermodynamics) need to be evaluated as well. The results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones (i.e., TD 8 and TD 12).

  18. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment SALTRACE 2013 - Overview and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Ansmann, A.; Reitebuch, O.; Freudenthaler, V.; Müller, T.; Kandler, K.; Althausen, D.; Busen, R.; Dollner, M.; Dörnbrack, A.; Farrell, D. A.; Gross, S.; Heimerl, K.; Klepel, A.; Kristensen, T. B.; Mayol-Bracero, O. L.; Minikin, A.; Prescod, D.; Prospero, J. M.; Rahm, S.; Rapp, M.; Sauer, D. N.; Schaefler, A.; Toledano, C.; Vaughan, M.; Wiegner, M.

    2013-12-01

    Mineral dust is an important player in the global climate system. In spite of substantial progress in the past decade, many questions in our understanding of the atmospheric and climate effects of mineral dust remain open such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds. To close gaps in our understanding of mineral dust in the climate system, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling. During SALTRACE, the DLR research aircraft Falcon was based on Sal, Cape Verde, between 11 and 17 June, and on Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties and with a nadir-looking 2-μm wind lidar. Ground-based lidar and in-situ instruments were deployed in Barbados and Puerto Rico. Mineral dust from several dust outbreaks was measured by the Falcon between Senegal and Florida. On the eastern side of the Atlantic, dust plumes extended up to 6 km altitude, while the dust layers in the Caribbean were mainly below 4.5 km. The aerosol optical thickness of the dust outbreaks studied ranged from 0.2 to 0.6 at 500 nm in Barbados. Highlights during SALTRACE included the sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June near Barbados. The event was also captured by the ground-based lidar and in-situ instrumentation. Another highlight was the formation of tropical storm

  19. Fennec dust forecast intercomparison over the Sahara in June 2011

    NASA Astrophysics Data System (ADS)

    Chaboureau, Jean-Pierre; Flamant, Cyrille; Dauhut, Thibaut; Kocha, Cécile; Lafore, Jean-Philippe; Lavaysse, Chistophe; Marnas, Fabien; Mokhtari, Mohamed; Pelon, Jacques; Reinares Martínez, Irene; Schepanski, Kerstin; Tulet, Pierre

    2016-06-01

    In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynamics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.

  20. Fennec dust forecast intercomparison over the Sahara in June 2011

    NASA Astrophysics Data System (ADS)

    Chaboureau, J. P.; Flamant, C.; Dauhut, T.; Lafore, J. P.; Lavaysse, C.; Pelon, J.; Schepanski, K.; Tulet, P.

    2016-12-01

    In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynam-ics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.

  1. Perspectives on Episodic-Like and Episodic Memory

    PubMed Central

    Pause, Bettina M.; Zlomuzica, Armin; Kinugawa, Kiyoka; Mariani, Jean; Pietrowsky, Reinhard; Dere, Ekrem

    2013-01-01

    Episodic memory refers to the conscious recollection of a personal experience that contains information on what has happened and also where and when it happened. Recollection from episodic memory also implies a kind of first-person subjectivity that has been termed autonoetic consciousness. Episodic memory is extremely sensitive to cerebral aging and neurodegenerative diseases. In Alzheimer’s disease deficits in episodic memory function are among the first cognitive symptoms observed. Furthermore, impaired episodic memory function is also observed in a variety of other neuropsychiatric diseases including dissociative disorders, schizophrenia, and Parkinson disease. Unfortunately, it is quite difficult to induce and measure episodic memories in the laboratory and it is even more difficult to measure it in clinical populations. Presently, the tests used to assess episodic memory function do not comply with even down-sized definitions of episodic-like memory as a memory for what happened, where, and when. They also require sophisticated verbal competences and are difficult to apply to patient populations. In this review, we will summarize the progress made in defining behavioral criteria of episodic-like memory in animals (and humans) as well as the perspectives in developing novel tests of human episodic memory which can also account for phenomenological aspects of episodic memory such as autonoetic awareness. We will also define basic behavioral, procedural, and phenomenological criteria which might be helpful for the development of a valid and reliable clinical test of human episodic memory. PMID:23616754

  2. Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions.

    PubMed

    Louis, Justine; Pedrotti, Maria Luiza; Gazeau, Frédéric; Guieu, Cécile

    2017-01-01

    The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two 'no bloom' periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6-7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions.

  3. Ecological Restoration Programs Induced Amelioration of the Dust Pollution in North China Plain

    NASA Astrophysics Data System (ADS)

    Long, X.; Tie, X.; Li, G.; Junji, C.

    2017-12-01

    With Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product (MCD12Q1), we quantitatively evaluate the ecological restoration programs (ERP) induced land cover change in China by calculating gridded the land use fraction (LUF). We clearly capture two obvious vegetation (grass and forest) protective barriers arise between the dust source region DSR and North China Plain NCP from 2011 to 2013. The WRF-DUST model is applied to investigate the impact of ERPs on dust pollution from 2 to 8 March 2016, corresponding to a national dust storm event over China. Despite some model biases, the WRF-DUST model reasonably reproduced the temporal variations of dust storm event, involving IOA of 0.96 and NMB of 2% for DSR, with IOA of 0.83 and NMB of -15% for downwind area of NCP. Generally, the WRF-DUST model well capture the spatial variations and evolutions of dust storm events with episode-average [PMC] correlation coefficient (R) of 0.77, especially the dust storm outbreak and transport evolution, involving daily average [PMC] R of 0.9 and 0.73 on 4-5 March, respectively. It is found that the ERPs generally reduce the dust pollution in NCP, especially for BTH, involving upper dust pollution control benefits of -15.3% (-21.0 μg m-3) for BTH, and -6.2% (-9.3 μg m-3) for NCP. We are the first to conduct model sensitivity studies to quantitatively evaluate the impacts of the ERPs on the dust pollution in NCP. And our narrative is independently based on first-hand sources, whereas government statistics.

  4. Growth impacts of Saharan dust, mineral nutrients, and CO2 on a planktonic herbivore in southern Mediterranean lakes.

    PubMed

    Villar-Argaiz, Manuel; Cabrerizo, Marco J; González-Olalla, Juan Manuel; Valiñas, Macarena S; Rajic, Sanja; Carrillo, Presentación

    2018-05-17

    Rising levels of CO 2 can boost plant biomass but reduce its quality as a food source for herbivores. However, significant uncertainties remain as to the degree to which the effect is modulated by other environmental factors and the underlying processes causing these responses in nature. To address these questions, we carried out CO 2 -manipulation experiments using natural seston from three lakes under nutrient-enriched conditions (mimicking eutrophication and atmospheric dust-input processes) as a food source for the planktonic Daphnia pulicaria. Contrary to expectations, there were no single effects of rising CO 2 on herbivorous growth. Instead, synergistic CO 2  × nutrient interactions indicated that CO 2 did not support higher zooplankton growth rates unless supplemented with dust or inorganic nutrients (nitrogen, N; phosphorus, P) in two of three studied lakes. The overall positive correlation between zooplankton growth and seston carbon (C), but not seston C:P, suggested that this was a food quantity-mediated response. In addition, we found that this correlation improved when the data were grouped according to the nutrient treatments, and that the response was largest for dust. The synergistic CO 2  × nutrient effects reported here imply that the effects of rising CO 2 levels on herbivorous growth may be strongly influenced by eutrophication processes and the increase in dust deposition predicted for the Mediterranean region. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry

    USGS Publications Warehouse

    Johnson, J. R.; Sohl-Dickstein, J.; Grundy, W.M.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Graff, T.; Guinness, E.A.; Kinch, K.; Morris, Robert; Shepard, M.K.

    2006-01-01

    Laboratory visible/near-infrared multispectral observations of Mars Exploration Rover Pancam calibration target materials coated with different thicknesses of Mars spectral analog dust were acquired under variable illumination geometries using the Bloomsburg University Goniometer. The data were fit with a two-layer radiative transfer model that combines a Hapke formulation for the dust with measured values of the substrate interpolated using a He-Torrance approach. We first determined the single-scattering albedo, phase function, opposition effect width, and amplitude for the dust using the entire data set (six coating thicknesses, three substrates, four wavelengths, and phase angles 3??-117??). The dust exhibited single-scattering albedo values similar to other Mars analog soils and to Mars Pathfinder dust and a dominantly forward scattering behavior whose scattering lobe became narrower at longer wavelengths. Opacity values for each dust thickness corresponded well to those predicted from the particles sizes of the Mars analog dust. We then restricted the number of substrates, dust thicknesses, and incidence angles input to the model. The results suggest that the dust properties are best characterized when using substrates whose reflectances are brighter and darker than those of the deposited dust and data that span a wide range of dust thicknesses. The model also determined the dust photometric properties relatively well despite limitations placed on the range of incidence angles. The model presented here will help determine the photometric properties of dust deposited on the MER rovers and to track the multiple episodes of dust deposition and erosion that have occurred at both landing sites. Copyright 2006 by the American Geophysical Union.

  6. Impact of intensive dust outbreaks on marine primary production as seen by satellites

    NASA Astrophysics Data System (ADS)

    Papadimas, Christos; Hatzianastassiou, Nikos; Mihalopoulos, Nikos; Kanakidou, Maria

    2016-04-01

    The impact of intensive dust outbreaks from the African continent on the marine primary production of the Mediterranean sea is here investigated using MODIS satellite observations of atmospheric aerosol optical depth and chlorophyll-a in the seawater. Dust outbreak episodes in the area are detected based on aerosol relevant satellite observations over a 12-year period from 2003 to 2014. For a total of 167 identified episodes, correlations between aerosol optical depth and chlorophyll-a are investigated both on regional and on a pixel by pixel basis as well as for simultaneous or time-lagged satellite observations. The identified co-variations are thoroughly discussed in view of the impact of nutrient atmospheric deposition on the marine biology in the Mediterranean Sea ecosystem. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA - PANOPLY (Pollution Alters Natural Aerosol Composition: implications for Ocean Productivity, cLimate and air qualitY) grant.

  7. An 11-year analysis of satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Banks, Jamie; Brindley, Helen; Schepanski, Kerstin; Stenchikov, Georgiy

    2017-04-01

    As enclosed seas bordering two large desert regions, the Saharan and Arabian deserts, the maritime environments of the Red Sea and the Persian Gulf are heavily influenced by the presence of desert dust aerosol. The inter-annual variability of dust presence over the Red Sea is analysed and presented, with respect to the summer-time latitudinal gradient in dust loading, which is at a maximum in the far south of the Red Sea and at a minimum in the far north. Two satellite aerosol optical depth (AOD) products from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the MODerate resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify this loading over the region. Over an eleven-year period from 2005-2015 the July mean SEVIRI AODs at 630 nm vary between 0.48 and 1.45 in the southern half of the Sea, while in the north this varies between 0.22 and 0.66. Inter-retrieval offsets are observed to occur at higher dust loadings, with pronounced positive MODIS-SEVIRI AOD offsets at AODs greater than 1, indicating substantial and systematic differences between the retrievals over the Red Sea at high dust loadings. These differences appear to be influenced in part by the differences in scattering angle range of the satellite measurements, implying that assumptions of particle shape introduce more substantial biases at the highest dust loadings.

  8. Influence of Desert Dust Intrusions on Ground-based and Satellite Derived Ultraviolet Irradiance in Southeastern Spain

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; Anton, Manuel; Valenzuela, Antonio; Roman, Roberto; Lyamani, Hassan; Arola, Antti; Olmo, Francisco J.; Alados-Arboledas

    2012-01-01

    The desert dust aerosols strongly affect propagation of solar radiation through the atmosphere, reducing surface irradiance available for photochemistry and photosynthesis. This paper evaluates effects of desert dust on surface UV erythemal irradiance (UVER), as measured by a ground-based broadband UV radiometer and retrieved from the satellite Ozone Monitoring Instrument (OMI) at Granada (southern Spain) from January 2006 to December 2010. The dust effects are characterized by the transmittance ra tio of the measured UVER to the corresponding modeled clear sky value. The transmittance has an exponential dependency on aerosol optical depth (AOD), with minimum values of approximately 0.6 (attenuation of approximately 40%). The OMI UVER algorithm does not account for UV aerosol absorption, which results in overestimation of the ground-based UVER especially during dust episodes with a mean relative difference up to 40%. The application of aerosol absorption post-correction method reduces OMI bias up to approximately 13%. The results highlight great effect of desert dust on the surface UV irradiance in regions like southern Spain, where dust intrusions from Sahara region are very frequent.

  9. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona

    2009-11-01

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of particular interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation with respect to liquid water similar to atmospheric conditions. In this study the sub-saturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols was determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as wellmore » as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were used. Aerosols were generated both with a wet and a dry disperser and the water uptake was parameterized via the hygroscopicity parameter, κ. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived κ values between 0.00 and 0.02. The latter value can be idealized as a particle consisting of 96.7% (by volume) insoluble material and ~3.3% ammonium sulfate. Pure clay aerosols were found to be generally less hygroscopic than real desert dust particles. All illite and montmorillonite samples had κ~0.003, kaolinites were least hygroscopic and had κ=0.001. SD (κ=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (κ=0.007) and ATD (κ=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles while immersed in an aqueous medium during atomization, thus indicating that specification of the generation method is critically important when presenting such data. Any atmospheric

  10. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    PubMed

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  11. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Temimi, Marouane; Ghedira, Hosni

    2018-01-01

    Dust storms are among the most severe environmental problems in arid and semi-arid regions of the world. The predictability of seven dust events, viz. D1: April 2-4, 2014; D2: February 23-24, 2015; D3: April 1-3, 2015; D4: March 26-28, 2016; D5: August 3-5, 2016; D6: March 13-14, 2017 and D7:March 19-21, 2017, are investigated over the Arabian Peninsula using a regionally adapted chemistry transport model CHIMERE coupled with the Weather Research and Forecast (WRF) model. The hourly forecast products of particulate matter concentrations (PM10) and aerosol optical depths (AOD) are compared against both satellite-based (MSG/SEVRI RGB dust, MODIS Deep Blue Aerosol Optical Depth: DB-AOD, Ozone Monitoring Instrument observed UV Aerosol Absorption Index: OMI-AI) and ground-based (AERONET AOD) remote sensing products. The spatial pattern and the time series of the simulations show good agreement with the observations in terms of the dust intensity as well as the spatiotemporal distribution. The causative mechanisms of these dust events are identified by the concurrent analyses of the meteorological data. From these seven storms, five are associated with synoptic scale meteorological processes, such as prefrontal storms (D1 and D7), postfrontal storms of short (D2), and long (D3) duration types, and a summer shamal storm (D6). However, the storms D4 and D6 are partly associated with mesoscale convective type dust episodes known as haboobs. The socio-economic impacts of the dust events have been assessed by estimating the horizontal visibility, air quality index (AQI), and the dust deposition flux (DDF) from the forecasted dust concentrations. During the extreme dust events, the horizontal visibility drops to near-zero values co-occurred withhazardous levels of AQI and extremely high dust deposition flux (250 μg cm- 2 day- 1).

  12. Synoptic conditions favouring the occurrence of dust transport from Africa toward Sardinia Island.

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Pellizzaro, Grazia; Pintus, Gabriella; Duce, Pierpaolo

    2016-04-01

    Dust events that reach Italy have usually origin in the Sahara and Sahel regions (north-western part of Africa), which represent the dust sources nearest to Italy. In those regions the dust-lifting activity occurs in a remarkable way. Every dust event is different from the others; in fact dust transport and dust concentration in the air can vary remarkably depending on the synoptic situation. In Sardinia, dust events are more frequent in the May-November period, but they can also take place in the December-April period. The main aim of this work was to describe dust outbreaks in Sardinia and to identify the main meteorological scenarios that originate the transport of dust towards the central and western Mediterranean Basin. The evaluation of the geographical dispersion of Saharan dust was performed by using MODIS satellite data and Meteosat imagery combined with SKIRON forecasting model. The origin and the trajectory of the dust carried by winds towards Italy were inferred by the NOAA HYSPLIT model (Hybrid Single Particle Lagrangian Integrated Trajectory Model). In addition, PM10 (particulate matter with a diameter of less than 10 μm) and meteorological data registered by the ARPAS (Regional Environmental Protection Agency of Sardinia) monitoring stations were used to highlight the arrival of African air masses in Sardinia. The study was carried out during the 2014. A total of five events occurred during the year (two in spring and three in autumn) were analyzed. The origin of air masses loaded with dust from North Africa was confirmed by satellite imagery and 3-days air mass backward trajectories calculated by the NOAA HYSPLIT model. The analysis of the PM10 daily pattern registered at northern and southern Sardinia sites showed a rising of values during the dust event. The arrival of air masses from Africa caused the daily mean air temperature to rise whereas relative humidity values decreased. Finally, the results showed that all the event analyzed were

  13. Field observation on secondary organic aerosols during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust surface

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Cheng, Chunlei; Meng, Jingjing; Huang, Yao; Li, Jianjun; Ren, Yanqin

    2015-07-01

    Chemical evolution of East Asian dust during transpacific transport has been given much attention for inorganic species such as sulfate, nitrate and ammonium. However, the role of organic species during the transport has almost entirely been ignored. To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids, keto-carboxylic acids, α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, central China during the two dust storm episodes in the springs of 2009 and 2011 and compared with those in nondust storm periods. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1 μm), and oxalic acid well correlated with NO3- (R2 = 0.72, p < 0.001) rather than SO42-. This phenomenon differs greatly from the SOA in any other nondust period that is usually characterized by an enrichment of oxalic acid in fine mode and a strong correlation of oxalic acid with SO42-. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of

  14. Characterization of Dust Properties during ACE-Asia and PRIDE: A Column Satellite-Surface Perspective

    NASA Technical Reports Server (NTRS)

    Lau, William K. M. (Technical Monitor); Tsay, Si-Chee; Hsu, N. Christina; Herman, Jay R.; Ji, Q. Jack

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentration over particular pathways around the globe. For example, the ACE-Asia (Aerosol Characterization Experiment-Asia) was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). The PRIDE (Puerto RIco Dust Experiment, July 2000) was designed to measure the properties of Saharan dust transported across the Atlantic Ocean to the Caribbean. Dust particles typically originate in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of dust aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the ocean. During ACE-Asia and PRIDE we had measured aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from ground-based remote sensing. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. We will present the results and discuss their implications in regional climatic effects.

  15. The origin and evolution of dust in interstellar and circumstellar environments

    NASA Technical Reports Server (NTRS)

    Whittet, Douglas C. B.; Leung, Chun M.

    1993-01-01

    This status report covers the period from the commencement of the research program on 1 Jul. 1992 through 30 Apr. 1993. Progress is reported for research in the following areas: (1) grain formation in circumstellar envelopes; (2) photochemistry in circumstellar envelopes; (3) modeling ice features in circumstellar envelopes; (4) episodic dust formation in circumstellar envelopes; (5) grain evolution in the diffuse interstellar medium; and (6) grain evolution in dense molecular clouds.

