Sample records for saharan dust particles

  1. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  2. Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source

    NASA Astrophysics Data System (ADS)

    Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.

    2015-12-01

    In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity

  3. Impact of Saharan dust particles on hospital admissions in Madrid (Spain).

    PubMed

    Reyes, María; Díaz, Julio; Tobias, Aurelio; Montero, Juan Carlos; Linares, Cristina

    2014-01-01

    Saharan dust intrusions make a major contribution to levels of particulate matter (PM) present in the atmosphere of large cities. We analysed the impact of different PM fractions during periods with and without Saharan dust intrusions, using time-series analysis with Poisson regression models, based on: concentrations of coarse PM (PM10 and PM10-2.5) and fine PM (PM2.5); and daily all-, circulatory- and respiratory-cause hospital admissions. While periods without Saharan dust intrusions were marked by a statistically significant association between daily mean PM2.5 concentrations and all- and circulatory-cause hospital admissions, periods with such intrusions saw a significant increase in respiratory-cause admissions associated with fractions corresponding to PM10 and PM10-2.5.

  4. Single particle chemical composition and shape of fresh and aged Saharan dust in Morocco and at Cape Verde Islands during SAMUM I and II

    NASA Astrophysics Data System (ADS)

    Kandler, K.; Lieke, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Jaenicke, R.; Müller-Ebert, D.; Weinbruch, S.

    2009-04-01

    The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosols were measured. The winter campaign of Saharan Mineral Dust Experiment II was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Aerosol particles between 100 nm and 500 μm (Morocco) respectively 50 μm (Cape Verde) in diameter were collected by nozzle and body impactors and in a sedimentation trap. The particles were investigated by electron microscopic single particle analysis and attached energy-dispersive X-ray analysis. Chemical properties as well as size and shape for each particle were recorded. Three size regimes are identified in the aerosol at Tinfou: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 μm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). At Praia, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as mixtures thereof. During low-dust periods, the aerosol is dominated by sea salt. During dust events, mineral dust takes over the majority of the particle mass up to 90 %. Particles smaller 500 nm in diameter always show a significant abundance of ammonium sulfate. The particle aspect ratio was measured for all analyzed particles. Its size dependence reflects that of the chemical

  5. Environmental factors controlling the seasonal variability in particle size distribution of modern Saharan dust deposited off Cape Blanc

    NASA Astrophysics Data System (ADS)

    Friese, Carmen A.; van der Does, Michèlle; Merkel, Ute; Iversen, Morten H.; Fischer, Gerhard; Stuut, Jan-Berend W.

    2016-09-01

    The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxy for trade-wind speed. However, there are still large uncertainties with respect to the seasonality of the particle sizes of deposited Saharan dust off northwestern Africa and the factors influencing this seasonality. We investigated a three-year time-series of grain-size data from two sediment-trap moorings off Cape Blanc, Mauritania and compared them to observed wind-speed and precipitation as well as satellite images. Our results indicate a clear seasonality in the grain-size distributions: during summer the modal grain sizes were generally larger and the sorting was generally less pronounced compared to the winter season. Gravitational settling was the major deposition process during winter. We conclude that the following two mechanisms control the modal grain size of the collected dust during summer: (1) wet deposition causes increased deposition fluxes resulting in coarser modal grain sizes and (2) the development of cold fronts favors the emission and transport of coarse particles off Cape Blanc. Individual dust-storm events throughout the year could be recognized in the traps as anomalously coarse-grained samples. During winter and spring, intense cyclonic dust-storm events in the dust-source region explained the enhanced emission and transport of a larger component of coarse particles off Cape Blanc. The outcome of our study provides important implications for climate modellers and paleo-climatologists.

  6. Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment

    NASA Astrophysics Data System (ADS)

    Ansmann, A.; Tesche, M.; Althausen, D.; Müller, D.; Seifert, P.; Freudenthaler, V.; Heese, B.; Wiegner, M.; Pisani, G.; Knippertz, P.; Dubovik, O.

    2008-02-01

    Multiwavelength lidar, Sun photometer, and radiosonde observations were conducted at Ouarzazate (30.9°N, 6.9°W, 1133 m above sea level, asl), Morocco, in the framework of the Saharan Mineral Dust Experiment (SAMUM) in May-June 2006. The field site is close to the Saharan desert. Information on the depolarization ratio, backscatter and extinction coefficients, and lidar ratio of the dust particles, estimates of the available concentration of atmospheric ice nuclei at cloud level, profiles of temperature, humidity, and the horizontal wind vector as well as backward trajectory analysis are used to study cases of cloud formation in the dust with focus on heterogeneous ice formation. Surprisingly, most of the altocumulus clouds that form at the top of the Saharan dust layer, which reaches into heights of 4-7 km asl and has layer top temperatures of -8°C to -18°C, do not show any ice formation. According to the lidar observations the presence of a high number of ice nuclei (1-20 cm-3) does not automatically result in the obvious generation of ice particles, but the observations indicate that cloud top temperatures must typically reach values as low as -20°C before significant ice production starts. Another main finding is that liquid clouds are obviously required before ice crystals form via heterogeneous freezing mechanisms, and, as a consequence, that deposition freezing is not an important ice nucleation process. An interesting case with cloud seeding in the free troposphere above the dust layer is presented in addition. Small water clouds formed at about -30°C and produced ice virga. These virga reached water cloud layers several kilometers below the initiating cloud cells and caused strong ice production in these clouds at temperatures as high as -12°C to -15°C.

  7. Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution.

    PubMed

    Telloli, Chiara; Chicca, Milvia; Pepi, Salvatore; Vaccaro, Carmela

    2017-12-21

    Southern European countries are often affected in summer by transboundary air pollution from Saharan dust. However, very few studies deal with Saharan dust pollution at high altitudes in winter. In Italy, the exceptional event occurred on February 19, 2014, colored in red the entire mountain range (Alps and Apennines) and allowed to characterize the particulate matter deposited on snow from a morphological and chemical point of view. Snow samples were collected after this event in four areas in the Alps and one in the Apennines. The particulate matter of the melted snow samples was analyzed by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) and by inductively coupled plasma mass spectrometry (ICP-MS). These analyses confirmed the presence of Saharan dust particle components in all areas with similar percentages, supported also by the positive correlations between Mg-Ca, Al-Ca, Al-Mg, and Al-K in all samples.

  8. Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Ansmann, Albert; Althausen, Dietrich; Klepel, André; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Mamouri, Rodanthi-Elisavet; Farrell, David A.; Prescod, Damien A.; Marinou, Eleni; Burton, Sharon P.; Gasteiger, Josef; Engelmann, Ronny; Baars, Holger

    2017-09-01

    Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1° N, 59.6° W), 5000-8000 km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June-July 2013, SALTRACE-3, June-July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064 nm with respective dual-wavelength (355, 532 nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12 000 km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252 ± 0.030 at 355 nm, 0.280 ± 0.020 at 532 nm, and 0.225 ± 0.022 at 1064 nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1 µm) have sizes around 1.5-2 µm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust

  9. Poleward transport of Saharan dust initiated by a Saharan cyclone.

    NASA Astrophysics Data System (ADS)

    Karam Francis, Diana Bou; Chaboureau, Jean-Pierre; Cuesta, Juan

    2016-04-01

    To enhance the understanding of the role of Saharan mineral dust in the Arctic climate system, this study focuses on dust emission and poleward transport associated with an intense Saharan cyclone that occurred over North Africa in early April 2011. Satellites observations at high spatio-temporal resolution are used in this study in order to characterize qualitatively (using MSG-SEVIRI and CALIPSO/CloudSat) and quantitatively (using MODIS and OMI) the dust activity over North Africa associated with the Saharan cyclone as well as the transport of dust toward the northern pole. Beside the observations, a simulation at high resolution is performed using the MesoNh model in order to estimation the dust load transported northward and to evaluate the dust deposition north to 60°N and its impact on the Albedo. In this study, we identify in new and important mechanism for the transport of dust over long distances toward the northern pole: the poleward migration of Saharan cyclones, in which the dust is transported toward the Arctic following a newly identified path; across the Northern Atlantic Ocean around the Icelandic Low. This path is to be added to the two preferable paths mentioned in previous studies i.e. through transport across Northern Europe and across the Atlantic Ocean around the Bermuda High. Key words: Arctic, North Africa, dust storm, dust deposition, surface albedo.

  10. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  11. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania

    NASA Astrophysics Data System (ADS)

    Friese, Carmen A.; van Hateren, Johannes A.; Vogt, Christoph; Fischer, Gerhard; Stuut, Jan-Berend W.

    2017-08-01

    Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL). In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.

  12. Cooling of the North Atlantic by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.

    2007-01-01

    Using aerosol optical depth, sea surface temperature, top-of-the-atmosphere solar radiation flux, and oceanic mixed-layer depth from diverse data sources that include NASA satellites, NCEP reanalysis, in situ observations, as well as long-term dust records from Barbados, we examine the possible relationships between Saharan dust and Atlantic sea surface temperature. Results show that the estimated anomalous cooling pattern of the Atlantic during June 2006 relative to June 2005 due to attenuation of surface solar radiation by Saharan dust remarkably resemble observations, accounting for approximately 30-40% of the observed change in sea surface temperature. Historical data analysis show that there is a robust negative correlation between atmospheric dust loading and Atlantic SST consistent with the notion that increased (decreased) Saharan dust is associated with cooling (warming) of the Atlantic during the early hurricane season (July- August-September).

  13. Shape-induced Gravitational Sorting of Saharan Dust During Transatlantic Voyage: Evidence from CALIOP Lidar Depolarization Measurements

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Kostinski, Alexander B.; Varnai, Tamas

    2013-01-01

    Motivated by the physical picture of shape-dependent air resistance and, consequently, shape-induced differential sedimentation of dust particles, we searched for and found evidence of dust particle asphericity affecting the evolution and distribution of dust-scattered light depolarization ratio (delta). Specifically, we examined a large data set of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of Saharan dust from June to August 2007. Observing along a typical transatlantic dust track, we find that (1) median delta is uniformly distributed between 2 and 5?km altitudes as the elevated dust leaves the west coast of Africa, thereby indicating uniformly random mixing of particle shapes with height; (2) vertical homogeneity of median delta breaks down during the westward transport: between 2 and 5?km delta increases with altitude and this increase becomes more pronounced with westward progress; (3) delta tends to increase at higher altitude (greater than 4?km) and decrease at lower altitude (less than 4?km) during the westward transport. All these features are captured qualitatively by a minimal model (two shapes only), suggesting that shape-induced differential settling and consequent sorting indeed contribute significantly to the observed temporal evolution and vertical stratification of dust properties. By implicating particle shape as a likely cause of gravitational sorting, these results will affect the estimates of radiative transfer through Saharan dust layers.

  14. PM10 composition during an intense Saharan dust transport event over Athens (Greece).

    PubMed

    Remoundaki, E; Bourliva, A; Kokkalis, P; Mamouri, R E; Papayannis, A; Grigoratos, T; Samara, C; Tsezos, M

    2011-09-15

    The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM(10) monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM(10) concentrations exceeded the EU limit (50 μg/m(3)) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM(10) reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes <2 μm. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles <1 μm. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions.

    PubMed

    Díaz, Julio; Linares, Cristina; Carmona, Rocío; Russo, Ana; Ortiz, Cristina; Salvador, Pedro; Trigo, Ricardo Machado

    2017-07-01

    A lot of papers have been published about the impact on mortality of Sahara dust intrusions in individual cities. However, there is a lack of studies that analyse the impact on a country and scarcer if in addition the analysis takes into account the meteorological conditions that favour these intrusions. The main aim is to examine the effect of Saharan dust intrusions on daily mortality in different Spanish regions and to characterize the large-scale atmospheric circulation anomalies associated with such dust intrusions. For determination of days with Saharan dust intrusions, we used information supplied by the Ministry of Agriculture, Food & Environment, it divides Spain into 9 main areas. In each of these regions, a representative province was selected. A time series analysis has been performed to analyse the relationship between daily mortality and PM 10 levels in the period from 01.01.04 to 31.12.09, using Poisson regression and stratifying the analysis by the presence or absence of Saharan dust advections. The proportion of days on which there are Saharan dust intrusions rises to 30% of days. The synoptic pattern is characterised by an anticyclonic ridge extending from northern Africa to the Iberian Peninsula. Particulate matter (PM) on days with intrusions are associated with daily mortality, something that does not occur on days without intrusions, indicating that Saharan dust may be a risk factor for daily mortality. In other cases, what Saharan dust intrusions do is to change the PM-related mortality behaviour pattern, going from PM 2.5 . A study such as the one conducted here, in which meteorological analysis of synoptic situations which favour Saharan dust intrusions, is combined with the effect on health at a city level, would seem to be crucial when it comes to analysing the differentiated mortality pattern in situations of Saharan dust intrusions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Atmospheric aging of dust ice nucleating particles - a combined laboratory and field approach

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Rodríguez, Sergio; García, M. Isabel; Linke, Claudia; Schnaiter, Martin; Zipori, Assaf; Crawford, Ian; Lohmann, Ulrike; Kanji, Zamin A.; Sierau, Berko

    2016-04-01

    We present INP data measured in-situ at two mostly free tropospheric locations: the High Altitude Research Station Jungfraujoch (JFJ) in the Swiss Alps, located at 3580 m above sea level (asl) and the Izaña observatory on Tenerife, off the West African shore (2373 m asl). INP concentrations were measured online with the Portable Ice Nucleation Chamber, PINC, at the Jungfraujoch in the winters of 2012, 2013 and 2014 and at Izaña in the summers of 2013 and 2014. Each measurement period lasted between 2 to 6 weeks. During summer, Izaña is frequently within the Saharan Air Layer and thus often exposed to Saharan dust events. Saharan dust also reaches the Jungfraujoch mainly during spring. For offline ice nucleation analysis in the laboratory under similar thermodynamic conditions, airborne dust was collected a) at Izaña with a cyclone directly from the air and b) collected from the surface of the Aletsch glacier close to the JFJ after deposition. Supporting measurements of aerosol particle size distributions and fluorescence were conducted at both locations, as well as cloud water isotope analysis at the Jungfraujoch and aerosol chemistry at Izaña. For both locations the origin of the INPs was investigated with a focus on dust and biological particles using back trajectories and chemical signature. Results show that dust aerosol is the dominant INP type at both locations at a temperature of 241 K. In addition to Saharan dust, also more local, basaltic dust is found at the Jungfraujoch. Biological particles are not observed to play a role for ice nucleation in clouds during winter at Jungfraujoch but are enriched in INP compared to the total aerosol at Izaña also during dust events. The comparison of the laboratory and the field measurements at Izaña indicates a good reproducibility of the field data by the collected dust samples. Field and laboratory data of the dust samples from both locations show that the dust arriving at JFJ is less ice nucleation active

  17. Ice nucleating particles in the Saharan Air Layer

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Sierau, Berko; García, M. Isabel; Rodríguez, Sergio; Alastuey, Andrés; Linke, Claudia; Schnaiter, Martin; Kupiszewski, Piotr; Kanji, Zamin A.; Lohmann, Ulrike

    2016-07-01

    This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L-1 in the deposition mode and up to 2500 std L-1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43-0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient

  18. Saharan Dust as a Causal Factor of Significant Cloud Cover Along the Saharan Air Layer in the Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, Pavel; Da Silva, Arlindo M.; Starobinet, Boris; Alpert, Pinhas

    2016-01-01

    The tropical Atlantic is frequently affected by Saharan dust intrusions. Based on MODIS cloud fraction (CF) data during the ten-year study period, we found that these dust intrusions contribute to significant cloud cover along the Saharan Air Layer (SAL). Below the temperature inversion at the SAL's base, the presence of large amounts of settling dust particles, together with marine aerosols, produces meteorological conditions suitable for the formation of shallow stratocumulus clouds. The significant cloud fraction along the SAL together with clouds over the Atlantic Inter-tropical Convergence Zone contributes to the 20% hemispheric CF asymmetry between the tropical North and South Atlantic. This leads to the imbalance in strong solar radiation, which reaches the sea surface between the tropical North and South Atlantic, and, consequently, affects climate formation in the tropical Atlantic. Therefore, despite the fact that, over the global ocean, there is no noticeable hemispheric asymmetry in cloud fraction, over the significant area such as the tropical Atlantic the hemispheric asymmetry in CF takes place. Saharan dust is also the major contributor to hemispheric aerosol asymmetry over the tropical Atlantic. The NASA GEOS-5 model with aerosol data assimilation was used to extend the MERRA reanalysis with five atmospheric aerosol species (desert dust, sulfates, organic carbon, black carbon, and sea-salt). The obtained ten-year (2002 - 2012) MERRA-driven aerosol reanalysis dataset (aka MERRAero) showed that, over the tropical Atlantic, dust and carbonaceous aerosols were distributed asymmetrically relative to the equator, while other aerosol species were distributed more symmetrically.

  19. Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Cacciani, Marco; Veselovskii, Igor; Dubovik, Oleg; Kolgotin, Alexey

    2012-04-01

    The Raman lidar system BASIL was operational in Achern (Black Forest) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The system performed continuous measurements over a period of approx. 36 h from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, capturing the signature of a severe Saharan dust outbreak episode. The data clearly reveal the presence of two almost separate aerosol layers: a lower layer located between 1.5 and 3.5 km above ground level (a.g.l.) and an upper layer extending between 3.0 and 6.0 km a.g.l. The time evolution of the dust cloud is illustrated and discussed in the paper in terms of several optical parameters (particle backscatter ratio at 532 and 1064 nm, the colour ratio and the backscatter Angström parameter). An inversion algorithm was used to retrieve particle size and microphysical parameters, i.e., mean and effective radius, number, surface area, volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution (PSD), from the multi-wavelength lidar data of particle backscattering, extinction and depolarization. The retrieval scheme employs Tikhonov's inversion with regularization and makes use of kernel functions for randomly oriented spheroids. Size and microphysical parameters of dust particles are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the presence of a fine mode with radii of 0.1-0.2 μm and a coarse mode with radii of 3-5 μm both in the lower and upper dust layers, and the dominance in the upper dust layer of a coarse mode with radii of 4-5 μm. Effective radius varies with altitude in the range 0.1-1.5 μm, while volume concentration is found to not exceed 92 μm3 cm-3. The real and imaginary part of the complex refractive index vary in the range 1.4-1.6 and 0.004-0.008, respectively.

  20. Single particle chemical composition, state of mixing and shape of fresh and aged Saharan dust in Morocco and at Cape Verde Islands during SAMUM I and II

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Emmel, Carmen; Ebert, Martin; Lieke, Kirsten; Müller-Ebert, Dörthe; Schütz, Lothar; Weinbruch, Stephan

    2010-05-01

    The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosol was measured. The winter campaign of Saharan Mineral Dust Experiment II in 2008 was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Ground-based and airborne measurements were performed in the winter season, where mineral dust from the Western Sahara and biomass burning aerosol from the Sahel region occurred. Samples were collected with a miniature impactor system, a sedimentation trap, a free-wing impactor, and a filter sampler. Beryllium discs as well as carbon coated nickel discs, carbon foils, and nuclepore and fiber filters were used as sampling substrates. The size-resolved particle aspect ratio and the chemical composition are determined by scanning electron microscopy and energy-dispersive X-ray microanalysis of single particles. Mineralogical bulk composition is determined by X-ray diffraction analysis. In Morocco, three size regimes are identified in the aerosol: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 µm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 µm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). More detailed results are found in Kandler et al. (2009) At Praia, Cape Verde, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as

  1. Long-range-transported Saharan dust in the Caribbean - an electron microscopy perspective of aerosol composition and modification

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Hartmann, Markus; Ebert, Martin; Weinbruch, Stephan; Weinzierl, Bernadett; Walser, Adrian; Sauer, Daniel; Wadinga Fomba, Khanneh

    2015-04-01

    From June to July in 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was performed in the Caribbean. Airborne aerosol sampling was performed onboard the DLR Falcon aircraft in altitudes between 300 m and 5500 m. Ground-based samples were collected at Ragged Point (Barbados, 13.165 °N, 59.432 °W) and at the Cape Verde Atmospheric Observatory (Sao Vicente, 16.864 °N, 24.868 °W). Different types of impactors and sedimentation samplers were used to collect particles between 0.1 µm and 4 µm (airborne) and between 0.1 µm and 100 µm (ground-based). Particles were analyzed by scanning electron microscopy with attached energy-dispersive X-ray analysis, yielding information on particle size, particle shape and chemical composition for elements heavier than nitrogen. A particle size correction was applied to the chemical data to yield better quantification. A total of approximately 100,000 particles were analyzed. For particles larger than 0.7 µm, the aerosol in the Caribbean during the campaign was a mixture of mineral dust, sea-salt at different aging states, and sulfate. Inside the Saharan dust plume - outside the marine boundary layer (MBL) - the aerosol is absolutely dominated by mineral dust. Inside the upper MBL, sea-salt exists as minor component in the aerosol for particles smaller than 2 µm in diameter, larger ones are practically dust only. When crossing the Soufriere Hills volcano plume with the aircraft, an extremely high abundance of small sulfate particles could be observed. At Ragged Point, in contrast to the airborne measurements, aerosol is frequently dominated by sea-salt particles. Dust relative abundance at Ragged Point has a maximum between 5 µm and 10 µm particles diameter; at larger sizes, sea-salt again prevails due to the sea-spray influence. A significant number of dust particles larger than 20 µm was encountered. The dust component in the Caribbean - airborne as well as ground

  2. Saharan Dust on the Move

    NASA Image and Video Library

    2017-12-08

    A piece of Africa—actually lots of them—began to arrive in the Americas in June 2014. On June 23, a lengthy river of dust from western Africa began to push across the Atlantic Ocean on easterly winds. A week later, the influx of dust was affecting air quality as far away as the southeastern United States. This composite image, made with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPP, shows dust heading west toward South America and the Gulf of Mexico on June 25, 2014. The dust flowed roughly parallel to a line of clouds in the intertropical convergence zone, an area near the equator where the trade winds come together and rain and clouds are common. In imagery captured by the Moderate Resolution Imaging Spectroradiometer (MODIS), the dust appeared to be streaming from Mauritania, Senegal, and Western Sahara, though some of it may have originated in countries farther to the east. Saharan dust has a range of impacts on ecosystems downwind. Each year, dust events like the one pictured here deliver about 40 million tons of dust from the Sahara to the Amazon River Basin. The minerals in the dust replenish nutrients in rainforest soils, which are continually depleted by drenching, tropical rains. Research focused on peat soils in the Everglades show that African dust has been arriving regularly in South Florida for thousands of years as well. In some instances, the impacts are harmful. Infusion of Saharan dust, for instance, can have a negative impact on air quality in the Americas. And scientists have linked African dust to outbreaks of certain types of toxic algal blooms in the Gulf of Mexico and southern Florida. Read more: 1.usa.gov/1snkzmS NASA images by Norman Kuring, NASA’s Ocean Color web. Caption by Adam Voiland. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and

  3. Impact of Saharan dust events on radionuclide levels in Monaco air and in the water column of the northwest Mediterranean Sea.

    PubMed

    Pham, Mai Khanh; Chamizo, Elena; Mas Balbuena, José Luis; Miquel, Juan-Carlos; Martín, Jacobo; Osvath, Iolanda; Povinec, Pavel P

    2017-01-01

    Characterization of atmospheric aerosols collected in Monaco (2004-2008) and in sediment traps at 200 m and 1000 m water depths at the DYFAMED (Dynamics of Atmospheric Fluxes in the Mediterranean Sea) station (2004) was carried out to improve our understanding of the impact of Saharan dust on ground-level air and on the water column. Activity concentrations of natural ( 210 Pb, 210 Po, uranium and radium isotopes) and anthropogenic ( 137 Cs, 239 Pu, 240 Pu, and 239+240 Pu) radionuclides and their isotopic ratios confirmed a Saharan impact on the investigated samples. In association with a large particulate matter deposition event in Monaco on 20 February 2004, the 137 Cs (∼40 Bq kg -1 ) and 239+240 Pu (∼1 Bq kg -1 ) activities were almost a factor of two higher than other Saharan deposition dust events. This single-day particle flux represented 72% of the annual atmospheric deposition in Monaco. The annual deposition of Saharan dust on the sea was 232-407 mBq m -2 for 137 Cs and 6.8-9.8 mBq m -2 for 239+240 Pu and contributed significantly (28-37% for 137 Cs and 34-45% for 239+240 Pu) to the total annual atmospheric input to the northwest Mediterranean Sea. The 137 Cs/ 239+240 Pu activity ratios in dust samples collected during different Saharan dust events confirmed their global fallout origin or mixing with local re-suspended soil particles. In the sediment trap samples the 137 Cs activity varied by a factor of two, while the 239+240 Pu activity was constant, confirming the different behaviors of Cs (dissolved) and Pu (particle reactive) in the water column. The 137 Cs and 239+240 Pu activities of sinking particles during the period of the highest mass flux collected in 20 February 2004 at the 200 m and 1000 m water depths represented about 10% and 15%, respectively, of annual deposition from Saharan dust events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Saharan dust plume charging observed over the UK

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.

    2018-05-01

    A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.

  5. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    NASA Astrophysics Data System (ADS)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  6. Tank bromeliads capture Saharan dust in El Yunque National Forest, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Royer, Dana L.; Moynihan, Kylen M.; Ariori, Carolyn; Bodkin, Gavin; Doria, Gabriela; Enright, Katherine; Hatfield-Gardner, Rémy; Kravet, Emma; Nuttle, C. Miller; Shepard, Lisa; Ku, Timothy C. W.; O'Connell, Suzanne; Resor, Phillip G.

    2018-01-01

    Dust from Saharan Africa commonly blows across the Atlantic Ocean and into the Caribbean. Most methods for measuring this dust either are expensive if collected directly from the atmosphere, or depend on very small concentrations that may be chemically altered if collected from soil. Tank bromeliads in the dwarf forest of El Yunque National Forest, Puerto Rico, have a structure of overlapping leaves used to capture rainwater and other atmospheric inputs. Therefore, it is likely that these bromeliads are collecting in their tanks Saharan dust along with local inputs. Here we analyze the elemental chemistry, including rare earth elements (REEs), of tank contents in order to match their chemical fingerprint to a provenance of the Earth's crust. We find that the tank contents differ from the local soils and bedrock and are more similar to published values of Saharan dust. Our study confirms the feasibility of using bromeliad tanks to trace Saharan dust in the Caribbean.

  7. Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic

    NASA Astrophysics Data System (ADS)

    Schepanski, Kerstin; Heinold, Bernd; Tegen, Ina

    2017-09-01

    The outflow of dust from the northern African continent towards the North Atlantic is stimulated by the atmospheric circulation over North Africa, which modulates the spatio-temporal distribution of dust source activation and consequently the entrainment of mineral dust into the boundary layer, as well as the transport of dust out of the source regions. The atmospheric circulation over the North African dust source regions, predominantly the Sahara and the Sahel, is characterized by three major circulation regimes: (1) the harmattan (trade winds), (2) the Saharan heat low (SHL), and (3) the West African monsoon circulation. The strength of the individual regimes controls the Saharan dust outflow by affecting the spatio-temporal distribution of dust emission, transport pathways, and deposition fluxes.This study aims at investigating the atmospheric circulation pattern over North Africa with regard to its role favouring dust emission and dust export towards the tropical North Atlantic. The focus of the study is on summer 2013 (June to August), during which the SALTRACE (Saharan Aerosol Long-range TRansport and Aerosol-Cloud interaction Experiment) field campaign also took place. It involves satellite observations by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) flying on board the geostationary Meteosat Second Generation (MSG) satellite, which are analysed and used to infer a data set of active dust sources. The spatio-temporal distribution of dust source activation frequencies (DSAFs) allows for linking the diurnal cycle of dust source activations to dominant meteorological controls on dust emission. In summer, Saharan dust source activations clearly differ from dust source activations over the Sahel regarding the time of day when dust emission begins. The Sahara is dominated by morning dust source activations predominantly driven by the breakdown of the nocturnal low-level jet. In contrast, dust source activations in the Sahel are predominantly

  8. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    NASA Technical Reports Server (NTRS)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0

  9. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    NASA Astrophysics Data System (ADS)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  10. Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach

    NASA Astrophysics Data System (ADS)

    Hartmann, Markus; Heim, Lars-Oliver; Ebert, Martin; Weinbruch, Stephan; Kandler, Konrad

    2015-04-01

    Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach Markus Hartmann(1), Lars-Oliver Heim(2), Martin Ebert(1), Stephan Weinbruch(1), Konrad Kandler(1) The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) took place at Barbados from June 10 to July 15 2013. During this period, dust was frequently transported from Africa across the Atlantic Ocean toward the Caribbean. In this study, we investigate the atmospheric aging of the dust aerosol based on its hygroscopicity. Aerosol samples were collected ground-based at Ragged Point (13°9'54.4"N, 59°25'55.7"W) with a single round jet cascade impactor on nickel-substrates. The particles from the stage with a 50% efficiency cutoff size of 1 µm were analyzed with an Environmental Scanning Electron Microscope (ESEM) equipped with an energy-dispersive X-ray detector (EDX) and a cooling stage. In an initial automated run, information on particle size and chemical composition for elements heavier than carbon were gathered. Afterwards, electron microscope images of the same sample areas as before were taken during a stepwise increase of relative humidities (between 50 % and 92%), so that the hygroscopic growth of the droplets could be directly observed. The observed hygroscopic growth can be correlated to the chemical composition of the respective particles. For the automated analysis of several hundred images of droplets an image processing algorithm in Python was developed. The algorithm is based on histogram equalization and watershed segmentation. Since SEM images can only deliver two-dimensional information, but the hygroscopic growth factor usually refers to the volume of a drop, Atomic Force Microscopy (AFM) was used to derive an empirical function for the drop volume depending on the apparent drop diameter in the electron images. Aside from the mineral dust, composed of mostly silicates and

  11. Millennial-scale fluctuations in Saharan dust supply across the decline of the African Humid Period

    NASA Astrophysics Data System (ADS)

    Zielhofer, Christoph; von Suchodoletz, Hans; Fletcher, William J.; Schneider, Birgit; Dietze, Elisabeth; Schlegel, Michael; Schepanski, Kerstin; Weninger, Bernhard; Mischke, Steffen; Mikdad, Abdeslam

    2017-09-01

    The Sahara is the world's largest dust source with significant impacts on trans-Atlantic terrestrial and large-scale marine ecosystems. Contested views about a gradual or abrupt onset of Saharan aridity at the end of the African Humid Period dominate the current scientific debate about the Holocene Saharan desiccation. In this study, we present a 19.63 m sediment core sequence from Lake Sidi Ali (Middle Atlas, Morocco) at the North African desert margin. We reconstruct the interaction between Saharan dust supply and Western Mediterranean hydro-climatic variability during the last 12,000 yr based on analyses of lithogenic grain-sizes, XRF geochemistry and stable isotopes of ostracod shells. A robust chronological model based on AMS 14C dated pollen concentrates supports our multi-proxy study. At orbital-scale there is an overall increase in southern dust supply from the Early Holocene to the Late Holocene, but our Northern Saharan dust record indicates that a gradual Saharan desiccation was interrupted by multiple abrupt dust increases before the 'southern dust mode' was finally established at 4.7 cal ka BP. The Sidi Ali record features millennial peaks in Saharan dust increase at about 11.1, 10.2, 9.4, 8.2, 7.3, 6.6, 6.0, and 5.0 cal ka BP. Early Holocene Saharan dust peaks coincide with Western Mediterranean winter rain minima and North Atlantic cooling events. In contrast, Late Holocene dust peaks correspond mostly with prevailing positive phases of the North Atlantic Oscillation. By comparing with other North African records, we suggest that increases in Northern Saharan dust supply do not solely indicate sub-regional to regional aridity in Mediterranean Northwest Africa but might reflect aridity at a trans-Saharan scale. In particular, our findings support major bimillennial phases of trans-Saharan aridity at 10.2, 8.2, 6.0 and 4.2 cal ka BP. These phases coincide with North Atlantic cooling and a weak African monsoon.

  12. Characterization of Saharan mineral dust transported to the Colle Gnifetti glacier (Southern Alps, Switzerland) during the last centuries.

    NASA Astrophysics Data System (ADS)

    Thevenon, Florian; Poté, John; Adatte, Thierry; Chiaradia, Massimo; Hueglin, Christoph; Collaud Coen, Martine

    2010-05-01

    The Southern Alps act as a barrier to the southwesterly dust-laden winds from the Sahara, and the Colle Gnifetti saddle (45°55'N, 7°52'E, 4455 m asl in the Monte Rosa Massif) satisfactory conserves the history of climatic conditions over the last millennium (Thevenon et al., 2009). Therefore, the Colle Gnifetti glacier is a suitable site for i) studying the composition of past Saharan aeolian dust emissions, and for ii) comparing modern dust emissions with preindustrial emissions. The mineral aerosols entrapped in the ice core have been analyzed for their physical (grain-size by image analysis), mineralogical (by X-ray diffraction), and chemical composition (by ICPMS and by mass spectrometry for Sr and Nd isotopic ratios). The mineral dust characteristics are then compared with present day Saharan dust samples collected at the high altitude research station Jungfraujoch (46°55'N, 7°98E, 3580 asl) and with documented potential dust sources. Results show that i) the increases in atmospheric dustiness correlate with larger mean grain size, and that ii) the dust emissions increase after the industrial revolution, probably as a large-scale atmospheric circulation response to anthropogenic climate forcing (Shindell et al., 2001; Thevenon et al., 2009). However, geochemical variations in aeolian mineral particles also indicate that the source areas of the dust, which are now situated in northern and north-western part of the Saharan desert (Collaud Coen et al., 2004), did not change significantly throughout the past. Therefore, the mineralogy (e.g. illite, kaolinite, chlorite, palygorskite) and the geochemistry of the paleo-dust particles transported to Europe, are relevant to assess past African dust sources. REFERENCES: - Thevenon, F., F. S. Anselmetti, S. M. Bernasconi, and M. Schwikowski (2009). Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J. Geophys. Res., 114, D17102, doi:10

  13. Impact of Radiatively Interactive Dust Aerosols in the NASA GEOS-5 Climate Model: Sensitivity to Dust Particle Shape and Refractive Index

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.

    2013-01-01

    We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a

  14. Saharan dust, convective lofting, aerosol enhancement zones, and potential impacts on ice nucleation in the tropical upper troposphere

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, B. E.; Ferrare, R. A.; Sauter, K. E.; L'Ecuyer, T. S.; van den Heever, S. C.; Heymsfield, A. J.; Ismail, S.; Diskin, G. S.

    2017-08-01

    Dry aerosol size distributions and scattering coefficients were measured on 10 flights in 32 clear-air regions adjacent to tropical storm anvils over the eastern Atlantic Ocean. Aerosol properties in these regions were compared with those from background air in the upper troposphere at least 40 km from clouds. Median values for aerosol scattering coefficient and particle number concentration >0.3 μm diameter were higher at the anvil edges than in background air, showing that convective clouds loft particles from the lower troposphere to the upper troposphere. These differences are statistically significant. The aerosol enhancement zones extended 10-15 km horizontally and 0.25 km vertically below anvil cloud edges but were not due to hygroscopic growth since particles were measured under dry conditions. Number concentrations of particles >0.3 μm diameter were enhanced more for the cases where Saharan dust layers were identified below the clouds with airborne lidar. Median number concentrations in this size range increased from 100 l-1 in background air to 400 l-1 adjacent to cloud edges with dust below, with larger enhancements for stronger storm systems. Integration with satellite cloud frequency data indicates that this transfer of large particles from low to high altitudes by convection has little impact on dust concentrations within the Saharan Air Layer itself. However, it can lead to substantial enhancement in large dust particles and, therefore, heterogeneous ice nuclei in the upper troposphere over the Atlantic. This may induce a cloud/aerosol feedback effect that could impact cloud properties in the region and downwind.

  15. The sensitivity of a general circulation model to Saharan dust heating

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Carlson, T.; Mintz, Y.

    1984-01-01

    During the Northern summer, sporadic outbreaks of wind borne Saharan dust are carried out over the Atlantic by the tropical easterlies. Optical depths due to the dust can reach 3 near the African coast, and the dust cloud can be detected as far west as the Caribbean Sea (Carlson, 1979). In order to obtain insight into the possible effects of Saharan dust on the weather and climate of North Africa and the tropical Atlantic Ocean, simulation experiments have been performed with the Climate Model of the Goddard Laboratory for Atmospheric Sciences. The most recent version of the model is described by Randall (1982). The model produces realistic simulations of many aspects of the observed climate and its seasonal variation.

  16. Following Saharan Dust Outbreak Toward The Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Koren, I.; Rudich, Y.; Flores, M.

    2008-12-01

    The role of the Amazon rainforest on earth climatic system is well recognized. To keep forest wellbeing and the fragile balance between the rainforest and the atmosphere, the Amazon must contain a satisfactory amount of nutrients to support the plants. The extensive rain and floods wash most of the soluble nutrients from the rainforest soil, leaving behind acidic kaolinite clay or sandy soil, with limited minerals for plant growth. It was suggested that lack of mineral in the soil may be replenished by deposition of Saharan mineral dust. Using remote sensing data (from the A-train satellites constellation) following with in-situ measurements (as part of the AMazonian Aerosol CharacteriZation Experiment (AMZE) campaign), ground-based data (from AErosol RObotic NETwork (AERONET)) and back trajectory calculations, we analyzed Saharan dust transport toward the Amazon basin during the AMZE period (Feb 7 to Mar 14, 2008). Dust mass, sink, vertical distribution and surface wind speeds were analyzed over the Bodele depression (located in Chad), where most of the dust is emitted, along the Atlantic Ocean and near the Brazilian coastline. Using an integrated data analysis approach we followed dust packages from their emission in the Sahara to their sink in the Amazon forest.

  17. The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)

    NASA Astrophysics Data System (ADS)

    Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.

    2017-12-01

    Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.

  18. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  19. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany

    NASA Astrophysics Data System (ADS)

    Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike

    2017-11-01

    The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.

  20. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters.

    PubMed

    Westrich, Jason R; Ebling, Alina M; Landing, William M; Joyner, Jessica L; Kemp, Keri M; Griffin, Dale W; Lipp, Erin K

    2016-05-24

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust-Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  1. Enrichment of Mineral Dust Storm Particles with Sea Salt Elements - Using bulk and Single Particle Analyses

    NASA Astrophysics Data System (ADS)

    Mamane, Y.; Perrino, C.; Yossef, O.

    2009-12-01

    Mineral aerosol emitted from African and Asian deserts plays an important role in the atmosphere. During their long-range transport, the physical and chemical properties of mineral dust particles change due to heterogeneous reactions with trace gases, coagulation with other particles, and in-cloud processing. These processes affect the optical and hygroscopic properties of dust particles, and in general influencing the physics and chemistry of the atmosphere. Four African and Arabian dust storm episodes affecting the East Mediterranean Coast in the spring of 2006 have been characterized, to determine if atmospheric natural dust particles are enriched with sea salt and anthropogenic pollution. Particle samplers included PM10 and manual dichotomous sampler that collected fine and coarse particles. Three sets of filters were used: Teflon filters for gravimetric, elemental and ionic analyses; Pre-fired Quartz-fiber filters for elemental and organic carbon; and Nuclepore filters for scanning electron microscopy analysis. Computer-controlled scanning electron microscopy (Philips XL 30 ESEM) was used to analyze single particle, for morphology, size and chemistry of selected filter samples. A detailed chemical and microscopical characterization has been performed for the particles collected during dust event days and during clear days. The Saharan and Arabian air masses increased significantly the daily mass concentrations of the coarse and the fine particle fractions. Carbonates, mostly as soil calcites mixed with dolomites, and silicates are the major components of the coarse fraction, followed by sea salt particles. In addition, the levels of anthropogenic heavy metals and sea salt elements registered during the dust episode were considerably higher than levels recorded during clear days. Sea salt elements contain Na and Cl, and smaller amounts of Mg, K, S and Br. Cl ranges from 300 to 5500 ng/m3 and Na from 100 to almost 2400 ng/m3. The Cl to Na ratio on dusty days in

  2. Modeling of intercontinental Saharan dust transport: What consequences on atmospheric concentrations and deposition fluxes in the Caribbean?

    NASA Astrophysics Data System (ADS)

    Laurent, Benoit; Formenti, Paola; Desboeufs, Karine; Vincent, Julie; Denjean, Cyrielle; Siour, Guillaume; Mayol-Bracero, Olga L.

    2015-04-01

    The Dust Aging and Transport from Africa to the Caribbean (Dust-AttaCk) project aims todocument the physical and optical properties of long-range transported African dust to the Caribbean. A comprehensive field campaign was conducted in Cape San Juan, Puerto Rico (18.38°N 65.62°W) during June-July 2012, offering the opportunity to constrain the way Saharan dust are transported from North Africa to the Caribbean by 3D models. Our main objectives are: (i) to discuss the ability of the CHIMERE Eulerian off-line chemistry-transport model to simulate atmospheric Saharan dust loads observed in the Caribbean during the Dust-AttaCk campaign, as well as the altitude of the dust plumes transport over the North Atlantic Ocean up to the Caribbean, (ii) to study the main Saharan dust emission source areas contributing to the dust loads in the Caribbean, (iii) to estimate the Saharan dust deposition in the Caribbean for deposition events observed during the Dust-AttaCk campaign. The dust model outputs are hourly dust concentration fields in µg m-3 for 12 aerosol size bins up to 30 µm and for each of the 15 sigma pressure vertical levels, column integrated dustaerosol optical depth (AOD), and dry and wet deposition fluxes.The simulations performed for the Dust-AttaCk campaign period as well as satellite observations (MODIS AOD, SEVIRI AOD) are used to identify the Saharan emission source regions activated and to study the evolution of the dust plumes tothe Cape San Juan station. In complement, the vertical transport of dust plumes transported from Saharan dust sources and over the North Atlantic Ocean is investigated combining model simulations and CALIOP observations. Aerosol surface concentrations and AOD simulated with CHIMERE are compared with sin-situ observations at Cape San Juan and AERONET stations. Wet deposition measurements performed allow us to constrain dust deposition flux simulated in the Caribbean after long-range transport.

  3. Community variability of bacteria in alpine snow (Mont Blanc) containing Saharan dust deposition and their snow colonisation potential.

    PubMed

    Chuvochina, Maria S; Marie, Dominique; Chevaillier, Servanne; Petit, Jean-Robert; Normand, Philippe; Alekhina, Irina A; Bulat, Sergey A

    2011-01-01

    Microorganisms uplifted during dust storms survive long-range transport in the atmosphere and could colonize high-altitude snow. Bacterial communities in alpine snow on a Mont Blanc glacier, associated with four depositions of Saharan dust during the period 2006-2009, were studied using 16S rRNA gene sequencing and flow cytometry. Also, sand from the Tunisian Sahara, Saharan dust collected in Grenoble and Mont Blanc snow containing no Saharan dust (one sample of each) were analyzed. The bacterial community composition varied significantly in snow containing four dust depositions over a 3-year period. Out of 61 phylotypes recovered from dusty snow, only three phylotypes were detected in more than one sample. Overall, 15 phylotypes were recognized as potential snow colonizers. For snow samples, these phylotypes belonged to Actinobacteria, Proteobacteria and Cyanobacteria, while for Saharan sand/dust samples they belonged to Actinobacteria, Bacteroidetes, Deinococcus-Thermus and Proteobacteria. Thus, regardless of the time-scale, Saharan dust events can bring different microbiota with no common species set to alpine glaciers. This seems to be defined more by event peculiarities and aeolian transport conditions than by the bacterial load from the original dust source.

  4. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  5. Relative Contributions of the Saharan and Sahelian Sources to the Atmospheric Dust Load Over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Chin, M.; Torres, O.; Prospero, J.; Dubovik, O.; Holben, B.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It has long been recognized that Saharan desert is the major source for long range transport of mineral dust over the Atlantic. The contribution from other natural sources to the dust load over the Atlantic has generally been ignored in previous model studies or been replaced by anthropogenically disturbed soil emissions. Recently, Prospero et.at. have identified the major dust sources over the Earth using TOMS aerosol index. They showed that these sources correspond to dry lakes with layers of sediment deposed in the late Holocene or Pleistocene. One of the most active of these sources seem to be the Bodele depression. Chiapello et al. have analyzed the mineralogical composition of dust on the West coast of Africa. They found that Sahelian dust events are the most intense but are less frequent than Saharan plumes. This suggests that the Bodele depression could contribute significantly to the dust load over the Atlantic. The relative contribution of the Sahel and Sahara dust sources is of importance for marine biogeochemistry or atmospheric radiation, because each source has a distinct mineralogical composition. We present here a model study of the relative contributions of Sahara and Sahel sources to the atmospheric dust aerosols over the North Atlantic. The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate dust distribution in 1996-1997. Dust particles are labeled depending on their sources. In this presentation, we will present the comparison between the model results and observations from ground based measurements (dust concentration, optical thickness and size distribution) and satellite data (TOMS aerosol index). The relative contribution of each source will then be analyzed spatially and temporally.

  6. AEROSE 2004 - An Interdisciplinary Atmosphere-Ocean Saharan Dust Expedition

    NASA Astrophysics Data System (ADS)

    Clemente-Colón, P.

    2004-05-01

    The NOAA Center for Atmospheric Sciences (NCAS) is sponsoring a Trans-Atlantic Saharan Dust AERosol and Ocean Science Expedition (AEROSE) aboard the NOAA Ship Ronald H. Brown in March 2004. The fundamental purpose of this aerosol cruise is to study the impacts and microphysical evolution of Saharan dust aerosol as it is transported across the Atlantic Ocean. The mission encompasses both, atmospheric and oceanographic components. Participating institutions include Howard University, NCAS lead institution, the University of Puerto Rico at Mayagüez, the Canary Institute of Marine Sciences, the Spanish Institute of Oceanography, the Laboratory of Atmospheric Physics Siméon Fongang, the University of Miami Rosenstiel School of Marine and Atmospheric Science, the University of Washington Applied Physics Laboratory, NASA Goddard Space Flight Center, the NOAA Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison, NASA Jet Propulsion Laboratory, and the NOAA/NESDIS Office of Research and Applications. This collaboration provides unique atmospheric and oceanic observations across the North Tropical Atlantic during eastward and westward tracks during a period of nearly one month. Characterization of microphysical properties of Saharan dust aerosol is done trough direct observations of mass, size, and particle number distributions, chemical composition, spatial distributions, and air chemistry. Aerosol radiative properties are studied through a suite of sensors that include a Multi-Angle Absorption Photometer (MAAP), the Marine-Atmosphere Emitted Radiance Interferometer (M-AERI), sunphotometers, and an assortment of other radiometers. Characterization of atmospheric conditions is done through a combination of over 250 radiosonde and ozonesonde launches at 3 to 5 hour intervals during the duration of the cruise and in coordination with satellite overpasses. AEROSE is also supporting the collection of bio-optics and oceanographic

  7. Determination of Radiative Forcing of Saharan Dust using Combined TOMS and ERBE Data

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Herman, Jay R.; Weaver, Clark

    1999-01-01

    The direct radiative forcing of Saharan dust aerosols has been determined by combining aerosol information derived from Nimbus-7 TOMS with radiation measurements observed at the top of atmosphere (TOA) by NOAA-9 ERBE made during February-July 1985. Cloud parameters and precipitable water derived from the NOAA-9 HIRS2 instrument were used to aid in screening for clouds and water vapor in the analyses. Our results indicate that under "cloud-free" and "dry" conditions there is a good correlation between the ERBE TOA outgoing longwave fluxes and the TOMS aerosol index measurements over both land and ocean in areas under the influence of airborne Saharan dust. The ERBE TOA outgoing shortwave fluxes were also found to correlate well with the dust loading derived from TOMS over ocean. However, the calculated shortwave forcing of Saharan dust aerosols is very weak and noisy over land for the range of solar zenith angle viewed by the NOAA-9 ERBE in 1985. Sensitivity factors of the TOA outgoing fluxes to changes in aerosol index were estimated using a linear regression fit to the ERBE and TOMS measurements. The ratio of the shortwave-to-longwave response to changes in dust loading over the ocean is found to be roughly 2 to 3, but opposite in sign. The monthly averaged "clear-sky" TOA direct forcing of airborne Saharan dust was also calculated by multiplying these sensitivity factors by the TOMS monthly averaged "clear-sky" aerosol index. Both the observational and theoretical analyses indicate that the dust layer height, ambient moisture content as well as the presence of cloud all play an important role in determining the TOA direct radiative forcing due to mineral aerosols.

  8. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters

    USGS Publications Warehouse

    Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.; Lipp, Erin K.

    2016-01-01

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrioafter natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  9. Short-term effects of particulate matter on total mortality during Saharan dust outbreaks: a case-crossover analysis in Madrid (Spain).

    PubMed

    Tobías, Aurelio; Pérez, Laura; Díaz, Julio; Linares, Cristina; Pey, Jorge; Alastruey, Andrés; Querol, Xavier

    2011-12-15

    The role of Saharan dust outbreaks on the relationship between particulate matter and daily mortality has recently been addressed in studies conducted in Southern Europe, although they have not given consistent results. We investigated the effects of coarse (PM(10-2.5)) and fine particulate matter (PM(2.5)) in Madrid on total mortality during Saharan dust and non-dust days using a case-crossover design. During Saharan dust days, an increase of 10mg/m(3) of PM(10-2.5) raised total mortality by 2.8% compared with 0.6% during non-dust days (P-value for interaction=0.0165). We found evidence of stronger adverse health effects of PM(10-2.5) during Saharan dust outbreaks effects for impacted European populations, but not for PM(2.5). Further research is needed to understand mechanisms by which Saharan dust increases risk of mortality. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Improving Air Pollution Modeling Over The Po Valley Using Saharan Dust Transport Forecasts

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M.; Nickovic, S.; Alpert, P.

    2012-04-01

    Our study shows that Saharan dust can contribute significantly to PM10 concentrations in the Po Valley. This dust contribution should be taken into account when estimating the exceedance of pollution limits. The DREAM dust model has been used for several years for producing operational dust forecasts at Tel-Aviv University, Israel. DREAM has been producing daily forecasts of 3-D distribution of dust concentrations over the Mediterranean region, Middle East, Europe, and over the Atlantic Ocean (http://wind.tau.ac.il/dust8/dust.html). In the current study, DREAM dust forecasts were used to give better model estimates of the contribution of Saharan dust to PM10 concentration over the Po Valley, in Northern Italy. This was carried out by the integration of daily Saharan dust forecasts into a mesoscale Transport Chemical Aerosol Model (TCAM). The Po Valley in Northern Italy is frequently affected by high PM10 concentrations, where both natural and anthropogenic sources play a significant role. Our study of TCAM and DREAM integration was carried out for the period May 15 - June 30, 2007, when four significant dust events were observed. The integrated TCAM-DREAM model performance was evaluated by comparing PM10 measurements with modeled PM10 concentrations. First, Saharan dust impact on TCAM performance was analyzed at eleven remote PM10 sites which had the lowest level of air pollution (PM10 ≤ 14 μg/m3) over the period under consideration. For those remote sites, the observed high PM10 concentrations during dust events stood prominently on the background of low PM10 concentrations. At the remote sites, such a strong deviation from the background level can not be attributed to anthropogenic aerosol emissions because of their distance from anthropogenic sources. The observed maxima in PM10 concentration during dust events is evidence of dust aerosol near the surface in Northern Italy. During all dust events under consideration, the integrated TCAM-DREAM model produced

  11. Intercomparison of observations and model aerosol parameters during two Saharan dust events over the southern United Kingdom

    NASA Astrophysics Data System (ADS)

    Buxmann, Joelle; Adam, Mariana; Ordonez, Carlos; Tilbee, Marie; Smyth, Tim; Claxton, Bernard; Sugier, Jacqueline; Agnew, Paul

    2015-04-01

    February 2014 values of 0.07 for 380nm. These high AOD values are attributed to poor surface air quality and elevated Saharan dust levels over much of the UK and Europe. The presence of particles above the boundary layer were observed in the vertical profiles of the attenuated backscatter signal from the LCBR in Exeter. During the evening periods of both days, the Angstrom Exponent (AE) decreased. This effect can be attributed to larger particles, with larger optical depth, indicating dust particles - in agreement with the model predictions of dust. An increase in AOD from below 0.2 at 440nm up to ~0.8 was observed at all sun photometer sites for the second period analyzed starting on 29. March. The AQUM forecasts an AOD of up to 1 at 440nm across the UK, i.e. 20% higher than the observations. The correlations of modelled PM10 with total AOD, PM2.5 with fine mode AOD and PM10-PM2.5 with coarse mode AOD, show an over-estimation of the fine mode particles. The vertical profiles of the LCBR of backscatter and extinction coefficients, plus a comparison of the integrated extinction coefficient, give further insight into the model performance.

  12. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.

    2014-06-01

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion freezing

  13. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.

    2015-01-01

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration

  14. Impacts of Saharan Dust on the Atmospheric Radiative Balance in the Caribbean during SALTRACE 2013

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gross, S.; Minikin, A.; Freudenthaler, V.; Gasteiger, J.; Mayer, B. C.

    2013-12-01

    Direct and indirect aerosol radiative effects represent one of the largest uncertainties in the modeling of the climate system. To better quantify the effects of aerosols on the Earth's radiative balance and understand important physical effects on small scales such as the influence of aerosols on clouds, detailed measurements of aerosol properties are needed to build a globally representative data set. Mineral dust is among the most abundant aerosols and the Sahara Desert constitutes its largest source. During frequent dust outbreaks thick elevated aerosol layers are formed and transported over large distances -often across the Atlantic Ocean into the Caribbean. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in June/July 2013 continues the SAMUM field experiments conducted in 2006 and 2008. It aims to study the long-range transport of Saharan mineral dust, the properties of aged mineral dust aerosol, and its impact on radiative quantities and cloud processes. The experiment led to an extensive data set on dust layers from Senegal to the Caribbean using airborne in-situ and remote sensing measurements, complemented with ground-based remote sensing and in-situ measurements on sites in Barbados and Puerto Rico as well as satellite remote sensing data. The airborne data were obtained with an extensive aerosol payload aboard the DLR-operated Falcon 20E research aircraft. The measurements cover the entire size range of atmospheric aerosol with a combination of cabin-operated and wing-mounted instruments. In addition, particle properties such as absorption coefficients and volatility are measured. A nadir-looking 2-μm Doppler-lidar system aboard the aircraft was used for wind measurements and served as a path finder for the selection of representative aerosol in-situ levels. In the Caribbean the dust usually arrives in several layers with distinct properties: the mostly undisturbed pure dust layer in altitudes up to 4-5 km

  15. A detailed characterization of the Saharan dust collected during the Fennec campaign in 2011: in situ ground-based and laboratory measurements

    NASA Astrophysics Data System (ADS)

    Rocha-Lima, Adriana; Vanderlei Martins, J.; Remer, Lorraine A.; Todd, Martin; Marsham, John H.; Engelstaedter, Sebastian; Ryder, Claire L.; Cavazos-Guerra, Carolina; Artaxo, Paulo; Colarco, Peter; Washington, Richard

    2018-01-01

    Millions of tons of mineral dust are lifted by the wind from arid surfaces and transported around the globe every year. The physical and chemical properties of the mineral dust are needed to better constrain remote sensing observations and are of fundamental importance for the understanding of dust atmospheric processes. Ground-based in situ measurements and in situ filter collection of Saharan dust were obtained during the Fennec campaign in the central Sahara in 2011. This paper presents results of the absorption and scattering coefficients, and hence single scattering albedo (SSA), of the Saharan dust measured in real time during the last period of the campaign and subsequent laboratory analysis of the dust samples collected in two supersites, SS1 and SS2, in Algeria and in Mauritania, respectively. The samples were taken to the laboratory, where their size and aspect ratio distributions, mean chemical composition, spectral mass absorption efficiency, and spectral imaginary refractive index were obtained from the ultraviolet (UV) to the near-infrared (NIR) wavelengths. At SS1 in Algeria, the time series of the scattering coefficients during the period of the campaign show dust events exceeding 3500 Mm-1, and a relatively high mean SSA of 0.995 at 670 nm was observed at this site. The laboratory results show for the fine particle size distributions (particles diameter  < 5µm and mode diameter at 2-3 µm) in both sites a spectral dependence of the imaginary part of the refractive index Im(m) with a bow-like shape, with increased absorption in UV as well as in the shortwave infrared. The same signature was not observed, however, in the mixed particle size distribution (particle diameter < 10 µm and mode diameter at 4 µm) in Algeria. Im(m) was found to range from 0.011 to 0.001i for dust collected in Algeria and 0.008 to 0.002i for dust collected in Mauritania over the wavelength range of 350-2500 nm. Differences in the mean elemental

  16. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, we investigate the relationships among Saharan dust outbreak and transport, African easterly waves (AEW), African easterly jet (AEJ) and associated convective activities of Atlantic Intertropical Convergence Zone (ITCZ) using Cloudsat-Calipso, MODIS and MERRA data. We find that a major Saharan dust outbreak is associated with the formation of a westward propagating strong cyclone around 15-25N over the western part northern Saharan. The strong cyclonic flow mobilizes and lifts the dust from the desert surface to a high elevation. As the cyclone propagate westward, it transports a thick elevated dust layer between 900 -500 hPa from the African continent to the eastern Atlantic. Cloudiness is reduced within the warm, dry dusty layer, but enhanced underneath it, possibly due to the presence of a shallow inversion layer over the marine boundary layer. The dust outbreak is linked to enhanced deep convection in the northern part of Atlantic ITCZ, abutting the southern flank of the dust layer, and a strengthening of the northward flank of the AEJ. As the dust layer spreads westward, it loses elevation and becomes increasing diffused as it reaches the central and western Atlantic. Using band pass filtered EOF analysis of MERRA winds, we find that AEWs propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are highly correlated with major dust outbreak over North Africa and associated with slower moving systems, with a quasi-periodicity of 6-9 day. On the other hand, easterly waves along the southern track are faster, with quasi-periodicity of 3-5 days. These faster easterly waves are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track by the faster waves generally leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between

  17. Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales

    PubMed Central

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  18. Airborne lidar observations of Saharan dust during FENNEC

    NASA Astrophysics Data System (ADS)

    Marenco, Franco; Garcia-Carreras, Luis; Rosenberg, Phil; McQuaid, Jim

    2013-04-01

    In June 2011 and June 2012, the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft took part in the Fennec campaign. The main purpose was to quantify and model boundary layer and aerosol processes over the Saharan "heat low" region, the greatest dust region during summer. Although the central Sahara is extremely remote, the meteorology of this region is vital in driving the West African monsoon, and the dry and dusty air layers are closely related to the formation of Atlantic tropical cyclones. In this presentation, we shall characterise these air layers using data collected with the on-board lidar together with dropsondes. The interpretation of lidar signals in this particular geometry represents a challenge (nadir observations of thick layers), but we shall show that a suitable data inversion framework is possible under certain assumptions. The quality of the lidar data will be assessed using in-situ data from the nephelometer and optical particle counters. Deep air layers containing dust have been observed up to altitude of 5-6 km above mean sea level. The analysis of temperature and dew point profiles are used to identify the boundary layer and residual layer tops, and in conjunction with lidar observations this serves to quantify the dust content of both layers. An aerosol-laden residual layer is usually found during the campaign at an altitude of 2-6 km in the morning hours, with little aerosol below. The aerosol in the boundary layer is seen to develop later when solar heating of the surface induces turbulence until in the late afternoon the top of the boundary layer reaches up to ~ 6 km. Clouds embedded in aerosol layers and aerosol-cloud interactions have also been revealed. Dust aerosol has been observed in most cases, but a thin polluted non-dusty layer has been observed during one flight.