  16. Maternity health care: The experiences of Sub-Saharan African women in Sub-Saharan Africa and Australia.

    PubMed

    Mohale, Hlengiwe; Sweet, Linda; Graham, Kristen

    2017-08-01

    Increasing global migration is resulting in a culturally diverse population in the receiving countries. In Australia, it is estimated that at least four thousand Sub-Saharan African women give birth each year. To respond appropriately to the needs of these women, it is important to understand their experiences of maternity care. The study aimed to examine the maternity experiences of Sub-Saharan African women who had given birth in both Sub-Saharan Africa and in Australia. Using a qualitative approach, 14 semi-structured interviews with Sub-Saharan African women now living in Australia were conducted. Data was analysed using Braun and Clark's approach to thematic analysis. Four themes were identified; access to services including health education; birth environment and support; pain management; and perceptions of care. The participants experienced issues with access to maternity care whether they were located in Sub-Saharan Africa or Australia. The study draws on an existing conceptual framework on access to care to discuss the findings on how these women experienced maternity care. The study provides an understanding of Sub-Saharan African women's experiences of maternity care across countries. The findings indicate that these women have maternity health needs shaped by their sociocultural norms and beliefs related to pregnancy and childbirth. It is therefore arguable that enhancing maternity care can be achieved by improving women's health literacy through health education, having an affordable health care system, providing respectful and high quality midwifery care, using effective communication, and showing cultural sensitivity including family support for labouring women. Copyright © 2016 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  17. Use of dust storm observations on satellite images to identify areas vulnerable to severe wind erosion

    USGS Publications Warehouse

    Breed, C.S.; McCauley, J.F.

    1986-01-01

    Blowing dust is symptomatic of severe wind erosion and deterioration of soils in areas undergoing dessication and/or devegetation. Dust plumes on satellite images can commonly be traced to sources in marginally arable semiarid areas where protective lag gravels or vegetation have been removed and soils are dry, as demonstrated for the Portales Valley, New Mexico. Images from Landsat and manned orbiters such as Skylab and the Space Shuttle are useful for illustrating the regional relations of airborne dust plumes to source areas. Geostationary satellites such as GOES are useful in tracking the time-histories of episodic dust storms. These events sometimes go unrecognized by weather observers and are the precursors of long-term land degradation trends. In areas where soil maps and meteorological data are inadequate, satellite images provide a means for identifying problem areas where measures are needed to control or mitigate wind erosion. ?? 1986 D. Reidel Publishing Company.

  18. Respirable dust measured downwind during rock dust application.

    PubMed

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  19. Dust mass concentrations from the UK volcanic ash lidar network compared with in-situ aircraft measurements

    NASA Astrophysics Data System (ADS)

    Osborne, Martin; Marenco, Franco; Adam, Mariana; Buxmann, Joelle; Haywood, Jim

    2018-04-01

    The Met Office has recently established a series of 10 lidar / sun-photometer installations across the UK, consolidating their ash / aerosol remote sensing capabilities [1]. In addition to this network, the Met Office have acquired the Civil Contingency Aircraft (MOCCA) which allows airborne in-situ measurements of ash / aerosol scattering and size-distributions. Two case studies are presented in which mass concentrations of Saharan dust are obtained remotely using lidar returns, and are then compared with those obtained in-situ. A thorough analysis of the mass concentration uncertainty will be provided at the conference.

  20. Dust emission mechanisms in the central Sahara: new insights from remote field observations

    NASA Astrophysics Data System (ADS)

    Allen, C.; Washington, R.; Engelstaedter, S.

    2013-12-01

    North Africa is the world's largest source of mineral aerosol (dust). The Fennec Project, an international consortium led by the University of Oxford, is the first project to systematically instrument the remote central Sahara Desert. These observations have, among others, provided new insights into the atmospheric mechanisms of dust emission. Bordj Badji Mokhtar, in south-west Algeria, is within kilometres of the centre of the global mean summer dust maximum. The site, operated by Fennec partners ONM Algerie, has been heavily instrumented since summer 2011. During the Intensive Observation Period (IOP) in June 2011, four main emission mechanisms were observed and documented: cold pool outflows, low level jets (LLJs), monsoon surges and dry convective plumes. Establishing the relative importance of dust emission mechanisms has been a long-standing research goal. A detailed partitioning exercise of dust events during the IOP shows that 45% of the dust over BBM was generated by local emission in cold pool outflows, 14% by LLJs and only 2% by dry convective plumes. 27% of the dust was advected to the site rather than locally emitted and 12% of the dust was residual or ';background' dust. The work shows the primacy of cold pool outflows for dust emission in the region and also the important contribution of dust advection. In accordance with long-held ideas, the cube of wind speed is strongly correlated with dust emission. Surprisingly however, particles in long-range advection (>500km) were found to be larger than locally emitted dust. Although a clear LLJ wind structure is evident in the mean diurnal cycle during the IOP (12m/s peak winds at 935hPa between 04-05h), LLJs are only responsible for a relatively small amount of dust emission. There is significant daily variability in LLJ strength; the strongest winds are produced by a relatively small number of events. The position and strength of the Saharan Heat Low is strongly associated with the development (or

  1. Respiratory health effects of occupational exposure to charcoal dust in Namibia

    PubMed Central

    Kgabi, Nnenesi

    2016-01-01

    Background Charcoal processing activities can increase the risk of adverse respiratory outcomes. Objective To determine dose–response relationships between occupational exposure to charcoal dust, respiratory symptoms and lung function among charcoal-processing workers in Namibia. Methods A cross-sectional study was conducted with 307 workers from charcoal factories in Namibia. All respondents completed interviewer-administered questionnaires. Spirometry was performed, ambient and respirable dust levels were assessed in different work sections. Multiple logistic regression analysis estimated the overall effect of charcoal dust exposure on respiratory outcomes, while linear regression estimated the exposure-related effect on lung function. Workers were stratified according to cumulative dust exposure category. Results Exposure to respirable charcoal dust levels was above occupational exposure limits in most sectors, with packing and weighing having the highest dust exposure levels (median 27.7 mg/m3, range: 0.2–33.0 for the 8-h time-weighted average). The high cumulative dust exposure category was significantly associated with usual cough (OR: 2.1; 95% CI: 1.1–4.0), usual phlegm (OR: 2.1; 95% CI: 1.1–4.1), episodes of phlegm and cough (OR: 2.8; 95% CI: 1.1–6.1), and shortness of breath. A non-statistically significant lower adjusted mean-predicted % FEV1 was observed (98.1% for male and 95.5% for female) among workers with greater exposure. Conclusions Charcoal dust levels exceeded the US OSHA recommended limit of 3.5 mg/m3 for carbon-black-containing material and study participants presented with exposure-related adverse respiratory outcomes in a dose–response manner. Our findings suggest that the Namibian Ministry of Labour introduce stronger enforcement strategies of existing national health and safety regulations within the industry. PMID:27687528

  2. Episodic memories.

    PubMed

    Conway, Martin A

    2009-09-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of episodic elements, summary records of experience often in the form of visual images, associated to a conceptual frame that provides a conceptual context. Episodic memories are embedded in a more complex conceptual system in which they can become the basis of autobiographical memories. However, the function of episodic memories is to keep a record of progress with short-term goals and access to most episodic memories is lost soon after their formation. Finally, it is suggested that developmentally episodic memories form the basis of the conceptual system and it is from sets of episodic memories that early non-verbal conceptual knowledge is abstracted.

  3. Soil dust aerosols and wind as predictors of seasonal meningitis incidence in Niger.

    PubMed

    Pérez García-Pando, Carlos; Stanton, Michelle C; Diggle, Peter J; Trzaska, Sylwia; Miller, Ron L; Perlwitz, Jan P; Baldasano, José M; Cuevas, Emilio; Ceccato, Pietro; Yaka, Pascal; Thomson, Madeleine C

    2014-07-01

    Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade wind blowing from the Sahara into the Gulf of Guinea. We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels. We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January-May. Incidence was used as a proxy for immunological state, susceptibility, and carriage in the population. We compared a range of negative binomial generalized linear models fitted to the meningitis data. At the national level, a model using early incidence in December and averaged November-December zonal wind provided the best fit (pseudo-R2 = 0.57), with zonal wind having the greatest impact. A model with surface dust concentration as a predictive variable performed indistinguishably well. At the district level, the best spatiotemporal model included zonal wind, dust concentration, early incidence in December, and population density (pseudo-R2 = 0.41). We showed that wind and dust information and incidence in the early dry season predict part of the year-to-year variability of the seasonal incidence of meningitis at both national and district levels in Niger. Models of this form could provide an early-season alert that wind, dust, and other conditions are potentially conducive to an epidemic.

  4. Dust Transport and Deposition Observed from the Terra-Moderate Image Spectrometer (MODIS) Space Observations

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  5. Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.

    2010-11-01

    We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH=1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three phases, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe is solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models, these

  6. Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.

    2011-02-01

    We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k (h-1) of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH = 1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three pools, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe may be solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models

  7. Characterization of Saharan dust ageing over the western Mediterranean Basin during a multi-intrusion event in June 2013 in the framework of the ADRIMED/ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Barragan, Ruben; Sicard, Michaël; Totems, Julien; François Léon, Jean; Baptiste Renard, Jean; Dulac, François; Mallet, Marc; Pelon, Jacques; Alados-Arboledas, Lucas; Amodeo, Aldo; José Granados-Muñoz, María; Boselli, Antonella; Bravo-Aranda, Juan Antonio; Muñoz-Porcar, Constantino; Chazette, Patrick; Comerón, Adolfo; D'Amico, Giuseppe; Wang, Xuan; Mona, Lucia; Pappalardo, Gelsomina

    2015-04-01

    In the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of the campaign were the characterization of the different aerosol types found over the Mediterranean Sea and the calculation of their direct radiative forcing (column closure and regional scale). Two super-sites (Ersa, Corsica Island, France, and Lampedusa Island, Italy) were equipped with a complete set of instruments to measure in-situ aerosol physical, chemical and optical properties, as well as aerosol mixing state and vertical distribution and radiative fluxes. Four secondary sites were operated in Granada (Spain), Menorca Island (Spain), Rome (Italy) and Lecce (Italy). All sites were equipped with AERONET sunphotometers. The ground observations were supported by airborne measurements including 2 SAFIRE aircraft (ATR-42 equipped with in situ measurements (10 June - 5 July) and Falcon-20 (17 June - 5 July) with the LNG aerosol lidar) and sounding and drifting balloons launched by CNES from Menorca Island and carrying the LOAC particle counter/sizer (16 June - 4 July). Satellite products from MODIS, MSG/SEVIRI and CALIOP provided additional observations. In several occasions corresponding to aerosol loads of different types, the aircraft flew near EARLINET/ACTRIS (European Aerosol Research Lidar Network / Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations. This work is focused on a moderate multi-intrusion Saharan dust event occurred over the western Mediterranean Basin (WMB) during the period 14 - 27 June. The dust plumes were detected by the EARLINET stations of Granada, Barcelona, Naples, Potenza, Lecce and Serra la Nave (Sicily) and by the ChArMEx lidar

  8. Intercomparison of Desert Dust Optical Depth from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; hide

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.

  9. Episode-Based Evolution Pattern Analysis of Haze Pollution: Method Development and Results from Beijing, China.

    PubMed

    Zheng, Guangjie; Duan, Fengkui; Ma, Yongliang; Zhang, Qiang; Huang, Tao; Kimoto, Takashi; Cheng, Yafang; Su, Hang; He, Kebin

    2016-05-03

    Haze episodes occurred in Beijing repeatedly in 2013, resulting in 189 polluted days. These episodes differed in terms of sources, formation processes, and chemical composition and thus required different control policies. Therefore, an overview of the similarities and differences among these episodes is needed. For this purpose, we conducted one-year online observations and developed a program that can simultaneously divide haze episodes and identify their shapes. A total of 73 episodes were identified, and their shapes were linked with synoptic conditions. Pure-haze events dominated in wintertime, whereas mixed haze-dust (PM2.5/PM10 < 60%) and mixed haze-fog (Aerosol Water/PM2.5 ∼ 0.3) events dominated in spring and summer-autumn, respectively. For all types, increase of ratio of PM2.5 in PM10 was typically achieved before PM2.5 reached ∼150 μg/m(3). In all PM2.5 species observed, organic matter (OM) was always the most abundant component (18-60%), but it was rarely the driving factor: its relative contribution usually decreased as the pollution level increased. The only OM-driven episode observed was associated with intensive biomass-burning activities. In comparison, haze evolution generally coincided with increasing sulfur and nitrogen oxidation ratios (SOR and NOR), indicating the enhanced production of secondary inorganic species. Applicability of these conclusions required further tests with simultaneously multisite observations.

  10. Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions

    PubMed Central

    Pedrotti, Maria Luiza; Gazeau, Frédéric; Guieu, Cécile

    2017-01-01

    The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two ‘no bloom’ periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6–7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions. PMID:28212418

  11. The Impact of Dry Saharan Air on Tropical Cyclone Intensification

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.

    2012-01-01

    The controversial role of the dry Saharan Air Layer (SAL) on tropical storm intensification in the Atlantic will be addressed. The SAL has been argued in previous studies to have potential positive influences on storm development, but most recent studies have argued for a strong suppressing influence on storm intensification as a result of dry air, high stability, increased vertical wind shear, and microphysical impacts of dust. Here, we focus on observations of Hurricane Helene (2006), which occurred during the NASA African Monsoon Multidisciplinary Activities (NAMMA) experiment. Satellite and airborne observations, combined with global meteorological analyses depict the initial environment of Helene as being dominated by the SAL, although with minimal evidence that the SAL air actually penetrated to the core of the disturbance. Over the next several days, the SAL air quickly moved westward and was gradually replaced by a very dry, dust-free layer associated with subsidence. Despite the wrapping of this very dry air around the storm, Helene intensified steadily to a Category 3 hurricane suggesting that the dry air was unable to significantly slow storm intensification. Several uncertainties remain about the role of the SAL in Helene (and in tropical cyclones in general). To better address these uncertainties, NASA will be conducting a three year airborne campaign called the Hurricane and Severe Storm Sentinel (HS3). The HS3 objectives are: To obtain critical measurements in the hurricane environment in order to identify the role of key factors such as large-scale wind systems (troughs, jet streams), Saharan air masses, African Easterly Waves and their embedded critical layers (that help to isolate tropical disturbances from hostile environments). To observe and understand the three-dimensional mesoscale and convective-scale internal structures of tropical disturbances and cyclones and their role in intensity change. The mission objectives will be achieved using

  12. An electrified dust storm over the Negev desert, Israel

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Katz, Shai; Yaniv, Roy; Ziv, Baruch; Price, Colin

    2016-11-01

    We report on atmospheric electrical measurements conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35‧N, 34°45‧E) during a large dust storm that occurred over the Eastern Mediterranean region on 10-11 February 2015. The dust was transported from the Sahara, Egypt and the Sinai Peninsula ahead of an approaching Cyprus low. Satellite images show the dust plume covering the Negev desert and Southern Israel and moving north. The concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 450 μg m- 3 and the AOT from the AERONET station in Sde-Boker was 1.5 on February 10th. The gradual intensification of the event reached peak concentrations on February 11th of over 1200 μg m- 3 and an AOT of 1.8. Continuous measurements of the fair weather vertical electric field (Ez) and vertical current density (Jz) were conducted at the Wise Observatory with 1 minute temporal resolution. Meteorological data was also recorded at the site. As the dust was advected over the observatory, very large fluctuations in the electrical parameters were registered. From the onset of the dust storm, the Ez values changed between + 1000 and + 8000 V m- 1 while the current density fluctuated between - 10 pA m2 and + 20 pA m2, both on time-scales of a few minutes. These values are significant departures from the average fair-weather values measured at the site, which are ~- 200 V m- 1 and ~ 2 pA m2. The disturbed episodes lasted for several hours on February 10th and the 11th and coincided with local meteorological conditions related to the wind speed and direction, which carried large amounts of dust particles over our observation station. We interpret the rapid changes as caused by the transport of electrically charged dust, carrying an excess of negative charge at lower altitudes.

  13. Deciphering the Role of Desert Dust in the Climate Puzzle: The Mediterranean Israeli Dust Experiment (MEIDEX)

    NASA Technical Reports Server (NTRS)

    Levin, Zev; Joseph, Joachim; Mekler, Yuri; Israelevich, Peter; Ganor, Eli; Hilsenrath, Ernest; Janz, Scott

    2002-01-01

    Numerous studies have shown that aerosol particles may be one of the primary agents that can offset the climate warming induced by the increase in the amount of atmospheric greenhouse gases. Desert aerosols are probably the most abundant and massive type of aerosol particles that are present in the atmosphere worldwide. These aerosols are carried over large distances and have various global impacts. They interact with clouds, impact the efficiency of their rain production and change their optical properties. They constitute one of the primary sources of minerals for oceanic life and influence the health of coral reefs. They have direct effects on human health, especially by inducing breathing difficulties in children. It was lately discovered that desert particles carry pathogens from the Sahara desert over the Atlantic Ocean, a fact that may explain the migration of certain types of diseases. Aerosols not only absorb solar radiation but also scatter it, so that their climatic effect is influenced not only by their physical properties and height distribution but also by the reflectivity of the underlying surface. This latter property changes greatly over land and is low over ocean surfaces. Aerosol plumes are emitted from discrete, sporadic sources in the desert areas of the world and are transported worldwide by the atmosphere's wind systems. For example, Saharan dust reaches Mexico City, Florida, Ireland, Switzerland and the Mediterranean region, while Asian dust reaches Alaska, Hawaii and the continental United States. This means that in order to assess its global effects, one must observe dust from space. The Space Shuttle is a unique platform, because it flies over the major deserts of our planet, enabling measurements and remote sensing of the aerosols as they travel from source to sink regions. Such efforts must always be accompanied by in-situ data for validation and calibration, with direct sampling of the airborne particles. MEIDEX is a joint project of

  14. Observed high aerosol loading during dust events in Delhi

    NASA Astrophysics Data System (ADS)

    Singh, Khem; Aggarwal, Shankar G.; Jha, Arvind K.; Singh, Nahar; Soni, Daya; Gupta, Prabhat K.

    2012-07-01

    The present study reports aerosol mass loadings and their chemical property during integrated campaign for aerosol and radiation budget (ICARB) in the month of March to May 2006, at NPL, New Delhi. The Thar Desert in Rajasthan is located on the western end of India and south-west of Delhi is hot and arid region with intense aeolian activity and transport of aerosol by the prevailing southwest-west summer wind. Several dust episodes were observed in Delhi during summer 2006. The dust storm peaked on 29th April, 1 ^{st} and 8 ^{th} May 2006, with very high suspended particulate matter (SPM) concentrations 1986μg/m ^{3}, 1735μg/m ^{3} and 1511μg/m ^{3}, respectively. The average concentration of SPM in the month of March, April and May 2006 was 338 μg/m ^{3}, 698 μg/m ^{3} and 732 μg/m ^{3}, respectively. The SPM filter samples were analysed for water-soluble major cations (Na ^{+}, Ca ^{2+}, K ^{+}, and Mg ^{2+}) by atomic absorption spectrophotometry (AAS). Na ^{+} and Ca ^{2+} contribute about 54% and 20%, respectively of the total identified cation mass, indicating that they were most abundant cations. Strong correlations between Na ^{+}, Ca ^{2+}, K ^{+}, and Mg ^{2+} suggest their soil and dust origin. Such a high particle concentration observed during dust events may also be useful for study the effect of these aerosols on communication medium.

  15. Seasonality in malaria transmission: implications for case-management with long-acting artemisinin combination therapy in sub-Saharan Africa.

    PubMed

    Cairns, Matthew E; Walker, Patrick G T; Okell, Lucy C; Griffin, Jamie T; Garske, Tini; Asante, Kwaku Poku; Owusu-Agyei, Seth; Diallo, Diadier; Dicko, Alassane; Cisse, Badara; Greenwood, Brian M; Chandramohan, Daniel; Ghani, Azra C; Milligan, Paul J

    2015-08-19

    Long-acting artemisinin-based combination therapy (LACT) offers the potential to prevent recurrent malaria attacks in highly exposed children. However, it is not clear where this advantage will be most important, and deployment of these drugs is not rationalized on this basis. To understand where post-treatment prophylaxis would be most beneficial, the relationship between seasonality, transmission intensity and the interval between malaria episodes was explored using data from six cohort studies in West Africa and an individual-based malaria transmission model. The total number of recurrent malaria cases per 1000 child-years at risk, and the fraction of the total annual burden that this represents were estimated for sub-Saharan Africa. In settings where prevalence is less than 10 %, repeat malaria episodes constitute a small fraction of the total burden, and few repeat episodes occur within the window of protection provided by currently available drugs. However, in higher transmission settings, and particularly in high transmission settings with highly seasonal transmission, repeat malaria becomes increasingly important, with up to 20 % of the total clinical burden in children estimated to be due to repeat episodes within 4 weeks of a prior attack. At a given level of transmission intensity and annual incidence, the concentration of repeat malaria episodes in time, and consequently the protection from LACT is highest in the most seasonal areas. As a result, the degree of seasonality, in addition to the overall intensity of transmission, should be considered by policy makers when deciding between ACT that differ in their duration of post-treatment prophylaxis.

  16. LASE Observations of Interactions Between African Easterly Waves and the Saharan Air Layer

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Biswas, Mrinal; Krishnamurti, T. N.; Notari, Anthony; Heymsfield, Andrew; Butler, Carolyn; Burton, Sharon; hide

    2010-01-01

    The Lidar Atmospheric Sensing Experiment (LASE) participated in the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment in 2006 that was conducted from Sal, Cape Verde to study the Saharan Air Layer (SAL) and its influence on the African Easterly Waves (AEWs) and Tropical Cyclones (TCs). During NAMMA, LASE collected simultaneous water vapor and aerosol lidar measurements from 14 flights onboard the NASA DC- 8. In this paper we present three examples of the interaction of the SAL and AEWs regarding: moistening of the SAL and transfer of latent heat; injection of dust in an updraft; and influence of dry air intrusion on an AEW. A brief discussion is also given on activities related to the refurbishment of LASE to enhance its operational performance and plans to participate in the next NASA hurricane field experiment in the summer of 2010.

  17. Asian dust transportation and fertilizing the coastal and open ocean in the Northern Pacific (Invited)

    NASA Astrophysics Data System (ADS)

    Gao, H.; Xiaohong Yao, Jinhui Shi, Jianhua Qi

    2010-12-01

    Dust storm carries a large amount of aerosol particles, sweeps continents and exports to oceans. When these aerosol particles deposit in ocean, which provides abundant nutrients such as nitrogen and iron for ocean ecosystem, increases the primary production and induces algae bloom. Asian dust storm generates at a high latitude and a high elevation and is obvious a hemispheric scale phenomenon. Dust sources in East Asia are one of the major dust sources on the earth which contribute to 5%-40% of the global dust release. The regions affected by the Asian dust storm include not only China and Mongolia but also the downwind Korea, Japan, the Pacific Ocean, the west coast of America, even the subarctic region and Europe. The Asian dust storm is obviously a hemispheric scale phenomenon, which has more important impact on the ecosystem in the western Pacific. Asian dust is unique not only in morphology, soil texture, and dust storm activities, but also mixing and capturing anthropogenic air pollutants on the transport pathway. Deposition of Asian dust substantially affects surface biological productivity. To improve understandings of Asian dust and its effect on ocean ecosystem from the coastal sea to open ocean, ADOES (Asian Dust and Ocean EcoSystem) was proposed under the frame of international SOLAS (Surface Ocean-Lower Atmosphere Study). A series of studies were performed in high- nutrient low-chlorophyll (HNLC), low-nutrient low-chlorophyll (LNLC) and eutrophication coastal regions of the Pacific Ocean. These studies provided evidence of biotic response to natural iron fertilization caused by Asian dust particles in the subarctic North Pacific and showed that dust storm episodes were significant in the initiation of spring blooms in the East China Sea. On-board incubations on the cruise in a LNLC region of the western Pacific at the southeast of Japan showed different responses of ocean ecosystem to nitrogen and dust fertilization. Correlation of the Asian dust

  18. Comparison of Contributions of Wind-blown and Anthropogenic Fugitive Dust Particles to Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    Park, S.; Gong, S.

    2010-12-01

    Dust Episode"), Journal of Geophysical Research, 112, D20209, doi:10.1029/2007JD008443, 2007.

  19. Understanding the Transport of Patagonian Dust and Its Influence on Marine Biological Activity in the South Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew; Meskhidze, Nicholas; Kiliyanpilakkil, Praju; Gasso, Santiago

    2010-01-01

    Modeling and remote sensing techniques were applied to examine the horizontal and vertical transport pathways of Patagonian dust and quantify the effect of soluble-iron- laden mineral dust deposition on marine primary productivity in the South Atlantic Ocean (SAO) surface waters. The global chemistry transport model GEOS-Chem, implemented with an iron dissolution scheme, was applied to evaluate the atmospheric transport and deposition of mineral dust and bioavailable iron during two dust outbreaks originating in the source regions of Patagonia. In addition to this "rapidly released" iron, offline calculations were also carried out to estimate the amount of bioavailable iron leached during the residence time of dust in the ocean mixed layer. Model simulations showed that the horizontal and vertical transport pathways of Patagonian dust plumes were largely influenced by the synoptic meteorological patterns of high and low pressure systems. Model-predicted horizontal and vertical transport pathways of Patagonian dust over the SAO were in reasonable agreement with remotely-sensed data. Comparison between remotely-sensed and offline calculated ocean surface chlorophyll-a concentrations indicated that, for the two dust outbreaks examined in this study, the deposition of bioavailable iron in the SAO through atmospheric pathways was insignificant. As the two dust transport episodes examined here represent typical outflows of mineral dust from South American sources, our study suggests that the atmospheric deposition of mineral dust is unlikely to induce large scale marine primary productivity and carbon sequestration in the South Atlantic sector of the Southern Ocean.

  20. Combustibility Determination for Cotton Gin Dust and Almond Huller Dust.

    PubMed

    Hughs, Sidney E; Wakelyn, Phillip J

    2017-04-26

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar, can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, the Occupational Safety and Health Administration (OSHA) initiated action to develop a mandatory standard to comprehensively address the fire and explosion hazards of combustible dusts. Cotton fiber and related materials from cotton ginning, in loose form, can support smoldering combustion if ignited by an outside source. However, dust fires and other more hazardous events, such as dust explosions, are unknown in the cotton ginning industry. Dust material that accumulates inside cotton gins and almond huller plants during normal processing was collected for testing to determine combustibility. Cotton gin dust is composed of greater than 50% inert inorganic mineral dust (ash content), while almond huller dust is composed of at least 7% inert inorganic material. Inorganic mineral dust is not a combustible dust. The collected samples of cotton gin dust and almond huller dust were sieved to a known particle size range for testing to determine combustibility potential. Combustibility testing was conducted on the cotton gin dust and almond huller dust samples using the UN test for combustibility suggested in NFPA 652.. This testing indicated that neither the cotton gin dust nor the almond huller dust should be considered combustible dusts (i.e., not a Division 4.1 flammable hazard per 49 CFR 173.124). Copyright© by the American Society of Agricultural Engineers.

  1. Determining inert content in coal dust/rock dust mixture

    DOEpatents

    Sapko, Michael J.; Ward, Jr., Jack A.

    1989-01-01

    A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

  2. DustEM: Dust extinction and emission modelling

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  3. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    PubMed

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.

  4. Dust aerosol properties and radiative forcing observed in spring during 2001-2014 over urban Beijing, China.

    PubMed

    Yu, Xingna; Lü, Rui; Kumar, K Raghavendra; Ma, Jia; Zhang, Qiuju; Jiang, Yilun; Kang, Na; Yang, Suying; Wang, Jing; Li, Mei

    2016-08-01

    The ground-based characteristics (optical and radiative properties) of dust aerosols measured during the springtime between 2001 and 2014 were investigated over urban Beijing, China. The seasonal averaged aerosol optical depth (AOD) during spring of 2001-2014 was about 0.78 at 440 nm. During dust days, higher AOD occurred associated with lower Ångström exponent (AE). The mean AE440-870 in the springtime was about 1.0, indicating dominance of fine particles over the region. The back-trajectory analysis revealed that the dust was transported from the deserts of Inner Mongolia and Mongolia arid regions to Beijing. The aerosol volume size distribution showed a bimodal distribution pattern, with its highest peak observed in coarse mode for all episodes (especially for dust days with increased volume concentration). The single scattering albedo (SSA) increased with wavelength on dust days, indicating the presence of more scattering particles. Furthermore, the complex parts (real and imaginary) of refractive index showed distinct characteristics with lower imaginary values (also scattering) on dust days. The shortwave (SW; 0.2-4.0 μm) and longwave (LW; 4-100 μm) aerosol radiative forcing (ARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and the bottom of atmosphere (BOA) during dust and non-dust (dust free) days, and the corresponding heating rates and forcing efficiencies were also estimated. The SW (LW) ARF, therefore, produced significant cooling (warming) effects at both the TOA and the BOA over Beijing.

  5. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission.

    PubMed

    Fiedler, S; Schepanski, K; Heinold, B; Knippertz, P; Tegen, I

    2013-06-27

    [1] This study presents the first climatology for the dust emission amount associated with Nocturnal Low-Level Jets (NLLJs) in North Africa. These wind speed maxima near the top of the nocturnal boundary layer can generate near-surface peak winds due to shear-driven turbulence in the course of the night and the NLLJ breakdown during the following morning. The associated increase in the near-surface wind speed is a driver for mineral dust emission. A new detection algorithm for NLLJs is presented and used for a statistical assessment of NLLJs in 32 years of ERA-Interim reanalysis from the European Centre for Medium-Range Weather Forecasts. NLLJs occur in 29% of the nights in the annual and spatial mean. The NLLJ climatology shows a distinct annual cycle with marked regional differences. Maxima of up to 80% NLLJ frequency are found where low-level baroclinicity and orographic channels cause favorable conditions, e.g., over the Bodélé Depression, Chad, for November-February and along the West Saharan and Mauritanian coast for April-September. Downward mixing of NLLJ momentum to the surface causes 15% of mineral dust emission in the annual and spatial mean and can be associated with up to 60% of the total dust amount in specific areas, e.g., the Bodélé Depression and south of the Hoggar-Tibesti Channel. The sharp diurnal cycle underlines the importance of using wind speed information with high temporal resolution as driving fields for dust emission models. Citation: Fiedler, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen (2013), Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission, J. Geophys. Res. Atmos., 118, 6100-6121, doi:10.1002/jgrd.50394.

  6. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission

    PubMed Central

    Fiedler, S; Schepanski, K; Heinold, B; Knippertz, P; Tegen, I

    2013-01-01

    [1] This study presents the first climatology for the dust emission amount associated with Nocturnal Low-Level Jets (NLLJs) in North Africa. These wind speed maxima near the top of the nocturnal boundary layer can generate near-surface peak winds due to shear-driven turbulence in the course of the night and the NLLJ breakdown during the following morning. The associated increase in the near-surface wind speed is a driver for mineral dust emission. A new detection algorithm for NLLJs is presented and used for a statistical assessment of NLLJs in 32 years of ERA-Interim reanalysis from the European Centre for Medium-Range Weather Forecasts. NLLJs occur in 29% of the nights in the annual and spatial mean. The NLLJ climatology shows a distinct annual cycle with marked regional differences. Maxima of up to 80% NLLJ frequency are found where low-level baroclinicity and orographic channels cause favorable conditions, e.g., over the Bodélé Depression, Chad, for November–February and along the West Saharan and Mauritanian coast for April–September. Downward mixing of NLLJ momentum to the surface causes 15% of mineral dust emission in the annual and spatial mean and can be associated with up to 60% of the total dust amount in specific areas, e.g., the Bodélé Depression and south of the Hoggar-Tibesti Channel. The sharp diurnal cycle underlines the importance of using wind speed information with high temporal resolution as driving fields for dust emission models. Citation: Fiedler, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen (2013), Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission, J. Geophys. Res. Atmos., 118, 6100-6121, doi:10.1002/jgrd.50394 PMID:25893154

  7. [A new assessment for episodic memory. Episodic memory test and caregiver's episodic memory test].

    PubMed

    Ojea Ortega, T; González Álvarez de Sotomayor, M M; Pérez González, O; Fernández Fernández, O

    2013-10-01

    The purpose of the episodic memory test and the caregiver's episodic memory test is to evaluate episodic memory according to its definition in a way that is feasible for families and achieves high degrees of sensitivity and specificity. We administered a test consisting of 10 questions about episodic events to 332 subjects, of whom 65 had Alzheimer's disease (AD), 115 had amnestic MCI (aMCI) and 152 showed no cognitive impairment according to Reisberg's global deterioration scale (GDS). We calculated the test's sensitivity and specificity to distinguish AD from episodic aMCI and from normal ageing. The area under the ROC curve for the diagnosis of aMCI was 0.94 and the best cut-off value was 20; for that value, sensitivity was 89% and specificity was 82%. For a diagnosis of AD, the area under the ROC curve was 0.99 and the best cut-off point was 17, with a sensitivity of 98% and a specificity of 91%. A subsequent study using similar methodology yielded similar results when the test was administered directly by the caregiver. The episodic memory test and the caregiver's episodic memory test are useful as brief screening tools for identifying patients with early-stage AD. It is suitable for use by primary care medical staff and in the home, since it can be administered by a caregiver. The test's limitations are that it must be administered by a reliable caregiver and the fact that it measures episodic memory only. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  8. Dust-wind interactions can intensify aerosol pollution over eastern China.

    PubMed

    Yang, Yang; Russell, Lynn M; Lou, Sijia; Liao, Hong; Guo, Jianping; Liu, Ying; Singh, Balwinder; Ghan, Steven J

    2017-05-11

    Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land-sea surface air temperature difference and further decrease winds by -0.06 (±0.05) m s -1 averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies.

  9. Dust-wind interactions can intensify aerosol pollution over eastern China

    PubMed Central

    Yang, Yang; Russell, Lynn M.; Lou, Sijia; Liao, Hong; Guo, Jianping; Liu, Ying; Singh, Balwinder; Ghan, Steven J.

    2017-01-01

    Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land–sea surface air temperature difference and further decrease winds by −0.06 (±0.05) m s−1 averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies. PMID:28492276

  10. Episodic future thinking and episodic counterfactual thinking: Intersections between memory and decisions

    PubMed Central

    Schacter, Daniel L.; Benoit, Roland G.; De Brigard, Felipe; Szpunar, Karl K.

    2014-01-01

    This article considers two recent lines of research concerned with the construction of imagined or simulated events that can provide insight into the relationship between memory and decision making. One line of research concerns episodic future thinking, which involves simulating episodes that might occur in one’s personal future, and the other concerns episodic counterfactual thinking, which involves simulating episodes that could have happened in one’s personal past. We first review neuroimaging studies that have examined the neural underpinnings of episodic future thinking and episodic counterfactual thinking. We argue that these studies have revealed that the two forms of episodic simulation engage a common core network including medial parietal, prefrontal, and temporal regions that also supports episodic memory. We also note that neuroimaging studies have documented neural differences between episodic future thinking and episodic counterfactual thinking, including differences in hippocampal responses. We next consider behavioral studies that have delineated both similarities and differences between the two kinds of episodic simulation. The evidence indicates that episodic future and counterfactual thinking are characterized by similarly reduced levels of specific detail compared with episodic memory, but that the effects of repeatedly imagining a possible experience have sharply contrasting effects on the perceived plausibility of those events during episodic future thinking versus episodic counterfactual thinking. Finally, we conclude by discussing the functional consequences of future and counterfactual simulations for decisions. PMID:24373942

  11. Chemical coupling between acid gases and water-soluble inorganic ions in size-segregated aerosols during Arabian Dust in Beirut

    NASA Astrophysics Data System (ADS)

    Saliba, Najat; Dada, Lubna; Baalbaki, Rima

    2015-04-01

    In the proximity of the Eastern Mediterranean region, the combination of two large desert areas; Arabian and African, with heavy oil industry and high insolation during summer delineate a unique location of atmospheric processes in the region. Once emitted, dust particles can be transported over long distances and/or remain suspended in the atmosphere for several days. The so-called remnant dust episodes in Beirut originate from both African and Arabian deserts. In this study, the gas and particle transformations and gas-to-particle conversion during Arabian-dust (Ar-D) events are assessed. The increase in primary and secondary gas concentrations during Ar-D days is ascribed to three contributing factors; (i) the regional-long-range transport (LRT), (ii) the drop in the average solar radiation leading to a slow primary-to-secondary conversion and secondary gas photo-degradation, and (iii) the enhancement of the recirculation and accumulation of the main pollutants during dusty days. In parallel, a respective mass increase by 137, 149 and 13% in the coarse (CPM), accumulation (ACC) and ultrafine (UF) fractions was measured and an increase in particle volume distribution was mostly noticed for particles ranging in sizes between 2.25 and 5 μm. This lead to major changes in the inorganic chemical composition of all particle sizes. In particular, the enhanced presence of several types of nitrate and sulfate salts in the accumulation mode confirms that remnant dust episodes offer a favorable environment for gas-to-particle conversion and particle chemical transformations and growth.

  12. Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model

    NASA Astrophysics Data System (ADS)

    Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.

    2004-10-01

    The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.

  13. Characterization of Sintering Dust, Blast Furnace Dust and Carbon Steel Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Chang, Feng; Wu, Shengli; Zhang, Fengjie; Lu, Hua; Du, Kaiping

    In order to make a complete understanding of steel plant metallurgical dusts and to realize the goal of zero-waste, a study of their properties was undertaken. For these purposes, samples of two sintering dusts (SD), two blast furnace dusts (BFD), and one electric arc furnace dust (EAFD) taken from the regular production process were subjected to a series of tests. The tests were carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), and Fourier transform infrared spectroscopy (FTIR). The dominant elements having an advantage of reuse are Fe, K, Cl, Zn, C. The dominant mineralogical phases identified in sintering dust are KCl, Fe2O3, CaCO3, CaMg(CO3)2, NaCl, SiO2. Mineralogical phases exist in blast furnace dust are Fe2O3, Fe3O4, with small amount of KCl and kaolinite coexist. While in electric arc furnace dust, Fe3O4, ZnFe2O4, CaCO3, CaO, Ca(OH)2 are detected.