  19. Saharan dust contribution to PM levels: The EC LIFE+ DIAPASON project

    NASA Astrophysics Data System (ADS)

    Gobbi, G. P.; Wille, H.; Sozzi, R.; Angelini, F.; Barnaba, F.; Costabile, F.; Frey, S.; Bolignano, A.; Di Giosa, A.

    2012-04-01

    The contribution of Saharan-dust advections to both daily and annual PM average values can be significant all over Southern Europe. The most important effects of dust on the number of PM exceedances are mostly observed in polluted areas and large cities. While a wide literature exists documenting episodes of Saharan dust transport towards the Euro-Mediterranean region and Europe in general, a limited number of studies are still available providing statistically significant results on the impact of Saharan dust on the particulate matter loads over the continent. A four-year (2001-2004) study performed in Rome (Italy) found these events to contribute to the average ground PM10 with about 15±10 µg/m3 on about 17% of the days in a year. Since the PM10 yearly average of many traffic stations in Rome is close to 40 μg/m3, these events can cause the PM10 concentration to exceed air quality limit values (50 μg/m3 as daily average) set by the EU Air Quality Directive 2008/50/EC. Although the European legislation allows Member States to subtract the contribution of natural sources before counting PM10 exceedances, definition of an optimal methodology to quantitatively assess such contribution is still in progress. On the basis of the current European Guidelines on the assessment of natural contributions to PM, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs", recently funded under the EC LIFE+ program) has been formulated to provide a robust, user-oriented methodology to assess the presence of desert dust and its contribution to PM levels. To this end, in addition to satellite-based data and model forecasts, the DIAPASON methodology will employ innovative and affordable technologies, partly prototyped within the project itself, as an operational Polarization Lidar-Ceilometer (laser radar) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The DIAPASON Project (2011

  20. Exploring records of Saharan dust transport and hurricanes in the Caribbean and Gulf of Mexico over recent millennia

    NASA Astrophysics Data System (ADS)

    Hayes, C. T.; Wallace, D. J.

    2017-12-01

    Locations in the northern Caribbean and Gulf of Mexico receive aerosol deposition from the summertime Saharan dust plume that is representative of atmospheric conditions over a very large expanse of the North Atlantic Ocean. A recent reconstruction of stable dust deposition in the Bahamas over the past 2 thousand years contrasts other records from the African continent which were impacted by local anthropogenic emissions. Dust deposition in the Bahamas also appeared relatively insensitive to expected changes in intertropical convergence zone position. Here, we will investigate records of Atlantic hurricane activity and Saharan dust transport, parameters which are anti-correlated today, in the Caribbean and Gulf region over the past few thousand years to further probe possible variations in Saharan dust forcings on Atlantic climate.

  1. Microphysical and Optical Properties of Saharan Dust Measured during the ICE-D Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Marenco, Franco; Brooke, Jennifer; Cotton, Richard; Taylor, Jonathan

    2017-04-01

    During August 2015, the UK FAAM BAe146 research aircraft was stationed in Cape Verde off the coast of West Africa. Measurements of Saharan dust, and ice and liquid water clouds, were taken for the ICE-D (Ice in Clouds Experiment - Dust) project - a multidisciplinary project aimed at further understanding aerosol-cloud interactions. Six flights formed part of a sub-project, AER-D, solely focussing on measurements of Saharan dust within the African dust plume. Dust loadings observed during these flights varied (aerosol optical depths of 0.2 to 1.3), as did the vertical structure of the dust, the size distributions and the optical properties. The BAe146 was fully equipped to measure size distributions covering aerosol accumulation, coarse and giant modes. Initial results of size distribution and optical properties of dust from the AER-D flights will be presented, showing that a substantial coarse mode was present, in agreement with previous airborne measurements. Optical properties of dust relating to the measured size distributions will also be presented.

  2. Modeling the Diagnostic Effects of Vegetation, Soil Albedo, and Dust on Mid-Holocene Saharan Climate

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Poulsen, C. J.; Skinner, C. B.

    2017-12-01

    Unlike today, the Mid-Holocene (MH, 6,000 BP) African Sahara comprised of mixed vegetation and permanent lakes that supported human settlements. Climate proxies including leaf wax isotope, pollen, and dust flux records suggest that African monsoonal precipitation reached 31°N, compared to 15°N today. Changes in orbital forcing are partly responsible for the intensification of the African monsoon, but alone cannot explain the more humid MH Sahara. Modeling studies have shown that vegetation and soil albedo feedbacks greatly increase Saharan rainfall but still fall short of levels indicated by proxies. A recent study proposed that reduced Saharan dust concentrations due to greater vegetation coverage further increased MH rainfall. However, this study used idealized dust concentrations to improve proxy agreement and did not include the dust aerosol indirect effects in its model physics. Here we use CESM CAM5-chem to quantify the impact of diagnostic changes in Saharan dust, including indirect effects, on MH Saharan climate and compare it to changes in orbital forcing, soil albedo, and vegetation. Consistent with previous studies, a change in MH orbital forcing alone leads to a 20% increase in summer (June-Sept.) precipitation over Northern Africa (0°-30°N, 20°W-30°E) relative to a pre-industrial control, but still fails to reach the northward extent suggested by proxies. Adding MH soil albedo or vegetation increases summer precipitation by 45% and 52%, and shifts the maximum latitudinal rainfall extent 10° and 12° northward, respectively. These increases are 2.28 and 2.64 times greater than the precipitation increase from MH orbital forcing alone. MH soil albedo results in a dust burden increase of 22%, yet MH vegetation results in a 96% reduction. Both MH soil albedo and vegetation combined increase summer precipitation by 56% and 13° northward, an increase 2.84 times greater than the orbital forcing alone, and reduces dust burden by 97%. An additional

  3. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, William K-M

    2011-01-01

    Saharan dust outbreaks not only transport large amount of dust to the northern Atlantic Ocean, but also alter African easterly jet and wave activities along the jet by changing north-south temperature gradient. Recent modeling and observational studies show that during periods of enhance outbreaks, rainfall on the northern part of ITCZ increases in conjunction with a northward shift of ITCZ toward the dust layer. In this paper, we study the radiative forcing of Saharan dust and its interactions with the Atlantic Inter-tropical Convergence Zone (ITCZ), through African easterly waves (AEW), African easterly jet (AEJ), using the Terra/Aqua observations as well as MERRA data. Using band pass filtered EOF analysis, we find that African easterly waves propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are slower, with propagation speed of 9 ms-1, and highly correlated with major dust outbreak over North Africa. On the other hand, easterly waves along the southern track are faster with propagating speed of 10 ms-1, and are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between Saharan dust layer and Atlantic ITCZ. Possible linkage between two tracks of easterly waves, as well as the long-term change of easterly wave activities and dust outbreaks, are also discussed.

  4. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  5. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...

    2014-06-27

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterizationmore » developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion

  6. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...

    2015-01-13

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. Themore » parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including

  7. Analysis of Measurements of Saharan Dust by Airborne and Ground-based Remote Sensing Methods during the Puerto Rico Dust Experiment (PRIDE)

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, E. Judd; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James; Christopher, Sundar A.; Jonsson, Haflidi H.

    2003-01-01

    For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on findings on African dust transported into the Caribbean utilizing Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum less than 0.5 and with clean marine periods of _0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged _0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a, weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of Maring et al. that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes which may impact dust vertical distribution and determine and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection couple with mixing by easterly waves and regional subsidence.

  8. A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling

    NASA Astrophysics Data System (ADS)

    PéRez, C.; Nickovic, S.; Baldasano, J. M.; Sicard, M.; Rocadenbosch, F.; Cachorro, V. E.

    2006-08-01

    A long Saharan dust event affected the western Mediterranean in the period 12-28 June 2002. Dust was present mainly between 1- and 5-km height affecting most parts of the Iberian Peninsula and reaching western/central Europe. Intensive backscatter lidar observations over Barcelona (Spain) and Sun photometer data from two stations (El Arenosillo, Spain, and Avignon, France) are used to evaluate different configurations the Dust Regional Atmospheric Modeling (DREAM) system. DREAM currently operates dust forecasts over the Mediterranean region (http://www.bsc.es/projects/earthscience/DREAM/) considering four particle size bins while only the first two are relevant for long-range transport analysis since their life time is larger than 12 hours. A more detailed bin method is implemented, and two different dust distributions at sources are compared to the operational version. Evaluations are performed at two wavelengths (532 and 1064 nm). The dust horizontal and vertical structure simulated by DREAM shows very good qualitative agreement when compared to SeaWIFS satellite images and lidar height-time displays over Barcelona. When evaluating the modeled aerosol optical depth (AOD) against Sun photometer data, significant improvements are achieved with the use of the new detailed bin method. In general, the model underpredicts the AOD for increasing Ångström exponents because of the influence of anthropogenic pollution in the boundary layer. In fact, the modeled AOD is highly anticorrelated with the observed Ångström exponents. Avignon shows higher influence of small anthropogenic aerosols which explains the better results of the model at the wavelength of 1064 nm over this location. The uncertainties of backscatter lidar inversions (20-30%) are in the same order of magnitude as the differences between the model experiments. Better model results are obtained when comparing to lidar because most of the anthropogenic effect is removed.

  9. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset

    NASA Astrophysics Data System (ADS)

    Marinou, Eleni; Amiridis, Vassilis; Binietoglou, Ioannis; Tsikerdekis, Athanasios; Solomos, Stavros; Proestakis, Emannouil; Konsta, Dimitra; Papagiannopoulos, Nikolaos; Tsekeri, Alexandra; Vlastou, Georgia; Zanis, Prodromos; Balis, Dimitrios; Wandinger, Ulla; Ansmann, Albert

    2017-05-01

    In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007-2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm-1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm-1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during

  10. Analysis of two Saharan dust events of North Africa in the Mediterranean region by Using SKIRON/Eta model

    NASA Astrophysics Data System (ADS)

    Benaouda, D.; Kallos, G.; Azzi, A.; Louka, P.; Benlefki, A.

    2009-04-01

    As it is well known established that significant ecosystems effects can be produced by pollutants generated many hundreds of kilometres away. Desert is natural laboratories containing valuable mineral deposits that were formed in the arid environment or that were exposed by erosion. Dust is a key species of many biogeochemical. One important effect of the dust cycle is triggering of various biochemical reactions between dust ingredients and the environment. The biogeochemical impact of desert dust also remains a matter of discussion regarding its contribution for different major and minor elements to terrestrial and marine systems and especially its potential fertilising role for remote oceanic areas by supplying micronutrients such as phosphorus and iron. Saharan dust is responsible for the supply of nutrients resulting in the increase of the production of the pelagic system, but competitively may remove phosphorus, through the adsorption on dust particles, contributing to the oligotrophy of the system, in addition, the presence of Si and Fe in the dust deposition may change the phytoplankton communities resulting in fast growth rates leading to blooms. In addition to direct radiative forcing, dust participates in indirect climate forcing through its role as a cloud-condensation nucleus and potential atmospheric CO2 regulator via biospheric nutrient delivery. Scattering and absorption of radiation by dust have impacts on the Earth's radiation budget, the thermal structure of the troposphere, and actinic fluxes, altering dynamical and photochemical processes. Coating of dust particles under polluted conditions can change microphysical properties and promote surface chemical. The Mediterranean Sea is a semi-enclosed basin, which receives substances sporadically from the arid regions of the Sahara desert. In such processes, dust modifies biochemistry of the Mediterranean water, changes features of the terrestrial ecosystems, and neutralises acid rains. Mineral dust

  11. The radiative effects of Saharan dust layer on the marine atmospheric layer

    NASA Astrophysics Data System (ADS)

    Abed, Mohammed

    2017-04-01

    The North African Saharan desert is one of the main sources of atmospheric dust. Since dust can be transported by winds for thousands of miles, reaching the Americas and extending across vast expanses of the tropical Atlantic Ocean, it is important to understand the influence that dust has on the radiative properties and the thermodynamic structure of the atmosphere. For climate models it is important that this is represented since the structure of the atmosphere can have important influences downwind on the development of convection, clouds, storms, precipitation and consequently radiative properties. In this study, we aim to understand the dynamic and thermodynamic properties of Saharan dust on the atmospheric structure of marine environment and to investigate the causes of the observed regions of well-mixed potential temperatures of the marine atmosphere in the presence of Saharan dust layers. We compare the influence of dust to other potentially important influences such as wind shear and air mass. To investigate this, we simulated the marine atmosphere in the presence and absence of dust using the UK Met Office Large Eddy Model (LEM) based the BOMEX case-study that is provided with the LEM and updated with observation taken during the FENNEC experiments of June 2011 and 2012. We performed LEM simulations with and without dust heating rates for an eight-hour time period. Data for meteorological profiles were used from the FENNEC aircraft measurements taken over the Atlantic Ocean near the Canary Islands. Our LEM results show that using a stratified (typical of non-dusty) atmosphere and then apply a dust heating rate the profile of potential temperature tends towards a well-mixed layer where the heating rates were applied and consistent with the observational cases. While LEM simulations for wind shear showed very little difference in the potential temperature profile and it was clear the well-mixed layer would not result. LEM simulations using dust heating

  12. Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps.

    PubMed

    Peter, Hannes; Hörtnagl, Paul; Reche, Isabel; Sommaruga, Ruben

    2014-12-01

    The diversity of airborne microorganisms that potentially reach aquatic ecosystems during rain events is poorly explored. Here, we used a culture-independent approach to characterize bacterial assemblages during rain events with and without Saharan dust influence arriving to a high mountain lake in the Austrian Alps. Bacterial assemblage composition differed significantly between samples with and without Saharan dust influence. Although alpha diversity indices were within the same range in both sample categories, rain events with Atlantic or continental origins were dominated by Betaproteobacteria, whereas those with Saharan dust intrusions were dominated by Gammaproteobacteria. The high diversity and evenness observed in all samples suggests that different sources of bacteria contributed to the airborne assemblage collected at the lake shore. During experiments with bacterial assemblages collected during rain events with Saharan dust influence, cell numbers rapidly increased in sterile lake water from initially ∼3 × 103 cell ml-1 to 3.6-11.1 x105 cells ml-1 within 4-5 days, and initially, rare taxa dominated at the end of the experiment. Our study documents the dispersal of viable bacteria associated to Saharan dust intrusions travelling northwards as far as 47° latitude.

  13. Observation of a Saharan dust outbreaks in the frame of the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Caccaini, Marco; Veselovskii, Igor; Kolgotin, Alexey

    2009-03-01

    The Raman lidar system BASIL was operational in Achern (Supersite R, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) in the frame of the Convective and Orographically-induced Precipitation Study. BASIL operated continuously over a period of approx. 36 hours from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, to cover IOPs 13 a-b. In this timeframe the signature of a severe Saharan dust outbreak episode was captured. An inversion algorithm was used to retrieve particle size distribution parameters, i.e., mean and effective radius, number, surface area, and volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution, from the multi-wavelength lidar data of particle backscattering and extinction. The inversion method employs Tikhonov's inversion with regularization. Size distribution parameters are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the dominance in the upper dust layer of a coarse mode with radii 3-4 μm. Number density and volume concentration are in the range 100-800 cm-3 and 5-40 μm3/cm3, respectively, while real and imaginary part of the complex refractive index are in the range 1.41-1.53 and 0.003-0.014, respectively.

  14. Enhanced Saharan dust input to the Levant during Heinrich stadials

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Stein, Mordechai

    2018-04-01

    The history of dust transport to the Levant during the last glacial period is reconstructed using the isotope ratios of Pb, Sr, Nd, and Hf in sediments of Lake Lisan, the last glacial Dead Sea. Exposed marginal sections of the Lisan Formation were sampled near Masada, the Perazim Valley and from a core drilled at the deep floor of the modern lake. Bulk samples and size fractions display unique isotopic fingerprints: the finest detritus fraction (<5 μm) displays higher 87Sr/86Sr and lower εNd values (0.710-0.713 and -7.0 to -9.8, respectively) relative to the coarser fractions (5-20 μm and <20 μm; 0.708-0.710 and -3.4 to -8.3) and the bulk detritus samples (0.709-0.711 and -6 to -7.5). Similarly, the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios (18.26-19.02, 15.634-15.68, and 38.25-38.82, respectively) are systematically higher in the finest detritus fraction relative to corresponding coarser fractions and bulk samples. The 87Sr/86Sr and εNd values of the finest fraction correspond with those of atmospheric dust originating from the Sahara Desert, while those of the coarse fractions are similar to loess deposits exposed in the Sinai and Negev Deserts. Pronounced excursions in the Sr-Nd-Pb isotope ratios toward more Sahara-like values coincide with the Heinrich (H) stadials 6, 5 and 1, reflecting significant increases in Saharan dust fluxes during regionally arid intervals, reflected by sharp lake level drops. Moreover, during H6 the dust came from different Saharan sources than during H1 and H5. While the relatively wet glacial climate in the Levant suppressed the transport of dust to the lake watershed, short-term hyper-arid spells during H-stadial intervals were accompanied by enhanced supply of fine Sahara dust to this region.

  15. Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; Querol, X.; Alastuey, A.; Kallos, G.; Kakaliagou, O.

    The analysis of PM10 and TSP levels recorded in rural areas from Southern and Eastern Spain (1996-1999) shows that most of the PM10 and TSP peak events are simultaneously recorded at monitoring stations up to 1000 km apart. The study of the atmospheric dynamics by back-trajectory analysis and simulations with the SKIRON Forecast System show that these high PM10 and TSP events occur when high-dust Saharan air masses are transported over the Iberian Peninsula. In the January-June period, this dust transport is mainly caused by cyclonic activity over the West or South of Portugal, whereas in the summer period this is induced by anticyclonic activity over the East or Southeast Iberian Peninsula. Most of the Saharan intrusions which exert a major influence on the particulate levels occur from May to September (63%) and in January and October. In rural areas in Northeast Spain, where the PM10 annual mean is around 18 μg PM10 m -3, the Saharan dust accounts for 4-7 annual daily exceedances of the forthcoming PM10-EU limit value (50 μg PM10 m -3 daily mean). Higher PM10 background levels are recorded in Southern Spain (30 μg PM10 m -3 as annual mean for rural areas) and very similar values are recorded in industrial and urban areas. In rural areas in Southern Spain, the Saharan dust events accounts for 10-23 annual daily exceedances of the PM10 limit value, a high number when compared with the forthcoming EU standard, which states that the limit value cannot be exceeded more than 7 days per year. The proportion of Sahara-induced exceedances with respect to the total annual exceedances is discussed for rural, urban and industrial sites in Southern Spain.

  16. The Fate of Saharan Dust Across the Atlantic and Implications for a Central American Dust Barrier

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, P.; da Silva, A.; Hlavka, D.; McGill, M.

    2011-01-01

    Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modem Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.

  17. Satellite measurements of physical properties of Saharan dust

    NASA Technical Reports Server (NTRS)

    Lee, Tae Young; Fraser, Robert S.; Kaufman, Yoram

    1986-01-01

    The physical properties of Saharan dust obtained from AVHRR and VISSR images are studied. The techniques of Fraser (1976) and Kaufman and Fraser (1985) are used to derive the aerosol optical depth, mass, and single scattering albedo for the region extending from the west coast of Africa to the Barbados Island for the period of June 21-25, 1984. Optical properties measured by satellite are compared to aircraft measurements taken near Barbados Island during the same period. Remote measurement of thermal properties is also discussed.

  18. Microbial communities established on Mont Blanc summit with Saharan dust deposition

    NASA Astrophysics Data System (ADS)

    Chuvochina, M.; Alekhina, I.; Normand, P.; Petit, J. R.; Bulat, S.

    2009-04-01

    Dust originating from the Sahara desert can be uplifted during storms, transported across the Mediterranean towards the Alpine region and deposited during snowfalls. The microbes associated with dust particles can be involved in establishing microbiota in icy environments as well as affect ecosystem and human health. Our objective was to use a culture-free DNA-based approach to assess bacterial content and diversity and furthermore, to identify ‘icy' microbes which could be brought on the Mont Blanc (MtBl) summit with Saharan dust and became living in the snow. Saharan dust fallout on MtBl summit from one event (MB5, event June 2006) vs. control libraries and that from another event (May 2008) were collected in Grenoble (SD, 200 m a.s.l.) and at Col du Dome (MB-SD, 4250 m a.s.l.). Soil from Ksar Ghilane (SS, Saharan desert, Tunisia, March 2008) was taken for overall comparison as a possible source population. Fresh snow falling in Grenoble (85) was collected as example of diversity in this area. To assess the microbial diversity 16S rRNA gene libraries (v3-v5 region) were constructed for corresponding dust-snow samples (MB5, SS, SD, 85 and MB-SD) along with clear snow samples and several controls. For both MB5 and MB-SD samples full-gene technique was evoked in attempt to differentiate reproduced bacteria from damaged DNA. Before sequencing the clones were rybotyped. All clone libraries were distinct in community composition except for some single phylotypes (or closely related groups) overlap. Thus, clone libraries from two different events that were collected at Col du Dome area within 2 year interval (MB5 and MB-SD) were different in community composition except one of the abundant phylotype from MB-SD library (Geodermatophilus sp.) which was shared (98% sequence similarity) with single representative from MB-5 library. These bacteria are pigmented and radiation-resistant, so it could be an indicator of desert origin for our sequences. For MB5 library two

  19. Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface

    NASA Astrophysics Data System (ADS)

    Herbener, Stephen R.; Saleeby, Stephen M.; Heever, Susan C.; Twohy, Cynthia H.

    2016-10-01

    As a tropical cyclone traverses the Saharan Air Layer (SAL), the storm will spatially redistribute the dust from the SAL. Dust deposited on the surface may affect ocean fertilization, and dust transported to the upper levels of the troposphere may impact radiative forcing. This study explores the relative amounts of dust that are vertically redistributed when a tropical cyclone crosses the SAL. The Regional Atmospheric Modeling System (RAMS) was configured to simulate the passage of Tropical Storm Debby (2006) through the SAL. A dust mass budget approach has been applied, enabled by a novel dust mass tracking capability of the model, to determine the amounts of dust deposited on the ocean surface and transferred aloft. The mass of dust removed to the ocean surface was predicted to be nearly 2 orders of magnitude greater than the amount of dust transported to the upper troposphere.

  20. Dust emission and transport associated with a Saharan depression: February 2007 case

    NASA Astrophysics Data System (ADS)

    Bou Karam, Diana; Flamant, Cyrille; Cuesta, Juan; Pelon, Jacques; Williams, Earle

    2010-01-01

    The dust activity over North Africa associated with the Saharan depression event in February 2007 is investigated by mean of spaceborne observations, ground-based measurements, and mesoscale simulation with Meso-NH. The main characteristics of the cyclone as well as the meteorological conditions during this event are described using the European Centre for Medium-Range Weather Forecasts (ECMWF). The dust storm and cloud cover over North Africa is thoroughly described combining for the first time Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) images for the spatiotemporal evolution and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat observations for the vertical distribution. The Saharan depression formed over Algeria in the lee of the Atlas Mountains on the afternoon of 20 February in response to midlatitude trough intrusion. It migrated eastward with a speed of 11 m s-1 and reached Libya on 22 February before exiting the African continent toward the Mediterranean Sea on 23 February. The horizontal scale of the cyclone at the surface varied between 800 and 1000 km during its lifetime. On the vertical the cyclone extended over 8 km, and a potential vorticity of 2 potential vorticity units (PVU) was reported at its center at 3 km in altitude. The cyclone was characterized by a surface pressure anomaly of about 9 hPa with respect to the environment, a warm front typified at the surface by an increase in surface temperature of 5°C, and a sharp cold front characterized by a drop in surface temperature of 8°C and an increase in 10 m wind speed of 15 m s-1. The cyclone provided dynamical forcing that led to strong near-surface winds and produced a major dust storm over North Africa. The dust was transported all around the cyclone leaving a clear eye at its center and was accompanied by a deep cloud band along the northwestern edge of the cyclone. On the vertical, slanted dust layers were consistently observed during the

  1. A Northward Shift of the North Atlantic Ocean Intertropical Convergence Zone in Response to Summertime Saharan Dust Outbreaks

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Lau, K. M.; Kim, Kyu-Myong

    2010-01-01

    The influence on the summertime North Atlantic Ocean inter-tropical convergence zone (ITCZ) of Saharan dust outbreaks is explored using nine years of continuous satellite observations and atmospheric reanalysis products. During dust outbreak events rainfall along the ITCZ shifts northward by 1 to 4 degrees latitude. Dust outbreaks coincide with warmer lower-tropospheric temperatures compared to low dust conditions, which is attributable to advection of the warm Saharan Air Layer, enhanced subtropical subsidence, and radiative heating of dust. The enhanced positive meridional temperature gradient coincident with dust outbreaks is accompanied by an acceleration of the easterly winds on the n011h side of the African Easterly Jet (AEJ). The center of the positive vorticity region south of the AEJ moves north drawing the center of low-level convergence and ITCZ rainfall northward with it. The enhanced precipitation on the north side of the ITCZ occurs in spite of widespread sea surface temperature cooling north of the ITCZ owing to reduced surface solar insolation by dust scattering.

  2. Dust storm off Western Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The impacts of Saharan dust storms reach far beyond Africa. Wind-swept deserts spill airborne dust particles out over the Atlantic Ocean where they can enter trade winds bound for Central and North America and the Caribbean. This Moderate Resolution Imaging Spectroradiometer (MODIS) image shows a dust storm casting an opaque cloud of cloud across the Canary Islands and the Atlantic Ocean west of Africa on June 30, 2002. In general it takes between 5 and 7 days for such an event to cross the Atlantic. The dust has been shown to introduce foreign bacteria and fungi that have damaged reef ecosystems and have even been hypothesized as a cause of increasing occurrences of respiratory complaints in places like Florida, where the amount of Saharan dust reaching the state has been increasing over the past 25 years.

  3. Characterization of PM2.5 chemical composition at the Demokritos suburban station, in Athens Greece. The influence of Saharan dust.

    PubMed

    Vasilatou, Vasiliki; Diapouli, Evangelia; Abatzoglou, Dimitrios; Bakeas, Evangelos B; Scoullos, Michael; Eleftheriadis, Konstantinos

    2017-04-01

    The aim of this work is to study the atmospheric concentrations of selected major and trace elements and ions found in PM 2.5 , at a suburban site in Athens, Greece, and discuss on the impact of the different sources. Special focus is given to the influence of Saharan dust episodes. The seasonal variability in the metal and ion concentrations is also examined. The results show that PM 2.5 mass concentrations are significantly influenced by Saharan dust events; it is observed that when the PM 2.5 concentration is higher than 25 μg/m 3 , five out of six times, the air mass crossed North Africa at an altitude within the boundary layer. Fe is found to be the element with the more significant seasonal variability, displaying much higher concentrations during cold period. The frequent Saharan dust intrusions in the cold period of this dataset may explain this result. Mineral dust and secondary aerosol are the main PM 2.5 components (29 and 34%, respectively). During Saharan dust events, the concentration of mineral dust is increased by 35% compared to the days without dust intrusions, while an increase of 68% of the sea salt is also observed. During event days, PM 2.5 concentrations are also increased by 14%. Anthropogenic components do not decrease during those days, while sulfate displays even a slight increase, suggesting enrichment of mineral dust with secondary sulfates. The results indicate that African dust intrusions add a rather significant PM pollution load even in the PM 2.5 fraction, with implication to population exposure and human health.

  4. Electrostatic effects on dust particles in space

    NASA Astrophysics Data System (ADS)

    Leung, Philip; Wuerker, Ralph

    1992-02-01

    The star scanner of the Magellan spacecraft experienced operational anomalies continuously during Magellan's journey to Venus. These anomalies were attributed to the presence of dust particles in the vicinity of the spacecraft. The dust particles, which were originated from the surface of thermal blankets, were liberated when the electrostatic force acting on them was of sufficient magnitude. In order to verify this hypothesis, an experimental program was initiated to study the mechanisms responsible for the release of dust particles from a spacecraft surface. In the experiments, dust particles were immersed in a plasma and/or subjected to ultra-violet irradiation. Results showed that the charging state of a dust particle was strongly dependent on the environment, and the charge on a dust particle was approximately 10(exp 3) elementary charges. Consequently, in the space environment, electrostatic force could be the most dominant force acting on a dust particle.

  5. Model of Image Artifacts from Dust Particles

    NASA Technical Reports Server (NTRS)

    Willson, Reg

    2008-01-01

    A mathematical model of image artifacts produced by dust particles on lenses has been derived. Machine-vision systems often have to work with camera lenses that become dusty during use. Dust particles on the front surface of a lens produce image artifacts that can potentially affect the performance of a machine-vision algorithm. The present model satisfies a need for a means of synthesizing dust image artifacts for testing machine-vision algorithms for robustness (or the lack thereof) in the presence of dust on lenses. A dust particle can absorb light or scatter light out of some pixels, thereby giving rise to a dark dust artifact. It can also scatter light into other pixels, thereby giving rise to a bright dust artifact. For the sake of simplicity, this model deals only with dark dust artifacts. The model effectively represents dark dust artifacts as an attenuation image consisting of an array of diffuse darkened spots centered at image locations corresponding to the locations of dust particles. The dust artifacts are computationally incorporated into a given test image by simply multiplying the brightness value of each pixel by a transmission factor that incorporates the factor of attenuation, by dust particles, of the light incident on that pixel. With respect to computation of the attenuation and transmission factors, the model is based on a first-order geometric (ray)-optics treatment of the shadows cast by dust particles on the image detector. In this model, the light collected by a pixel is deemed to be confined to a pair of cones defined by the location of the pixel s image in object space, the entrance pupil of the lens, and the location of the pixel in the image plane (see Figure 1). For simplicity, it is assumed that the size of a dust particle is somewhat less than the diameter, at the front surface of the lens, of any collection cone containing all or part of that dust particle. Under this assumption, the shape of any individual dust particle artifact

  6. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    PubMed

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  7. The formation of a large summertime Saharan dust plume: Convective and synoptic-scale analysis

    PubMed Central

    Roberts, A J; Knippertz, P

    2014-01-01

    Haboobs are dust storms produced by the spreading of evaporatively cooled air from thunderstorms over dusty surfaces and are a major dust uplift process in the Sahara. In this study observations, reanalysis, and a high-resolution simulation using the Weather Research and Forecasting model are used to analyze the multiscale dynamics which produced a long-lived (over 2 days) Saharan mesoscale convective system (MCS) and an unusually large haboob in June 2010. An upper level trough and wave on the subtropical jet 5 days prior to MCS initiation produce a precipitating tropical cloud plume associated with a disruption of the Saharan heat low and moistening of the central Sahara. The restrengthening Saharan heat low and a Mediterranean cold surge produce a convergent region over the Hoggar and Aïr Mountains, where small convective systems help further increase boundary layer moisture. Emerging from this region the MCS has intermittent triggering of new cells, but later favorable deep layer shear produces a mesoscale convective complex. The unusually large size of the resulting dust plume (over 1000 km long) is linked to the longevity and vigor of the MCS, an enhanced pressure gradient due to lee cyclogenesis near the Atlas Mountains, and shallow precipitating clouds along the northern edge of the cold pool. Dust uplift processes identified are (1) strong winds near the cold pool front, (2) enhanced nocturnal low-level jet within the aged cold pool, and (3) a bore formed by the cold pool front on the nocturnal boundary layer. PMID:25844277

  8. Preliminary Results from an Assimilation of Saharan Dust Using TOMS Radiances and the GOCART Model

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; daSilva, Arlindo; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions. Surface mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from .08-10 microns and only simulates Saharan dust. We draw the assimilation to two observables in this study: the TOMS aerosol index (Al) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance alone. The forward model that simulates the observables requires the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer from the GOCART fields. The forward model also requires a refractive index for the dust. We test three index values to see which best fits the TOMS observables. These are 1) for Saharan dust reported by Patterson, 2) for a mixture of Saharan dust and a highly reflective material (sea salt or sulfate) and 3) for pure illite. The assimilation works best assuming either pure illite or the dust mixture. Our assimilation cycle first determines values of the aerosol index (Al) and the radiance at 380 nm based on the GOCART aerosol fields. Differences between the observed and GOCART model calculated Al and 380 nm radiance are first analyzed horizontally using the Physical-space Statistical Analysis System (PSAS). A quasi-Newton iteration is then performed to produce analyzed 3D aerosol fields according to parameterized background and observation error covariances. We only assimilate observations into the the GOCART

  9. Trans-Pacific Transport of Saharan Dust to Western North America: A Case Study

    NASA Technical Reports Server (NTRS)

    Kendry, Ian G. M.; Strawbridge, Kevin B.; O'Neill, Norman; Macdonald, Anne Marie; Liu, Peter S. K.; Leaitch, W. Richard; Anlauf, Kurt G.; Jaegle, Lyatt; Fairlie, T. Duncan; Westphal, Douglas L.

    2007-01-01

    The first documented case of long range transport of Saharan dust over a pathway spanning Asia and the Pacific to Western North America is described. Crustal material generated by North African dust storms during the period 28 February - 3 March 2005 reached western Canada on 13-14 March 2005 and was observed by lidar and sunphotometer in the Vancouver region and by high altitude aerosol instrumentation at Whistler Peak. Global chemical models (GEOS-CHEM and NRL NAAPS) confirm the transport pathway and suggest source attribution was simplified in this case by the distinct, and somewhat unusual, lack of dust activity over Eurasia (Gobi and Takla Makan deserts) at this time. Over western North America, the dust layer, although subsiding close to the boundary layer, did not appear to contribute to boundary layer particulate matter concentrations. Furthermore, sunphotometer observations (and associated inversion products) suggest that the dust layer had only subtle optical impact (Aerosol Optical Thickness (Tau(sub a500)) and Angstrom exponent (Alpha(sub 440-870) were 0.1 and 1.2 respectively) and was dominated by fine particulate matter (modes in aerodynamic diameter at 0.3 and 2.5microns). High Altitude observations at Whistler BC, confirm the crustal origin of the layer (rich in Ca(++) ions) and the bi-modal size distribution. Although a weak event compared to the Asian Trans-Pacific dust events of 1998 and 2001, this novel case highlights the possibility that Saharan sources may contribute episodically to the aerosol burden in western North America.

  10. Particle Lifting Processes in Dust Devils

    NASA Astrophysics Data System (ADS)

    Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.

    2016-11-01

    Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

  11. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands

    USGS Publications Warehouse

    Muhs, D.R.; Bush, C.A.; Stewart, K.C.; Rowland, T.R.; Crittenden, R.C.

    1990-01-01

    Most previous workers have regarded the insoluble residues of high-purity Quaternary limestones (coral reefs and oolites) as the most important parent material for well-developed, clay-rich soils on Caribbean and western Atlantic islands, but this genetic mechanism requires unreasonable amounts of limestone solution in Quaternary time. Other possible parent materials from external sources are volcanic ash from the Lesser Antilles island arc and Saharan dust carried across the Atlantic Ocean on the northeast trade winds. Soils on Quaternary coral terraces and carbonate eolianites on Barbados, Jamaica, the Florida Keys (United States), and New Providence Island (Bahamas) were studied to determine which, if either, external source was important. Caribbean volcanic ashes and Saharan dust can be clearly distinguished using ratios of relatively immobile elements ( Al2O3 TiO2, Ti Y, Ti Zr, and Ti Th). Comparison of these ratios in 25 soils, where estimated ages range from 125,000 to about 870,000 yr, shows that Saharan dust is the most important parent material for soils on all islands. These results indicate that the northeast trade winds have been an important component of the regional climatology for much of the Quaterary. Saharan dust may also be an important parent material for Caribbean island bauxites of much greater age. ?? 1990.

  12. The linkage between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 ka to 5.5 ka ago (deMenocal et al., 2000; McGee et al., 2013). The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. We present simulation results from a recent sensitivity study, where we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface during the Holocene. We have simulated timeslices of he mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. We prescribe mid-Holocene vegetation cover based on a vegetation reconstruction from pollen data (Hoelzmann et al., 1998) and mid-Holocene lake surface area is determined using a water routing and storage model (Tegen et al., 2002). In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the variation in dust accumulation in marine cores is likely related to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone. Reference: deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid Period:: rapid climate responses to gradual insolation forcing, Quaternary Science Reviews, 19, 347-361, 2000. Hoelzmann, P., Jolly, D., Harrison, S. P., Laarif, F

  13. Summer variability of Saharan dust transport events in mountain areas north and south of Po basin

    NASA Astrophysics Data System (ADS)

    Landi, Tony C.; Marinoni, Angela; Cristofanelli, Paolo; Putero, Davide; Duchi, Rocco; Alborghetti, Marcello; Bonafè, Ubaldo; Calzolari, Francescopiero; Pietro Verza, Gian; Bonasoni, Paolo

    2013-04-01

    Mineral dust intrusions from northern African desert regions have a strong impact on the Mediterranean areas and Italian peninsula as they can cause an anomalous increase of aerosol concentrations in the tropospheric column and often an increase of particulate matter at ground level. The estimate of Saharan dust contribution to aerosols concentrations is therefore a key issue in air quality assessment and policy formulation, since can cause air quality exceedances of the PM10 daily limits (50 μg m-3) set by the European Union (EU/2008/50). This study presents a first identification and characterization of Saharan dust outbreaks observed during summer season at two high mountain stations located both South (Mt. Cimone, 2165 m asl) and North (Rifugio Guasti, Stelvio National Park, 3285 m asl) of Po valley. An estimation of their impact on PM10 concentrations in both sites, and in urban and rural areas of the Po basin is provided. Joining specific measurements (ground and satellite based) and numerical modeling, an investigation into the vertical structure of dust load will be presented. Actually, methodologies conceived for distinguishing dust outbreaks transported above the boundary layer without any impact at the ground level from those causing deposition are currently still lacking. Basically, the approach proposed in this work includes a deep analysis of in-situ measurements starting from long-term observation of Saharan dust carried out at the Mt. Cimone and more recent measurements performed in the framework of SHARE Stelvio Project, as well as the usage of ad hoc model chain (meteorological processor, chemical transport model, and aerosols optical properties calculation) to describe emission, transport and deposition dynamics of mineral dust that - in summertime - often affect the North Italy.

  14. Profiling of Saharan dust from the Caribbean to western Africa - Part 2: Shipborne lidar measurements versus forecasts

    NASA Astrophysics Data System (ADS)

    Ansmann, Albert; Rittmeister, Franziska; Engelmann, Ronny; Basart, Sara; Jorba, Oriol; Spyrou, Christos; Remy, Samuel; Skupin, Annett; Baars, Holger; Seifert, Patric; Senf, Fabian; Kanitz, Thomas

    2017-12-01

    A unique 4-week ship cruise from Guadeloupe to Cabo Verde in April-May 2013 see part 1, Rittmeister et al. (2017) is used for an in-depth comparison of dust profiles observed with a polarization/Raman lidar aboard the German research vessel Meteor over the remote tropical Atlantic and respective dust forecasts of a regional (SKIRON) and two global atmospheric (dust) transport models (NMMB/BSC-Dust, MACC/CAMS). New options of model-observation comparisons are presented. We analyze how well the modeled fine dust (submicrometer particles) and coarse dust contributions to light extinction and mass concentration match respective lidar observations, and to what extent models, adjusted to aerosol optical thickness observations, are able to reproduce the observed layering and mixing of dust and non-dust (mostly marine) aerosol components over the remote tropical Atlantic. Based on the coherent set of dust profiles at well-defined distances from Africa (without any disturbance by anthropogenic aerosol sources over the ocean), we investigate how accurately the models handle dust removal at distances of 1500 km to more than 5000 km west of the Saharan dust source regions. It was found that (a) dust predictions are of acceptable quality for the first several days after dust emission up to 2000 km west of the African continent, (b) the removal of dust from the atmosphere is too strong for large transport paths in the global models, and (c) the simulated fine-to-coarse dust ratio (in terms of mass concentration and light extinction) is too high in the models compared to the observations. This deviation occurs initially close to the dust sources and then increases with distance from Africa and thus points to an overestimation of fine dust emission in the models.

  15. Sources of zodiacal dust particles

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2007-08-01

    The orbital evolution of dust particles produced by asteroids, comets, and trans- Neptunian objects was integrated [1-3]. Analysis of results of these integrations testify in favor of a considerable fraction of particles produced by comets among overall zodiacal dust particles, but it does not contradict to >30% of asteroidal dust needed for explanation of formation of dust bands. Fractions of asteroidal particles, particles originating beyond Jupiter's orbit (including trans-Neptunian particles), and cometary particles originating inside of Jupiter's orbit are estimated to be about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. Comparison of the plots of the number density vs. the distance R from the Sun obtained for particles produced by different small bodies with the plots based on observations shows that asteroidal and trans- Neptunian particles alone can not explain the observed almost constant number density at R ∼3-18 AU and a lot of particles must be produced by comets at R ∼5-10 AU [2-3]. Comparison of the WHAM (Wisconsin H-Alpha Mapper spectrometer) observations of spectra of zodiacal light with our models showed [4-5] that a significant fraction of particles produced by short-period comets is required to fit the observations of the width and velocity of the Mg I line. Comparison of the observations of the number density inside Jupiter's orbit with the number density of particles produced by different small bodies leads to the same conclusion about a considerable fraction of cometary particles. This comparison does not make limitations on cometary particles produced beyond Jupiter's orbit, but it shows that the fraction of particles produced by Encke-type comets (with eccentricities ∼0.8-0.9) does not exceed 0.15 of the overall population. The estimated fraction of particles produced by long-period and Halley-type comets among zodiacal dust also does not exceed 0.1-0.15. Though trans-Neptunian particles fit different observations of

  16. Dust emission and transport associated with a Saharan depression: The February 2007 case

    NASA Astrophysics Data System (ADS)

    Karam, Diana Bou; Flamant, Cyrille; Cuesta, Juan; Pelon, Jacques; Williams, Earle

    2010-05-01

    The dust activity over North Africa associated with the Saharan depression event in February 2007 is investigated by mean of spaceborne observations, ground based measurements and mesoscale simulation with Meso-NH. The main characteristics of the cyclone as well as the meteorological conditions during this event are described using the European Centre for Medium-range Weather Forecasts (ECMWF). The dust storm and cloud cover over North Africa is thoroughly described combining for the first time Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) images for the spatio-temporal evolution and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat observations for the vertical distribution. The Saharan depression formed over Algeria in the lee of the Atlas Mountain on the afternoon of February 20 in response to midlatitude trough intrusion. It migrated eastward with a speed of 11 m s-1 and reached Libya on February 22 before exiting the African continent toward the Mediterranean Sea on February 23. The horizontal scale of the cyclone at the surface varied between 800 km and 1000 km during its lifetime. On the vertical the cyclone extended over 8 km and a potential vorticity of 2 PVU was reported on its centre at 3 km in altitude. The cyclone was characterised by a surface pressure anomaly of about 9 hPa with respect to the environment, a warm front typified at the surface by an increase in surface temperature of 5°C, and a sharp cold front characterized by a drop in surface temperature of 8°C and an increase in 10 m wind speed of 15 m s-1. The cyclone provided a dynamical forcing that led to strong near-surface winds and produced a major dust storm over North Africa. The dust was transported all around the cyclone leaving a clear eye on its centre and was accompanied by a deep cloud band along the northwestern edge of the cyclone. On the vertical, slanted dust layers were consistently observed during the event over North Africa

  17. Plasma-Based Detector of Outer-Space Dust Particles

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce; Brinza, David E.; Henry, Michael D.; Clay, Douglas R.

    2006-01-01

    A report presents a concept for an instrument to be flown in outer space, where it would detect dust particles - especially those associated with comets. The instrument would include a flat plate that would intercept the dust particles. The anticipated spacecraft/dust-particle relative speeds are so high that the impingement of a dust particle on the plate would generate a plasma cloud. Simple electric dipole sensors located equidistantly along the circumference of the plate would detect the dust particle indirectly by detecting the plasma cloud. The location of the dust hit could be estimated from the timing of the detection pulses of the different dipoles. The mass and composition of the dust particle could be estimated from the shapes and durations of the pulses from the dipoles. In comparison with other instruments for detecting hypervelocity dust particles, the proposed instrument offers advantages of robustness, large collection area, and simplicity.

  18. Recent and past Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation

    NASA Astrophysics Data System (ADS)

    Varga, György

    2016-04-01

    Several hundred tons of windblown dust material are transported every year from Saharan dust source areas into direction of Europe, modifying important climatic and other environmental processes of distant areas. North African aerosols have been also identified several times a year in the Carpathian Basin, where under the influence of certain synoptic meteorological conditions Saharan dust accumulation can clearly be observed. Previous satellite based studies were suitable to estimate the frequency and magnitude of Saharan dust episodes in the investigation area, however, the assessment of North African dust deposition can be done with model simulations. In this study, calculations were made by using the data of BSC-DREAM8b (Barcelona Supercomputing Center's Dust REgional Atmospheric Model) v1.0 and v2.0 database. Simulation results of the BSC-DREAM8b v1.0 are available from 1 January 2000 to 31 December 2012, while the results of the updated v2.0 calculations are ready for the period between 1 January 2006 and 31 December 2014. BSC DREAM8b v1.0 model simulations for the period between 2000 and 2012 provided an annual mean of 0.0285 g/m2/y dry and 0.034 g/m2/y wet deposition values in the Carpathian Basin, which is equivalent to a total of 0.0636 g/m2/y. The updated v2.0 version for the period of 2006-2014 gave significantly larger values: 0.133 g/m2/y dry; 0.085 g/m2/y wet and 0.219 g/m2/y total annual dust deposition. By comparing the results of the overlapping period between 2006 and 2012 of the v1.0 and v2.0 simulations, the updated depositional scheme of the newer version provided ˜3.7-fold values in case of dry deposition and ˜1.9-fold increase in results of the wet deposition. Information available from individual events showed that the simulated wet and dry dust deposition rates are significantly underestimated. This is also suggested by previous model calculations which reported values between 5 and 10 g/m2/y for modern dust flux in the investigated area

  19. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona

    2009-11-01

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of particular interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation with respect to liquid water similar to atmospheric conditions. In this study the sub-saturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols was determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as wellmore » as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were used. Aerosols were generated both with a wet and a dry disperser and the water uptake was parameterized via the hygroscopicity parameter, κ. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived κ values between 0.00 and 0.02. The latter value can be idealized as a particle consisting of 96.7% (by volume) insoluble material and ~3.3% ammonium sulfate. Pure clay aerosols were found to be generally less hygroscopic than real desert dust particles. All illite and montmorillonite samples had κ~0.003, kaolinites were least hygroscopic and had κ=0.001. SD (κ=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (κ=0.007) and ATD (κ=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles while immersed in an aqueous medium during atomization, thus indicating that specification of the generation method is critically important when presenting such data. Any atmospheric

  20. Middle East Health and Air Quality Utilizing NASA EOS in the Saharan and Arabian Deserts to Examine Dust Particle Size and Mineralogy of Aerosols

    NASA Technical Reports Server (NTRS)

    Keeton, Tiffany; Barrick, Bradley; Cooksey, Kirstin; Cowart, Kevin; Florence, Victoria; Herdy, Claire; Padgett-Vasquez, Steve; Luvall, Jeffrey; Molthan, Andrew

    2012-01-01

    Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5micron (PM2.5) can cause long-term damage to the human respiratory system. NASA fs Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles and dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angstrom Exponent. Brightness Temperature Difference (BTD) equation was used to determine the area of the dust storm. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the JPL Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodele Depression in the Sahara Desert on 7 June 2003.

  1. 7 CFR 51.1443 - Particles and dust.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Particles and dust. 51.1443 Section 51.1443 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces...

  2. 7 CFR 51.2126 - Particles and dust.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Particles and dust. 51.2126 Section 51.2126 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material...

  3. 7 CFR 51.2126 - Particles and dust.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Particles and dust. 51.2126 Section 51.2126 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material...

  4. 7 CFR 51.1443 - Particles and dust.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Particles and dust. 51.1443 Section 51.1443 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces...

  5. Saharan dust and the impact on adult and elderly allergic patients: the effect of threshold values in the northern sector of Gran Canaria, Spain.

    PubMed

    Menéndez, Inmaculada; Derbyshire, Edward; Carrillo, Teresa; Caballero, Elena; Engelbrecht, Johann P; Romero, Lidia E; Mayer, Pablo L; Rodríguez de Castro, Felipe; Mangas, José

    2017-04-01

    Gran Canaria Island is frequently impacted by Saharan dust, a health hazard of particular concern to the island population and health agencies. Airborne mineral dust has the severest impact on the higher age groups of the population, and those with respiratory conditions; despite that, on average, the ambient particulate matter (PM) concentrations fall within international PM guidelines. During 2010 and 2011, an epidemiological survey, in parallel with an air quality study, was conducted at the Dr Negrín hospital in Gran Canaria. This included the quarterly monitoring of outpatients and recording of emergency patients with respiratory diseases, together with the measurement of aerosol, meteorological, and PM-related air quality levels. The finer more toxic particles were collected with PM 2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) aerosol samplers. The filter samples were gravimetrically and chemically analyzed for their elemental, water-soluble ions, carbon, and mineralogical contents. Individual particle morphology was measured by Scanning Electron Microscopy. Statistical analysis of the chemical and clinical data included the analysis of variance and calculation of Spearman correlation coefficients. No statistically significant relations were found between the allergic control group, the emergency room admissions, pulmonary conditions, medication, and elevated Saharan dust levels. However, changing environmental conditions, such as an increase in humidity or a reduction in ambient air temperature made a significant difference to the outcomes recorded on the health statements of the allergic and respiratory illness groups of the Gran Canary population.

  6. Modification of Saharan Mineral Dust during Transport across the Atlantic Ocean - Overview and Results from the SALTRACE Field Experiment

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Groß, Silke; Sauer, Daniel; Althausen, Dietrich; Toledano, Carlos

    2014-05-01

    At present one of the largest uncertainties in our understanding of global climate concerns the interaction of aerosols with clouds and atmospheric dynamics. In the climate system, mineral dust aerosol is of key importance, because mineral dust contributes to about half of the global annual particle emissions by mass. Although our understanding of the effects of mineral dust on the atmosphere and the climate improved during the past decade, many questions such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds remain open. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013 to investigate the transport and transformation of Saharan mineral dust during long-range transport from the Sahara across the Atlantic Ocean into the Caribbean. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling which involved many national and international partners. During SALTRACE, the DLR Falcon research aircraft was based at Sal, Cape Verde, between 11 and 17 June 2013, and at Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties, with sampling devices for offline particle analysis, with a nadir-looking 2-µm wind lidar, with dropsondes and instruments for standard meteorological parameters. Ground-based lidar and in-situ instruments were deployed in Cape Verde, Barbados and Puerto Rico. During SALTRACE, mineral dust from five dust outbreaks was studied by the Falcon research aircraft between Senegal, the Caribbean and Florida

  7. 7 CFR 51.2126 - Particles and dust.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Particles and dust. 51.2126 Section 51.2126... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material which will pass through a round...

  8. 7 CFR 51.2126 - Particles and dust.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Particles and dust. 51.2126 Section 51.2126... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material which will pass through a round...

  9. 7 CFR 51.2126 - Particles and dust.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Particles and dust. 51.2126 Section 51.2126... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2126 Particles and dust. Particles and dust means fragments of almond kernels or other material which will pass through a round...

  10. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10

    NASA Astrophysics Data System (ADS)

    Chirizzi, Daniela; Cesari, Daniela; Guascito, Maria Rachele; Dinoi, Adelaide; Giotta, Livia; Donateo, Antonio; Contini, Daniele

    2017-08-01

    Exposure to atmospheric particulate matter (PM) leads to adverse health effects although the exact mechanisms of toxicity are still poorly understood. Several studies suggested that a large number of PM health effects could be due to the oxidative potential (OP) of ambient particles leading to high concentrations of reactive oxygen species (ROS). The contribution to OP of specific anthropogenic sources like road traffic, biomass burning, and industrial emissions has been investigated in several sites. However, information about the OP of natural sources are scarce and no data is available regarding the OP during Saharan dust outbreaks (SDO) in Mediterranean regions. This work uses the a-cellular DTT (dithiothreitol) assay to evaluate OP of the water-soluble fraction of PM2.5 and PM10 collected at an urban background site in Southern Italy. OP values in three groups of samples were compared: standard characterised by concentrations similar to the yearly averages; high carbon samples associated to combustion sources (mainly road traffic and biomass burning) and SDO events. DTT activity normalised by sampled air volume (DTTV), representative of personal exposure, and normalised by collected aerosol mass (DTTM), representing source-specific characteristics, were investigated. The DTTV is larger for high PM concentrations. DTTV is well correlated with secondary organic carbon concentration. An increased DTTV response was found for PM2.5 compared to the coarse fraction PM2.5-10. DTTV is larger for high carbon content samples but during SDO events is statistically comparable with that of standard samples. DTTM is larger for PM2.5 compared to PM10 and the relative difference between the two size fractions is maximised during SDO events. This indicates that Saharan dust advection is a natural source of particles having a lower specific OP with respect to the other sources acting on the area (for water-soluble fraction). OP should be taken into account in epidemiological

  11. 7 CFR 51.1443 - Particles and dust.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Particles and dust. 51.1443 Section 51.1443... STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces” and “granules,” fragments of...

  12. 7 CFR 51.1443 - Particles and dust.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Particles and dust. 51.1443 Section 51.1443... STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces” and “granules,” fragments of...

  13. 7 CFR 51.1443 - Particles and dust.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Particles and dust. 51.1443 Section 51.1443... STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1443 Particles and dust. Particles and dust means, for all size designations except “midget pieces” and “granules,” fragments of...

  14. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    PubMed

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  15. Longwave Radiative Forcing of Saharan Dust Aerosols Estimated from MODIS, MISR and CERES Observations on Terra

    NASA Technical Reports Server (NTRS)

    Zhang, Jiang-Long; Christopher, Sundar A.

    2003-01-01

    Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth's Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean LW forcing for September 2000 is 7 W/sq m and the LW forcing efficiency' (LW(sub eff)) is 15 W/sq m. Using radiative transfer calculations, we also show that the vertical distribution of aerosols and water vapor are critical to the understanding of dust aerosol forcing. Using well calibrated, spatially and temporally collocated data sets, we have combined the strengths of three sensors from the same satellite to quantify the LW radiative forcing, and show that dust aerosols have a "warming" effect over the Saharan desert that will counteract the shortwave "cooling effect" of aerosols.

  16. Integrating Saharan dust forecasts into a regional chemical transport model: a case study over Northern Italy.

    PubMed

    Carnevale, C; Finzi, G; Pisoni, E; Volta, M; Kishcha, P; Alpert, P

    2012-02-15

    The Po Valley in Northern Italy is frequently affected by high PM10 concentrations, where both natural and anthropogenic sources play a significant role. To improve air pollution modeling, 3D dust fields, produced by means of the DREAM dust forecasts, were integrated as boundary conditions into the mesoscale 3D deterministic Transport Chemical Aerosol Model (TCAM). A case study of the TCAM and DREAM integration was implemented over Northern Italy for the period May 15-June 30, 2007. First, the Saharan dust impact on PM10 concentration was analyzed for eleven remote PM10 sites with the lowest level of air pollution. These remote sites are the most sensitive to Saharan dust intrusions into Northern Italy, because of the absence of intensive industrial pollution. At these remote sites, the observed maxima in PM10 concentration during dust events is evidence of dust aerosol near the surface in Northern Italy. Comparisons between modeled PM10 concentrations and measurements at 230 PM10 sites in Northern Italy, showed that the integrated TCAM-DREAM model more accurately reproduced PM10 concentration than the base TCAM model, both in terms of correlation and mean error. Specifically, the correlation median increased from 0.40 to 0.65, while the normalized mean absolute error median dropped from 0.5 to 0.4. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Coastal Bacterioplankton Metabolism Is Stimulated Stronger by Anthropogenic Aerosols than Saharan Dust

    PubMed Central

    Marín, Isabel; Nunes, Sdena; Sánchez-Pérez, Elvia D.; Txurruka, Estibalitz; Antequera, Carolina; Sala, Maria M.; Marrasé, Cèlia; Peters, Francesc

    2017-01-01

    In oligotrophic regions, such as the Mediterranean Sea, atmospheric deposition has the potential to stimulate heterotrophic prokaryote growth and production in surface waters, especially during the summer stratification period. Previous studies focused on the role of leaching nutrients from mineral particles of Saharan (S) origin, and were restricted to single locations at given times of the year. In this study, we evaluate the effect of atmospheric particles from diverse sources and with a markedly different chemical composition [S dust and anthropogenic (A) aerosols] on marine planktonic communities from three locations of the northwestern Mediterranean with contrasted anthropogenic footprint. Experiments were also carried out at different times of the year, considering diverse initial conditions. We followed the dynamics of the heterotrophic community and a range of biogeochemical and physiological parameters in six experiments. While the effect of aerosols on bacterial abundance was overall low, bacterial heterotrophic production was up to 3.3 and 2.1 times higher in the samples amended with A and S aerosols, respectively, than in the controls. Extracellular enzymatic activities [leu-aminopeptidase (AMA) and β-glucosidase (β-Gl)] were also enhanced with aerosols, especially from A origin. AMA and β-Gl increased up to 7.1 in the samples amended with A aerosols, and up to 1.7 and 2.1 times, respectively, with S dust. The larger stimulation observed with A aerosols might be attributed to their higher content in nitrate. However, the response was variable depending the initial status of the seawater. In addition, we found that both A and S aerosols stimulated bacterial abundance and metabolism significantly more in the absence of competitors and predators. PMID:29187835

  18. Effective and Accurate Morphology Models for Asian and Saharan Mineral Dust Scattering Properties

    NASA Astrophysics Data System (ADS)

    Stegmann, P.; Yang, P.

    2017-12-01

    It is well known that mineral dust particles from desert sources can have a significant influence on the planetary radiation balance. In order to determine the sign and magnitude of the dust radiative forcing effect, complex models have been and continue to be developed. Key factors which influence the single-scattering properties of mineral dust are dust source regions and thus mineralogical composition, and its mixture with water, sea salt, and products of human activity, such as soot. The ensemble of mineral dust scattering particles may then be modeled either as a simple placeholder shape, often ellipsoidal, through the utilization of an appropriate effective medium refractive index scheme. On the other hand, the scattering particles may be represented in a more rigorous manner, such as Voronoi-tessellated aggregates including fractal soot chains. The consequences and differences of either choice are investigated in the project at hand. It will be shown that the effective medium model indicates a drastic dependence of the mineral dust particle composition on the particle size. Thus the refractive index of a dust particle is in fact a function of its size, amongst other factors. Regional differences between African and Asian mineral dust are also of significance.

  19. Influence of atmospheric processes on the solubility and composition of iron in Saharan dust

    DOE PAGES

    Longo, Amelia F.; Feng, Yan; Lai, Barry; ...