  14. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Episodic future thinking and episodic counterfactual thinking: intersections between memory and decisions.

    PubMed

    Schacter, Daniel L; Benoit, Roland G; De Brigard, Felipe; Szpunar, Karl K

    2015-01-01

    This article considers two recent lines of research concerned with the construction of imagined or simulated events that can provide insight into the relationship between memory and decision making. One line of research concerns episodic future thinking, which involves simulating episodes that might occur in one's personal future, and the other concerns episodic counterfactual thinking, which involves simulating episodes that could have happened in one's personal past. We first review neuroimaging studies that have examined the neural underpinnings of episodic future thinking and episodic counterfactual thinking. We argue that these studies have revealed that the two forms of episodic simulation engage a common core network including medial parietal, prefrontal, and temporal regions that also supports episodic memory. We also note that neuroimaging studies have documented neural differences between episodic future thinking and episodic counterfactual thinking, including differences in hippocampal responses. We next consider behavioral studies that have delineated both similarities and differences between the two kinds of episodic simulation. The evidence indicates that episodic future and counterfactual thinking are characterized by similarly reduced levels of specific detail compared with episodic memory, but that the effects of repeatedly imagining a possible experience have sharply contrasting effects on the perceived plausibility of those events during episodic future thinking versus episodic counterfactual thinking. Finally, we conclude by discussing the functional consequences of future and counterfactual simulations for decisions. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Episodic Memories

    ERIC Educational Resources Information Center

    Conway, Martin A.

    2009-01-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of "episodic elements," summary records of experience often in the form of visual images, associated to a "conceptual frame" that provides a…

  17. Martian Dust Cycle

    NASA Astrophysics Data System (ADS)

    Cantor, B. A.; James, P. B.

    The Mars Observer Camera (MOC), aboard Mars Global Surveyor (MGS), has completed approximately 3 consecutive Martian years of global monitoring, since entering its mapping orbit on March 9, 1999. MOC observations have shown the important role that dust devils and dust storms play in the Martian dust cycle on time scales ranging from semi-diurnally to interannually. These dust events have been observed across much of the planet from the depths of Hellas basin to the summit of Arsia Mons and range in size from10s of meters across (dust devils) to planet encircling (global dust veils). Though dust devils occur throughout most of the Martian year, each hemisphere has a "dust devil season" that generally follows the subsolar latitude and appears to be repeatable from year-to-year. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer. MOC observations show no evidence that dust devils cause or lead to dust storms, however, observations do suggest that dust storms can initiate dust devil activity. Dust devils also might play a role in maintaining the low background dust opacity of the Martian atmosphere. Dust storms occur almost daily with few exceptions, with 1000s occurring each year in the present Martian environment, dispelling the notion of a "Classical Dust Storm Season". However, there does appear to be an annual dust storm cycle, with storms developing in specific locations during certain seasons and that some individual storm events are repeatable from year-to-year. The majority of storms develop near the receding seasonal polar cap edge or along the corresponding polar hood boundaries in their respective hemispheres, but they also occur in the northern plains, the windward side of the large shield volcanoes, and in low laying regions such as Hellas, Argyre, and Chryse. The rarest of dust events are the "Great Storms" or "Global Events", of which only 6 (4 "planet encircling" and 2 "global") have been observed

  18. The Ethics of Introducing GMOs into sub-Saharan Africa: Considerations from the sub-Saharan African Theory of Ubuntu.

    PubMed

    Komparic, Ana

    2015-11-01

    A growing number of countries in sub-Saharan Africa are considering legalizing the growth of genetically modified organisms (GMOs). Furthermore, several projects are underway to develop transgenic crops tailored to the region. Given the contentious nature of GMOs and prevalent anti-GMO sentiments in Africa, a robust ethical analysis examining the concerns arising from the development, adoption, and regulation of GMOs in sub-Saharan Africa is warranted. To date, ethical analyses of GMOs in the global context have drawn predominantly on Western philosophy, dealing with Africa primarily on a material level. Yet, a growing number of scholars are articulating and engaging with ethical theories that draw upon sub-Saharan African value systems. One such theory, Ubuntu, is a well-studied sub-Saharan African communitarian morality. I propose that a robust ethical analysis of Africa's agricultural future necessitates engaging with African moral theory. I articulate how Ubuntu may lead to a novel and constructive understanding of the ethical considerations for introducing GMOs into sub-Saharan Africa. However, rather than reaching a definitive prescription, which would require significant engagement with local communities, I consider some of Ubuntu's broader implications for conceptualizing risk and engaging with local communities when evaluating GMOs. I conclude by reflecting on the implications of using local moral theory in bioethics by considering how one might negotiate between universalism and particularism in the global context. Rather than advocating for a form of ethical relativism, I suggest that local moral theories shed light on salient ethical considerations that are otherwise overlooked. © 2015 John Wiley & Sons Ltd.

  19. Distribution of dust during two dust storms in Iceland

    NASA Astrophysics Data System (ADS)

    Ösp Magnúsdóttir, Agnes; Dagsson-Waldhauserova, Pavla; Arnalds, Ólafur; Ólafsson, Haraldur

    2017-04-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 ?g?m?3 (PM10 = 7 to 583 ?g?m?3). The mean PM1 concentrations were 97-241 ?g?m?3 with a maximum of 261 ?g?m?3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34-0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  20. Cometary Dust

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  1. Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance

    USGS Publications Warehouse

    Herwitz, S.R.; Muhs, D.R.; Prospero, J.M.; Mahan, S.; Vaughn, B.

    1996-01-01

    Red clayey paleosols that are chiefly the product of aerosolic dust deposition are interbedded in the Quaternary carbonate formations of the Bermuda oceanic island system. These paleosols provide a basis for reconstructing Quaternary atmospheric circulation patterns in the northwestern Atlantic. Geochemical analyses were performed on representative paleosol samples to identify their parent dust source. Fine-grained fractions were analyzed by energy-dispersive X ray fluorescence to determine trace element (Zr, Y, La, Ti, and Nb) concentrations and to derive geochemical signatures based on immobile element ratios. These ratios were compared with geochemical signatures determined for three possible sources of airborne dust: (1) Great Plains loess, (2) Mississippi River Valley loess, and (3) Saharan dust. The Zr/Y and Zr/La ratios provided the clearest distinction between the hypothesized dust sources. The low ratios in the paleosol B horizons most closely resemble Saharan dust in the <2-??m size class fraction. Contributions from the two North American loessial source areas could not be clearly detected. Thus Bermuda paleosols have a predominantly Saharan aerosolic dust signature. Saharan dust deposition on Bermuda during successive Quaternary glacial periods is consistent with patterns of general circulation models, which indicate that during glacial maxima the northeast summer trade winds were stronger than at present and reached latitudes higher than 30 ?? N despite lower-than-present sea surface temperatures in the North Atlantic.

  2. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities.

    PubMed

    Barberán, Albert; Henley, Jessica; Fierer, Noah; Casamayor, Emilio O

    2014-07-15

    Dust coming from the large deserts on Earth, such as the Sahara, can travel long distances and be dispersed over thousands of square kilometers. Remote dust deposition rates are increasing as a consequence of global change and may represent a mechanism for intercontinental microbial dispersal. Remote oligotrophic alpine lakes are particularly sensitive to dust inputs and can serve as sentinels of airborne microbial transport and the ecological consequences of accelerated intercontinental microbial migration. In this study, we applied high-throughput sequencing techniques (16S rRNA amplicon pyrosequencing) to characterize the microbial communities of atmospheric deposition collected in the Central Pyrenees (NE Spain) along three years. Additionally, bacteria from soils in Mauritania and from the air-water interface of high altitude Pyrenean lakes were also examined. Communities in aerosol deposition varied in time with a strong seasonal component of interannual similarity. Communities from the same season tended to resemble more each other than those from different seasons. Samples from disparate dates, in turn, slightly tended to have more dissimilar microbial assemblages (i.e., temporal distance decay), overall suggesting that atmospheric deposition may influence sink habitats in a temporally predictable manner. The three habitats examined (soil, deposition, and air-water interface) harbored distinct microbial communities, although airborne samples collected in the Pyrenees during Saharan dust outbreaks were closer to Mauritian soil samples than those collected during no Saharan dust episodes. The three habitats shared c.a. 1.4% of the total number of microbial sequences in the dataset. Such successful immigrants were spread in different bacterial classes. Overall, this study suggests that local and regional features may generate global trends in the dynamics and distribution of airborne microbial assemblages, and that the diversity of viable cells in the high

  3. Plants as antimalarial agents in Sub-Saharan Africa.

    PubMed

    Chinsembu, Kazhila C

    2015-12-01

    Although the burden of malaria is decreasing, parasite resistance to current antimalarial drugs and resistance to insecticides by vector mosquitoes threaten the prospects of malaria elimination in endemic areas. Corollary, there is a scientific departure to discover new antimalarial agents from nature. Because the two antimalarial drugs quinine and artemisinin were discovered through improved understanding of the indigenous knowledge of plants, bioprospecting Sub-Saharan Africa's enormous plant biodiversity may be a source of new and better drugs to treat malaria. This review analyses the medicinal plants used to manage malaria in Sub-Saharan Africa. Chemical compounds with antiplasmodial activity are described. In the Sub-Saharan African countries cited in this review, hundreds of plants are used as antimalarial remedies. While the number of plant species is not exhaustive, plants used in more than one country probably indicate better antimalarial efficacy and safety. The antiplasmodial data suggest an opportunity for inventing new antimalarial drugs from Sub-Saharan-African flora. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Orbitally modulated dust formation by the WC7+O5 colliding-wind binary WR140

    NASA Astrophysics Data System (ADS)

    Williams, P. M.; Marchenko, S. V.; Marston, A. P.; Moffat, A. F. J.; Varricatt, W. P.; Dougherty, S. M.; Kidger, M. R.; Morbidelli, L.; Tapia, M.

    2009-05-01

    We present high-resolution infrared (2-18 μm) images of the archetypal periodic dust-making Wolf-Rayet binary system WR140 (HD 193793) taken between 2001 and 2005, and multi-colour (J - [19.5]) photometry observed between 1989 and 2001. The images resolve the dust cloud formed by WR140 in 2001, allowing us to track its expansion and cooling, while the photometry allows tracking the average temperature and total mass of the dust. The combination of the two data sets constrains the optical properties of the dust, and suggests that they differ from those of the dust made by the WC9 dust-makers, including the classical `pinwheel', WR104. The photometry of individual dust emission features shows them to be significantly redder in (nbL'-[3.99]), but bluer in ([7.9]-[12.5]), than the binary, as expected from the spectra of heated dust and the stellar wind of a Wolf-Rayet star. The most persistent dust features, two concentrations at the ends of a `bar' of emission to the south of the star, were observed to move with constant proper motions of 324 +/- 8 and 243 +/- 7 mas yr-1. Longer wavelength (4.68 and 12.5 μm) images show dust emission from the corresponding features from the previous (1993) periastron passage and dust formation episode, showing that the dust expanded freely in a low-density void for over a decade, with dust features repeating from one cycle to the next. A third persistent dust concentration to the east of the binary (the `arm') was found to have a proper motion ~320 mas yr-1, and a dust mass about one-quarter that of the `bar'. Extrapolation of the motions of the concentrations back to the binary suggests that the eastern `arm' began expansion four to five months earlier than those in the southern `bar', consistent with the projected rotation of the binary axis and wind-collision region (WCR) on the sky. A comparison of model dust images and the observations constrains the intervals when the WCR was producing sufficiently compressed wind for dust

  5. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kaufman, Y. J.; Koren, I.; Remer, L. A.; Tanré, D.; Ginoux, P.; Fan, S.

    2005-05-01

    Meteorological observations, in situ data, and satellite images of dust episodes were used already in the 1970s to estimate that 100 Tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and are deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but it deteriorates air quality, as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport, and deposition. The Terra spacecraft, launched at the dawn of the last millennium, provides the first systematic well-calibrated multispectral measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and to evaluate the African dust column concentration, transport, and deposition. We found that 240 ± 80 Tg of dust are transported annually from Africa to the Atlantic Ocean, 140 ± 40 Tg are deposited in the Atlantic Ocean, 50 Tg fertilize the Amazon Basin (four times as previous estimates, thus explaining a paradox regarding the source of nutrition to the Amazon forest), 50 Tg reach the Caribbean, and 20 Tg return to Africa and Europe. The results are compared favorably with dust transport models for maximum particle diameter between 6 and 12 μm. This study is a first example of quantitative use of MODIS aerosol for a geophysical research.

  6. EPISODIC EJECTION FROM ACTIVE ASTEROID 311P/PANSTARRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jewitt, David; Agarwal, Jessica; Weaver, Harold

    We examine the development of the active asteroid 311P/PANSTARRS (formerly, 2013 P5) in the period from 2013 September to 2014 February using high resolution images from the Hubble Space Telescope. This multi-tailed object is characterized by a single, reddish nucleus of absolute magnitude H ≥ 18.98 ± 0.10, corresponding to an equal-area sphere of radius ≤200 ± 20 m (for assumed geometric albedo 0.29 ± 0.09). We set an upper limit to the radii of possible companion nuclei at ∼10 m. The nucleus ejected debris in nine discrete episodes, spread irregularly over a nine month interval, each time forming a distinct tail. Particles in the tailsmore » range from about 10 μm to at least 80 mm in radius, and were ejected at speeds <1 m s{sup –1}. The ratio of the total ejected dust mass to the nucleus mass is ∼3×10{sup –5}, corresponding to a global surface layer ∼2 mm thick, or to a deeper layer covering a smaller fraction of the surface. The observations are incompatible with an origin of the activity by impact or by the sublimation of entrapped ice. This object appears to be shedding its regolith by rotational (presumably YORP-driven) instability. Long-term fading of the photometry (months) is attributed to gradual dissipation of near-nucleus dust. Photometric variations on short timescales (<0.7 hr) are probably caused by fast rotation of the nucleus. However, because of limited time coverage and dilution of the nucleus signal by near-nucleus dust, we have not been able to determine the rotation period.« less

  7. Episodic and Semantic Memory Contribute to Familiar and Novel Episodic Future Thinking.

    PubMed

    Wang, Tong; Yue, Tong; Huang, Xi Ting

    2016-01-01

    Increasing evidence indicates that episodic future thinking (EFT) relies on both episodic and semantic memory; however, event familiarity may importantly affect the extent to which episodic and semantic memory contribute to EFT. To test this possibility, two behavioral experiments were conducted. In Experiment 1, we directly compared the proportion of episodic and semantic memory used in an EFT task. The results indicated that more episodic memory was used when imagining familiar future events compared with novel future events. Conversely, significantly more semantic memory was used when imagining novel events compared with familiar events. Experiment 2 aimed to verify the results of Experiment 1. In Experiment 2, we found that familiarity moderated the effect of priming the episodic memory system on EFT; particularly, it increased the time required to construct a standard familiar episodic future event, but did not significantly affect novel episodic event reaction time. Collectively, these findings support the hypothesis that event familiarity importantly moderates episodic and semantic memory's contribution to EFT.

  8. The Episodic Nature of Episodic-Like Memories

    ERIC Educational Resources Information Center

    Easton, Alexander; Webster, Lisa A. D.; Eacott, Madeline J.

    2012-01-01

    Studying episodic memory in nonhuman animals has proved difficult because definitions in humans require conscious recollection. Here, we assessed humans' experience of episodic-like recognition memory tasks that have been used with animals. It was found that tasks using contextual information to discriminate events could only be accurately…

  9. Medical care on the brink: the need for re-engineering healthcare services in sub-Saharan Africa.

    PubMed Central

    Hoover, Eddie L.; Cole-Hoover, Gwendolyn; Berry, Paula K.; Hoover, Evan T.; Harris, Betsy L.; Rageh, Deman; Weaver, W. Lynn

    2005-01-01

    The sub-Saharan region of Africa is home to more of the ills of mankind than any other region on earth. Nowhere is the aggregate of disease, political turmoil, inadequate resources and a crumbling infrastructure so completely packaged in a seemingly "escape proof" pod as in sub-Saharan Africa. This continent is a kaleidoscope of people and problems derived from artificial boundaries drawn by European colonial powers, resulting in a litany of problems that have flourished for many decades. In the immediate postcolonial era, there was some oversight by the departed powers, but this has changed recently with decreasing interest in African affairs and only episodic worldwide news coverage because of other world events that overshadow Africa and its problems. The end of the cold war also eliminated the attention Africa received when the superpowers were courting nations. The American Medical Team for Africa has conducted medical missionary work throughout Africa for over a decade and, through its observations, has developed recommendations that are germane to all of sub-Saharan Africa. The organization thinks that this might warrant the attention of governments, international pharmaceutical houses, foundations, the United Nations and all international aid agencies concerned about the plight of healthcare in Africa. These recommendations should enable these countries to re-establish an affordable, efficient and sustainable infrastructure for basic hospital services so that they can diagnosis, monitor, treat and manage disease populations. In some areas, Africa needs to be retrofitted with technology from the past, while in others it needs to be fast-forwarded into the future. The purpose of this manuscript is to try putting the various healthcare challenges into one of these two categories. Images Figure 1 PMID:15779506

  10. The Association between Dust Storms and Daily Non-Accidental Mortality in the United States, 1993-2005.

    PubMed

    Crooks, James Lewis; Cascio, Wayne E; Percy, Madelyn S; Reyes, Jeanette; Neas, Lucas M; Hilborn, Elizabeth D

    2016-11-01

    The impact of dust storms on human health has been studied in the context of Asian, Saharan, Arabian, and Australian storms, but there has been no recent population-level epidemiological research on the dust storms in North America. The relevance of dust storms to public health is likely to increase as extreme weather events are predicted to become more frequent with anticipated changes in climate through the 21st century. We examined the association between dust storms and county-level non-accidental mortality in the United States from 1993 through 2005. Dust storm incidence data, including date and approximate location, are taken from the U.S. National Weather Service storm database. County-level mortality data for the years 1993-2005 were acquired from the National Center for Health Statistics. Distributed lag conditional logistic regression models under a time-stratified case-crossover design were used to study the relationship between dust storms and daily mortality counts over the whole United States and in Arizona and California specifically. End points included total non-accidental mortality and three mortality subgroups (cardiovascular, respiratory, and other non-accidental). We estimated that for the United States as a whole, total non-accidental mortality increased by 7.4% (95% CI: 1.6, 13.5; p = 0.011) and 6.7% (95% CI: 1.1, 12.6; p = 0.018) at 2- and 3-day lags, respectively, and by an average of 2.7% (95% CI: 0.4, 5.1; p = 0.023) over lags 0-5 compared with referent days. Significant associations with non-accidental mortality were estimated for California (lag 2 and 0-5 day) and Arizona (lag 3), for cardiovascular mortality in the United States (lag 2) and Arizona (lag 3), and for other non-accidental mortality in California (lags 1-3 and 0-5). Dust storms are associated with increases in lagged non-accidental and cardiovascular mortality. Citation: Crooks JL, Cascio WE, Percy MS, Reyes J, Neas LM, Hilborn ED. 2016. The association between dust storms

  11. Migration of tungsten dust in tokamaks: role of dust-wall collisions

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.

    2013-12-01

    The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.

  12. Sub-Saharan Africa's media and neocolonialism.

    PubMed

    Domatob, J K

    1988-01-01

    Given the heavy Western metropolitan bias of the media in sub-Saharan Africa, the ideology of neocolonialism continues to exert a dominant influence on economic, social, political, and cultural life. This neocolonial influence is further reinforced by advertising that champions a consumerist culture centered around Western goods. The capital of multinational firms plays a crucial role in the strategy of media imperialism. The dramatic growth of monopolies and the creation of military-industrial-information conglomerates in the 1970s and 1980s have been reflected in the international exchange of information and the interlinkage of mass communication systems in sub-Saharan Africa. Another media strategy that reinforces neocolonialism is the use of satellite communication. If cultural autonomy is defined as sub-Saharan Africa's capacity to decide on the allocation of its environmental resources, then cultural synchronization is a massive threat to that autonomy. Few African nations have the resources or expertise necessary to design, establish, or maintain communication systems that could accurately reflect their own culture. Nonetheless, there are some policy options. Personnel can be trained to respect African values and to recognize the dangers of neocolonial domination. The production of indigenous programs could reduce the media's foreign content. The incorporation of traditional drama and dance in the media could enhance this process. Above all, a high degree of planning is necessary if sub-Saharan African states intend to tackle the media and its domination by neocolonialist ideology.

  13. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  14. Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy

    NASA Astrophysics Data System (ADS)

    Venemans, Bram P.; Walter, Fabian; Decarli, Roberto; Bañados, Eduardo; Carilli, Chris; Winters, Jan Martin; Schuster, Karl; da Cunha, Elisabete; Fan, Xiaohui; Farina, Emanuele Paolo; Mazzucchelli, Chiara; Rix, Hans-Walter; Weiss, Axel

    2017-12-01

    We present IRAM/NOEMA and JVLA observations of the quasar J1342+0928 at z = 7.54 and report detections of copious amounts of dust and [C II] emission in the interstellar medium (ISM) of its host galaxy. At this redshift, the age of the universe is 690 Myr, about 10% younger than the redshift of the previous quasar record holder. Yet, the ISM of this new quasar host galaxy is significantly enriched by metals, as evidenced by the detection of the [C II] 158 μm cooling line and the underlying far-infrared (FIR) dust continuum emission. To the first order, the FIR properties of this quasar host are similar to those found at a slightly lower redshift (z˜ 6), making this source by far the FIR-brightest galaxy known at z≳ 7.5. The [C II] emission is spatially unresolved, with an upper limit on the diameter of 7 kpc. Together with the measured FWHM of the [C II] line, this yields a dynamical mass of the host of < 1.5× {10}11 {M}⊙ . Using standard assumptions about the dust temperature and emissivity, the NOEMA measurements give a dust mass of (0.6{--}4.3)× {10}8 {M}⊙ . The brightness of the [C II] luminosity, together with the high dust mass, imply active ongoing star formation in the quasar host. Using [C II]-SFR scaling relations, we derive star formation rates of 85-545 {M}⊙ yr-1 in the host, consistent with the values derived from the dust continuum. Indeed, an episode of such past high star formation is needed to explain the presence of ˜108 M ⊙ of dust implied by the observations.

  15. Operational Dust Prediction

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; hide

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  16. On the visibility of airborne volcanic ash and mineral dust

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Minikin, A.; Reitebuch, O.; Dahlkötter, F.; Mayer, B. C.; Emde, C.; Tegen, I.; Gasteiger, J.; Petzold, A.; Veira, A.; Kueppers, U.; Schumann, U.

    2012-12-01

    After the eruption of the Eyjafjalla volcano (Iceland) in April 2010 which caused the most extensive restrictions of the airspace over Europe since the end of World War II, the aviation safety concept of avoiding "visible ash", i.e. volcanic ash that can be seen by the human eye, was recommended. However so far, no clear definition of "visible ash" and no relation between the visibility of an aerosol layer and related aerosol mass concentrations are available. The goal of our study is to assess whether it is possible from the pilot's perspective in flight to detect the presence of volcanic ash and to distinguish between volcanic ash and other aerosol layers just by sight. In our presentation, we focus the comparison with other aerosols on aerosol types impacting aviation: Besides volcanic ash, dust storms are known to be avoided by aircraft. We use in-situ and lidar data as well photographs taken onboard the DLR research aircraft Falcon during the Saharan Mineral Dust Experiments (SAMUM) in 2006 and 2008 and during the Eyjafjalla volcanic eruption in April/May 2010. We complement this analysis with numerical modelling, using idealized radiative transfer simulations with the 3D Monte Carlo radiative transfer code MYSTIC for a variety of selected viewing geometries. Both aerosol types, Saharan mineral dust and volcanic ash, show an enhanced coarse mode (> 1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (< 150 nm). Volcanic ash is slightly more absorbing than mineral dust, and the spectral behaviour of the refractive index is slightly different. According to our simulations, these differences are not detectable just by human eye. Furthermore, our data show, that it is difficult to define a lower threshold for the visibility of an aerosol layer because the visual detectability depends on many parameters, including the thickness of the aerosol layer, the brightness and color contrast between the

  17. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  18. Variability of North African hydroclimate during the last two climatic cycles: New insights from dust flux and provenance

    NASA Astrophysics Data System (ADS)

    Skonieczny, C.; McGee, D.; Bory, A. J. M.; Winckler, G.; Bradtmiller, L.; Bout-Roumazeilles, V.; Perala-Dewey, J.; Delattre, M.; Kinsley, C. W.; Polissar, P. J.; Malaizé, B.

    2016-12-01

    Every year, several hundred teragrams of dust are emitted from the Sahara and Sahel regions. These mineral particles sensitively track variations in atmospheric circulation and continental aridity. Sediments of the Northeastern Tropical Atlantic Ocean (NETAO) are fed by this intense dust supply and comprise unique long-term archives of past Saharan/Sahelian dust emissions. Past modifications of dust characteristics in these sedimentary archives can provide unique insights into changes in environmental conditions in source areas (aridity, weathering), as well as changes in atmospheric transport (wind direction and strength). Here we document changes in sediment supply to the NETAO using marine sediment core MD03-2705 (18°05N; 21°09W; 3085m water depth). This record is strategically located under the influence of seasonal dust plumes, and marine sediments of this area have revealed that past dust inputs were sensitive to global climate changes over the late Quaternary. We will focus our study on the last two climatic cycles (0-240ka), a period orbitally characterized by changes in the amplitude of both precession (MIS6-5 vs. MIS1-2) and ice volume (MIS 7 vs. MIS5). We will present, for the first time in this area, a continuous high-resolution record of dust, opal, carbonate and organic matter fluxes using 230Th-normalization. The constant flux proxy 230Thxs provides flux data that are not substantially affected by lateral advection or age model errors. These fluxes data will be complemented by grain-size, clay mineralogical and geochemical (major elements) analysis. By pairing dust flux measurements with complementary proxy data reflecting changes in aridity, wind strength and dust source, this study will provide a robust, continuous record of the magnitude and pacing of the North African hydroclimate variability through the last two climatic cycles. In particular, this long-term study will offer the opportunity to compare the well-documented North African climate

  19. The Role of Episodic and Semantic Memory in Episodic Foresight

    ERIC Educational Resources Information Center

    Martin-Ordas, Gema; Atance, Cristina M.; Louw, Alyssa

    2012-01-01

    In this paper we describe a special form of future thinking, termed "episodic foresight" and its relation with episodic and semantic memory. We outline the methodologies that have largely been developed in the last five years to assess this capacity in young children and non-human animals. Drawing on Tulving's definition of episodic and semantic…

  20. Dust devil characteristics and associated dust entrainment based on large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Klose, Martina; Kwidzinski, Nick; Shao, Yaping

    2015-04-01

    The characteristics of dust devils, such as occurrence frequency, lifetime, size, and intensity, are usually inferred from in situ field measurements and remote sensing. Numerical models, e.g. large-eddy simulation (LES) models, have also been established as a tool to investigate dust devils and their structures. However, most LES models do not contain a dust module. Here, we present results from simulations using the WRF-LES model coupled to the convective turbulent dust emission (CTDE) scheme of Klose et al. (2014). The scheme describes the stochastic process of aerodynamic dust entrainment in the absence of saltation. It therefore allows for dust emission even below the threshold friction velocity for saltation. Numerical experiments have been conducted for different atmospheric stability and background wind conditions at 10 m horizontal resolution. A dust devil tracking algorithm is used to identify dust devils in the simulation results. The detected dust devils are statistically analyzed with regard to e.g. radius, pressure drop, lifetime, and turbulent wind speeds. An additional simulation with higher horizontal resolution (2 m) is conducted for conditions, which are especially favorable for dust devil development, i.e. unstable atmospheric stratification and weak mean winds. The higher resolution enables the identification of smaller dust devils and a more detailed structure analysis. Dust emission fluxes, dust concentrations, and dust mass budgets are calculated from the simulations. The results are compared to field observations reported in literature.

  1. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  2. Characterization of alluvial dust sources and their temporal development - a multi-sensor approach for the Aïr Massif, Niger

    NASA Astrophysics Data System (ADS)

    Feuerstein, Stefanie; Schepanski, Kerstin

    2017-04-01

    One of the world's largest sources of atmospheric dust is the Sahara. It is said that 55% of the total global dust emission can be linked to the desert in northern Africa. Thus, understanding the Saharan dust sources is of great importance to estimate the total global dust load and its variability. Especially one type of dust sources has gained attention in dust research in recent years: The emission of dust from sediments formed by hydrologic processes, so called alluvial dust sources. These sediments were either formed in the past under the influences of a more humid paleoclimate or are deposited recently, e.g. during strong precipitation events when surficial runoff leads to the activation of wadi systems or to the occurrence of flash floods. Especially the latter phenomenon is able to deliver a huge amount of potentially erodible sediments. The research presented here focuses on the characterization of these alluvial dust sources with special attention on their temporal variability in relation to wet and dry phases. A study area covering the Aïr Massif in Niger is analysed over a four years time span from January 2013 to December 2016. The whole cycle from sediment formation to dust emission is illustrated by using data of various satellite sensors that are able to capture the processes taking place at the land surface as well as in the atmosphere: (1) The rainfall distribution for the study area is shown by time series of the TRMM precipitation estimates. A catchment analysis of the area helps to estimate the amount of surficial runoff and to detect areas of potential sediment accumulation. (2) Changes in the sediment structure of the land surface are analysed using atmospherically corrected time series of NASA's Landsat-8 OLI satellite. A land cover classification shows the distribution of alluvial sediments over the area; fresh layers of alluvial deposits are detected. Furthermore, the evolution of the vegetation cover, which inhibits dust emission, is

  3. Cross‐Saharan transport of water vapor via recycled cold pool outflows from moist convection

    PubMed Central

    Trzeciak, Tomasz M.; Garcia‐Carreras, Luis

    2017-01-01

    Abstract Very sparse data have previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively driven water vapor transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next day's convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmosphere. PMID:28344367

  4. The Association between Dust Storms and Daily Non-Accidental Mortality in the United States, 1993–2005

    PubMed Central

    Crooks, James Lewis; Cascio, Wayne E.; Percy, Madelyn S.; Reyes, Jeanette; Neas, Lucas M.; Hilborn, Elizabeth D.

    2016-01-01

    Background: The impact of dust storms on human health has been studied in the context of Asian, Saharan, Arabian, and Australian storms, but there has been no recent population-level epidemiological research on the dust storms in North America. The relevance of dust storms to public health is likely to increase as extreme weather events are predicted to become more frequent with anticipated changes in climate through the 21st century. Objectives: We examined the association between dust storms and county-level non-accidental mortality in the United States from 1993 through 2005. Methods: Dust storm incidence data, including date and approximate location, are taken from the U.S. National Weather Service storm database. County-level mortality data for the years 1993–2005 were acquired from the National Center for Health Statistics. Distributed lag conditional logistic regression models under a time-stratified case-crossover design were used to study the relationship between dust storms and daily mortality counts over the whole United States and in Arizona and California specifically. End points included total non-accidental mortality and three mortality subgroups (cardiovascular, respiratory, and other non-accidental). Results: We estimated that for the United States as a whole, total non-accidental mortality increased by 7.4% (95% CI: 1.6, 13.5; p = 0.011) and 6.7% (95% CI: 1.1, 12.6; p = 0.018) at 2- and 3-day lags, respectively, and by an average of 2.7% (95% CI: 0.4, 5.1; p = 0.023) over lags 0–5 compared with referent days. Significant associations with non-accidental mortality were estimated for California (lag 2 and 0–5 day) and Arizona (lag 3), for cardiovascular mortality in the United States (lag 2) and Arizona (lag 3), and for other non-accidental mortality in California (lags 1–3 and 0–5). Conclusions: Dust storms are associated with increases in lagged non-accidental and cardiovascular mortality. Citation: Crooks JL, Cascio WE, Percy MS, Reyes

  5. Soil Dust Aerosols and Wind as Predictors of Seasonal Meningitis Incidence in Niger

    NASA Technical Reports Server (NTRS)

    Perez Garcia Pando, Carlos; Stanton, Michelle C.; Diggle, Peter J.; Trzaska, Sylwia; Miller, Ron L.; Perlwitz, Jan P.; Baldasano, Jose M.; Cuevas, Emilio; Ceccato, Pietro; Yaka, Pascal; hide

    2014-01-01

    Background: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade wind blowing from the Sahara into the Gulf of Guinea.Objectives: We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels.Data and methods: We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January-May. Incidence was used as a proxy for immunological state.

  6. Heart Failure in Sub-Saharan Africa

    PubMed Central

    Bloomfield, Gerald S; Barasa, Felix A; Doll, Jacob A; Velazquez, Eric J

    2013-01-01

    The heart failure syndrome has been recognized as a significant contributor to cardiovascular disease burden in sub-Saharan African for many decades. Seminal knowledge regarding heart failure in the region came from case reports and case series of the early 20th century which identified infectious, nutritional and idiopathic causes as the most common. With increasing urbanization, changes in lifestyle habits, and ageing of the population, the spectrum of causes of HF has also expanded resulting in a significant burden of both communicable and non-communicable etiologies. Heart failure in sub-Saharan Africa is notable for the range of etiologies that concurrently exist as well as the healthcare environment marked by limited resources, weak national healthcare systems and a paucity of national level data on disease trends. With the recent publication of the first and largest multinational prospective registry of acute heart failure in sub-Saharan Africa, it is timely to review the state of knowledge to date and describe the myriad forms of heart failure in the region. This review discusses several forms of heart failure that are common in sub-Saharan Africa (e.g., rheumatic heart disease, hypertensive heart disease, pericardial disease, various dilated cardiomyopathies, HIV cardiomyopathy, hypertrophic cardiomyopathy, endomyocardial fibrosis, ischemic heart disease, cor pulmonale) and presents each form with regard to epidemiology, natural history, clinical characteristics, diagnostic considerations and therapies. Areas and approaches to fill the remaining gaps in knowledge are also offered herein highlighting the need for research that is driven by regional disease burden and needs. PMID:23597299

  7. Allergies, asthma, and dust

    MedlinePlus

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  8. Operative needs in HIV+ populations: An estimation for sub-Saharan Africa.

    PubMed

    Cherewick, Megan L; Cherewick, Steven D; Kushner, Adam L

    2017-05-01

    In 2015, it was estimated that approximately 36.7 million people were living with HIV globally and approximately 25.5 million of those people were living in sub-Saharan Africa. Limitations in the availability and access to adequate operative care require policy and planning to enhance operative capacity. Data estimating the total number of persons living with HIV by country, sex, and age group were obtained from the Joint United Nations Programme on HIV/AIDS (UNAIDS) in 2015. Using minimum proposed surgical rates per 100,000 for 4, defined, sub-Saharan regions of Africa, country-specific and regional estimates were calculated. The total need and unmet need for operative procedures were estimated. A minimum of 1,539,138 operative procedures were needed in 2015 for the 25.5 million persons living with HIV in sub-Saharan Africa. In 2015, there was an unmet need of 908,513 operative cases in sub-Saharan Africa with the greatest unmet need in eastern sub-Saharan Africa (427,820) and western sub-Saharan Africa (325,026). Approximately 55.6% of the total need for operative cases is adult women, 38.4% are adult men, and 6.0% are among children under the age of 15. A minimum of 1.5 million operative procedures annually are required to meet the needs of persons living with HIV in sub-Saharan Africa. The unmet need for operative care is greatest in eastern and western sub-Saharan Africa and will require investments in personnel, infrastructure, facilities, supplies, and equipment. We highlight the need for global planning and investment in resources to meet targets of operative capacity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dust feed mechanism

    DOEpatents

    Milliman, Edward M.

    1984-01-01

    The invention is a dust feed device for delivery of a uniform supply of dust for long periods of time to an aerosolizing means for production of a dust suspension. The device utilizes at least two tandem containers having spiral brushes within the containers which transport the dust from a supply to the aerosolizer means.

  10. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    PubMed Central

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  11. Enhancing global control of alcohol to reduce unsafe sex and HIV in sub-Saharan Africa

    PubMed Central

    2009-01-01

    Sub-Saharan Africa carries a massive dual burden of HIV and alcohol disease, and these pandemics are inextricably linked. Physiological and behavioural research indicates that alcohol independently affects decision-making concerning sex, and skills for negotiating condoms and their correct use. More than 20 studies in Africa have reported higher occurrence of HIV among people with problem drinking; a finding strongly consistent across studies and similar among women and men. Conflation of HIV and alcohol disease in these setting is not surprising given patterns of heavy-episodic drinking and that drinking contexts are often coterminous with opportunities for sexual encounters. HIV and alcohol also share common ground with sexual violence. Both perpetrators and victims of sexual violence have a high likelihood of having drunk alcohol prior to the incident, as with most forms of violence and injury in sub-Saharan Africa. Reducing alcohol harms necessitates multi-level interventions and should be considered a key component of structural interventions to alleviate the burden of HIV and sexual violence. Brief interventions for people with problem drinking (an important component of primary health care), must incorporate specific discussion of links between alcohol and unsafe sex, and consequences thereof. Interventions to reduce alcohol harm among HIV-infected persons are also an important element in positive-prevention initiatives. Most importantly, implementation of known effective interventions could alleviate a large portion of the alcohol-attributable burden of disease, including its effects on unsafe sex, unintended pregnancy and HIV transmission. PMID:19919703

  12. Observations of cross-Saharan transport of water vapour via cycle of cold pools and moist convection

    NASA Astrophysics Data System (ADS)

    Trzeciak, Tomasz; Garcia-Carreras, Luis; Marsham, John H.

    2017-04-01

    Very limited observational data has previously limited our ability to study meteorological processes in the Sahara. The Sahara is a key component of the West African monsoon and the world's largest dust source, but its representation is a major uncertainty in global models. Past studies have shown that there is a persistent warm and dry model bias throughout the Sahara, and this has been attributed to the lack of convectively-generated cold pools in the model, which can ventilate the central Sahara from its margins. Here we present an observed case from June 2012 which explains how cold pools are able to transport water vapour across a large area of the Sahara over a period of several days. A daily cycle is found to occur, where deep convection in the evening generates moist cold pools that then feed the next day's convection; the new convection in turn generates new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses can capture the general direction of transport, but not its full extent, especially at night when cold pools are most active, highlighting the difficulties for models to capture these processes. These results show the importance of cold pools for moisture transport, dust and clouds in the region, and demonstrate the need to include these processes in models to improve the representation of the Saharan atmosphere.