    2016-06-10

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation statemore » became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.« less

  20. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; di Girolamo, P.; Summa, D.; Whiteman, D. N.; Mishchenko, M.; Tanré, D.

    2010-11-01

    Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event.

  1. Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact

    NASA Astrophysics Data System (ADS)

    Longman, Jack; Veres, Daniel; Ersek, Vasile; Salzmann, Ulrich; Hubay, Katalin; Bormann, Marc; Wennrich, Volker; Schäbitz, Frank

    2017-07-01

    Reconstructions of dust flux have been used to produce valuable global records of changes in atmospheric circulation and aridity. These studies have highlighted the importance of atmospheric dust in marine and terrestrial biogeochemistry and nutrient cycling. By investigating a 10 800-year-long paleoclimate archive from the Eastern Carpathians (Romania) we present the first peat record of changing dust deposition over the Holocene for the Carpathian-Balkan region. Using qualitative (X-ray fluorescence (XRF) core scanning) and quantitative inductively coupled plasma optical emission spectrometer(ICP-OES) measurements of lithogenic (K, Si, Ti) elements, we identify 10 periods of major dust deposition between 9500-9200, 8400-8100, 7720-7250, 6350-5950, 5450-5050, 4130-3770, 3450-2850, 2000-1450, 800-620, and 60 cal yr BP to present. In addition, we used testate amoeba assemblages preserved within the peat to infer local palaeohydroclimatic conditions. Our record highlights several discrepancies between eastern and western European dust depositional records and the impact of highly complex hydrological regimes in the Carpathian region. Since 6100 cal yr BP, we find that the geochemical indicators of dust flux have become uncoupled from the local hydrology. This coincides with the appearance of millennial-scale cycles in the dust input and changes in geochemical composition of dust. We suggest that this is indicative of a shift in dust provenance from local-regional (likely loess-related) to distal (Saharan) sources, which coincide with the end of the African Humid Period and the onset of Saharan desertification.

  2. Short-Term Effects of the Particulate Pollutants Contained in Saharan Dust on the Visits of Children to the Emergency Department due to Asthmatic Conditions in Guadeloupe (French Archipelago of the Caribbean)

    PubMed Central

    Cadelis, Gilbert; Tourres, Rachel; Molinie, Jack

    2014-01-01

    Background The prevalence of asthma in children is a significant phenomenon in the Caribbean. Among the etiologic factors aggravating asthma in children, environmental pollution is one of the main causes. In Guadeloupe, pollution is primarily transported by Saharan dust including inhalable particles. Methods This study assesses, over one year (2011), the short-term effects of pollutants referred to as PM10 (PM10: particulate matter <10 µm) and PM2.5–10 (PM2.5–10: particulate matter >2.5 µm and <10 µm) contained in Saharan dust, on the visits of children aged between 5 and 15 years for asthma in the health emergency department of the main medical facility of the archipelago of Guadeloupe. A time-stratified case-crossover model was applied and the data were analysed by a conditional logistic regression for all of the children but also for sub-groups corresponding to different age classes and genders. Results The visits for asthma concerned 836 children including 514 boys and 322 girls. The Saharan dust has affected 15% of the days of the study (337 days) and involved an increase in the average daily concentrations of PM10 (49.7 µg/m3 vs. 19.2 µg/m3) and PM 2.5–10 (36.2 µg/m3 vs. 10.3 µg/m3) compared to days without dust. The excess risk percentages (IR%) for visits related to asthma in children aged between 5 and 15 years on days with dust compared to days without dust were, for PM10, ((IR %: 9.1% (CI95%, 7.1%–11.1%) versus 1.1%(CI95%, −5.9%–4.6%)) and for PM2.5–10 (IR%: 4.5%(CI95%, 2.5%–6.5%) versus 1.6% (CI95%, −1.1%–3.4%). There was no statistical difference in the IR% for periods with Saharan dust among different age group of children and between boys and girls for PM10 and PM2.5–10. Conclusion The PM10 and PM2.5–10 pollutants contained in the Saharan dust increased the risk of visiting the health emergency department for children with asthma in Guadeloupe during the study period. PMID:24603899

  3. Satellite Reveals How Much Saharan Dust Feeds Amazon's Plants

    NASA Image and Video Library

    2015-02-24

    What connects Earth's largest, hottest desert to its largest tropical rainforest? The Sahara Desert is a near-uninterrupted brown band of sand and scrub across the northern third of Africa. The Amazon rainforest is a dense green mass of humid jungle that covers northeast South America. But after strong winds sweep across the Sahara, a tan cloud rises in the air, stretches between the continents, and ties together the desert and the jungle. It’s dust. And lots of it. For the first time, a NASA satellite has quantified in three dimensions how much dust makes this trans-Atlantic journey. Scientists have not only measured the volume of dust, they have also calculated how much phosphorus – a natural plant fertilizer present in Saharan sands from part of the desert’s past as a lake bed – gets carried across the ocean from one of the planet’s most desolate places to one of its most fertile. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Depletion of tropospheric ozone associated with mineral dust outbreaks.

    PubMed

    Soler, Ruben; Nicolás, J F; Caballero, S; Yubero, E; Crespo, J

    2016-10-01

    From May to September 2012, ozone reductions associated with 15 Saharan dust outbreaks which occurred between May to September 2012 have been evaluated. The campaign was performed at a mountain station located near the eastern coast of the Iberian Peninsula. The study has two main goals: firstly, to analyze the decreasing gradient of ozone concentration during the course of the Saharan episodes. These gradients vary from 0.2 to 0.6 ppb h(-1) with an average value of 0.39 ppb h(-1). The negative correlation between ozone and coarse particles occurs almost simultaneously. Moreover, although the concentration of coarse particles remained high throughout the episode, the time series shows the saturation of the ozone loss. The highest ozone depletion has been obtained during the last hours of the day, from 18:00 to 23:00 UTC. Outbreaks registered during this campaign have been more intense in this time slot. The second objective is to establish from which coarse particle concentration a significant ozone depletion can be observed and to quantify this reduction. In this regard, it has been confirmed that when the hourly particle concentration recorded during the Saharan dust outbreaks is above the hourly particle median values (N > N-median), the ozone concentration reduction obtained is statistically significant. An average ozone reduction of 5.5 % during Saharan events has been recorded. In certain cases, this percentage can reach values of higher than 15 %.

  5. Can Transport of Saharan Dust Explain Extensive Clay Deposits in the Amazon Basin? A Test Using Radiogenic Isotopes

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Abouchami, W.; Näthe, K.; Kumar, A.; Galer, S. J.; Jochum, K. P.; Williams, E.; Horbe, A. M.; Rosa, J. W.; Adams, D. K.; Balsam, W. R.

    2012-12-01

    The Bodélé Depression, located in the Southern Sahara, is a huge source of atmospheric dust and thus an important element in biogeochemical cycles and the radiative budget of Earth's atmosphere. Previous studies have shown that Saharan dust transport across the Atlantic acts as an important source of mineral nutrients to the Amazon rainforest. The Belterra Clay, which outcrops extensively across the Amazon Basin in Brazil, has been proposed to result from dry deposition of African dusts. We have investigated this hypothesis by measuring the radiogenic isotopic composition (Sr, Nd and Pb) of a suite of samples from the Belterra Clay, the Bodélé Depression, dusts deposits collected at various locations along the airmass transport trajectory, as well as loess from the Cape Verde Islands. Radiogenic isotope systems are powerful tracers of provenance and can be used to fingerprint dust sources and atmospheric transport patterns. Our results identify distinct isotopic signatures in the Belterra Clay samples and the African sources. The Belterra Clay display radiogenic Sr and Pb isotope ratios associated with non-radiogenic Nd isotope signatures. In contrast, Bodélé samples and dusts deposits show lower Pb isotope ratios, variable 87Sr/86Sr, and relatively homogeneous Nd isotopic compositions, albeit more radiogenic than those of the Belterra Clay. Our data show unambiguously that the Belterra Clay is not derived from African dust deposition, nor from the Andean chain, as originally suggested by W. Sombroek. Rather, isotopic compositions and Nd model ages are consistent with simple mixing of Archean and younger Proterozoic terranes within the Amazon Basin as a result of weathering and erosion under humid tropical conditions. Whether Saharan dusts contribute to the fertilization in the Amazon Basin cannot be ruled out, however, since the African dust isotopic signature is expected to be entirely overprinted by local sources. Radiogenic isotope data obtained on

  6. Improving Public Health DSSs by Including Saharan Dust Forecasts Through Incorporation of NASA's GOCART Model Results

    NASA Technical Reports Server (NTRS)

    Berglund, Judith

    2007-01-01

    Approximately 2-3 billion metric tons of soil dust are estimated to be transported in the Earth's atmosphere each year. Global transport of desert dust is believed to play an important role in many geochemical, climatological, and environmental processes. This dust carries minerals and nutrients, but it has also been shown to carry pollutants and viable microorganisms capable of harming human, animal, plant, and ecosystem health. Saharan dust, which impacts the eastern United States (especially Florida and the southeast) and U.S. Territories in the Caribbean primarily during the summer months, has been linked to increases in respiratory illnesses in this region and has been shown to carry other human, animal, and plant pathogens. For these reasons, this candidate solution recommends integrating Saharan dust distribution and concentration forecasts from the NASA GOCART global dust cycle model into a public health DSS (decision support system), such as the CDC's (Centers for Disease Control and Prevention's) EPHTN (Environmental Public Health Tracking Network), for the eastern United States and Caribbean for early warning purposes regarding potential increases in respiratory illnesses or asthma attacks, potential disease outbreaks, or bioterrorism. This candidate solution pertains to the Public Health National Application but also has direct connections to Air Quality and Homeland Security. In addition, the GOCART model currently uses the NASA MODIS aerosol product as an input and uses meteorological forecasts from the NASA GEOS-DAS (Goddard Earth Observing System Data Assimilation System) GEOS-4 AGCM. In the future, VIIRS aerosol products and perhaps CALIOP aerosol products could be assimilated into the GOCART model to improve the results.

  7. Efficiency of Tungsten Dust Collection of Different Types of Dust Particles by Electrostatic Probe

    NASA Astrophysics Data System (ADS)

    Begrambekov, L. B.; Voityuk, A. N.; Zakharov, A. M.; Bidlevich, O. A.; Vechshev, E. A.; Shigin, P. A.; Vayakis, J.; Walsh, M.

    2017-12-01

    Formation of dust particles and clusters is observed in almost every modern thermonuclear facility. Accumulation of dust in the next generation thermonuclear installations can dramatically affect the plasma parameters and lead to the accumulation of unacceptably large amounts of tritium. Experiments on collection of dust particles by a model of electrostatic probe developed for collection of metallic dust at ITER are described in the article. Experiments on the generation of tungsten dust consisting of flakes formed during the destruction of tungsten layers formed on the walls of the plasma chamber sputtered from the surface of the tungsten target by plasma ions were conducted. The nature of dust degassing at elevated temperatures and the behavior of dust in an electric field were studied. The results obtained are compared with the results of the experiments with dust consisting of crystal particles of simple geometric shapes. The effectiveness of collection of both types of dust using the model of an electrostatic probe is determined.

  8. Dust particles investigation for future Russian lunar missions.

    NASA Astrophysics Data System (ADS)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar

  9. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    NASA Astrophysics Data System (ADS)

    Papayannis, A.; Mamouri, R. E.; Amiridis, V.; Remoundaki, E.; Tsaknakis, G.; Kokkalis, P.; Veselovskii, I.; Kolgotin, A.; Nenes, A.; Fountoukis, C.

    2012-05-01

    A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E) between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients) properties of aerosols in the troposphere. The aerosol optical depth (AOD) values derived from the CIMEL ranged from 0.33-0.91 (355 nm) to 0.18-0.60 (532 nm), while the lidar ratio (LR) values retrieved from the Raman lidar ranged within 75-100 sr (355 nm) and 45-75 sr (532 nm). Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532) and Ångström-extinction-related (AER355/532) were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively), indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index) inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10) + 0.007( ± 0.007)i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide a possible aerosol composition

  10. Dust-Particle Transport in Tokamak Edge Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K

    2005-09-12

    Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less

  11. Characterization of Moving Dust Particles

    NASA Technical Reports Server (NTRS)

    Bos, Brent J.; Antonille, Scott R.; Memarsadeghi, Nargess

    2010-01-01

    A large depth-of-field Particle Image Velocimeter (PIV) has been developed at NASA GSFC to characterize dynamic dust environments on planetary surfaces. This instrument detects and senses lofted dust particles. We have been developing an autonomous image analysis algorithm architecture for the PIV instrument to greatly reduce the amount of data that it has to store and downlink. The algorithm analyzes PIV images and reduces the image information down to only the particle measurement data we are interested in receiving on the ground - typically reducing the amount of data to be handled by more than two orders of magnitude. We give a general description of PIV algorithms and describe only the algorithm for estimating the velocity of the traveling particles.

  12. Detection of saharan mineral dust aerosol transport over brazilian northeast through a depolarization lidar

    NASA Astrophysics Data System (ADS)

    Guedes, Anderson G.; Landulfo, Eduardo; Montilla-Rosero, Elena; Lopes, Fábio J. S.; Hoelzemann, Judith J.; Fernandez, José Henrique; Silva, Marcos P. A.; Santos, Renata S. S.; Guerrero-Rascado, Juan L.; Alados-Arboledas, Lucas

    2018-04-01

    In this study we present results of linear volume depolarization ratio profiles obtained by a depolarization lidar in operation in Natal, Brazil. The DUSTER system has 4 channels, namely: 1064, 532 s/p and 355 nm. This system is calibrated with a half-wave plate using the Δ90° methodology. The data obtained from this system is correlated with AERONET sunphotometer data, and, when available, CALIPSO satellite data. In addition a trajectory model (HYSPLIT) is used to calculate backward trajectories to assess the origin of the dust polluted air parcels. The objective is to create a transport database of Saharan dust.

  13. The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.

    2016-04-01

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.

  14. Understanding the impact of saharan dust aerosols on tropical cyclones

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron

    Genesis of Tropical Cyclones (TCs) in the main development region for Atlantic hurricanes is tied to convection initiated by African easterly waves (AEWs) during Northern hemisphere summer and fall seasons. The main development region is also impacted by dust aerosols transported from the Sahara. It has been hypothesized that dust aerosols can modulate the development of TCs through aerosol-radiation and aerosol-cloud interaction processes. In this study, we investigate the impact of dust aerosols on TC development using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We first develop a technique to constrain the WRF-Chem model with a realistic three-dimensional spatial distribution of dust aerosols. The horizontal distribution of dust is specified using the Moderate Resolution Imaging Spectroradiometer (MODIS) derived aerosol products and output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The vertical distribution of dust is constrained using the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). We validate our technique through in situ aircraft measurements where both showed aerosol number concentrations from 20-30 cm-3 in the atmosphere for Saharan dust moving over the eastern Atlantic Ocean. Then, we use the satellite data constraint technique to nudge the WRF-Chem aerosol fields throughout the simulation of TC Florence developing over the eastern Atlantic Ocean during September 2006. Three different experiments are conducted where the aerosol-radiation and aerosol-cloud interaction processes are either activated or deactivated in the model while all other model options are identical between the experiments. By comparing the model experiment results, the impact of the aerosol interaction processes on TC development can be understood. The results indicate that dust aerosols can delay or prevent the development of a TC as the minimum sea level pressure of TC Florence was 13 h

  15. Lagrangian Trajectory Modeling of Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Metzger, Philip T.; Immer, Christopher D.

    2008-01-01

    Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.

  16. Wet Dust Deposition Across Texas, USA

    NASA Astrophysics Data System (ADS)

    Collins, J. D., Jr.; Ponette-González, A.; Gill, T. E.; Glass, G. A.; Weathers, K. C.

    2016-12-01

    Atmospheric dust deposition is of critical importance in terrestrial biogeochemical cycles, supplying essential limiting nutrients, such as calcium and phosphorus as well as pollutants, such as lead, to ecosystems. Dust particles are delivered to terrestrial ecosystems directly as dry deposition or in precipitation (wet deposition) as a result of rainout (particles incorporated into cloud droplets) and washout (particles that collide with raindrops as they fall). Compared to dry deposition, wet dust deposition (dissolved + particulate) is a poorly understood yet potentially significant pathway for dust input, especially in humid regions. We quantified wet dust deposition to two National Atmospheric Deposition Monitoring (NADP) sites across Texas-one in west (Guadalupe Mountains) and one in east (near Houston) Texas-with contrasting climate/dust regimes and land cover. We focused on 2012 during one of the most severe droughts in Texas since 1895. Dust event days (DEDs) were identified using meteorological data for stations within 150 km of the NADP sites where wet deposition was sampled weekly. DEDs were defined using the following criteria: visibility <10 km, <30% relative humidity, and wind speed >50 km, supplemented with other Saharan dust incursion and dust observations. A total of 34 DEDs (20 sample weeks) were identified for the west and 5 DEDs (4 sample weeks) for the east Texas sites. Bulk elemental composition of washout particles is analyzed using Particle Induced X-ray Emission (PIXE) spectroscopy and X-ray Fluorescence (XRF) spectroscopy. Using these data, we will examine differences in the chemical composition of rainwater and aerosol particles filtered from rain samples for dust versus non-dust event days at each study site. Deposition fluxes for dust and non-dust event weeks are also compared. Quantifying the magnitude of wet dust deposition is necessary to improve evaluation of dust impacts on biogeochemical cycles.

  17. Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect

    NASA Astrophysics Data System (ADS)

    Amiri-Farahani, Anahita; Allen, Robert J.; Neubauer, David; Lohmann, Ulrike

    2017-05-01

    One component of aerosol-cloud interactions (ACI) involves dust and marine stratocumulus clouds (MSc). Few observational studies have focused on dust-MSc interactions, and thus this effect remains poorly quantified. We use observations from multiple sensors in the NASA A-Train satellite constellation from 2004 to 2012 to obtain estimates of the aerosol-cloud radiative effect, including its uncertainty, of dust aerosol influencing Atlantic MSc off the coast of northern Africa between 45° W and 15° E and between 0 and 35° N. To calculate the aerosol-cloud radiative effect, we use two methods following Quaas et al. (2008) (Method 1) and Chen et al. (2014) (Method 2). These two methods yield similar results of -1.5 ± 1.4 and -1.5 ± 1.6 W m-2, respectively, for the annual mean aerosol-cloud radiative effect. Thus, Saharan dust modifies MSc in a way that acts to cool the planet. There is a strong seasonal variation, with the aerosol-cloud radiative effect switching from significantly negative during the boreal summer to weakly positive during boreal winter. Method 1 (Method 2) yields -3.8 ± 2.5 (-4.3 ± 4.1) during summer and 1 ± 2.9 (0.6 ± 1) W m-2 during winter. In Method 1, the aerosol-cloud radiative effect can be decomposed into two terms, one representing the first aerosol indirect effect and the second representing the combination of the second aerosol indirect effect and the semidirect effect (i.e., changes in liquid water path and cloud fraction in response to changes in absorbing aerosols and local heating). The first aerosol indirect effect is relatively small, varying from -0.7 ± 0.6 in summer to 0.1 ± 0.5 W m-2 in winter. The second term, however, dominates the overall radiative effect, varying from -3.2 ± 2.5 in summer to 0.9 ± 2.9 W m-2 during winter. Studies show that the semidirect effect can result in a negative (i.e., absorbing aerosol lies above low clouds like MSc) or positive (i.e., absorbing aerosol lies within low clouds) aerosol

  18. Using operational active remote sensing devices to detect Saharan dust advections and evaluate their contribution to the PM10 levels: The EU LIFE+ "DIAPASON" project

    NASA Astrophysics Data System (ADS)

    Gobbi, Gian Paolo; Wille, Holger; Sozzi, Roberto; Barnaba, Francesca; Costabile, Francesca; Angelini, Federico; Frey, Steffen; Bolignano, Andrea; Morelli, Matteo

    2013-04-01

    The contribution of Saharan-dust advections to both daily and annual PM average mass concentrations can be significant all over Southern Europe. The Directive 2008/50/EC allows subtraction of PM10 exceedances caused by natural contributions from the statistic used to determine air-quality levels in Europe. To this purpose, the Commission Staff Working Paper 6771/11 (EC, 2011) provides specific Guidelines on methods to quantify and subtract the contribution of these sources in the framework of the Air Quality Directive. For Saharan dust, the EC methodology is largely based on a thorough analysis performed over the Iberian Peninsula (Escudero et al, 2007), although revision of the current methodology is in progress. In line with the EC Guidelines, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs"), funded under the EC LIFE+ program, has been formulated to provide a robust, user-oriented, and demonstrated method to assess the presence of desert dust and evaluate its contribution to PM10 levels at the monitoring sites. To this end, in addition to satellite-based data and model forecasts already included in the EC Guidelines, DIAPASON will take advantage, in both the Project implementation and demonstration phase, of innovative and affordable technologies (partly prototyped within the project itself), namely operational Polarization Lidar-Ceilometers (PLC) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The PLC prototypes have been already finalized during the initial phase of the Project. Three of them will be networked in relevant air quality monitoring stations located in the Rome metropolitan area (Italy) during the DIAPASON observational phase (one-year long field campaign) starting in March 2013. The Rome region was chosen as the DIAPASON pilot scale area since highly impacted by urban pollution and frequently affected by Saharan dust transport events. In fact

  19. Profiling of Saharan dust from the Caribbean to western Africa - Part 1: Layering structures and optical properties from shipborne polarization/Raman lidar observations

    NASA Astrophysics Data System (ADS)

    Rittmeister, Franziska; Ansmann, Albert; Engelmann, Ronny; Skupin, Annett; Baars, Holger; Kanitz, Thomas; Kinne, Stefan

    2017-11-01

    We present final and quality-assured results of multiwavelength polarization/Raman lidar observations of the Saharan air layer (SAL) over the tropical Atlantic. Observations were performed aboard the German research vessel R/V Meteor during the 1-month transatlantic cruise from Guadeloupe to Cabo Verde over 4500 km from 61.5 to 20° W at 14-15° N in April-May 2013. First results of the shipborne lidar measurements, conducted in the framework of SALTRACE (Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment), were reported by Kanitz et al.(2014). Here, we present four observational cases representing key stages of the SAL evolution between Africa and the Caribbean in detail in terms of layering structures and optical properties of the mixture of predominantly dust and aged smoke in the SAL. We discuss to what extent the lidar results confirm the validity of the SAL conceptual model which describes the dust long-range transport and removal processes over the tropical Atlantic. Our observations of a clean marine aerosol layer (MAL, layer from the surface to the SAL base) confirm the conceptual model and suggest that the removal of dust from the MAL, below the SAL, is very efficient. However, the removal of dust from the SAL assumed in the conceptual model to be caused by gravitational settling in combination with large-scale subsidence is weaker than expected. To explain the observed homogenous (height-independent) dust optical properties from the SAL base to the SAL top, from the African coast to the Caribbean, we have to assume that the particle sedimentation strength is reduced and dust vertical mixing and upward transport mechanisms must be active in the SAL. Based on lidar observations on 20 nights at different longitudes in May 2013, we found, on average, MAL and SAL layer mean values (at 532 nm) of the extinction-to-backscatter ratio (lidar ratio) of 17±5 sr (MAL) and 43±8 sr (SAL), of the particle linear depolarization ratio of 0

  20. A new hybrid particle/fluid model for cometary dust

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Tenishev, V.; Toth, G.; Hansen, K. C.; Huang, Z.; Gombosi, T. I.; Fougere, N.; Rubin, M.

    2017-12-01

    Cometary dust grains, which originate from comets, are believed to contain clues to the formation and the evolution of comets. They also play an important role in shaping the cometary environment, as they are able to decelerate and heat the gas through collisions, carry charges and interact with the plasma environment, and possibly sublimate gases. Therefore, the loss rate and behavior of dust grains are of interest to scientists. Currently, mainly two types of numerical dust models exist: particle models and fluid models have been developed. Particle models, which keep track of the positions and velocities of all gas and dust particles, allow crossing dust trajectories and a more accurate description of returning dust grains than the fluid model. However, in order to compute the gas drag force, the particle model needs to follow more gas particles than dust particles. A fluid model is usually more computationally efficient and is often used to provide simulations on larger spatial and temporal scales. In this work, a new hybrid model is developed to combine the advantages of both particle and fluid models. In the new approach a fluid model based on the University of Michigan BATSRUS code computes the gas properties, and feeds the gas drag force to the particle model, which is based on the Adaptive Mesh Particle Simulator (AMPS) code, to calculate the motion of dust grains. The coupling is done via the Space Weather Modeling Framework (SWMF). In addition to the capability of simulating the long-term dust phenomena, the model can also designate small active regions on the nucleus for comparison with the temporary fine dust features in observations. With the assistance of the newly developed model, the effect of viewing angles on observed dust jet shapes and the transportation of heavy dust grains from the southern to the northern hemisphere of comet 67P/Churyumov-Gerasimenko will be studied and compared with Rosetta mission images. Preliminary results will be

  1. Saharan Air Layer Interaction with Hurricane Claudette (2003)

    NASA Astrophysics Data System (ADS)

    Rothman, G. S.; Gill, T. E.; Chang, C.

    2004-12-01

    It has long been observed that the Saharan Air Layer (SAL), a large and seasonally-persistent layer of West African aeolian dust suspended over the Atlantic Ocean, may influence the variability and intensity of easterly waves and tropical cyclones in the Atlantic basin. The radiative and conductive properties of the Saharan aerosols may contribute to warming within the dust layer, creating an anomalous baroclinic zone in the tropical North Atlantic. Environmental baroclinic instability is a mechanism for conversion of potential energy to eddy kinetic energy, facilitating wave growth. However, this same baroclinic mechanism, along with the dry properties of the SAL, could also promote asymmetry in a tropical cyclone, limiting its intensity. Detailed investigations of specific cases are necessary to better understand the radiative heating or cooling impact that the Saharan aerosols cause as well as potential influences on cyclone track and intensity stemming from the aeolian dust cloud. Here, we consider the case of Claudette in 2003. On June 29, 2003, an easterly wave embedded near the southern boundary of a broad Saharan dust layer emerged from the West African Coastal Bend region into the Atlantic Ocean. The wave propagated westward, reaching tropical storm intensity as Claudette in the Caribbean and developing into a hurricane just before making landfall on the southern Texas Gulf of Mexico coast on July 15. The SAL propagated in phase with this system throughout almost its entire evolution. Rapid intensification of Claudette into a hurricane in the last 15 hours prior to landfall was concurrent with a decoupling from the Saharan dust intrusion, with the two following separate tracks into North America at the end of the period. We performed an investigation to understand and diagnose the interaction between the Saharan Air Layer and Claudette. HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) along-trajectory potential temperature plots as

  2. Does the long-range transport of African mineral dust across the Atlantic enhance their hygroscopicity?

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Caquineau, Sandrine; Desboeufs, Karine; Laurent, Benoit; Quiñones Rosado, Mariana; Vallejo, Pamela; Mayol-Bracero, Olga; Formenti, Paola

    2015-04-01

    Influence of mineral dust on radiation balance is largely dependent on their ability to interact with water. While fresh mineral dusts are highly hydrophobic, various transformation processes (coagulation, heterogeneous chemical reaction) can modify the dust physical and chemical properties during long-range transport, which, in turn, can change the dust hygroscopic properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of dust hygroscopic properties, and their temporal evolution during long-range transport. We present the first direct surface measurements of the hygroscopicity of Saharan dust after long-range transport over the Atlantic Ocean, their relationship with chemical composition, their influence on particle size and shape and implications for optical properties. Particles were collected during the DUST Aging and TransporT from Africa to the Caribbean (Dust-AttaCk) campaign at the Cape San Juan Puerto Rico station in June-July 2012. Environmental scanning electron microscopy (ESEM) was used to analyze the size, shape, chemical composition and hygroscopic properties of individual particles. At different levels of concentrations in summertime, the coarse mode of atmospheric aerosols in Puerto Rico is dominated by Saharan mineral dust. Most of aged dust particles survived atmospheric transport intact with no observed internal mixture with other species and did not show hygroscopic growth up to 94% relative humidity. This is certainly due to the fact that in summertime dust is mostly transported above the marine boundary layer. A minor portion of mineral dust (approximately 19-28% by number) were involved in atmospheric heterogeneous reactions with acidic gases (likely SO2 and HCl) and sea salt aggregation. While sulfate- and chloride-coated dust remained extremely hydrophobic, dust particles in internal mixing with NaCl underwent profound changes in their hygroscopicity, therefore in size and shape. We

  3. Update on Automated Classification of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Maroger, I.; Lasue, J.; Zolensky, M.

    2018-01-01

    Every year, the Earth accretes about 40,000 tons of extraterrestrial material less than 1 mm in size on its surface. These dust particles originate from active comets, from impacts between asteroids and may also be coming from interstellar space for the very small particles. Since 1981, NASA Jonhson Space Center (JSC) has been systematically collecting the dust from Earth's strastosphere by airborne collectors and gathered them into "Cosmic Dust Catalogs". In those catalogs, a preliminary analysis of the dust particles based on SEM images, some geological characteristics and X-ray energy-dispersive spectrometry (EDS) composition is compiled. Based on those properties, the IDPs are classified into four main groups: C (Cosmic), TCN (Natural Terrestrial Contaminant), TCA (Artificial Terrestrial Contaminant) and AOS (Aluminium Oxide Sphere). Nevertheless, 20% of those particles remain ambiguously classified. Lasue et al. presented a methodology to help automatically classify the particles published in the catalog 15 based on their EDS spectra and nonlinear multivariate projections (as shown in Fig. 1). This work allowed to relabel 155 particles out of the 467 particles in catalog 15 and reclassify some contaminants as potential cosmic dusts. Further analyses of three such particles indicated their probable cosmic origin. The current work aims to bring complementary information to the automatic classification of IDPs to improve identification criteria.

  4. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  5. The transition of North Atlantic dust deposition and Saharan landscape during the Holocene

    NASA Astrophysics Data System (ADS)

    Egerer, S.; Claussen, M.; Stanelle, T.; Reick, C. H.

    2017-12-01

    The sudden increase in North Atlantic dust deposition about 5 ka BP indicated by sediment records along the West African margin has been associated with an abrupt end of the African Humid Period (AHP). We perform several time slice simulations from 8 ka BP until the pre-industrial era to explore changes in the Holocene dust cycle. To do so, we use the coupled aerosol-climate model ECHAM6-HAM2 including interactive vegetation and dust, whereas ocean conditions and lakes are prescribed. The interactive coupling of vegetation, dust and atmosphere allows to set the dynamics of North Atlantic dust deposition in context to Holocene climate and landscape change in North Africa.In agreement with marine sediment records, we find an abrupt increase in simulated dust deposition at the location of the core sites roughly between 6 and 4 ka BP. Accordingly, dust emission in the North-west Sahara increases rapidly indicating that dust was transported by the same wind systems throughout the Holocene. The sudden increase in dust emission in the North-west Sahara is partly a consequence of a fast decline of vegetation cover from 22°N to 18°N due to vegetation-climate feedbacks and the rapid replacement of shrubs by grasses. Additionally, the prescribed strong but gradual reduction of lake surface area enforces accelerated dust release as former areas covered by lakes turn into highly productive dust sources. Changes in the Saharan landscape and dust emission south of 18°N and in the eastern Sahara as well as changes in atmospheric circulation play a minor role in driving the dynamics of North Atlantic dust deposition at the specific core sites. Our study emphasizes spatial and temporal differences in the transition of North African landscape implying that implications from local data records to large scales have to be treated with caution.

  6. Detecting and assessing Saharan dust contribution to PM10 loads: A pilot study within the EU-Life+10 project DIAPASON

    NASA Astrophysics Data System (ADS)

    Gobbi, Gian Paolo; Barnaba, Francesca; Bolignano, Andrea; Costabile, Francesca; Di Liberto, Luca; Dionisi, Davide; Drewnick, Frank; Lucarelli, Franco; Manigrasso, Maurizio; Nava, Silvia; Sauvage, Laurent; Sozzi, Roberto; Struckmeier, Caroline; Wille, Holger

    2015-04-01

    The EC LIFE+2010 DIAPASON Project (Desert dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs, www.diapason-life.eu) intends to contribute new methodologies to assess the role of aerosol advections of Saharan dust to the local PM loads recorded in Europe. To this goal, automated Polarization Lidar-Ceilometers (PLCs) were prototyped within DIAPASON to certify the presence of Saharan dust plumes and support evaluating their mass loadings in the lowermost atmosphere. The whole process also involves operational dust forecasts, as well as satellite and in-situ observations. Demonstration of the Project is implemented in the pilot region of Rome (Central Italy) where three networked DIAPASON PLCs started, in October 2013 a year-round, 24h/day monitoring of the altitude-resolved aerosol backscatter and depolarization profiles. Two intensive observational periods (IOPs) involving chemical analysis and detailed physical characterization of aerosol samples have also been carried out in this year-long campaign, namely in Fall 2013 and Spring 2014. These allowed for an extensive interpretation of the PLC observations, highlighting important synergies between the PLC and the in situ data. The presentation will address capabilities of the employed PLCs, observations agreement with model forecasts of dust advections, retrievals of aerosol properties and methodologies developed to detect Saharan advections and to evaluate the relevant mass contribution to PM10. This latter task is intended to provide suggestions on possible improvements to the current EC Guidelines (2011) on this matter. In fact, specific Guidelines are delivered by the European Commission to provide the Member States a common method to asses the Saharan dust contribution to the currently legislated PM-related Air Quality metrics. The DIAPASON experience shows that improvements can be proposed to make the current EC Methodology more robust and flexible. The methodology DIAPASON

  7. April 2008 Saharan dust event: Its contribution to PM10 concentrations over the Anatolian Peninsula and relation with synoptic conditions.

    PubMed

    Kabatas, B; Pierce, R B; Unal, A; Rogal, M J; Lenzen, A

    2018-08-15

    An online-coupled regional Weather Research and Forecasting model with chemistry (WRF-Chem) is utilized incorporating 0.1°×0.1° spatial resolution HTAP (Hemispheric Transport of Air Pollution) anthropogenic emissions to investigate the spatial and temporal distribution of a Saharan dust outbreak, which contributed to high levels (>50μg/m 3 ) of daily PM 10 concentrations over Turkey in April 2008. Aerosol optical depth and cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board of Aqua satellite are used to better analyze the synoptic conditions that generated the dust outbreak in April 2008. A "Sharav" low pressure system, which transports the dust from Saharan source region over Turkey along the cold front, tends to move faster in WRF-Chem simulations than observed. This causes the predicted dust event to arrive earlier than observed leading to an overestimation of surface PM 10 concentrations in WRF-Chem simulation at the beginning of the event. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Dust particles interaction with plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticos, C. M.; Jepu, I.; Lungu, C. P.

    2009-11-10

    The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.

  9. Dust sources and atmospheric circulation in concert controlling Saharan dust emission and transport towards the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Schepanski, Kerstin; Mallet, Marc; Heinold, Bernd; Ulrich, Max

    2017-04-01

    Dust transported from north African source regions towards Europe is a ubiquitous phenomenon in the Mediterranean region, a geographic region that is in part densely populated. Besides its impacts on the atmospheric radiation budget, dust suspended in the atmosphere results in reduced air quality, which is generally sensed as a reduction in quality of life. Furthermore, the exposure to dust aerosols enhances the prevalence of respiratory diseases, which reduces the general human wellbeing, and ultimately results in an increased loss of working hours due to illness and hospitalization rates. Characteristics of the atmospheric dust life cycle that determine dust transport will be presented with focus on the ChArMEx special observation period in June and July 2013 using the atmosphere-dust model COSMO-MUSCAT (COSMO: Consortium for Small-scale MOdeling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model). Modes of atmospheric circulation were identified from empirical orthogonal function (EOF) analysis of the geopotential height at 850 hPa for summer 2013 and compared to EOFs calculated from 1979-2015 ERA-Interim reanalysis. Generally, two different phases were identified. They are related to the eastward propagation of the subtropical ridge into the Mediterranean basin, the position of the Saharan heat low, and the predominant Iberian heat low. The relation of these centres of action illustrates a dipole pattern for enhanced (reduced) dust emission fluxes, stronger (weaker) meridional dust transport, and consequent increase (decrease) atmospheric dust concentrations and deposition fluxes. In concert, the results from this study aim at illustrating the relevance of knowing the dust source locations in concert with the atmospheric circulation. Ultimately, this study addresses the question of what is finally transported towards the Mediterranean basin and Europe from which source regions - and fostered by which atmospheric circulation pattern. Outcomes from this study

  10. The evolution of Saharan dust input in Lanzarote (Canary Islands): Lower Holocene triggering by human activity in the northwest Sahara?

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, H.; Oberhänsli, H.; Faust, D.; Zöller, L.; Hambach, U.; Fuchs, M.

    2009-04-01

    A Holocene increase of Saharan dust input to the area of the Canary islands is accompanied by a strong coarsening of this material during the Early Holocene as recorded in loess-like sediments deposited on Lanzarote. Whereas natural causes can be ruled out for the coarsening that is exceptional during the period of the last 180 ka, it is assumed that anthropogenic activity strongly mobilized dust in an area on the pathway of dust prior to its arrival in Lanzarote comprising parts of Western Sahara and northern Mauritania. Although scarce archaeological data from the coastal area of that region do not point to strong anthropogenic activity during the Early Holocene yet, a high density of unexplored archaeological remains reported from the coastal hinterlands does not exclude this hypothesis. Thus, the results of this study highlight the need of further archaeological investigations in that Saharan region.

  11. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  12. Dust in Cometary Comae: Present Understanding of the Structure and Composition of Dust Particles

    NASA Technical Reports Server (NTRS)

    Levasseur-Regourd, A. C.; Zolensky, M.; Lasue, J.

    2007-01-01

    In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about one micron. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the -2.6 to -3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.

  13. Casting Light and Shadows on a Saharan Dust Storm

    NASA Technical Reports Server (NTRS)

    2003-01-01

    On March 2, 2003, near-surface winds carried a large amount of Saharan dust aloft and transported the material westward over the Atlantic Ocean. These observations from the Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's Terra satellite depict an area near the Cape Verde Islands (situated about 700 kilometers off of Africa's western coast) and provide images of the dust plume along with measurements of its height and motion. Tracking the three-dimensional extent and motion of air masses containing dust or other types of aerosols provides data that can be used to verify and improve computer simulations of particulate transport over large distances, with application to enhancing our understanding of the effects of such particles on meteorology, ocean biological productivity, and human health.

    MISR images the Earth by measuring the spatial patterns of reflected sunlight. In the upper panel of the still image pair, the observations are displayed as a natural-color snapshot from MISR's vertical-viewing (nadir) camera. High-altitude cirrus clouds cast shadows on the underlying ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated stereoscopic processing of MISR's multi-angle imagery show the cirrus clouds (yellow areas) to be situated about 12 kilometers above sea level. The distinctive spatial patterns of these clouds provide the necessary contrast to enable automated feature matching between images acquired at different view angles. For most of the dust layer, which is spatially much more homogeneous, the stereoscopic approach was unable to retrieve elevation data. However, the edges of shadows cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of the dust layer's height, and indicate that the top of layer is only about 2.5 kilometers above sea level.

    Motion of the dust and clouds is directly

  14. Dust particle radial confinement in a dc glow discharge.

    PubMed

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2013-01-01

    A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.

  15. Characterization of Saharan dust properties transported towards Europe in the frame of the FENNEC project: a case study

    NASA Astrophysics Data System (ADS)

    Marnas, F.; Chazette, P.; Flamant, C.; Royer, P.; Sodemman, H.; Derimian, Y.

    2012-04-01

    In the framework of the FENNEC experiment (6 to 30 June 2011) an effort has been dedicated to characterize Saharan dust plumes transported towards southern Europe. Hence, a multi instrumented field campaign has been conducted. Ground based nitrogen Raman LIDAR (GBNRL) has been deployed in southern Spain close to Marbella, simultaneously with airborne lidar (AL) performing measurements over both the tropical Atlantic Ocean and the western Africa (from 2 to 23 June). The GBNRL was equipped with co-polar and cross-polar channels to perform continuous measurements of the dust aerosols trapped in the troposphere. It was developed by LSCE with the support of the LEOSPHERE Company. The French FALCON 20 research aircraft operated by SAFIRE (Service des Avions Francais Instrumentés pour la Recherche en Environnement) carried the AL Leandre Nouvelle Generation (LNG) as well as a dropsonde releasing system and radiometers. A major, one week long, dust event has been sampled over Spain from 25 June to 1 July with high optical depth (>0.5 at 355nm) and particular depolarization ratios (15 to 25%). Backtrajectory studies suggest that the dust particles observed were from dust uplifts that occurred in Southern Morocco and Northern Mauritania. The event has been also documented 3 days before by the AL flying over Mauritania. AERONET sunphotometer measurements of aerosol properties, along the dust plume transport path appear to be coherent with both the lidar and the backtrajectory analysis. These analysis exhibit a likely major contribution from the Western Sahara sources to the Southern Europe. Such a contribution may impact the visibility and then the airtrafic, modify the tropospheric chemistry, and add nutrients to both the Mediterranean Sea and the continental surfaces. It can also affect the health of European populations. We will present strategy of the experiment and the case study built from measurements performed at the end of June.

  16. Modeling light scattering by mineral dust particles using spheroids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Nousiainen, Timo

    Suspended dust particles have a considerable influence on light scattering in both terrestrial and planetary atmospheres and can therefore have a large effect on the interpretation of remote sensing measurements. Assuming dust particles to be spherical is known to produce inaccurate results when modeling optical properties of real mineral dust particles. Yet this approximation is widely used for its simplicity. Here, we simulate light scattering by mineral dust particles using a distribution of model spheroids. This is done by comparing scattering matrices calculated from a dust optical database of Dubovik et al. [2006] with those measured in the laboratory by Volten et al. [2001]. Wavelengths of 441,6 nm and 632,8 nm and refractive indexes of Re = 1.55 -1.7 and Im = 0.001i -0.01i were adopted in this study. Overall, spheroids are found to fit the measurements significantly better than Mie spheres. Further, we confirm that the shape distribution parametrization developed in Nousiainen et al. (2006) significantly improves the accuracy of simulated single-scattering for small mineral dust particles. The spheroid scheme should therefore yield more reliable interpretations of remote sensing data from dusty planetary atmospheres. While the spheroidal scheme is superior to spheres in remote sensing applications, its performance is far from perfect especially for samples with large particles. Thus, additional advances are clearly possible. Further studies of the Martian atmosphere are currently under way. Dubovik et al. (2006) Application of spheroid models to account for aerosol particle nonspheric-ity in remote sensing of desert dust, JGR, Vol. 111, D11208 Volten et al. (2001) Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm, JGR, Vol. 106, No. D15, pp. 17375-17401 Nousiainen et al. (2006) Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids, JQSRT 101, pp. 471-487

  17. CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.

    2012-01-01

    CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios during the summer of 2007 are used to study transatlantic dust properties downwind of Saharan sources, and to examine the interaction of clouds and dust. We discuss the following findings: (1) while lidar backscatter doesn't change much with altitude in the Saharan Air Layer (SAL), depolarization and color ratios both increase with altitude in the SAL; (2) lidar backscatter and color ratio increase as dust is transported westward in the SAL; (3) the vertical lapse rate of dust depolarization ratio increases within SAL as plumes move westward; (4) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Finally, (5) the odds of CALIOP finding dust below SAL next to clouds are about 2/3 of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dusty volumes lose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.

  18. Particle atlas of World Trade Center dust

    USGS Publications Warehouse

    Lowers, Heather; Meeker, Gregory P.

    2005-01-01

    The United States Environmental Protection Agency (EPA) has begun a reassessment of the presence of World Trade Center (WTC) dust in residences, public buildings, and office spaces in New York City, New York. Background dust samples collected from residences, public buildings, and office spaces will be analyzed by multiple laboratories for the presence of WTC dust. Other laboratories are currently studying WTC dust for other purposes, such as health effects studies. To assist in inter-laboratory consistency for identification of WTC dust components, this particle atlas of phases in WTC dust has been compiled.

  19. Influence of emissivity on behavior of metallic dust particles in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.; Smirnov, R. D.; Pigarov, A. Yu.

    Influence of thermal radiation emissivity on the lifetime of a dust particle in plasmas is investigated for different fusion relevant metals (Li, Be, Mo, and W). The thermal radiation is one of main cooling mechanisms of the dust in plasmas especially for dust with evaporation temperature higher than 2500 K. In this paper, the temperature- and radius-dependent emissivity of dust particles is calculated using Mie theory and temperature-dependent optical constants for the above metallic materials. The lifetime of a dust particle in uniform plasmas is estimated with the calculated emissivity using the dust transport code DUSTT[A. Pigarov et al., Physicsmore » of Plasmas 12, 122508 (2005)], considering other dust cooling and destruction processes such as physical and chemical sputtering, melting and evaporation, electron emission etc. The use of temperature-dependent emissivity calculated with Mie theory provides a longer lifetime of the refractory metal dust particle compared with that obtained using conventional emissivity constants in the literature. The dynamics of heavy metal dust particles are also presented using the calculated emissivity in a tokamak plasma.« less

  20. Dust Analyzer Instrument (DANTE) for the detection and elemental analysis of dust particles originating from the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; O'brien, L.; Gruen, E.; Horanyi, M.; Malaspina, D.; Moebius, E.; Rocha, J. R. R.

    2016-12-01

    Nano- to sub-micron-size dust particles generated by the collisional breakup of interplanetary dust particles (IDPs) in the inner solar system can be accelerated away from the Sun and are available for detection and analysis near 1 AU. Beta-meteoroids are sub-micron sized particles for which the radiation pressure dominates over gravity and have already been detected by dedicated dust instrument. Charged nano-sized dust particles are picked up by the expanding solar wind and arrive to 1 AU with high velocity. The recent observations by the WAVE instrument on the two STEREO spacecraft indicated that these particles may exist in large numbers. The Dust Analyzer Instrument (DANTE) is specifically developed to detect and analyze these two populations of dust particles arriving from a direction close to the Sun. DANTE is a linear time-of-flight (ToF) mass spectrometer analyzing the ions generated by the dust impact on a target surface. DANTE is derived from the Cosmic Dust Analyzer instrument operating on Cassini. DANTE has a 300 cm2 target area and a mass resolution of approximately m/dm = 50. The instrument performance has been verified using the dust accelerator facility operating at the University of Colorado. A light trap system, consisting of optical baffles, is designed and optimized in terms of geometry and surface optical properties. A solar wind ion repeller system is included to prevent solar wind from entering the sensor. Both measures facilitate the detection with the instrument pointing close to the Sun's direction. The DANTE measurements will help to understand the sources, sinks and distribution of dust between the Sun and 1 AU, and, when combined with solar wind ion analyzer instrument, they will provide insight on the suspected link between dust particles and pickup ions, and how the massive particles affect the dynamics and energetics of the solar wind.

  1. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  2. Dust Concentrations and Composition During African Dust Incursions in the Caribbean Region

    NASA Astrophysics Data System (ADS)

    Mayol-Bracero, O. L.; Santos-Figueroa, G.; Morales-Garcia, F.

    2016-12-01

    The World Health Organization (WHO) indicates that exposure to PM10 concentrations higher than 50 µg/m³ 24-hour mean in both developed and developing countries could have an adverse impact on public health. Recent studies showed that in the Caribbean region the PM10 concentrations often exceed the WHO guidelines for PM10. These exceedances are largely driven by the presence of African Dust particles that reach the Caribbean region every year during the summer months. These dust particles also influence the Earth's radiative budget directly by scattering solar radiation in the atmosphere and indirectly by affecting cloud formation and, thus, cloud albedo. In order to have a better understanding of the impacts of African Dust on public health and climate, we determine the concentration of dust particles, the carbonaceous fraction (total, elemental and organic carbon: TC, EC, and OC) and water-soluble ions (e.g., Na+, Cl-, Ca+2, NH4+, SO4-2) of aerosol samples in the presence and absence of African Dust. Samples were collected using a Hi-Vol and Stacked-Filter Units for the sampling of total suspended particles (TSP) at two stations in Puerto Rico: a marine site located at Cabezas de San Juan (CSJ) Nature Reserve, in Fajardo, and an urban site located at the University of Puerto Rico, in San Juan. The presence of African Dust was supported with Saharan Air Layer (SAL) imagery and with the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Preliminary results showed that the total mass concentration of aerosols obtained at the urban site is about two times that at the marine site for SFU samples during African Dust incursions. The average dust concentration obtained at CSJ for Hi Vol samples was 22 µg/m³ during the summer 2015. African Dust concentrations, TC, EC, OC, and ionic speciation results for the marine and urban sites will be presented at the conference.

  3. In situ observations of dust particles in Martian dust belts using a large-sensitive-area dust sensor

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masanori; Krüger, Harald; Senshu, Hiroki; Wada, Koji; Okudaira, Osamu; Sasaki, Sho; Kimura, Hiroshi

    2018-07-01

    In order to determine whether Martian dust belts (ring or torus) actually exist and, if so, to determine the characteristics of the dust, we propose a Circum-Martian Dust Monitor (CMDM) to be deployed on the Martian Moons Exploration (MMX) project, in which JAXA plans to launch the spacecraft in 2024, investigate Phobos and Deimos, and return samples back to Earth. The CMDM is a newly developed instrument that is an impact dust detector. It weighs only 650 g and has a sensor aperture area of ∼1 m2, according to the conceptual design study. Detectable velocities (v) range from 0.5 km/s to more than 70 km/s, which will cover all possible dust particles: circummartian (low v), interplanetary (mid v), and interstellar (high v) particles. The measurable mass ranges from 1.3 × 10-9 g to 7.8 × 10-7 g at v = 0.5 km/s. Since the MMX spacecraft will take a quasi-circular, prograde orbit around Mars, the CMDM will be able to investigate particles from Phobos and Deimos with relative velocities lower than 1 km/s. Therefore, the CMDM will be able to determine whether or not a confined dust ring exists along Phobos' orbit and whether an extended dust torus exists along Deimos' orbit. It may also be able to clarify whether or not any such ring or torus are self-sustained.

  4. Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions.

    PubMed

    Louis, Justine; Pedrotti, Maria Luiza; Gazeau, Frédéric; Guieu, Cécile

    2017-01-01

    The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two 'no bloom' periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6-7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions.

  5. The Entry of Nano-dust Particles into the Terrestrial Magnetosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Juhasz, A.

    2016-12-01

    Nano-dust particles have been suggested to be responsible for spurious antenna signals on several spacecraft near 1 AU. Most of these tiny motes are generated in the solar vicinity where the collision-rate between larger inward migrating dust particles increases generating copious amounts of smaller dust grains. The vast majority of the dust grains is predicted to be lost to the Sun, but a fraction of them can be expelled by radiation pressure, and the solar wind plasma flow. Particles in the nano-meter size range can be incorporated in the solar wind, and arrive near 1 AU with characteristic speeds of approximately 400 km/s. Larger, but still submicron sized particles, that are expelled by radiation pressure, represent the so-called beta-meteoroid population. Both of these populations of dust particles can be detected by dedicated dust instruments near 1 AU. A fraction of these particles can also penetrate the terrestrial magnetosphere and possibly bombard spacecraft orbiting the Earth. This talk will explore the dynamics of nano-grains and beta-meteoroids entering the magnetosphere, and predict their spatial, mass and speed distributions as function of solar wind conditions.

  6. Health effects from Sahara dust episodes in Europe: literature review and research gaps.

    PubMed

    Karanasiou, A; Moreno, N; Moreno, T; Viana, M; de Leeuw, F; Querol, X

    2012-10-15

    The adverse consequences of particulate matter (PM) on human health have been well documented. Recently, special attention has been given to mineral dust particles, which may be a serious health threat. The main global source of atmospheric mineral dust is the Sahara desert, which produces about half of the annual mineral dust. Sahara dust transport can lead to PM levels that substantially exceed the established limit values. A review was undertaken using the ISI web of knowledge database with the objective to identify all studies presenting results on the potential health impact from Sahara dust particles. The review of the literature shows that the association of fine particles, PM₂.₅, with total or cause-specific daily mortality is not significant during Saharan dust intrusions. However, regarding coarser fractions PM₁₀ and PM₂.₅₋₁₀ an explicit answer cannot be given. Some of the published studies state that they increase mortality during Sahara dust days while other studies find no association between mortality and PM₁₀ or PM₂.₅₋₁₀. The main conclusion of this review is that health impact of Saharan dust outbreaks needs to be further explored. Considering the diverse outcomes for PM₁₀ and PM₂.₅₋₁₀, future studies should focus on the chemical characterization and potential toxicity of coarse particles transported from Sahara desert mixed or not with anthropogenic pollutants. The results of this review may be considered to establish the objectives and strategies of a new European directive on ambient air quality. An implication for public policy in Europe is that to protect public health, anthropogenic sources of particulate pollution need to be more rigorously controlled in areas highly impacted by the Sahara dust. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Martian Dust Devils: Laboratory Simulations of Particle Threshold

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Balme, Matthew R.; Iverson, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim; White, Bruce

    2003-01-01

    An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 micron in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lower-pressure experiments down to approx. 65 mbar follow this trend for sand-sized particles. However, smaller particles (i.e., dust) and all particles at very low pressures (w 10-60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains approx. 2 microns in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.

  8. Charge-fluctuation-induced heating of dust particles in a plasma.

    PubMed

    Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F

    1999-11-01

    Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.

  9. Saharan dust - A carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    USGS Publications Warehouse

    Garrison, V.H.; Foreman, W.T.; Genualdi, S.; Griffin, Dale W.; Kellogg, C.A.; Majewski, M.S.; Mohammed, A.; Ramsubhag, A.; Shinn, E.A.; Simonich, S.L.; Smith, G.W.

    2006-01-01

    An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI), Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa) is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs), trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde) and the Caribbean (USVI and Trinidad & Tobago). Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions.

  10. Comet Dust: The Diversity of "Primitive" Particles and Implications

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  11. CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.

    2014-01-01

    We use CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios, as well as particulate retrievals during the summer of 2007 to study transatlantic dust properties downwind of Saharan sources, and to examine the influence of nearby clouds on dust. Our analysis suggests that (1) under clear skies, while lidar backscatter and color ratio do not change much with altitude and longitude in the Saharan Air Layer (SAL), depolarization ratio increases with altitude and decreases westward in the SAL (2) the vertical lapse rate of dust depolarization ratio, introduced here, increases within SAL as plumes move westward (3) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Moreover, the presence of nearby clouds tends to decrease the depolarization of dust volumes within SAL. Finally, (4) the odds of CALIOP finding dust below SAL next to clouds are about of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dust volumes loose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.

  12. Structure of Cometary Dust Particles

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. C.; Hadamcik, E.; Lasue, J.

    2004-11-01

    The recent encounter of Stardust with comet 81P/Wild 2 has provided highly spatially resolved data about dust particles in the coma. They show intense swarms and bursts of particles, suggest the existence of fragmenting low-density particles formed of higher density sub-micrometer components [1], and definitely confirm previous results (inferred from Giotto encounter with comet Grigg-Skjellerup [2] and remote light scattering observations [3]). The light scattering properties (mostly polarization, which does not depend upon disputable normalizations) of dust in cometary comae will be summarized, with emphasis on the spatial changes and on the wavelength and phase angle dependence. Experimental and numerical simulations are needed to translate these observed light scattering properties in terms of physical properties of the dust particles (e.g. size, morphology, albedo, porosity). New experimental simulations (with fluffy mixtures of sub-micron sized silica and carbon grains) and new numerical simulations (with fractal aggregates of homogeneous or core-mantled silicate and organic grains) will be presented. The results are in favor of highly porous particles built up (by ballistic-cluster-cluster agglomeration) from grains of interstellar origin. The perspectives offered by laboratory simulations with aggregates built under conditions representative of the early solar system on board the International Space Station will be presented, together with the perspectives offered by future experiments on board the Rosetta cometary probe. Supports from CNES and ESA are acknowledged [1] Tuzzolino et al., Science, 304, 1776, 2004, [2] N. McBride et al., Mon. Not. R. Astron. Soc., 289, p. 535-553, 1997, [3] Levasseur-Regourd and Hadamcik, J. Quant. Spectros. Radiat. Transfer, 79-80, 903-910, 2003.

  13. Motion of dust particles in nonuniform magnetic field and applicability of smoothed particle hydrodynamics simulation

    NASA Astrophysics Data System (ADS)

    Saitou, Y.

    2018-01-01

    An SPH (Smoothed Particle Hydrodynamics) simulation code is developed to reproduce our findings on behavior of dust particles, which were obtained in our previous experiments (Phys. Plasmas, 23, 013709 (2016) and Abst. 18th Intern. Cong. Plasma Phys. (Kaohsiung, 2016)). Usually, in an SPH simulation, a smoothed particle is interpreted as a discretized fluid element. Here we regard the particles as dust particles because it is known that behavior of dust particles in complex plasmas can be described using fluid dynamics equations in many cases. Various rotation velocities that are difficult to achieve in the experiment are given to particles at boundaries in the newly developed simulation and motion of particles is investigated. Preliminary results obtained by the simulation are shown.

  14. Could gradual changes in Holocene Saharan landscape have caused the observed abrupt shift in North Atlantic dust deposition?

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2017-09-01

    The abrupt change in North Atlantic dust deposition found in sediment records has been associated with a rapid large scale transition of Holocene Saharan landscape. We hypothesize that gradual changes in the landscape may have caused this abrupt shift in dust deposition either because of the non-linearity in dust activation or because of the heterogeneous distribution of major dust sources. To test this hypothesis, we investigate the response of North Atlantic dust deposition to a prescribed 1) gradual and spatially homogeneous decrease and 2) gradual southward retreat of North African vegetation and lakes during the Holocene using the aerosol-climate model ECHAM-HAM. In our simulations, we do not find evidence of an abrupt increase in dust deposition as observed in marine sediment records along the Northwest African margin. We conclude that such gradual changes in landscape are not sufficient to explain the observed abrupt changes in dust accumulation in marine sediment records. Instead, our results point to a rapid large-scale retreat of vegetation and lakes in the area of significant dust sources.

  15. Structures and dynamics in a two-dimensional dipolar dust particle system

    NASA Astrophysics Data System (ADS)

    Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.

    2018-05-01

    The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.

  16. Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft

    NASA Astrophysics Data System (ADS)

    Ye, S.-Y.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, H.-W.; Srama, R.; Grün, E.

    2014-08-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust particles when voltage pulses induced by the dust impacts are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. For the first time, the dust impacts signals measured by dipole and monopole electric antennas are compared, from which the effective impact area of the spacecraft is estimated to be 4 m2. In the monopole mode, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna), which can be used to statistically infer the charge state of the spacecraft. It is shown that the differential number density of the dust particles near Saturn can be characterized as a power law dn/dr ∝ rμ, where μ ~ - 4 and r is the particle size. No peak is observed in the size distribution, contrary to the narrow size distribution found by previous studies. The RPWS cumulative dust density is compared with the Cosmic Dust Analyzer High Rate Detector measurement. The differences between the two instruments are within the range of uncertainty estimated for RPWS measurement. The RPWS onboard dust recorder and counter data are used to map the dust density and spacecraft charging state within Saturn's magnetosphere.