  13. Day and Night Dust Retrievals from MODIS IR Band Measurements using Artificial Neural Network (ANN) model

    NASA Astrophysics Data System (ADS)

    Lee, S.; Sohn, B.

    2008-12-01

    Artificial Neural Network (ANN) on the East Asia domain (20°N-55°N, 90°E-145°E) during the springs of 2006 and 2007 was investigated for retrieving aerosol optical thickness (AOT) of dust aerosol at both daytime and nighttime. The input data for ANN include brightness temperature, BTD (11 μm - 12 μm), spectral emissivity, surface temperature (Land: Price [1984] Equation, Ocean: The IMAPP MODIS Algorithm), relative airmass of satellite, and topography (SRTM30). The D*-parameter is adopted as dust detection algorithm which was developed by Hansell et al [2007]. The target data of the ANN is corresponding AOT at 550nm obtained from MODIS aerosol product (MYD04). After optimization and training, ANN AOT is retrieved. Among the many dust episodes during the spring of 2006, only the 8 April 2006 case was selected for the detailed analysis. Because it is one of the strongest episodes and shows a well-developed root penetrating the Korean peninsula and reaching the Japanese area. It is shown that ANN AOT coincide well with MODIS AOT having correlation coefficient of 0.8502 when the training and applying periods are the same (spring of 2006). Even a different period with training ANN AOT has a good relationship with MODIS AOT with the correlation coefficient of 0.7766 (spring 2007). This yearly difference is resulted from vegetation change and fixed IGBP land cover map. Also notable is that ANN AOT is underestimated in most IGBP types having low slope and negative mean bias. This study showed that ANN model has a good potential to retrieve AOT. More examinations and trials are needed, however, to improve this ANN algorithm using IR bands. Also this model should be extended to specify the dust aerosol property from other aerosols and clouds to assure that it has a capability during both daytime and nighttime.

  14. Dust emission at Franklin Lake Playa, Mojave Desert (USA): Response to meteorological and hydrologic changes 2005-2008

    USGS Publications Warehouse

    Reynolds, Richard L.; Bogle, Rian; Vogel, John; Goldstein, Harland L.; Yount, James

    2009-01-01

    Playa type, size, and setting; playa hydrology; and surface-sediment characteristics are important controls on the type and amount of atmospheric dust emitted from playas. Soft, evaporite-rich sediment develops on the surfaces of some Mojave Desert (USA) playas (wet playas), where the water table is shallow (< 4 m). These areas are sources of atmospheric dust because of continuous or episodic replenishment of wind-erodible salts and disruption of the ground surface during salt formation by evaporation of ground water. Dust emission at Franklin Lake playa was monitored between March 2005 and April 2008. The dust record, based on day-time remote digital camera images captured during high wind, and compared with a nearby precipitation record, shows that aridity suppresses dust emission. High frequency of dust generation appears to be associated with relatively wet periods, identified as either heavy precipitation events or sustained regional precipitation over a few months. Several factors may act separately or in combination to account for this relation. Dust emission may respond rapidly to heavy precipitation when the dissolution of hard, wind-resistant evaporite mineral crusts is followed by the development of soft surfaces with thin, newly formed crusts that are vulnerable to wind erosion and (or) the production of loose aggregates of evaporite minerals that are quickly removed by even moderate winds. Dust loading may also increase when relatively high regional precipitation leads to decreasing depth to the water table, thereby increasing rates of vapor discharge, development of evaporite minerals, and temporary softening of playa surfaces. The seasonality of wind strength was not a major factor in dust-storm frequency at the playa. The lack of major dust emissions related to flood-derived sediment at Franklin Lake playa contrasts with some dry-lake systems elsewhere that may produce large amounts of dust from flood sediments. Flood sediments do not commonly

  15. Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  16. Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of its correction

    NASA Astrophysics Data System (ADS)

    Fukushima, H.; Toratani, M.

    1997-07-01

    The paper first exhibits the influence of the Asian dust aerosol (KOSA) on a coastal zone color scanner (CZCS) image which records erroneously low or negative satellite-derived water-leaving radiance especially in a shorter wavelength region. This suggests the presence of spectrally dependent absorption which was disregarded in the past atmospheric correction algorithms. On the basis of the analysis of the scene, a semiempirical optical model of the Asian dust aerosol that relates aerosol single scattering albedo (ωA) to the spectral ratio of aerosol optical thickness between 550 nm and 670 nm is developed. Then, as a modification to a standard CZCS atmospheric correction algorithm (NASA standard algorithm), a scheme which estimates pixel-wise aerosol optical thickness, and in turn ωA, is proposed. The assumption of constant normalized water-leaving radiance at 550 nm is adopted together with a model of aerosol scattering phase function. The scheme is combined to the standard algorithm, performing atmospheric correction just the same as the standard version with a fixed Angstrom coefficient except in the case where the presence of Asian dust aerosol is detected by the lowered satellite-derived Angstrom exponent. Some of the model parameter values are determined so that the scheme does not produce any spatial discontinuity with the standard scheme. The algorithm was tested against the Japanese Asian dust CZCS scene with parameter values of the spectral dependency of ωA, first statistically determined and second optimized for selected pixels. Analysis suggests that the parameter values depend on the assumed Angstrom coefficient for standard algorithm, at the same time defining the spatial extent of the area to apply the Asian dust scheme. The algorithm was also tested for a Saharan dust scene, showing the relevance of the scheme but with different parameter setting. Finally, the algorithm was applied to a data set of 25 CZCS scenes to produce a monthly composite

  17. Inactivation of dust mites, dust mite allergen, and mold from carpet.

    PubMed

    Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin

    2014-01-01

    Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p < 0.05) when compared to other methods. The two physical methods, steam vapor and vacuuming, have no statistically significant efficacy in inactivating dust mite allergens (p = 0.084), but have higher efficacy when compared to the chemical method on dust mite allergens (p = 0.002). There is no statistically significant difference in the efficacy for reducing mold in carpet (p > 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.

  18. Development of an electrostatic dust detector for tungsten dust

    NASA Astrophysics Data System (ADS)

    Starkey, D.; Hammond, K.; Roquemore, L.; Skinner, C. H.

    2012-10-01

    Next-step fusion reactors, such as ITER, are expected to have large quantities of dust that will present hazards that have yet to be encountered in current fusion devices. To manage the amount of dust within the reactors a real-time dust detector must be implemented to ensure that dust does not reach hazardous levels. An electrostatic device that accomplishes this has already been tested on NSTX and Tore Supra [1,2]. We will present modifications of this device to improve its ruggedness to withstand the conditions that will be present in ITER. The detector consists of two tungsten wires wrapped around a macor cylinder that are biased at 100-300 V. Incident dust causes a measurable transient short circuit. Initial results have demonstrated the detection of tungsten particles. We will also present a potential method of electrostatic cleaning of residual dust from the detector.[4pt] [1] C. H. Skinner et al., Rev. Sci. Instrum., 81, 10E102 (2010)[0pt] [2] H. Roche et al., Phys. Scr., T145, (2011).

  19. Children's episodic memory.

    PubMed

    Ghetti, Simona; Lee, Joshua

    2011-07-01

    Episodic memory develops during childhood and adolescence. This trajectory depends on several underlying processes. In this article, we first discuss the development of the basic binding processes (e.g., the processes by which elements are bound together to form a memory episode) and control processes (e.g., reasoning and metamemory processes) involved in episodic remembering. Then, we discuss the role of these processes in false-memory formation. In the subsequent sections, we examine the neural substrates of the development of episodic memory. Finally, we discuss atypical development of episodic memory. As we proceed through the article, we suggest potential avenues for future research. WIREs Cogni Sci 2011 2 365-373 DOI: 10.1002/wcs.114 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Platelet transfusion therapy in sub-Saharan Africa: bacterial contamination, recipient characteristics and acute transfusion reactions

    PubMed Central

    Hume, Heather A.; Ddungu, Henry; Angom, Racheal; Baluku, Hannington; Kajumbula, Henry; Kyeyune-Byabazaire, Dorothy; Orem, Jackson; Ramirez-Arcos, Sandra; Tobian, Aaron A.R.

    2017-01-01

    Background Little data are available on bacterial contamination (BC) of platelet units or acute transfusion reactions to platelet transfusions (PT) in sub-Saharan Africa (SSA). Methods This prospective observational study evaluated the rate of BC of whole blood derived platelet units (WB-PU), the utility of performing Gram stains (GS) to prevent septic reactions, characteristics of patients receiving PT and the rate of acute reactions associated with PT at the Uganda Cancer Institute in Kampala, Uganda. An aliquot of each WB-PU studied was taken to perform GS and culture using the Bactec™ 9120 instrument. Study participants were monitored for reactions. Results 337 WB-PU were evaluated for BC, of which 323 units were transfused in 151 transfusion episodes to 50 patients. The frequency of BC ranged from 0.3%–2.1% (according to criteria used to define BC). The GS had high specificity (99.1%), but low sensitivity to detect units with BC. The median platelet count prior to PT was 10,900 (IQR 6,000–18,900) cells/μL. 78% of PT were given to patients with no bleeding. Acute reactions occurred in 11 transfusion episodes, involving 13 WB-PU, for a rate of 7.3% (95%CI=3.7–12.7%) per transfusion episode. All recipients of units with positive bacterial cultures were receiving antibiotics at the time of transfusion; none experienced a reaction. Conclusions The rate of BC observed in this study is lower than previously reported in SSA, but still remains a safety issue. As GS appears to be an ineffective screening tool, alternate methods should be explored to prevent transfusing bacterially-contaminated platelets in SSA. PMID:27079627

  1. Neutral Mass Spectrometer (NMS) for the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Mahaffy, Paul R.; Benna, Mehdi; King, Todd T.; Hodges, Richard

    2011-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission currently scheduled for launch in early 2013 aboard a Minotaur V will orbit the moon at a nominal periselene of 50 km to characterized the lunar atmosphere and dust environment. The science instrument payload includes a neutral mass spectrometer as well as an ultraviolet spectrometer and a dust detector. Although to date only He, Ar-40, K, Na and Rn-222 have been firmly identified in the lunar exosphere and arise from the solar wind (He), the lunar regolith (K and Na) and the lunar interior (Ar-40, Rn-222), upper limits have been set for a large number of other species, LADEE Neutral Mass Spectrometer (NMS) observations will determine the abundance of several species and substantially lower the present upper limits for many others. Additionally, LADEE NMS will observe the spatial distribution and temporal variability of species which condense at nighttime and show peak concentrations at the dawn terminator (e,g, Ar-40), possible episodic release from the lunar interior, and the results of sputtering or desorption processes from the regolith. In this presentation, we describe the LADEE NMS hardware and the anticipated science results.

  2. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  3. Global dust cycle

    NASA Astrophysics Data System (ADS)

    Ridgwell, Andy

    Dust, micron to submicron particles and mostly comprising soil mineral fragments, affects a multitude of climatic and biogeochemical processes during its journey from its sources on land to sinks on land and in the ocean. Suspended in the atmosphere, the presence of dust can alter both shortwave and longwave radiation balances, enhance cloud nucleation, and affect photochemical reaction rates. Deposited to the land surface, dust has beneficial impacts on soil quality but detrimental implications for human health. At the interface of surface ocean and lower atmosphere, dust deposited to seawater supplies plankton with the essential micronutrient iron and hence provides an important control on marine ecosystems. This chapter reviews these various roles of dust in the Earth system; summarizes the factors controlling the production, transport, and deposition of dust; and, because the causes and consequences of dust are interlinked via climate and atmospheric CO2, discusses the potential importance of dusty feedback in past and future climate change.

  4. Bibliometric trends of health economic evaluation in Sub-Saharan Africa.

    PubMed

    Hernandez-Villafuerte, Karla; Li, Ryan; Hofman, Karen J

    2016-08-24

    Collaboration between Sub-Saharan African researchers is important for the generation and transfer of health technology assessment (HTA) evidence, in order to support priority-setting in health. The objective of this analysis was to evaluate collaboration patterns between countries. We conducted a rapid evidence assessment that included a random sample of health economic evaluations carried out in 20 countries (Angola, Botswana, Congo, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia, Zimbabwe, Ghana, Kenya, Nigeria, Ethiopia, Uganda). We conducted bibliometric network analysis based on all first authors with a Sub-Saharan African academic affiliation and their co-authored publications ("network-articles"). Then we produced a connection map of collaboration patterns among Sub-Saharan African researchers, reflecting the number of network-articles and the country of affiliation of the main co-authors. The sample of 119 economic evaluations mostly related to treatments of communicable diseases, in particular HIV/AIDS (42/119, 35.29 %) and malaria (26/119, 21.85 %). The 39 first authors from Sub-Saharan African institutions together co-authored 729 network-articles. The network analysis showed weak collaboration between health economic researchers in Sub-Saharan Africa, with researchers being more likely to collaborate with Europe and North America than with other African countries. South Africa stood out as producing the highest number of health economic evaluations and collaborations. The development and evaluation of HTA research networks in Sub-Saharan Africa should be supported, with South Africa central to any such efforts. Organizations and institutions from high income countries interested in supporting priority setting in Sub-Saharan Africa should include promoting collaboration as part of their agendas, in order to take advantage of the potential transferability of results and methods of the

  5. Analysis of the Co-existence of Long-range Transport Biomass Burning and Dust in the Subtropical West Pacific Region.

    PubMed

    Dong, Xinyi; Fu, Joshua S; Huang, Kan; Lin, Neng-Huei; Wang, Sheng-Hsiang; Yang, Cheng-En

    2018-06-12

    Biomass burning and wind-blown dust has been well investigated during the past decade regarding their impacts on environment, but their co-existence hasn't been recognized because they usually occur in different locations and episodes. In this study we reveal the unique co-existence condition that dust from the Taklamakan and Gobi Desert (TGD) and biomass burning from Peninsular Southeast Asia (PSEA) can reach to the west Pacific region simultaneously in boreal spring (March and April). The upper level trough at 700hPa along east coast of China favors the large scale subsidence of TGD dust while it travels southeastwards, and drives the PSEA biomass burning plume carried by the westerlies at 3-5 km to descend rapidly to around 1.5 km and mix with dust around southeast China and Taiwan. As compared to the monthly averages in March and April, surface observations suggested that concentrations of PM 10 , PM 2.5 , O 3 , and CO were 69%, 37%, 20%, and 18% higher respectively during the 10 identified co-existence events which usually lasted for 2-3 days. Co-existence also lowers the surface O 3 , NOx, and SO 2 by 4-5% due to the heterogeneous chemistry between biomass burning and mineral dust as indicated by model simulations.

  6. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Liu, Xiaohong

    2014-12-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736-741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments.

  7. Dust Devil Tracks

    NASA Image and Video Library

    2017-03-06

    This image captured by NASA 2001 Mars Odyssey spacecraft shows dust devil tracks in Aonia Terra. As the dust devil moves along the surface it scours the dust and fine materials away, revealing the darker rocky surface below the dust. Orbit Number: 66962 Latitude: -68.8221 Longitude: 241.346 Instrument: VIS Captured: 2017-01-17 13:13 http://photojournal.jpl.nasa.gov/catalog/PIA21501

  8. Combustibility determination for cotton gin dust and almond huller dust

    USDA-ARS?s Scientific Manuscript database

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar (OSHA, 2009), can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, OSHA initiated action to develop a mandatory standard to comprehen...

  9. Impact of Long-Range Transported African Dust Events on Cloud Composition and Physical Properties at a Caribbean Tropical Montane Cloud Forest

    NASA Astrophysics Data System (ADS)

    Valle-Diaz, C. J.; Torres-Delgado, E.; Lee, T.; Collett, J. L.; Cuadra-Rodriguez, L. A.; Prather, K. A.; Spiegel, J.; Eugster, W.

    2012-12-01

    We studied the impact of long-range transported African Dust (LRTAD) on cloud composition and properties at the Caribbean tropical montane cloud forest (TMCF) of Pico del Este (PE), as part of the Puerto Rico African Dust and Clouds Study (PRADACS). Here we present results from measurements performed in July 2011. Bulk chemical analysis of cloud water and rainwater showed pH and conductivity higher in the presence of dust. pH and conductivity were also higher for larger cloud droplets (size cut of 17 μm at 50% efficiency) suggesting a higher content of dust in this fraction. The concentration of the water-soluble ions in rainwater was found to be lower than for cloud water. This in turn translates to higher pH and lower conductivity. African dust influence at PE was confirmed by the presence of nss-Ca, Fe, Mg, Na, and Al in cloud/rain water, and inferred by HYSPLIT trajectories and the satellite images from the Saharan Air Layer (SAL). Interstitial single-particle size and chemistry measured using aerosol time-of-flight mass spectrometry revealed mostly sea-salt particles (Na, Cl, Ca) and dust particles (Fe, Ti, Mg, nss-Ca). Anthropogenic influence detected as the presence of EC, a tracer for combustion processes, was found to be fairly small according to ATOFMS measurements. An increase of total organic carbon, total nitrogen, and dissolved organic carbon was observed during LRTAD events. Cloud droplet distributions revealed that LRTAD can lead to more numerous, but smaller cloud droplets (around 8 μm in average) at PE. However, total liquid water content appeared to be unaffected by this shift of droplet sizes. Overall, differences in the studied physicochemical properties of aerosols and clouds during dust and non-dust events were observed. Our results show that during LRTAD events, aerosol-cloud-precipitation interactions are altered at PE. Detailed results will be presented at the meeting.

  10. Large-scale Desert Dust Deposition on the Himalayan Snow Cover: A Climatological Perspective from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Gautam, R.; Hsu, N. C.; Lau, W. K.

    2013-12-01

    The Himalaya-Tibetan Plateau (HTP) has a profound influence on the Asian climate. The HTP are also among the largest snow/ice-covered regions on the Earth and provide major freshwater resource to the downstream densely-populated regions of Asia. Recent studies indicate climate warming over the HTP amplified by atmospheric heating and deposition of absorbing aerosols (e.g. dust and soot) over the HTP snowpack and glaciers. Recently, greater attention has focused on the effects of soot deposition on accelerated snowmelt and glacier retreat in the HTP, associated with increasing anthropogenic emissions in Asia. On the other hand, the role of transported dust affecting snow albedo/melt is not well understood over the HTP, in spite of the large annual cycle of mineral dust loading, particularly over the northern parts of south Asia during pre-monsoon season. This study addresses the large-scale effects of dust deposition on snow albedo in the elevated HTP from a satellite observational perspective. Dust aerosol transport, from southwest Asian arid regions, is observed in satellite imagery as darkening of the Himalayan snowpack. Additionally, multi-year spaceborne lidar observations, from CALIPSO, also show dust advected to elevated altitudes (~5km) over the Himalayan foothills, and episodically reaching the top of the western Himalaya. Spectral surface reflectance analysis of dust-laden snow cover (from MODIS) indicates enhanced absorption in the shorter visible wavelengths, yielding a significant gradient in the visible-nearIR reflectance spectrum. While soot in snow is difficult to distinguish from remote sensing, our spectral reflectance analysis of dust detection in the snowpack is consistent with theoretical simulations of snow darkening due to dust impurity. We find that the western HTP, in general, is influenced by enhanced dust deposition due to its proximity to major dust sources (and prevailing dust transport pathways), compared to the eastern HTP. Coinciding

  11. Summertime Dust Devil

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-464, 26 August 2003

    Dust devils are spinning, columnar vortices of air that move across a landscape, picking up dust as they go. They are common occurrences during summer on Mars. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer, shows a dust devil in the Phlegra region of Mars near 32.0oN, 182.1oW. Sunlight illuminates the scene from the lower left; the dust devil is casting a columnar shadow toward the upper right. Some dust devils on Mars make streaks as they disrupt the fine coating of dust on the surface--but others do not make streaks. This one did not make a streak. The view shown here is 3 km (1.9 mi) wide.