  17. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  18. Migration of Dust Particles and Their Collisions with the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. C.

    2004-01-01

    Our review of previously published papers on dust migration can be found in [1], where we also present different distributions of migrating dust particles. We considered a different set of initial orbits for the dust particles than those in the previous papers. Below we pay the main attention to the collisional probabilities of migrating dust particles with the planets based on a set of orbital elements during their evolution. Such probabilities were not calculated earlier.

  19. Dust altitude and infrared optical depth retrieved from 6 years of AIRS observations : a focus on Saharan dust using A-Train synergy (MODIS, CALIOP)

    NASA Astrophysics Data System (ADS)

    Peyridieu, S.; Chédin, A.; Capelle, V.; Pierangelo, C.; Lamquin, N.; Armante, R.

    2009-04-01

    Observation from space, being global and quasi-continuous, is a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the thermal infrared domain still remains marginal. However, knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing. Infrared remote sensing provides a way to retrieve other aerosol characteristics, including their mean altitude. Moreover, observations are possible at night and day, over ocean and over land. In this context, six years (2003-2008) of the 2nd generation vertical sounder AIRS observations have been processed over the tropical belt (30°N-30°S). Our results of the dust optical depth at 10 µm have been compared to the 0.55 µm Aqua/MODIS optical depth product for this period. The detailed study of Atlantic regions shows a very good agreement between the two products, with a VIS/IR ratio around 0.3-0.5 during the Saharan dust season. Comparing these two AOD products should allow separating different aerosols signals, given that our retrieval algorithm is specifically designed for dust coarse mode whereas MODIS retrieves both accumulation and fine aerosol modes. Mean aerosol layer altitude has also been retrieved from AIRS data and we show global maps and time series of altitude retrieved from space. Altitude retrievals are compared to the CALIOP/Calipso Level-2 product starting June 2006. This comparison, for a region located downwind from the Sahara, again shows a good agreement demonstrating that our algorithm effectively allows retrieving reliable mean dust layer altitude. A global climatology of the dust optical depth at 10 µm and of the aerosol layer mean altitude has also been established. An interesting conclusion is the fact that if the AOD decreases from Africa to the Caribbean

  20. Experiments to trap dust particles by a wire simulating an electron beam

    NASA Astrophysics Data System (ADS)

    Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime

    1991-11-01

    Motion of trapped dust particles has been previously analyzed using high-energy bremsstrahlung data obtained during dust trapping in the TRISTAN accumulation ring. Because it is difficult to observe the actual motions of dust particles trapped in an electron beam due to the strong synchrotron light background, we carried out experiments to trap sample dust particles with a Cu wire simulating an electron beam. A negative potential was slowly applied to the wire using a high voltage dc power supply. Motions of dust particles trapped by the wire were recorded with a video camera system. In an experiment using a Cu wire (1.5 mm in diameter) with no magnetic field, the charged dust particle made vertical oscillation about the wire. In another experiment using the same wire but with a vertical magnetic field (0.135 T) simulating a bending magnetic field, both vertical and horizontal oscillating motions perpendicular to the wire were observed. Furthermore, it was found that the dust particle moved in the longitudinal direction of the wire in the bending magnetic field. Therefore, it is expected that charged dust particles trapped by the electric field of the electron beam oscillate vertically where there is no magnetic field in the TRISTAN accumulation ring. It is also expected that trapped dust particles where there is a bending magnetic field oscillate horizontally and vertically as the particle drifts in a longitudinal direction along the ring.

  1. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air.

    PubMed

    Garrison, V H; Majewski, M S; Konde, L; Wolf, R E; Otto, R D; Tsuneoka, Y

    2014-12-01

    Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure. Published by Elsevier B.V.

  2. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  3. Cassini RPWS Measurement of Dust Particles in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ye, S.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, S.; Sakai, S.; Morooka, M.; Wahlund, J.

    2013-12-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust impacts when voltage pulses induced by the impact charges are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. Based on the data collected during the E-ring crossings and Enceladus flybys, we show that the size distribution of the dust particles can be characterized as dn/dr ∝ rμ, where μ~-4. We compare the density of dust particles above a certain size threshold calculated from the impact rate with the Cosmic Dust Analyzer (CDA) High Rate Detector (HRD) data. When the monopole antenna is connected to the wideband receiver, the polarity of the dust impact signal is determined by the spacecraft potential and the location of the impact (on the spacecraft body or the antenna). Because the effective area of the antenna is relatively easy to estimate, we use the polarity ratio of the dust impacts to infer the effective area of the spacecraft body. RPWS onboard dust detection data is analyzed, from which we infer the sign of the spacecraft potential and the dust density within Saturn's magnetosphere. A new phenomenon called dust ringing has been found to reveal the electron density inside the Enceladus plume. The ringing frequencies, interpreted as the local plasma frequencies, are consistent with the values measured by other methods, i.e., Langmuir probe and upper hybrid resonance.

  4. Laboratory Studies of Optical Characteristics and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.; Venturini, C. C.

    2000-01-01

    Information about the optical characteristics and physical processes involving cosmic dust particles is vital for interpretation of astronomical observations and an understanding of the formation and processing of dust in the evolutionary cycle of matter in the interstellar medium. Cosmic dust particles are formed in a variety of astrophysical environments such as in cool stellar outflows and circumstellar envelopes. Definitive knowledge of the nature, composition, and physical processes of cosmic dust grains, however, can only be inferred from astronomical observations through laboratory experiments on the analogs of hypothesized dust particles and with modeling calculations. Laboratory investigations of the nature, composition, and optical characteristics of cosmic dust particles are being, carried out at many institutions with a variety of experimental techniques. Despite a wealth of available data, however, many basic issues remain unresolved. An experimental facility based on suspension of dust particles in electrodynamic balance in a pressure/temperature controlled environment in a cavity has been operational at the NASA Marshall Space Flight Center, and is currently being employed for studies of dust particle charging mechanisms using electron beams and with UV radiation. In this paper, we discuss two general classes of experiments under planning stages that may be simultaneously carried out on this facility for cosmic dust investigations (i) Infrared optical characteristics (extinction coefficients and scattering phase functions) of the analogs of hypothesized of cosmic dust particles, such as natural and synthetic amorphous silicates with varying compositions, amorphous carbon grains, polycyclic aromatic hydrocarbons (PAHs), and icy core-mantle particles etc. The initial spectral range under consideration is 1-25 micrometers, to be extended to the far infrared region in the future (ii) Condensation of volatile gases on nucleus dust particles to be

  5. Interactive Soil Dust Aerosol Model in the GISS GCM. Part 1; Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Tegen, Ina; Miller, Ron L.

    2000-01-01

    The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably

  6. Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.

    2008-11-01

    In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)

  7. A Model for Saharan Dust Transport.

    NASA Astrophysics Data System (ADS)

    D'Almeida, Guillaume A.

    1986-07-01

    In this paper the source strength and the deposition rate of the dust emerging from the Sahara are assessed. For this purpose a multichannel sunphotometer has been developed and a turbidity network covering 11 stations has been set up in the Sahara, in the Sahel region and the surrounding southern area for a duration of about two years. A correlation analysis connecting observed aerosol turbidity parameters and mineral dust mass concentration has been performed during a four-week field campaign in Agadez (Niger). An appropriate box model including the aerosol turbidity parameters, actual wind field data of the source regions, the general circulation pattern over Africa and dry and wet deposition reveals a total mass production of about 630 × 106 and 710 × 106 t yr1 for all suspended particulate matter, 80 × 106 and 90 × 106 t yr1 for aerosol particles smaller than 5 m radius for the years 1981 and 1982 respectively. About 60% of the mass moves southward to the Gulf of Guinea, 28% westward to the equatorial North Atlantic Ocean and 12% northward to Europe. A considerable part is deposited in the Atlantic Ocean and the Mediterranean forming deep-sea sediments.

  8. Investigating Sensitivity to Saharan Dust in Tropical Cyclone Formation Using Nasa's Adjoint Model

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel

    2015-01-01

    As tropical cyclones develop from easterly waves coming of the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the

  9. Investigating sensitivity to Saharan dust in tropical cyclone formation using NASA's adjoint model

    NASA Astrophysics Data System (ADS)

    Holdaway, Daniel

    2015-04-01

    As tropical cyclones develop from easterly waves coming off the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the

  10. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  11. Evolution of Cometary Dust Particles to the Orbit of the Earth: Particle Size, Shape, and Mutual Collisions

    NASA Astrophysics Data System (ADS)

    Yang, Hongu; Ishiguro, Masateru

    2018-02-01

    In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.

  12. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust

    NASA Astrophysics Data System (ADS)

    Ingall, E. D.; Longo, A.; Feng, Y.; Lai, B.; Landing, W. M.; Shelley, R.; Nenes, A.; Mihalopoulos, N.; Violaki, K.

    2016-12-01

    Iron is a key micronutrient that is vital for all organisms. The supply of bioavailable, soluble iron controls primary productivity in approximately 30% of the world's oceans. The significant contribution of atmospheric aerosols to the bioavailable iron budget in vast ocean regions, underscores the need to understand the controls and transformations of aerosol iron solubility during atmospheric transport. The Sahara Desert contains the largest and most active sources of aerosol dust globally and can be a key source of nutrients to the Mediterranean Sea, much of the North Atlantic Ocean, and even as far as the Gulf of Mexico. Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated aerosol iron in Mediterranean samples. In Atlantic samples, iron(II & III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing, including acidic reactions and photo-reduction, likely influence the form of iron minerals and the oxidation state in Saharan dust aerosols and contribute to increases in aerosol iron solubility. Overall, these findings suggest that a combination of factors affects aerosol iron solubility during long-distance atmospheric transport and emphasize the need to consider reductive mechanisms as well as proton-induced solubilization of aerosol iron in modeling studies.

  13. Comet Dust: The Diversity of Primitive Particles and Implications

    NASA Technical Reports Server (NTRS)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  14. Mixed Calcium Dust and Carbonaceous Particles from Asia Contributing to Precipitation Changes in California

    NASA Astrophysics Data System (ADS)

    Kristensen, L.; Cornwell, G.; Sedlacek, A. J., III; Prather, K. A.

    2016-12-01

    Mineral dust particles can serve as cloud condensation nuclei (CCN), with enhanced CCN activity observed when the dust is mixed with additional soluble species. Long range atmospheric transport can change the composition of dust particles through aging, cloud processing and mixing with other particles. The CalWater2 campaign measured single particles and cloud dynamics to investigate the influence aerosols have on the hydrological cycle in California. An Aircraft Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to characterize and identify single particles within clouds potentially acting as ice and cloud nuclei. Two matching flights over California's mountains in March 2015 detected significantly different particle types that resulted in different precipitation totals. Calcium dust dominated the particle composition during the first flight which had an observed decrease in orographic precipitation. Particle composition and air mass back trajectories indicate an Asian desert origin. The calcium dust particles contained secondary acids, in particular oxalic acid, acquired during transport from Asia to California. This chemical processing likely increased the solubility of the dust, enabling the particles to act as more effective CCN. The chemical composition also showed oligomeric carbonaceous species were mixed with the calcium dust particles, potentially further increasing the solubility the particles. A single particle soot photometer (SP2) measured black carbon concurrently and returned intense incandescence when calcium dust was present, confirming the calcium dust particles were internally mixed with a carbonaceous species. Dust particles were greatly reduced during the second flight with local biomass burning particles the dominant type. Observed precipitation in California were within forecast levels during the second flight. These single particle measurements from CalWater2 show that dust particles from Asia can affect cloud process and thus

  15. Particle size and metals concentrations of dust from a paint manufacturing plant.

    PubMed

    Huang, Siew Lai; Yin, Chun-Yang; Yap, Siaw Yang

    2010-02-15

    In this study, the particle size distribution and concentration of metallic elements of solvent- and water-based paint dust from bulk dust collected from dust-collecting hoppers were determined. The mean particle size diameter over a 12-week sampling period was determined using a particle size analyzer. The metals composition and concentration of the dust were determined via acid digestion technique followed by concentration analysis using inductively coupled plasma. The volume weighted mean particle diameters were found to be 0.941+/-0.016 and 8.185+/-0.201 microm for solvent- and water-based paint dust, respectively. The mean concentrations of metals in solvent-based paint dust were found to be 100+/-20.00 microg/g (arsenic), 1550+/-550.00 microg/g (copper), 15,680+/-11,780.00 microg/g (lead) and 30,460+/-10,580.00 microg/g (zinc) while the mean concentrations of metals in water-based paint dust were found to be 20.65+/-6.11 microg/g (arsenic), 9.14+/-14.65 microg/g (copper), 57.46+/-22.42 microg/g (lead) and 1660+/-1260 microg/g (zinc). Both paint dust types could be considered as hazardous since almost all of the dust particles were smaller than 10 microm. Particular emphasis on containment of solvent-based paint dust particles should be given since it was shown that they were very fine in size (<1 microm) and had high lead and zinc concentrations.

  16. Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties

    NASA Astrophysics Data System (ADS)

    Sullivan, Ryan Christopher

    Mineral dust particles are a major component of tropospheric aerosol mass and affect regional and global atmospheric chemistry and climate. Dust particles experience heterogeneous reactions with atmospheric gases that alter the gas and particle-phase chemistry. These in turn influence the warm and cold cloud nucleation ability and optical properties of the dust particles. This dissertation investigates the atmospheric chemistry of mineral dust particles and their role in warm cloud nucleation through a combination of synergistic field measurements, laboratory experiments, and theoretical modeling. In-situ measurements made with a single-particle mass spectrometer during the ACE-Asia field campaign in 2001 provide the motivation for this work. The observed mixing state of the individual ambient particles with secondary organic and inorganic components is described in Chapter 2. A large Asian dust storm occurred during the campaign and produced dramatic changes in the aerosol's composition and mixing state. The effect of particle size and mineralogy on the atmospheric processing of individual dust particles is explored in Chapters 3 & 4. Sulfate was found to accumulate preferentially in submicron iron and aluminosilicate-rich dust particles, while nitrate and chloride were enriched in supermicron calcite-rich dust. The mineral dust (and sea salt particles) were also enriched in oxalic acid, the dominant component of water soluble organic carbon. Chapter 5 explores the roles of gas-phase photochemistry and partitioning of the diacids to the alkaline particles in producing this unique behavior. The effect of the dust's mixing state with secondary organic and inorganic components on the dust particles' solubility, hygroscopicity, and thus warm cloud nucleation properties is explored experimentally and theoretically in Chapter 6. Cloud condensation nucleation (CCN) activation curves revealed that while calcium nitrate and calcium chloride particles were very hygroscopic

  17. Airborne dust and soil particles at the Phoenix landing site, Mars

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Drube, L.; Goetz, W.; Leer, K.; Falkenberg, T. V.; Gunnlaugsson, H. P.; Haspang, M. P.; Hviid, S. F.; Ellehøj, M. D.; Lemmon, M. T.

    2009-04-01

    The three iSweep targets on the Phoenix lander instrument deck utilize permanent magnets and 6 different background colors for studies of airborne dust [1]. The name iSweep is short for Improved Sweep Magnet experiments and derives from MER heritage [2, 3] as the rovers carried a sweep magnet, which is a very strong ring magnet built into an aluminum structure. Airborne dust is attracted and held by the magnet and the pattern formed depends on magnetic properties of the dust. The visible/near-infrared spectra acquired of the iSweep are rather similar to typical Martian dust and soil spectra. Because of the multiple background colors of the iSweeps the effect of the translucence of thin dust layers can be studied. This is used to estimate the rate of dust accumulation and will be used to evaluate light scattering properties of the particles. Some particles raised by the retro-rockets during the final descent came to rest on the lander deck and spectra of these particles are studied and compared with those of airborne dust and with spectra obtained from other missions. High resolution images acquired by the Optical Microscope (OM) [4] showed subtle differences between different Phoenix soil samples in terms of particle size and color. Most samples contain orange dust (particles smaller than 10 micrometer) as their major component and silt-sized (50-80 micrometer large) subrounded particles. Both particle types are substantially magnetic. Based on results from the Mars Exploration Rovers, the magnetization of the silt-sized particles is believed to be caused by magnetite. Morphology, texture and color of these particles (ranging from colorless, red-brown to almost black) suggest a multiple origin: The darkest particles probably represent lithic fragments, while the brighter ones could be impact or volcanic glasses. [1] Leer K. et al. (2008) JGR, 113, E00A16. [2] Madsen M.B. et al. (2003) JGR, 108, 8069. [3] Madsen M.B. et al. (2008) JGR (in print). [4] Hecht M.H. et

  18. Elongated dust particles growth in a spherical glow discharge in ethanol

    NASA Astrophysics Data System (ADS)

    Fedoseev, A. V.; Sukhinin, G. I.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A.

    2018-01-01

    The formation of elongated dust particles in a spherical dc glow discharge in ethanol was observed for the first time. Dust particles were formed in the process of coagulation of ethanol dissociation products in the plasma of gas discharge. During the process the particles were captured into clouds in the electric potential wells of strong striations of spherical discharge. The size and the shape of dust particles are easily detected by naked eye after the illumination of the laser sheet. The description of the experimental setup and conditions, the analysis of size, shape and composition of the particles, the explanation of spatial ordering and orientation of these particles are presented.

  19. A parallel direct numerical simulation of dust particles in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Nguyen, H. V.; Yokota, R.; Stenchikov, G.; Kocurek, G.

    2012-04-01

    Due to their effects on radiation transport, aerosols play an important role in the global climate. Mineral dust aerosol is a predominant natural aerosol in the desert and semi-desert regions of the Middle East and North Africa (MENA). The Arabian Peninsula is one of the three predominant source regions on the planet "exporting" dust to almost the entire world. Mineral dust aerosols make up about 50% of the tropospheric aerosol mass and therefore produces a significant impact on the Earth's climate and the atmospheric environment, especially in the MENA region that is characterized by frequent dust storms and large aerosol generation. Understanding the mechanisms of dust emission, transport and deposition is therefore essential for correctly representing dust in numerical climate prediction. In this study we present results of numerical simulations of dust particles in a turbulent flow to study the interaction between dust and the atmosphere. Homogenous and passive dust particles in the boundary layers are entrained and advected under the influence of a turbulent flow. Currently no interactions between particles are included. Turbulence is resolved through direct numerical simulation using a parallel incompressible Navier-Stokes flow solver. Model output provides information on particle trajectories, turbulent transport of dust and effects of gravity on dust motion, which will be used to compare with the wind tunnel experiments at University of Texas at Austin. Results of testing of parallel efficiency and scalability is provided. Future versions of the model will include air-particle momentum exchanges, varying particle sizes and saltation effect. The results will be used for interpreting wind tunnel and field experiments and for improvement of dust generation parameterizations in meteorological models.

  20. Long-range Transported African Dust in the Caribbean Region: Dust Concentrations and Water-soluble Ions

    NASA Astrophysics Data System (ADS)

    Santos-Figueroa, G.; Avilés-Piñeiro, G. M.; Mayol-Bracero, O. L.

    2017-12-01

    Long-range transported African dust (LRTAD) particles reach the Caribbean region every year during the summer months causing an increase in PM10 concentrations and by consequence degradation of air quality. During African dust (AD) incursions at the Caribbean region, PM10 concentration could exceeds the exposure limit of 50 µg/m³ 24-hour mean established by the World Health Organization (WHO). To have a better understanding of the impacts of AD particles to climate and public health at the Caribbean region it is necessary to study and determine the spatial and temporal distribution of dust particles. In order to address this, aerosols samples were collected during and absence of AD incursions during the summer of 2017 using a Hi-Volume (Hi-Vol) sampler for total suspended particles (TSP) at two sampling stations in Puerto Rico. The first station is a marine site located at Cabezas de San Juan (CSJ) Nature Reserve in Fajardo, and the second station is an urban site located at the Facundo Bueso (FB) building at the University of Puerto Rico-Rio Piedras. Aerosol samples were collected using Whatman 41 grade filters from which we determined the concentration of dust particles and the water-soluble ions (e.g., Na+, NH4+, Ca+2, Cl-, SO4-2) in the presence and absence of LRTAD particles. Saharan Air Layer (SAL) imagery, the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the spectral coefficients from measurements at CSJ were used to monitor and confirm the presence of air masses coming from North Africa. Average dust concentrations using the Stacked-Filter Units (SFUs) at CSJ are around 4 μg/m3. LRTAD concentrations and ionic speciation results using the Hi-Vol for the marine and urban sites will be presented at the conference.

  1. Accretion of Interplanetary Dust Particles by the Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Dermott, Stanley F.

    1998-10-01

    Analyses of hypervelocity micrometeoroid impact craters preserved in lunar material and on the panels of the Long Duration Exposure Facility (LDEF) indicate that each year Earth accretes about 3 × 107kg of interplanetary dust particles (IDPs) from the zodiacal cloud (E. Grünet al.1985,Astron. Astrophys.286, 915-924; S. G. Love and D. E. Brownlee, 1993,Science262, 550-553). The size distributions of these lunar and LDEF craters indicate that the mass distribution of IDPs encountering Earth peaks at about 200 μm diameter. This particle-size cutoff may be indicative of collisionally evolved asteroidal dust, where the collisional lifetime of dust particles larger than ∼100 μm is shorter than the time required for their orbits to decay under Poynting-Robertson light drag from the asteroid belt to Earth (B. Å. S. Gustafson, 1994,Annu. Rev. Earth Planet. Sci.22, 553-595). Additionally, analyses of IDPs collected from the stratosphere by high-flying aircraft reveal a diversity in chemical composition which is even narrower than that of the meteorites (G. J. Flynn, 1995,Nature376, 114). Together these findings suggest that IDPs present in the atmosphere and our collections may originate from very limited sources in the asteroid belt. The most abundant sources of dust to be unambiguously linked to the zodiacal cloud are the three asteroid families Eos, Themis, and Koronis-the progenitors of the ten-degree and low-latitude dust bands discovered by the Infrared Astronomical Satellite in 1984. We use direct numerical integration of the full equations of motion to model the orbital evolution of dust particles from these three families as well as from other nonfamily asteroids and from the population of known short period comets. Our simulations include gravitational perturbations from the planets, radiation pressure, and solar wind drag. We find that a large, and perhaps the dominant, fraction of the IDPs accreted by Earth comes from the asteroid families Eos, Themis, and

  2. Intensity of African Humid Periods Estimated from Saharan Dust Fluxes.

    PubMed

    Ehrmann, Werner; Schmiedl, Gerhard; Beuscher, Sarah; Krüger, Stefan

    2017-01-01

    North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the intensities and characteristics of pre-Holocene humid periods. Here we present a high-resolution record of fine-grained eastern Saharan dust from the Eastern Mediterranean Sea spanning the last 180 kyr, which is based on the clay mineral composition of the marine sediments, especially the kaolinite/chlorite ratio. Minimum aeolian kaolinite transport occurred during the African Humid Periods because kaolinite deflation was hampered by increased humidity and vegetation cover. Instead, kaolinite weathering from kaolinite-bearing Cenozoic rocks was stored in lake basins, river beds and soils during these periods. During the subsequent dry phases, fine-grained dust was mobilised from the desiccated lakes, rivers and soils resulting in maximum aeolian uptake and transport of kaolinite. The kaolinite transport decreased again when these sediment sources exhausted. We conclude that the amount of clay-sized dust blown out of the Sahara into the Eastern Mediterranean Sea is proportional to the intensity of the kaolinite weathering and accumulation in soils and lake sediments, and thus to the strength of the preceding humid period. These humid periods provided the windows for the migration of modern humans out of Africa, as postulated previously. The strongest humid period occurred during the Eemian and was followed by two weaker phases centred at ca. 100 ka and ca. 80 ka.

  3. Intensity of African Humid Periods Estimated from Saharan Dust Fluxes

    PubMed Central

    Ehrmann, Werner; Schmiedl, Gerhard; Beuscher, Sarah; Krüger, Stefan

    2017-01-01

    North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the intensities and characteristics of pre-Holocene humid periods. Here we present a high-resolution record of fine-grained eastern Saharan dust from the Eastern Mediterranean Sea spanning the last 180 kyr, which is based on the clay mineral composition of the marine sediments, especially the kaolinite/chlorite ratio. Minimum aeolian kaolinite transport occurred during the African Humid Periods because kaolinite deflation was hampered by increased humidity and vegetation cover. Instead, kaolinite weathering from kaolinite-bearing Cenozoic rocks was stored in lake basins, river beds and soils during these periods. During the subsequent dry phases, fine-grained dust was mobilised from the desiccated lakes, rivers and soils resulting in maximum aeolian uptake and transport of kaolinite. The kaolinite transport decreased again when these sediment sources exhausted. We conclude that the amount of clay-sized dust blown out of the Sahara into the Eastern Mediterranean Sea is proportional to the intensity of the kaolinite weathering and accumulation in soils and lake sediments, and thus to the strength of the preceding humid period. These humid periods provided the windows for the migration of modern humans out of Africa, as postulated previously. The strongest humid period occurred during the Eemian and was followed by two weaker phases centred at ca. 100 ka and ca. 80 ka. PMID:28129378

  4. Collision of large dust particles with Suisei spacecraft

    NASA Astrophysics Data System (ADS)

    Uesugi, K.

    1986-12-01

    The spacecraft Suisei encountered Halley's comet at 13:05:49 UT on March 8, 1986. The closest approach distance to the comet was 151,000 km and during the time of closest approach, Suisei was hit twice by dust particles which were believed to come from the comet nucleus. Although Suisei has no dust counter or detector, the mass of these particles can be estimated by the analysis of attitude change of the spin-stabilized spacecraft perturbed by the collisions. The result shows that the minimum weight of the first particle should be several milligram and second one was several ten micrograms.

  5. Characterization and quantification of bioaerosols in Saharan dust transported across the Atlantic

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Maier, Stefanie; Rodriguez-Caballero, Emilio; Ditas, Florian; Klimach, Thomas; Prass, Maria; Hrabe de Angelis, Isabella; Blades, Edmund; Holanda, Bruna; Pöhlker, Mira; Maurus, Isabel; Kopper, Gila; Farrell, David; Stevens, Bjorn; Prospero, Joseph M.; Ulrich, Pöschl; Andreae, Meinrat O.; Fröhlich-Nowoisky, Janine; Pöhlker, Christopher; Weber, Bettina

    2017-04-01

    Primary biological aerosols (bioaerosols), forming a subset of atmospheric particles, are directly released from the biosphere into the atmosphere. They comprise living and dead organisms (e.g., algae, bacteria, archaea), reproduction units (e.g., pollen, seeds, spores) as well as organism fragments and excretions. They play a key role in the dispersal of otherwise mostly sessile organisms (e.g. plants), but also in the spread of pathogens and diseases. Recently, also soil dust has been described to frequently occur in a close connection with biological particles (Conen et al., 2011). Bioaerosols can serve as nuclei for cloud droplets and ice crystals and may influence the radiative properties of the atmosphere, thus influencing the hydrological cycle and climate (Fröhlich-Nowoisky et al., 2016). It has been well described that dust masses are transported across the Atlantic comprising a large variety of bacteria and fungi, but the origin of the biological material remained largely unknown (Prospero et al., 2005). In the present study we aim to accomplish three major tasks, i.e., 1) Thorough identification and quantification of bioaerosol particles, 2) Characterization of ice nucleating (IN) properties of bioaerosols, and 3) Evaluation of similarities between bioaerosols and biological material in source regions of dust. For our field work we utilized filter techniques to collect aerosol samples of transatlantically transported dust at the easternmost site (Ragged Point) on the Caribbean island Barbados. Sampling took place from July to August 2016, when dust transport volumes were expected to reach peak amounts. Total suspended particles were collected ˜30 m above sea level using a high volume sampler (˜ 500 L min-1) and a micro-orifice uniform deposit impactor (MOUDI™) to obtain size-resolved samples. Directly after sampling at different time intervals (i.e. 24-hour, 48-hour, and 7-day samples) the filters were frozen until further analyses. In a

  6. Helium in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Helium and neon were extracted from fragments of individual stratosphere-collected interplanetary dust particles (IDP's) by subjecting them to increasing temperature by applying short-duration pulses of power in increasing amounts to the ovens containing the fragments. The experiment was designed to see whether differences in release temperatures could be observed which might provide clues as to the asteroidal or cometary origin of the particles. Variations were observed which show promise for elucidating the problem.

  7. Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions

    PubMed Central

    Pedrotti, Maria Luiza; Gazeau, Frédéric; Guieu, Cécile

    2017-01-01

    The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two ‘no bloom’ periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6–7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions. PMID:28212418

  8. Hygroscopicity of mineral dust particles: Roles of chemical mixing state and hygroscopic conversion timescale

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Moore, M. J.; Petters, M. D.; Laskin, A.; Roberts, G. C.; Kreidenweis, S. M.; Prather, K. A.

    2009-05-01

    Our laboratory investigations of mineral dust particle hygroscopicity are motivated by field observations of the atmospheric processing of dust. During ACE-Asia we observed sulphate and nitrate to be strongly segregated from each other in individual aged Asian dust particles. CCN activation curves of pure calcium minerals as proxies for fresh (calcium carbonate) and aged (calcium sulphate, nitrate, chloride) dust indicate that this mixing state would cause a large fraction of aged dust particles to remain poor warm cloud nucleation potential, contrary to previous assumptions. The enrichment of oxalic acid in calcium-rich dust particles could have similar effects due to the formation of insoluble calcium oxalate. Soluble calcium nitrate and chloride reaction products are hygroscopic and will transform mineral dust into excellent CCN. Generating insoluble mineral particles wet by atomization produced particles with much higher hygroscopicity then when resuspended dry. The atomized particles are likely composed of dissolved residuals and do not properly reflect the chemistry of dry mineral powders. Aerosol flow tube experiments were employed to study the conversion of calcium carbonate into calcium nitrate via heterogeneous reaction with nitric acid, with simultaneous measurements of the reacted particles' chemistry and hygroscopicity. The timescale for this hygroscopic conversion was found to occur on the order of a few hours under tropospheric conditions. This implies that the conversion of non-hygroscopic calcite- containing dust into hygroscopic particles will be controlled by the availability of nitric acid, and not by the atmospheric residence time. Results from recent investigations of the effect of secondary coatings on the ice nucleation properties of dust particles will also be presented. The cloud formation potential of aged dust particles depends on both the quantity and form of the secondary species that have reacted or mixed with the dust. These results

  9. Temperature measurement of a dust particle in a RF plasma GEC reference cell

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Qiao, Ke; Matthews, Lorin S.; Hyde, Truell W.

    2016-10-01

    The thermal motion of a dust particle levitated in a plasma chamber is similar to that described by Brownian motion in many ways. The primary difference between a dust particle in a plasma system and a free Brownian particle is that in addition to the random collisions between the dust particle and the neutral gas atoms, there are electric field fluctuations, dust charge fluctuations, and correlated motions from the unwanted continuous signals originating within the plasma system itself. This last contribution does not include random motion and is therefore separable from the random motion in a `normal' temperature measurement. In this paper, we discuss how to separate random and coherent motions of a dust particle confined in a glass box in a Gaseous Electronic Conference (GEC) radio-frequency (RF) reference cell employing experimentally determined dust particle fluctuation data analysed using the mean square displacement technique.

  10. Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.; Demchenko, B. I.

    2018-03-01

    We have performed the calculations of the orbital evolution of dust particles from volcanic glass ( p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting-Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0-7.6 solar radii for standard particles of the zodiacal cloud and 9.1-9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.

  11. Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  12. Human thermal perception related to Föhn winds due to Saharan dust outbreaks in Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Bleta, A. G.; Matsangouras, I. T.

    2017-05-01

    Crete Island is located in the southmost border of East Mediterranean basin, facing exacerbating atmospheric conditions (mainly concentrations of particulates) due to Saharan dust outbreaks. It is worth to note that these episodes are more frequent during spring and autumn, when mild biometeorological conditions become intolerable due to the synergy of the so called Föhn winds. Cretan mountains, especially Psiloritis Mt. (summit at 2456 m), are orientated perpendicularly to the southwest air mass flow, generating the Föhn winds. Propagating from the leeward of the mountains, these dry, hot winds have an effect on prevailing biometeorological conditions. While descending to the lowlands on the leeward side of the range, the wind becomes strong, gusty, and desiccating. This wind often lasts less than an hour to several days, with gradual weakening after the first or the second day. Sometimes, it stops very abruptly. In this work, the authors examined and analyzed the abrupt changes of human thermal perception within specific case studies during which Föhn winds appeared in Heraklion city at the leeward of Psiloritis Mt, associated with extreme Saharan dust episodes, observed within the period 2006-2010. In order to verify the development of Föhn winds, Meteorological Terminal Aviation Routine Weather Reports (METARs, meteorological observations every half hour), were acquired from the Heraklion meteorological station installed by the Hellenic National Meteorological Service (HNMS). The biometeorological conditions analyzed are based on human thermal bioclimatic indices such as the Physiologically equivalent temperature (PET) and the Universal Thermal Climate Index (UTCI). METAR recordings of meteorological variables, such as air temperature, vapor pressure, wind speed, and cloudiness, were used as input variables in modeling the aforementioned thermal indices, so that to interpret the grade of the thermo-physiological stress. The PET and UTCI analysis was

  13. Combined use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of imaginary part of refractive index of desert dust aerosol in UV part of spectrum along with aerosol layer height above the ground. The method uses Total Ozone Mapping Spectrometer' (TOMS) measurements of the top of atmosphere radiances (331 nm, 360 nm) and aerosol optical depth provided by Aerosol Robotic Network (AERONET) (440 nm). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations. The time variability of retrieved values for aerosol layer height is consistent with the predictions of dust transport model.

  14. Impact of a Saharan dust intrusion over southern Spain on DNI estimation with sky cameras

    NASA Astrophysics Data System (ADS)

    Alonso-Montesinos, J.; Barbero, J.; Polo, J.; López, G.; Ballestrín, J.; Batlles, F. J.

    2017-12-01

    To operate Central Tower Solar Power (CTSP) plants properly, solar collector systems must be able to work under varied weather conditions. Therefore, knowing the state of the atmosphere, and more specifically the level of incident radiation, is essential operational information to adapt the electricity production system to atmospheric conditions. In this work, we analyze the impact of a strong Saharan dust intrusion on the Direct normal irradiance (DNI) registered at two sites 35 km apart in southeastern Spain: the University of Almería (UAL) and the Plataforma Solar de Almería (PSA). DNI can be inputted into the European Solar Radiation Atlas (ESRA) clear sky procedure to derive Linke turbidity values, which proved to be extremely high at the UAL. By using the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) at the PSA site, AERONET data from PSA and assuming dust dominated aerosol, DNI estimations agreed strongly with the measured DNI values. At the UAL site, a SMARTS simulation of the DNI values also seemed to be compatible with dust dominated aerosol.

  15. Atmospheric particles retrieval using satellite remote sensing: Applications for sandstorms and volcanic clouds

    NASA Astrophysics Data System (ADS)

    Gu, Yingxin

    This thesis is concerned with atmospheric particles produced by sandstorms and volcanic eruptions. Three studies were conducted in order to examine particle retrieval methodology, and apply these towards an improved understanding of large-scale sandstorms. A thermal infrared remote sensing retrieval method developed by Wen and Rose [1994], which retrieves particle sizes, optical depth, and total masses of silicate particles in the volcanic cloud, was applied to an April 07, 2001 sandstorm over northern China, using MODIS. Results indicate that the area of the dust cloud observed was 1.34 million km2, the mean particle radius of the dust was 1.44 mum, and the mean optical depth at 11 mum was 0.79. The mean burden of dust was approximately 4.8 tons/km2 and the main portion of the dust storm on April 07, 2001 contained 6.5 million tons of dust. The results are supported by both independent remote sensing data (TOMS) and in-situ data for a similar event in 1998, therefore suggesting that the technique is appropriate for quantitative analysis of silicate dust clouds. This is the first quantitative evaluation of annual and seasonal dust loading in 2003 produced by Saharan dust storms by satellite remote sensing analysis. The retrieved mean particle effective radii of 2003 dust events are between 1.7--2.6 mum which is small enough to be inhaled and is hazardous to human health. The retrieved yearly dust mass load is 658--690 Tg, which is ˜45% of the annual global mineral dust production. Winter is the heaviest dust loading season in the year 2003, which is more than 5 times larger than that in the summer season in 2003.The mean optical depths at 11 mum in the winter season (around 0.7) are higher than those in the summer season (around 0.5). The results could help both meteorologists and environmental scientists to evaluate and predict the hazard degree caused by Saharan dust storms. (Abstract shortened by UMI.)

  16. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    distributions. The next goal of this work is to investigate if modeling methods developed in the studies of single mineral components can be generalized to predict the optical properties of more authentic aerosol samples which are complex mixtures of different minerals. Samples of Saharan sand, Iowa loess, and Arizona road dust are used here as test cases. T-matrix based simulations of the authentic samples, using measured particle size distributions, empirical mineralogies, and a priori particle shape models for each mineral component are directly compared with the measured IR extinction spectra and visible scattering profiles. This modeling approach offers a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Mineral dust samples processed with organic acids and humic material are also studied in order to explore how the optical properties of dust can change after being aged in the atmosphere. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acid. Clear differences in the light scattering properties are observed for all three processed mineral dust samples when compared to the unprocessed mineral dust or organic salt products. These interactions result in both internal and external mixtures depending on the sample. In addition, the presence of these organic materials can alter the mineral dust particle shape. Overall, however, these results demonstrate the need to account for the effects of atmospheric aging of mineral dust on aerosol optical properties. Particle shape can also affect the aerodynamic properties of mineral dust aerosol. In order to account for these effects, the dynamic shape factor is used to give a measure of particle asphericity. Dynamic shape factors of quartz are measured by mass and mobility selecting particles and measuring their vacuum aerodynamic diameter. From this, dynamic

  17. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm     ... ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated ... cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of ...

  18. Rotational bursting of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Paddack, S. J.; Rhee, J. W.

    1974-01-01

    Solar radiation pressure is discussed as a cause of rotational bursting, and of eventual elimination of asymmetric dust particles from the solar system, by a windmill effect. The predicted life span with this process for metallic particles with radii of 0.00001 to 0.01 cm ranges from 10 to 10,000 years. The effects of magnetic spin damping were considered. This depletion mechanism works faster than the traditional Poynting-Robertson effect by approximately one order of magnitude for metallic particles and about two orders of magnitude for nonmetallic particles.

  19. Observation of nitrate coatings on atmospheric mineral dust particles

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Shao, L. Y.

    2009-03-01

    Nitrate compounds have received much attention because of their ability to alter the hygroscopic properties and cloud condensation nuclei (CCN) activity of mineral dust particles in the atmosphere. However, very little is known about specific characteristics of ambient nitrate-coated mineral particles on an individual particle scale. In this study, sample collection was conducted during brown haze and dust episodes between 24 May and 21 June 2007 in Beijing, northern China. Sizes, morphologies, and compositions of 332 mineral dust particles together with their coatings were analyzed using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray (EDX) microanalyses. Structures of some mineral particles were verified using selected-area electron diffraction (SAED). TEM observation indicates that approximately 90% of the collected mineral particles are covered by visible coatings in haze samples whereas only 5% are coated in the dust sample. 92% of the analyzed mineral particles are covered with Ca-, Mg-, and Na-rich coatings, and 8% are associated with K- and S-rich coatings. The majority of coatings contain Ca, Mg, O, and N with minor amounts of S and Cl, suggesting that they are possibly nitrates mixed with small amounts of sulfates and chlorides. These nitrate coatings are strongly correlated with the presence of alkaline mineral components (e.g., calcite and dolomite). CaSO4 particles with diameters from 10 to 500 nm were also detected in the coatings including Ca(NO3)2 and Mg(NO3)2. Our results indicate that mineral particles in brown haze episodes were involved in atmospheric heterogeneous reactions with two or more acidic gases (e.g., SO2, NO2, HCl, and HNO3). Mineral particles that acquire hygroscopic nitrate coatings tend to be more spherical and larger, enhancing their light scattering and CCN activity, both of which have cooling effects on the climate.

  20. Origins and Dynamics of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    2005-01-01

    This is a final report for research supported by the National Aeronautics and Space Administration issued through the Office of Space Science Planetary Geology and Geophysics Program, covering all relevant activities during its 3-year period of funding from 02/01/2002 through to 01/31/2005. The ongoing aim of the research supported through this grant, and now through a successor award, is to investigate the origin of interplanetary dust particles (IDPs) and their dynamical and collisional evolution, in order to: (1) understand the provenance of zodiacal cloud particles and their transport from their source regions to the inner solar system; (2) produce detailed models of the zodiacal cloud and its constituent components; (3) determine the origin of the dust particles accreted by the Earth; (4) ascertain the level of temporal variations in the dust environment of the inner solar system and the accretion rate of IDPs by the Earth, and evaluate potential effects on global climate; and to (5) exploit this research as a basis for interpreting the structure observed in exozodiacal clouds that may result from the collisional evolution of planetesimals and the presence of unseen planets.

  1. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Thornhill, Kenneth L., II; Kittaka, Chieko; Ismail, Syed; Chen, Gao; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; hide

    2010-01-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements

  2. UV-VIS depolarization from Arizona Test Dust particles at exact backscattering angle

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Mehri, Tahar; Francis, Mirvatte; Rairoux, Patrick

    2016-01-01

    In this paper, a controlled laboratory experiment is performed to accurately evaluate the depolarization from mineral dust particles in the exact backward scattering direction (ϴ=180.0±0.2°). The experiment is carried out at two wavelengths simultaneously (λ=355 nm, λ=532 nm), on a determined size and shape distribution of Arizona Test Dust (ATD) particles, used as a proxy for mineral dust particles. After validating the set-up on spherical water droplets, two determined ATD-particle size distributions, representative of mineral dust after long-range transport, are generated to accurately retrieve the UV-VIS depolarization from ATD-particles at exact backscattering angle, which is new. The measured depolarization reaches at most 37.5% at λ=355 nm (35.5% at λ=532 nm), and depends on the particle size distribution. Moreover, these laboratory findings agree with T-matrix numerical simulations, at least for a determined particle size distribution and at a determined wavelength, showing the ability of the spheroidal model to reproduce mineral dust particles in the exact backward scattering direction. However, the spectral dependence of the measured depolarization could not be reproduced with the spheroidal model, even for not evenly distributed aspect ratios. Hence, these laboratory findings can be used to evaluate the applicability of the spheroidal model in the backward scattering direction and moreover, to invert UV-VIS polarization lidar returns, which is useful for radiative transfer and climatology, in which mineral dust particles are strongly involved.

  3. Mars Dust: Characterization of Particle Size and Electrostatic Charge Distribution

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Saini, D.; Biris, A. S.; Sriama, P. K.; Calle, C.; Buhler, C.

    2004-01-01

    Some of the latest pictures of Mars surface sent by NASA's Spirit rover in early January, 2004, show very cohesive, "mud-like" dust layers. Significant amounts of dust clouds are present in the atmosphere of Mars [1-4]. NASA spacecraft missions to Mars confirmed hypotheses from telescopic work that changes observed in the planet's surface markings are caused by wind-driven redistribution of dust. In these dust storms, particles with a wide range of diameters (less than 1 micrometer to 50 micrometers) are a serious problem to solar cells, spacecraft, and spacesuits. Dust storms may cover the entire planet for an extended period of time [5]. It is highly probable that the particles are charged electrostatically by triboelectrification and by UV irradiation.

  4. Combined Use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of the imaginary part of refractive index of desert dust aerosol in the near UV part of spectrum. The method uses Total Ozone Mapping Spectrometer (TOMS) measurements of the top of the atmosphere radiances at 331 and 360 run and aerosol optical depth provided by the Aerosol Robotic Network (AERONET). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations.

  5. Fine metal dust particles on the wall probes from JET-ILW

    NASA Astrophysics Data System (ADS)

    Fortuna-Zaleśna, E.; Grzonka, J.; Moon, Sunwoo; Rubel, M.; Petersson, P.; Widdowson, A.; Contributors, JET

    2017-12-01

    Collection and ex situ studies of dust generated in controlled fusion devices during plasma operation are regularly carried out after experimental campaigns. Herewith results of the dust survey performed in JET after the second phase of operation with the metal ITER-like wall (2013-2014) are presented. For the first-time-ever particles deposited on silicon plates acting as dust collectors installed in the inner and outer divertor have been examined. The emphasis is on analysing metal particles (Be and W) with the aim to determine their composition, size and surface topography. The most important is the identification of beryllium dust in the form of droplets (both splashes and spherical particles), flakes of co-deposits and small fragments of Be tiles. Tungsten and nickel rich (from Inconel) particles are also identified. Nitrogen from plasma edge cooling has been detected in all types of particles. They are categorized and the origin of various constituents is discussed.

  6. Understanding the Role of the Saharan Heat Low in Modifying Atmospheric Dust Distributions - Observations From Two Research Aircraft Flying Simultaneously Over Western Africa

    NASA Astrophysics Data System (ADS)

    Engelstaedter, S.; Washington, R.; Allen, C.; Flamant, C.; Chaboureau, J.-P.; Kocha, C.; Lavaysse, C.

    2012-04-01

    The near-surface low pressure system that develops over western Africa in Boreal summer (know as the Saharan Heat Low) is thought to have a significant influence on regional and global climate due to its links with the Monsoon, the Northern Atlantic and the Mediterranean climate system. The SHL is associated with the deepest atmospheric boundary layer on the planet and is co-located with the highest dust loadings in the world. The processes that link the heat low and dust distribution are only poorly understood. Improving the representation of the heat low and the processes that control the emission and atmospheric distribution of dust in climate and NWP models is crucial if we are to reduce known systematic errors in climate predictions and weather forecasts. In collaboration with European partners, the UK-based consortium project "Fennec - The Saharan Climate System" aims at improving our understanding of this complex climate system by integrating for the first time coordinated ground and aircraft observations from the central Sahara, newly developed satellite products, and the application of regional and global models. On 22 June 2011, two research aircraft operating out of Fuerteventura (Spain) surveyed the Saharan Heat Low centred over Mauritania-Mali border. The aircraft flew simultaneously in the morning and in the afternoon on two different tracks thereby sampling each track four times on that day. Both aircraft were equipped with a downward looking LIDAR for aerosol detection. In total, 51 sondes were dropped during the flights making this the most comprehensive dataset to study the spatio-temporal diurnal evolution of the heat low including the interactions between the atmospheric boundary layer and dust distributions. Combining LIDAR observations, satellite imagery and back-trajectory modelling we show that an aged dust layer was present in the heat low region resulting from previous day's dust activity associated with a south-moving density current from

  7. Resuspended dust as a novel source of marine ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Cornwell, G.; Sultana, C. M.; Schill, G. P.; Hill, T. C. J.; Cochran, R. E.; DeMott, P. J.; Prather, K. A.

    2017-12-01

    Recent studies of marine ice nucleating particles (INPs) have focused upon their production from phytoplankton blooms, the products of their metabolism, and resulting from their decomposition. In this work, we provide evidence for an additional, inorganic source of marine INPs independent of the marine mesocosm. Laboratory studies of aerosols generated from both synthetic seawater solutions spiked with mineral dust and from nascent coastal Pacific Ocean seawater indicate that dust can be ejected from seawater during the bubble bursting processes. Online and offline measurements of INP concentrations showed that these dust particles were ice nucleation-active in concentrations up to 40 L-1 at -30 °C, an order of magnitude more than those found in marine boundary layers or in laboratory mesocosms. Additional single particle composition measurements using an aerosol time of flight mass spectrometer (ATOFMS) collected along the Californian coast at Bodega Marine Laboratory found dust particles that contained markers from internal mixing with sea salt similar to those observed in the laboratory studies. The evidence from both laboratory and field studies suggests that there is a reservoir of dust particles within the ocean that can be ejected from the ocean's surface and act as INPs.

  8. Meteorological and dust aerosol conditions over the western Saharan region observed at Fennec Supersite-2 during the intensive observation period in June 2011

    NASA Astrophysics Data System (ADS)

    Todd, M. C.; Allen, C. J. T.; Bart, M.; Bechir, M.; Bentefouet, J.; Brooks, B. J.; Cavazos-Guerra, C.; Clovis, T.; Deyane, S.; Dieh, M.; Engelstaedter, S.; Flamant, C.; Garcia-Carreras, L.; Gandega, A.; Gascoyne, M.; Hobby, M.; Kocha, C.; Lavaysse, C.; Marsham, J. H.; Martins, J. V.; McQuaid, J. B.; Ngamini, J. B.; Parker, D. J.; Podvin, T.; Rocha-Lima, A.; Traore, S.; Wang, Y.; Washington, R.

    2013-08-01

    The climate of the Sahara is relatively poorly observed and understood, leading to errors in forecast model simulations. We describe observations from the Fennec Supersite-2 (SS2) at Zouerate, Mauritania during the June 2011 Fennec Intensive Observation Period. These provide an improved basis for understanding and evaluating processes, models, and remote sensing. Conditions during June 2011 show a marked distinction between: (i) a "Maritime phase" during the early part of the month when the western sector of the Sahara experienced cool northwesterly maritime flow throughout the lower troposphere with shallow daytime boundary layers, very little dust uplift/transport or cloud cover. (ii) A subsequent "heat low" phase which coincided with a marked and rapid westward shift in the Saharan heat low towards its mid-summer climatological position and advection of a deep hot, dusty air layer from the central Sahara (the "Saharan residual layer"). This transition affected the entire western-central Sahara. Dust advected over SS2 was primarily from episodic low-level jet (LLJ)-generated emission in the northeasterly flow around surface troughs. Unlike Fennec SS1, SS2 does not often experience cold pools from moist convection and associated dust emissions. The diurnal evolution at SS2 is strongly influenced by the Atlantic inflow (AI), a northwesterly flow of shallow, cool and moist air propagating overnight from coastal West Africa to reach SS2 in the early hours. The AI cools and moistens the western Saharan and weakens the nocturnal LLJ, limiting its dust-raising potential. We quantify the ventilation and moistening of the western flank of the Sahara by (i) the large-scale flow and (ii) the regular nocturnal AI and LLJ mesoscale processes.

  9. Distribution of pesticides in dust particles in urban environments.

    PubMed

    Richards, Jaben; Reif, Ruben; Luo, Yuzhuo; Gan, Jay

    2016-07-01

    In regions with a mild climate, pesticides are often used around homes for pest control. Recent monitoring studies have linked pesticide use in residential areas to aquatic toxicity in urban surface water ecosystems, and suggested dust particles on paved surfaces as an important source of pesticides. To test the hypothesis that dust on hard surfaces is a significant source of pesticides, we evaluated spatial and temporal patterns of current-use insecticides in Southern California, and further explored their distribution as a function of particle sizes. Pyrethroid insecticides were detected in dust from the driveway, curb gutter and street at 53.5-94.8%, with median concentrations of 1-46 ng g(-1). Pyrethroid residues were uniformly distributed in areas adjacent to a house, suggesting significant redistribution. The total levels of pyrethroids in dust significantly (p < 0.01) decreased from October to February, suggesting rainfalls as a major mechanism to move pesticide residues offsite. Fipronil as well as its degradation products, were detected at 50.6-75.5%, and spatial and temporal patterns of fipronil residues suggested rapid transformations of fipronil to its biologically active intermediates. Moreover, pyrethroids were found to be enriched in fine particles that have a higher mobility in runoff than coarse particles. Results from this study highlight the widespread occurrence of pesticides in outdoor dust around homes and the potential contribution to downstream surface water contamination via rain-induced runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Direct Radiative Forcing from Saharan Mineral Dust Layers from In-situ Measurements and Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.

    2016-12-01

    Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.

  11. Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust

    PubMed Central

    Chubb, Lauren G.; Cauda, Emanuele G.

    2017-01-01

    Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139

  12. Influences of natural emission sources (wildfires and Saharan dust) on the urban organic aerosol in Barcelona (Western Mediterranean Basis) during a PM event.

    PubMed

    van Drooge, Barend L; Lopez, Jordi F; Grimalt, Joan O

    2012-11-01

    The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM(10) filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6 %. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.

  13. Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.

    2010-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.

  14. Sulfate and nitrate in Asian dust particles observed in desert, coastal and marine air

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Wu, F.; Junji, C.

    2016-12-01

    Sulfate and nitrate in dust particles are believed to be two key species which can largely alter the physical and chemical properties of the particles in the atmosphere, in particular under humid conditions. Their occurrence in the particles has usually been considered to be the consequence of particles' aging during their long-distance travel in the air although they are present in some crustal minerals. Our observations at two deserts in China during dust episodes revealed that there were soil-derived sulfate and background-like nitrate in atmospheric dust samples. Sulfate in dust samples was proportional to samples' mass and comprised at steady mass percentages in differently sized samples. In contrast, nitrate concentration was approximately stable and independent from dust loading. Our observations at inland and coastal areas of China during dust episodes revealed that sulfate and nitrate were hardly produced on the surface of dust particles that were originated from the deserts areas in northwestern China. This is because the dust particles were in the postfrontal air, where the temperature was low and the relative humidity was small due to the adiabatic properties of the air mass. There are a number studies reporting that sulfate and nitrate had been efficiently produced on mineral particles in inland areas of China. However, those mineral particles were more likely from the local areas rather than from the desert areas. Our observations in the coastal areas of Japan, which is located in the downstream areas of the Asian continent and surrounded by sea areas revealed that dust particles appearing there frequently contained sulfate and nitrate, indicating sulfate and nitrate had been efficiently produced on the surface of the particles when the particles traveled in the marine air between China and Japan.

  15. The formation and dust lifting processes associated with a large Saharan meso-scale convective system (MCS)

    NASA Astrophysics Data System (ADS)

    Roberts, Alex; Knippertz, Peter

    2013-04-01

    This work focusses on the meteorology that produced a large Mesoscale Convective System (MCS) and the dynamics of its associated cold pool. The case occurred between 8th-10th June 2010 and was initiated over the Hoggar and Aïr Mountains in southern Algeria and northern Niger respectively. The dust plume created covered parts of Algeria, Mali and Mauritania and was later deformed the by background flow and transported over the Atlantic and Mediterranean. This study is based on: standard surface observations (where available), ERA-Interim reanalysis, Meteosat imagery, MODIS imagery, Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat and a high resolution (3.3km) limited area simulation using the Weather Research and Forecasting (WRF) model. A variety of different processes appear to be important for the generation of this MCS and the spreading of the associated dusty cold pool. These include: the presence of a trough on the subtropical jet, the production of a tropical cloud plume, disruption to the structure of the Saharan heat low and the production of a Libyan high. These features produced moistening of the boundary layer and a convergence zone over the region of MCS initiation. Another important factor appears to have been the production of a smaller MCS and cold pool on the evening of the 7th June. This elevated low-level moisture and encouraged convective initiation the following day. Once triggered on the 8th June some cells grew and merged into a single large system that propagated south westward and produced a large cold pool that emanated from its northern edge. The cells on the northern edge of the system over the Hoggar grew and collapsed producing a haboob that spread over a large area. Cells further south continued to develop into the MCS and actively produce a cold pool over the system's lifetime. This undercut the dusty air from the earlier cold pool and

  16. Physicochemical classification of dust particles observed at Gosan ABC superstation in East Asia

    NASA Astrophysics Data System (ADS)

    Shang, X.; Lee, M.; Chung, C. E.

    2013-12-01

    We identified different types of dust particles from long-term measurements of mass and ionic and carbonaceous compositions of PM1.0, PM2.5 and PM10 at Gosan ABC superstation on Jeju Island, Korea from August 2007 to February 2012. The concentration of PM1.0, PM10 mass and PM10 Ca2+ showed clear bimodal distributions, which provided robust criteria to distinguish atmospheric particles in different physiochemical regimes. Dust impacted particles were clearly separated by high PM10 mass over 29μg/m3. Some dust storm often passed over heavily populated areas in China, which made dust particles mixed with pollutants. This type of aerosol showed enhanced concentration of PM1.0 over 22μg/m3. We also recognized high Ca2+ concentration in PM1.0 when air came from northeastern China where salt deposit spreads in dry lakes. The Ca2+ concentration in PM10 was found to be a good indicator for the saline dust particles. In addition, the ratios of mass, SO42-, Mg2+ and organic carbon (OC) to Ca2+ turned out to be useful to distinguish different types of dust-impacted particles.

  17. Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean.

    PubMed

    Mazar, Yinon; Cytryn, Eddie; Erel, Yigal; Rudich, Yinon

    2016-04-19

    We evaluated the impact of Saharan dust storms on the local airborne microbiome in a city in the Eastern Mediterranean area. Samples of particles with diameter less than 10 μm were collected during two spring seasons on both dusty and nondusty days. DNA was extracted, and partial 16S rRNA gene amplicons were sequenced using the Illumina platform. Bioinformatic analysis showed the effect of dust events on the diversity of the atmospheric microbiome. The relative abundance of desert soil-associated bacteria increased during dust events, while the relative abundance of anthropogenic-influenced taxa decreased. Quantitative polymerase chain reaction measurements of selected clinically significant antibiotic resistance genes (ARGs) showed that their relative abundance decreased during dust events. The ARG profiles on dust-free days were similar to those in aerosol collected in a poultry house, suggesting a strong agricultural influence on the local ambient profiles. We conclude that dust storms enrich the ambient airborne microbiome with new soil-derived bacteria that disappear as the dust settles, suggesting that the bacteria are transported attached to the dust particles. Dust storms do not seem to be an important vector for transport of probed ARGs.

  18. Dust generation in powders: Effect of particle size distribution

    NASA Astrophysics Data System (ADS)

    Chakravarty, Somik; Le Bihan, Olivier; Fischer, Marc; Morgeneyer, Martin

    2017-06-01

    This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  19. The contribution of Saharan dust in PM(10) concentration levels in Anatolian Peninsula of Turkey.

    PubMed

    Kabatas, B; Unal, A; Pierce, R B; Kindap, T; Pozzoli, L

    2014-08-01

    Sahara-originated dust is the most significant natural source of particulate matter; however, this contribution is still unclear in the Eastern Mediterranean especially in Western Turkey, where significant industrial sources and metropolitan areas are located. The Real-time Air Quality Modeling System (RAQMS) is utilized to explore the possible effects of Saharan dust on high levels of PM10 measured in Turkey. RAQMS model is compared with 118-air quality stations distributed throughout Turkey (81 cities) for April 2008. MODIS aerosol product (MOD04 for Terra and MYD04 for Aqua) is used to see columnar aerosol loading of the atmosphere at 550 nm (Aerosol optical depth (AOD) values found to be between 0.6 and 0.8 during the episode). High-resolution vertical profiles of clouds and aerosols are provided from CALIOP, on board of CALISPO satellite. The results suggest a significant contribution of Sahara dust to high levels of PM10 in Turkey with RAQMS and in situ time series showing similar patterns. The two data sets are found to be in agreement with a correlation of 0.87. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Low and Mid Level Tropical Atmosphere Characterization during African Dust Outbreaks Using Particle Size Distribution Data Retrieved from ICE-T and PRADACS Field Studies

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, O.; Mayol-Bracero, O. L.; Sepulveda-Vallejo, P.; Heymsfield, A.

    2013-12-01

    Cloud formation in the tropical atmosphere is difficult to characterize when factors such as the Saharan Air Layer (SAL) play a role influencing the dynamic and thermodynamic processes. In order to characterize particle number size distribution across the Eastern Caribbean with the possible influence of African dust at low and mid levels, data collected during July 2011 from ground-based instruments and an aircraft platform were analyzed. Aerosol measurements from the ocean surface to ~8 km were performed below and in and around clouds by the National Center for Atmospheric Research (NCAR) C130 aircraft during the Ice in Clouds Experiment-Tropical (ICE-T) using the Passive Cavity Aerosol Spectrometer Probe (PCASP), while low-level measurements of aerosols were performed at the University of Puerto Rico-Rio Piedras Campus (UPRRP) during the Puerto Rican African Dust and Cloud Study (PRADACS) using an Optical Particle Counter (OPC) and a Scanning Mobility Particle Sizer (SMPS). Preliminary results using HYSPLIT back trajectories, flight tracks, SAL images and OPC/SMPS/PCASP time series all indicate peaks and troughs in aerosol concentrations at both low and mid levels over time, but the concentration was influenced by how strong the dust outbreak was as well as its horizontal travel speed. These and additional results regarding correlations between wind directions, cloud cover and atmospheric inversions will be presented.

  1. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts.

    PubMed

    Zhao, Suping; Yu, Ye; Xia, Dunsheng; Yin, Daiying; He, Jianjun; Liu, Na; Li, Fang

    2015-12-01

    The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0-2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Scavenging of pollutant acid substances by Asian mineral dust particles - article no. L07816

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, J.; Takahashi, K.; Matsumi, Y.

    2006-04-13

    Uptakes of sulfate and nitrate onto Asian dust particles during transport from the Asian continent to the Pacific Ocean were analyzed by using a single-particle time-of-flight mass spectrometer. Observation was conducted at Tsukuba in Japan in the springtime of 2004. Sulfate-rich dust particles made their largest contribution during the 'dust event' in the middle of April 2004. As a result of detailed analysis including backward trajectory calculations, it was confirmed that sulfate components originating from coal combustion in the continent were internally mixed with dust particles. Even in the downstream of the outflow far from the continental coastline, significant contributionmore » of Asian dust to sulfate was observed. Asian dust plays critical roles as the carrier of sulfate over the Pacific Ocean.« less

  3. The search for refractory interplanetary dust particles from preindustrial aged Antarctic ice

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Webb, Susan J.; Thomas, Kathie

    1988-01-01

    In a study of refractory interplanetary dust particles, preindustrial-aged Antarctic ice samples have been collected, melted, and filtered to separate the particle load. Particles containing a significant amount of aluminum, titanium, and/or calcium were singled out for detailed SEM and STEM characterization. The majority of these particles are shown to be volcanic tephra from nearby volcanic centers. Six spherical aggregates were encountered that consist of submicron-sized grains of rutile within polycrystalline cristobalite. These particles are probably of terrestrial volcanic origin, but have not been previously reported from any environment. One aggregate particle containing fassaite and hibonite is described as a probable interplanetary dust particle. The constituent grain sizes of this particle vary from 0.1 to 0.3 microns, making it significantly more fine-grained than meteoritic calcium-aluminum-rich inclusions. This particle is mineralogically and morphologically similar to recently reported refractory interplanetary dust particles collected from the stratosphere, and dissimilar to the products of modern spacecraft debris.

  4. The nature of (sub-)micrometre cometary dust particles detected with MIDAS

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Schmied, R.

    2015-10-01

    The MIDAS Atomic Force Microscope (AFM) onboard Rosetta collects dust particles and produces three-dimensional images with nano- to micrometre resolution. To date, several tens of particles have been detected, allowing determination of their properties at the smallest scale. The key features will be presented, including the particle size, their fragile character, and their morphology. These findings will be compared with the results of other Rosetta dust experiments.

  5. Retrieval of Saharan desert dust optical depth from thermal infrared measurements by IASI

    NASA Astrophysics Data System (ADS)

    Vandenbussche, S.; Kochenova, S.; Vandaele, A.-C.; Kumps, N.; De Mazière, M.

    2012-04-01

    Aerosols are a major actor in the climate system. They are responsible for climate forcing by both direct (by emission, absorption and scattering) and indirect effects (for example, by altering cloud microphysics). A better knowledge of aerosol optical properties, of the atmospheric aerosol load and of aerosol sources and sinks may therefore significantly improve the modeling of climate changes. Aerosol optical depth and other properties are retrieved on an operational basis from daytime measurements in the visible and near infrared spectral range by a number of instruments, like the satellite instruments MODIS, CALIOP, POLDER, MISR and ground-based sunphotometers. Aerosol retrievals from day and night measurements at thermal infrared (TIR) wavelengths (for example, from SEVIRI, AIRS and IASI satellite instruments) are less common, but they receive growing interest in more recent years. Among those TIR measuring instruments, IASI on METOP has one major advantage for aerosol retrievals: its large continuous spectral coverage, allowing to better capture the broadband signature of aerosols. Furthermore, IASI has a high spectral resolution (0.5cm-1 after apodization) which allows retrieving a large number of trace gases at the same time, it will nominally be in orbit for 15 years and offers a quasi global Earth coverage twice a day. Here we will show recently obtained results of desert aerosol properties (concentration, altitude, optical depth) retrieved from IASI TIR measurements, using the ASIMUT software (BIRA-IASB, Belgium) linked to (V)LIDORT (R. Spurr, RTsolutions Inc, US) and to SPHER (M. Mishchenko, NASA GISS, USA). In particular, we will address the case of Saharan desert dust storms, which are a major source of desert dust particles in the atmosphere. Those storms frequently transport sand to Europe, Western Asia or even South America. We will show some test-case comparisons between our retrievals and measurements from other instruments like those listed

  6. Characterization of biogenic elements in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.

    1986-01-01

    Those particles that were designated cometary are aggregates of amorphous materials including carbon, iron-magnesium silicates, sulfides, metal and trace amounts of unusual phases. Most aggregates are carbon-rich with major and minor element abundances similar to a fine grained matrix of carbonaceous chondrites. Several particles were analyzed by a laser microprobe. The negative ionic species identified to date include carbon clusters, protonated carbon clusters, CN-, HCN-, CNO-, PO2-, PO3-, S-, S2- asnd OH-. These species are similar to those observed in cometary spectra and they support the assumption that organic materials are present. The occurance of phosphate ions suggests the presence of apatite or whitlockite. Cometary particle characteristics may indicate that the component grains represent primitive unaltered dust whose overall properties are extremely similar to altered primitive dust in carbonaceous chondrites.

  7. Desert dust suppressing precipitation: A possible desertification feedback loop

    PubMed Central

    Rosenfeld, Daniel; Rudich, Yinon; Lahav, Ronen

    2001-01-01

    The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process. PMID:11353821

  8. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air

    PubMed Central

    Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif

    2016-01-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface. PMID:27445272

  9. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air.

    PubMed

    Hassan, Ghassan; Yilbas, B S; Said, Syed A M; Al-Aqeeli, N; Matin, Asif

    2016-07-22

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.

  10. Cosmic dust or other similar outer-space particles location detector

    NASA Technical Reports Server (NTRS)

    Aver, S.

    1973-01-01

    Cosmic dust may be serious radiation hazard to man and electronic equipment caught in its path. Dust detector uses two operational amplifiers and offers narrower areas for collection of cosmic dust. Detector provides excellent resolution as result of which recording of particle velocities as well as positions of their impact are more accurately determined.

  11. The immersion freezing behavior of mineral dust particles mixed with biological substances

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, S.; Wex, H.; Denjean, C.; Hartmann, S.; Schneider, J.; Schmidt, S.; Ebert, M.; Stratmann, F.

    2015-10-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INM). It has been suggested that these INM maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INM in e.g., soils, resulting in an internal mixture of mineral dust and INM. If particles from such soils which contain biological INM are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C. To explore this hypothesis, we performed a measurement campaign within the research unit INUIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). To characterize the mixing state of the generated aerosol we used different methods which will also be discussed. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the purely biological particles, i.e. freezing occurs at temperatures at which mineral dusts themselves are not yet ice active. It can be concluded that INM located on a mineral dust particle determine the freezing behavior of that particle.

  12. Anomalous diffusion due to the non-Markovian process of the dust particle velocity in complex plasmas

    NASA Astrophysics Data System (ADS)

    Ghannad, Z.; Hakimi Pajouh, H.

    2017-12-01

    In this work, the motion of a dust particle under the influence of the random force due to dust charge fluctuations is considered as a non-Markovian stochastic process. Memory effects in the velocity process of the dust particle are studied. A model is developed based on the fractional Langevin equation for the motion of the dust grain. The fluctuation-dissipation theorem for the dust grain is derived from this equation. The mean-square displacement and the velocity autocorrelation function of the dust particle are obtained in terms of the Mittag-Leffler functions. Their asymptotic behavior and the dust particle temperature due to charge fluctuations are studied in the long-time limit. As an interesting result, it is found that the presence of memory effects in the velocity process of the dust particle as a non-Markovian process can cause an anomalous diffusion in dusty plasmas. In this case, the velocity autocorrelation function of the dust particle has a power-law decay like t - α - 2, where the exponent α take values 0 < α < 1.

  13. Principle Component Analysis of the Evolution of the Saharan Air Layer and Dust Transport: Comparisons between a Model Simulation and MODIS Retrievals

    NASA Technical Reports Server (NTRS)

    Wong, S.; Colarco, P. R.; Dessler, A.

    2006-01-01

    The onset and evolution of Saharan Air Layer (SAL) episodes during June-September 2002 are diagnosed by applying principal component analysis to the NCEP reanalysis temperature anomalies at 850 hPa, where the largest SAL-induced temperature anomalies are located. The first principal component (PC) represents the onset of SAL episodes, which are associated with large warm anomalies located at the west coast of Africa. The second PC represents two opposite phases of the evolution of the SAL. The positive phase of the second PC corresponds to the southwestward extension of the warm anomalies into the tropical-subtropical North Atlantic Ocean, and the negative phase corresponds to the northwestward extension into the subtropical to mid-latitude North Atlantic Ocean and the southwest Europe. A dust transport model (CARMA) and the MODIS retrievals are used to study the associated effects on dust distribution and deposition. The positive (negative) phase of the second PC corresponds to a strengthening (weakening) of the offshore flows in the lower troposphere around 10deg - 20degN, causing more (less) dust being transported along the tropical to subtropical North Atlantic Ocean. The variation of the offshore flow indicates that the subseasonal variation of African Easterly Jet is associated with the evolution of the SAL. Significant correlation is found between the second PC time series and the daily West African monsoon index, implying a dynamical linkage between West African monsoon and the evolution of the SAL and Saharan dust transport.

  14. Electron density modification in ionospheric E layer by inserting fine dust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Shikha, E-mail: shikhamish@gmail.com; Mishra, S. K.

    2015-02-15

    In this paper, we have developed the kinetics of E-region ionospheric plasma comprising of fine dust grains and shown that the electron density in E-layer can purposely be reduced/enhanced up to desired level by inserting fine dust particles of appropriate physical/material properties; this may certainly be promising for preferred rf-signal processing through these layers. The analytical formulation is based on average charge theory and includes the number and energy balance of the plasma constituents along with charge balance over dust particles. The effect of varying number density, work function, and photo-efficiency of dust particles on ionospheric plasma density at differentmore » altitude in E-layer has been critically examined and presented graphically.« less

  15. MicroMED: a dust particle counter for the characterization of airborne dust close to the surface of Mars

    NASA Astrophysics Data System (ADS)

    Cozzolino, Fabio; Esposito, Francesca; Molfese, Cesare; Cortecchia, Fausto; Saggin, Bortolino; D'amato, Francesco

    2015-04-01

    Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a

  16. Constraining martian atmospheric dust particle size distributions from MER Navcam observations.

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Smith, M. D.

    2017-12-01

    Atmospheric dust plays an important role in atmospheric dynamics by absorbing energy and influencing the thermal structure of the atmosphere [1]. The efficiency by which dust absorbs energy depends on its size and single-scattering albedo. Characterizing these properties and their variability is, thus, important in modeling atmospheric circulation. Near-sun observations of the martian sky from Viking Lander, Mars Pathfinder, and MER Pancam images have been used to characterize the atmospheric scattering phase function. The forward-scattering peak the atmospheric phase function is primarily controlled by the size of aerosol particles and is less sensitive to atmospheric opacity or particle shape and single-scattering albedo [2]. These observations, however, have been limited to scattering angles >5°. We use the MER Navcams, which experience little-to-no debilitating internal instrumental scattered light during near-Sun imaging, enabling measurements of the brightness of the martian sky down to very small scattering angles [3], making them more sensitive to aerosol particle size. Additionally, the Navcams band-pass wavelength is similar to the dust effective particle size, further increasing this sensitivity. These data sample a wide range of atmospheric conditions, including variations in the atmospheric dust loading across the entire martian year, as well as more rapid variations during the onset and dissipation of a global-scale dust storm. General circulation models (GCMs) predict a size-dependence for the transport of dust during dust storms that would result in both spatial (on regional-to-global scales) and temporal (days-to-months) variations in the dust size distribution [4]. The absolute calibration of these data, however, is limited. The instrument temperature measurement is limited to a single thermocouple on the Opportunity left Navcam CCD, and observations of the calibration target by Navcam are infrequent. We discuss ways to mitigate these

  17. Direct Measurements of Interplanetary Dust Particles in the Vicinity of Earth

    NASA Technical Reports Server (NTRS)

    McCracken, C. W.; Alexander, W. M.; Dubin, M.

    1961-01-01

    The direct measurements made by the Explorer VIII satellite provide the first sound basis for analyzing all available direct measurements of the distribution of interplanetary dust particles. The model average distribution curve established by such an analysis departs significantly from that predicted by the (uncertain) extrapolation of results from meteor observations. A consequence of this difference is that the daily accretion of interplanetary particulate matter by the earth is now considered to be mainly dust particles of the direct measurements range of particle size. Almost all the available direct measurements obtained with microphone systems on rockets, satellites, and spacecraft fit directly on the distribution curve defined by Explorer VIII data. The lack of reliable datum points departing significantly from the model average distribution curve means that available direct measurements show no discernible evidence of an appreciable geocentric concentration of interplanetary dust particles.

  18. The summer 2012 Saharan dust season in the western Mediterranean with focus on the intense event of late June during the Pre-ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Dulac, François; Nicolas, José B.; Sciare, Jean; Mallet, Marc; Léon, Jean-François; Pont, Véronique; Sicard, Michaël; Renard, Jean-Baptiste; Nabat, Pierre; El Amraoui, Laaziz; Jaumouillé, Elodie; Roberts, Greg; Attié, Jean-Luc; Somot, Samuel; Laurent, Benoît; Losno, Rémi; Vincent, Julie; Formenti, Paola; Bergametti, Gilles; Ravetta, François

    2013-04-01

    Saharan dust is an usual aerosol over the Mediterranean basin that contributes to the high average aerosol load during summer in the western Mediterranean marine environment. Satellite monitoring shows that dust events were numerous during summer 2012. Even though most of the transport of dust particles occurs in altitude, as shown by surface lidars and airborne data, dust events significantly impact surface PM10 concentrations even in urban traffic type of air quality monitoring stations, and background stations are needed to assess the contribution of desert dust. During the pre-ChArMEx field campaign and associated field campaigns TRAQA and VESSAER in the north-western Mediterranean, a large scale African dust event occurred in late June-early July with optical depth levels in the visible up to 0.5-0.7 rather unusual in that area according to long time remote sensing AERONET or satellite series. We have performed measurements in the dust plume for several days with a particularly large variety of both ground-based and airborne (from sounding balloons, an aircraft and an ultra-light aircraft) remote sensing and in situ instruments. In addition to satellite aerosol products including MSG/SEVIRI, which provides the spatial distribution of the aerosol optical depth over the basin up to 4 times per hour, POLDER and CALIOP, this yields a complete set of unusual quantitative constraints for model simulations of this event, combining data on aerosol optical depth, vertical distribution, particle size distribution, chemical, optical and microphysical properties. We shall provide an overview of the data set that includes original measurements of the vertical profile of the aerosol size distribution with a new small balloon borne OPC called LOAC (Light Optical Aerosol Counter) showing large dust particles (up to 30 µm in diameter) within a thick dust layer between 1 and 5 km above south-eastern France, and original network measurement of weekly dust deposition with a new

  19. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    PubMed

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  20. Workshop on the Analysis of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E. (Editor)

    1994-01-01

    Great progress has been made in the analysis of interplanetary dust particles (IDP's) over the past few years. This workshop provided a forum for the discussion of the following topics: observation and modeling of dust in the solar system, mineralogy and petrography of IDP's, processing of IDP's in the solar system and terrestrial atmosphere, comparison of IDP's to meteorites and micrometeorites, composition of IDP's, classification, and collection of IDP's.

  1. Trajectory-capture cell instrumentation for measurement of dust particle mass, velocity and trajectory, and particle capture

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Tuzzolino, A. J.

    1989-01-01

    The development of the polyvinylidene fluoride (PVDF) dust detector for space missions--such as the Halley Comet Missions where the impact velocity was very high as well as for missions where the impact velocity is low was extended to include: (1) the capability for impact position determination - i.e., x,y coordinate of impact; and (2) the capability for particle velocity determination using two thin PVDF sensors spaced a given distance apart - i.e., by time-of-flight. These developments have led to space flight instrumentation for recovery-type missions, which will measure the masses (sizes), fluxes and trajectories of incoming dust particles and will capture the dust material in a form suitable for later Earth-based laboratory measurements. These laboratory measurements would determine the elemental, isotopic and mineralogical properties of the captured dust and relate these to possible sources of the dust material (i.e., comets, asteroids), using the trajectory information. The instrumentation described here has the unique advantages of providing both orbital characteristics and physical and chemical properties--as well as possible origin--of incoming dust.

  2. Measuring the Dust Flux and Dust Particle Mass Distribution in the Saturn Rings with HRD Dust Instrument on the Cassini Mission

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Economou, T. E.

    In July 2004, the Cassini spacecraft will go into the Saturn orbit and start a 4 year intensive investigation of the planet itself, its multiple satellites and its rings with a multinational instrument payload. The High Rate Detectors (HRD) instrument provided by the Laboratory of Astrophysics and Space Research of the University of is part of the German Cosmic Dust Analyzer (CDA) and its main scientific objective is to provide quantitative measurements and mass distributions of dust particles in the rings of Saturn in the 10-11 to 10-4 grams mass range. The HRD instrument consists of two dust detectors -- a 20 and a 200 cm2 polyvinylidene fluoride (PVDF) sensors -- and an electronic box that contains all the analog and digital electronics and in addition provides interface between the HRD and CDA instrument. The CDA stores all the HRD data in its memory and transmits the data to Earth. The HRD weighs 1.7 kg and consumes 1.8 W of power [1]. The HRD instrument was fully calibrated through the entire mass range using two dust particle accelerators at Heidelberg and Munich in Germany. The HRD electronics is very fast and it will provide spatial and time distributions of up to 0.1 second. It can handle rates up to 104 counts/sec expected to be encountered during the Saturn ring crossings without any dead time. The HRD instrument operated successfully during all of the time that it was under power and detected many interplanetary dust particles. Almost all of these particles were close to the lowest mass threshold. References 1 A.J. TUZZOLINO, T.E. ECONOMOU, R.B. MCKIBBEN, J.A. SIMPSON, J.A.M. MCDONNELL, M.J. BURCHELL, B.A.M. VAUGHAN, P. TSOU, M.S. HANNER, B.C. CLARK AND D.E. BROWNLEE. THE DUST FLUX MONITOR INSTRUMENT FOR THE STARDUST MISSION TO COMET WILD-2, J. GEOPHYS. RES., 108, DOI:10.1029/2003JE002091, 2003.

  3. The retrieval of the Asian dust depolarization ratio in Korea with the correction of the polarization-dependent transmission

    NASA Astrophysics Data System (ADS)

    Shin, Sungkyun; Müller, Detlef; Kim, Y. J.; Tatarov, Boyan; Shin, Dongho; Seifert, Patric; Noh, Young Min

    2013-01-01

    The linear particle depolarization ratios were retrieved from the observation with a multiwavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea (35.11°N, 126.54°E). The measurements were carried out in spring (March to May) 2011. The transmission ratio measurements were performed to solve problems of the depolarization-dependent transmission at a receiver of the lidar and applied to correct the retrieved depolarization ratio of Asian dust at first time in Korea. The analyzed data from the GIST multiwavelength Raman lidar were classified into three categories according to the linear particle depolarization ratios, which are pure Asian dust on 21 March, the intermediate case which means Asian dust mixed with urban pollution on 13 May, and haze case on 10 April. The measured transmission ratios were applied to these cases respectively. We found that the transmission ratio is needed to be used to retrieve the accurate depolarization ratio of Asian dust and also would be useful to distinguish the mixed dust particles between intermediate case and haze. The particle depolarization ratios of pure Asian dust were approximately 0.25 at 532 nm and 0.14 at 532 nm for the intermediate case. The linear particle depolarization ratios of pure Asian dust observed with the GIST multiwavelength Raman lidar were compared to the linear particle depolarization ratios of Saharan dust observed in Morocco and Asian dust observed both in Japan and China.

  4. Toward a complete inventory of stratospheric dust particles with implications and their classification

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.; Mckay, D. S.

    1984-01-01

    As the Earth travels about the Sun it continuously sweeps up material laying in its path. The material includes dust-sized fragments of the meteors, comets and asteroids that have passed by as well as much older particles from out between the stars. These grains first become caught in the mesosphere and then slowly pass down through the stratosphere and the troposphere, finally raining down upon the Earth's surface. In the stratosphere the cosmic dust particles encounter increasing amounts of contaminants from the Earth. At the highest reaches of Earth's atmosphere these contaminants consists mainly of dust from the most explosive volcanoes, rocket exhaust, and other manmade space debris. In the troposphere windborne particles and pollen become an increasingly larger fraction of the atmospheric dust load. An increased knowledge of the nature of cosmic particles is suggested.

  5. Dust Aerosol Particle Size at the Mars Science Laboratory Landing Site

    NASA Astrophysics Data System (ADS)

    Vicente-Retortillo, Alvaro; Martínez, Germán; Renno, Nilton; Lemmon, Mark; de la Torre-Juárez, Manuel

    2017-04-01

    We have developed a new methodology to retrieve dust aerosol particle size from Mars Science Laboratory (MSL) observations [1]. We use photodiode output currents measured by the Rover Environmental Monitoring Station (REMS) UV sensor (UVS), ancillary data records (ADR) containing the geometry of the rover and the Sun, and values of the atmospheric opacity retrieved from Mastcam measurements. In particular, we analyze REMS UVS measurements when the Sun is blocked by the masthead and the mast of the rover since the behavior of the output currents during these shadow events depends on the dust phase function, which depends on particle size. The retrieved dust effective radii show a significant seasonal variability, ranging from 0.6 μm during the low opacity season (Ls = 60° - 140°) to 2 μm during the high opacity season (Ls = 180° - 360°). The relationship between atmospheric opacity and dust particle size indicates that dust-lifting events originate at various distances from Gale Crater. The external origin of high dust content events is consistent with the strong and persistent northerly and northwesterly winds at Gale Crater during the perihelion season centered around Ls = 270° [2]. From an interannual perspective, the general behavior of the particle size evolution in MY 31-32 is similar to that in MY 32-33, although some differences are noted. During the low opacity season (Ls = 60° - 140°), the retrieved dust effective radii in MY 33 are significantly lower than in MY 32. A larger contribution of water ice clouds to the total atmospheric opacity during the aphelion season of MY 33 can partially explain such a departure. Differences during the perihelion season are caused by interannual variability of enhanced opacity events. The determination of dust aerosol particle size is important to improve the accuracy of models in simulating the UV environment at the surface [3] and in predicting heating rates, which affect the atmospheric thermal and dynamical

  6. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. Themore » fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.« less

  7. Automated determination of dust particles trajectories in the coma of comet 67P

    NASA Astrophysics Data System (ADS)

    Marín-Yaseli de la Parra, J.; Küppers, M.; Perez Lopez, F.; Besse, S.; Moissl, R.

    2017-09-01

    During more than two years Rosetta spent at comet 67P, it took thousands of images that contain individual dust particles. To arrive at a statistics of the dust properties, automatic image analysis is required. We present a new methodology for fast-dust identification using a star mask reference system for matching a set of images automatically. The main goal is to derive particle size distributions and to determine if traces of the size distribution of primordial pebbles are still present in today's cometary dust [1].

  8. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank

    2016-05-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most

  9. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected tomore » mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.« less

  10. SMART-COMMIT Observations and Deep-Blue Retrievals of Saharan Dust Properties during NAMMA

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, N. Christina; Ji, Qiang; Jeong, Myeong-Jae

    2007-01-01

    Monsoon rainfalls sustain the livelihood of more than half of the world's population. The interaction between natural/anthropogenic aerosols, clouds, and precipitation is a critical mechanism that drives the water cycle and fresh water distribution. Analyses of the longterm trend of July-August precipitation anomaly for the last 50 years in the 20" century depict that the largest regional precipitation deficit occurs over the Sahel, where the monsoon water cycle plays an important role. Thus, it is of paramount importance to study how dust aerosols, as well as air pollution and smoke, influence monsoon variability. The NASA African Monsoon Multidisciplinary Activities (NAMMA) was conducted during the international AMMA Special Observation Period (SOP-3) of September 2006 to better comprehend the key attributes of the Saharan Air Layer (SAL) and how they evolve from the source regions to the Atlantic Ocean. The SAL occurs during the late spring through early fall and originates as a result of low-level convergence induced by heat lows over the Sahara that lifts hot, dry, dust laden air aloft into a well mixed layer that extends up to 500mb. This is crucial for understanding the impact of SAL on the key atmospheric processes that determine precipitation over West Africa and tropical cyclogenesis. Results obtained from the synergy of satellite (Deep- Blue) and surface (SMART-COMMIT) observations will be presented and discussed how the physical, optical and radiative properties of the dust in the SAL evolve from the continental to the marine environment.

  11. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  12. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron

  13. High Precision Oxygen Three Isotope Analysis of Wild-2 Particles and Anhydrous Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakashima, D.; Ushikubo, T.; Zolensky, Michael E.; Weisberg, M. K.; Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.; Kita, N. T.

    2011-01-01

    One of the most important discoveries from comet Wild-2 samples was observation of crystalline silicate particles that resemble chondrules and CAIs in carbonaceous chondrites. Previous oxygen isotope analyses of crystalline silicate terminal particles showed heterogeneous oxygen isotope ratios with delta(sup 18)O to approx. delta(sup 17)O down to -50% in the CAI-like particle Inti, a relict olivine grain in Gozen-sama, and an olivine particle. However, many Wild-2 particles as well as ferromagnesian silicates in anhydrous interplanetary dust particles (IDPs) showed Delta(sup 17)O values that cluster around -2%. In carbonaceous chondrites, chondrules seem to show two major isotope reservoirs with Delta(sup 17)O values at -5% and -2%. It was suggested that the Delta(sup 17)O = -2% is the common oxygen isotope reservoir for carbonaceous chondrite chondrules and cometary dust, from the outer asteroid belt to the Kuiper belt region. However, a larger dataset with high precision isotope analyses (+/-1-2%) is still needed to resolve the similarities or distinctions among Wild-2 particles, IDPs and chondrules in meteorites. We have made signifi-cant efforts to establish routine analyses of small particles (< or =10micronsm) at 1-2% precision using IMS-1280 at WiscSIMS laboratory. Here we report new results of high precision oxygen isotope analyses of Wild-2 particles and anhydrous chondritic IDPs, and discuss the relationship between the cometary dust and carbonaceous chondrite chondrules.

  14. Evaluating the effect of soil dust particles from semi-arid areas on clouds and climate

    NASA Astrophysics Data System (ADS)

    Kristjansson, J. E.; Hummel, M.; Lewinschal, A.; Grini, A.

    2016-12-01

    Primary ice production in mixed-phase clouds predominantly takes place by heterogeneous freezing of mineral dust particles. Therefore, mineral dust has a large impact on cloud properties. Organic matter attached to mineral dust particles can expand their already good freezing ability further to warmer subzero temperatures. These dust particles are called "soil dust". Dusts emitted from deserts contribute most to the total dust concentration in the atmosphere and they can be transported over long distances. Soil dust is emitted from semi-arid regions, e.g. agricultural areas. Besides wind erosion, human activities like tillage or harvest might be a large source for soil dust release into the atmosphere. In this study, we analyze the influence of soil dust particles on clouds with the Norwegian Earth System Model (NorESM; Bentsen et al., 2013: GMD). The parameterization of immersion freezing on soil dust is based on findings from the AIDA cloud chamber (Steinke et al., in prep.). Contact angle and activation energy for soil dust are estimated in order to be used in the dust immersion freezing scheme of the model, which is based on classical nucleation theory. Our first results highlight the importance of soil dust for ice nucleation on a global scale. Its influence is expected to be highest in the northern hemisphere due to its higher area for soil dust emission. The immersion freezing rates due to additional soil dust can on average increase by a factor of 1.2 compared to a mineral dust-only simulation. Using a budget tool for NorESM, influences of soil dust ice nuclei on single tendencies of the cloud microphysics can be identified. For example, accretion to snow is sensitive to adding soil dust ice nuclei. This can result in changes e.g. in the ice water path and cloud radiative properties.

  15. How micron-sized dust particles determine the chemistry of our Universe

    PubMed Central

    Dulieu, François; Congiu, Emanuele; Noble, Jennifer; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Minissale, Marco; Cazaux, Stéphanie

    2013-01-01

    In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H2) to the most complex (amino-acids) molecules observed in our Universe. Dust particles are recognized as powerful nano-factories that produce chemical species. However, the mechanism that converts species on dust to gas species remains elusive. Here we report experimental evidence that species forming on interstellar dust analogs can be directly released into the gas. This process, entitled chemical desorption (fig. 1), can dominate over the chemistry due to the gas phase by more than ten orders of magnitude. It also determines which species remain on the surface and are available to participate in the subsequent complex chemistry that forms the molecules necessary for the emergence of life. PMID:23439221

  16. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    NASA Astrophysics Data System (ADS)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  17. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor.

    PubMed

    Moreno, Teresa; Querol, Xavier; Castillo, Sonia; Alastuey, Andrés; Cuevas, Emilio; Herrmann, Ludger; Mounkaila, Mohammed; Elvira, Josep; Gibbons, Wes

    2006-10-01

    The Sahara-Sahel Dust Corridor runs from Chad to Mauritania and expels huge amounts of mineral aerosols into the Atlantic Ocean. Data on samples collected from Algeria, Chad, Niger, and Western Sahara illustrate how corridor dust mineralogy and chemistry relate to geological source and weathering/transport history. Dusts sourced directly from igneous and metamorphic massifs are geochemically immature, retaining soluble cations (e.g., K, Na, Rb, Sr) and accessory minerals containing HFSE (e.g., Zr, Hf, U, Th) and REE. In contrast, silicate dust chemistry in desert basins (e.g., Bodélé Depression) is influenced by a longer history of transport, physical winnowing (e.g., loss of Zr, Hf, Th), chemical leaching (e.g., loss of Na, K, Rb), and mixing with intrabasinal materials such as diatoms and evaporitic salts. Mineral aerosols blown along the corridor by the winter Harmattan winds mix these basinal and basement materials. Dusts blown into the corridor from sub-Saharan Africa during the summer monsoon source from deeply chemically weathered terrains and are therefore likely to be more kaolinitic and stripped of mobile elements (e.g., Na, K, Mg, Ca, LILE), but retain immobile and resistant elements (e.g., Zr, Hf, REE). Finally, dusts blown southwestwards into the corridor from along the Atlantic Coastal Basin will be enriched in carbonate from Mesozoic-Cenozoic marine limestones, depleted in Th, Nb, and Ta, and locally contaminated by uranium-bearing phosphate deposits.

  18. Studies of saharan dust intrusions over bucharest using ceilometer's measurements and satellite data

    NASA Astrophysics Data System (ADS)

    Urlea, Denisa; Boscornea, Andreea; Nicolae Vâjâiac, Sorin; Ţoancă, Florica; Barbu, Nicu; Ştefan, Sabina; Bunescu, Ionuț

    2018-04-01

    Three case studies of Saharan dust intrusions over southern Romania were performed. For these studies the database from the ceilometers located at Magurele and Strejnic was used. In addition, the meteorological conditions were analyzed using the WLK Catalogue based on the Objektive Wetterlagenklassifikation classification of the weather types [1]. This catalogue uses information from three basic tropospheric levels: 925, 700 and 500 hPa, and information on the precipitable water content over the entire atmosphere column. Geopotential fields at 925hPa and 500hPa are used for establishing the cyclonicity or anticyclonicity, while the U and V components of wind at 700hPa for establishing the dominant direction of the wind flow. For better understanding of the atmospheric parameters we performed HYSPLIT dispersion and trajectories analysis in conjunction with DREAM model output data.

  19. A Laboratory Study of the Charging/Discharging Mechanisms of a Dust Particle Exposed to an Electron Beam

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F.; Comfort, R. H.

    1999-01-01

    The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.

  20. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.

    PubMed

    Welling, Irma; Lehtimäki, Matti; Rautio, Sari; Lähde, Tero; Enbom, Seppo; Hynynen, Pasi; Hämeri, Kaarle

    2009-02-01

    The importance of fine particles has become apparent as the knowledge of their effects on health has increased. Fine particle concentrations have been published for outside air, plasma arc cutting, welding, and grinding, but little data exists for the woodworking industry. Sanding was evaluated as the producer of the woodworking industry's finest particles, and was selected as the target study. The number of dust particles in different particle size classes and the mass concentrations were measured in the following environments: workplace air during sanding in plywood production and in the inlet and return air; in the dust emission chamber; and in filter testing. The numbers of fine particles were low, less than 10(4) particles/cm(3) (10(7) particles/L). They were much lower than typical number concentrations near 10(6) particles/cm(3) measured in plasma arc cutting, grinding, and welding. Ultrafine particles in the size class less than 100 nm were found during sanding of MDF (medium density fiberboard) sheets. When the cleaned air is returned to the working areas, the dust content in extraction systems must be monitored continuously. One way to monitor the dust content in the return air is to use an after-filter and measure pressure drop across the filter to indicate leaks in the air-cleaning system. The best after-filtration materials provided a clear increase in pressure drop across the filter in the loading of the filter. The best after-filtration materials proved to be quite effective also for fine particles. The best mass removal efficiencies for fine particles around 0.3 mum were over 80% for some filter materials loaded with sanding wood dust.

  1. Identification of mineral dust layers in high alpine snow packs

    NASA Astrophysics Data System (ADS)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne

    2017-04-01

    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  2. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  3. Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold

    NASA Technical Reports Server (NTRS)

    Neakrase, Lynn D.; Greeley, Ronald; Iversen, James D.; Balme, Matthew L.; Foley, Daniel J.; Eddlemon, Eric E.

    2005-01-01

    Dust devils have been proposed as effective mechanisms for lofting large quantities of dust into the martian atmosphere. Previous work showed that vortices lift dust more easily than simple boundary layer winds. The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces. Additional information is included in the original extended abstract.

  4. Saharan Dust Fertilizing Atlantic Ocean and Amazon Rainforest via Long-range Transport and Deposition: A Perspective from Multiyear Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L. A.; Prospero, J. M.; Omar, A. H.; Winker, D. M.; Yang, Y.; Zhang, Y.; Zhang, Z.; Zhao, C.

    2015-12-01

    Massive dust emitted from Sahara desert is carried by trade winds across the tropical Atlantic Ocean, reaching the Amazon Rainforest and Caribbean Sea. Airborne dust degrades air quality and interacts with radiation and clouds. Dust falling to land and ocean adds essential nutrients that could increase the productivity of terrestrial and aquatic ecosystems and modulate the biogeochemical cycles and climate. The resultant climate change will feed back on the production of dust in Sahara desert and its subsequent transport and deposition. Understanding the connections among the remote ecosystems requires an accurate quantification of dust transport and deposition flux on large spatial and temporal scales, in which satellite remote sensing can play an important role. We provide the first multiyear satellite-based estimates of altitude-resolved across-Atlantic dust transport and deposition based on eight-year (2007-2014) record of aerosol three-dimensional distributions from the CALIPSO lidar. On a basis of the 8-year average, 179 Tg (million tons) of dust leaves the coast of North Africa and is transported across Atlantic Ocean, of which 102, 20, and 28 Tg of dust is deposited into the tropical Atlantic Ocean, Caribbean Sea, and Amazon Rainforest, respectively. The dust deposition adds 4.3 Tg of iron and 0.1 Tg of phosphorus to the tropical Atlantic Ocean and Caribbean Sea where the productivity of marine ecosystem depends on the availability of these nutrients. The 28 Tg of dust provides about 0.022 Tg of phosphorus to Amazon Rainforest yearly that replenishes the leak of this plant-essential nutrient by rains and flooding, suggesting an important role of Saharan dust in maintaining the productivity of Amazon rainforest on timescales of decades or centuries. We will also discuss seasonal and interannual variations of the dust transport and deposition, and comparisons of the CALIOP-based estimates with model simulations.

  5. Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.; Salthammer, Tunga; Fromme, Hermann

    A critical evaluation of human exposure to phthalate esters in indoor environments requires the determination of their distribution among the gas phase, airborne particles and settled dust. If sorption from the gas phase is the dominant mechanism whereby a given phthalate is associated with both airborne particles and settled dust, there should be a predictable relationship between its particle and dust concentrations. The present paper tests this for six phthalate esters (DMP, DEP, DnBP, DiBP, BBzP and DEHP) that have been measured in both the air and the settled dust of 30 Berlin apartments. The particle concentration, CParticle, of a given phthalate was calculated from its total airborne concentration and the concentration of airborne particles (PM 4). This required knowledge of the particle-gas partition coefficient, Kp, which was estimated from either the saturation vapor pressure ( ps) or the octanol/air partition coefficient ( KOA). For each phthalate in each apartment, the ratio of its particle concentration to its dust concentration ( CParticle/ CDust) was calculated. The median values of this ratio were within an order of magnitude of one another for five of the phthalate esters despite the fact that their vapor pressures span four orders of magnitude. This indicates that measurements of phthalate ester concentrations in settled dust can provide an estimate of their concentration in airborne particles. When the latter information is coupled with measurements of airborne particle concentrations, the gas-phase concentrations of phthalates can also be estimated and, subsequently, the contribution of each of these compartments to indoor phthalate exposures.

  6. Numerical investigation of the coagulation mixing between dust and hygroscopic aerosol particles and its impacts

    NASA Astrophysics Data System (ADS)

    Tsai, I.-Chun; Chen, Jen-Ping; Lin, Yi-Chiu; Chung-Kuang Chou, Charles; Chen, Wei-Nai

    2015-05-01

    A statistical-numerical aerosol parameterization was incorporated into the Community Multiscale Air Quality modeling system to study the coagulation mixing process focusing on a dust storm event that occurred over East Asia. Simulation results show that the coagulation mixing process tends to decrease aerosol mass, surface area, and number concentrations over the dust source areas. Over the downwind oceanic areas, aerosol concentrations generally increased due to enhanced sedimentation as particles became larger upon coagulation. The mixture process can reduce the overall single-scattering albedo by up to 10% as a result of enhanced core with shell absorption by dust and reduction in the number of scattering particles. The enhanced dry deposition speed also altered the vertical distribution. In addition, the ability of aerosol particles to serve as cloud condensation nuclei (CCN) increased from around 107 m-3 to above 109 m-3 over downwind areas because a large amount of mineral dust particles became effective CCN with solute coating, except over the highly polluted areas where multiple collections of hygroscopic particles by dust in effect reduced CCN number. This CCN effect is much stronger for coagulation mixing than by the uptake of sulfuric acid gas on dust, although the nitric acid gas uptake was not investigated. The ability of dust particles to serve as ice nuclei may decrease or increase at low or high subzero temperatures, respectively, due to the switching from deposition nucleation to immersion freezing or haze freezing.

  7. Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.

    2005-03-01

    Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect

  8. Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production

    PubMed Central

    Higashisaka, Kazuma; Fujimura, Maho; Taira, Mayu; Yoshida, Tokuyuki; Tsunoda, Shin-ichi; Baba, Takashi; Yamaguchi, Nobuyasu; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Nasu, Masao; Tsutsumi, Yasuo

    2014-01-01

    Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages. PMID:24987712

  9. Modeling the Interaction of Mineral Dust with Solar Radiation: Spherical versus Non-spherical Particles

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, A.; Vogel, B.; Vogel, H.

    2017-12-01

    Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.

  10. Forecast errors in dust vertical distributions over Rome (Italy): Multiple particle size representation and cloud contributions

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.; Kallos, G.; Katsafados, P.; Spyrou, C.; Gobbi, G. P.; Barnaba, F.; Nickovic, S.; PéRez, C.; Baldasano, J. M.

    2007-08-01

    In this study, forecast errors in dust vertical distributions were analyzed. This was carried out by using quantitative comparisons between dust vertical profiles retrieved from lidar measurements over Rome, Italy, performed from 2001 to 2003, and those predicted by models. Three models were used: the four-particle-size Dust Regional Atmospheric Model (DREAM), the older one-particle-size version of the SKIRON model from the University of Athens (UOA), and the pre-2006 one-particle-size Tel Aviv University (TAU) model. SKIRON and DREAM are initialized on a daily basis using the dust concentration from the previous forecast cycle, while the TAU model initialization is based on the Total Ozone Mapping Spectrometer aerosol index (TOMS AI). The quantitative comparison shows that (1) the use of four-particle-size bins in the dust modeling instead of only one-particle-size bins improves dust forecasts; (2) cloud presence could contribute to noticeable dust forecast errors in SKIRON and DREAM; and (3) as far as the TAU model is concerned, its forecast errors were mainly caused by technical problems with TOMS measurements from the Earth Probe satellite. As a result, dust forecast errors in the TAU model could be significant even under cloudless conditions. The DREAM versus lidar quantitative comparisons at different altitudes show that the model predictions are more accurate in the middle part of dust layers than in the top and bottom parts of dust layers.

  11. Evaluating a filtering and recirculating system to reduce dust drift in simulated sowing of dressed seed and abraded dust particle characteristics.

    PubMed

    Biocca, Marcello; Pochi, Daniele; Fanigliulo, Roberto; Gallo, Pietro; Pulcini, Patrizio; Marcovecchio, Francesca; Perrino, Cinzia

    2017-06-01

    The pneumatic precision drills used in maize sowing can release dust owing to abrasion of dressed seed; the drift of dust containing insecticide active ingredients is harmful to honey bees. Therefore, we developed a device for drills that uses partial recirculation and filtration of the air by means of an antipollen and an electrostatic filter. Tests were carried out by simulating the sowing of seed treated with imidacloprid, thiamethoxam, clothianidin and fipronil. Dust released by the drill in different configurations was analysed to assess its mass and active ingredient concentration, size distribution and particle number concentration. In general, particles with a diameter smaller than 2.5 and 10 µm represent about 40 and 75% of the total dust mass respectively. The finest size fraction (<1 µm) contains a higher content of active ingredient. The prototype equipped with both antipollen and electrostatic filters always showed a reduction in dust emission greater than 90% in terms of both total mass and active ingredient amount, with a greater efficiency in the reduction in particles below 4 µm. This study presents an engineering solution addressing dust losses during sowing, contributes to the description of abrasion dust fractions and provides suggestions for further development of the prototype. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Reanalysis of porous chondritic cosmic dust particles

    NASA Astrophysics Data System (ADS)

    Kapisinsky, I.; Figusch, V.; Ivan, J.; Izdinsky, K.; Zemankova, M.

    2001-10-01

    The particles reanalysed in this study were obtained from the NASA Johnson Space Center (JSC) Cosmic Dust Collection. The reanalysis of the particle L2008 P9 indicates typical assemblage of olivine - pyroxene. This sample can be classified as a chondritic porous IDP with the metallic phase grain containing essential amount of nickel and copper (the latter element is most probably due to instrumental artefact). The chemical composition of the particle L2011 S5 corresponds mostly to an assemblage of pyroxene phase - (Mg,Fe,Ni)SiO_3 roughly 75 wt.% and a sulphide phase - probably pyrrhotite (Fe,Ni)S about 25 wt.%.

  13. Detection of dust particles in the coma of Halley's Comet by the Foton detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisimov, S.I.; Kariagin, V.P.; Kudriashov, V.A.

    The first results of direct measurements of the characteristics of dust particles with mass m of greater than 10 to the -9th g by the Foton detector, carried on the VEGA 1 and VEGA 2 space vehicles, are reported. The nature of the changes in the dust flux along the trajectory of the space probe is reported. The mass distribution of the dust particles is also reported. 7 references.

  14. Particle shape accounts for instrumental discrepancy in ice core dust size distributions

    NASA Astrophysics Data System (ADS)

    Folden Simonsen, Marius; Cremonesi, Llorenç; Baccolo, Giovanni; Bosch, Samuel; Delmonte, Barbara; Erhardt, Tobias; Kjær, Helle Astrid; Potenza, Marco; Svensson, Anders; Vallelonga, Paul

    2018-05-01

    The Klotz Abakus laser sensor and the Coulter counter are both used for measuring the size distribution of insoluble mineral dust particles in ice cores. While the Coulter counter measures particle volume accurately, the equivalent Abakus instrument measurement deviates substantially from the Coulter counter. We show that the difference between the Abakus and the Coulter counter measurements is mainly caused by the irregular shape of dust particles in ice core samples. The irregular shape means that a new calibration routine based on standard spheres is necessary for obtaining fully comparable data. This new calibration routine gives an increased accuracy to Abakus measurements, which may improve future ice core record intercomparisons. We derived an analytical model for extracting the aspect ratio of dust particles from the difference between Abakus and Coulter counter data. For verification, we measured the aspect ratio of the same samples directly using a single-particle extinction and scattering instrument. The results demonstrate that the model is accurate enough to discern between samples of aspect ratio 0.3 and 0.4 using only the comparison of Abakus and Coulter counter data.

  15. The uranium-isotopic composition of Saharan dust collected over the central Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Aciego, Sarah M.; Aarons, Sarah M.; Sims, Kenneth W. W.

    2015-06-01

    Uranium isotopic compositions, (234U/238U)activity , are utilized by earth surface disciplines as chronometers and source tracers, including in soil science where aeolian dust is a significant source to the total nutrient pool. However, the (234U/238U)activity composition of dust is under characterized due to material and analytical constraints. Here we present new uranium isotope data measured by high precision MC-ICP-MS on ten airborne dust samples collected on the M55 trans-Atlantic cruise in 2002. Two pairs of samples are presented with different size fractions, coarse (1-30 μm) and fine (<1 μm), and all samples were processed to separate the water soluble component in order to assess the controls on the (234U/238U)activity of mineral aerosols transported from the Sahara across the Atlantic. Our results indicate (234U/238U)activity above one for both the water soluble (1.13-1.17) and the residual solid (1.06-1.18) fractions of the dust; no significant correlation is found between isotopic composition and travel distance. Residual solids indicate a slight dependance of (234U/238U)activity on particle size. Future modeling work that incorporates dust isotopic compositions into mixing or isotopic fractionation models will need to account for the wide variability in dust (234U/238U)activity .

  16. Significant impacts of heterogeneous reactions on the chemical composition and mixing state of dust particles: A case study during dust events over northern China

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pan, Xiaole; Uno, Itsushi; Li, Jie; Wang, Zifa; Chen, Xueshun; Fu, Pingqing; Yang, Ting; Kobayashi, Hiroshi; Shimizu, Atsushi; Sugimoto, Nobuo; Yamamoto, Shigekazu

    2017-06-01

    The impact of heterogeneous reactions on the chemical components and mixing state of dust particles are investigated by observations and an air quality model over northern China between March 27, 2015 and April 2, 2015. Synergetic observations were conducted using a polarization optical particle counter (POPC), a depolarized two-wavelength Lidar and filter samples in Beijing. During this period, dust plume passed through Beijing on March 28, and flew back on March 29 because of synoptic weather changes. Mineral dust mixed with anthropogenic pollutants was simulated using the Nested Air Quality Prediction Modeling System (NAQPMS) to examine the role of heterogeneous processes on the dust. A comparison of observations shows that the NAQPMS successfully reproduces the time series of the vertical profile, particulate matter concentration, and chemical components of fine mode (diameter ≤ 2.5 μm) and coarse mode (2.5 μm < diameter ≤ 10 μm) particles. After considering the heterogeneous reactions, the simulated nitrate, ammonium, and sulfate are in better agreement with the observed values during this period. The modeling results with observations show that heterogeneous reactions are the major mechanisms producing nitrate reaching 19 μg/m3, and sulfate reaching 7 μg/m3, on coarse mode dust particles, which were almost 100% of the coarse mode nitrate and sulfate. The heterogeneous reactions are also important for fine mode secondary aerosols, for producing 17% of nitrate and 11% of sulfate on fine mode dust particles, with maximum mass concentrations of 6 μg/m3 and 4 μg/m3. In contrast, due to uptake of acid gases (e.g. HNO3 and SO2) by dust particles, the fine mode anthropogenic ammonium nitrate and ammonium sulfate decreased. As a result, the total fine mode nitrate decreased with a maximum of 14 μg/m3, while the total fine mode sulfate increased with a maximum of 2 μg/m3. Because of heterogeneous reactions, 15% of fine mode secondary inorganic aerosols and

  17. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Technical Reports Server (NTRS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; hide

    2014-01-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/ Submillimeter Array to observe SN1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 µm, 870 µm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 Solar Mass). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  18. Nearly a Decade of CALIPSO Observations of Asian and Saharan Dust Properties Near Source and Transport Regions

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Z.; Tackett, J.; Vaughan, M.; Trepte, C.; Winker, D.; H. Yu,

    2015-01-01

    The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol, between 2006-2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on the morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National D'études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.

  19. Evaluating Ice Nucleating Particle Concentrations From Prognostic Dust Minerals in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.

    2016-12-01

    The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.

  20. The Impacts of Dust Storm Particles on Human Lung Cells - an Analysis at the Single Cell Level

    NASA Astrophysics Data System (ADS)

    Ardon-Dryer, K.; Mock, C.; Reyes, J.; Lahav, G.

    2017-12-01

    Aerosols particles (Natural and anthropogenic) are a key component of our atmosphere, their presence defines air quality levels and they can affect our health. Small particles penetrate into our lungs and this exposure can cause our lung cells to stress and in some cases leads to the death of the cells and to inflammation. During dust storm events there is an increase in particle concentration, many of them are breathable particles that can penetrate deep into our lungs. Exposure to dust particles can lead to respiratory problems, particularly for people with asthma. Therefore, during and after a dust storm event the number of people who are hospitalized with inflammation and respiratory problems increase. However, the exact mechanism that causes these health problems is still unclear. In this project, we are investigating the impacts that dust storm particles from different sources and of different concentrations (doses) have on human lung cells, performing a new and unique analysis at the single cell level. To accomplish this, each individual lung cell is continuously tracked after being exposed to dust particles. We monitor the behavior of the cell over time, identify the cells time of death and type of death (e.g. cell explosion). With this analysis, we can quantify cell death as a function of dust concertation (doses); to our surprise, an increase in cells death was not observed only as a function of an increase of dust concertation. In addition, we noticed that the way particles come in contact with cells, by sticking to or being engulfed by, and the interaction duration has an effect; cells that interact with dust particles for a longer period died earlier compared to cells with a shorter interaction period. These findings will help us to better understand the health related consequences of exposure to dust storm events and serve as a baseline for when evaluating other aerosol.

  1. Physicochemical Characteristics of Dust Particles in HVOF Spraying and Occupational Hazards: Case Study in a Chinese Company

    NASA Astrophysics Data System (ADS)

    Huang, Haihong; Li, Haijun; Li, Xinyu

    2016-06-01

    Dust particles generated in thermal spray process can cause serious health problems to the workers. Dust particles generated in high velocity oxy-fuel (HVOF) spraying WC-Co coatings were characterized in terms of mass concentrations, particle size distribution, micro morphologies, and composition. Results show that the highest instantaneous exposure concentration of dust particles in the investigated thermal spray workshop is 140 mg/m3 and the time-weighted average concentration is 34.2 mg/m3, which are approximately 8 and 4 times higher than the occupational exposure limits in China, respectively. The large dust particles above 10 μm in size present a unique morphology of polygonal or irregular block of crushed powder, and smaller dust particles mainly exist in the form of irregular or flocculent agglomerates. Some heavy metals, such as chromium, cobalt, and nickel, are also found in the air of the workshop and their concentrations are higher than the limits. Potential occupational hazards of the dust particles in the thermal spray process are further analyzed based on their characteristics and the workers' exposure to the nanoparticles is assessed using a control banding tool.

  2. The radiation-induced rotation of cosmic dust particles: A feasibility study

    NASA Technical Reports Server (NTRS)

    Misconi, N. Y.; Ratcliff, K. F.

    1981-01-01

    A crossed beam, horizontal optical trap, used to achieve laser levitation of particles in an effort to determine how solar radiation produces high spin rate in interplanetary dust particles, is described. It is suggested that random variations in albedo and geometry give rise to a nonzero effective torque when the influence of a unidrectional source of radiaton (due to the Sun) over the surface of a interplanetary dust particle is averaged. This resultant nonzero torque is characterized by an asymmetry factor which is the ratio of the effective moment arm to the maximum linear dimension of the body and is estimated to be 5 X 10 to the minus four power. It is hoped that this symmetry factor, which stabilizes the nonstatistical response of the particle, can be measured in a future Spacelab experiment.

  3. New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Palma, R. L.; Pepin, R. O.; Kloeck, W.; Zolensky, M. E.; Messenger, S.

    2008-01-01

    Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5].

  4. Atmospheric Dust Modeling from Meso to Global Scales with the Online NMMB/BSC-Dust Model Part 2: Experimental Campaigns in Northern Africa

    NASA Technical Reports Server (NTRS)

    Haustein, K.; Perez, C.; Baldasano, J. M.; Jorba, O.; Basart, S.; Miller, R. L.; Janjic, Z.; Black, T.; Nickovic, S.; Todd, M. C.; hide

    2012-01-01

    The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Perez et al., 2011) develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD) was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6-0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1) in 2006 and the Bodele Dust Experiment (BoDEx) in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ) and the dust AOD over the Bodélé are well reproduced

  5. PERSPECTIVE: Dust, fertilization and sources

    NASA Astrophysics Data System (ADS)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  6. Satellite Observations from SEVIRI of Saharan dust over West Africa, within the context of the Fennec project

    NASA Astrophysics Data System (ADS)

    Banks, J.; Brindley, H.

    2012-04-01

    During the summer months, the atmosphere over the western half of the Sahara carries some of the highest dust loadings on the planet. This situation develops when intense solar heating over the dry desert creates a deep and hot low pressure system (the Saharan Heat Low, SHL), which allows a strong vertical mixing of dust. The Fennec* consortium project aims to address the deficiency in observations from the sparsely populated western Sahara through the use of field campaign measurements made in June 2011, incorporating observations from ground instruments, aircraft, and from satellite instruments such as SEVIRI, in combination with climate modelling. Fennec aims to study the poorly understood behaviour of the SHL, and the processes which take place within it. Due to their high temporal resolution, observations from SEVIRI can offer new insights into the timing of activation of specific dust sources, and the processes governing their behaviour. Here we employ a multi-year, high time-resolution record of dust detection and aerosol optical depth (AOD) derived from SEVIRI using an algorithm developed at Imperial College to both identify areas of high dust loading and diagnose diurnal patterns in their activation. We will present results from the SEVIRI record alongside results from other satellite instruments such as MODIS, and place these findings in the context of the initial ground-based and in-situ observations available from the Fennec field campaign. We will also identify surface features which can contaminate the dust detection retrieval, due to their emissivities in the 8.7 micron channel. New techniques can be used to filter out these features, based on the difference between the brightness temperatures at 10.8 and 8.7 microns. Using surface visibility measurements and AERONET data, we will evaluate the consequences of this on the dust detection and AOD record. * Fennec is a consortium project which includes groups from the universities of Oxford, Imperial

  7. Contrasting effect of Saharan dust and UVR on autotrophic picoplankton in nearshore versus offshore waters of Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    González-Olalla, J. M.; Medina-Sánchez, J. M.; Cabrerizo, M. J.; Villar-Argáiz, Manuel; Sánchez-Castillo, Pedro M.; Carrillo, Presentación

    2017-08-01

    Autotrophic picoplankton (APP) is responsible for the vast majority of primary production in oligotrophic marine areas, such as the Alboran Sea. The increase in atmospheric dust deposition (e.g., from Sahara Desert) associated with global warming, together with the high UV radiation (UVR) on these ecosystems, may generate effects on APP hitherto unknown. We performed an observational study across the Alboran Sea to establish which factors control the abundance and distribution of APP, and we made a microcosm experiment in two distinct areas, nearshore and offshore, to predict the joint UVR × dust impact on APP at midterm scales. Our observational study showed that temperature (T) was the main factor explaining the APP distribution whereas total dissolved nitrogen positively correlated with APP abundance. Our experimental study revealed that Saharan dust inputs reduced or inverted the UVR damage on the photosynthetic quantum yield (ΦPSII) and picoplanktonic primary production (PPP) in the nearshore area but accentuated it in the offshore. This contrasting effect is partially explained by the nonphotochemical quenching, acting as a photorepair mechanism. Picoeukaryotes reflected the observed effects on the physiological and metabolic variables, and Synechococcus was the only picoprokaryotic group that showed a positive response under UVR × dust conditions. Our study highlights a dual sensitivity of nearshore versus offshore picoplankton to dust inputs and UVR fluxes, just at the time in which these two global-change factors show their highest intensities and may recreate a potential future response of the microbial food web under global-change conditions.

  8. Observation of Dust Aging Processes During Transport from Africa into the Caribbean - A Lagrangian Case Study

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Walser, A.; Dollner, M.; Reitebuch, O.; Gross, S.; Chouza, F.; Ansmann, A.; Toledano, C.; Freudenthaler, V.; Kandler, K.; Schäfler, A.; Baumann, R.; Tegen, I.; Heinold, B.

    2014-12-01

    Aerosol particles are regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. During transport, particle properties are modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. In June/July 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted to study the transport and transformation of Saharan mineral dust. Besides ground-based lidar and in-situ instruments deployed on Cape Verde, Barbados and Puerto Rico, the DLR research aircraft Falcon was equipped with an extended aerosol in-situ instrumentation, a nadir-looking 2-μm wind lidar and instruments for standard meteorological parameters. During SALTRACE, five large dust outbreaks were studied by ground-based, airborne and satellite measurements between Senegal, Cape Verde, the Caribbean, and Florida. Highlights included the Lagrangian sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados. Between Cape Verde and Barbados, the aerosol optical thickness (500 nm) decreased from 0.54 to 0.26 and the stratification of the dust layers changed significantly from a rather homogenous structure near Africa to a 3-layer structure with embedded cumulus clouds in the Caribbean. In the upper part of the dust layers in the Caribbean, the aerosol properties were similar to the observations near Africa. In contrast, much more variability in the dust properties was observed between 0.7 and 2.5 km altitude probably due to interaction of the mineral dust with clouds. In our

  9. "CHON" particles: The interstellar component of cometary dust

    NASA Technical Reports Server (NTRS)

    Lien, David J.