  12. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    NASA Technical Reports Server (NTRS)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  13. A numerical study on dust devils with implications to global dust budget estimates

    USDA-ARS?s Scientific Manuscript database

    The estimates of the contribution of dust devils (DDs) to the global dust budget have large uncertainties because the dust emission mechanisms in DDs are not yet well understood. In this study, a large-eddy simulation model coupled with a dust scheme is used to investigate DD dust entrainment. DDs a...

  14. Dust Properties of Local Dust-obscured Galaxies with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 1011(L ⊙) and 4-14 × 107(M ⊙), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  15. Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes

    NASA Technical Reports Server (NTRS)

    Jones, A. P.; Nuth, J. A., III

    2011-01-01

    There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.

  16. Improved Dust Forecast Products for Southwest Asia Forecasters through Dust Source Database Advancements

    NASA Astrophysics Data System (ADS)

    Brooks, G. R.

    2011-12-01

    Dust storm forecasting is a critical part of military theater operations in Afghanistan and Iraq as well as other strategic areas of the globe. The Air Force Weather Agency (AFWA) has been using the Dust Transport Application (DTA) as a forecasting tool since 2001. Initially developed by The Johns Hopkins University Applied Physics Laboratory (JHUAPL), output products include dust concentration and reduction of visibility due to dust. The performance of the products depends on several factors including the underlying dust source database, treatment of soil moisture, parameterization of dust processes, and validity of the input atmospheric model data. Over many years of analysis, seasonal dust forecast biases of the DTA have been observed and documented. As these products are unique and indispensible for U.S. and NATO forces, amendments were required to provide the best forecasts possible. One of the quickest ways to scientifically address the dust concentration biases noted over time was to analyze the weaknesses in, and adjust the dust source database. Dust source database strengths and weaknesses, the satellite analysis and adjustment process, and tests which confirmed the resulting improvements in the final dust concentration and visibility products will be shown.

  17. Burns in sub-Saharan Africa: A review.

    PubMed

    Nthumba, Peter M

    2016-03-01

    Burns are important preventable causes of morbidity and mortality, with a disproportionate incidence in sub-Saharan Africa. The management of these injuries in sub-Saharan Africa is a challenge because of multiple other competing problems such as infectious diseases (HIV/AIDS, tuberculosis and malaria), terrorist acts and political instability. There is little investment in preventive measures, pre-hospital, in-hospital and post-discharge care of burns, resulting in high numbers of burns, high morbidity and mortality. Lack of data that can be used in legislation and policy formulation is a major hindrance in highlighting the problem of burns in this sub-region. An online search of publications on burns from sub-Saharan countries was performed. A total of 54 publications with 32,862 patients from 14 countries qualified for inclusion in the study. The average age was 15.3 years. Children aged 10 years and below represented over 80% of the burn patient population. Males constituted 55% of those who suffered burns. Scalds were the commonest cause of thermal injuries, accounting for 59% of all burns, while flame burns accounted for 33%. The burn mortality averaged 17%, or the death of one of every five burn victims. These statistics indicate the need for an urgent review of burn policies and related legislation across the sub-Saharan region to help reduce burns, and provide a safe environment for children. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  18. Episodic acidification of small streams in the northeastern united states: ionic controls of episodes

    USGS Publications Warehouse

    Wigington, P.J.; DeWalle, David R.; Murdoch, Peter S.; Kretser, W.A.; Simonin, H.A.; Van Sickle, J.; Baker, J.P.

    1996-01-01

    As part of the Episodic Response Project (ERP), we intensively monitored discharge and stream chemistry of 13 streams located in the Northern Appalachian region of Pennsylvania and in the Catskill and Adirondack Mountains of New York from fall 1988 to spring 1990. The ERP clearly documented the occurrence of acidic episodes with minimum episodic pH ??? 5 and inorganic monomeric Al (Alim) concentrations >150 ??g/L in at least two study streams in each region. Several streams consistently experienced episodes with maximum Alim concentrations >350 ??g/L. Acid neutralizing capacity (ANC) depressions resulted from complex interactions of multiple ions. Base cation decreases often made the most important contributions to ANC depressions during episodes. Organic acid pulses were also important contributors to ANC depressions in the Adirondack streams, and to a lesser extent, in the Catskill and Pennsylvania streams. Nitrate concentrations were low in the Pennsylvania streams, whereas the Catskill and Adirondack study streams had high NO3- concentrations and large episodic pulses (???54 ??eq/L). Most of the Pennsylvania study streams also frequently experienced episodic pulses of SO42- (???78 ??eq/L), whereas the Adirondack and Catskill streams did not. High baseline concentrations of SO42- (all three study areas) and NO3- (Adirondacks and Catskills) reduced episodic minimum ANC, even when these ions did not change during episodes. The ion changes that controlled the most severe episodes (lowest minimum episodic ANC) differed from the ion changes most important to smaller, more frequent episodes. Pulses of NO3- (Catskills and Adirondacks), SO42- (Pennsylvania), or organic acids became more important during major episodes. Overall, the behavior of streamwater SO42- and NO4- is an indicator that acidic deposition has contributed to the severity of episodes in the study streams.

  19. Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: A pilot study in Nairobi, Kenya.

    PubMed

    Ngo, Nicole S; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N; Bouhamam, Kheira; Kinneym, Patrick L

    2015-06-01

    Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM 2.5 ), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM 2.5 levels for all study populations, particularly among bus drivers, while PM 2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi's low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern.

  20. Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: A pilot study in Nairobi, Kenya

    PubMed Central

    Ngo, Nicole S.; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N.; Bouhamam, Kheira; Kinneym, Patrick L.

    2015-01-01

    Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM2.5), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM2.5 levels for all study populations, particularly among bus drivers, while PM2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi’s low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern. PMID:26034383

  1. Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: A pilot study in Nairobi, Kenya

    NASA Astrophysics Data System (ADS)

    Ngo, Nicole S.; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N.; Bouhamam, Kheira; Kinney, Patrick L.

    2015-06-01

    Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM2.5), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM2.5 levels for all study populations, particularly among bus drivers, while PM2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi's low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern.

  2. How do episodic and semantic memory contribute to episodic foresight in young children?

    PubMed

    Martin-Ordas, Gema; Atance, Cristina M; Caza, Julian S

    2014-01-01

    Humans are able to transcend the present and mentally travel to another time, place, or perspective. Mentally projecting ourselves backwards (i.e., episodic memory) or forwards (i.e., episodic foresight) in time are crucial characteristics of the human memory system. Indeed, over the past few years, episodic memory has been argued to be involved both in our capacity to retrieve our personal past experiences and in our ability to imagine and foresee future scenarios. However, recent theory and findings suggest that semantic memory also plays a significant role in imagining future scenarios. We draw on Tulving's definition of episodic and semantic memory to provide a critical analysis of their role in episodic foresight tasks described in the developmental literature. We conclude by suggesting future directions of research that could further our understanding of how both episodic memory and semantic memory are intimately connected to episodic foresight.

  3. How do episodic and semantic memory contribute to episodic foresight in young children?

    PubMed Central

    Martin-Ordas, Gema; Atance, Cristina M.; Caza, Julian S.

    2014-01-01

    Humans are able to transcend the present and mentally travel to another time, place, or perspective. Mentally projecting ourselves backwards (i.e., episodic memory) or forwards (i.e., episodic foresight) in time are crucial characteristics of the human memory system. Indeed, over the past few years, episodic memory has been argued to be involved both in our capacity to retrieve our personal past experiences and in our ability to imagine and foresee future scenarios. However, recent theory and findings suggest that semantic memory also plays a significant role in imagining future scenarios. We draw on Tulving’s definition of episodic and semantic memory to provide a critical analysis of their role in episodic foresight tasks described in the developmental literature. We conclude by suggesting future directions of research that could further our understanding of how both episodic memory and semantic memory are intimately connected to episodic foresight. PMID:25071690

  4. Trace Metals in Saharan Dust: The Use of in Vitro Bioaccessibility Extractions To Assess Potential Health Risks in a Dustier World: Chapter 3

    USGS Publications Warehouse

    Morman, Suzette A.; Garrison, Virginia H.; Plumlee, Geoffrey S.

    2013-01-01

    Exposure to fine particulate matter (PM) is acknowledged as a risk factor for human morbidity and mortality. Epidemiology and toxicology studies have focused on anthropogenic sources of PM and few consider contributions produced by natural processes (geogenic), or PM produced from natural sources as a result of human activities (geoanthropogenic PM). The focus of this study was to elucidate relationships between human/ecosystem health and dusts produced by a system transitioning from a dominantly natural to a geoanthropogenic PM source. As part of a larger study investigating the relationship between atmospheric transportation of African dust, human health, and coral reef declines, we examined dust samples sourced in Mali, Africa, collected using high-volume samplers from three sites (Mali, Tobago and U.S. Virgin Islands). Inhalation and ingestion exposure pathways were explored by filter extractions using simulated lung and gastric fluids. Bioaccessibility varied by metal and extraction fluid. Although too few samples were analyzed for robust statistics, concentrations for several metals decreased slightly while bioaccessibility increased at downwind sites.

  5. Middle East Dust

    Atmospheric Science Data Center

    2013-04-16

    ... only some of the dust over eastern Syria and southeastern Turkey can be discerned. The dust is much more obvious in the center panel, ... 18, 2002 - A large dust plume extends across Syria and Turkey. project:  MISR category:  gallery ...

  6. Dust measurements in tokamaks (invited).

    PubMed

    Rudakov, D L; Yu, J H; Boedo, J A; Hollmann, E M; Krasheninnikov, S I; Moyer, R A; Muller, S H; Pigarov, A Yu; Rosenberg, M; Smirnov, R D; West, W P; Boivin, R L; Bray, B D; Brooks, N H; Hyatt, A W; Wong, C P C; Roquemore, A L; Skinner, C H; Solomon, W M; Ratynskaia, S; Fenstermacher, M E; Groth, M; Lasnier, C J; McLean, A G; Stangeby, P C

    2008-10-01

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  7. Mechanical properties of dust collected by dust separators in iron ore sinter plants.

    PubMed

    Lanzerstorfer, Christof

    2015-01-01

    The flow-related mechanical properties of dusts from the de-dusting systems of several sinter plants were investigated. The mass median diameters of the dusts were in the range from approximately 3 to 100 µm. Also, the bulk density of the dusts varied in a wide range (approximately 400 to 2300 kg/m³). A good correlation between the bulk density and the mass median diameter for most of the dusts was found. In contrast, the angles of repose did not vary very much, only for the coarsest dust a significantly lower value was measured. The angles of internal friction as well as the wall friction angles were lower for coarse dust and higher for fine dust. The shear tests showed that both angles depend considerably on the stress level. At low stress, the angles decreased significantly with increasing values of stress, whereas at higher stress, the dependence was small or even disappeared. The only exception to this behaviour was shown by the finest dust. The flowability decreased with the particle size. The flowability categories suggested by the three flowability indicators were passable only for the coarser dusts. For the finer dusts, the flowability was overestimated by all flowability indicators.

  8. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{submore » ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.« less

  9. House-Dust Allergy

    PubMed Central

    Johnson, C. A.

    1982-01-01

    House-dust allergy is a common cause of perennial allergic rhinitis and extrinsic asthma. Symptoms tend to be worse when the patient is in bed. A positive skin test properly performed and interpreted confirms the diagnosis. The house-dust mite is the most important antigenic component of house-dust. Treatment consists of environmental control directed at reducing the mite content of bedroom dust, plus control of symptoms with drugs. Immunotherapy is controversial. ImagesFig. 1 PMID:21286201

  10. History and structure of sub-Saharan populations of Drosophila melanogaster.

    PubMed

    Pool, John E; Aquadro, Charles F

    2006-10-01

    Drosophila melanogaster is an important model organism in evolutionary genetics, yet little is known about the population structure and the demographic history of this species within sub-Saharan Africa, which is thought to contain its ancestral range. We surveyed nucleotide variation at four 1-kb fragments in 240 individual lines representing 21 sub-Saharan and 4 Palearctic population samples of D. melanogaster. In agreement with recent studies, we find a small but significant level of genetic differentiation within sub-Saharan Africa. A clear geographic pattern is observed, with eastern and western African populations composing two genetically distinct groups. This pattern may have resulted from a relatively recent establishment of D. melanogaster in western Africa. Eastern populations show greater evidence for long-term stability, consistent with the hypothesis that eastern Africa contains the ancestral range of the species. Three sub-Saharan populations show evidence for cosmopolitan introgression. Apart from those cases, the closest relationships between Palearctic and sub-Saharan populations involve a sample from the rift zone (Uganda), suggesting that the progenitors of Palearctic D. melanogaster might have come from this region. Finally, we find a large excess of singleton polymorphisms in the full data set, which is best explained by a combination of population growth and purifying selection.

  11. Episodic Specificity in Acquiring Thematic Knowledge of Novel Words from Descriptive Episodes

    PubMed Central

    Zhang, Meichao; Chen, Shuang; Wang, Lin; Yang, Xiaohong; Yang, Yufang

    2017-01-01

    The current study examined whether thematic relations of the novel words could be acquired via descriptive episodes, and if yes, whether it could be generalized to thematically related words in a different scenario. In Experiment 1, a lexical decision task was used where the novel words served as primes for target words in four conditions: (1) corresponding concepts of the novel words, (2) thematically related words in the same episodes as that in learning condition, (3) thematically related words in different episodes, or (4) unrelated words served as targets. Event related potentials elicited by the targets revealed that compared to the unrelated words, the corresponding concepts and thematically related words in the same episodes elicited smaller N400s with a frontal-central distribution, whereas the thematically related words in different episodes elicited an enhanced late positive component. Experiment 2 further showed a priming effect of the corresponding concepts on the thematically related words in the same episodes as well as in a different episode, indicating that the absence of a priming effect of the learned novel words on the thematically related words in different episode could not be attributed to inappropriate selection of thematically related words in the two conditions. These results indicate that only the corresponding concepts and the thematically related words in the learning episodes were successfully primed, whereas the thematic association between the novel words and the thematically related words in different scenarios could only be recognized in a late processing stage. Our findings suggest that thematic knowledge of novel words is organized via separate scenarios, which are represented in a clustered manner in the semantic network. PMID:28428766

  12. Episodic Specificity in Acquiring Thematic Knowledge of Novel Words from Descriptive Episodes.

    PubMed

    Zhang, Meichao; Chen, Shuang; Wang, Lin; Yang, Xiaohong; Yang, Yufang

    2017-01-01

    The current study examined whether thematic relations of the novel words could be acquired via descriptive episodes, and if yes, whether it could be generalized to thematically related words in a different scenario. In Experiment 1, a lexical decision task was used where the novel words served as primes for target words in four conditions: (1) corresponding concepts of the novel words, (2) thematically related words in the same episodes as that in learning condition, (3) thematically related words in different episodes, or (4) unrelated words served as targets. Event related potentials elicited by the targets revealed that compared to the unrelated words, the corresponding concepts and thematically related words in the same episodes elicited smaller N400s with a frontal-central distribution, whereas the thematically related words in different episodes elicited an enhanced late positive component. Experiment 2 further showed a priming effect of the corresponding concepts on the thematically related words in the same episodes as well as in a different episode, indicating that the absence of a priming effect of the learned novel words on the thematically related words in different episode could not be attributed to inappropriate selection of thematically related words in the two conditions. These results indicate that only the corresponding concepts and the thematically related words in the learning episodes were successfully primed, whereas the thematic association between the novel words and the thematically related words in different scenarios could only be recognized in a late processing stage. Our findings suggest that thematic knowledge of novel words is organized via separate scenarios, which are represented in a clustered manner in the semantic network.

  13. Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model.

    PubMed

    Li, Nan; Long, Xin; Tie, Xuexi; Cao, Junji; Huang, Rujin; Zhang, Rong; Feng, Tian; Liu, Suixin; Li, Guohui

    2016-01-15

    We developed a regional dust dynamical model (WRF-Dust) to simulate surface dust concentrations in the Guanzhong (GZ) basin of China during two typical dust cases (19th Aug. and 26th Nov., 2013), and compared model results with the surface measurements at 17 urban and rural sites. The important improvement of the model is to employ multiple high-resolution (0.5-500 m) remote sensing data to construct dust sources. The new data include the geographic information of constructions, croplands, and barrens over the GZ basin in summer and winter of 2013. For the first time, detailed construction dust emissions have been introduced in a regional dust model in large cities of China. Our results show that by including the detailed dust sources, model performance at simulating dust pollutions in the GZ basin is significantly improved. For example, the simulated dust concentration average for the 17 sites increases from 28 μg m(-3) to 59 μg m(-3), closing to the measured concentration of 66 μg m(-3). In addition, the correlation coefficient (r) between the calculated and measured dust concentrations is also improved from 0.17 to 0.57, suggesting that our model better presents the spatial variation. Further analysis shows that urban construction activities are the crucial source in controlling urban dust pollutions. It should be considered by policy makers for mitigating particulate air pollution in many Chinese cities. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The Lunar Dust Environment

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  15. Gender Gaps in Political Participation across Sub-Saharan African Nations

    ERIC Educational Resources Information Center

    Coffe, Hilde; Bolzendahl, Catherine

    2011-01-01

    A substantial literature has studied gender differences in political participation in Western industrialized democracies, but little is known about such gaps in sub-Saharan African nations. Using 2005 Afrobarometer data, this paper presents a systematic investigation of the gender gap in political participation across 18 sub-Saharan African…

  16. Earth Observation

    NASA Image and Video Library

    2012-07-15

    ISS032-E-008976 (15 July 2012) --- Saharan dust reaching the Americas is featured in this image photographed by an Expedition 32 crew member on the International Space Station. Weather satellites frequently document major dust palls blowing from the Sahara Desert westward from Africa out into the tropical Atlantic Ocean. Space station crew members frequently see these Saharan dust masses as very widespread atmospheric haze. Dust palls blowing from Africa can be transported right across the Atlantic Ocean. It takes about a week to reach either North America (in northern hemisphere summer) or South America (in northern hemisphere winter). This puts the Caribbean basin on the receiving end of many of these events. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The margin of the hazy air in this image reaches as far as Haiti (top center) and the nearby Turks and Caicos Islands (top left) ? but the eastern tip of Cuba in the foreground remains in the clear air.

  17. Episodic simulation and episodic memory can increase intentions to help others.

    PubMed

    Gaesser, Brendan; Schacter, Daniel L

    2014-03-25

    Empathy plays an important role in human social interaction. A multifaceted construct, empathy includes a prosocial motivation or intention to help others in need. Although humans are often willing to help others in need, at times (e.g., during intergroup conflict), empathic responses are diminished or absent. Research examining the cognitive mechanisms underlying prosocial tendencies has focused on the facilitating roles of perspective taking and emotion sharing but has not previously elucidated the contributions of episodic simulation and memory to facilitating prosocial intentions. Here, we investigated whether humans' ability to construct episodes by vividly imagining (episodic simulation) or remembering (episodic memory) specific events also supports a willingness to help others. Three experiments provide evidence that, when participants were presented with a situation depicting another person's plight, the act of imagining an event of helping the person or remembering a related past event of helping others increased prosocial intentions to help the present person in need, compared with various control conditions. We also report evidence suggesting that the vividness of constructed episodes--rather than simply heightened emotional reactions or degree of perspective taking--supports this effect. Our results shed light on a role that episodic simulation and memory can play in fostering empathy and begin to offer insight into the underlying mechanisms.

  18. Atmospheric Fate and Transport of Agricultural Dust and Ammonia

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Thornton, D. C.; Auvermann, B. W.; Fitz, D. R.

    2008-12-01

    Agricultural fugitive dust and odor are significant sources of localized air pollution in the semi-arid southern Great Plains. Daily episodes of ground-level fugitive dust emissions from the cattle feedlots associated with increased cattle activity in the early evenings are routinely observed, while consistently high ammonia is observed throughout the day. Here we present measurements of aerosol size distributions and concentrations of gas and particulate phase ammonia species collected at a feedlot in Texas during summers of 2006, 2007 and 2008. A GRIMM sequential mobility particle sizer and GRIMM 1.108 aerosol spectrometer were used to determine aerosol size distributions in the range of 10 nm to 20 µm aerodynamic diameter at the downwind and upwind edges of the facility. Using aqueous scrubbers, simultaneous measurements of both gas phase and total ammonia species present in the gas and particle phases were also collected. In addition to the continuous measurements at the edges of the facility, coincident aerosol and ammonia measurements were obtain at an additional site further downwind (~3.5 km). Taken together our measurements will be used to quantify aerosol and ammonia dispersion and transport. Relationships between the fate and transport of the aerosols and ammonia will be discussed.

  19. Recurrent decadal-scale dust events over Holocene western Africa and their control on canyon turbidite activity (Mauritania)

    NASA Astrophysics Data System (ADS)

    Hanebuth, Till J. J.; Henrich, Rüdiger

    2009-02-01

    Sediment records from continental shelves and slopes might provide paleoenvironmental information in the highest temporal resolution but are often hampered due to strong erosional and reworking processes. Here, we present a Holocene sedimentary record from an exceptional shelf mud belt depocenter off northern Mauritania, compared to a second sediment core located inside a large canyon system at the adjacent continental slope. Both records are of outstandingly continuous and highest temporal resolution (9 a/cm) and are investigated by sedimentological and geochemical methods. A series of sharply defined, recurrent dust peaks is preserved in the shelf archive. Each event has lasted for a single decade only and seems to coincide with an individual turbidite bed in the canyon. A joint mechanism should, thus, be responsible for both of these deposits and we suggest a regional atmospheric trigger. Only short-lasting Trade wind strengthening would cause such pronounced aridity over western Saharan Africa. The effect would be massive dust export to shelf and slope. Recently developed high resolution aridity and humidity records from western Africa support the existence of these events over the Holocene and identify them as being controlled by the Atlantic system as far south as 19°N.

  20. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  1. In situ observations of dust particles in Martian dust belts using a large-sensitive-area dust sensor

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masanori; Krüger, Harald; Senshu, Hiroki; Wada, Koji; Okudaira, Osamu; Sasaki, Sho; Kimura, Hiroshi

    2018-07-01

    In order to determine whether Martian dust belts (ring or torus) actually exist and, if so, to determine the characteristics of the dust, we propose a Circum-Martian Dust Monitor (CMDM) to be deployed on the Martian Moons Exploration (MMX) project, in which JAXA plans to launch the spacecraft in 2024, investigate Phobos and Deimos, and return samples back to Earth. The CMDM is a newly developed instrument that is an impact dust detector. It weighs only 650 g and has a sensor aperture area of ∼1 m2, according to the conceptual design study. Detectable velocities (v) range from 0.5 km/s to more than 70 km/s, which will cover all possible dust particles: circummartian (low v), interplanetary (mid v), and interstellar (high v) particles. The measurable mass ranges from 1.3 × 10-9 g to 7.8 × 10-7 g at v = 0.5 km/s. Since the MMX spacecraft will take a quasi-circular, prograde orbit around Mars, the CMDM will be able to investigate particles from Phobos and Deimos with relative velocities lower than 1 km/s. Therefore, the CMDM will be able to determine whether or not a confined dust ring exists along Phobos' orbit and whether an extended dust torus exists along Deimos' orbit. It may also be able to clarify whether or not any such ring or torus are self-sustained.

  2. Dust Devil Tracks

    NASA Astrophysics Data System (ADS)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand

  3. Some Pharmacological Actions of Cotton Dust and Other Vegetable Dusts

    PubMed Central

    Nicholls, P. J.

    1962-01-01

    Aqueous extracts of cotton and other vegetable dusts cause contraction of the isolated ileum and tracheal muscle of the guinea-pig, and of isolated human bronchial muscle. The levels of this contractor activity place the dusts of cotton, flax, and jute in the order of the probable incidence of byssinosis occurring in the mills spinning these fibres. Extracts of cotton dust possess a histamine-liberating activity and contain a permeability-increasing component. These actions are of plant origin and are found in the pericarp and bracts of the cotton boll. Histamine and 5-hydroxytryptamine have also been found in some cotton dust samples. The formation of histamine by bacterial action in cotton dust does not take place under conditions found in cotton mills. The smooth muscle contractor substance is organic in nature, relatively heat-stable, and dialysable. The relevance of these results to the symptoms of byssinosis is discussed. PMID:14479451

  4. “Nuisance Dust”: Unprotective Limits for Exposure to Coal Mine Dust in the United States, 1934–1969

    PubMed Central

    2013-01-01

    I examine the dismissal of coal mine dust as a mere nuisance, not a potentially serious threat to extractive workers who inhaled it. In the 1930s, the US Public Health Service played a major role in conceptualizing coal mine dust as virtually harmless. Dissent from this position by some federal officials failed to dislodge either that view or the recommendation of minimal limitations on workplace exposure that flowed from it. Privatization of regulatory authority after 1940 ensured that miners would lack protection against respiratory disease. The reform effort that overturned the established misunderstanding in the late 1960s critically depended upon both the production of scientific findings and the emergence of a subaltern movement in the coalfields. This episode illuminates the steep challenges often facing advocates of stronger workplace health standards. PMID:23237176

  5. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    PubMed

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  6. Source reconciliation of atmospheric dust causing visibility impairment in Class I areas of the western United States

    NASA Astrophysics Data System (ADS)

    Kavouras, Ilias G.; Etyemezian, Vicken; Dubois, David W.; Xu, Jin; Pitchford, Marc

    2009-01-01

    Aerosol data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, air mass backward trajectories, land use maps, soil characteristics maps, diagnostic ratios of elemental composition, and multivariate linear regression were utilized as part of a semiquantitative analysis. The purpose of the analysis was to determine the types of dust-causing events that contribute to low visibility at a given site when the sum of extinction from coarse mass (CM) and fine soil (FS) was larger than any other aerosol component and the reconstructed aerosol extinction coefficient was among the 20% highest (calculated on a calendar year basis) for that site. For these "worst dust days," the above tools were used to ascribe the cause of low visibility to one of the following types of events: (1) transcontinental transport of dust originating from Asia; (2) windblown dust events from sources located nearby the site and; (3) transport of windblown dust from sources upwind of the site. Depending on the weight of evidence, a low or high level of confidence was associated with the assignment of one of these three events. Absence of convincing evidence resulted in ascribing the worst dust day to "undetermined events." Of the 610 worst dust days over the 2001-2003 period, 51% were associated with one of the three event types with high confidence and an additional 30% were accounted for with low confidence. Of the 496 worst dust days associated with an event (either low or high confidence), Asian dust was the assigned event on 55 days (for 2001-2002), locally generated windblown dust on 201 days, and transport from upwind source areas susceptible to wind erosion on 240 days. Events associated with windblown episodes from source areas in the United States and Mexico exhibited the highest dust concentrations. Asian dust events were associated with lower dust concentrations and a larger FS-to-CM ratio. Some variations between Asian dust and continental North American

  7. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies

    NASA Astrophysics Data System (ADS)

    Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Makhmudov, Abduvosit N.; Nazarov, Bakhron I.; Schettler, Georg; Engelmann, Ronny; Baars, Holger; Wadinga Fomba, K.; Müller, Konrad; Heinold, Bernd; Kandler, Konrad; Ansmann, Albert

    2017-12-01

    lidar ratio values for Saharan dust (50-60 sr) and comparable to Middle Eastern or west-Asian dust lidar ratios (35-45 sr). In contrast, the presented case of pollution aerosol of local origin has an Ångström exponent of 2.07 and a lidar ratio (particle linear depolarization ratio) of 55.8 sr (0.03) at 355 nm and 32.8 sr (0.08) at 532 nm wavelength.

  8. Wood Dust

    Cancer.gov

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  9. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    NASA Astrophysics Data System (ADS)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant

  10. Ice nucleation by soil dust compared to desert dust aerosols

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Steinke, I.; Ullrich, R.; Höhler, K.; Schiebel, T.; Hoose, C.; Funk, R.

    2015-12-01

    A minor fraction of atmospheric aerosol particles, so-called ice-nucleating particles (INPs), initiates the formation of the ice phase in tropospheric clouds and thereby markedly influences the Earth's weather and climate systems. Whether an aerosol particle acts as an INP depends on its size, morphology and chemical compositions. The INP fraction of certain aerosol types also strongly depends on the temperature and the relative humidity. Because both desert dust and soil dust aerosols typically comprise a variety of different particles, it is difficult to assess and predict their contribution to the atmospheric INP abundance. This requires both accurate modelling of the sources and atmospheric distribution of atmospheric dust components and detailed investigations of their ice nucleation activities. The latter can be achieved in laboratory experiments and parameterized for use in weather and climate models as a function of temperature and particle surface area, a parameter called ice-nucleation active site (INAS) density. Concerning ice nucleation activity studies, the soil dust is of particular interest because it contains a significant fraction of organics and biological components, both with the potential for contributing to the atmospheric INP abundance at relatively high temperatures compared to mineral components. First laboratory ice nucleation experiments with a few soil dust samples indicated their INP fraction to be comparable or slightly enhanced to that of desert dust. We have used the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber to study the immersion freezing ability of four different arable soil dusts, sampled in Germany, China and Argentina. For temperatures higher than about -20°C, we found the INP fraction of aerosols generated from these samples by a dry dispersion technique to be significantly higher compared to various desert dust aerosols also investigated in AIDA experiments. In this contribution, we

  11. Efficiency of Tungsten Dust Collection of Different Types of Dust Particles by Electrostatic Probe

    NASA Astrophysics Data System (ADS)

    Begrambekov, L. B.; Voityuk, A. N.; Zakharov, A. M.; Bidlevich, O. A.; Vechshev, E. A.; Shigin, P. A.; Vayakis, J.; Walsh, M.

    2017-12-01

    Formation of dust particles and clusters is observed in almost every modern thermonuclear facility. Accumulation of dust in the next generation thermonuclear installations can dramatically affect the plasma parameters and lead to the accumulation of unacceptably large amounts of tritium. Experiments on collection of dust particles by a model of electrostatic probe developed for collection of metallic dust at ITER are described in the article. Experiments on the generation of tungsten dust consisting of flakes formed during the destruction of tungsten layers formed on the walls of the plasma chamber sputtered from the surface of the tungsten target by plasma ions were conducted. The nature of dust degassing at elevated temperatures and the behavior of dust in an electric field were studied. The results obtained are compared with the results of the experiments with dust consisting of crystal particles of simple geometric shapes. The effectiveness of collection of both types of dust using the model of an electrostatic probe is determined.

  12. Improving dust emission characterization in dust models using dynamic high-resolution geomorphic erodibility map

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z.; Kocurek, G.

    2013-12-01

    Dust is known to affect the earth radiation budget, biogeochemical cycle, precipitation, human health and visibility. Despite the increased research effort, dust emission modeling remains challenging because dust emission is affected by complex geomorphological processes. Existing dust models overestimate dust emission and rely on tuning and a static erodibility factor in order to make simulated results comparable to remote sensing and ground-based observations. In most of current models, dust emission is expressed in terms of threshold friction speed, which ultimately depends mainly upon the percentage clay content and soil moisture. Unfortunately, due to the unavailability of accurate and high resolution input data of the clay content and soil moisture, estimated threshold friction speed commonly does not represent the variability in field condition. In this work, we attempt to improve dust emission characterization by developing a high resolution geomorphic map of the Middle East and North Africa (MENA), which is responsible for more than 50% of global dust emission. We develop this geomorphic map by visually examining high resolution satellite images obtained from Google Earth Pro and ESRI base map. Albeit subjective, our technique is more reliable compared to automatic image classification technique because we incorporate knowledge of geological/geographical setting in identifying dust sources. We hypothesize that the erodibility is unique for different geomorphic landforms and that it can be quantified by the correlation between observed wind speed and satellite retrieved aerosol optical depth (AOD). We classify the study area into several key geomorphological categories with respect to their dust emission potential. Then we quantify their dust emission potential using the correlation between observed wind speed and satellite retrieved AOD. The dynamic, high-resolution geomorphic erodibility map thus prepared will help to reduce the uncertainty in current

  13. Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel

    NASA Astrophysics Data System (ADS)

    Andreae, Tracey W.; Andreae, Meinrat O.; Ichoku, Charles; Maenhaut, Willy; Cafmeyer, Jan; Karnieli, Arnon; Orlovsky, Leah

    2002-01-01

    We investigated aerosol optical properties, mass concentration, and chemical composition over a 2 year period at a remote site in the Negev desert, Israel (Sde Boker, 30° 51'N, 34° 47'E, 470 m above sea level). Light-scattering measurements were made at three wavelengths (450, 550, and 700 nm), using an integrating nephelometer, and included the separate determination of the backscatter fraction. Aerosol coarse and fine fractions were collected with stacked filter units; mass concentrations were determined by weighing, and the chemical composition by proton-induced X-ray emission and instrumental neutron activation analysis. The total scattering coefficient at 550 nm showed a median of 66.7 Mm-1(mean value 75.2 Mm-1, standard deviation 41.7 Mm-1) typical of moderately polluted continental air masses. Values of 1000 Mm-1and higher were encountered during severe dust storm events. During the study period, 31 such dust events were detected. In addition to high scattering levels, they were characterized by a sharp drop in the Ångström coefficient (i.e., the spectral dispersion of the light scattering) to values near zero. Mass-scattering efficiencies were obtained by a multivariate regression of the scattering coefficients on dust, sulfate, and residual components. An analysis of the contributions of these components to the total scattering observed showed that anthropogenic aerosol accounted for about 70% of scattering. The rest was dominated by the effect of the large dust events mentioned above and of small dust episodes typically occurring during midafternoon.

  14. 76 FR 25277 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. This extension gives... Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. In response...

  15. Mixing of Dust and NH3 Observed Globally over Anthropogenic Dust Sources

    NASA Technical Reports Server (NTRS)

    Ginoux, P.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Dubovik, O.; Hsu, N. C.; Van Damme, M.

    2012-01-01

    The global distribution of dust column burden derived from MODIS Deep Blue aerosol products is compared to NH3 column burden retrieved from IASI infrared spectra. We found similarities in their spatial distributions, in particular their hot spots are often collocated over croplands and to a lesser extent pastures. Globally, we found 22% of dust burden collocated with NH3, with only 1% difference between land-use databases. This confirms the importance of anthropogenic dust from agriculture. Regionally, the Indian subcontinent has the highest amount of dust mixed with NH3 (26 %), mostly over cropland and during the pre-monsoon season. North Africa represents 50% of total dust burden but accounts for only 4% of mixed dust, which is found over croplands and pastures in Sahel and the coastal region of the Mediterranean. In order to evaluate the radiative effect of this mixing on dust optical properties, we derive the mass extinction efficiency for various mixtures of dust and NH3, using AERONET sunphotometers data. We found that for dusty days the coarse mode mass extinction efficiency decreases from 0.62 to 0.48 square meters per gram as NH3 burden increases from 0 to 40 milligrams per square meter. The fine mode extinction efficiency, ranging from 4 to 16 square mters per gram, does not appear to depend on NH3 concentration or relative humidity but rather on mineralogical composition and mixing with other aerosols. Our results imply that a significant amount of dust is already mixed with ammonium salt before its long range transport. This in turn will affect dust lifetime, and its interactions with radiation and cloud properties

  16. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.

    2016-11-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES ( Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.

  17. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J J.; Deprez, G.; Farrell, William M.; hide

    2016-01-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m(exp. -1) to 100 kV m(exp. -1) have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m(exp. -1) can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface) MicroARES (Atmospheric Radiation and Electricity Sensor) Instrumentation to Mars in 2016 for the first in situ electrical measurements.

  18. Dust Devil Tracks

    NASA Image and Video Library

    2017-02-20

    Today's VIS image shows dust devil tracks on the plains of Aonia Terra. As the dust devil moves across the surface it scours the fine dust particles, revealing the darker rock surface below. Orbit Number: 66800 Latitude: -65.2605 Longitude: 239.338 Instrument: VIS Captured: 2017-01-04 04:52 http://photojournal.jpl.nasa.gov/catalog/PIA21316

  19. Niamey Dust Observations

    DOE Data Explorer

    Flynn, Connor

    2008-10-01

    Niamey aerosol are composed of two main components: dust due to the proximity of the Sahara Desert, and soot from local and regional biomass burning. The purpose of this data product is to identify when the local conditions are dominated by the dust component so that the properties of the dust events can be further studied.

  20. The evolution of episodic memory

    PubMed Central

    Allen, Timothy A.; Fortin, Norbert J.

    2013-01-01

    One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwinian evolution” [Tulving E (2002) Annu Rev Psychol 53:1–25]. Here, we review evidence supporting the alternative perspective that episodic memory has a long evolutionary history. We show that fundamental features of episodic memory capacity are present in mammals and birds and that the major brain regions responsible for episodic memory in humans have anatomical and functional homologs in other species. We propose that episodic memory capacity depends on a fundamental neural circuit that is similar across mammalian and avian species, suggesting that protoepisodic memory systems exist across amniotes and, possibly, all vertebrates. The implication is that episodic memory in diverse species may primarily be due to a shared underlying neural ancestry, rather than the result of evolutionary convergence. We also discuss potential advantages that episodic memory may offer, as well as species-specific divergences that have developed on top of the fundamental episodic memory architecture. We conclude by identifying possible time points for the emergence of episodic memory in evolution, to help guide further research in this area. PMID:23754432