    1998-01-01

    Interstellar dust is characterized by strong absorption in the ultraviolet and the mid-IR. Current models of interstellar dust are based on three chemically distinct components: a form of carbon (usually graphite), a silicate, and a blend of polycyclic aromatic hydrocarbons or other carbonaceous material. Previous work using effective medium theories to understand the optical properties of cometary dust suggested that an amalgam of materials could reproduce the observed interstellar and cometary dust features. Recently, Lawler and Brownlee (1992) re-analyzed the PIA and PUMA-1 data sets from the Giotto flyby of P/Halley and discovered that the so-called "CHON" particles were actually composed of a blend of carbon-bearing and silicon-bearing materials. Based on effective medium theories, the absorption spectrum of such a material would display the spectral features of each of the components - strong UV absorption from the carbonaceous component and strong absorption in the IR from the silicate component. To test this idea, vapor-deposited samples were created using two different deposition techniques: sputtering with an argon RF magnetron and deposition from an argon plasma torch. Two different compositions were tested: a blend of graphite and silica in a 7:1 ratio and an amalgam of materials whose approximate composition matches the "CHON"-silicate abundances for the uncompressed PIA data set of Lawler and Brownlee: graphite, iron oxide, magnesium oxide, ammonium sulfate, calcium carbonate, and silica in mass ratios of 6:4.3:4:2.2:1:9. The samples were finely ground and pressed into 2" diameter disks using a 40 ton press. In all, four different experiments were performed: one with each of the compositions (C:SiO and "CHON") in both the RF magnetron and the plasma torch chambers. The RF magnetron created a uniform dark thin film on the substrate surface, and the plasma torch created a coating of small (<100 micron) diameter grey particles. The spectra of all four

  10. Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.

    PubMed

    Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2015-06-16

    Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed.

  11. Sahara Dust Cloud

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24

    A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean.

    These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward.

    In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005.

    In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie

    The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the

  12. The dynamics of submicron-sized dust particles lost from Phobos

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Tatrallyay, M.; Juhasz, A.; Luhmann, J. G.

    1991-01-01

    The dynamics of submicron-sized dielectric particles lost from the Martian moon Phobos are studied in connection with the possible detection of dust by the Phobos 2 spacecraft. The motion of these small dust grains is influenced not only by gravity but also by solar radiation pressure and electromagnetic forces. The plasma environment of Mars is described by applying a hybrid gasdynamic-cometary model. Some of the submicron-sized grains ejected at speeds on the order of a few tens meters per second can stay in orbit around Mars for several months forming a nonuniform and time-dependent dust halo.

  13. Particle Simulations on Plasma and Dust Environment near Lunar Vertical Holes

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Funaki, Y.; Nishino, M. N.

    2016-12-01

    The Japanese lunar orbiter KAGUYA has revealed the existence of vertical holes on the Moon, which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure is regarded as evidence for past existence of underground lava flows. Furthermore, the holes have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only of significance in selenology, but are also interesting from the viewpoint of plasma environments. The dayside electrostatic environment near the lunar surface is governed by interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. Thus we applied three-dimensional, massively-parallelized, particle-in-cell simulations to the near-hole environment on the Moon. This year we have introduced a horizontal cavern opened at the vertical wall of the hole, assuming the presence of a subsurface lave tube. We will show some preliminary results on the surface potential and its nearly plasma environments. We also started to study the dynamics of submicron-sized charged dust grains around the distinctive landscape. We particularly focus on an effect of a stochastic charging process of such small dust grains. Because of their small surface areas, the dusts will get/lose one elementary charge infrequently, and thus charge amount owned by each dust should be a stochastic variable unlike a widely-known spacecraft charging process. We develop a numerical model of such a charging process, which will be embedded into the test particle analysis of the dust dynamics. We report some results from our simulations on the dust charging process and dynamics around the lunar hole.

  14. CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM10

    NASA Astrophysics Data System (ADS)

    Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Custódio, D.; Cerqueira, M.; Patoilo, D.; Almeida, S. M.; Freitas, M. C.

    2012-04-01

    Every year, billions of tons of eroded mineral soils from the Saharan Desert and the Sahel region, the largest dust source in the world, cross Mediterranean towards Europe, western Asia and the tropical North Atlantic Ocean as far as the Caribbean and South America. Many aspects of the direct and indirect effects of dust on climate are not well understood and the bulk and surface chemistry of the mineral dust particles determines interactions with gaseous and other particle species. The quantification of the magnitude of warming or cooling remains open because of the strong variability of the atmospheric dust burden and the lack of representative data for the spatial and temporal distribution of the dust composition. CV-Dust is a project that aims at provide a detailed data on the size distribution and the size-resolved chemical and mineralogical composition of dust emitted from North Africa using a natural laboratory like Cape Verde. This archipelago is located in an area of massive dust transport from land to ocean, and is thus ideal to set up sampling devices that are able to characterize and quantify dust transported from Africa. Moreover, Cape Verde's future economic prospects depend heavily on the encouragement of tourism, therefore it is essential to elucidate the role of Saharan dust may play in the degradation of Cape Verde air quality. The main objectives of CV-Dust project are: 1) to characterize the chemical and mineralogical composition of dust transported from Africa by setting up an orchestra of aerosol sampling devices in the strategic archipelago of Cape Verde; 2) to identify the sources of particles in Cape Verde by using receptor models; 3) to elucidate the role Saharan dust may play in the degradation of Cape Verde air quality; 4) to model processes governing dust production, transport, interaction with the radiation field and removal from the atmosphere. Here we present part of the data obtained throughout the last year, involving a set of more

  15. The episodic influx of tin-rich cosmic dust particles during the last ice age

    NASA Astrophysics Data System (ADS)

    LaViolette, Paul A.

    2015-12-01

    This paper presents evidence of the first detection of interstellar dust in ice age polar ice. Neutron activation analysis (NAA) results are reported for 15 elements found in dust filtered from eight samples of Camp Century Greenland ice dating from 40 to 78 kyrs BP. High concentrations of Sn, Sb, Au, Ag, Ir, and Ni were found to be present in three out of these eight samples. One compositionally anomalous dust sample from an ice core depth of 1230.5 m (age ∼49 kyrs BP, near the beginning of D/O stadial No. 13) was found to contain tin with an average weight percent of 49% as determined by energy dispersive X-ray analysis (EDS). This sample was also found to contain high concentrations of Pb with an average weight abundance of 8.4% and matching the Sn:Pb ratio observed in interstellar spectra. Dust particles in this sample generally have a platy morphology and range from submicron size up to a size as large as 120 μm, a particle consisting almost entirely of SnO2 and being the largest monomineralic extraterrestrial dust particle so far discovered. One porous aggregate tin-bearing particle was found to contain nanometer sized chondrules indicating an extraterrestrial origin. The extraterrestrial origin for the tin is also indicated by the presence of isotopic anomalies in the 114Sn, 115Sn and 117Sn isotopes. Follow up isotopic measurements of this tin-rich dust need to be performed to improve confidence in the anomalies reported here. High abundances of the low melting point elements Ag, Au, and Sb are also present in this tin-rich sample along with elevated abundances of the siderophiles Ir, Ni, Fe, and Co, the latter being present in chondritic proportions and indicating that about 9% of the dust has a C1 chondrite component. Measurements indicate that about 97% of this dust is of extraterrestrial origin with a 3% residual being composed of terrestrial windblown dust. EDS analysis of another tin-rich Camp Century ice core dust sample dating to ∼130 kyrs BP

  16. Tin in a chondritic interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1989-01-01

    Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.

  17. Final Reports of the Stardust ISPE: Seven Probable Interstellar Dust Particles

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sans Tresseras, Juan-Angel; Westphal, Andrew J.; Stroud, Rhonda M.; Bechtel, Hans A.; Brenker, Frank E.; Butterworth, Anna L.; Flynn, George J.; Frank, David R.; Gainsforth, Zack; hide

    2014-01-01

    The Stardust spacecraft carried the first spaceborne collector specifically designed to capture and return a sample of contemporary interstellar dust to terrestrial laboratories for analysis [1]. The collector was exposed to the interstellar dust stream in two periods in 2000 and 2002 with a total exposure of approximately 1.8 10(exp 6) square meters sec. Approximately 85% of the collector consisted of aerogel, and the remainder consisted of Al foils. The Stardust Interstellar Preliminary Examination (ISPE) was a consortiumbased effort to characterize the collection in sufficient detail to enable future investigators to make informed sample requests. Among the questions to be answered were these: How many impacts are consistent in their characteristics with interstellar dust, with interplanetary dust, and with secondary ejecta from impacts on the spacecraft? Are the materials amorphous or crystalline? Are organics detectable? An additional goal of the ISPE was to develop or refine the techniques for preparation, analysis, and curation of these tiny samples, expected to be approximately 1 picogram or smaller, roughly three orders of magnitude smaller in mass than the samples in other small particle collections in NASA's collections - the cometary samples returned by Stardust, and the collection of Interplanetary Dust Particles collected in the stratosphere.

  18. Generation rate and particle size distribution of wood dust by handheld sanding operation.

    PubMed

    Ojima, Jun

    2016-11-29

    The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m 3 /min ventilation rate.

  19. Generation rate and particle size distribution of wood dust by handheld sanding operation

    PubMed Central

    Ojima, Jun

    2016-01-01

    Objectives: The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Methods: Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Results: Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Conclusions: Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m3/min ventilation rate. PMID:27725491

  20. On the sizes and observable effects of dust particles in polar mesospheric winter echoes

    NASA Astrophysics Data System (ADS)

    Havnes, O.; Kassa, M.

    2009-05-01

    In the present paper, recent radar and heating experiments on the polar mesospheric winter echoes (PMWE) are analyzed with the radar overshoot model. The PMWE dust particles that influence the radar backscatter most likely have sizes around 3 nm. For dust to influence the electrons in the PMWE layers, it must be charged; therefore, we have discussed the charging of nanometer-sized particles and found that the photodetachment effect, where photons of energy less than the work function of the dust material can remove excess electrons, probably is dominant at sunlit conditions. For moderate and low electron densities, very few of the dust smaller than ˜3 nm will be charged. We suggest that the normal requirement that disturbed magnetospheric conditions with ionizing precipitation must be present to create observable PMWE is needed mainly to create sufficiently high electron densities to overcome the photodetachment effect and charge the PMWE dust particles. We have also suggested other possible effects of the photodetachment on the occurrence rate of the PMWE. We attribute the lack of PMWE-like radar scattering layers in the lower mesosphere during the summer not only to a lower level of turbulence than in winter but also to that dust particles are removed from these layers due to the upward wind draught in the summer mesospheric circulation system. It is likely that this last effect will completely shut off the PMWE-like radar layers in the lower parts of the mesosphere.

  1. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Konde, Lassana; Wolf, Ruth E.; Otto, Richard D.; Tsuneoka, Yutaka

    2014-01-01

    Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan–Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 – 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara–Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.

  2. The footprints of Saharan Air Layer and lightning on the formation of tropical depressions over the eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Centeno Delgado, Diana C.

    In this study, the results of an observational analysis and a numerical analysis on the role of the Saharan Air Layer during tropical cyclogenesis (TC-genesis) are described. The observational analysis investigates the interaction of dust particles and lightning during the genesis stage of two developed cases (Hurricanes Helene 2006 and Julia 2010). The Weather Research and Forecasting (WRF) and WRF-Chemistry models were used to include and monitor the aerosols and chemical processes that affect TC-genesis. The numerical modeling involved two developed cases (Hurricanes Helene 2006 and Julia 2010) and two non-developed cases (Non-Developed 2011 and Non-Developed 2012). The Aerosol Optical Depth (AOD) and lightning analysis for Hurricane Helene 2006 demonstrated the time-lag connection through their positive contribution to TC-genesis. The observational analyses supported the fact that both systems developed under either strong or weak dust conditions. From the two cases, the location of strong versus weak dust outbreaks in association with lightning was essential interactions that impacted TC-genesis. Furthermore, including dust particles, chemical processes, and aerosol feedback in the simulations with WRF-CHEM provides results closer to observations than regular WRF. The model advantageously shows the location of the dust particles inside of the tropical system. Overall, the results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones.

  3. On the size and velocity distribution of cosmic dust particles entering the atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Feng, W.; Nesvorný, D.; Janches, D.

    2015-01-01

    Abstract The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s−1) particles. PMID:27478282

  4. Numerical simulation of migration behavior of uranium ore dust particles in the human respiratory tract

    NASA Astrophysics Data System (ADS)

    Ye, Yong-jun; Yin, An-song; Li, Zhi; Lei, Bo; Ding, De-xin

    2017-04-01

    There is a certain concentration of radioactive dust particles in the air of workplace of underground uranium mines. Some small diameter particles will pass through the masks and enter the respiratory tract which will cause radiation damage to the human body. In order to study deposition regularity of uranium dust in the human respiratory tract, in this paper, we firstly use the RNG turbulence model to simulate the gas flow field in the human respiratory tract Z0 ∼ Z3 level under different respiratory intensity. Then we use DPM discrete phase model to simulate the concentration, particle size distribution, deposition rate and deposition share of uranium dust particles after being filtered through the masks in the human respiratory tract Z0 to Z3 bronchus. According to the simulation results, we have got the following conclusions: the particles’ number concentration of uranium dust after being filtered through the mask in the human respiratory tract basically decreases with the increasing of particle size under different respiratory intensities on the environment of uranium mine. In addition, the intensity of respiration and the mass concentration of particles have an important influence on the deposition rate and the deposition of particles in the respiratory tract.

  5. Exploring the wake of a dust particle by a continuously approaching test grain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hendrik, E-mail: hjung@physik.uni-kiel.de; Greiner, Franko; Asnaz, Oguz Han

    2015-05-15

    The structure of the ion wake behind a dust particle in the plasma sheath of an rf discharge is studied in a two-particle system. The wake formation leads to attractive forces between the negatively charged dust and can cause a reduction of the charge of a particle. By evaluating the dynamic response of the particle system to small external perturbations, these quantities can be measured. Plasma inherent etching processes are used to achieve a continuous mass loss and hence an increasing levitation height of the lower particle, so that the structure of the wake of the upper particle, which ismore » nearly unaffected by etching, can be probed. The results show a significant modification of the wake structure in the plasma sheath to one long potential tail.« less

  6. A New Method Using Single-Particle Mass Spectrometry Data to Distinguish Mineral Dust and Biological Aerosols

    NASA Astrophysics Data System (ADS)

    Al-Mashat, H.; Kristensen, L.; Sultana, C. M.; Prather, K. A.

    2016-12-01

    The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds. The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles

  7. X-ray spectrometry of individual Asian dust-storm particles over the Japanese islands and the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Okada, Kikuo; Naruse, Hiroshi; Tanaka, Toyoaki; Nemoto, Osamu; Iwasaka, Yasunobu; Wu, Pei-Ming; Ono, Akira; Duce, Robert A.; Uematsu, Mitsuo; Merrill, John T.; Arao, Kimio

    Individual aerosol particles were collected during spring 1986 near the surface over the Japanese islands (Nagasaki and Nagoya) and the North Pacific Ocean near Hawaii. Asian dust-storm particles found in these samples were examined by use of an electron microscope equipped with an energy-dispersive X-ray analyzer (EDX). These dust-storm particles usually consisted of Mg, Al, Si, Ca, Ti and Fe, together with S and Cl. For the individual particles collected over Japan, changes in morphological features and in the amounts of elements before and after the dialysis (extraction) of water-soluble material were studied. The examination indicated that the dust particles were present as mixed particles (internal mixture of water-soluble and -insoluble material), wheras the the water-soluble material mainly contained Ca and S. Over the North Pacific Ocean, the dust-storm particles were present internally in sea-salt particles. It is suggested that the internal mixture of minerals and sea-salt is probably due to interaction within clouds. Formation of CaSO 4 on the dust particles was also suggested on the basis of quantitative results obtained by the use of the EDX.

  8. A Novel System to Generate WTC Dust Particles for Inhalation Exposures

    PubMed Central

    Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Soukup, Joleen M.; Zelikoff, Judith; Ghio, Andrew; Peltier, Richard E.; Asgharian, Bahman; Chen, Lung-Chi; Cohen, Mitchell D.

    2014-01-01

    First Responders (FR) present at Ground Zero within the first 72-hr after the WTC (World Trade Center) collapse have progressively exhibited significant respiratory injury. The majority (>96%) of WTC dusts were >10 μm and no studies have examined potential health effects of this size fraction. This study sought to develop a system to generate and deliver supercoarse (10–53 μm) WTC particles to a rat model in a manner that mimicked FR exposure scenarios. A modified Fishing Line generator was integrated onto an intratracheal inhalation (ITIH) system that allowed for a bypassing of the nasal passages so as to mimic FR exposures. Dust concentrations were measured gravimetrically; particle size distribution was measured via elutriation. Results indicate that the system could produce dusts with 23 μm MMAD at levels up to ≥ 1200 mg/m3. To validate system utility, F344 rats were exposed for 2-hr to ≈100 mg WTC dust/m3. Exposed rats had significantly increased lung weight and levels of select tracer metals 1-hr post-exposure. Using this system, it is now possible to conduct relevant inhalation exposures to determine adverse WTC dusts impacts on the respiratory system. Furthermore, this novel integrated Fishing Line-ITIH system could potentially be used in the analyses of a wide spectrum of other dusts/pollutants of sizes previously untested or delivered to the lungs in ways that did not reflect realistic exposure scenarios. PMID:24220216

  9. Providing the Caribbean community with VIIRS-derived weather satellite and dust model output in preparation for African dust impacts

    NASA Astrophysics Data System (ADS)

    Kuciauskas, A. P.; Xian, P.; Hyer, E. J.; Oyola, M. I.; Campbell, J. R.

    2016-12-01

    The Naval Research Laboratory Marine Meteorology Division (NRL-MMD) predicts, monitors, and trains Caribbean agencies in preparing for and mitigating unhealthy episodes of Saharan-based dust. Of critical concern is the Saharan Air Layer (SAL), an elevated air mass of hot, dry, and often very dusty conditions that can be environmentally persistent and dangerous to the downstream Caribbean populace, resulting in respiratory illnesses; some of the world's highest asthma rates and associated premature deaths have been documented within the Caribbean islands. The SAL not only impacts the greater Caribbean, but also the Gulf of Mexico, northern South America, and southern and central US. One of the major responsibilities of the National Weather Service forecast office at San Juan, Puerto Rico (NWS-PR) is preparing the public within their area of responsibility for such events. The NRL-MMD has been at the forefront of implementing and demonstrating the positive impact of Suomi-VIIRS during SAL events. In preparation for SAL events, NRL-MMD is currently supporting the NWS-PR with near real time web-based products, primarily from VIIRS datasets. Preliminary studies have shown that VIIRS has demonstrated improvements in the assessment and prediction of dust intensities related to SAL passages. The upcoming launches of JPSS-1 and GOES-R are eagerly anticipated in possibly revolutionizing the R&D related toward further improvements in understanding Saharan dust dynamics and characteristics. Besides NWS-PR, NRL-MMD also collaborates with the Caribbean Institute for Meteorology and Hydrology (CIMH) in both providing and gathering in-situ measurements that stretch from the French Guyana northward through the West Indies island chain. Finally, NRL-MMD is involved with the Caribbean Aerosol Health Network (CAHN),an international network of health and environmental agencies whose mission is to improve the understanding of the impacts (e.g., air quality, health, climate, weather

  10. Optical properties of mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  11. Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005

    NASA Astrophysics Data System (ADS)

    Todd, Martin C.; Washington, Richard; Martins, José Vanderlei; Dubovik, Oleg; Lizcano, Gil; M'bainayel, Samuel; Engelstaedter, Sebastian

    2007-03-01

    Mineral dust in the atmosphere is an important component of the climate system but is poorly quantified. The Bodélé Depression of northern Chad stands out as the world's greatest source region of mineral dust into the atmosphere. Frequent dust plumes are a distinguishing feature of the region's climate. There is a need for more detailed information on processes of dust emission/transport and dust optical properties to inform model simulations of this source. During the Bodélé Dust Experiment (BoDEx) in 2005, instrumentation was deployed to measure dust properties and boundary layer meteorology. Observations indicate that dust emission events are triggered when near-surface wind speeds exceed 10 ms-1, associated with synoptic-scale variability in the large-scale atmospheric circulation. Dust emission pulses in phase with the diurnal cycle of near-surface winds. Analysis of dust samples shows that the dust consists predominantly of fragments of diatomite sediment. The particle size distribution of this diatomite dust estimated from sun photometer data, using a modified Aeronet retrieval algorithm, indicates a dominant coarse mode (radius centered on 1-2 μm) similar to other Saharan dust observations. Single-scattering albedo values are high, broadly in line with other Saharan dust even though the diatomite composition of dust from the Bodélé is likely to be unusual. The radiative impact of high dust loadings results in a reduction in surface daytime maximum temperature of around 7°C in the Bodélé region. Using optical and physical properties of dust obtained in the field, we estimate the total dust flux emitted from the Bodélé to be 1.18 ± 0.45 Tg per day during a substantial dust event. We speculate that the Bodélé Depression (˜10,800 km2) may be responsible for between 6-18% of global dust emissions, although the uncertainty in both the Bodélé and global estimates remains high.

  12. Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Balden, M.; Endstrasser, N.; Humrickhouse, P. W.; Rohde, V.; Rasinski, M.; von Toussaint, U.; Elgeti, S.; Neu, R.; the ASDEX Upgrade Team

    2014-07-01

    The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007-2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e.g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the ˜50 000 analysed particles on the Si collectors of campaign 2009 contain tungsten—the plasma-facing material in AUG—and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B-C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 µm only for the W-dominated spheroids, at around 1 µm. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG.

  13. Monitoring of Saharan dust fallout on Crete and its contribution to soil formation

    NASA Astrophysics Data System (ADS)

    Nihlén, Tomas; Mattsson, Jan O.; Rapp, Anders; Gagaoudaki, Chrisoula; Kornaros, Georges; Papageorgiou, John

    1995-07-01

    A series of 6 dust traps was established in 1988 distributed over the island of Crete (Greece). Eolian dust has been collected in the traps each year and in each season during the 4years of investigation which is still going on. The mean deposition rate for the 6 stations and 4years was calculated as 21.3g m-2yr-1. Using the highest and lowest values, the deposition can be extrapolated to 6.6-21.4mm for 1000years, which is in agreement with other researchers' findings. The trapped dust shows a homogeneous grain-size distribution. Its mineralogy is similar to what characterizes soil samples from Psiloritis on Crete and source areas in southern Tunisia. In the fine fraction of the soil (particles < 10µm), the contents of the clay mineral kaolinite and of quartz are high. In addition, the oxygen isotope composition of the 3 types of substrate is similar but differs from the weathering products of the limestone bedrock. Statistics of dust episodes covering the period c. 1955-1990 from 10 meteorological stations in Greece revealed that long-distance transport of dust in combination with winds from a southerly sector is common in the Aegean area during spring.

  14. The spectral properties of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    1988-01-01

    The observed spectral and mineralogical properties of interplanetary dust particles (IDP) allows the conclusion that: (1) the majority of IDP infrared spectra are dominated by olivine, pyroxene, or layer lattice silicate minerals, (2) to the first order the emission spectra of comets Halley and Kohoutek can be matched by mixtures of these IDP infrared types, implying that comets contain mixtures of these different crystalline silicates and may vary from comet to comet and perhaps even within a single comet, (3) do not expect to observe a single 20 micron feature in cometary spectra, (4) carbonaceous materials dominate the visible spectra properties of the IDPs even though the mass in these particles consists primarily of silicates, and (5) the particle characteristics summarized need to be properly accounted for in future cometary emission models.

  15. A Numerical Estimate of The Impact of The Saharan Dust On Medityerranean Trophic Web

    NASA Astrophysics Data System (ADS)

    Crise, A.; Crispi, G.

    A first estimate of the importance of Saharan dust as input of macronutrients on the phytoplankton standing crop concentration and primary production at basin scale is here presented using a three-dimensional numerical model of the Mediterranean Sea. The numerical scheme adopted is a 1/4 degree resolution 31 levels MOM-based eco- hydrodynamical model with climatological ('perpetual year') forcings coupled on-line with a structure including multi-nutrient, size-fractionated phytoplankton functional groups, herbivores and a parametrized recycling detritus submodel, so to (explicitely or implicitely) include the major energy pathways of the upper layer mediterranean ecosystem. This model takes into account as potential limiting factors, among others, Nitrogen (in its oxidized and reduced forms) and Phosphorus. A gridded data setof (wet and dry) dust deposition over Mediterranean derived from SKIRON operational model is used to identify statistically the areas and the duration/intensity of the events. Starting from this averaging process, experiments are carried out to study the dust induced episodes of release of bioavailable phosphorus which is supposed to be the limiting factor in the oligotrophic waters of the surface layer in Med Sea. The metrics for the evaluation of the impact of deposition have been identified in phyto standing crop, primary and export production and switching in the food web functioning. These global parameters, even if cannot exaust the whealth of the informations provided by the model, can help discriminate the sensitivity of food web to the nutrient pulses induced by the deposition. First results of a scenario analysis of typical atmospheric input events, provide evidence of the response of the upper layer ecosystem to assess the sensitivity of the model predictions to the variability to integrated intensity of external input.

  16. Sahara Dust Cloud

    NASA Image and Video Library

    2005-07-15

    In July of 2005, a continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean, captured by the Atmospheric Infrared Sounder onboard NASA Aqua satellite. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. http://photojournal.jpl.nasa.gov/catalog/PIA00448

  17. The Diversity of Carbon in Cometary Refractory Dust Particles

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    2018-01-01

    When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.

  18. Nano-Dust Analyzer for the detection and chemical composition measurement particles originating from near the Sun

    NASA Astrophysics Data System (ADS)

    OBrien, L. E.; Gemer, A.; Gruen, E.; Collette, A.; Horanyi, M.; Moebius, E.; Auer, S.; Juhasz, A.; Srama, R.; Sternovsky, Z.

    2012-12-01

    We report the development of the Nano-Dust Analyzer (NDA) instrument and the results from the first laboratory testing and calibration. The two STEREO spacecrafts have indicated that nano-sized dust particles, potentially with very high flux, are delivered to 1 AU from the inner solar system [Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009]. These particles are generated by collisional grinding or evaporation near the Sun and subsequently accelerated outward by the solar wind. The temporal variability and directionality are governed by conditions in the inner heliosphere and the mass analysis of the particles reveals the chemical differentiation of solid matter near the Sun. NDA is a highly sensitive dust analyzer that is developed under NASA's Heliophysics program. NDA is a linear time-of-flight mass analyzer that modeled after Cosmic Dust Analyzer (CDA) on Cassini and the more recent Lunar Dust EXperiment (LDEX) for the upcoming LADEE mission to the Moon. The ion optics of the instrument is optimized through numerical modeling. By applying technologies implemented in solar wind instruments and coronagraphs, the highly sensitive dust analyzer will be able to be pointed towards the solar direction. A laboratory prototype is built and tested and calibrated at the dust accelerator facility at the University of Colorado, Boulder, using particles with from 1 to over 50 km/s velocity.

  19. Particle creation in (2+1) circular dust collapse

    NASA Astrophysics Data System (ADS)

    Gutti, Sashideep; Singh, T. P.

    2007-09-01

    We investigate the quantum particle creation during the circularly symmetric collapse of a 2+1 dust cloud, for the cases when the cosmological constant is either zero or negative. We derive the Ford-Parker formula for the 2+1 case, which can be used to compute the radiated quantum flux in the geometric optics approximation. It is shown that no particles are created when the collapse ends in a naked singularity, unlike in the 3+1 case. When the collapse ends in a Banados-Teitelboim-Zanelli black hole, we recover the expected Hawking radiation.

  20. High negative charge of a dust particle in a hot cathode discharge.

    PubMed

    Arnas, C; Mikikian, M; Doveil, F

    1999-12-01

    Dust particle levitation experiments in a plasma produced by a hot filament discharge, operating at low argon pressure, are presented. The basic characteristics of a dust grain trapped in a plate sheath edge in these experimental conditions are reported. Taking into account the sheath potential profiles measured with a differential emissive probe diagnostic, the forces applied to an isolated dust grain can be determined. Two different experimental methods yield approximately the same value for the dust charge. The observed high negative charge is mainly due to the contribution of the primary electrons emitted by the filaments as predicted by a simple model.

  1. Optical properties of non-spherical desert dust particles in the terrestrial infrared - An asymptotic approximation approach

    NASA Astrophysics Data System (ADS)

    Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.

    2016-07-01

    Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz-Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz-Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz-Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz-Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex.

  2. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  3. The origin of low mass particles within and beyond the dust coma envelopes of Comet Halley

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Rabinowitz, D.; Tuzzolino, A. J.; Ksanfomality, L. V.; Sagdeev, R. Z.

    1987-01-01

    Measurements from the Dust Counter and Mass Analyzer (DUCMA) instruments on VEGA-1 and -2 revealed unexpected fluxes of low mass (up to 10 to the minus 13th power g) dust particles at very great distances from the nucleus (300,000 to 600,000 km). These particles are detected in clusters (10 sec duration), preceded and followed by relatively long time intervals during which no dust is detected. This cluster phenomenon also occurs inside the envelope boundaries. Clusters of low mass particles are intermixed with the overall dust distribution throughout the coma. The clusters account for many of the short-term small-scale intensity enhancements previously ascribed to microjets in the coma. The origin of these clusters appears to be emission from the nucleus of large conglomerates which disintegrate in the coma to yield clusters of discrete, small particles continuing outward to the distant coma.

  4. Pyrogenic effect of respirable road dust particles

    NASA Astrophysics Data System (ADS)

    Jayawardena, Umesh; Tollemark, Linda; Tagesson, Christer; Leanderson, Per

    2009-02-01

    Because pyrogenic (fever-inducing) compounds on ambient particles may play an important role for particle toxicity, simple methods to measure pyrogens on particles are needed. Here we have used a modified in vitro pyrogen test (IPT) to study the release of interleukin 1β (IL-1β) in whole human blood exposed to respirable road-dust particles (RRDP). Road dusts were collected from the roadside at six different streets in three Swedish cities and particles with a diameter less than 10 μm (RRDP) were prepared by a water sedimentation procedure followed by lyophilisation. RRDP (200 μl of 1 - 106 ng/ml) were mixed with 50 μl whole blood and incubated at 37 °C overnight before IL-1β was analysed with chemiluminescence ELISA in 384-well plates. Endotoxin (lipopolysaccharide from Salmonella minnesota), zymosan B and Curdlan (P-1,3-glucan) were used as positive controls. All RRDP samples had a pyrogenic effect and the most active sample produced 1.6 times more IL-1β than the least active. This formation was of the same magnitude as in samples with 10 ng LPS/ml and was larger than that evoked by zymosan B and Curdlan (by mass basis). The method was sensitive enough to determine formation of IL-1β in mixtures with 10 ng RRDP/ml or 0.01 ng LPS/ml. The endotoxin inhibitor, polymyxin B (10 μg/ml), strongly reduced the RRDP-induced formation of IL-1β at 1μg RRDP/ml (around 80 % inhibition), but had only marginal or no effects at higher RRDP-concentrations (10 and 100 μg /ml). In summary, all RRDP tested had a clear pyrogen effect in this in vitro model. Endotoxin on the particles but also other factors contributed to the pyrogenic effect. As opposed to the limulus amebocyte lysate (LAL) assay (which measures endotoxin alone), IPT measures a broad range of pyrogens that may be present on particulate matter. The IPT method thus affords a simple, sensitive and quantitative determination of the total pyrogenic potential of ambient particles.

  5. Terrestrial in situ sampling of dust devils (relative particle loads and vertical grain size distributions) as an equivalent for martian dust devils.

    NASA Astrophysics Data System (ADS)

    Raack, J.; Dennis, R.; Balme, M. R.; Taj-Eddine, K.; Ori, G. G.

    2017-12-01

    Dust devils are small vertical convective vortices which occur on Earth and Mars [1] but their internal structure is almost unknown. Here we report on in situ samples of two active dust devils in the Sahara Desert in southern Morocco [2]. For the sampling we used a 4 m high aluminium pipe with sampling areas made of removable adhesive tape. We took samples between 0.1-4 m with a sampling interval of 0.5 m and between 0.5-2 m with an interval of 0.25 m, respectively. The maximum diameter of all particles of the different sampling heights were then measured using an optical microscope to gain vertical grain size distributions and relative particle loads. Our measurements imply that both dust devils have a general comparable internal structure despite their different strengths and dimensions which indicates that the dust devils probably represents the surficial grain size distribution they move over. The particle sizes within the dust devils decrease nearly exponential with height which is comparable to results by [3]. Furthermore, our results show that about 80-90 % of the total particle load were lifted only within the first meter, which is a direct evidence for the existence of a sand skirt. If we assume that grains with a diameter <31 μm can go into suspension [4], our results show that only less than 0.1 wt% can be entrained into the atmosphere. Although this amount seems very low, these values represent between 60 and 70 % of all lifted particles due to the small grain sizes and their low weight. On Mars, the amount of lifted particles will be general higher as the dust coverage is larger [5], although the atmosphere can only suspend smaller grain sizes ( <20 μm) [6] compared to Earth. During our field campaign we observed numerous larger dust devils each day which were up to several hundred meters tall and had diameters of several tens of meters. This implies a much higher input of fine grained material into the atmosphere (which will have an influence on the

  6. Particle Removal by Electrostatic and Dielectrophoretic Forces for Dust Control During Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; McFall, J. L.; Snyder, S. J.

    2009-01-01

    Particle removal during lunar exploration activities is of prime importance for the success of robotic and human exploration of the moon. We report on our efforts to use electrostatic and dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed solar shield output above 90% of the initial potentials after dust clearing.

  7. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-01

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  8. A novel system to generate WTC dust particles for inhalation exposures.

    PubMed

    Vaughan, Joshua M; Garrett, Brittany J; Prophete, Colette; Horton, Lori; Sisco, Maureen; Soukup, Joleen M; Zelikoff, Judith T; Ghio, Andrew; Peltier, Richard E; Asgharian, Bahman; Chen, Lung-Chi; Cohen, Mitchell D

    2014-01-01

    First responders (FRs) present at Ground Zero within the critical first 72 h after the World Trade Center (WTC) collapse have progressively exhibited significant respiratory injury. The majority (>96%) of WTC dusts were >10 μm and no studies have examined potential health effects of this size fraction. This study sought to develop a system to generate and deliver supercoarse (10-53 μm) WTC particles to a rat model in a manner that mimicked FR exposure scenarios. A modified Fishing Line generator was integrated onto an intratracheal inhalation (ITIH) system that allowed for a bypassing of the nasal passages so as to mimic FR exposures. Dust concentrations were measured gravimetrically; particle size distribution was measured via elutriation. Results indicate that the system could produce dusts with 23 μm mass median aerodynamic diameter (MMAD) at levels up to ≥1200 mg/m(3). To validate system utility, F344 rats were exposed for 2 h to ≈100 mg WTC dust/m(3). Exposed rats had significantly increased lung weight and levels of select tracer metals 1 h after exposure. Using this system, it is now possible to conduct relevant inhalation exposures to determine adverse WTC dusts impacts on the respiratory system. Furthermore, this novel integrated Fishing Line-ITIH system could potentially be used in the analyses of a wide spectrum of other dusts/pollutants of sizes previously untested or delivered to the lungs in ways that did not reflect realistic exposure scenarios.

  9. In-situ detection of micron-sized dust particles in near-Earth space

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Zook, H. A.

    1985-01-01

    In situ detectors for micron sized dust particles based on the measurement of impact ionization have been flown on several space missions (Pioneer 8/9, HEOS-2 and Helios 1/2). Previous measurements of small dust particles in near-Earth space are reviewed. An instrument is proposed for the measurement of micron sized meteoroids and space debris such as solid rocket exhaust particles from on board an Earth orbiting satellite. The instrument will measure the mass, speed, flight direction and electrical charge of individually impacting debris and meteoritic particles. It is a multicoincidence detector of 1000 sq cm sensitive area and measures particle masses in the range from 10 to the -14th power g to 10 to the -8th power g at an impact speed of 10 km/s. The instrument is lightweight (5 kg), consumes little power (4 watts), and requires a data sampling rate of about 100 bits per second.

  10. Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.

    1998-01-01

    Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  11. Assessment of the influence of traffic-related particles in urban dust using sequential selective extraction and oral bioaccessibility tests.

    PubMed

    Patinha, C; Durães, N; Sousa, P; Dias, A C; Reis, A P; Noack, Y; Ferreira da Silva, E

    2015-08-01

    Urban dust is a heterogeneous mix, where traffic-related particles can combine with soil mineral compounds, forming a unique and site-specific material. These traffic-related particles are usually enriched in potentially harmful elements, enhancing the health risk for population by inhalation or ingestion. Urban dust samples from Estarreja city and traffic-related particles (brake dust and white traffic paint) were studied to understand the relative contribution of the traffic particles in the geochemical behaviour of urban dust and to evaluate the long-term impacts of the metals on an urban environment, as well as the risk to the populations. It was possible to distinguish two groups of urban dust samples according to Cu behaviour: (1) one group with low amounts of fine particles (<38 µm), low contents of organic material, high percentage of Cu in soluble phases, and low Cu bioaccessible fraction (Bf) values. This group showed similar chemical behaviour with the brake dust samples of low- to mid-range car brands (with more than 10 years old), composed by coarser wear particles; and (2) another group with greater amounts of fine particles (<38 µm), with low percentage of Cu associated with soluble phases, and with greater Cu Bf values. This group behaved similar to those found for brake dust of mid- to high-range car brands (with less than 10 years old). The results obtained showed that there is no direct correlation between the geoavailability of metals estimated by sequential selective chemical extraction (SSCE) and the in vitro oral bioaccessibility (UBM) test. Thus, oral bioaccessibility of urban dust is site specific. Geoavailability was greatly dependent on particle size, where the bioaccessibility tended to increase with a reduction in particle diameter. As anthropogenic particles showed high metal concentration and a smaller size than mineral particles, urban dusts are of major concern to the populations' health, since fine particles are easily re

  12. A smoothed particle hydrodynamics model for electrostatic transport of charged lunar dust on the moon surface

    NASA Astrophysics Data System (ADS)

    Mao, Zirui; Liu, G. R.

    2018-02-01

    The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic-perfectly plastic constitutive equation and Drucker-Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil's natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.

  13. The influence of mineral dust particles on the energy output of photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Roesch, C.; Eltahir, E. A. B.; Al-awwad, Z.; Alqatari, S.; Cziczo, D. J.; Roesch, M.

    2016-12-01

    The city of Al Khafji in Saudi Arabia plans to provide a regular supply of desalinated water from the Persian Gulf while simultaneously cutting back on the usage of fossil fuels. The power for the high energy-consuming reverse osmosis (RO) process will be derived from photovoltaic (PV) cells as a cleaner and resource-conserving means of energy production. Numerous sun hours (yearly 3000) makes the Persian Gulf region's geographical location appropriate for applying PV techniques at this scale. A major concern for PV power generation is mineral dust from desert regions accumulating on surfaces and thereby reducing the energy output. This study aims to show the impact of dust particles on the PV energy reduction by examining dust samples from various Persian Gulf regions. Bulk samples were collected at the surface. The experimental setup involved a sealed container with a solar panel unit (SPU), including an adjustable mounting plate, solar cells (amorphous and monocrystalline), and a pyranometer (SMP3, Kipp & Zonen Inc.). A Tungsten Halogen lamp was used as the light source. Dust particles were aerosolized with a shaker (Multi-Wrist shaker, Lab line). Different techniques were applied to characterize each sample: the particle size distributions were measured using an Optical Particle Sizer (OPS, TSI Inc.), the chemical composition was analyzed using the Particle Analysis by Mass Spectrometry (PALMS) instrument, and Transmission Electron Microscope Energy-Dispersive X-ray spectroscopy (TEM-EDX) was used to define morphology, size and structure. Preliminary results show that the energy output is affected by aerosol morphology (monodisperse, polydisperse), composition and solar cell type.

  14. Interplanetary dust - Trace element analysis of individual particles by neutron activation

    NASA Technical Reports Server (NTRS)

    Ganapathy, R.; Brownlee, D. E.

    1979-01-01

    Although micrometeorites of cometary origin are thought to be the dominant component of interplanetary dust, it has never been possible to positively identify such micrometer-sized particles. Two such particles have been identified as definitely micrometeorites since their abundances of volatile and nonvolatile trace elements closely match those of primitive solar system material.

  15. A Long-term Record of Saharan Dust Aerosol Properties from TOMS Observations: Optical Depth and Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Herman, J. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The interaction between the strong Rayleigh scattering in the near UV spectral region (330-380 nm) and the processes of aerosol absorption and scattering, produce a clear spectral signal in the upwelling radiance at the top of the atmosphere. This interaction is the basis of the TOMS (Total Ozone Mapping Spectrometer) aerosol retrieval technique that can be used for their characterization and to differentiate non-absorbing sulfates from strongly UV-absorbing aerosols such as mineral dust. For absorbing aerosols, the characterization is in terms of the optical depth and single scattering albedo with assumptions about the aerosol plume height. The results for non-absorbing aerosols are not dependent on plume height. Although iron compounds represent only between 5% to 8% of desert dust aerosol mass, hematite (Fe2O3) accounts for most of the near UV absorption. Because of the large ultraviolet absorption characteristic of hematite, the near UV method of aerosol sensing is especially suited for the detection and characterization of desert dust aerosols. Using the combined record of near UV measurements by the Nimbus7 (1978-1992) and Earth Probe (1996-present) TOMS instruments, a global longterm climatology of near UV optical depth and single scattering albedo has been produced. The multi-year long record of mineral aerosol properties over the area of influence of the Saharan desert, will be discussed.

  16. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation tomore » the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.« less

  17. Size and elemental composition of dry-deposited particles during a severe dust storm at a coastal site of Eastern China.

    PubMed

    Niu, Hongya; Zhang, Daizhou; Hu, Wei; Shi, Jinhui; Li, Ruipeng; Gao, Huiwang; Pian, Wei; Hu, Min

    2016-02-01

    Dry-deposited particles were collected during the passage of an extremely strong dust storm in March, 2010 at a coastal site in Qingdao (36.15 °N, 120.49 °E), a city located in Eastern China. The size, morphology, and elemental composition of the particles were quantified with a scanning electron microscope equipped with an energy dispersive X-ray instrument (SEM-EDX). The particles appeared in various shapes, and their size mainly varied from 0.4 to 10 μm, with the mean diameters of 0.5, 1.5, and 1.0 μm before, during, and after the dust storm, respectively. The critical size of the mineral particles settling on the surface in the current case was about 0.3-0.4 μm before the dust storm and about 0.5-0.7 μm during the dust storm. Particles that appeared in high concentration but were smaller than the critical size deposited onto the surface at a small number flux. The elements Al, Si and Mg were frequently detected in all samples, indicating the dominance of mineral particles. The frequency of Al in particles collected before the dust storm was significantly lower than for those collected during and after the dust storm. The frequencies of Cl and Fe did not show obvious changes, while those of S, K and Ca decreased after the dust arrival. These results indicate that the dust particles deposited onto the surface were less influenced by anthropogenic pollutants in terms of particle number. Copyright © 2015. Published by Elsevier B.V.

  18. Light Scattering by Wavelength-Sized Particles "Dusted" with Subwavelength-Sized Grains

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.

    2011-01-01

    The numerically exact superposition T-matrix method is used to compute the scattering cross sections and the Stokes scattering matrix for polydisperse spherical particles covered with a large number of much smaller grains. We show that the optical effect of the presence of microscopic dust on the surfaces of wavelength-sized, weakly absorbing particles is much less significant than that of a major overall asphericity of the particle shape.

  19. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  20. A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.

    2009-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0

  1. The Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment (SALTRACE 2013) - An overview

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina

    2015-04-01

    Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.

  2. Airborne Sunphotometry of African Dust and Marine Boundary Layer Aerosols in PRIDE

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Redemann, Jens; Russell, Philip; Schmid, Beat; Reid, Jeff; Pilewskie, Peter; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during summer 2000 to study the radiative, microphysical and transport properties of Saharan dust in the Caribbean region. During PRIDE, NASA Ames Research Center's six-channel airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane based at Roosevelt Roads Naval Station on the northeast coast of Puerto Rico. AATS-6 measurements were taken during 21 science flights off the coast of Puerto Rico in the western Caribbean. Data were acquired within and above the Marine Boundary Layer (MBL) and the Saharan Aerosol Layer (SAL) up to 5.5 km altitude tinder a wide range of dust loadings. Aerosol optical depth (AOD) spectra and columnar water vapor (CWV) values have been calculated from the AATS-6 measurements by using sunphotometer calibration data obtained at Mauna Loa Observatory (3A kin ASL) before (May) and after (October) PRIDE. Mid-visible AOD values measured near the surface during PRIDE ranged from 0.07 on the cleanest day to 0.55 on the most turbid day. Values measured above the MBL were as high as 0.35; values above the SAL were as low as 0.01. The fraction of total column AOD due to Saharan dust cannot be determined precisely from AATS-6 AOD data alone due to the uncertainty in the extent of vertical mixing of the dust down through the MBL. However, analyses of ground-based and airborne in-situ aerosol sampling measurements and ground-based aerosol lidar backscatter data should yield accurate characterization of the vertical mixing that will enable calculation of the Saharan dust AOD component from the sunphotometer data. Examples will be presented showing measured AATS-6 AOD spectra, calculated aerosol extinction and water vapor density vertical profiles, and aerosol size distributions retrieved by inversion of the AOD spectra. Near sea-surface AOD spectra acquired by AATS-6 during horizontal flight legs at 30 m ASL are available for validation of AOD derived from coincident

  3. The pulsating nature of large-scale Saharan dust transport as a result of interplays between mid-latitude Rossby waves and the North African Dipole Intensity

    NASA Astrophysics Data System (ADS)

    Cuevas, E.; Gómez-Peláez, A. J.; Rodríguez, S.; Terradellas, E.; Basart, S.; García, R. D.; García, O. E.; Alonso-Pérez, S.

    2017-10-01

    It was previously shown that during August the export of Saharan dust to the Atlantic was strongly affected by the difference of the 700-hPa geopotential height anomaly between the subtropics and the tropics over North Africa, which was termed the North African Dipole Intensity (NAFDI). In this work a more comprehensive analysis of the NAFDI is performed, focusing on the entire summer dust season (June-September), and examining the interactions between the mid-latitude Rossby waves (MLRWs) and NAFDI. Widespread and notable aerosol optical depth (AOD) monthly anomalies are found for each NAFDI-phase over the dust corridors off the Sahara, indicating that NAFDI presents intra-seasonal variability and drives dust transport over both the Mediterranean basin and the North Atlantic. Those summer months with the same NAFDI-phase show similar AOD-anomaly patterns. Variations in NAFDI-phase also control the displacement of the Saharan Heat Low (SHL) westwards or eastwards through horizontal advection of temperature over Morocco-Western Sahara or eastern Algeria-Western Libya, respectively. The connection between the SHL and the NAFDI is quantified statistically by introducing two new daily indexes that account for their respective phases (NAFDI daily index -NAFDIDI-, and SHL longitudinal shift index -SHLLSI-) and explained physically using the energy equation of the atmospheric dynamics. The Pearson's correlation coefficient between the one-day-lag SHLLSI and the NAFDIDI for an extended summer season (1980-2013) is 0.78. A positive NAFDI is associated with the West-phase of the SHL, dust sources intensification on central Algeria, and positive AOD anomalies over this region and the Subtropical North Atlantic. A negative NAFDI is associated with the East-phase of the SHL, and positive AOD anomalies over central-eastern Sahara and the central-western Mediterranean Sea. The results point out that the phase changes of NAFDI at intra-seasonal time scale are conducted by those

  4. Online Characterisation of Mineral Dust Aerosol by Single Particle Mass Spectrometry: Mineralogical Signatures of Potential Source Areas in North Africa.

    NASA Astrophysics Data System (ADS)

    Marsden, N. A.; Allan, J. D.; Flynn, M.; Ullrich, R.; Moehler, O.; Coe, H.

    2017-12-01

    The mineralogy of individual dust particles is important for atmospheric processes because mineralogy influences optical properties, their potential to act as ice nucleating particles (INP) and geochemical cycling of elements to the ocean. Bulk mineralogy of transported mineral dust has been shown to be a reflection of the source area and size fractionation during transport. Online characterisation of single particle mineralogy is highly desirable as the composition of individual particles can be reported at a temporal resolution that is relevant to atmospheric processes. Single particle mass spectrometry (SPMS) has indentified and characterised the composition of ambient dust particles but is hampered by matrix effects that result in a non-quantatative measurement of composition. The work presented describes a comparison of mass spectral characteristics of sub 2.5μm particle fractions generated from; i) nominally pure samples from the clay mineral society (CMS), ii) soil samples collected from potential source areas in North Africa and iii) ambient measurement of transported African dust made at the Cape Verde Islands. Using a novel approach to analyse the mass spectra, the distinct characteristics of the various dust samples are obtained from the online measurements. Using this technique it was observed that dust generated from sources on the North West Margin of the Sahara Desert have distinct characteristics of illite in contrast to the kaolinitic characteristics of dust generated from sources in the Sahel. These methods offer great potential for describing the hourly variation in the source and mineralogy of transported mineral dust and the online differentiation of mineral phase in multi-mineralic dust samples.

  5. Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67P by COSIMA onboard Rosetta.

    PubMed

    Hilchenbach, Martin; Fischer, Henning; Langevin, Yves; Merouane, Sihane; Paquette, John; Rynö, Jouni; Stenzel, Oliver; Briois, Christelle; Kissel, Jochen; Koch, Andreas; Schulz, Rita; Silen, Johan; Altobelli, Nicolas; Baklouti, Donia; Bardyn, Anais; Cottin, Herve; Engrand, Cecile; Fray, Nicolas; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Lehto, Harry; Mellado, Eva Maria; Modica, Paola; Le Roy, Lena; Siljeström, Sandra; Steiger, Wolfgang; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Zaprudin, Boris

    2017-07-13

    The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  6. Observation of Asian Mineral Dust Particles in Japan by a Single-Particle Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Matsumoto, J.; Takahashi, K.; Matsumi, Y.; Sugimoto, N.; Matsui, I.; Shimizu, A.

    2005-12-01

    The Asian mineral dust (Kosa) particles, emitted from the desert area of inland China, are characteristic of East Asian aerosols. The Kosa particles are important as regional carriers of various materials, especially in spring when the stormy dusts are transported to Japan and Pacific Ocean. In this study, the chemical mixing state of each atmospheric aerosol was measured individually by a laser-based time-of-flight mass spectrometer (TOFMS) to discuss chemical changes of Kosa particles during the transport. Observation was conducted at Tsukuba (36.05°N, 140.12°E) in April and May 2004. The LIDAR measurement was also carried out to determine the Kosa events. To classify the source of the air mass, the NOAA-HYSPLIT backward trajectory was applied. For the TOFMS instrument, particles with μm and sub-μm diameters were detected. The polarity of ion detection was altered every minute. During 30 days, the numbers of logged mass spectra (MS) were 5993 and 4382 for positive and negative ions, respectively. When the MS of ambient aerosols were compared with that of the standard Kosa sample, sulfate- and nitrate-mixed Kosa particles were found. To explore the mixing state of particles further, classification of the particles by the ART-2a algorithm was adopted. NO2-, NO3-, HSO4-, SiO2-, SiO3-, Cl- and NaCl2- were focused. Finally, particles were classified to 4 categories as A: sulfate and sulfate-rich mineral; B: sulfate-poor mineral; C: sea salt; D: unidentified. The relative fractions of A were 30 % and 1 % for a Kosa event and a maritime air mass, respectively. Note that the air mass for Kosa event case passed over the coast region of China, where SOx emission was intensive. It was reasonable that sulfate was internally mixed with Kosa particles and transported to Japan. Consequently, it was confirmed experimentally that Kosa particles are important as carriers of pollutants in the rim region of Pacific Ocean. Comparison with the observation in 2005 is also shown.

  7. Comparison of Morphologies of Apollo 17 Dust Particles with Lunar Simulant, JSC-1

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Kihm, Kenneth D.; Day, James D. M.

    2005-01-01

    Lunar dust (< 20 microns) makes up approx.20 wt.% of the lunar soil. Because of the abrasive and adhering nature of lunar soil, a detailed knowledge of the morphology (size, shape and abundance) of lunar dust is important for dust mitigation on the Moon. This represents a critical step towards the establishment of long-term human presence on the Moon (Taylor et al. 2005). Machinery design for in-situ resource utilization (ISRU) on the Moon also requires detailed information on dust morphology and general physical/chemical characteristics. Here, we report a morphological study of Apollo 17 dust sample 70051 and compare it to lunar soil stimulant, JSC-1. W e have obtained SEM images of dust grains from sample 70051 soil (Fig. 1). The dust grains imaged are composed of fragments of minerals, rocks, agglutinates and glass. Most particles consist largely of agglutinitic impact glass with their typical vesicular textures (fine bubbles). All grains show sub-angular to angular shapes, commonly with sharp edges, common for crushed glass fragments. There are mainly four textures: (1) ropey-textured pieces (typical for agglutinates), (2) angular shards, (3) blocky bits, and (4) Swiss-cheese grains. This last type with its high concentration of submicron bubbles, occurs on all scales. Submicron cracks are also present in most grains. Dust-sized grains of lunar soil simulant, JSC-1, were also studied. JSC-1 is a basaltic tuff with relatively high glass content (approx.50%; McKay et al. 1994). It was initially chosen in the early 90s to approximate the geotechnical properties of the average lunar soil (Klosky et al. 1996). JSC-1 dust grains also show angular blocky and shard textures (Fig. 2), similar to those of lunar dust. However, the JSC-1 grains lack the Swiss-cheese textured particles, as well as submicron cracks and bubbles in most grains.

  8. Space science applications for conducting polymer particles: synthetic mimics for cosmic dust and micrometeorites.

    PubMed

    Fielding, Lee A; Hillier, Jon K; Burchell, Mark J; Armes, Steven P

    2015-12-11

    Over the last decade or so, a range of polypyrrole-based particles have been designed and evaluated for space science applications. This electrically conductive polymer enables such particles to efficiently acquire surface charge, which in turn allows their acceleration up to the hypervelocity regime (>1 km s(-1)) using a Van de Graaff accelerator. Either organic latex (e.g. polystyrene or poly(methyl methacrylate)) or various inorganic materials (such as silica, olivine or pyrrhotite) can be coated with polypyrrole; these core-shell particles are useful mimics for understanding the hypervelocity impact ionisation behaviour of micro-meteorites (a.k.a. cosmic dust). Impacts on metal targets at relatively low hypervelocities (<10 km s(-1)) generate ionic plasma composed mainly of molecular fragments, whereas higher hypervelocities (>10 km s(-1)) generate predominately atomic species, since many more chemical bonds are cleaved if the particles impinge with higher kinetic energy. Such fundamental studies are relevant to the calibration of the cosmic dust analyser (CDA) onboard the Cassini spacecraft, which was designed to determine the chemical composition of Saturn's dust rings. Inspired by volcanism observed for one of the Jupiter's moons (Io), polypyrrole-coated sulfur-rich latexes have also been designed to help space scientists understand ionisation spectra originating from sulfur-rich dust particles. Finally, relatively large (20 μm diameter) polypyrrole-coated polystyrene latexes have proven to be useful for understanding the extent of thermal ablation of organic projectiles when fired at ultralow density aerogel targets at up to 6.1 km s(-1) using a Light Gas Gun. In this case, the sacrificial polypyrrole overlayer simply provides a sensitive spectroscopic signature (rather than a conductive overlayer), and the scientific findings have important implications for the detection of organic dust grains during the Stardust space mission.

  9. Quantification of Spore-forming Bacteria Carried by Dust Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Cholakian, Tanya; Gao, Wenming; Osman, Shariff; Barengoltz, Jack

    2006-01-01

    In order to establish a biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to understand the relationship between spore-forming bacteria and their carrier particles. We conducted air and surface sampling in indoor, outdoor, and cleanroom environments to determine the ratio of spore forming bacteria to their dust particle carriers of different sizes. The number of spore forming bacteria was determined from various size groups of particles in a given environment. Our data also confirms the existence of multiple spores on a single particle and spore clumps. This study will help in developing a better bio-contamination transport model, which in turn will help in determining forward contamination risks for future missions.

  10. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia.

    PubMed

    Gunawardena, Janaka; Ziyath, Abdul M; Bostrom, Thor E; Bekessy, Lambert K; Ayoko, Godwin A; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  12. Effect of particle size of Martian dust on the degradation of photovoltaic cell performance

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1991-01-01

    Glass coverglass and SiO2 covered and uncovered silicon photovoltaic (PV) cells were subjected to conditions simulating a Mars dust storm, using the Martian Surface Wind Tunnel, to assess the effect of particle size on the performance of PV cells in the Martian environment. The dust used was an artificial mineral of the approximate elemental composition of Martian soil, which was sorted into four different size ranges. Samples were tested both initially clean and initially dusted. The samples were exposed to clear and dust laden winds, wind velocities varying from 23 to 116 m/s, and attack angles from 0 to 90 deg. It was found that transmittance through the coverglass approximates the power produced by a dusty PV cell. Occultation by the dust was found to dominate the performance degradation for wind velocities below 50 m/s, whereas abrasion dominates the degradation at wind velocities above 85 m/s. Occultation is most severe at 0 deg (parallel to the wind), is less pronounced from 22.5 to 67.5 deg, and is somewhat larger at 90 deg (perpendicular to the wind). Abrasion is negligible at 0 deg, and increases to a maximum at 90 deg. Occultation is more of a problem with small particles, whereas large particles (unless they are agglomerates) cause more abrasion.

  13. The flow of a dust particle by highly collisional drifting plasma

    NASA Astrophysics Data System (ADS)

    Grach, Veronika; Semenov, Vladimir; Trakhtengerts, Victor

    We present the study of the flow of a dust particle by a weakly ionized highly collisional drifting plasma. The charging of a conductive sphere and wake formation downstream and upstream of it is analyzed in the case of a strong external field l0 = E0 /(4πen0 ) λD a (E0 is the magnitude of the external field, n0 is plasma density, λD is Debye length and a is a radius of the sphere). Under such conditions, the effects of the space charge field and ionization-recombination processes play crucial role. The sphere charge and the spatial distributions of plasma ions and electrons are calculated nu-merically; analytical expressions are obtained for some limiting cases. We obtain that the size of the wake is determined by the external field and the recombination rate. At low recombination rates (α/(4πµ+,- ) 1, where α is the recombination coefficient, µ+,- are mobilities of positive and negative plasma particles) the longitudinal scale of wake is about 20l0 , at high recombina-tion rates the longitudinal scale is about l0 . The transverse scale of the wake is determined by the ratio of the mobilities and can reach several dust particle radii. It was also shown that the absolute value of the dust particle charge decreases with increasing recombination rate. The total electric charge (the sphere charge plus the plasma space charge) is shown to be zero in accordance with predictions of the theory of static currents in a conducting medium. On the basis of the obtained spatial distributions of charged plasma particles, the electrostatic potential around the sphere is calculated numerically. The interaction potential between two systems "particle+wake" is analyzed for arbitrary locations of such systems. We obtain that the potential can be attractive at moderate and large distances, if the particles are not aligned in the direction perpendicular to the external electric field. The results can be important in understanding intergrain interactions in weakly ionized highly

  14. Two Key Parameters Controlling Particle Clumping Caused by Streaming Instability in the Dead-zone Dust Layer of a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Sekiya, Minoru; Onishi, Isamu K.

    2018-06-01

    The streaming instability and Kelvin–Helmholtz instability are considered the two major sources causing clumping of dust particles and turbulence in the dust layer of a protoplanetary disk as long as we consider the dead zone where the magnetorotational instability does not grow. Extensive numerical simulations have been carried out in order to elucidate the condition for the development of particle clumping caused by the streaming instability. In this paper, a set of two parameters suitable for classifying the numerical results is proposed. One is the Stokes number that has been employed in previous works and the other is the dust particle column density that is nondimensionalized using the gas density in the midplane, Keplerian angular velocity, and difference between the Keplerian and gaseous orbital velocities. The magnitude of dust clumping is a measure of the behavior of the dust layer. Using three-dimensional numerical simulations of dust particles and gas based on Athena code v. 4.2, it is confirmed that the magnitude of dust clumping for two disk models are similar if the corresponding sets of values of the two parameters are identical to each other, even if the values of the metallicity (i.e., the ratio of the columns density of the dust particles to that of the gas) are different.

  15. Limited production of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated areas in northwestern China

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Zhang, Daizhou; Cao, Junji; Guo, Xiao; Xia, Yao; Zhang, Ting; Lu, Hui; Cheng, Yan

    2017-12-01

    Sulfate and nitrate compounds can greatly increase the hygroscopicity of mineral particles in the atmosphere and consequently alter the particles' physical and chemical properties. Their uptake on long-distance-transported Asian dust particles within mainland China has been reported to be substantial in previous studies, but the production was very inefficient in other studies. We compared these two salts in particles collected from a synoptic-scale, mid-latitude, cyclone-induced dust storm plume at the Tengger Desert (38.79° N, 105.38° E) and in particles collected in a postfrontal dust plume at an urban site in Xi'an (34.22° N, 108.87° E) when a front-associated dust storm from the Tengger Desert arrived there approximately 700 km downwind. The results showed that the sulfate concentration was not considerably different at the two sites, while the nitrate concentration was slightly larger at the urban site than that at the desert site. The estimated nitrate production rate was 4-5 ng µg-1 of mineral dust per day, which was much less than that in polluted urban air. The adiabatic process of the dust-loading air was suggested to be the reason for the absence of sulfate formation, and the uptake of background HNO3 was suggested to be the reason for the small nitrate production. According to our investigation of the published literature, the significant sulfate and nitrate in dust-storm-associated samples within the continental atmosphere reported in previous studies cannot be confirmed as actually produced on desert dust particles; the contribution from locally emitted and urban mineral particles or from soil-derived sulfate was likely substantial because the weather conditions in those studies indicated that the collection of the samples was started before dust arrival, or the air from which the samples were collected was a mixture of desert dust and locally emitted mineral particles. These results suggest that the production of nitrate and sulfate on dust

  16. Numerical study of particle deposition and scaling in dust exhaust of cyclone separator

    NASA Astrophysics Data System (ADS)

    Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.

    2016-05-01

    The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.

  17. How Do Particle Shape and Internal Composition Affect Optical Properties of Atmospheric Dust: Studies of Individual Particles Based on Focused Ion-Beam Tomography

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Ortiz-Montalvo, D. L.

    2017-12-01

    In the remote sensing of atmospheric aerosols, coarse-mode dust particles are often modeled optically as a collection of spheroids. However, atmospheric particles rarely resemble simplified shapes such as spheroids. Moreover, individual particles often have a heterogenous composition and may not be sufficiently modeled as a single material. In this work, we determine the optical properties of dust particles based on 3-dimensional models of individual particles from focused ion-beam (FIB) tomography. We compare the optical properties of the actual particles with the particles as simplified shapes including one or more spheres, an ellipsoid, cube, rectangular prism, or tetrahedron. FIB tomography is performed with a scanning electron microscope equipped with an ion-beam column. The ion beam slices through the particle incrementally as the electron beam images each slice. Element maps of the particle may be acquired with energy-dispersive x-ray spectroscopy. The images and maps are used to create the 3-D spatial model, from which the discrete dipole approximation method is used to calculate extinction, single scattering albedo, asymmetry parameter, and the phase function. Models of urban dust show that shape is generally more important than accounting for composition heterogeneity. However, if a particle has material phases with widely-varying refractive indexes, a geometric model may be insufficient if it does not incorporate heterogeneity. Models of Asian dust show that geometric models generally exhibit lower extinction efficiencies than the actual particles suggesting that simplified models do not adequately account for particle surface roughness. Nevertheless, in most cases the extinction from the tetrahedron model comes closest to that of the actual particles suggesting that accounting for particle angularity is important. The phase function from the tetrahedron model is comparable to the ellipsoid model and generally close to the actual particle, particularly

  18. Toxicity of Mineral Dusts and a Proposed Mechanism for the Pathogenesis of Particle-Induced Lung Diseases

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; Zeidler-Erdely, P.; Scully, R.R.; Meyers, V.; Wallace, W.; Hunter, R.; Renne, R.; McCluskey, R.; Castranova, V.; Barger, M.; hide

    2015-01-01

    Humans will set foot on the moon again. The lunar surface has been bombarded for 4 billion years by micrometeoroids and cosmic radiation, creating a layer of fine dust having a potentially reactive particle surface. To investigate the impact of surface reactivity (SR) on the toxicity of particles, and in particular, lunar dust (LD), we ground 2 Apollo 14 LD samples to increase their SR and compare their toxicity with those of unground LD, TiO2 and quartz. Intratracheally instilled at 0, 1, 2.5, or 7.5 mg/rat, all dusts caused dose-dependent increases in pulmonary lesions, and enhancement of biomarkers of toxicity assessed in bronchoalveolar lavage fluids (BALF). The toxicity of LD was greater than that of TiO2 but less than that of quartz. Three LDs differed 14-fold in SR but were equally toxic; quartz had the lowest SR but was most toxic. These results show no correlation between particle SR and toxicity. Often pulmonary toxicity of a dust can be attributed to oxidative stress (OS). We further observed dose-dependent and dustcytotoxicity- dependent increases in neutrophils. The oxidative content per BALF cell was also directly proportional to both the dose and cytotoxicity of the dusts. Because neutrophils are short-lived and release of oxidative contents after they die could initiate and promote a spectrum of lesions, we postulate a general mechanism for the pathogenesis of particle-induced diseases in the lung that involves chiefly neutrophils, the source of persistent endogenous OS. This mechanism explains why one dust (e.g., quartz or nanoparticles) is more toxic than another (e.g., micrometer-sized TiO2), why dust-induced lesions progress with time, and why lung cancer occurs in rats but not in mice and hamsters exposed to the same duration and concentration of dust.

  19. An electrified dust storm over the Negev desert, Israel

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Price, C. G.; Yaniv, R.; Katz, S.

    2015-12-01

    We report on atmospheric electrical measurements conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30035'N, 34045'E) during a massive dust storm that occurred over the Eastern Mediterranean region on 10-11 February 2015. The event transported Saharan dust from Egypt and the Sinai Peninsula in advance of the warm front of a Cyprus low pressure system. Satellite images show the dust plume covering the Negev desert and Southern Israel and moving north. The concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 450 μg m-3 and AOT from the AERONET station in Sde-Boker was 1.5 on the 10th. The gradual intensification of the event reached peak values on February 11th of over 1200 μg m-3 and AOT of 1.8. This was the most severe dust event in a decade. Continuous measurements of the fair weather vertical electric field (Ez) and vertical current density (Jz) were conducted with 1 minute temporal resolution. Meteorological data was also recorded at the site. As the dust was advected over the observation site, we noted very large fluctuations in the electrical parameters. Since the onset of the dust storm, the Ez values changed between +1000 and +8000 V m-1 while the Jz fluctuated between -10 pA m2 and +20 pA m2, both on time-scales of a few minutes. These values are a significant departures from the mean fair-weather values measured at the site, which are -~200 V m-1 and ~2 pA m2. The disturbed episodes lasted for several hours on the 10th and 11th and coincided with local meteorological conditions related to the wind direction, which carried large amounts of dust particles. We interpret the rapid changes as caused by the transport of electrically charged dust. Calculation of the total electrical charge during the dust storm will be presented.

  20. Influence of Mineral Dust On New Particle Formation and Growth: A Model Study of Heterogeneous Nucleation

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Kulmala, M.; Lauri, A.

    Analyses of nucleation events have emphasized the importance of pre-existing par- ticles in new particle formation. When coarse mode aerosol is present, it typically dominates the condensation sink for trace gases and thus inhibits the onset of nucle- ation. A monodisperse aerosol dynamical box model is applied to investigate the effect of soluble coated mineral dust particles on new particle formation. The model in- cludes ternary H2SO4­H2O­NH3 nucleation, multicomponent condensation, coagu- lation and dry deposition. As the soluble coating can significantly change the ability of dust particles to serve as a condensation sink for condensable vapours, different mech- anisms of coating, including heterogeneous nucleation of sulphuric acid, are consid- ered. Preliminary results show that the presence of micron sized soluble coated dust par- ticles can even at relatively low concentrations prevent homogeneous nucleation or growth of nucleated particles to detectable size of 3 nm. Furthermore, critical conden- sation sinks obtained by model simulations correspond to measured sinks.

  1. African Dust Blows over the Caribbean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shuttle astronauts frequently track Saharan dust storms as they blow from north Africa across the Atlantic Ocean. Dust palls blowing from Africa take about a week to cross the Atlantic. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The top photograph, a classic image showing African dust over the Caribbean, was taken at a time when few scientists had considered the possibility. The image was taken by Space Shuttle astronauts on July 11, 1994 (STS065-75-47). This photograph looks southwest over the northern edge of a large trans-Atlantic dust plume that blew off the Sahara desert in Africa. In this view, Caicos Island in the Bahamas and the mountainous spines of Haiti are partly obscured by the dust. Closer to the foreground, (about 26 degrees north latitude), the skies are clear. The lower photograph (STS105-723-7) was taken by Space Shuttle astronauts while docked to the International Space Station on August 19, 2001. The spacecraft is over the Atlantic Ocean at roughly 45oN, 60oW. The astronauts were looking obliquely to the south; the boundaries of the dust plumes can be traced visually by the abrupt change from clear to hazy atmosphere-the hazy line marks the northern edge of the dust pall near the Caribbean. Images provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  2. Dust loading of the normal atmosphere

    NASA Astrophysics Data System (ADS)

    Hall, F. F., Jr.

    1983-01-01

    Soil dust can contribute to atmospheric turbidity over most of the globe. The major sources of this dust are in the world's arid regions, where loadings of over 1000 micrograms/cu m can occur during strong winds. Saharan dust transported across the Atlantic can produce loadings up to 100 micrograms/cu m in the Western Hemisphere. Asian sources yield springtime loadings of 5-10 micrograms/cu m at Midway Island. Other important sources of dust are agricultural plowing and vehicular traffic on graded roads. The U.S. air quality standard of 75 micrograms/cu m is often exceeded in rural areas.

  3. Distance determination method of dust particles using Rosetta OSIRIS NAC and WAC data

    NASA Astrophysics Data System (ADS)

    Drolshagen, E.; Ott, T.; Koschny, D.; Güttler, C.; Tubiana, C.; Agarwal, J.; Sierks, H.; Barbieri, C.; Lamy, P. I.; Rodrigo, R.; Rickman, H.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; da Deppo, V.; Davidsson, B.; Debei, S.; de Cecco, M.; Deller, J.; Feller, C.; Fornasier, S.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Shi, X.; Thomas, N.; Poppe, B.

    2017-09-01

    The ESA Rosetta spacecraft has been tracking its target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, in close vicinity for over two years. It hosts the OSIRIS instruments: the Optical, Spectroscopic, and Infrared Remote Imaging System composed of two cameras, see e.g. Keller et al. (2007). In some imaging sequences dedicated to observe dust particles in the comet's coma, the two cameras took images at the same time. The aim of this work is to use these simultaneous double camera observations to calculate the dust particles' distance to the spacecraft. As the two cameras are mounted on the spacecraft with an offset of 70 cm, the distance of particles observed by both cameras can be determined by a shift of the particles' apparent trails on the images. This paper presents first results of the ongoing work, introducing the distance determination method for the OSIRIS instrument and the analysis of an example particle. We note that this method works for particles in the range of about 500-6000 m from the spacecraft.

  4. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  5. Helical structures in vertically aligned dust particle chains in a complex plasma

    NASA Astrophysics Data System (ADS)

    Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.

    2013-05-01

    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].

  6. Effect of particles attachment to multi-sized dust grains present in electrostatic sheaths of discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaham, B.; Faculté des Sciences et des Sciences Appliquées, Université de Bouira Rue Drissi Yahia 10000 Bouira; Tahraoui, A., E-mail: alatif-tahraoui@yahoo.fr

    The loss of electrons and ions due to their attachment to a Gauss-distributed sizes of dust grains present in electrostatic sheaths of discharge plasmas is investigated. A uni-dimensional, unmagnetized, and stationary multi-fluid model is proposed. Forces acting on the dust grain along with its charge are self-consistently calculated, within the limits of the orbit motion limited model. The dynamic analysis of dust grains shows that the contribution of the neutral drag force in the net force acting on the dust grain is negligible, whereas the contribution of the gravity force is found considerable only for micrometer particles. The dust grainsmore » trapping is only possible when the electrostatic force is balanced by the ion drag and the gravity forces. This trapping occurs for a limited radius interval of micrometer dust grains, which is around the most probable dust grain radius. The effect of electron temperature and ion density at the sheath edge is also discussed. It is shown that the attachment of particles reduces considerably the sheath thickness and induces dust grain deceleration. The increase of the lower limit as well as the upper limit of the dust radius reduces also the sheath thickness.« less

  7. Nano-Dust Analyzer For the Detection and Chemical Composition Measurement of Particles Originating in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    O'Brien, Leela; Gruen, E.; Sternovsky, Z.; Horanyi, M.; Juhasz, A.; Eberhard, M.; Srama, R.

    2013-10-01

    The development of the Nano-Dust Analyzer (NDA) instrument and the results from the first laboratory testing and calibration are reported. The two STEREO spacecrafts have indicated that nanometer-sized dust particles, potentially with very high flux, are delivered to 1 AU from the inner solar system [Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009]. These particles are generated by collisional grinding or evaporation near the Sun and accelerated outward by the solar wind. The temporal variability reveals the complex interaction with the solar wind magnetic field within 1 AU and provides the means to learn about solar wind conditions and can supply additional parameters or verification for heliospheric magnetic field models. The composition analysis will report on the processes that generated the nanometer-sized particle. NDA is a highly sensitive dust analyzer that is developed under NASA's Heliophysics program. The instrument is a linear time-of-flight mass analyzer that utilizes dust impact ionization and is modeled after the Cosmic Dust Analyzer (CDA) on Cassini. By applying technologies implemented in solar wind instruments and coronagraphs, the highly sensitive dust analyzer will be able to be pointed toward the solar direction. A laboratory prototype has been built, tested, and calibrated at the dust accelerator facility at the University of Colorado, Boulder, using particles with 1 to over 50 km/s velocity. NDA is unique in its requirement to operate with the Sun in its field-of-view. A light trap system has been designed and optimized in terms of geometry and surface optical properties to mitigate Solar UV contribution to detector noise. In addition, results from laboratory tests performed with a 1 keV ion beam at the University of New Hampshire’s Space Sciences Facility confirm the effectiveness of the instrument’s solar wind particle rejection system.

  8. What if chondritic porous interplanetary dust particles are not the real McCoy

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.

    To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for

  9. What if chondritic porous interplanetary dust particles are not the real McCoy

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1989-01-01

    To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for

  10. Atmospheric response to Saharan dust deduced from ECMWF reanalysis increments

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-04-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data - the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely-sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (> 0.5), low correlation, and high negative correlation (<-0.5). The innermost positive correlation area (PCA) is a large area near the center of the Sahara desert. For some local maxima inside this area the correlation even exceeds 0.8. The outermost negative correlation area (NCA) is not uniform. It consists of some areas over the eastern and western parts of North Africa with a relatively small amount of dust. Inside those areas both positive and negative high correlations exist at pressure levels ranging from 850 to 700 hPa, with the peak values near 775 hPa. Dust-forced heating (cooling) inside the PCA (NCA) is accompanied by changes in the static stability of the atmosphere above the dust layer. The reanalysis data of the European Center for Medium Range Weather Forecast(ECMWF) suggests that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity, and downward (upward) airflow. These facts indicate an interaction between dust-forced heating /cooling and atmospheric circulation. The

  11. Deciphering the Role of Desert Dust in the Climate Puzzle: The Mediterranean Israeli Dust Experiment (MEIDEX)

    NASA Technical Reports Server (NTRS)

    Levin, Zev; Joseph, Joachim; Mekler, Yuri; Israelevich, Peter; Ganor, Eli; Hilsenrath, Ernest; Janz, Scott

    2002-01-01

    Numerous studies have shown that aerosol particles may be one of the primary agents that can offset the climate warming induced by the increase in the amount of atmospheric greenhouse gases. Desert aerosols are probably the most abundant and massive type of aerosol particles that are present in the atmosphere worldwide. These aerosols are carried over large distances and have various global impacts. They interact with clouds, impact the efficiency of their rain production and change their optical properties. They constitute one of the primary sources of minerals for oceanic life and influence the health of coral reefs. They have direct effects on human health, especially by inducing breathing difficulties in children. It was lately discovered that desert particles carry pathogens from the Sahara desert over the Atlantic Ocean, a fact that may explain the migration of certain types of diseases. Aerosols not only absorb solar radiation but also scatter it, so that their climatic effect is influenced not only by their physical properties and height distribution but also by the reflectivity of the underlying surface. This latter property changes greatly over land and is low over ocean surfaces. Aerosol plumes are emitted from discrete, sporadic sources in the desert areas of the world and are transported worldwide by the atmosphere's wind systems. For example, Saharan dust reaches Mexico City, Florida, Ireland, Switzerland and the Mediterranean region, while Asian dust reaches Alaska, Hawaii and the continental United States. This means that in order to assess its global effects, one must observe dust from space. The Space Shuttle is a unique platform, because it flies over the major deserts of our planet, enabling measurements and remote sensing of the aerosols as they travel from source to sink regions. Such efforts must always be accompanied by in-situ data for validation and calibration, with direct sampling of the airborne particles. MEIDEX is a joint project of

  12. Temporal evolution of UV opacity and dust particle size at Gale Crater from MSL/REMS measurements

    NASA Astrophysics Data System (ADS)

    Vicente-Retortillo, Álvaro; Martinez, German; Renno, Nilton O.; Lemmon, Mark T.; Mason, Emily; De la Torre, Manuel

    2016-10-01

    A better characterization of the size, radiative properties and temporal variability of suspended dust in the Martian atmosphere is necessary to improve our understanding of the current climate of Mars. The REMS UV sensor onboard the Mars Science Laboratory (MSL) Curiosity rover has performed ground-based measurements of solar radiation in six different UV spectral bands for the first time on Mars.We developed a novel technique to retrieve dust opacity and particle size from REMS UV measurements. We use the electrical output current (TELRDR products) of the six photodiodes and the ancillary data (ADR products) to avoid inconsistencies found in the processed data (units of W/m2) when the solar zenith angle is above 30°. In addition, we use TELRDR and ADR data only in events during which the Sun is temporally blocked by the rover's masthead or mast to mitigate uncertainties associated to the degradation of the sensor due to the deposition of dust on it. Then we use a radiative transfer model with updated dust properties based on the Monte-Carlo method to retrieve the dust opacity and particle size.We find that the seasonal trend of UV opacity is consistent with opacity values at 880 nm derived from Mastcam images of the Sun, with annual maximum values in spring and in summer and minimum values in winter. The interannual variability is low, with two local maxima in mid-spring and mid-summer. Finally, dust particle size also varies throughout the year with typical values of the effective radius in the range between 0.5 and 2 μm. These variations in particle size occur in a similar way to those in dust opacity; the smallest sizes are found when the opacity values are the lowest.

  13. Characterization of individual ice residual particles by the single droplet freezing method: a case study in the Asian dust outflow region

    NASA Astrophysics Data System (ADS)

    Iwata, Ayumi; Matsuki, Atsushi

    2018-02-01

    In order to better characterize ice nucleating (IN) aerosol particles in the atmosphere, we investigated the chemical composition, mixing state, and morphology of atmospheric aerosols that nucleate ice under conditions relevant for mixed-phase clouds. Five standard mineral dust samples (quartz, K-feldspar, Na-feldspar, Arizona test dust, and Asian dust source particles) were compared with actual aerosol particles collected from the west coast of Japan (the city of Kanazawa) during Asian dust events in February and April 2016. Following droplet activation by particles deposited on a hydrophobic Si (silicon) wafer substrate under supersaturated air, individual IN particles were located using an optical microscope by gradually cooling the temperature to -30 °C. For the aerosol samples, both the IN active particles and non-active particles were analyzed individually by atomic force microscopy (AFM), micro-Raman spectroscopy, and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Heterogeneous ice nucleation in all standard mineral dust samples tested in this study was observed at consistently higher temperatures (e.g., -22.2 to -24.2 °C with K-feldspar) than the homogeneous freezing temperature (-36.5 °C). Meanwhile, most of the IN active atmospheric particles formed ice below -28 °C, i.e., at lower temperatures than the standard mineral dust samples of pure components. The most abundant IN active particles above -30 °C were predominantly irregular solid particles that showed clay mineral characteristics (or mixtures of several mineral components). Other than clay, Ca-rich particles internally mixed with other components, such as sulfate, were also regarded as IN active particle types. Moreover, sea salt particles were predominantly found in the non-active fraction, and internal mixing with sea salt clearly acted as a significant inhibiting agent for the ice nucleation activity of mineral dust particles. Also, relatively

  14. Do some of the sub-micrometer cosmic dust particles come from the sun.

    NASA Technical Reports Server (NTRS)

    Hemenway, C. L.; Erkes, J. W.; Greenberg, J. M.; Hallgren, D. S.; Schmalberger, D. C.

    1973-01-01

    Studies of cosmic dust particles collected at altitudes of 80 to 120 km over White Sands, New Mexico, and at times of noctilucent clouds over Kiruna, Sweden, indicate that an anomalously high atomic weight contribution is present within those particles collected at Kiruna. The elements observed are inconsistent with an origin due to atomic bomb fallout, meteoroidal crumbling, lunar ejecta, or comets. Many of these heavy elements may be stable in particulate form at the relatively high temperatures found in the coolest regions of the solar atmosphere. Some implications of the sun as the source of a significant component of cosmic dust are discussed.

  15. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean

    DOE PAGES

    Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; ...

    2015-07-09

    Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOTmore » asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS cloud fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant cloud cover (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.« less

  16. Multielement analysis of interplanetary dust particles using TOF-SIMS

    NASA Technical Reports Server (NTRS)

    Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.

    1993-01-01

    Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.

  17. Investigating water adsorption onto natural mineral dust particles: Linking DRIFTS experiments and BET theory

    NASA Astrophysics Data System (ADS)

    Joshi, Nitesh; Romanias, Manolis N.; Riffault, Veronique; Thevenet, Frederic

    2017-08-01

    The adsorption of water molecules on natural mineral dusts was investigated employing in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The natural dust samples originated from North and West Africa, Saudi Arabia and Gobi desert regions. Furthermore, the hygroscopicity of commercially available Arizona Test Dusts (ATDs) and Icelandic volcanic ash were examined. N2 sorption measurements, X-ray fluorescence and diffraction (XRF and XRD), as well as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analyses were performed to determine the physicochemical properties of the particles. The water adsorption experiments were conducted in an optical cell, at room temperature under the relative humidity (RH) range of 1.9-95%. Results were simulated using a modified three-parameter Brunauer-Emmett-Teller (BET) equation. Water monolayer (ML) was formed in the RH range of 15-25%, while additional water layers were formed at higher RH. Besides, the standard adsorption enthalpies of water onto natural mineral dust samples were determined. A thorough comparison of two commercially available ATD samples indicated that size distribution and/or porosity should play a key role in particle hygroscopicity. Regarding the natural mineral particles, Ca/Si ratios, and to a lesser extent Al/Si, Na/Si, Mg/Si ratios, were found to impact the minimum RH level required for water monolayer formation. These results suggest that the hygroscopic properties of investigated African dusts are quite similar over the whole investigated RH range. Furthermore, one of the major conclusions is that under most atmospheric relative humidity conditions, natural mineral samples are always covered with at least one layer of adsorbed water.

  18. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  19. Coagulation of Dust Particles in Argon Plasma of RF Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal, A. F.

    2008-09-07

    The experiments on coagulation of poly-disperse particles with various size distributions injected into the argon plasma of the magnetron radio-frequency discharge are discussed. The experiments were carried out under the conditions similar to those using dusty plasma for technology applications. Within the created theory the threshold behavior of the coagulation process was explained for the first time, the estimation of the critical particle size for onset of a fast coagulation was made, and the analytical calculation of the coagulation rate of dust particles was performed. The proposed coagulation mechanism makes it possible to describe the typical features of coagulation processesmore » observed in experiments and to explain the effects of attraction and coalescence of highly negatively charged microns size particles.« less

  20. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.

    PubMed

    Scheepers, P T J; Micka, V; Muzyka, V; Anzion, R; Dahmann, D; Poole, J; Bos, R P

    2003-07-01

    A field study was conducted in two mines in order to determine the most suitable strategy for ambient exposure assessment in the framework of a European study aimed at validation of biological monitoring approaches for diesel exhaust (BIOMODEM). Exposure to dust and particle-associated 1-nitropyrene (1-NP) was studied in 20 miners of black coal by the long wall method (Czech Republic) and in 20 workers in oil shale mining by the room and pillar method (Estonia). The study in the oil shale mine was extended to include 100 workers in a second phase (main study). In each mine half of the study population worked underground as drivers of diesel-powered trains (black coal) and excavators (oil shale). The other half consisted of workers occupied in various non-diesel production assignments. Exposure to diesel exhaust was studied by measurement of inhalable and respirable dust at fixed locations and by personal air sampling of respirable dust. The ratio of geometric mean inhalable to respirable dust concentration was approximately two to one. The underground/surface ratio of respirable dust concentrations measured at fixed locations and in the breathing zones of the workers was 2-fold or greater. Respirable dust was 2- to 3-fold higher in the breathing zone than at fixed sampling locations. The 1-NP content in these dust fractions was determined by gas chromatography-mass spectrometry/mass spectrometry and ranged from 0.003 to 42.2 ng/m(3) in the breathing zones of the workers. In mine dust no 1-NP was detected. In both mines 1-NP was observed to be primarily associated with respirable particles. The 1-NP concentrations were also higher underground than on the surface (2- to 3-fold in the coal mine and 10-fold or more in the oil shale mine). Concentrations of 1-NP in the breathing zones were also higher than at fixed sites (2.5-fold in the coal mine and 10-fold in the oil shale mine). For individual exposure assessment personal air sampling is preferred over air sampling

  1. Improving Simulations of Fine Dust Surface Concentrations over the Western United States by Optimizing the Particle Size Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Li; Kok, Jasper F.; Henze, Daven

    2013-06-28

    To improve estimates of remote contributions of dust to fine particulate matter (PM2.5) in the western United States, new dust particle size distributions (PSDs) based upon scale-invariant fragmentation theory (Kok_PSD) with constraints from in situ measurements (IMP_PSD) are implemented in a chemical transport model (GEOS-Chem). Compared to initial simulations, this leads to reductions in the mass of emitted dust particles with radii <1.8 mm by 40%-60%. Consequently, the root-mean-square error in simulated fine dust concentrations compared to springtime surface observations in the western United States is reduced by 67%-81%. The ratio of simulated fine to coarse PM mass is alsomore » improved, which is not achievable by reductions in total dust emissions. The IMP_PSD best represents the PSD of dust transported from remote sources and reduces modeled PM2.5 concentrations up to 5 mg/m3 over the western United States, which is important when considering sources contributing to nonattainment of air quality standards. Citation: Zhang, L., J. F. Kok, D. K. Henze, Q. Li, and C. Zhao (2013), Improving simulations of fine dust surface concentrations over the western United States by optimizing the particle size distribution, Geophys. Res. Lett., 40, 3270-3275, doi:10.1002/grl.50591.« less

  2. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  3. An LDEF 2 dust instrument for discrimination between orbital debris and natural particles in near-Earth space

    NASA Technical Reports Server (NTRS)

    Tuzzolino, A. J.; Simpson, J. A.; Mckibben, R. B.; Voss, H. D.; Gursky, H.

    1993-01-01

    The characteristics of a space dust instrument which would be ideally suited to carry out near-Earth dust measurements on a possible Long Duraction Exposure Facility reflight mission (LDEF 2) is discussed. As a model for the trajectory portion of the instrument proposed for LDEF 2, the characteristics of a SPAce DUSt instrument (SPADUS) currently under development for flight on the USA ARGOS mission to measure the flux, mass, velocity, and trajectory of near-Earth dust is summarized. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. The SPADUS measurements will cover the dust mass range approximately 5 x 10(exp -12) g (2 microns diameter) to approximately 1 x 10(exp -5) g (200 microns diameter), with an expected mean error in particle trajectory of approximately 7 deg (isotropic flux). Arrays of capture cell devices positioned behind the trajectory instrumentation would provide for Earth-based chemical and isotopic analysis of captured dust. The SPADUS measurement principles, characteristics, its role in the ARGOS mission, and its application to an LDEF 2 mission are summarized.

  4. Determination of the levitation limits of dust particles within the sheath in complex plasma experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglass, Angela; Land, Victor; Qiao Ke

    2012-01-15

    Experiments are performed in which dust particles are levitated at varying heights above the powered electrode in a radio frequency plasma discharge by changing the discharge power. The trajectories of particles dropped from the top of the discharge chamber are used to reconstruct the vertical electric force acting on the particles. The resulting data, together with the results from a self-consistent fluid model, are used to determine the lower levitation limit for dust particles in the discharge and the approximate height above the lower electrode where quasineutrality is attained, locating the sheath edge. These results are then compared with currentmore » sheath models. It is also shown that particles levitated within a few electron Debye lengths of the sheath edge are located outside the linearly increasing portion of the electric field.« less

  5. Neutron yield when fast deuterium ions collide with strongly charged tritium-saturated dust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akishev, Yu. S., E-mail: akishev@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.

    2017-02-15

    The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculatedmore » when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.« less

  6. Investigations of Desert Dust and Smoke in the North Atlantic in Support of the TOMS Instrument

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    2005-01-01

    During the initial period of the work we concentrated on Saharan dust storms and published a sequence of papers (Colarco et a1 2002,2003a,b, Toon, 2004). The U.S. Air Force liked the dust model so well that they appropriated it for operational dust storm forecasting (Barnum et al., 2004). The Air Force has used it for about 5 yrs in the Middle East where dust storms cause significant operational problems. The student working on this project, Peter Colarco, has graduated and is now a civil servant at Goddard where he continues to interact with the TOMS team. This work helped constrain the optical properties of dust at TOMS wavelengths, which is useful for climate simulations and for TOMS retrievals of dust properties such as optical depth. We also used TOMS data to constrain the sources of dust in Africa and the Middle East, to determine the actual paths taken by Saharan dust storms, to learn more about the mechanics of variations in the optical depths, and to learn more about the mechanisms controlling the altitudes of the dust. During the last two years we have been working on smoke from fires. Black carbon aerosols are one of the leading factors in radiative forcing. The US Climate Change Science Program calls this area out for specific study. It has been suggested by Jim Hansen, and Mark Jacobsen among others, that by controlling emissions of black carbon we might reduce greenhouse radiative forcing in a relatively painless manner. However, we need a greatly improved understanding of the amount of black carbon in the atmosphere, where it is located, where it comes from, how it is mixed with other particles, what its actual optical properties are, and how it evolves. In order to learn about these issues we are using a numerical model of smoke. We have applied this model to the SAFARI field program data, and used the TOMS satellite observations in that period (Sept. 2000). Our goal is to constrain source function estimates for black carbon, and smoke optical

  7. Dust Storms and Mortality in the United States, 1995-2005

    EPA Science Inventory

    Extreme weather events, such as dust storms, are predicted to become more frequent as the global climate warms through the 21st century. The impact of dust storms on human health has been studied extensively in the context of Asian, Saharan, Arabian, and Australian storms, but t...

  8. Ion Microbeam Analyses of Dust Particles and Codeposits from JET with the ITER-Like Wall.

    PubMed

    Fazinić, Stjepko; Tadić, Tonči; Vukšić, Marin; Rubel, Marek; Petersson, Per; Fortuna-Zaleśna, Elżbieta; Widdowson, Anna

    2018-05-01

    Generation of metal dust in the JET tokamak with the ITER-like wall (ILW) is a topic of vital interest to next-step fusion devices because of safety issues with plasma operation. Simultaneous Nuclear Reaction Analysis (NRA) and Particle-Induced X-ray Emission (PIXE) with a focused four MeV 3 He microbeam was used to determine the composition of dust particles related to the JET operation with the ILW. The focus was on "Be-rich particles" collected from the deposition zone on the inner divertor tile. The particles found are composed of a mix of codeposited species up to 120 μm in size with a thickness of 30-40 μm. The main constituents are D from the fusion fuel, Be and W from the main plasma-facing components, and Ni and Cr from the Inconel grills of the antennas for auxiliary plasma heating. Elemental concentrations were estimated by iterative NRA-PIXE analysis. Two types of dust particles were found: (i) larger Be-rich particles with Be concentrations above 90 at% with a deuterium presence of up to 3.4 at% and containing Ni (1-3 at%), Cr (0.4-0.8 at%), W (0.2-0.9 at%), Fe (0.3-0.6 at%), and Cu and Ti in lower concentrations and (ii) small particles rich in Al and/or Si that were in some cases accompanied by other elements, such as Fe, Cu, or Ti or W and Mo.

  9. Physical properties of dust particles in different comets inferred from observations and experimental simulations

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Levasseur-Regourd, A. C.

    2007-08-01

    1.Introduction Remote observations of solar light scattered by cometary dust particles provide information on the dust properties for a large variety of comets, in complement to the exceptional in-situ observations (with or without sample returns). The scattered light is partially linearly polarized, with a polarization degree depending on the geometry of observations (phase angle ?) and on the physical properties of the particles. Differences in polarization have been found in cometary comae, pointing to different physical properties of the dust (e.g. sizes of the grains, of the aggregates, structures and porosities, complex refractive indices) [1, 2]. Such differences, as well as an observed polarimetric wavelength effect, tend to show that large aggregates made of submicron-sized grains could be present in some cometary comae regions [3, 4]. On the opposite, more compact particles seem to be present in other comae regions and/or comets [5, 6]. 2. Results We will present observations of different comets. The variations of the dust properties in the coma and their evolution will be discussed. The results will be compared to the results obtained by other observational techniques. On the images of comet 9P/Tempel 1 (at ?=41°) some hours after Deep Impact, two kinds of dust particles are detected: more compact particles with small velocities and fluffy particles ejected by the impact with larger velocities. On the images of comet 73P/Schwassmann-Wachmann 3, in the tail direction of fragment B, a disruption is observed. The dust coma around fragment C is more symmetric. For both A and B, important dust jets are ejected by the nucleus, which are visible on the intensity images in the solar and antisolar directions, and on the polarization maps. 3. Interpretation and conclusion Numerical (7,8,9) and experimental simulations provide an interpretation of the observations in terms of the physical properties of the particles. Experimental simulations have been performed on

  10. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms.

    PubMed

    Weil, Tobias; De Filippo, Carlotta; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Pavarini, Lorenzo; Carotenuto, Federico; Pasqui, Massimiliano; Poto, Luisa; Gabrieli, Jacopo; Barbante, Carlo; Sattler, Birgit; Cavalieri, Duccio; Miglietta, Franco

    2017-03-10

    A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.

  11. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    USGS Publications Warehouse

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  12. Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    2003-12-01

    micrometeorites) containing layer silicates indicative of parent-body aqueous alteration and the more distant anhydrous P and D asteroids exhibiting no evidence of (aqueous) alteration (Gradie and Tedesco, 1982). This gradation in spectral properties presumably extends several hundred AU out to the Kuiper belt, the source region of most short-period comets, where the distinction between comets and outer asteroids may simply be one of the orbital parameters ( Luu, 1993; Brownlee, 1994; Jessberger et al., 2001). The mineralogy and petrography of meteorites provides direct confirmation of aqueous alteration, melting, fractionation, and thermal metamorphism among the inner asteroids ( Zolensky and McSween, 1988; Farinella et al., 1993; Brearley and Jones, 1998). Because the most common grains in the ISM (silicates and carbonaceous matter) are not as refractory as those found in meteorites, it is unlikely that they have survived in significant quantities in meteorites. Despite a prolonged search, not a single presolar silicate grain has yet been identified in any meteorite.Interplanetary dust particles (IDPs) are the smallest and most fine-grained meteoritic objects available for laboratory investigation (Figure 1). In contrast to meteorites, IDPs are derived from a broad range of dust-producing bodies extending from the inner main belt of the asteroids to the Kuiper belt (Flynn, 1996, 1990; Dermott et al., 1994; Liou et al., 1996). After release from their asteroidal or cometary parent bodies the orbits of IDPs evolve by Poynting-Robertson (PR) drag (the combined influence of light pressure and radiation drag) ( Dermott et al., 2001). Irrespective of the location of their parent bodies nearly all IDPs under the influence of PR drag can eventually reach Earth-crossing orbits. IDPs are collected in the stratosphere at 20-25 km altitude using NASA ER2 aircraft ( Sandford, 1987; Warren and Zolensky, 1994). Laboratory measurements of implanted rare gases, solar flare tracks ( Figure 2

  13. Nonstationary stochastic charge fluctuations of a dust particle in plasmas.

    PubMed

    Shotorban, B

    2011-06-01

    Stochastic charge fluctuations of a dust particle that are due to discreteness of electrons and ions in plasmas can be described by a one-step process master equation [T. Matsoukas and M. Russell, J. Appl. Phys. 77, 4285 (1995)] with no exact solution. In the present work, using the system size expansion method of Van Kampen along with the linear noise approximation, a Fokker-Planck equation with an exact Gaussian solution is developed by expanding the master equation. The Gaussian solution has time-dependent mean and variance governed by two ordinary differential equations modeling the nonstationary process of dust particle charging. The model is tested via the comparison of its results to the results obtained by solving the master equation numerically. The electron and ion currents are calculated through the orbital motion limited theory. At various times of the nonstationary process of charging, the model results are in a very good agreement with the master equation results. The deviation is more significant when the standard deviation of the charge is comparable to the mean charge in magnitude.

  14. Using thermal infrared (TIR) data to characterize dust sources, dust fall and the linkage to climate in the Middle East

    NASA Astrophysics Data System (ADS)

    Mohammad, R.; Ramsey, M.; Scheidt, S. P.

    2010-12-01

    Prior to mineral dust deposition affecting albedo, aerosols can have direct and indirect effects on local to regional scale climate by changing both the shortwave and longwave radiative forcing. In addition, mineral dust causes health hazards, such as respiratory-related illnesses and deaths, loss of agricultural soil, and safety hazards to aviation and motorists due to reduced visibility. Previous work utilized satellite and ground-based TIR data to describe the direct longwave radiative effect of the Saharan Air Layer (SAL) over the Atlantic Ocean originating from dust storms in the Western Sahara. TIR emission spectroscopy was used to identify the spectral absorption features of that dust. The current research focuses on Kuwait and utilizes a comprehensive set of spatial, analytical and geological tools to characterize dust emissions and its radiative effects. Surface mineral composition maps for the Kuwait region were created using ASTER images and GIS datasets in order to identify the possible sources of wind-blown dust. Backward trajectory analysis using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggests the dust source areas were located in Iraq, Syria, Jordan and Saudi Arabia. Samples collected from two dust storms (May and July 2010) were analyzed for their mineral composition and to validate the dust source areas identified by the modeling and remote sensing analysis. These air fall dust samples were collected in glass containers on a 13 meter high rooftop in the suburb of Rumaithiya in Kuwait. Additional samples will be collected to expand the analysis and their chemical compositions will be characterized by a combination of laboratory X-ray fluorescence (XRF), Scanning Electron Microscopy (SEM) and TIR emission spectroscopy. The overarching objective of this ongoing research is to both characterize the effects of mineral dust on climate as well as establish a predictive tool that can identify dust storm sources and

  15. Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Glassmeier, K.-H.; Coates, A. J.; Goldstein, R.; Acuna, M. H.

    1990-01-01

    This paper describes 13 very short events in the magnetic field of the inner magnetic pile-up region of Comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cometary dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera. Their characteristic shape generally involves a sudden decrease in magnetic-field magnitude, a subsequent overshoot beyond initial field values, and an asymptotic approach to the initial field (somewhat reminiscent of the magnetic-field signature after the AMPTE releases in the solar wind). These observations give a new way of analyzing ultra-fast dust particles incident on a spacecraft.

  16. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    NASA Astrophysics Data System (ADS)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending

  17. Mitigation of soiling losses in solar collectors: Removal of surface-adhered dust particles using an electrodynamic screen

    NASA Astrophysics Data System (ADS)

    Sayyah, Arash

    Particulate contamination of the optical surfaces of solar collectors, often called "soiling", can have a significant deteriorating impact on energy yield due to the absorption and scattering of incident light. Soiling has more destructive effect on concentrated solar systems than on flat-plate photovoltaic panels, as the former are incapable of converting scattered sunlight. The first part of this thesis deals with the soiling losses of flat-plate photovoltaic (PV), concentrated solar power (CSP), and concentrated photovoltaic (CPV) systems in operation in several regions of the world. Influential parameters in dust accumulation losses, as well as different cleaning mechanisms in pursuit of restoring the efficiency of soiled systems, have been thoroughly investigated. In lieu of the most commonly-practiced manual cleaning method of using high-pressure water jets, the concept of automatic dust removal using the electrostatic forces of electrodynamic screen (EDS) technology is in a developmental stage and on its way toward commercialization. This thesis provides comprehensive analytical solutions for the electric potential and electric field distribution in EDS devices having different configurations. Numerical simulations developed using finite element analysis (FEA) software have corroborated the analytical solutions which can easily be embedded into software programs for particle trajectory simulations while also providing flexibility and generality in the study on the effect of different parameters of the EDS on the electric field and ensuing dust-removal performance. Evaluation and comparison of different repelling and attracting forces exerted on dust particles is of utmost importance to a detailed analysis of EDS performance in dust removal. Hence, the balance of electrostatic and adhesion forces, including van der Waals and capillary forces, have received significant attention in this dissertation. Furthermore, different numerical analyses have been

  18. Preliminary measurements of kinetic dust temperature using stereoscopic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Williams, Jeremiah; Thomas, Edward

    2004-11-01

    A dusty (or complex) plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of the microparticle (i.e., dust) component alters the plasma environment, giving rise to a wide variety of new plasma phenomena. Recently, the Auburn Plasma Sciences Laboratory (PSL) has acquired and installed a stereoscopic PIV (stereo-PIV) diagnostic tool for dusty plasma investigations [Thomas, et. al., Phys. Plasmas, 11, L37 (2004)]. This presentation discusses the use of the stereo-PIV technique for determining the velocity space distribution function of the microparticle component of a dc glow discharge dusty plasma. These distribution functions are then used to make preliminary estimates of the kinetic temperature of the dust component. The data is compared to a simple energy balance model that relates the dust temperature to the electric field and neutral pressure.

  19. Risk Assessment of Cassini Sun Sensor Integrity Due to Hypervelocity Impact of Saturn Dust Particles

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.

    2016-01-01

    A sophisticated interplanetary spacecraft, Cassini is one of the heaviest and most sophisticated interplanetary spacecraft humans have ever built and launched. Since achieving orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for first and second extended missions through September 2017. In late 2016, the Cassini spacecraft will begin a daring set of ballistic orbits that will hop the rings and dive between the upper atmosphere of Saturn and its innermost D-ring twenty-two times. The "dusty" environment of the inner D-ring region the spacecraft must fly through is hazardous because of the possible damage that dust particles, travelling at speeds as high as 31.4 km/s, can do to spacecraft hardware. During hazardous proximal ring-plane crossings, the Cassini mission operation team plans to point the high-gain antenna to the RAM vector in order to protect most of spacecraft instruments from the incoming energetic ring dust particles. However, this particular spacecraft attitude will expose two Sun sensors (that are mounted on the antenna dish) to the incoming dust particles. High-velocity impacts on the Sun sensor cover glass might penetrate the 2.54-mm glass cover of the Sun sensor. Even without penetration damage, craters created by these impacts on the surface of the cover glass will degrade the transmissibility of light through it. Apart from being directly impacted by the dust particles, the Sun sensors are also threatened by some fraction of ricochet ejecta that are produced by dust particle impacts on the large antenna dish (made of graphite fiber epoxy composite material). Finally, the spacecraft attitude control system must cope with disturbances due to both the translational and angular impulses imparted on the large antenna dish and the long magnetometer boom by the incoming high-velocity projectiles. Analyses performed to quantify the risks the Sun sensors must contend

  20. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    PubMed

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  1. Mineralogy of interplanetary dust particles from the 'olivine' infrared class

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Buseck, P. R.

    1986-01-01

    Analytical electron microscopy observations establish that olivine is abundant and the predominant silicate phase in three interplanetary dust particles (IDPs) from the 'olivine' infrared spectra category. Two of the particles have microstructures resembling those of most nonhydrous chondritic IDPs, consisting of micron to submicron grains together with a matrix composed of amorphous carbonaceous material and sub-500 A grains. In addition to olivine these particles respectively contain enstatite and magnetite, and pentlandite plus Ca-rich clinopyroxene. The third IDP consists mostly of olivine and pyrrhotite with little or no matrix material. Olivine grains in this particle contain prominent solar-flare ion tracks with densities corresponding to a space-exposure age between 1000 to 100,000 years. Although the three particles have olivine-rich mineralogies in common, other aspects of their mineralogies and microstructures suggest that they experienced different formation histories. The differences between the particles indicate that the olivine infrared spectral category is a diverse collection of IDPs that probably incorporates several genetic groups.

  2. Changes in Stratiform Clouds of Mesoscale Convective Complex Introduced by Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Lin, B.; Min, Q.-L.; Li, R.

    2010-01-01

    Aerosols influence the earth s climate through direct, indirect, and semi-direct effects. There are large uncertainties in quantifying these effects due to limited measurements and observations of aerosol-cloud-precipitation interactions. As a major terrestrial source of atmospheric aerosols, dusts may serve as a significant climate forcing for the changing climate because of its effect on solar and thermal radiation as well as on clouds and precipitation processes. Latest satellites measurements enable us to determine dust aerosol loadings and cloud distributions and can potentially be used to reduce the uncertainties in the estimations of aerosol effects on climate. This study uses sensors on various satellites to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective complex (MCC). A trans-Atlantic dust outbreak of Saharan origin occurring in early March 2004 is considered. For the observed MCCs under a given convective strength, small hydrometeors were found more prevalent in the dusty stratiform regions than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust regions, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of clouds and precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the size spectrum of precipitation-sized hydrometeors from heavy precipitation to light precipitation and ultimately to suppress precipitation and increase the lifecycle of cloud systems, especially over stratiform areas.

  3. Gene Expression Profiling in Lung Tissues from Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Zalesak, Selina M.; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Scully, Robert R.; Williams, Kyle; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues from rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, and 3 months after the last inhalation exposure. The total RNAs were isolated from lung tissues after being lavaged. The Agilent Rat GE v3 microarray was used to profile global gene expression (44K). The genes with significant expression changes are identified and the gene expression data were further analyzed using various statistical tools.

  4. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    PubMed

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size.

  5. Particle size distribution and perchlorate levels in settled dust from urban roads, parks, and roofs in Chengdu, China.

    PubMed

    Li, Yiwen; Shen, Yang; Pi, Lu; Hu, Wenli; Chen, Mengqin; Luo, Yan; Li, Zhi; Su, Shijun; Ding, Sanglan; Gan, Zhiwei

    2016-01-01

    A total of 27 settled dust samples were collected from urban roads, parks, and roofs in Chengdu, China to investigate particle size distribution and perchlorate levels in different size fractions. Briefly, fine particle size fractions (<250 μm) were the dominant composition in the settled dust samples, with mean percentages of 80.2%, 69.5%, and 77.2% for the urban roads, roofs, and the parks, respectively. Perchlorate was detected in all of the size-fractionated dust samples, with concentrations ranging from 73.0 to 6160 ng g(-1), and the median perchlorate levels increased with decreasing particle size. The perchlorate level in the finest fraction (<63 μm) was significantly higher than those in the coarser fractions. To our knowledge, this is the first report on perchlorate concentrations in different particle size fractions. The calculated perchlorate loadings revealed that perchlorate was mainly associated with finer particles (<125 μm). An exposure assessment indicated that exposure to perchlorate via settled road dust intake is safe to both children and adults in Chengdu, China. However, due to perchlorate mainly existing in fine particles, there is a potential for perchlorate to transfer into surface water and the atmosphere by runoff and wind erosion or traffic emission, and this could act as an important perchlorate pollution source for the indoor environment, and merits further study.

  6. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  7. Perturbations of the optical properties of mineral dust particles by mixing with black carbon: a numerical simulation study

    DOE PAGES

    Scarnato, B. V.; China, S.; Nielsen, K.; ...

    2015-06-25

    Field observations show that individual aerosol particles are a complex mixture of a wide variety of species, reflecting different sources and physico-chemical transformations. The impacts of individual aerosol morphology and mixing characteristics on the Earth system are not yet fully understood. Here we present a sensitivity study on climate-relevant aerosols optical properties to various approximations. Based on aerosol samples collected in various geographical locations, we have observationally constrained size, morphology and mixing, and accordingly simulated, using the discrete dipole approximation model (DDSCAT), optical properties of three aerosols types: (1) bare black carbon (BC) aggregates, (2) bare mineral dust, and (3)more » an internal mixture of a BC aggregate laying on top of a mineral dust particle, also referred to as polluted dust. DDSCAT predicts optical properties and their spectral dependence consistently with observations for all the studied cases. Predicted values of mass absorption, scattering and extinction coefficients (MAC, MSC, MEC) for bare BC show a weak dependence on the BC aggregate size, while the asymmetry parameter ( g) shows the opposite behavior. The simulated optical properties of bare mineral dust present a large variability depending on the modeled dust shape, confirming the limited range of applicability of spheroids over different types and size of mineral dust aerosols, in agreement with previous modeling studies. The polluted dust cases show a strong decrease in MAC values with the increase in dust particle size (for the same BC size) and an increase of the single scattering albedo (SSA). Furthermore, particles with a radius between 180 and 300 nm are characterized by a decrease in SSA values compared to bare dust, in agreement with field observations.This paper demonstrates that observationally constrained DDSCAT simulations allow one to better understand the variability of the measured aerosol optical properties in

  8. Wood Dust Sampling: Field Evaluation of Personal Samplers When Large Particles Are Present

    PubMed Central

    Lee, Taekhee; Harper, Martin; Slaven, James E.; Lee, Kiyoung; Rando, Roy J.; Maples, Elizabeth H.

    2011-01-01

    Recent recommendations for wood dust sampling include sampling according to the inhalable convention of International Organization for Standardization (ISO) 7708 (1995) Air quality—particle size fraction definitions for health-related sampling. However, a specific sampling device is not mandated, and while several samplers have laboratory performance approaching theoretical for an ‘inhalable’ sampler, the best choice of sampler for wood dust is not clear. A side-by-side field study was considered the most practical test of samplers as laboratory performance tests consider overall performance based on a wider range of particle sizes than are commonly encountered in the wood products industry. Seven companies in the wood products industry of the Southeast USA (MS, KY, AL, and WV) participated in this study. The products included hardwood flooring, engineered hardwood flooring, door skins, shutter blinds, kitchen cabinets, plywood, and veneer. The samplers selected were 37-mm closed-face cassette with ACCU-CAP™, Button, CIP10-I, GSP, and Institute of Occupational Medicine. Approximately 30 of each possible pairwise combination of samplers were collected as personal sample sets. Paired samplers of the same type were used to calculate environmental variance that was then used to determine the number of pairs of samples necessary to detect any difference at a specified level of confidence. Total valid sample number was 888 (444 valid pairs). The mass concentration of wood dust ranged from 0.02 to 195 mg m−3. Geometric mean (geometric standard deviation) and arithmetic mean (standard deviation) of wood dust were 0.98 mg m−3 (3.06) and 2.12 mg m−3 (7.74), respectively. One percent of the samples exceeded 15 mg m−3, 6% exceeded 5 mg m−3, and 48% exceeded 1 mg m−3. The number of collected pairs is generally appropriate to detect a 35% difference when outliers (negative mass loadings) are removed. Statistical evaluation of the nonsimilar sampler pair

  9. Description of a dust particle detection system and measurements of particulate contamination from shock, gate valve, and ion pump under ultrahigh vacuum conditions

    NASA Astrophysics Data System (ADS)

    Dorier, J.-L.; Hilleret, N.

    1998-11-01

    Dust particle contamination is known to be responsible for reduced quality and yield in microelectronic processing. However it may also limit the operation of particle accelerators as a result of beam lifetime reduction or enhanced field emission in radio-frequency accelerating cavities. Intrinsic dust contamination from sources such as valves or ion pumps has not yet been studied due to the inability of commercial particle counters to be able to detect across large cross sections under ultrahigh vacuum (UHV) conditions. This motivated the development of the dust particle detector described here which is able to quantify, in situ, the level of contamination on a representative part of a vacuum vessel. This system operates under UHV conditions and measures flashes of scattered light from free falling dust particles as they cross a thin laser light sheet across a 100 mm diam vacuum vessel. A calibration using microspheres of known diameter has allowed estimation of the particle size from the scattered signal amplitude. Measurements of particulate contamination generated by shocks onto the vessel walls are presented and determination of the height of origin of dust particles from their transit time across the irradiation sheet is discussed. Measurements of dust particle release right to operation of an all-metal gate valve are also presented in the form of time resolved measurements of dust occurrence during the open/close cycles of the valve, as well as histograms of the particle size distribution. A partial self-cleaning effect is witnessed during the first 10 operation cycles following valve installation. The operation of an ion pump has also been investigated and revealed that, in our conditions, particles were released only at pump startup.

  10. Physical and Chemical Characteristics of Desert Dust Deposited on Mt. Elbrus, Caucasus as Documented in Snow Pit and Shallow Core Records

    NASA Astrophysics Data System (ADS)

    Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Popov, G.

    2013-12-01

    We present a study of dust deposition events and its physical and chemical characteristics in Caucasus Mountains as documented by snow and firn pack at Mt Elbrus. Dust samples were collected from the shallow ice cores and snow pits in 2009-2013 at the western Elbrus plateau (5150 m a.s.l.). Particle size distribution and chemical analysis (major ions, trace elements) were completed for each sample using Coulter Counter Multisizer III, scanning electron microscopy (SEM), IC and ICPMS analysis. It was shown that desert dust deposition occurred in Caucasus 4-8 times a year and originates from the Northern Sahara and the deserts of the Middle East. Analysis of volumetric particle size distributions showed that the modal values ranged between 2 μm and 4 μm although most samples were characterised by modal values of 2.0-2.8 μm with an average of 2.6 μm. These values are lower than those obtained from the ice cores in central and southern Asia following the deposition of long-travelled dust and are closer to those reported for the European Alps and the polar ice cores. All samples containing dust have a single mode which is usually interpreted as a single source region. They do not reveal any significant differences between the Saharan and the Middle Eastern sources. The annual average dust mass concentrations were 10-15 mg kg-1 which is higher than the average concentrations reported for other mountain regions and this was strongly affected by dust deposition events. The deposition of dust resulted in elevated concentrations of most ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from multiple sources in the Middle East including Mesopotamia or passing over the Middle East was characterised by the elevated concentrations of nitrates and ammonia which is related to a high atmospheric loads of ammonium emitted by agricultural sources and high concentrations of ammonium in dust originating from this region. By contrast, samples of the Saharan dust showed

  11. Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.

    2002-12-01

    An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.

  12. Dust Storms in the United States are Associated with Increased Cardiovascular Mortality

    EPA Science Inventory

    Background: Extreme weather events such as dust storms are predicted to become more frequent as the global climate warms through the 21st century. Studies of Asian, Saharan, Arabian, and Australian dust storms have found associations with cardiovascular and total non-accidental...

  13. CM-like Interplanetary Dust Particles in Lower Stratosphere During 1989 October and 1991 June/July

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    The stratospheric interplanetary dust particles L2005T12 and L2011O3 are linked to CM chondrite matrix. Particle L2005T12 is dominated by tabular grains of partially dehydrated greenalite-rich serpentine. Its amorphous matrix contains abundant smectite nanocrystals and annular Fe,Ni,S units. A uniquely stratified (partial) maghemite rim occurs only on S-rich parts of the matrix. Formation of this rim and Mg depletions in the matrix occurred during atmospheric entry heating of this particle. Particle L2011O3 has large iron sulfide and magnesiowustite grains in an amorphous low-Al, ferromagnesiosilica matrix. Hydrous crystallisation of this matrix produced ultrafine-grained smectites and disseminated iron sulfides. Atmospheric entry heating of both particles is indicated by the partial iron oxide rim, vesicular sulfides, and the scatter of matrix compositions due to loss of Mg. While many uncertainties remain, the high incidence of chondritic rough particles, which include an unknown amount of CM-like particles, in the lower stratosphere during 1984, 1989, and 1991 suggests annual variations in their abundances. The timing of lower stratospheric dust samplings is critical to collect these particles.

  14. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    NASA Astrophysics Data System (ADS)

    Tawidian, H.; Mikikian, M.; Couëdel, L.; Lecas, T.

    2011-11-01

    Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids.

  15. Polluted Dust Classification and Its Optical Properties Analysis Using CALIPSO Data and Simulation

    NASA Astrophysics Data System (ADS)

    Ding, J.; Yang, P.; Holz, R.; Vaughan, M. A.; Hu, Y.

    2015-12-01

    In CALIPSO Level 2 aerosol data, dust particles are classified into two subtypes, namely, pure dust and polluted dust based on lidar backscatter, depolarization ratio and surface types. In this research, the polluted dust subtype is found to have two distinct modes in terms of integrated depolarization ratio (IDR) and integrated total color ratio (ICR). Dust with smaller IDR and ICR occurs mainly over areas with strong smoke emissions such as industrial cities. This kind of polluted dust originating from East Asia is also found over the Pacific Ocean. In contrast, the other type originating from the Saharan desert with larger IDR and ICR occurs mainly over the Atlantic Ocean. The disparities of IDR and ICR may result from different pollutants. The polluted dust with smaller ICR and IDR should have stronger absorption of light and may contain black carbon. Other chemical compounds such as sea salts may account for polluted dust with larger ICR and IDR. To further separate the types of polluted dust, cluster analysis is applied to determine the centroid of each type in terms of IDR and ICR. Furthermore, scattering models of dust mixed with various pollutants are constructed to be included in a CALIPSO simulator. The simulated IDR and ICR values are compared with data to retrieve the chemical compositions of polluted dust. The difference of polluted dust over the Pacific and Atlantic Ocean provides new evidence about long-range transport of Asian dust to North America. The distribution of dust polluted by black carbon is determined, which can improve knowledge about the effect of black carbon on the earth's radiation budget.

  16. Variations on morphology and elemental composition of mineral dust particles from local, regional, and long-range transport meteorological scenarios

    NASA Astrophysics Data System (ADS)

    Coz, Esther; Gómez-Moreno, Francisco J.; Casuccio, Gary S.; ArtíñAno, BegoñA.

    2010-06-01

    Mineral dust is the second major source of PM10 in Madrid, reaching up to 80% of the PM10 mass during certain long-range dust transport events. Three different types of scenarios have been found to be associated with the high particle concentration episodes in the city: local anthropogenic, regional recirculation, and African dust transport processes. The present study focuses on the characterization of the individual mineral dust particles related to some chemical and morphological features during these three types of episodes, with special attention to local and regional episodes. To achieve this purpose, four different samples were selectively collected during the 2004-2005 period campaigns, one corresponding to each type of scenario and other sample from an Atlantic ventilated one. Meteorological situation, dust source identification, impact on ambient concentrations, size range distribution, and particle individual analysis have been characterized for each of them. Elemental composition and morphology of more than 30,000 mineral particles were analyzed by computer-controlled scanning electron microscopy. Particles were grouped into clusters based on their elemental composition, and the aspect ratio (AR) of each cluster or category was compared for each type of episode. The AR was related to the mineralogical crystal structure of each chemical cluster. The dates chosen for microscopy analysis were in good agreement in size distribution and chemical composition with the average of the dates in the entire campaign and with those from previous campaigns. Major differences between local/regional and long-range transported mineral dust were found in the relative abundance between carbonates and silicates, with much higher abundance of calcium carbonates in the first ones. These differences between silicate and carbonate contents were consistent with the results found in previous campaigns and were directly related to the composition of the parent topsoil by studying

  17. Longwave radiative effects of Saharan dust during the ICE-D campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie

    2017-04-01

    The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from Ice in Clouds Experiment - Dust (ICE-D) campaign. The ICE-D campaign occurred during August 2015 and was based from Cape Verde. The ICE-D campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. ICE-D encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean ICE-D size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2

  18. Effects of 2 size classes of intratracheally administered airborne dust particles on primary and secondary specific antibody responses and body weight gain of broilers: a pilot study on the effects of naturally occurring dust.

    PubMed

    Lai, H T L; Nieuwland, M G B; Aarnink, A J A; Kemp, B; Parmentier, H K

    2012-03-01

    We studied the effects of a concurrent challenge on slow-growing broilers with 1) airborne particles of 2 sizes: fine dust (smaller than 2.5 microns) and coarse dust (between 2.5 and 10 microns) that were directly collected from a broiler house and 2) lipopolysaccharide on intratracheal immunizations with the specific antigen human serum albumin (HuSA) and measured primary and secondary systemic (total) antibody responses and (isotype-specific) IgM, IgG, and IgA responses at 3 and 7 wk of age. All treatments affected immune responses at several ages, heart morphology, and BW gain, albeit the latter only temporarily. Dust particles significantly decreased primary antibody (IgT and IgG) responses to HuSA at 3 wk of age but enhanced IgM responses to HuSA at 7 wk of age. Dust particles decreased secondary antibody responses to HuSA, albeit not significantly. All of the birds that were challenged with dust particles showed decreased BW gain after the primary but not after the secondary challenge. Relative heart weight was significantly decreased in birds challenged with coarse dust, fine dust, lipopolysaccharide, and HuSA at 3 wk of age, but not in birds challenged at 7 wk of age. Morphology (weight, width, and length) of hearts were also affected by the dust challenge at 3 wk of age. The present results indicate that airborne dust particles obtained from a broiler house when intratracheally administered at an early age affect specific humoral immune responsiveness and BW gain of broilers to simultaneously administered antigens differently than when administered at a later age. The hygienic status of broiler houses at a young age may be of importance for growth and immune responsiveness, and consequently, for vaccine efficacy and disease resistance in broilers. The consequences of our findings are discussed.

  19. Dust escape from Io

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  20. On the origin of extraterrestrial stratospheric particles: Interplanetary dust or meteor ablation debris?. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.

    1977-01-01

    Meteor ablation debris was distinguished from unablated interplanetary dust in a collection of extraterrestrial particles collected in the stratosphere using NASA U-2 aircraft. A 62 g sample of the Murchison (C2) meteorite was artificially ablated to characterize ablation debris for comparison with the stratospheric particles. By using proper experimental conditions, artificial ablation debris can be produced that is similar to natural ablation debris. Analyses of natural fusion crusts, artificial fusion crust, and artificial ablation debris of the Murchison meteorite produced criteria for recognizing debris ablated by a primitive meteoroid. Ninety-five percent of the stratospheric particles can be described as either ablation debris from a primitive meteoroid, or as very primitive interplanetary dust.

  1. Possible influence of dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Lohmann, Ulrike

    2014-05-01

    Tropical Cyclones (TCs) belong to the most extreme events in nature. In the past decade, the possible impact of dust on Atlantic hurricanes receives growing interest. As mineral dust is able to absorb incoming solar radiation and therefore warm the surrounding air, the presence of dust can lead to a reduction of sea surface temperature (SST) and an increase in atmospheric stability. Furthermore, resulting baroclinic effects and the dry Saharan easterly jet lead to an enhanced vertical shear of the horizontal winds. SST, stability, moisture and vertical wind shear are known to potentially impact hurricane activity. But how Saharan dust influences these prerequisites for hurricane formation is not yet clear. Some dynamical mechanisms induced by the SAL might even strengthen hurricanes. An adequate framework for investigating the possible impact of dust on hurricanes is comparing high resolution simulations (~0.5°x0.5°, 31 vertical levels) with and without radiatively active dust aerosols. To accomplish this task, we are using the general circulation model ECHAM6 coupled to a modified version of the aerosol model HAM, ECHAM6-HAM-Dust. Instead of the five aerosol species HAM normally contains, the modified version takes only insoluble dust into account, but modifies the scavenging parameters in order to have a similar lifetime of dust as in the full ECHAM6-HAM. All remaining aerosols are prescribed. To evaluate the effects of dust on hurricanes, a TC detection and tracking method is applied on the results. ECHAM6-HAM-Dust was used in two configurations, one with radiatively active dust aerosols and one with dust being not radiatively active. For both set-ups, 10 Monte-Carlo simulations of the year 2005 were performed. A statistical method which identifies controlling parameters of hurricane genesis was applied on North Atlantic developing and non-developing disturbances in all simulations, comparing storms in the two sets of simulations. Hereby, dust can be assigned

  2. Particle sizes and composition of Mars atmospheric dust based upon Viking and Mariner 9 observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.

    1993-01-01

    Mars atmospheric dust can play an important role in the thermal structure of the Mars atmosphere during periods of high dust loading. However, the radiative properties of Mars atmospheric dust remain uncertain due to uncertain definitions of the dust composition and size distribution. The analysis by Toon et al., of Mariner 9 IRIS spectra during the 1971-1972 global dust storm indicated a reasonable match between the modeled 9-micron absorption of montmorillinite and the observed 9-micron absorption. Toon et al. also determined that an effective (cross-section weighted) mean radius of 2.5 microns (R(sub mode) = 0.4 microns) provided a consistent fit of montmorillinite to the IRIS dust spectra at 9 microns. Pollack et al. analyzed Viking lander observations of atmospheric extinction and scattering at visible-near IR wavelengths (0.5-1.0 microns), and obtained consistency with the Toon et al. dust size distribution when the effects of nonspherical particle shapes were included. An additional, minor (1 percent) component of visible-ultraviolet absorbing material was required to model the derived visible (0.86) and ultraviolet (0.4-0.6) single-scattering albedos of the dust, since montmorillinite does not absorb sufficiently in this wavelength region. A combined analysis of the Viking IRTM and Mariner 9 observations was conducted to reassess the model of Mars atmospheric ultraviolet-to-infrared measurements of dust absorption and scattering. The optical constants for palagonite are incorporated in a doubling-adding radiative transfer model of the Mars atmosphere to simulate Mariner 9 IRIS spectra as well as the Viking IRTM IR band observations. Visible and ultraviolet single-scattering albedos based on the Hansen and Travis Mie scattering code were also derived. A tentative conclusion is that smaller dust particles (R(sub mode) = 0.15 microns, cross-section weighted mean R = 1.2 microns) composed of palagonite provide a much improved fit to the Mariner 9 IRIS spectra

  3. Contact freezing of supercooled cloud droplets on collision with mineral dust particles: effect of particle size

    NASA Astrophysics Data System (ADS)

    Hoffmann, Nadine; Duft, Denis; Kiselev, Alexei; Leisner, Thomas

    2013-04-01

    The contact freezing of supercooled cloud droplets is one of the potentially important and the least investigated heterogeneous mechanism of ice formation in the tropospheric clouds [1]. On the time scales of cloud lifetime the freezing of supercooled water droplets via contact mechanism may occur at higher temperature compared to the same IN immersed in the droplet. However, the laboratory experiments of contact freezing are very challenging due to the number of factors affecting the probability of ice formation. In our experiment we study single water droplets freely levitated in the laminar flow of mineral dust particles acting as the contact freezing nuclei. By repeating the freezing experiment sufficient number of times we are able to reproduce statistical freezing behavior of large ensembles of supercooled droplets and measure the average rate of freezing events. We show that the rate of freezing at given temperature is governed only by the rate of droplet -particle collision and by the properties of the contact ice nuclei. In this contribution we investigate the relationship between the freezing probability and the size of mineral dust particle (represented by illite) and show that their IN efficiency scales with the particle size. Based on this observation, we discuss the similarity between the freezing of supercooled water droplets in immersion and contact modes and possible mechanisms of apparent enhancement of the contact freezing efficiency. [1] - K.C. Young, The role of contact nucleation in ice phase initiation in clouds, Journal of the Atmospheric Sciences 31, 1974

  4. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  5. Migration of Dust Particles from Comet 2P Encke

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.

    2003-01-01

    We investigated the migration of dust particles under the gravitational influence of all planets (except for Pluto), radiation pressure, Poynting-Robertson drag and solar wind drag for Beta equal to 0.002, 0.004, 0.01, 0.05, 0.1, 0.2, and 0.4. For silicate particles such values of Beta correspond to diameters equal to about 200, 100, 40, 9, 4, 2, and 1 microns, respectively. We used the Bulirsh-Stoer method of integration, and the relative error per integration step was taken to be less than lo-'. Initial orbits of the particles were close to the orbit of Comet 2P Encke. We considered initial particles near perihelion (runs denoted as Delta tsub o, = 0), near aphelion (Delta tsub o, = 0.5), and also studied their initial positions when the comet moved for Pa/4 after perihelion passage (such runs are denoted as Delta tsub o, =i 0.25), where Pa is the period of the comet. Variations in time T when perihelion was passed was varied with a step 0.1 day for series 'S' and with a step 1 day for series 'L'. For each Beta we considered N = 101 particles for "S" runs and 150 particles for "L" runs.

  6. Emission from small dust particles in diffuse and molecular cloud medium

    NASA Technical Reports Server (NTRS)

    Bernard, J. P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances.

  7. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant, Northeast of China.

    PubMed

    Zhou, Qiuhong; Zheng, Na; Liu, Jingshuang; Wang, Yang; Sun, Chongyu; Liu, Qiang; Wang, Heng; Zhang, Jingjing

    2015-04-01

    The residents health risk of Pb, Cd and Cu exposure to street dust with different particle sizes (<100 and <63 μm) near Huludao Zinc Plant (HZP) was investigated in this study. The average concentrations of Pb, Cd and Cu in the <100-μm and <63-μm dust were 1,559, 178.5, 917.9 and 2,099, 198.4, 1,038 mg kg(-1), respectively. It showed that smaller particles tended to contain higher element concentrations. Metals in dust around HZP decreased gradually from the zinc smelter to west and east directions. There was significantly positive correlation among Pb, Cd and Cu in street dust with different particle sizes. The contents of Pb, Cd and Cu in dust increased with decreasing pH or increasing organic matter. Non-carcinogenic health risk assessment showed that the health index (HI) for children and adult exposed to <63-μm particles were higher than exposed to <100-μm particles, which indicated that smaller particles tend to have higher non-carcinogenic health risk. Non-carcinogenic risk of Pb was the highest in both particle sizes, followed by Cd and Cu. HI for Pb and Cd in both particle sizes for children had exceeded the acceptable value, indicated that children living around HZP were experiencing the non-carcinogenic health risk from Pb and Cd exposure to street dust.

  8. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Characterization of Dust Properties during ACE-Asia and PRIDE: A Column Satellite-Surface Perspective

    NASA Technical Reports Server (NTRS)

    Lau, William K. M. (Technical Monitor); Tsay, Si-Chee; Hsu, N. Christina; Herman, Jay R.; Ji, Q. Jack

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentration over particular pathways around the globe. For example, the ACE-Asia (Aerosol Characterization Experiment-Asia) was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). The PRIDE (Puerto RIco Dust Experiment, July 2000) was designed to measure the properties of Saharan dust transported across the Atlantic Ocean to the Caribbean. Dust particles typically originate in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of dust aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the ocean. During ACE-Asia and PRIDE we had measured aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from ground-based remote sensing. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. We will present the results and discuss their implications in regional climatic effects.

  10. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-11-01

    Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  11. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-06-01

    Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  12. Structural and physical properties of the dust particles in Qatar and their influence on the PV panel performance.

    PubMed

    Aïssa, Brahim; Isaifan, Rima J; Madhavan, Vinod E; Abdallah, Amir A

    2016-08-16

    Recently, extensive R&D has been conducted, both by industry and academia, to significantly raise the conversion efficiency of commercial photovoltaic (PV) modules. The installation of PV systems aimed at optimizing solar energy yield is primarily dictated by its geographic location and installation design to maximize solar exposure. However, even when these characteristics have been addressed appropriately, there are other factors that adversely affect the performance of PV systems, namely the temperature-induced voltage decrease leading to a PV power loss, and the dust accumulation (soiling). The latter is the lesser acknowledged factor that significantly influences the performance of PV installations especially in the Middle East region. In this paper we report on the investigation of the structural and physical properties of the desert-dust particles in the State of Qatar. The dust particles were collected directly from the PV panels installed in desert environment and characterized by different techniques, including scanning electron, optical and atomic force microscopies, X-ray diffraction, energy-dispersive, UV-Vis, micro-Raman and Fourier transform infrared spectroscopy. The vibrating sample magnetometry analyses were also conducted to study the magnetic properties of the dust particles. The influence of the dust accumulation on the PV panel performance was also presented and discussed.

  13. Structural and physical properties of the dust particles in Qatar and their influence on the PV panel performance

    NASA Astrophysics Data System (ADS)

    Aïssa, Brahim; Isaifan, Rima J.; Madhavan, Vinod E.; Abdallah, Amir A.

    2016-08-01

    Recently, extensive R&D has been conducted, both by industry and academia, to significantly raise the conversion efficiency of commercial photovoltaic (PV) modules. The installation of PV systems aimed at optimizing solar energy yield is primarily dictated by its geographic location and installation design to maximize solar exposure. However, even when these characteristics have been addressed appropriately, there are other factors that adversely affect the performance of PV systems, namely the temperature-induced voltage decrease leading to a PV power loss, and the dust accumulation (soiling). The latter is the lesser acknowledged factor that significantly influences the performance of PV installations especially in the Middle East region. In this paper we report on the investigation of the structural and physical properties of the desert-dust particles in the State of Qatar. The dust particles were collected directly from the PV panels installed in desert environment and characterized by different techniques, including scanning electron, optical and atomic force microscopies, X-ray diffraction, energy-dispersive, UV-Vis, micro-Raman and Fourier transform infrared spectroscopy. The vibrating sample magnetometry analyses were also conducted to study the magnetic properties of the dust particles. The influence of the dust accumulation on the PV panel performance was also presented and discussed.

  14. Dust measurements in tokamaks (invited).

    PubMed

    Rudakov, D L; Yu, J H; Boedo, J A; Hollmann, E M; Krasheninnikov, S I; Moyer, R A; Muller, S H; Pigarov, A Yu; Rosenberg, M; Smirnov, R D; West, W P; Boivin, R L; Bray, B D; Brooks, N H; Hyatt, A W; Wong, C P C; Roquemore, A L; Skinner, C H; Solomon, W M; Ratynskaia, S; Fenstermacher, M E; Groth, M; Lasnier, C J; McLean, A G; Stangeby, P C

    2008-10-01

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  15. The Evolution and Role of the Saharan Air Layer During Hurricane Helene (2006)

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Shie, Chung-Lin; Boller, Ryan A.

    2013-01-01

    The Saharan air layer (SAL) has received considerable attention in recent years as a potential negative influence on the formation and development of Atlantic tropical cyclones. Observations of substantial Saharan dust in the near environment of Hurricane Helene (2006) during the National Aeronautics and Space Administration (NASA) African Monsoon Multidisciplinary Activities (AMMA) Experiment (NAMMA) field campaign led to suggestions about the suppressing influence of the SAL in this case. In this study, a suite of satellite remote sensing data, global meteorological analyses, and airborne data are used to characterize the evolution of the SAL in the environment of Helene and assess its possible impact on the intensity of the storm. The influence of the SAL on Helene appears to be limited to the earliest stages of development, although the magnitude of that impact is difficult to determine observationally. Saharan dust was observed on the periphery of the storm during the first two days of development after genesis when intensification was slow. Much of the dust was observed to move well westward of the storm thereafter, with little SAL air present during the remainder of the storm's lifetime and with the storm gradually becoming a category-3 strength storm four days later. Dry air observed to wrap around the periphery of Helene was diagnosed to be primarily non-Saharan in origin (the result of subsidence) and appeared to have little impact on storm intensity. The eventual weakening of the storm is suggested to result from an eyewall replacement cycle and substantial reduction of the sea surface temperatures beneath the hurricane as its forward motion decreased.

  16. Pluto' interaction with its space environment: Solar wind, energetic particles, and dust

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; Horányi, M.; McComas, D. J.; McNutt, R. L.; Elliott, H. A.; Hill, M. E.; Brown, L. E.; Delamere, P. A.; Kollmann, P.; Krimigis, S. M.; Kusterer, M.; Lisse, C. M.; Mitchell, D. G.; Piquette, M.; Poppe, A. R.; Strobel, D. F.; Szalay, J. R.; Valek, P.; Vandegriff, J.; Weidner, S.; Zirnstein, E. J.; Stern, S. A.; Ennico, K.; Olkin, C. B.; Weaver, H. A.; Young, L. A.; Gladstone, G. R.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Cheng, A. F.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Dalle Ore, C. M.; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hinson, D. P.; Holdridge, M. E.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Linscott, I. R.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, A. H.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Retherford, K. D.; Ryschkewitsch, M. G.; Schenk, P.; Schindhelm, E.; Sepan, B.; Showalter, M. R.; Singer, K. N.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Stryk, T.; Summers, M. E.; Tapley, M.; Taylor, A.; Taylor, H.; Throop, H. B.; Tsang, C. C. C.; Tyler, G. L.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zangari, A. M.

    2016-03-01

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers-3 for the dust density in the Pluto system.

  17. Characterization of dust from blast furnace cast house de-dusting.

    PubMed

    Lanzerstorfer, Christof

    2017-10-01

    During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.

  18. The Association between Dust Storms and Daily Non-Accidental Mortality in the United States, 1993-2005.

    EPA Science Inventory

    Background:The impact of dust storms on human health has been studied in the context of Asian,Saharan, Arabian, and Australian storms,but there has been no recent population-level epidemiological research on the dust storms in North America . The relevance of dust storms to publi...

  19. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    PubMed Central

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  20. Investigation of dust particles with future Russian lunar missions: achievements of further development of PmL instrument.

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Ilya; Zakharov, Alexander; Afonin, Valeri; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Lyash, Andrey; Dolnikov, Gennady; Popel, Sergey; Lisin, Evgeny

    2016-07-01

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On the day side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution of dust particles by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind

  1. Dynamics and Distribution of Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2005-08-01

    We integrated the orbital evolution of 12,000 asteroidal, cometary, and trans-Neptunian dust particles, under the gravitational influence of planets, Poynting-Robertson drag, radiation pressure, and solar wind drag (Annals of the New York Academy of Sciences, v. 1017, 66-80, 2004; Advances in Space Research, in press, 2005). The orbital evolution of 30,000 Jupiter-family comets (JFCs) was also integrated (Annals of the New York Academy of Sciences, v. 1017, 46-65, 2004). For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4 (for silicates, such values correspond to particle diameters between >1000 and 1 microns). The considered cometary particles started from comets 2P, 10P, and 39P. The probability of a collision of an asteroidal or cometary dust particle with the Earth during a lifetime of the particle was maximum at diameter about 100 microns; this is in accordance with cratering records. Our different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Some JFCs can reach orbits entirely located inside Jupiter's orbit and remain in such orbits for millions of years. Such former comets could disintegrate during millions of years and produce a lot of mini-comets and dust. (2) The spatial density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can migrate outside Jupiter's orbit. Therefore cometary dust particles are needed to explain the observed constant spatial density of dust particles at 3-18 AU from the Sun. (3) Comparison of the velocities of zodiacal dust particles obtained in our runs with the observations of velocities of these particles made by Reynolds et al. (Ap.J., 2004, v. 612

  2. Association of Sand Dust Particles with Pulmonary Function and Respiratory Symptoms in Adult Patients with Asthma in Western Japan Using Light Detection and Ranging: A Panel Study

    PubMed Central

    Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Shimizu, Atsushi; Sano, Hiroyuki; Kato, Kazuhiro; Mikami, Masaaki; Ueda, Yasuto; Tatsukawa, Toshiyuki; Ohga, Hideki; Yamasaki, Akira; Igishi, Tadashi; Kitano, Hiroya; Shimizu, Eiji

    2015-01-01

    Light detection and ranging (LIDAR) can estimate daily volumes of sand dust particles from the East Asian desert to Japan. The objective of this study was to investigate the relationship between sand dust particles and pulmonary function, and respiratory symptoms in adult patients with asthma. One hundred thirty-seven patients were included in the study. From March 2013 to May 2013, the patients measured their morning peak expiratory flow (PEF) and kept daily lower respiratory symptom diaries. A linear mixed model was used to estimate the correlation of the median daily levels of sand dust particles, symptoms scores, and PEF. A heavy sand dust day was defined as an hourly concentration of sand dust particles of >0.1 km−1. By this criterion, there were 8 heavy sand dust days during the study period. Elevated sand dust particles levels were significantly associated with the symptom score (0.04; 95% confidence interval (CI); 0.03, 0.05), and this increase persisted for 5 days. There was no significant association between PEF and heavy dust exposure (0.01 L/min; 95% CI, −0.62, 0.11). The present study found that sand dust particles were significantly associated with worsened lower respiratory tract symptoms in adult patients with asthma, but not with pulmonary function. PMID:26501307

  3. Analysis of the dust particles distribution and ventilation as a way to improve indoor air quality

    NASA Astrophysics Data System (ADS)

    Kozlovtseva, E. Yu; Azarov, V. N.; Stefanenko, I. V.

    2017-10-01

    The indoor air pollution is analyzed in the article. The subject of the research is the presence and composition of the dust particles taken into “traps” in the working space of the public building (Volgograd State Technical University, Volgograd, the Russian Federation). The research has established the range of sizes of the particulate matter (fractional composition) for the dust in the air of the working space in the form of integral curves for the mass distribution of particles with to their diameters, it also provides the scheme of the air flows movement in the ventilation system of the room.

  4. Ice nucleation by soil dust compared to desert dust aerosols

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Steinke, I.; Ullrich, R.; Höhler, K.; Schiebel, T.; Hoose, C.; Funk, R.

    2015-12-01

    A minor fraction of atmospheric aerosol particles, so-called ice-nucleating particles (INPs), initiates the formation of the ice phase in tropospheric clouds and thereby markedly influences the Earth's weather and climate systems. Whether an aerosol particle acts as an INP depends on its size, morphology and chemical compositions. The INP fraction of certain aerosol types also strongly depends on the temperature and the relative humidity. Because both desert dust and soil dust aerosols typically comprise a variety of different particles, it is difficult to assess and predict their contribution to the atmospheric INP abundance. This requires both accurate modelling of the sources and atmospheric distribution of atmospheric dust components and detailed investigations of their ice nucleation activities. The latter can be achieved in laboratory experiments and parameterized for use in weather and climate models as a function of temperature and particle surface area, a parameter called ice-nucleation active site (INAS) density. Concerning ice nucleation activity studies, the soil dust is of particular interest because it contains a significant fraction of organics and biological components, both with the potential for contributing to the atmospheric INP abundance at relatively high temperatures compared to mineral components. First laboratory ice nucleation experiments with a few soil dust samples indicated their INP fraction to be comparable or slightly enhanced to that of desert dust. We have used the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber to study the immersion freezing ability of four different arable soil dusts, sampled in Germany, China and Argentina. For temperatures higher than about -20°C, we found the INP fraction of aerosols generated from these samples by a dry dispersion technique to be significantly higher compared to various desert dust aerosols also investigated in AIDA experiments. In this contribution, we

  5. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  6. Turbulence-induced relative velocity of dust particles. III. The probability distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Liubin; Padoan, Paolo; Scalo, John, E-mail: lpan@cfa.harvard.edu, E-mail: ppadoan@icc.ub.edu, E-mail: parrot@astro.as.utexas.edu

    2014-09-01

    Motivated by its important role in the collisional growth of dust particles in protoplanetary disks, we investigate the probability distribution function (PDF) of the relative velocity of inertial particles suspended in turbulent flows. Using the simulation from our previous work, we compute the relative velocity PDF as a function of the friction timescales, τ{sub p1} and τ{sub p2}, of two particles of arbitrary sizes. The friction time of the particles included in the simulation ranges from 0.1τ{sub η} to 54T {sub L}, where τ{sub η} and T {sub L} are the Kolmogorov time and the Lagrangian correlation time of themore » flow, respectively. The relative velocity PDF is generically non-Gaussian, exhibiting fat tails. For a fixed value of τ{sub p1}, the PDF shape is the fattest for equal-size particles (τ{sub p2} = τ{sub p1}), and becomes thinner at both τ{sub p2} < τ{sub p1} and τ{sub p2} > τ{sub p1}. Defining f as the friction time ratio of the smaller particle to the larger one, we find that, at a given f in (1/2) ≲ f ≲ 1, the PDF fatness first increases with the friction time τ{sub p,h} of the larger particle, peaks at τ{sub p,h} ≅ τ{sub η}, and then decreases as τ{sub p,h} increases further. For 0 ≤ f ≲ (1/4), the PDF becomes continuously thinner with increasing τ{sub p,h}. The PDF is nearly Gaussian only if τ{sub p,h} is sufficiently large (>>T {sub L}). These features are successfully explained by the Pan and Padoan model. Using our simulation data and some simplifying assumptions, we estimated the fractions of collisions resulting in sticking, bouncing, and fragmentation as a function of the dust size in protoplanetary disks, and argued that accounting for non-Gaussianity of the collision velocity may help further alleviate the bouncing barrier problem.« less

  7. Ice nucleation properties of atmospheric aerosol particles collected during a field campaign in Cyprus

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Maier, Stefanie; Lang-Yona, Naama; Tamm, Alexandra; Meusel, Hannah; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Atmospheric aerosol particles, including desert and soil dust as well as marine aerosols, are well known to act as ice nuclei (IN) and thus have been investigated in numerous ice nucleation studies. Based on their cloud condensation nuclei potential and their impacts on radiative properties of clouds (via scattering and absorption of solar radiation), aerosol particles may significantly affect the cloud and precipitation development. Atmospheric aerosols of the Eastern Mediterranean have been described to be dominated by desert dust, but only little is known on their composition and ice nucleating properties. In this study we investigated the ice nucleating ability of total suspended particles (TSP), collected at the remote site Agia Marina Xyliatou on Cyprus during a field campaign in April 2016. Airborne TSP samples containing air masses of various types such as African (Saharan) and Arabian dust and European and Middle Eastern pollution were collected on glass fiber filters at 24 h intervals. Sampling was performed ˜5 m above ground level and ˜521 m above sea level. During the sampling period, two major dust storms (PM 10max 118 μg/m3 and 66 μg/m3) and a rain event (rainfall amount: 3.4 mm) were documented. Chemical and physical characterizations of the particles were analyzed experimentally through filtration, thermal, chemical and enzyme treatments. Immersion freezing experiments were performed at relatively high subzero temperatures (-1 to -15˚ C) using the mono ice nucleation array. Preliminary results indicate that highest IN particle numbers (INPs) occurred during the second dust storm event with lower particle concentrations. Treatments at 60˚ C lead to a gradual IN deactivation, indicating the presence of biological INPs, which were observed to be larger than 300 kDa. Additional results originating from this study will be shown. Acknowledgement: This work was funded by the DFG Ice Nuclei Research Unit (INUIT).

  8. Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean

    NASA Astrophysics Data System (ADS)

    Ealo, Marina; Alastuey, Andrés; Ripoll, Anna; Pérez, Noemí; Cruz Minguillón, María; Querol, Xavier; Pandolfi, Marco

    2016-10-01

    The study of Saharan dust events (SDEs) and biomass burning (BB) emissions are both topics of great scientific interest since they are frequent and important polluting scenarios affecting air quality and climate. The main aim of this work is evaluating the feasibility of using near-real-time in situ aerosol optical measurements for the detection of these atmospheric events in the western Mediterranean Basin (WMB). With this aim, intensive aerosol optical properties (SAE: scattering Ångström exponent, AAE: absorption Ångström exponent, SSAAE: single scattering albedo Ångström exponent and g: asymmetry parameter) were derived from multi-wavelength aerosol light scattering, hemispheric backscattering and absorption measurements performed at regional (Montseny; MSY, 720 m a.s.l.) and continental (Montsec; MSA, 1570 m a.s.l.) background sites in the WMB. A sensitivity study aiming at calibrating the measured intensive optical properties for SDEs and BB detection is presented and discussed. The detection of SDEs by means of the SSAAE parameter and Ångström matrix (made up by SAE and AAE) depended on the altitude of the measurement station and on SDE intensity. At MSA (mountain-top site) SSAAE detected around 85 % of SDEs compared with 50 % at the MSY station, where pollution episodes dominated by fine anthropogenic particles frequently masked the effect of mineral dust on optical properties during less intense SDEs. Furthermore, an interesting feature of SSAAE was its capability to detect the presence of mineral dust after the end of SDEs. Thus, resuspension processes driven by summer regional atmospheric circulations and dry conditions after SDEs favoured the accumulation of mineral dust at regional level having important consequences for air quality. On average, SAE, AAE and g ranged between -0.7 and 1, 1.3 and 2.5 and 0.5 and 0.75 respectively during SDEs. Based on the aethalometer model, BB contribution to equivalent black carbon (BC) accounted for 36 and 40

  9. Migration of Interplanetary Dust and Comets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4. For silicates, such values correspond to particle diameters between >1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles

  10. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  11. Effects of Saharan Mineral Dust Aerosols on the Dynamics of an Idealized African Easterly Jet-African Easterly Wave System over North Africa

    NASA Astrophysics Data System (ADS)

    Grogan, Dustin Francis Phillip

    The central objective of this work is to examine the direct radiative effects of Saharan mineral dust aerosols on the dynamics of African easterly waves (AEWs) and the African easterly jet (AEJ). Achieving this objective is built around two tasks that use the Weather Research and Forecasting (WRF) model coupled to an online dust model (WRF-dust model). The first task (Chapter 2) examines the linear dynamics of AEWs; the second task (Chapter 3) examines the nonlinear evolution of AEWs and their interactions with the AEJ. In Chapter 2, the direct radiative effects of dust on the linear dynamics of AEWs are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the generation of eddy available potential energy (APE) by the dust field. The generation of eddy APE is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis calculates the linear dynamics of AEWs using zonally averaged basic states for wind, temperature and dust consistent with summertime conditions over North Africa. For the fastest growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from tau=1.0 to tau=2.5. A local energetics analysis shows that for tau=1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation of APE and conversions of energy are co-located and occur where the meridional dust gradient is maximized near the critical layer, i.e., where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis. In Chapter 3, the direct radiative effects of dust

  12. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru; Dyatko, N. A.; Kostenko, A. S.

    2014-11-15

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup −1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocalitymore » is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.« less

  13. Introduction to project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    NASA Astrophysics Data System (ADS)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2014-01-01

    The main goal of project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of eolian mineral dust. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension after atmospheric deposition at the sea surface. This introductory paper describes the objectives of DUNE and the implementation plan of a series of mesocosm experiments conducted in the Mediterranean Sea in 2008 and 2010 during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated based on the production of dust analogs from erodible soils of a source region. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented. From laboratory results on the solubility of trace elements in dust to biogeochemical results from the mesocosm experiments and associated modeling, these papers describe how the strong simulated dust deposition events impacted the marine biogeochemistry. Those multidisciplinary results are bringing new insights into the role of atmospheric deposition on oligotrophic ecosystems and its impact on the carbon budget. The dissolved trace metals with crustal origin - Mn, Al and Fe - showed different behaviors as a function of time after the seeding. The increase in dissolved Mn and Al concentrations was attributed to dissolution processes. The observed decrease in dissolved Fe was due to scavenging on sinking dust particles and aggregates. When a second dust seeding followed, a dissolution of Fe from the dust particles was then observed due to the excess Fe binding ligand concentrations present at that time. Calcium nitrate and sulfate were formed in the dust

  14. Sungrazing dust particles against the sporadic meteor background

    NASA Astrophysics Data System (ADS)

    Golubaev, A. V.

    2015-07-01

    From the results of the statistical study, the genetic relation between some meteors (from -5 m to +5 m ) of the sporadic background and the comets of the Kreutz, Marsden, and Kracht families has been revealed. The radiants of sporadic meteors are concentrated at the geocentric ecliptic latitudes 7°-10° northward and southward of the ecliptic. The radiants of the sungrazing meteoroids, that were detected on their heliocentric orbits "before" and "after" the perihelion passage, are concentrated in the elongation intervals of approximately 120°-165° and 20°-60° from the Sun, respectively. Each of the specified radiant regions, in its turn, breaks up into two groups. The group of radiants with elongations of about 30° and 155° from the Sun belongs to the Marsden and Kracht cometary families, while the group with 50° and 135°, to the Kreutz cometary family. In the distribution by perihelion distance, a sharp decrease of the number of observed dust particles with q < 0.08 AU was found. This corresponds to the heliocentric distances (20-30 R ⊙), where the production of microscopic dust due to sublimation of cometary nuclei, while approaching the Sun, terminates. The number of sporadic sungrazing meteoroids detected after their passage in the vicinity of the Sun is approximately 20 times smaller than the number of similar particles in the preperihelion part of the trajectory. This result is of special importance for studying the thermodesorption effect of meteoroids (i.e., the change in the content of chemical elements in meteoroids as a function of the perihelion distance).

  15. In situ dust measurements by the Cassini Cosmic Dust Analyzer in 2014 and beyond

    NASA Astrophysics Data System (ADS)

    Srama, R.

    2015-10-01

    Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 11 years in orbit around Saturn. Many discoveries like the Saturn nanodust streams or the large extended Ering were achieved. CDA provided unique results regarding Enceladus, his plume and the liquid water below the icy crust. In 2014 and 2015 CDA focuses on extended inclination and equatorial scans of the ring particle densities. Furthermore, scans are performed of the Pallene and Helene regions. Special attention is also given to the search of the dust cloud around Dione and to the Titan region. Long integration times are needed in order to characterize the flux and composition of exogenous dust (including interstellar dust) or possible retrograde dust particles. Finally, dedicated observation campaigns focus on the coupling of nanodust streams to Saturn's magnetosphere and the search of possible periodicities in the stream data. Saturn's rotation frequency was identified in the impact rate of nanodust particles at a Saturn distance of 40 Saturn radii. A special geometry in 2014-065 lead to an occultation of the dust stream by the moon Titan and its atmosphere when Titan crossed the line-of-sight between Saturn and Cassini. Here, CDA pointed towards Saturn for the measurement of stream particles. Around closest approach when Cassini was behind Titan, the flux of stream particles went down to zero (Fig. 1). This "dust occultation" is a new method to analyse the properties of the stream particles (speed, composition, mass) or the properties of Titans atmosphere (density). Furthermore, the particle trajectories can be constrained for a better analysis of their origin. In the final three years CDA performs exogenous and interstellar dust campaigns, studies of the composition and origin of Saturn's main rings by unique ring ejecta measurements, long-duration nano-dust stream observations, high-resolution maps of small moon orbit crossings, studies of the dust cloud around Dione and studies

  16. Heterogeneous freezing of droplets with immersed surface modified mineral dust particles

    NASA Astrophysics Data System (ADS)

    Hartmann, Susan

    2010-05-01

    In the framework of the international measurement campaign FROST II (FReezing Of duST), the heterogeneous freezing of droplets with an immersed surface modified size-segregated mineral dust particles was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al. 2004). The following measurements were done: LACIS, CFDC (Continuous Flow thermal gradient Diffusion Chamber, Rogers (1988)) and FINCH (Fast Ice Nucleus Chamber Counter, Bundke et al (2008)) were used to analyze the immersion freezing behavior of the treated Arizona Test Dust (ATD) particles at different temperature regimes. The ability to act as IN (Ice Nucleus) in the deposition nucleation mode was quantified by the PINC (Portable Ice Nucleation Chamber) and the CFDC instrument. AMS (Aerosol Mass Spectrometers, e.g. Schneider et al. (2005)) and ATOFMS (Aerosol Time-Of-Flight Mass Spectrometer) measurements were applied to determine particle composition. The hygroscopic growth and the critical super-saturations needed for droplet activation were determined by means of an H-TDMA (Humidity-Tandem Differential Mobility Analyzer) and CCN counter (Cloud Condensation Nucleus counter, Droplet Measurement Technologies, Roberts and Nenes (2005)). The 300 nm ATD particles were chemically and physically treated by coating with sulphuric acid (H2SO4, three different coating thicknesses) and ammonium sulphate ((NH4)2SO4) or by thermal treatment with a thermodenuder operating at 250°C. The H2SO4 coating modified the particles by reacting with particle material, forming soluble sulfates and therefore changing surface properties. AMS showed free H2SO4 only for thick H2SO4 coatings. In the heated section of the thermodenuder coating materials were evaporated partly and the surface properties of the particles were additionally altered. Uncoated particles and those coated with thin coatings of H2SO4, showed almost no hygroscopic growth. Particles coated with thicker coatings of H2SO4 and of (NH4

  17. Characterisation of nutrients wet deposition under influence of Saharan dust at Puerto-Rico in Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Desboeufs, Karine; Formenti, Paola; Triquet, Sylvain; Laurent, Benoit; Denjean, Cyrielle; Gutteriez-Moreno, Ian E.; Mayol-Bracero, Olga L.

    2015-04-01

    Large quantities of African dust are carried across the North Atlantic toward the Caribbean every summer by Trade Winds. Atmospheric deposition of dust aerosols, and in particular wet deposition, is widely acknowledged to be the major delivery pathway for nutrients to ocean ecosystems, as iron, phosphorus and various nitrogen species. The deposition of this dustis so known to have an important impact on biogeochemical processes in the Tropical and Western Atlantic Ocean and Caribbean including Puerto-Rico. However, very few data exists on the chemical composition in nutrients in dusty rain in this region. In the framework of the Dust-ATTAcK project, rainwater was collected at the natural reserve of Cape San Juan (CSJ) (18.38°N, 65.62°W) in Puerto-Ricobetween 20 June 2012 and 12 July 2012 during thedusty period. A total of 7 rainwater events were sampled during various dust plumes. Complementary chemical analyses on aerosols in suspension was also determined during the campaign. The results on dust composition showed that no mixing with anthropogenic material was observed, confirming dust aerosols were the major particles incorporated in rain samples. The partitioning between soluble and particulate nutrients in rain samples showed that phosphorous solubility ranged from 30 and 80%. The average Fe solubility was around 0.5%, in agreement with Fe solubility observed in rains collected in Niger during African monsoon. That means that the high solubility measurements previously observed in Caribbean was probably due to an anthropogenic influence. Atmospheric wet deposition fluxes of soluble and total nutrients (N, P, Si, Fe, Co, Cu, Mn, Ni, Zn) to Caribbean Sea were determined. Atmospheric P and N inputs were strongly depleted relative to the stoichiometry of phytoplankton Fe, N, P and Si requirements.The nitrogen speciation was also determined and showed the predominance of ammonium form. 3-D modeling was used to estimate the spatial extend of these fluxes over the

  18. Trace Element Abundance Measurements on Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1996-01-01

    The X-Ray Microprobe on beamline X-26A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was used to determine the abundances of elements from Cr through Sr in individual interplanetary dust particles (IDPs) collected from the Earth's stratosphere and the Scanning Transmission X-ray Microscope (STXM) on beamline X-1A at the NSLS was used to determine the carbon abundances and spatial distributions in IDPs. In addition, modeling was performed in an attempt to associate particular types of IDPs with specific types of parent bodies, and thus to infer the chemistry, mineralogy, and structural properties of those parent bodies.

  19. Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delzanno, Gian Luca, E-mail: delzanno@lanl.gov; Tang, Xian-Zhu, E-mail: xtang@lanl.gov

    The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [X. Z. Tang and G. L. Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper, the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with particle-in-cell simulations that retain the absorption radius effect. It is found that for large dust grain radius r{sub d} relative to the plasma Debye length λ{sub D}, the revised OML theory remains a very good approximation as, formore » the parameters considered (r{sub d}/λ{sub D} ≤ 10, equal electron and ion temperatures), it yields the dust charge to within 20% accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within 15%–30%.« less

  20. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    PubMed

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  1. Iceland Polar Vortex 2016 campaign: Winter and high-altitude dust size distributions with the balloon-borne Light Optical Aerosol Counter (LOAC)

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dagsson-Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Vignelles, Damien; Verdier, Nicolas

    2017-04-01

    particles cm-3 at altitude of 1 km and 60 particles cm-3 at altitude of 5 km, which is at least 5 times higher than during background conditions. The particles were < 3 micrometers in size at altitudes >1 km while largest particles, up to 20 micrometers, were detected close to the ground. Such high number concentrations in several km height were captured by LOAC during a typical Saharan dust plume. On the other hand, aircraft measurements of winter dust storm in 2007 with an aerosol spectrometer (0.1-3 micrometers) detected only 30-50 particles per cm3 in altitude 1900 m. Our results show that fine volcanic glacially reworked dust can reach high altitudes relatively close to the dust source and reside in terms of days under winter atmospheric conditions. The remaining question is the further transport of these high altitude particles outside Iceland.

  2. Atmospheric response to Saharan dust deduced from ECMWF reanalysis (ERA) temperature increments

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-09-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in the reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the lack of dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (>0.5), low correlation and high negative correlation (<-0.5). The innermost positive correlation area (PCA) is a large area near the center of the Sahara desert. For some local maxima inside this area the correlation even exceeds 0.8. The outermost negative correlation area (NCA) is not uniform. It consists of some areas over the eastern and western parts of North Africa with a relatively small amount of dust. Inside those areas both positive and negative high correlations exist at pressure levels ranging from 850 to 700 hPa, with the peak values near 775 hPa. Dust-forced heating (cooling) inside the PCA (NCA) is accompanied by changes in the static instability of the atmosphere above the dust layer. The reanalysis data of the European Center for Medium Range Weather Forecast (ECMWF) suggest that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity and downward (upward) airflow. These findings are associated with the interaction between dust-forced heating/cooling and

  3. Concentrations of Semivolatile Organic Compounds Associated with African Dust Air Masses in Mali, Cape Verde, Trinidad and Tobago, and the U.S. Virgin Islands, 2001-2008

    USGS Publications Warehouse

    Garrison, Virginia H.; Foreman, William T.; Genualdi, Susan A.; Majewski, Michael S.; Mohammed, Azad; Simonich, Staci Massey

    2011-01-01

    Every year, billions of tons of fine particles are eroded from the surface of the Sahara Desert and the Sahel of West Africa, lifted into the atmosphere by convective storms, and transported thousands of kilometers downwind. Most of the dust is carried west to the Americas and the Caribbean in the Saharan Air Layer (SAL). Dust air masses predominately impact northern South America during the Northern Hemisphere winter and the Caribbean and Southeastern United States in summer. Dust concentrations vary considerably temporally and spatially. In a dust source region (Mali), concentrations range from background levels of 575 micrograms per cubic meter (mu/u g per m3) to 13,000 mu/u g per m3 when visibility degrades to a few meters (Gillies and others, 1996). In the Caribbean, concentrations of 200 to 600 mu/u g per m3 in the mid-Atlantic and Barbados (Prospero and others, 1981; Talbot and others, 1986), 3 to 20 mu/u g per m3 in the Caribbean (Prospero and Nees, 1986; Perry and others, 1997); and >100 mu/u g per m3 in the Virgin Islands (this dataset) have been reported during African dust conditions. Mean dust particle size decreases as the SAL traverses from West Africa to the Caribbean and Americas as a result of gravitational settling. Mean particle size reaching the Caribbean is <1 micrometer (mu/u m) (Perry and others, 1997), and even finer particles are carried into Central America, the Southeastern United States, and maritime Canada. Particles less than 2.5 mu/u m diameter (termed PM2.5) can be inhaled deeply into human lungs. A large body of literature has shown that increased PM2.5 concentrations are linked to increased cardiovascular/respiratory morbidity and mortality (for example, Dockery and others, 1993; Penn and others, 2005).

  4. Chemical characterization of seven Large Area Collector particles by SXRF. [cosmic dust composition

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1991-01-01

    Optical microscopy and synchrotron X-ray fluorescence (SXRF) are used to analyze the chemical composition of seven dark-appearing cosmic-dust particles obtained in the stratosphere during NASA Johnson Large Area Collector flights. The experimental setup and procedures are outlined, and the results are presented in extensive tables. Three of the particles had abundances similar to those of chondrites (except for low Ca values in one particle); two had a metallic appearance and spectra dominated by Fe and Zn; one contained Cu and Cr plus small amounts of Fe and Zn; and one had igneous-type abundances of minor and trace elements while containing all of the elements seen in chondritic particles, suggesting it may be of extraterrestrial origin.

  5. Study of cosmic dust particles on board LDEF: The FRECOPA experiments AO138-1 and AO138-2

    NASA Technical Reports Server (NTRS)

    Mandeville, J. C.; Borg, Janet

    1992-01-01

    Two experiments, within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust, were flown on the LDEF. A variety of sensors and collecting devices have made possible the study of impact processes on materials of technological interest. Preliminary examination of hypervelocity impact features gives valuable data on size distribution and nature of interplanetary dust particles in low earth orbit, within the 0.5 to 300 micrometer size range. Most of the events detected on the trailing face of LDEF are expected to be the result of impacts of meteoritic particles only. So far, chemical analysis of craters by EDS clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. Systematic occurrence of C and O in crater residues is an important result, to be compared with the existence of CHON particles detected in P-Halley comet nucleus. Crater size distribution is in good agreement with results from other dust experiments flown on LDEF. However, no crater smaller than 1.5 micron was observed, thus suggesting a cutoff in the near earth particle distribution. Possible origin and orbital evolution of micrometeoroids is discussed.

  6. Ultrasonic Sorter for Handling and Collecting Dust or Soil Particles Separated by Size/Density

    NASA Astrophysics Data System (ADS)

    Gonzalez, I.; Pinto, A.

    2018-04-01

    A new device is proposed consisting of an endless screw attached to a small sorter actuated by ultrasounds where particles collect from soil or dust to be separated and collected in different reservoirs for their return to the Earth.

  7. On the Effect of Dust Particles on Global Cloud Condensation Nuclei and Cloud Droplet Number

    NASA Technical Reports Server (NTRS)

    Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-01-01

    Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.

  8. Role of Surface Wind and Vegetation Cover in Multi-decadal Variations of Dust Emission in the Sahara and Sahel

    NASA Technical Reports Server (NTRS)

    Kim, Dong; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas L.; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2016-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  9. Direct observation of nitrate and sulfate formations from mineral dust and sea-salts using low- Z particle electron probe X-ray microanalysis

    NASA Astrophysics Data System (ADS)

    Hwang, HeeJin; Ro, Chul-Un

    In the present work, it is demonstrated that a single particle analytical technique, named low- Z particle electron probe X-ray microanalysis, is a practically useful tool for the study of heterogeneous reactions of mineral dust and sea-salts when this analytical technique was applied to a sample collected during an Asian Dust storm event. The technique does not require a special treatment of sample to identify particles reacted in the air. Also, quantitative chemical speciation of reacted particles can provide concrete information on what chemical reaction, if any, occurred for individual particles. Among overall 178 analyzed particles, the number of reacted particles is 81 and heterogeneous chemical reactions mostly occurred on CaCO 3 mineral dust (54 particles) and sea-salts (26 particles). Several observations made for the Asian Dust sample in the present work are: (1) CaCO 3 species almost completely reacted to produce mostly Ca(NO 3) 2 species, and CaSO 4 to a much lesser extent. (2) When reacted particles contain CaSO 4, almost all of them are internally mixed with nitrate. (3) Reacted CaCO 3 particles seem to contain moisture when they were collected. (4) Some reacted CaCO 3 particles have unreacted mineral species, such as aluminosilicates, iron oxide, SiO 2, etc., in the core region. (5) All sea-salt particles are observed to have reacted in the air. Some of them were recrystallized in the air before being collected and they are observed as crystalline NaNO 3 particles. (6) Many sea-salts were collected as water drops, and some of them were fractionally recrystallized on Ag collecting substrate. When sea-salts were not recrystallized on the substrate, they are found as particles internally mixed with NaNO 3 and Mg(NO 3) 2, and in some cases SO 4 and Cl species as additional anions.

  10. Atmospheric dust contribution to budget of U-series nuclides in weathering profiles. The Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Pelt, E.; Chabaux, F. J.; Innocent, C.; Ghaleb, B.

    2009-12-01

    Analysis of U-series nuclides in weathering profiles is developed today for constraining time scale of soil and weathering profile formation (e.g., Chabaux et al., 2008). These studies require the understanding of U-series nuclides sources and fractionation in weathering systems. For most of these studies the impact of aeolian inputs on U-series nuclides in soils is usually neglected. Here, we propose to discuss such an assumption, i.e., to evaluate the impact of dust deposition on U-series nuclides in soils, by working on present and paleo-soils collected on the Mount Cameroon volcano. Recent Sr, Nd, Pb isotopic analyses performed on these samples have indeed documented significant inputs of Saharan dusts in these soils (Dia et al., 2006). We have therefore analyzed 238U-234U-230Th nuclides in the same samples. Comparison of U-Th isotopic data with Sr-Nd-Pb isotopic data indicates a significant impact of the dust input on the U and Th budget of the soils, around 10% for both U and Th. Using Sr-Nd-Pb isotopic data of Saharan dusts given by Dia et al. (2006) we estimate U-Th concentrations and U-Th isotope ratios of dusts compatible with U-Th data obtained on Saharan dusts collected in Barbados (Rydell H.S. and Prospero J.M., 1972). However, the variations of U/Th ratios along the weathering profiles cannot be explained by a simple mixing scenario between material from basalt and from the defined atmospheric dust pool. A secondary uranium migration associated with chemical weathering has affected the weathering profiles. Mass balance calculation suggests that U in soils from Mount Cameroon is affected at the same order of magnitude by both chemical migration and dust accretion. Nevertheless, the Mount Cameroon is a limit case were large dust inputs from continental crust of Sahara contaminate basaltic terrain from Mount Cameroon volcano. Therefore, this study suggests that in other contexts were dust inputs are lower, or the bedrocks more concentrated in U and Th

  11. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    PubMed

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  12. Comparison of Contributions of Wind-blown and Anthropogenic Fugitive Dust Particles to Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    Park, S.; Gong, S.

    2010-12-01

    A new wind-blown-dust emissions module was recently implemented into AURAMS, a Canadian regional air quality model (Park et al., 2009; Park et al., 2007), to investigate the relative impact of wind-blown dust vs. anthropogenic fugitive dust on air quality in North America. In order to apply the wind-blown dust emissions module to the entire North American continent, a soil-grain-size-distribution map was developed using the outputs of four monthly runs of AURAMS for 2002 and available PM2.5 dust-content observations. The simulation results using the new soil-grain-size-distribution map showed that inclusion of wind-blown dust emissions is essential to predict the impact of dust aerosols on air quality in North America, especially in the western U.S.. The wind-blown dust emissions varied widely by season, whereas the anthropogenic fugitive dust emissions did not change significantly. In the spring (April), the continental monthly average emissions rate of wind-blown dust was much higher than that of anthropogenic fugitive dust. The total amount of wind-blown dust emissions in North America predicted by the model for 2002 was comparable to that of anthropogenic fugitive dust emissions. Even with the inclusion of wind-blown dust emissions, however, the model still had difficulty simulating dust concentrations. Further improvements are needed, in terms of both limitations of the wind-blown-dust emission module and uncertainties in the anthropogenic fugitive dust emissions inventories, for improved dust modelling. References Park, S.H., S.L. Gong, W. Gong, P.A. Makar, M.D. Moran, C.A. Stroud, and J. Zhang, Sensitivity of surface characteristics on the simulation of wind-blown dust source in North America, Atmospheric Environment, 43 (19), 3122-3129, 2009. Park, S.H., S.L. Gong, T.L. Zhao, R.J. Vet, V.S. Bouchet, W. Gong, P.A. Makar, M.D. Moran, C. Stroud, and J. Zhang, Simulation of entrainment and transport of dust particles within North America in April 2001 ("Red

  13. Synchrotron FTIR Examination of Interplanetary Dust Particles: An Effort to Determine the Compounds and Minerals in Interstellar and Circumstellar Dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2002-01-01

    Some interplanetary dust particles (IDPs), collected by NASA from the Earth's stratosphere, are the most primitive extraterrestrial material available for laboratory analysis. Many exhibit isotopic anomalies in H, N, and O, suggesting they contain preserved interstellar matter. We report the preliminary results of a comparison of the infrared absorption spectra of subunits of the IDPs with astronomical spectra of interstellar grains.

  14. Interplanetary dust particles collected in the stratosphere: observations of atmospheric heating and constraints on their interrelationships and sources.

    PubMed

    Sandford, S A; Bradley, J P

    1989-01-01

    The majority of the interplanetary dust particles (IDPs) collected in the stratosphere belong to one of three major classes, the first two dominated by the anhydrous minerals olivine and pyroxene, and the third by hydrous layer-lattice silicates. Infrared spectroscopy and transmission electron microscopy studies show that the different IDP classes represent different types of dust that exist as individual particles in interplanetary space. The majority of the collected IDPs smaller than 30 micrometers in diameter in the layer-lattice silicate and pyroxene classes appear not to have been heated to temperatures above 600 degrees C during atmospheric entry. The relatively low maximum temperatures experienced by these IDPs during atmospheric entry imply that they arrive at the top of the atmosphere with low geocentric encounter velocities. This limits the possible encounter trajectories for these particles to relatively circular, prograde orbits. As a result, it is unlikely that these IDPs are from Earth-crossing comets or asteroids. Asteroids, and comets having low inclinations and perihelia outside 1.2 AU, appear to be the best candidates for the parent bodies of the pyroxene and layer-lattice silicate particles. Chemical and mineralogical information suggests that the pyroxene-rich IDPs are from comets and the layer-lattice silicate-rich IDPs are from asteroids. The collected IDPs dominated by olivine appear to include a larger fraction of particles heating above 600 degrees C, suggesting that these particles were captured from more eccentric orbits. This, and the observation of the infrared spectral features of olivine in several comets suggest these particles have a cometary origin. Since much of the collected dust has apparently been captured from nearly circular, prograde orbits and since there are no appropriate parent bodies presently in such orbits, these results provide an experimental confirmation that the Poynting-Robertson effect exists as a

  15. Effect of environmental dust particles on laser textured yttria-stabilized zirconia surface in humid air ambient

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.

    2018-05-01

    Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.

  16. Ice nucleation of natural desert dust including organics sourced from nine deserts worldwide

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Welti, André; Atkinson, James; Danielczok, Anja; Bingemer, Heinz; Plötze, Michael; Lohmann, Ulrike; Kanji, Zamin A.

    2017-04-01

    The extraordinary high ice nucleation (IN) potential of microcline, a K-feldspar mineral, at temperatures (T) above 248 and up to 271 K has been show recently. However, it is unclear if microcline is also found at the surface of airborne mineral dust particles or if chemical and mechanical aging processes lead to its destruction or shielding and thus reduced IN ability in the atmosphere. It is suggested that instead organic material mixed with inorganic minerals is responsible for cloud glaciation at T ≥ 253 K. We collected airborne Saharan dust at 4 locations at different distances from the desert and 11 samples from the surface of 9 of the major deserts worldwide. We studied immersion IN on these samples between 235 - 263 K using the IMCA-ZINC (immersion mode cooling chamber - Zurich ice nucleation chamber) setup and the FRIDGE (Franfurt Ice Nuclei Deposition Freezing Experiment) instrument run in droplet freezing mode. By correlating the results with the bulk mineralogy of the dust samples, determined by X-ray diffraction analysis, we show that at 253 K, K-feldspar indeed predicts best the IN behavior of the samples. At lower T (238 - 245 K) however, quartz and the total feldspar contents correlate best. Furthermore, microcline is only found in one of the airborne Saharan dust samples (3.9 wt%) while in the others the amount is below the detection limit or completely absent. Relative humidity (RH) scans at constant T = 238, 240 and 242 K were additionally performed with the portable ice nucleation counter, PINC. Above and below water saturation a similar prominent role of quartz is found as in the immersion mode. To investigate the role of organic material on the IN ability, we heated some of the samples at 573 K for 10 h and repeated the RH-scans. Furthermore, we performed thermogravimetric analysis of the dusts. The two tested airborne Saharan samples loose between 2.8 and 7.5 % of their mass at T ≤ 573 K, partly due to water release, partly due to

  17. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.

    2016-11-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES ( Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.

  18. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J J.; Deprez, G.; Farrell, William M.; hide

    2016-01-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m(exp. -1) to 100 kV m(exp. -1) have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m(exp. -1) can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface) MicroARES (Atmospheric Radiation and Electricity Sensor) Instrumentation to Mars in 2016 for the first in situ electrical measurements.

  19. Dust-wall and dust-plasma interaction in the MIGRAINe code

    NASA Astrophysics Data System (ADS)

    Vignitchouk, L.; Tolias, P.; Ratynskaia, S.

    2014-09-01

    The physical models implemented in the recently developed dust dynamics code MIGRAINe are described. A major update of the treatment of secondary electron emission, stemming from models adapted to typical scrape-off layer temperatures, is reported. Sputtering and plasma species backscattering are introduced from fits of available experimental data and their relative importance to dust charging and heating is assessed in fusion-relevant scenarios. Moreover, the description of collisions between dust particles and plasma-facing components, based on the approximation of elastic-perfectly plastic adhesive spheres, has been upgraded to take into account the effects of particle size and temperature.

  20. Dust Dynamics Near Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude