Sample records for saharan dust source

  1. Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic

    NASA Astrophysics Data System (ADS)

    Schepanski, Kerstin; Heinold, Bernd; Tegen, Ina

    2017-09-01

    The outflow of dust from the northern African continent towards the North Atlantic is stimulated by the atmospheric circulation over North Africa, which modulates the spatio-temporal distribution of dust source activation and consequently the entrainment of mineral dust into the boundary layer, as well as the transport of dust out of the source regions. The atmospheric circulation over the North African dust source regions, predominantly the Sahara and the Sahel, is characterized by three major circulation regimes: (1) the harmattan (trade winds), (2) the Saharan heat low (SHL), and (3) the West African monsoon circulation. The strength of the individual regimes controls the Saharan dust outflow by affecting the spatio-temporal distribution of dust emission, transport pathways, and deposition fluxes.This study aims at investigating the atmospheric circulation pattern over North Africa with regard to its role favouring dust emission and dust export towards the tropical North Atlantic. The focus of the study is on summer 2013 (June to August), during which the SALTRACE (Saharan Aerosol Long-range TRansport and Aerosol-Cloud interaction Experiment) field campaign also took place. It involves satellite observations by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) flying on board the geostationary Meteosat Second Generation (MSG) satellite, which are analysed and used to infer a data set of active dust sources. The spatio-temporal distribution of dust source activation frequencies (DSAFs) allows for linking the diurnal cycle of dust source activations to dominant meteorological controls on dust emission. In summer, Saharan dust source activations clearly differ from dust source activations over the Sahel regarding the time of day when dust emission begins. The Sahara is dominated by morning dust source activations predominantly driven by the breakdown of the nocturnal low-level jet. In contrast, dust source activations in the Sahel are predominantly

  2. Relative Contributions of the Saharan and Sahelian Sources to the Atmospheric Dust Load Over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Chin, M.; Torres, O.; Prospero, J.; Dubovik, O.; Holben, B.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It has long been recognized that Saharan desert is the major source for long range transport of mineral dust over the Atlantic. The contribution from other natural sources to the dust load over the Atlantic has generally been ignored in previous model studies or been replaced by anthropogenically disturbed soil emissions. Recently, Prospero et.at. have identified the major dust sources over the Earth using TOMS aerosol index. They showed that these sources correspond to dry lakes with layers of sediment deposed in the late Holocene or Pleistocene. One of the most active of these sources seem to be the Bodele depression. Chiapello et al. have analyzed the mineralogical composition of dust on the West coast of Africa. They found that Sahelian dust events are the most intense but are less frequent than Saharan plumes. This suggests that the Bodele depression could contribute significantly to the dust load over the Atlantic. The relative contribution of the Sahel and Sahara dust sources is of importance for marine biogeochemistry or atmospheric radiation, because each source has a distinct mineralogical composition. We present here a model study of the relative contributions of Sahara and Sahel sources to the atmospheric dust aerosols over the North Atlantic. The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate dust distribution in 1996-1997. Dust particles are labeled depending on their sources. In this presentation, we will present the comparison between the model results and observations from ground based measurements (dust concentration, optical thickness and size distribution) and satellite data (TOMS aerosol index). The relative contribution of each source will then be analyzed spatially and temporally.

  3. Cooling of the North Atlantic by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.

    2007-01-01

    Using aerosol optical depth, sea surface temperature, top-of-the-atmosphere solar radiation flux, and oceanic mixed-layer depth from diverse data sources that include NASA satellites, NCEP reanalysis, in situ observations, as well as long-term dust records from Barbados, we examine the possible relationships between Saharan dust and Atlantic sea surface temperature. Results show that the estimated anomalous cooling pattern of the Atlantic during June 2006 relative to June 2005 due to attenuation of surface solar radiation by Saharan dust remarkably resemble observations, accounting for approximately 30-40% of the observed change in sea surface temperature. Historical data analysis show that there is a robust negative correlation between atmospheric dust loading and Atlantic SST consistent with the notion that increased (decreased) Saharan dust is associated with cooling (warming) of the Atlantic during the early hurricane season (July- August-September).

  4. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania

    NASA Astrophysics Data System (ADS)

    Friese, Carmen A.; van Hateren, Johannes A.; Vogt, Christoph; Fischer, Gerhard; Stuut, Jan-Berend W.

    2017-08-01

    Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL). In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.

  5. Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source

    NASA Astrophysics Data System (ADS)

    Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.

    2015-12-01

    In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity

  6. Poleward transport of Saharan dust initiated by a Saharan cyclone.

    NASA Astrophysics Data System (ADS)

    Karam Francis, Diana Bou; Chaboureau, Jean-Pierre; Cuesta, Juan

    2016-04-01

    To enhance the understanding of the role of Saharan mineral dust in the Arctic climate system, this study focuses on dust emission and poleward transport associated with an intense Saharan cyclone that occurred over North Africa in early April 2011. Satellites observations at high spatio-temporal resolution are used in this study in order to characterize qualitatively (using MSG-SEVIRI and CALIPSO/CloudSat) and quantitatively (using MODIS and OMI) the dust activity over North Africa associated with the Saharan cyclone as well as the transport of dust toward the northern pole. Beside the observations, a simulation at high resolution is performed using the MesoNh model in order to estimation the dust load transported northward and to evaluate the dust deposition north to 60°N and its impact on the Albedo. In this study, we identify in new and important mechanism for the transport of dust over long distances toward the northern pole: the poleward migration of Saharan cyclones, in which the dust is transported toward the Arctic following a newly identified path; across the Northern Atlantic Ocean around the Icelandic Low. This path is to be added to the two preferable paths mentioned in previous studies i.e. through transport across Northern Europe and across the Atlantic Ocean around the Bermuda High. Key words: Arctic, North Africa, dust storm, dust deposition, surface albedo.

  7. Dust sources and atmospheric circulation in concert controlling Saharan dust emission and transport towards the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Schepanski, Kerstin; Mallet, Marc; Heinold, Bernd; Ulrich, Max

    2017-04-01

    Dust transported from north African source regions towards Europe is a ubiquitous phenomenon in the Mediterranean region, a geographic region that is in part densely populated. Besides its impacts on the atmospheric radiation budget, dust suspended in the atmosphere results in reduced air quality, which is generally sensed as a reduction in quality of life. Furthermore, the exposure to dust aerosols enhances the prevalence of respiratory diseases, which reduces the general human wellbeing, and ultimately results in an increased loss of working hours due to illness and hospitalization rates. Characteristics of the atmospheric dust life cycle that determine dust transport will be presented with focus on the ChArMEx special observation period in June and July 2013 using the atmosphere-dust model COSMO-MUSCAT (COSMO: Consortium for Small-scale MOdeling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model). Modes of atmospheric circulation were identified from empirical orthogonal function (EOF) analysis of the geopotential height at 850 hPa for summer 2013 and compared to EOFs calculated from 1979-2015 ERA-Interim reanalysis. Generally, two different phases were identified. They are related to the eastward propagation of the subtropical ridge into the Mediterranean basin, the position of the Saharan heat low, and the predominant Iberian heat low. The relation of these centres of action illustrates a dipole pattern for enhanced (reduced) dust emission fluxes, stronger (weaker) meridional dust transport, and consequent increase (decrease) atmospheric dust concentrations and deposition fluxes. In concert, the results from this study aim at illustrating the relevance of knowing the dust source locations in concert with the atmospheric circulation. Ultimately, this study addresses the question of what is finally transported towards the Mediterranean basin and Europe from which source regions - and fostered by which atmospheric circulation pattern. Outcomes from this study

  8. Modeling of intercontinental Saharan dust transport: What consequences on atmospheric concentrations and deposition fluxes in the Caribbean?

    NASA Astrophysics Data System (ADS)

    Laurent, Benoit; Formenti, Paola; Desboeufs, Karine; Vincent, Julie; Denjean, Cyrielle; Siour, Guillaume; Mayol-Bracero, Olga L.

    2015-04-01

    The Dust Aging and Transport from Africa to the Caribbean (Dust-AttaCk) project aims todocument the physical and optical properties of long-range transported African dust to the Caribbean. A comprehensive field campaign was conducted in Cape San Juan, Puerto Rico (18.38°N 65.62°W) during June-July 2012, offering the opportunity to constrain the way Saharan dust are transported from North Africa to the Caribbean by 3D models. Our main objectives are: (i) to discuss the ability of the CHIMERE Eulerian off-line chemistry-transport model to simulate atmospheric Saharan dust loads observed in the Caribbean during the Dust-AttaCk campaign, as well as the altitude of the dust plumes transport over the North Atlantic Ocean up to the Caribbean, (ii) to study the main Saharan dust emission source areas contributing to the dust loads in the Caribbean, (iii) to estimate the Saharan dust deposition in the Caribbean for deposition events observed during the Dust-AttaCk campaign. The dust model outputs are hourly dust concentration fields in µg m-3 for 12 aerosol size bins up to 30 µm and for each of the 15 sigma pressure vertical levels, column integrated dustaerosol optical depth (AOD), and dry and wet deposition fluxes.The simulations performed for the Dust-AttaCk campaign period as well as satellite observations (MODIS AOD, SEVIRI AOD) are used to identify the Saharan emission source regions activated and to study the evolution of the dust plumes tothe Cape San Juan station. In complement, the vertical transport of dust plumes transported from Saharan dust sources and over the North Atlantic Ocean is investigated combining model simulations and CALIOP observations. Aerosol surface concentrations and AOD simulated with CHIMERE are compared with sin-situ observations at Cape San Juan and AERONET stations. Wet deposition measurements performed allow us to constrain dust deposition flux simulated in the Caribbean after long-range transport.

  9. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  10. Millennial-scale fluctuations in Saharan dust supply across the decline of the African Humid Period

    NASA Astrophysics Data System (ADS)

    Zielhofer, Christoph; von Suchodoletz, Hans; Fletcher, William J.; Schneider, Birgit; Dietze, Elisabeth; Schlegel, Michael; Schepanski, Kerstin; Weninger, Bernhard; Mischke, Steffen; Mikdad, Abdeslam

    2017-09-01

    The Sahara is the world's largest dust source with significant impacts on trans-Atlantic terrestrial and large-scale marine ecosystems. Contested views about a gradual or abrupt onset of Saharan aridity at the end of the African Humid Period dominate the current scientific debate about the Holocene Saharan desiccation. In this study, we present a 19.63 m sediment core sequence from Lake Sidi Ali (Middle Atlas, Morocco) at the North African desert margin. We reconstruct the interaction between Saharan dust supply and Western Mediterranean hydro-climatic variability during the last 12,000 yr based on analyses of lithogenic grain-sizes, XRF geochemistry and stable isotopes of ostracod shells. A robust chronological model based on AMS 14C dated pollen concentrates supports our multi-proxy study. At orbital-scale there is an overall increase in southern dust supply from the Early Holocene to the Late Holocene, but our Northern Saharan dust record indicates that a gradual Saharan desiccation was interrupted by multiple abrupt dust increases before the 'southern dust mode' was finally established at 4.7 cal ka BP. The Sidi Ali record features millennial peaks in Saharan dust increase at about 11.1, 10.2, 9.4, 8.2, 7.3, 6.6, 6.0, and 5.0 cal ka BP. Early Holocene Saharan dust peaks coincide with Western Mediterranean winter rain minima and North Atlantic cooling events. In contrast, Late Holocene dust peaks correspond mostly with prevailing positive phases of the North Atlantic Oscillation. By comparing with other North African records, we suggest that increases in Northern Saharan dust supply do not solely indicate sub-regional to regional aridity in Mediterranean Northwest Africa but might reflect aridity at a trans-Saharan scale. In particular, our findings support major bimillennial phases of trans-Saharan aridity at 10.2, 8.2, 6.0 and 4.2 cal ka BP. These phases coincide with North Atlantic cooling and a weak African monsoon.

  11. Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Ansmann, Albert; Althausen, Dietrich; Klepel, André; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Mamouri, Rodanthi-Elisavet; Farrell, David A.; Prescod, Damien A.; Marinou, Eleni; Burton, Sharon P.; Gasteiger, Josef; Engelmann, Ronny; Baars, Holger

    2017-09-01

    Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1° N, 59.6° W), 5000-8000 km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June-July 2013, SALTRACE-3, June-July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064 nm with respective dual-wavelength (355, 532 nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12 000 km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252 ± 0.030 at 355 nm, 0.280 ± 0.020 at 532 nm, and 0.225 ± 0.022 at 1064 nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1 µm) have sizes around 1.5-2 µm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust

  12. Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions.

    PubMed

    Díaz, Julio; Linares, Cristina; Carmona, Rocío; Russo, Ana; Ortiz, Cristina; Salvador, Pedro; Trigo, Ricardo Machado

    2017-07-01

    A lot of papers have been published about the impact on mortality of Sahara dust intrusions in individual cities. However, there is a lack of studies that analyse the impact on a country and scarcer if in addition the analysis takes into account the meteorological conditions that favour these intrusions. The main aim is to examine the effect of Saharan dust intrusions on daily mortality in different Spanish regions and to characterize the large-scale atmospheric circulation anomalies associated with such dust intrusions. For determination of days with Saharan dust intrusions, we used information supplied by the Ministry of Agriculture, Food & Environment, it divides Spain into 9 main areas. In each of these regions, a representative province was selected. A time series analysis has been performed to analyse the relationship between daily mortality and PM 10 levels in the period from 01.01.04 to 31.12.09, using Poisson regression and stratifying the analysis by the presence or absence of Saharan dust advections. The proportion of days on which there are Saharan dust intrusions rises to 30% of days. The synoptic pattern is characterised by an anticyclonic ridge extending from northern Africa to the Iberian Peninsula. Particulate matter (PM) on days with intrusions are associated with daily mortality, something that does not occur on days without intrusions, indicating that Saharan dust may be a risk factor for daily mortality. In other cases, what Saharan dust intrusions do is to change the PM-related mortality behaviour pattern, going from PM 2.5 . A study such as the one conducted here, in which meteorological analysis of synoptic situations which favour Saharan dust intrusions, is combined with the effect on health at a city level, would seem to be crucial when it comes to analysing the differentiated mortality pattern in situations of Saharan dust intrusions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters.

    PubMed

    Westrich, Jason R; Ebling, Alina M; Landing, William M; Joyner, Jessica L; Kemp, Keri M; Griffin, Dale W; Lipp, Erin K

    2016-05-24

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust-Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  14. Community variability of bacteria in alpine snow (Mont Blanc) containing Saharan dust deposition and their snow colonisation potential.

    PubMed

    Chuvochina, Maria S; Marie, Dominique; Chevaillier, Servanne; Petit, Jean-Robert; Normand, Philippe; Alekhina, Irina A; Bulat, Sergey A

    2011-01-01

    Microorganisms uplifted during dust storms survive long-range transport in the atmosphere and could colonize high-altitude snow. Bacterial communities in alpine snow on a Mont Blanc glacier, associated with four depositions of Saharan dust during the period 2006-2009, were studied using 16S rRNA gene sequencing and flow cytometry. Also, sand from the Tunisian Sahara, Saharan dust collected in Grenoble and Mont Blanc snow containing no Saharan dust (one sample of each) were analyzed. The bacterial community composition varied significantly in snow containing four dust depositions over a 3-year period. Out of 61 phylotypes recovered from dusty snow, only three phylotypes were detected in more than one sample. Overall, 15 phylotypes were recognized as potential snow colonizers. For snow samples, these phylotypes belonged to Actinobacteria, Proteobacteria and Cyanobacteria, while for Saharan sand/dust samples they belonged to Actinobacteria, Bacteroidetes, Deinococcus-Thermus and Proteobacteria. Thus, regardless of the time-scale, Saharan dust events can bring different microbiota with no common species set to alpine glaciers. This seems to be defined more by event peculiarities and aeolian transport conditions than by the bacterial load from the original dust source.

  15. Improving Air Pollution Modeling Over The Po Valley Using Saharan Dust Transport Forecasts

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M.; Nickovic, S.; Alpert, P.

    2012-04-01

    Our study shows that Saharan dust can contribute significantly to PM10 concentrations in the Po Valley. This dust contribution should be taken into account when estimating the exceedance of pollution limits. The DREAM dust model has been used for several years for producing operational dust forecasts at Tel-Aviv University, Israel. DREAM has been producing daily forecasts of 3-D distribution of dust concentrations over the Mediterranean region, Middle East, Europe, and over the Atlantic Ocean (http://wind.tau.ac.il/dust8/dust.html). In the current study, DREAM dust forecasts were used to give better model estimates of the contribution of Saharan dust to PM10 concentration over the Po Valley, in Northern Italy. This was carried out by the integration of daily Saharan dust forecasts into a mesoscale Transport Chemical Aerosol Model (TCAM). The Po Valley in Northern Italy is frequently affected by high PM10 concentrations, where both natural and anthropogenic sources play a significant role. Our study of TCAM and DREAM integration was carried out for the period May 15 - June 30, 2007, when four significant dust events were observed. The integrated TCAM-DREAM model performance was evaluated by comparing PM10 measurements with modeled PM10 concentrations. First, Saharan dust impact on TCAM performance was analyzed at eleven remote PM10 sites which had the lowest level of air pollution (PM10 ≤ 14 μg/m3) over the period under consideration. For those remote sites, the observed high PM10 concentrations during dust events stood prominently on the background of low PM10 concentrations. At the remote sites, such a strong deviation from the background level can not be attributed to anthropogenic aerosol emissions because of their distance from anthropogenic sources. The observed maxima in PM10 concentration during dust events is evidence of dust aerosol near the surface in Northern Italy. During all dust events under consideration, the integrated TCAM-DREAM model produced

  16. Influences of natural emission sources (wildfires and Saharan dust) on the urban organic aerosol in Barcelona (Western Mediterranean Basis) during a PM event.

    PubMed

    van Drooge, Barend L; Lopez, Jordi F; Grimalt, Joan O

    2012-11-01

    The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM(10) filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6 %. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.

  17. Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment

    NASA Astrophysics Data System (ADS)

    Ansmann, A.; Tesche, M.; Althausen, D.; Müller, D.; Seifert, P.; Freudenthaler, V.; Heese, B.; Wiegner, M.; Pisani, G.; Knippertz, P.; Dubovik, O.

    2008-02-01

    Multiwavelength lidar, Sun photometer, and radiosonde observations were conducted at Ouarzazate (30.9°N, 6.9°W, 1133 m above sea level, asl), Morocco, in the framework of the Saharan Mineral Dust Experiment (SAMUM) in May-June 2006. The field site is close to the Saharan desert. Information on the depolarization ratio, backscatter and extinction coefficients, and lidar ratio of the dust particles, estimates of the available concentration of atmospheric ice nuclei at cloud level, profiles of temperature, humidity, and the horizontal wind vector as well as backward trajectory analysis are used to study cases of cloud formation in the dust with focus on heterogeneous ice formation. Surprisingly, most of the altocumulus clouds that form at the top of the Saharan dust layer, which reaches into heights of 4-7 km asl and has layer top temperatures of -8°C to -18°C, do not show any ice formation. According to the lidar observations the presence of a high number of ice nuclei (1-20 cm-3) does not automatically result in the obvious generation of ice particles, but the observations indicate that cloud top temperatures must typically reach values as low as -20°C before significant ice production starts. Another main finding is that liquid clouds are obviously required before ice crystals form via heterogeneous freezing mechanisms, and, as a consequence, that deposition freezing is not an important ice nucleation process. An interesting case with cloud seeding in the free troposphere above the dust layer is presented in addition. Small water clouds formed at about -30°C and produced ice virga. These virga reached water cloud layers several kilometers below the initiating cloud cells and caused strong ice production in these clouds at temperatures as high as -12°C to -15°C.

  18. Saharan Dust on the Move

    NASA Image and Video Library

    2017-12-08

    A piece of Africa—actually lots of them—began to arrive in the Americas in June 2014. On June 23, a lengthy river of dust from western Africa began to push across the Atlantic Ocean on easterly winds. A week later, the influx of dust was affecting air quality as far away as the southeastern United States. This composite image, made with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPP, shows dust heading west toward South America and the Gulf of Mexico on June 25, 2014. The dust flowed roughly parallel to a line of clouds in the intertropical convergence zone, an area near the equator where the trade winds come together and rain and clouds are common. In imagery captured by the Moderate Resolution Imaging Spectroradiometer (MODIS), the dust appeared to be streaming from Mauritania, Senegal, and Western Sahara, though some of it may have originated in countries farther to the east. Saharan dust has a range of impacts on ecosystems downwind. Each year, dust events like the one pictured here deliver about 40 million tons of dust from the Sahara to the Amazon River Basin. The minerals in the dust replenish nutrients in rainforest soils, which are continually depleted by drenching, tropical rains. Research focused on peat soils in the Everglades show that African dust has been arriving regularly in South Florida for thousands of years as well. In some instances, the impacts are harmful. Infusion of Saharan dust, for instance, can have a negative impact on air quality in the Americas. And scientists have linked African dust to outbreaks of certain types of toxic algal blooms in the Gulf of Mexico and southern Florida. Read more: 1.usa.gov/1snkzmS NASA images by Norman Kuring, NASA’s Ocean Color web. Caption by Adam Voiland. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and

  19. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters

    USGS Publications Warehouse

    Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.; Lipp, Erin K.

    2016-01-01

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrioafter natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  20. Tank bromeliads capture Saharan dust in El Yunque National Forest, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Royer, Dana L.; Moynihan, Kylen M.; Ariori, Carolyn; Bodkin, Gavin; Doria, Gabriela; Enright, Katherine; Hatfield-Gardner, Rémy; Kravet, Emma; Nuttle, C. Miller; Shepard, Lisa; Ku, Timothy C. W.; O'Connell, Suzanne; Resor, Phillip G.

    2018-01-01

    Dust from Saharan Africa commonly blows across the Atlantic Ocean and into the Caribbean. Most methods for measuring this dust either are expensive if collected directly from the atmosphere, or depend on very small concentrations that may be chemically altered if collected from soil. Tank bromeliads in the dwarf forest of El Yunque National Forest, Puerto Rico, have a structure of overlapping leaves used to capture rainwater and other atmospheric inputs. Therefore, it is likely that these bromeliads are collecting in their tanks Saharan dust along with local inputs. Here we analyze the elemental chemistry, including rare earth elements (REEs), of tank contents in order to match their chemical fingerprint to a provenance of the Earth's crust. We find that the tank contents differ from the local soils and bedrock and are more similar to published values of Saharan dust. Our study confirms the feasibility of using bromeliad tanks to trace Saharan dust in the Caribbean.

  1. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands

    USGS Publications Warehouse

    Muhs, D.R.; Bush, C.A.; Stewart, K.C.; Rowland, T.R.; Crittenden, R.C.

    1990-01-01

    Most previous workers have regarded the insoluble residues of high-purity Quaternary limestones (coral reefs and oolites) as the most important parent material for well-developed, clay-rich soils on Caribbean and western Atlantic islands, but this genetic mechanism requires unreasonable amounts of limestone solution in Quaternary time. Other possible parent materials from external sources are volcanic ash from the Lesser Antilles island arc and Saharan dust carried across the Atlantic Ocean on the northeast trade winds. Soils on Quaternary coral terraces and carbonate eolianites on Barbados, Jamaica, the Florida Keys (United States), and New Providence Island (Bahamas) were studied to determine which, if either, external source was important. Caribbean volcanic ashes and Saharan dust can be clearly distinguished using ratios of relatively immobile elements ( Al2O3 TiO2, Ti Y, Ti Zr, and Ti Th). Comparison of these ratios in 25 soils, where estimated ages range from 125,000 to about 870,000 yr, shows that Saharan dust is the most important parent material for soils on all islands. These results indicate that the northeast trade winds have been an important component of the regional climatology for much of the Quaterary. Saharan dust may also be an important parent material for Caribbean island bauxites of much greater age. ?? 1990.

  2. Impact of Saharan dust particles on hospital admissions in Madrid (Spain).

    PubMed

    Reyes, María; Díaz, Julio; Tobias, Aurelio; Montero, Juan Carlos; Linares, Cristina

    2014-01-01

    Saharan dust intrusions make a major contribution to levels of particulate matter (PM) present in the atmosphere of large cities. We analysed the impact of different PM fractions during periods with and without Saharan dust intrusions, using time-series analysis with Poisson regression models, based on: concentrations of coarse PM (PM10 and PM10-2.5) and fine PM (PM2.5); and daily all-, circulatory- and respiratory-cause hospital admissions. While periods without Saharan dust intrusions were marked by a statistically significant association between daily mean PM2.5 concentrations and all- and circulatory-cause hospital admissions, periods with such intrusions saw a significant increase in respiratory-cause admissions associated with fractions corresponding to PM10 and PM10-2.5.

  3. Trans-Pacific Transport of Saharan Dust to Western North America: A Case Study

    NASA Technical Reports Server (NTRS)

    Kendry, Ian G. M.; Strawbridge, Kevin B.; O'Neill, Norman; Macdonald, Anne Marie; Liu, Peter S. K.; Leaitch, W. Richard; Anlauf, Kurt G.; Jaegle, Lyatt; Fairlie, T. Duncan; Westphal, Douglas L.

    2007-01-01

    The first documented case of long range transport of Saharan dust over a pathway spanning Asia and the Pacific to Western North America is described. Crustal material generated by North African dust storms during the period 28 February - 3 March 2005 reached western Canada on 13-14 March 2005 and was observed by lidar and sunphotometer in the Vancouver region and by high altitude aerosol instrumentation at Whistler Peak. Global chemical models (GEOS-CHEM and NRL NAAPS) confirm the transport pathway and suggest source attribution was simplified in this case by the distinct, and somewhat unusual, lack of dust activity over Eurasia (Gobi and Takla Makan deserts) at this time. Over western North America, the dust layer, although subsiding close to the boundary layer, did not appear to contribute to boundary layer particulate matter concentrations. Furthermore, sunphotometer observations (and associated inversion products) suggest that the dust layer had only subtle optical impact (Aerosol Optical Thickness (Tau(sub a500)) and Angstrom exponent (Alpha(sub 440-870) were 0.1 and 1.2 respectively) and was dominated by fine particulate matter (modes in aerodynamic diameter at 0.3 and 2.5microns). High Altitude observations at Whistler BC, confirm the crustal origin of the layer (rich in Ca(++) ions) and the bi-modal size distribution. Although a weak event compared to the Asian Trans-Pacific dust events of 1998 and 2001, this novel case highlights the possibility that Saharan sources may contribute episodically to the aerosol burden in western North America.

  4. Saharan dust contribution to PM levels: The EC LIFE+ DIAPASON project

    NASA Astrophysics Data System (ADS)

    Gobbi, G. P.; Wille, H.; Sozzi, R.; Angelini, F.; Barnaba, F.; Costabile, F.; Frey, S.; Bolignano, A.; Di Giosa, A.

    2012-04-01

    The contribution of Saharan-dust advections to both daily and annual PM average values can be significant all over Southern Europe. The most important effects of dust on the number of PM exceedances are mostly observed in polluted areas and large cities. While a wide literature exists documenting episodes of Saharan dust transport towards the Euro-Mediterranean region and Europe in general, a limited number of studies are still available providing statistically significant results on the impact of Saharan dust on the particulate matter loads over the continent. A four-year (2001-2004) study performed in Rome (Italy) found these events to contribute to the average ground PM10 with about 15±10 µg/m3 on about 17% of the days in a year. Since the PM10 yearly average of many traffic stations in Rome is close to 40 μg/m3, these events can cause the PM10 concentration to exceed air quality limit values (50 μg/m3 as daily average) set by the EU Air Quality Directive 2008/50/EC. Although the European legislation allows Member States to subtract the contribution of natural sources before counting PM10 exceedances, definition of an optimal methodology to quantitatively assess such contribution is still in progress. On the basis of the current European Guidelines on the assessment of natural contributions to PM, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs", recently funded under the EC LIFE+ program) has been formulated to provide a robust, user-oriented methodology to assess the presence of desert dust and its contribution to PM levels. To this end, in addition to satellite-based data and model forecasts, the DIAPASON methodology will employ innovative and affordable technologies, partly prototyped within the project itself, as an operational Polarization Lidar-Ceilometer (laser radar) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The DIAPASON Project (2011

  5. Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps.

    PubMed

    Peter, Hannes; Hörtnagl, Paul; Reche, Isabel; Sommaruga, Ruben

    2014-12-01

    The diversity of airborne microorganisms that potentially reach aquatic ecosystems during rain events is poorly explored. Here, we used a culture-independent approach to characterize bacterial assemblages during rain events with and without Saharan dust influence arriving to a high mountain lake in the Austrian Alps. Bacterial assemblage composition differed significantly between samples with and without Saharan dust influence. Although alpha diversity indices were within the same range in both sample categories, rain events with Atlantic or continental origins were dominated by Betaproteobacteria, whereas those with Saharan dust intrusions were dominated by Gammaproteobacteria. The high diversity and evenness observed in all samples suggests that different sources of bacteria contributed to the airborne assemblage collected at the lake shore. During experiments with bacterial assemblages collected during rain events with Saharan dust influence, cell numbers rapidly increased in sterile lake water from initially ∼3 × 103 cell ml-1 to 3.6-11.1 x105 cells ml-1 within 4-5 days, and initially, rare taxa dominated at the end of the experiment. Our study documents the dispersal of viable bacteria associated to Saharan dust intrusions travelling northwards as far as 47° latitude.

  6. Characterization of Saharan mineral dust transported to the Colle Gnifetti glacier (Southern Alps, Switzerland) during the last centuries.

    NASA Astrophysics Data System (ADS)

    Thevenon, Florian; Poté, John; Adatte, Thierry; Chiaradia, Massimo; Hueglin, Christoph; Collaud Coen, Martine

    2010-05-01

    The Southern Alps act as a barrier to the southwesterly dust-laden winds from the Sahara, and the Colle Gnifetti saddle (45°55'N, 7°52'E, 4455 m asl in the Monte Rosa Massif) satisfactory conserves the history of climatic conditions over the last millennium (Thevenon et al., 2009). Therefore, the Colle Gnifetti glacier is a suitable site for i) studying the composition of past Saharan aeolian dust emissions, and for ii) comparing modern dust emissions with preindustrial emissions. The mineral aerosols entrapped in the ice core have been analyzed for their physical (grain-size by image analysis), mineralogical (by X-ray diffraction), and chemical composition (by ICPMS and by mass spectrometry for Sr and Nd isotopic ratios). The mineral dust characteristics are then compared with present day Saharan dust samples collected at the high altitude research station Jungfraujoch (46°55'N, 7°98E, 3580 asl) and with documented potential dust sources. Results show that i) the increases in atmospheric dustiness correlate with larger mean grain size, and that ii) the dust emissions increase after the industrial revolution, probably as a large-scale atmospheric circulation response to anthropogenic climate forcing (Shindell et al., 2001; Thevenon et al., 2009). However, geochemical variations in aeolian mineral particles also indicate that the source areas of the dust, which are now situated in northern and north-western part of the Saharan desert (Collaud Coen et al., 2004), did not change significantly throughout the past. Therefore, the mineralogy (e.g. illite, kaolinite, chlorite, palygorskite) and the geochemistry of the paleo-dust particles transported to Europe, are relevant to assess past African dust sources. REFERENCES: - Thevenon, F., F. S. Anselmetti, S. M. Bernasconi, and M. Schwikowski (2009). Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J. Geophys. Res., 114, D17102, doi:10

  7. The sensitivity of a general circulation model to Saharan dust heating

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Carlson, T.; Mintz, Y.

    1984-01-01

    During the Northern summer, sporadic outbreaks of wind borne Saharan dust are carried out over the Atlantic by the tropical easterlies. Optical depths due to the dust can reach 3 near the African coast, and the dust cloud can be detected as far west as the Caribbean Sea (Carlson, 1979). In order to obtain insight into the possible effects of Saharan dust on the weather and climate of North Africa and the tropical Atlantic Ocean, simulation experiments have been performed with the Climate Model of the Goddard Laboratory for Atmospheric Sciences. The most recent version of the model is described by Randall (1982). The model produces realistic simulations of many aspects of the observed climate and its seasonal variation.

  8. Following Saharan Dust Outbreak Toward The Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Koren, I.; Rudich, Y.; Flores, M.

    2008-12-01

    The role of the Amazon rainforest on earth climatic system is well recognized. To keep forest wellbeing and the fragile balance between the rainforest and the atmosphere, the Amazon must contain a satisfactory amount of nutrients to support the plants. The extensive rain and floods wash most of the soluble nutrients from the rainforest soil, leaving behind acidic kaolinite clay or sandy soil, with limited minerals for plant growth. It was suggested that lack of mineral in the soil may be replenished by deposition of Saharan mineral dust. Using remote sensing data (from the A-train satellites constellation) following with in-situ measurements (as part of the AMazonian Aerosol CharacteriZation Experiment (AMZE) campaign), ground-based data (from AErosol RObotic NETwork (AERONET)) and back trajectory calculations, we analyzed Saharan dust transport toward the Amazon basin during the AMZE period (Feb 7 to Mar 14, 2008). Dust mass, sink, vertical distribution and surface wind speeds were analyzed over the Bodele depression (located in Chad), where most of the dust is emitted, along the Atlantic Ocean and near the Brazilian coastline. Using an integrated data analysis approach we followed dust packages from their emission in the Sahara to their sink in the Amazon forest.

  9. Can Transport of Saharan Dust Explain Extensive Clay Deposits in the Amazon Basin? A Test Using Radiogenic Isotopes

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Abouchami, W.; Näthe, K.; Kumar, A.; Galer, S. J.; Jochum, K. P.; Williams, E.; Horbe, A. M.; Rosa, J. W.; Adams, D. K.; Balsam, W. R.

    2012-12-01

    The Bodélé Depression, located in the Southern Sahara, is a huge source of atmospheric dust and thus an important element in biogeochemical cycles and the radiative budget of Earth's atmosphere. Previous studies have shown that Saharan dust transport across the Atlantic acts as an important source of mineral nutrients to the Amazon rainforest. The Belterra Clay, which outcrops extensively across the Amazon Basin in Brazil, has been proposed to result from dry deposition of African dusts. We have investigated this hypothesis by measuring the radiogenic isotopic composition (Sr, Nd and Pb) of a suite of samples from the Belterra Clay, the Bodélé Depression, dusts deposits collected at various locations along the airmass transport trajectory, as well as loess from the Cape Verde Islands. Radiogenic isotope systems are powerful tracers of provenance and can be used to fingerprint dust sources and atmospheric transport patterns. Our results identify distinct isotopic signatures in the Belterra Clay samples and the African sources. The Belterra Clay display radiogenic Sr and Pb isotope ratios associated with non-radiogenic Nd isotope signatures. In contrast, Bodélé samples and dusts deposits show lower Pb isotope ratios, variable 87Sr/86Sr, and relatively homogeneous Nd isotopic compositions, albeit more radiogenic than those of the Belterra Clay. Our data show unambiguously that the Belterra Clay is not derived from African dust deposition, nor from the Andean chain, as originally suggested by W. Sombroek. Rather, isotopic compositions and Nd model ages are consistent with simple mixing of Archean and younger Proterozoic terranes within the Amazon Basin as a result of weathering and erosion under humid tropical conditions. Whether Saharan dusts contribute to the fertilization in the Amazon Basin cannot be ruled out, however, since the African dust isotopic signature is expected to be entirely overprinted by local sources. Radiogenic isotope data obtained on

  10. The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)

    NASA Astrophysics Data System (ADS)

    Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.

    2017-12-01

    Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.

  11. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  12. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  13. Enhanced Saharan dust input to the Levant during Heinrich stadials

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Stein, Mordechai

    2018-04-01

    The history of dust transport to the Levant during the last glacial period is reconstructed using the isotope ratios of Pb, Sr, Nd, and Hf in sediments of Lake Lisan, the last glacial Dead Sea. Exposed marginal sections of the Lisan Formation were sampled near Masada, the Perazim Valley and from a core drilled at the deep floor of the modern lake. Bulk samples and size fractions display unique isotopic fingerprints: the finest detritus fraction (<5 μm) displays higher 87Sr/86Sr and lower εNd values (0.710-0.713 and -7.0 to -9.8, respectively) relative to the coarser fractions (5-20 μm and <20 μm; 0.708-0.710 and -3.4 to -8.3) and the bulk detritus samples (0.709-0.711 and -6 to -7.5). Similarly, the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios (18.26-19.02, 15.634-15.68, and 38.25-38.82, respectively) are systematically higher in the finest detritus fraction relative to corresponding coarser fractions and bulk samples. The 87Sr/86Sr and εNd values of the finest fraction correspond with those of atmospheric dust originating from the Sahara Desert, while those of the coarse fractions are similar to loess deposits exposed in the Sinai and Negev Deserts. Pronounced excursions in the Sr-Nd-Pb isotope ratios toward more Sahara-like values coincide with the Heinrich (H) stadials 6, 5 and 1, reflecting significant increases in Saharan dust fluxes during regionally arid intervals, reflected by sharp lake level drops. Moreover, during H6 the dust came from different Saharan sources than during H1 and H5. While the relatively wet glacial climate in the Levant suppressed the transport of dust to the lake watershed, short-term hyper-arid spells during H-stadial intervals were accompanied by enhanced supply of fine Sahara dust to this region.

  14. Characterization of PM2.5 chemical composition at the Demokritos suburban station, in Athens Greece. The influence of Saharan dust.

    PubMed

    Vasilatou, Vasiliki; Diapouli, Evangelia; Abatzoglou, Dimitrios; Bakeas, Evangelos B; Scoullos, Michael; Eleftheriadis, Konstantinos

    2017-04-01

    The aim of this work is to study the atmospheric concentrations of selected major and trace elements and ions found in PM 2.5 , at a suburban site in Athens, Greece, and discuss on the impact of the different sources. Special focus is given to the influence of Saharan dust episodes. The seasonal variability in the metal and ion concentrations is also examined. The results show that PM 2.5 mass concentrations are significantly influenced by Saharan dust events; it is observed that when the PM 2.5 concentration is higher than 25 μg/m 3 , five out of six times, the air mass crossed North Africa at an altitude within the boundary layer. Fe is found to be the element with the more significant seasonal variability, displaying much higher concentrations during cold period. The frequent Saharan dust intrusions in the cold period of this dataset may explain this result. Mineral dust and secondary aerosol are the main PM 2.5 components (29 and 34%, respectively). During Saharan dust events, the concentration of mineral dust is increased by 35% compared to the days without dust intrusions, while an increase of 68% of the sea salt is also observed. During event days, PM 2.5 concentrations are also increased by 14%. Anthropogenic components do not decrease during those days, while sulfate displays even a slight increase, suggesting enrichment of mineral dust with secondary sulfates. The results indicate that African dust intrusions add a rather significant PM pollution load even in the PM 2.5 fraction, with implication to population exposure and human health.

  15. The radiative effects of Saharan dust layer on the marine atmospheric layer

    NASA Astrophysics Data System (ADS)

    Abed, Mohammed

    2017-04-01

    The North African Saharan desert is one of the main sources of atmospheric dust. Since dust can be transported by winds for thousands of miles, reaching the Americas and extending across vast expanses of the tropical Atlantic Ocean, it is important to understand the influence that dust has on the radiative properties and the thermodynamic structure of the atmosphere. For climate models it is important that this is represented since the structure of the atmosphere can have important influences downwind on the development of convection, clouds, storms, precipitation and consequently radiative properties. In this study, we aim to understand the dynamic and thermodynamic properties of Saharan dust on the atmospheric structure of marine environment and to investigate the causes of the observed regions of well-mixed potential temperatures of the marine atmosphere in the presence of Saharan dust layers. We compare the influence of dust to other potentially important influences such as wind shear and air mass. To investigate this, we simulated the marine atmosphere in the presence and absence of dust using the UK Met Office Large Eddy Model (LEM) based the BOMEX case-study that is provided with the LEM and updated with observation taken during the FENNEC experiments of June 2011 and 2012. We performed LEM simulations with and without dust heating rates for an eight-hour time period. Data for meteorological profiles were used from the FENNEC aircraft measurements taken over the Atlantic Ocean near the Canary Islands. Our LEM results show that using a stratified (typical of non-dusty) atmosphere and then apply a dust heating rate the profile of potential temperature tends towards a well-mixed layer where the heating rates were applied and consistent with the observational cases. While LEM simulations for wind shear showed very little difference in the potential temperature profile and it was clear the well-mixed layer would not result. LEM simulations using dust heating

  16. Nearly a Decade of CALIPSO Observations of Asian and Saharan Dust Properties Near Source and Transport Regions

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Z.; Tackett, J.; Vaughan, M.; Trepte, C.; Winker, D.; H. Yu,

    2015-01-01

    The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol, between 2006-2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on the morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National D'études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.

  17. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  18. PERSPECTIVE: Dust, fertilization and sources

    NASA Astrophysics Data System (ADS)

    Remer, Lorraine A.

    2006-11-01

    depression combined with the prevailing wind direction in the winter provides perfect conditions for aerosol saltation, uplift and transport. The winter Bodélé dust is carried over the populated regions of west Africa where it can be affected by smoke and urban pollution before it continues transport over the Atlantic and towards Amazonia. Although Koren et al do not speculate on the chemical possibilities in their paper, the interaction between the dust and the pollutants provides opportunity for acids to coat the dust particles and to mobilize the iron compounds, creating a highly efficient fertilizing agent for ocean phytoplankton and the biota of the Amazon forest. Koren et al do quantify the dust emission of the Bodélé depression, estimating that this small area produces approximately 50% of the Saharan dust deposited in the Amazon. The findings of Koren and his co-authors suggest that dust emission sources may be highly localized spots in the Earth's deserts that can be mapped precisely by satellites of moderate to fine resolution. Like fire hot spots that localize smoke emission, desert dust hot spots can be identified with great detail. This can provide aerosol transport models with better source emission information and improve estimates that will help in making estimates concerning biogeochemical processes and also estimates of climate forcing and response. References [1] Swap R et al 1992 Saharan dust in the Amazon basin Tellus B 44 133-49 (doi:10.1034/j.1600-0889.1992.t01-1-00005.x) [2] Kaufman Y J, Koren I, Remer L A, Tanré D, Ginoux P and Fan S 2005 Dust transport and deposition observed from the Terra-MODIS space observations J. Geophys. Res. 110 D10S12 (doi:10.1029/2003JD004436) [3] Meskhidze N, Chameides W L and Nenes A 2005 Dust and pollution: a recipe for enhanced ocean fertizilation? J. Geophys. Res. 110 (D3) D03301 (doi:10.1029/2004JD005082) [4] Cakur R V et al 2006 Constraining the magnitude of the global dust cycle by minimizing the difference

  19. Determination of Radiative Forcing of Saharan Dust using Combined TOMS and ERBE Data

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Herman, Jay R.; Weaver, Clark

    1999-01-01

    The direct radiative forcing of Saharan dust aerosols has been determined by combining aerosol information derived from Nimbus-7 TOMS with radiation measurements observed at the top of atmosphere (TOA) by NOAA-9 ERBE made during February-July 1985. Cloud parameters and precipitable water derived from the NOAA-9 HIRS2 instrument were used to aid in screening for clouds and water vapor in the analyses. Our results indicate that under "cloud-free" and "dry" conditions there is a good correlation between the ERBE TOA outgoing longwave fluxes and the TOMS aerosol index measurements over both land and ocean in areas under the influence of airborne Saharan dust. The ERBE TOA outgoing shortwave fluxes were also found to correlate well with the dust loading derived from TOMS over ocean. However, the calculated shortwave forcing of Saharan dust aerosols is very weak and noisy over land for the range of solar zenith angle viewed by the NOAA-9 ERBE in 1985. Sensitivity factors of the TOA outgoing fluxes to changes in aerosol index were estimated using a linear regression fit to the ERBE and TOMS measurements. The ratio of the shortwave-to-longwave response to changes in dust loading over the ocean is found to be roughly 2 to 3, but opposite in sign. The monthly averaged "clear-sky" TOA direct forcing of airborne Saharan dust was also calculated by multiplying these sensitivity factors by the TOMS monthly averaged "clear-sky" aerosol index. Both the observational and theoretical analyses indicate that the dust layer height, ambient moisture content as well as the presence of cloud all play an important role in determining the TOA direct radiative forcing due to mineral aerosols.

  20. Short-term effects of particulate matter on total mortality during Saharan dust outbreaks: a case-crossover analysis in Madrid (Spain).

    PubMed

    Tobías, Aurelio; Pérez, Laura; Díaz, Julio; Linares, Cristina; Pey, Jorge; Alastruey, Andrés; Querol, Xavier

    2011-12-15

    The role of Saharan dust outbreaks on the relationship between particulate matter and daily mortality has recently been addressed in studies conducted in Southern Europe, although they have not given consistent results. We investigated the effects of coarse (PM(10-2.5)) and fine particulate matter (PM(2.5)) in Madrid on total mortality during Saharan dust and non-dust days using a case-crossover design. During Saharan dust days, an increase of 10mg/m(3) of PM(10-2.5) raised total mortality by 2.8% compared with 0.6% during non-dust days (P-value for interaction=0.0165). We found evidence of stronger adverse health effects of PM(10-2.5) during Saharan dust outbreaks effects for impacted European populations, but not for PM(2.5). Further research is needed to understand mechanisms by which Saharan dust increases risk of mortality. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Saharan Dust as a Causal Factor of Significant Cloud Cover Along the Saharan Air Layer in the Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, Pavel; Da Silva, Arlindo M.; Starobinet, Boris; Alpert, Pinhas

    2016-01-01

    The tropical Atlantic is frequently affected by Saharan dust intrusions. Based on MODIS cloud fraction (CF) data during the ten-year study period, we found that these dust intrusions contribute to significant cloud cover along the Saharan Air Layer (SAL). Below the temperature inversion at the SAL's base, the presence of large amounts of settling dust particles, together with marine aerosols, produces meteorological conditions suitable for the formation of shallow stratocumulus clouds. The significant cloud fraction along the SAL together with clouds over the Atlantic Inter-tropical Convergence Zone contributes to the 20% hemispheric CF asymmetry between the tropical North and South Atlantic. This leads to the imbalance in strong solar radiation, which reaches the sea surface between the tropical North and South Atlantic, and, consequently, affects climate formation in the tropical Atlantic. Therefore, despite the fact that, over the global ocean, there is no noticeable hemispheric asymmetry in cloud fraction, over the significant area such as the tropical Atlantic the hemispheric asymmetry in CF takes place. Saharan dust is also the major contributor to hemispheric aerosol asymmetry over the tropical Atlantic. The NASA GEOS-5 model with aerosol data assimilation was used to extend the MERRA reanalysis with five atmospheric aerosol species (desert dust, sulfates, organic carbon, black carbon, and sea-salt). The obtained ten-year (2002 - 2012) MERRA-driven aerosol reanalysis dataset (aka MERRAero) showed that, over the tropical Atlantic, dust and carbonaceous aerosols were distributed asymmetrically relative to the equator, while other aerosol species were distributed more symmetrically.

  2. Integrating Saharan dust forecasts into a regional chemical transport model: a case study over Northern Italy.

    PubMed

    Carnevale, C; Finzi, G; Pisoni, E; Volta, M; Kishcha, P; Alpert, P

    2012-02-15

    The Po Valley in Northern Italy is frequently affected by high PM10 concentrations, where both natural and anthropogenic sources play a significant role. To improve air pollution modeling, 3D dust fields, produced by means of the DREAM dust forecasts, were integrated as boundary conditions into the mesoscale 3D deterministic Transport Chemical Aerosol Model (TCAM). A case study of the TCAM and DREAM integration was implemented over Northern Italy for the period May 15-June 30, 2007. First, the Saharan dust impact on PM10 concentration was analyzed for eleven remote PM10 sites with the lowest level of air pollution. These remote sites are the most sensitive to Saharan dust intrusions into Northern Italy, because of the absence of intensive industrial pollution. At these remote sites, the observed maxima in PM10 concentration during dust events is evidence of dust aerosol near the surface in Northern Italy. Comparisons between modeled PM10 concentrations and measurements at 230 PM10 sites in Northern Italy, showed that the integrated TCAM-DREAM model more accurately reproduced PM10 concentration than the base TCAM model, both in terms of correlation and mean error. Specifically, the correlation median increased from 0.40 to 0.65, while the normalized mean absolute error median dropped from 0.5 to 0.4. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, we investigate the relationships among Saharan dust outbreak and transport, African easterly waves (AEW), African easterly jet (AEJ) and associated convective activities of Atlantic Intertropical Convergence Zone (ITCZ) using Cloudsat-Calipso, MODIS and MERRA data. We find that a major Saharan dust outbreak is associated with the formation of a westward propagating strong cyclone around 15-25N over the western part northern Saharan. The strong cyclonic flow mobilizes and lifts the dust from the desert surface to a high elevation. As the cyclone propagate westward, it transports a thick elevated dust layer between 900 -500 hPa from the African continent to the eastern Atlantic. Cloudiness is reduced within the warm, dry dusty layer, but enhanced underneath it, possibly due to the presence of a shallow inversion layer over the marine boundary layer. The dust outbreak is linked to enhanced deep convection in the northern part of Atlantic ITCZ, abutting the southern flank of the dust layer, and a strengthening of the northward flank of the AEJ. As the dust layer spreads westward, it loses elevation and becomes increasing diffused as it reaches the central and western Atlantic. Using band pass filtered EOF analysis of MERRA winds, we find that AEWs propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are highly correlated with major dust outbreak over North Africa and associated with slower moving systems, with a quasi-periodicity of 6-9 day. On the other hand, easterly waves along the southern track are faster, with quasi-periodicity of 3-5 days. These faster easterly waves are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track by the faster waves generally leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between

  4. The linkage between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 ka to 5.5 ka ago (deMenocal et al., 2000; McGee et al., 2013). The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. We present simulation results from a recent sensitivity study, where we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface during the Holocene. We have simulated timeslices of he mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. We prescribe mid-Holocene vegetation cover based on a vegetation reconstruction from pollen data (Hoelzmann et al., 1998) and mid-Holocene lake surface area is determined using a water routing and storage model (Tegen et al., 2002). In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the variation in dust accumulation in marine cores is likely related to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone. Reference: deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid Period:: rapid climate responses to gradual insolation forcing, Quaternary Science Reviews, 19, 347-361, 2000. Hoelzmann, P., Jolly, D., Harrison, S. P., Laarif, F

  5. Exploring records of Saharan dust transport and hurricanes in the Caribbean and Gulf of Mexico over recent millennia

    NASA Astrophysics Data System (ADS)

    Hayes, C. T.; Wallace, D. J.

    2017-12-01

    Locations in the northern Caribbean and Gulf of Mexico receive aerosol deposition from the summertime Saharan dust plume that is representative of atmospheric conditions over a very large expanse of the North Atlantic Ocean. A recent reconstruction of stable dust deposition in the Bahamas over the past 2 thousand years contrasts other records from the African continent which were impacted by local anthropogenic emissions. Dust deposition in the Bahamas also appeared relatively insensitive to expected changes in intertropical convergence zone position. Here, we will investigate records of Atlantic hurricane activity and Saharan dust transport, parameters which are anti-correlated today, in the Caribbean and Gulf region over the past few thousand years to further probe possible variations in Saharan dust forcings on Atlantic climate.

  6. Could gradual changes in Holocene Saharan landscape have caused the observed abrupt shift in North Atlantic dust deposition?

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2017-09-01

    The abrupt change in North Atlantic dust deposition found in sediment records has been associated with a rapid large scale transition of Holocene Saharan landscape. We hypothesize that gradual changes in the landscape may have caused this abrupt shift in dust deposition either because of the non-linearity in dust activation or because of the heterogeneous distribution of major dust sources. To test this hypothesis, we investigate the response of North Atlantic dust deposition to a prescribed 1) gradual and spatially homogeneous decrease and 2) gradual southward retreat of North African vegetation and lakes during the Holocene using the aerosol-climate model ECHAM-HAM. In our simulations, we do not find evidence of an abrupt increase in dust deposition as observed in marine sediment records along the Northwest African margin. We conclude that such gradual changes in landscape are not sufficient to explain the observed abrupt changes in dust accumulation in marine sediment records. Instead, our results point to a rapid large-scale retreat of vegetation and lakes in the area of significant dust sources.

  7. Microphysical and Optical Properties of Saharan Dust Measured during the ICE-D Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Marenco, Franco; Brooke, Jennifer; Cotton, Richard; Taylor, Jonathan

    2017-04-01

    During August 2015, the UK FAAM BAe146 research aircraft was stationed in Cape Verde off the coast of West Africa. Measurements of Saharan dust, and ice and liquid water clouds, were taken for the ICE-D (Ice in Clouds Experiment - Dust) project - a multidisciplinary project aimed at further understanding aerosol-cloud interactions. Six flights formed part of a sub-project, AER-D, solely focussing on measurements of Saharan dust within the African dust plume. Dust loadings observed during these flights varied (aerosol optical depths of 0.2 to 1.3), as did the vertical structure of the dust, the size distributions and the optical properties. The BAe146 was fully equipped to measure size distributions covering aerosol accumulation, coarse and giant modes. Initial results of size distribution and optical properties of dust from the AER-D flights will be presented, showing that a substantial coarse mode was present, in agreement with previous airborne measurements. Optical properties of dust relating to the measured size distributions will also be presented.

  8. Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact

    NASA Astrophysics Data System (ADS)

    Longman, Jack; Veres, Daniel; Ersek, Vasile; Salzmann, Ulrich; Hubay, Katalin; Bormann, Marc; Wennrich, Volker; Schäbitz, Frank

    2017-07-01

    Reconstructions of dust flux have been used to produce valuable global records of changes in atmospheric circulation and aridity. These studies have highlighted the importance of atmospheric dust in marine and terrestrial biogeochemistry and nutrient cycling. By investigating a 10 800-year-long paleoclimate archive from the Eastern Carpathians (Romania) we present the first peat record of changing dust deposition over the Holocene for the Carpathian-Balkan region. Using qualitative (X-ray fluorescence (XRF) core scanning) and quantitative inductively coupled plasma optical emission spectrometer(ICP-OES) measurements of lithogenic (K, Si, Ti) elements, we identify 10 periods of major dust deposition between 9500-9200, 8400-8100, 7720-7250, 6350-5950, 5450-5050, 4130-3770, 3450-2850, 2000-1450, 800-620, and 60 cal yr BP to present. In addition, we used testate amoeba assemblages preserved within the peat to infer local palaeohydroclimatic conditions. Our record highlights several discrepancies between eastern and western European dust depositional records and the impact of highly complex hydrological regimes in the Carpathian region. Since 6100 cal yr BP, we find that the geochemical indicators of dust flux have become uncoupled from the local hydrology. This coincides with the appearance of millennial-scale cycles in the dust input and changes in geochemical composition of dust. We suggest that this is indicative of a shift in dust provenance from local-regional (likely loess-related) to distal (Saharan) sources, which coincide with the end of the African Humid Period and the onset of Saharan desertification.

  9. Modeling the Diagnostic Effects of Vegetation, Soil Albedo, and Dust on Mid-Holocene Saharan Climate

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Poulsen, C. J.; Skinner, C. B.

    2017-12-01

    Unlike today, the Mid-Holocene (MH, 6,000 BP) African Sahara comprised of mixed vegetation and permanent lakes that supported human settlements. Climate proxies including leaf wax isotope, pollen, and dust flux records suggest that African monsoonal precipitation reached 31°N, compared to 15°N today. Changes in orbital forcing are partly responsible for the intensification of the African monsoon, but alone cannot explain the more humid MH Sahara. Modeling studies have shown that vegetation and soil albedo feedbacks greatly increase Saharan rainfall but still fall short of levels indicated by proxies. A recent study proposed that reduced Saharan dust concentrations due to greater vegetation coverage further increased MH rainfall. However, this study used idealized dust concentrations to improve proxy agreement and did not include the dust aerosol indirect effects in its model physics. Here we use CESM CAM5-chem to quantify the impact of diagnostic changes in Saharan dust, including indirect effects, on MH Saharan climate and compare it to changes in orbital forcing, soil albedo, and vegetation. Consistent with previous studies, a change in MH orbital forcing alone leads to a 20% increase in summer (June-Sept.) precipitation over Northern Africa (0°-30°N, 20°W-30°E) relative to a pre-industrial control, but still fails to reach the northward extent suggested by proxies. Adding MH soil albedo or vegetation increases summer precipitation by 45% and 52%, and shifts the maximum latitudinal rainfall extent 10° and 12° northward, respectively. These increases are 2.28 and 2.64 times greater than the precipitation increase from MH orbital forcing alone. MH soil albedo results in a dust burden increase of 22%, yet MH vegetation results in a 96% reduction. Both MH soil albedo and vegetation combined increase summer precipitation by 56% and 13° northward, an increase 2.84 times greater than the orbital forcing alone, and reduces dust burden by 97%. An additional

  10. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, William K-M

    2011-01-01

    Saharan dust outbreaks not only transport large amount of dust to the northern Atlantic Ocean, but also alter African easterly jet and wave activities along the jet by changing north-south temperature gradient. Recent modeling and observational studies show that during periods of enhance outbreaks, rainfall on the northern part of ITCZ increases in conjunction with a northward shift of ITCZ toward the dust layer. In this paper, we study the radiative forcing of Saharan dust and its interactions with the Atlantic Inter-tropical Convergence Zone (ITCZ), through African easterly waves (AEW), African easterly jet (AEJ), using the Terra/Aqua observations as well as MERRA data. Using band pass filtered EOF analysis, we find that African easterly waves propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are slower, with propagation speed of 9 ms-1, and highly correlated with major dust outbreak over North Africa. On the other hand, easterly waves along the southern track are faster with propagating speed of 10 ms-1, and are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between Saharan dust layer and Atlantic ITCZ. Possible linkage between two tracks of easterly waves, as well as the long-term change of easterly wave activities and dust outbreaks, are also discussed.

  11. Recent and past Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation

    NASA Astrophysics Data System (ADS)

    Varga, György

    2016-04-01

    Several hundred tons of windblown dust material are transported every year from Saharan dust source areas into direction of Europe, modifying important climatic and other environmental processes of distant areas. North African aerosols have been also identified several times a year in the Carpathian Basin, where under the influence of certain synoptic meteorological conditions Saharan dust accumulation can clearly be observed. Previous satellite based studies were suitable to estimate the frequency and magnitude of Saharan dust episodes in the investigation area, however, the assessment of North African dust deposition can be done with model simulations. In this study, calculations were made by using the data of BSC-DREAM8b (Barcelona Supercomputing Center's Dust REgional Atmospheric Model) v1.0 and v2.0 database. Simulation results of the BSC-DREAM8b v1.0 are available from 1 January 2000 to 31 December 2012, while the results of the updated v2.0 calculations are ready for the period between 1 January 2006 and 31 December 2014. BSC DREAM8b v1.0 model simulations for the period between 2000 and 2012 provided an annual mean of 0.0285 g/m2/y dry and 0.034 g/m2/y wet deposition values in the Carpathian Basin, which is equivalent to a total of 0.0636 g/m2/y. The updated v2.0 version for the period of 2006-2014 gave significantly larger values: 0.133 g/m2/y dry; 0.085 g/m2/y wet and 0.219 g/m2/y total annual dust deposition. By comparing the results of the overlapping period between 2006 and 2012 of the v1.0 and v2.0 simulations, the updated depositional scheme of the newer version provided ˜3.7-fold values in case of dry deposition and ˜1.9-fold increase in results of the wet deposition. Information available from individual events showed that the simulated wet and dry dust deposition rates are significantly underestimated. This is also suggested by previous model calculations which reported values between 5 and 10 g/m2/y for modern dust flux in the investigated area

  12. Saharan dust - A carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    USGS Publications Warehouse

    Garrison, V.H.; Foreman, W.T.; Genualdi, S.; Griffin, Dale W.; Kellogg, C.A.; Majewski, M.S.; Mohammed, A.; Ramsubhag, A.; Shinn, E.A.; Simonich, S.L.; Smith, G.W.

    2006-01-01

    An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI), Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa) is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs), trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde) and the Caribbean (USVI and Trinidad & Tobago). Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions.

  13. April 2008 Saharan dust event: Its contribution to PM10 concentrations over the Anatolian Peninsula and relation with synoptic conditions.

    PubMed

    Kabatas, B; Pierce, R B; Unal, A; Rogal, M J; Lenzen, A

    2018-08-15

    An online-coupled regional Weather Research and Forecasting model with chemistry (WRF-Chem) is utilized incorporating 0.1°×0.1° spatial resolution HTAP (Hemispheric Transport of Air Pollution) anthropogenic emissions to investigate the spatial and temporal distribution of a Saharan dust outbreak, which contributed to high levels (>50μg/m 3 ) of daily PM 10 concentrations over Turkey in April 2008. Aerosol optical depth and cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board of Aqua satellite are used to better analyze the synoptic conditions that generated the dust outbreak in April 2008. A "Sharav" low pressure system, which transports the dust from Saharan source region over Turkey along the cold front, tends to move faster in WRF-Chem simulations than observed. This causes the predicted dust event to arrive earlier than observed leading to an overestimation of surface PM 10 concentrations in WRF-Chem simulation at the beginning of the event. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Impacts of Saharan Dust on the Atmospheric Radiative Balance in the Caribbean during SALTRACE 2013

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gross, S.; Minikin, A.; Freudenthaler, V.; Gasteiger, J.; Mayer, B. C.

    2013-12-01

    Direct and indirect aerosol radiative effects represent one of the largest uncertainties in the modeling of the climate system. To better quantify the effects of aerosols on the Earth's radiative balance and understand important physical effects on small scales such as the influence of aerosols on clouds, detailed measurements of aerosol properties are needed to build a globally representative data set. Mineral dust is among the most abundant aerosols and the Sahara Desert constitutes its largest source. During frequent dust outbreaks thick elevated aerosol layers are formed and transported over large distances -often across the Atlantic Ocean into the Caribbean. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in June/July 2013 continues the SAMUM field experiments conducted in 2006 and 2008. It aims to study the long-range transport of Saharan mineral dust, the properties of aged mineral dust aerosol, and its impact on radiative quantities and cloud processes. The experiment led to an extensive data set on dust layers from Senegal to the Caribbean using airborne in-situ and remote sensing measurements, complemented with ground-based remote sensing and in-situ measurements on sites in Barbados and Puerto Rico as well as satellite remote sensing data. The airborne data were obtained with an extensive aerosol payload aboard the DLR-operated Falcon 20E research aircraft. The measurements cover the entire size range of atmospheric aerosol with a combination of cabin-operated and wing-mounted instruments. In addition, particle properties such as absorption coefficients and volatility are measured. A nadir-looking 2-μm Doppler-lidar system aboard the aircraft was used for wind measurements and served as a path finder for the selection of representative aerosol in-situ levels. In the Caribbean the dust usually arrives in several layers with distinct properties: the mostly undisturbed pure dust layer in altitudes up to 4-5 km

  15. The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.

    2016-04-01

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.

  16. Profiling of Saharan dust from the Caribbean to western Africa - Part 2: Shipborne lidar measurements versus forecasts

    NASA Astrophysics Data System (ADS)

    Ansmann, Albert; Rittmeister, Franziska; Engelmann, Ronny; Basart, Sara; Jorba, Oriol; Spyrou, Christos; Remy, Samuel; Skupin, Annett; Baars, Holger; Seifert, Patric; Senf, Fabian; Kanitz, Thomas

    2017-12-01

    A unique 4-week ship cruise from Guadeloupe to Cabo Verde in April-May 2013 see part 1, Rittmeister et al. (2017) is used for an in-depth comparison of dust profiles observed with a polarization/Raman lidar aboard the German research vessel Meteor over the remote tropical Atlantic and respective dust forecasts of a regional (SKIRON) and two global atmospheric (dust) transport models (NMMB/BSC-Dust, MACC/CAMS). New options of model-observation comparisons are presented. We analyze how well the modeled fine dust (submicrometer particles) and coarse dust contributions to light extinction and mass concentration match respective lidar observations, and to what extent models, adjusted to aerosol optical thickness observations, are able to reproduce the observed layering and mixing of dust and non-dust (mostly marine) aerosol components over the remote tropical Atlantic. Based on the coherent set of dust profiles at well-defined distances from Africa (without any disturbance by anthropogenic aerosol sources over the ocean), we investigate how accurately the models handle dust removal at distances of 1500 km to more than 5000 km west of the Saharan dust source regions. It was found that (a) dust predictions are of acceptable quality for the first several days after dust emission up to 2000 km west of the African continent, (b) the removal of dust from the atmosphere is too strong for large transport paths in the global models, and (c) the simulated fine-to-coarse dust ratio (in terms of mass concentration and light extinction) is too high in the models compared to the observations. This deviation occurs initially close to the dust sources and then increases with distance from Africa and thus points to an overestimation of fine dust emission in the models.

  17. Environmental factors controlling the seasonal variability in particle size distribution of modern Saharan dust deposited off Cape Blanc

    NASA Astrophysics Data System (ADS)

    Friese, Carmen A.; van der Does, Michèlle; Merkel, Ute; Iversen, Morten H.; Fischer, Gerhard; Stuut, Jan-Berend W.

    2016-09-01

    The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxy for trade-wind speed. However, there are still large uncertainties with respect to the seasonality of the particle sizes of deposited Saharan dust off northwestern Africa and the factors influencing this seasonality. We investigated a three-year time-series of grain-size data from two sediment-trap moorings off Cape Blanc, Mauritania and compared them to observed wind-speed and precipitation as well as satellite images. Our results indicate a clear seasonality in the grain-size distributions: during summer the modal grain sizes were generally larger and the sorting was generally less pronounced compared to the winter season. Gravitational settling was the major deposition process during winter. We conclude that the following two mechanisms control the modal grain size of the collected dust during summer: (1) wet deposition causes increased deposition fluxes resulting in coarser modal grain sizes and (2) the development of cold fronts favors the emission and transport of coarse particles off Cape Blanc. Individual dust-storm events throughout the year could be recognized in the traps as anomalously coarse-grained samples. During winter and spring, intense cyclonic dust-storm events in the dust-source region explained the enhanced emission and transport of a larger component of coarse particles off Cape Blanc. The outcome of our study provides important implications for climate modellers and paleo-climatologists.

  18. Using operational active remote sensing devices to detect Saharan dust advections and evaluate their contribution to the PM10 levels: The EU LIFE+ "DIAPASON" project

    NASA Astrophysics Data System (ADS)

    Gobbi, Gian Paolo; Wille, Holger; Sozzi, Roberto; Barnaba, Francesca; Costabile, Francesca; Angelini, Federico; Frey, Steffen; Bolignano, Andrea; Morelli, Matteo

    2013-04-01

    The contribution of Saharan-dust advections to both daily and annual PM average mass concentrations can be significant all over Southern Europe. The Directive 2008/50/EC allows subtraction of PM10 exceedances caused by natural contributions from the statistic used to determine air-quality levels in Europe. To this purpose, the Commission Staff Working Paper 6771/11 (EC, 2011) provides specific Guidelines on methods to quantify and subtract the contribution of these sources in the framework of the Air Quality Directive. For Saharan dust, the EC methodology is largely based on a thorough analysis performed over the Iberian Peninsula (Escudero et al, 2007), although revision of the current methodology is in progress. In line with the EC Guidelines, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs"), funded under the EC LIFE+ program, has been formulated to provide a robust, user-oriented, and demonstrated method to assess the presence of desert dust and evaluate its contribution to PM10 levels at the monitoring sites. To this end, in addition to satellite-based data and model forecasts already included in the EC Guidelines, DIAPASON will take advantage, in both the Project implementation and demonstration phase, of innovative and affordable technologies (partly prototyped within the project itself), namely operational Polarization Lidar-Ceilometers (PLC) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The PLC prototypes have been already finalized during the initial phase of the Project. Three of them will be networked in relevant air quality monitoring stations located in the Rome metropolitan area (Italy) during the DIAPASON observational phase (one-year long field campaign) starting in March 2013. The Rome region was chosen as the DIAPASON pilot scale area since highly impacted by urban pollution and frequently affected by Saharan dust transport events. In fact

  19. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    NASA Astrophysics Data System (ADS)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  20. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust

    NASA Astrophysics Data System (ADS)

    Ingall, E. D.; Longo, A.; Feng, Y.; Lai, B.; Landing, W. M.; Shelley, R.; Nenes, A.; Mihalopoulos, N.; Violaki, K.

    2016-12-01

    Iron is a key micronutrient that is vital for all organisms. The supply of bioavailable, soluble iron controls primary productivity in approximately 30% of the world's oceans. The significant contribution of atmospheric aerosols to the bioavailable iron budget in vast ocean regions, underscores the need to understand the controls and transformations of aerosol iron solubility during atmospheric transport. The Sahara Desert contains the largest and most active sources of aerosol dust globally and can be a key source of nutrients to the Mediterranean Sea, much of the North Atlantic Ocean, and even as far as the Gulf of Mexico. Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated aerosol iron in Mediterranean samples. In Atlantic samples, iron(II & III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing, including acidic reactions and photo-reduction, likely influence the form of iron minerals and the oxidation state in Saharan dust aerosols and contribute to increases in aerosol iron solubility. Overall, these findings suggest that a combination of factors affects aerosol iron solubility during long-distance atmospheric transport and emphasize the need to consider reductive mechanisms as well as proton-induced solubilization of aerosol iron in modeling studies.

  1. The transition of North Atlantic dust deposition and Saharan landscape during the Holocene

    NASA Astrophysics Data System (ADS)

    Egerer, S.; Claussen, M.; Stanelle, T.; Reick, C. H.

    2017-12-01

    The sudden increase in North Atlantic dust deposition about 5 ka BP indicated by sediment records along the West African margin has been associated with an abrupt end of the African Humid Period (AHP). We perform several time slice simulations from 8 ka BP until the pre-industrial era to explore changes in the Holocene dust cycle. To do so, we use the coupled aerosol-climate model ECHAM6-HAM2 including interactive vegetation and dust, whereas ocean conditions and lakes are prescribed. The interactive coupling of vegetation, dust and atmosphere allows to set the dynamics of North Atlantic dust deposition in context to Holocene climate and landscape change in North Africa.In agreement with marine sediment records, we find an abrupt increase in simulated dust deposition at the location of the core sites roughly between 6 and 4 ka BP. Accordingly, dust emission in the North-west Sahara increases rapidly indicating that dust was transported by the same wind systems throughout the Holocene. The sudden increase in dust emission in the North-west Sahara is partly a consequence of a fast decline of vegetation cover from 22°N to 18°N due to vegetation-climate feedbacks and the rapid replacement of shrubs by grasses. Additionally, the prescribed strong but gradual reduction of lake surface area enforces accelerated dust release as former areas covered by lakes turn into highly productive dust sources. Changes in the Saharan landscape and dust emission south of 18°N and in the eastern Sahara as well as changes in atmospheric circulation play a minor role in driving the dynamics of North Atlantic dust deposition at the specific core sites. Our study emphasizes spatial and temporal differences in the transition of North African landscape implying that implications from local data records to large scales have to be treated with caution.

  2. Single particle chemical composition and shape of fresh and aged Saharan dust in Morocco and at Cape Verde Islands during SAMUM I and II

    NASA Astrophysics Data System (ADS)

    Kandler, K.; Lieke, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Jaenicke, R.; Müller-Ebert, D.; Weinbruch, S.

    2009-04-01

    The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosols were measured. The winter campaign of Saharan Mineral Dust Experiment II was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Aerosol particles between 100 nm and 500 μm (Morocco) respectively 50 μm (Cape Verde) in diameter were collected by nozzle and body impactors and in a sedimentation trap. The particles were investigated by electron microscopic single particle analysis and attached energy-dispersive X-ray analysis. Chemical properties as well as size and shape for each particle were recorded. Three size regimes are identified in the aerosol at Tinfou: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 μm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). At Praia, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as mixtures thereof. During low-dust periods, the aerosol is dominated by sea salt. During dust events, mineral dust takes over the majority of the particle mass up to 90 %. Particles smaller 500 nm in diameter always show a significant abundance of ammonium sulfate. The particle aspect ratio was measured for all analyzed particles. Its size dependence reflects that of the chemical

  3. Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; Querol, X.; Alastuey, A.; Kallos, G.; Kakaliagou, O.

    The analysis of PM10 and TSP levels recorded in rural areas from Southern and Eastern Spain (1996-1999) shows that most of the PM10 and TSP peak events are simultaneously recorded at monitoring stations up to 1000 km apart. The study of the atmospheric dynamics by back-trajectory analysis and simulations with the SKIRON Forecast System show that these high PM10 and TSP events occur when high-dust Saharan air masses are transported over the Iberian Peninsula. In the January-June period, this dust transport is mainly caused by cyclonic activity over the West or South of Portugal, whereas in the summer period this is induced by anticyclonic activity over the East or Southeast Iberian Peninsula. Most of the Saharan intrusions which exert a major influence on the particulate levels occur from May to September (63%) and in January and October. In rural areas in Northeast Spain, where the PM10 annual mean is around 18 μg PM10 m -3, the Saharan dust accounts for 4-7 annual daily exceedances of the forthcoming PM10-EU limit value (50 μg PM10 m -3 daily mean). Higher PM10 background levels are recorded in Southern Spain (30 μg PM10 m -3 as annual mean for rural areas) and very similar values are recorded in industrial and urban areas. In rural areas in Southern Spain, the Saharan dust events accounts for 10-23 annual daily exceedances of the PM10 limit value, a high number when compared with the forthcoming EU standard, which states that the limit value cannot be exceeded more than 7 days per year. The proportion of Sahara-induced exceedances with respect to the total annual exceedances is discussed for rural, urban and industrial sites in Southern Spain.

  4. The contribution of Saharan dust in PM(10) concentration levels in Anatolian Peninsula of Turkey.

    PubMed

    Kabatas, B; Unal, A; Pierce, R B; Kindap, T; Pozzoli, L

    2014-08-01

    Sahara-originated dust is the most significant natural source of particulate matter; however, this contribution is still unclear in the Eastern Mediterranean especially in Western Turkey, where significant industrial sources and metropolitan areas are located. The Real-time Air Quality Modeling System (RAQMS) is utilized to explore the possible effects of Saharan dust on high levels of PM10 measured in Turkey. RAQMS model is compared with 118-air quality stations distributed throughout Turkey (81 cities) for April 2008. MODIS aerosol product (MOD04 for Terra and MYD04 for Aqua) is used to see columnar aerosol loading of the atmosphere at 550 nm (Aerosol optical depth (AOD) values found to be between 0.6 and 0.8 during the episode). High-resolution vertical profiles of clouds and aerosols are provided from CALIOP, on board of CALISPO satellite. The results suggest a significant contribution of Sahara dust to high levels of PM10 in Turkey with RAQMS and in situ time series showing similar patterns. The two data sets are found to be in agreement with a correlation of 0.87. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The Fate of Saharan Dust Across the Atlantic and Implications for a Central American Dust Barrier

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, P.; da Silva, A.; Hlavka, D.; McGill, M.

    2011-01-01

    Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modem Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.

  6. Satellite measurements of physical properties of Saharan dust

    NASA Technical Reports Server (NTRS)

    Lee, Tae Young; Fraser, Robert S.; Kaufman, Yoram

    1986-01-01

    The physical properties of Saharan dust obtained from AVHRR and VISSR images are studied. The techniques of Fraser (1976) and Kaufman and Fraser (1985) are used to derive the aerosol optical depth, mass, and single scattering albedo for the region extending from the west coast of Africa to the Barbados Island for the period of June 21-25, 1984. Optical properties measured by satellite are compared to aircraft measurements taken near Barbados Island during the same period. Remote measurement of thermal properties is also discussed.

  7. A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling

    NASA Astrophysics Data System (ADS)

    PéRez, C.; Nickovic, S.; Baldasano, J. M.; Sicard, M.; Rocadenbosch, F.; Cachorro, V. E.

    2006-08-01

    A long Saharan dust event affected the western Mediterranean in the period 12-28 June 2002. Dust was present mainly between 1- and 5-km height affecting most parts of the Iberian Peninsula and reaching western/central Europe. Intensive backscatter lidar observations over Barcelona (Spain) and Sun photometer data from two stations (El Arenosillo, Spain, and Avignon, France) are used to evaluate different configurations the Dust Regional Atmospheric Modeling (DREAM) system. DREAM currently operates dust forecasts over the Mediterranean region (http://www.bsc.es/projects/earthscience/DREAM/) considering four particle size bins while only the first two are relevant for long-range transport analysis since their life time is larger than 12 hours. A more detailed bin method is implemented, and two different dust distributions at sources are compared to the operational version. Evaluations are performed at two wavelengths (532 and 1064 nm). The dust horizontal and vertical structure simulated by DREAM shows very good qualitative agreement when compared to SeaWIFS satellite images and lidar height-time displays over Barcelona. When evaluating the modeled aerosol optical depth (AOD) against Sun photometer data, significant improvements are achieved with the use of the new detailed bin method. In general, the model underpredicts the AOD for increasing Ångström exponents because of the influence of anthropogenic pollution in the boundary layer. In fact, the modeled AOD is highly anticorrelated with the observed Ångström exponents. Avignon shows higher influence of small anthropogenic aerosols which explains the better results of the model at the wavelength of 1064 nm over this location. The uncertainties of backscatter lidar inversions (20-30%) are in the same order of magnitude as the differences between the model experiments. Better model results are obtained when comparing to lidar because most of the anthropogenic effect is removed.

  8. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset

    NASA Astrophysics Data System (ADS)

    Marinou, Eleni; Amiridis, Vassilis; Binietoglou, Ioannis; Tsikerdekis, Athanasios; Solomos, Stavros; Proestakis, Emannouil; Konsta, Dimitra; Papagiannopoulos, Nikolaos; Tsekeri, Alexandra; Vlastou, Georgia; Zanis, Prodromos; Balis, Dimitrios; Wandinger, Ulla; Ansmann, Albert

    2017-05-01

    In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007-2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm-1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm-1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during

  9. Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface

    NASA Astrophysics Data System (ADS)

    Herbener, Stephen R.; Saleeby, Stephen M.; Heever, Susan C.; Twohy, Cynthia H.

    2016-10-01

    As a tropical cyclone traverses the Saharan Air Layer (SAL), the storm will spatially redistribute the dust from the SAL. Dust deposited on the surface may affect ocean fertilization, and dust transported to the upper levels of the troposphere may impact radiative forcing. This study explores the relative amounts of dust that are vertically redistributed when a tropical cyclone crosses the SAL. The Regional Atmospheric Modeling System (RAMS) was configured to simulate the passage of Tropical Storm Debby (2006) through the SAL. A dust mass budget approach has been applied, enabled by a novel dust mass tracking capability of the model, to determine the amounts of dust deposited on the ocean surface and transferred aloft. The mass of dust removed to the ocean surface was predicted to be nearly 2 orders of magnitude greater than the amount of dust transported to the upper troposphere.

  10. Dust emission and transport associated with a Saharan depression: February 2007 case

    NASA Astrophysics Data System (ADS)

    Bou Karam, Diana; Flamant, Cyrille; Cuesta, Juan; Pelon, Jacques; Williams, Earle

    2010-01-01

    The dust activity over North Africa associated with the Saharan depression event in February 2007 is investigated by mean of spaceborne observations, ground-based measurements, and mesoscale simulation with Meso-NH. The main characteristics of the cyclone as well as the meteorological conditions during this event are described using the European Centre for Medium-Range Weather Forecasts (ECMWF). The dust storm and cloud cover over North Africa is thoroughly described combining for the first time Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) images for the spatiotemporal evolution and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat observations for the vertical distribution. The Saharan depression formed over Algeria in the lee of the Atlas Mountains on the afternoon of 20 February in response to midlatitude trough intrusion. It migrated eastward with a speed of 11 m s-1 and reached Libya on 22 February before exiting the African continent toward the Mediterranean Sea on 23 February. The horizontal scale of the cyclone at the surface varied between 800 and 1000 km during its lifetime. On the vertical the cyclone extended over 8 km, and a potential vorticity of 2 potential vorticity units (PVU) was reported at its center at 3 km in altitude. The cyclone was characterized by a surface pressure anomaly of about 9 hPa with respect to the environment, a warm front typified at the surface by an increase in surface temperature of 5°C, and a sharp cold front characterized by a drop in surface temperature of 8°C and an increase in 10 m wind speed of 15 m s-1. The cyclone provided dynamical forcing that led to strong near-surface winds and produced a major dust storm over North Africa. The dust was transported all around the cyclone leaving a clear eye at its center and was accompanied by a deep cloud band along the northwestern edge of the cyclone. On the vertical, slanted dust layers were consistently observed during the

  11. A Northward Shift of the North Atlantic Ocean Intertropical Convergence Zone in Response to Summertime Saharan Dust Outbreaks

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Lau, K. M.; Kim, Kyu-Myong

    2010-01-01

    The influence on the summertime North Atlantic Ocean inter-tropical convergence zone (ITCZ) of Saharan dust outbreaks is explored using nine years of continuous satellite observations and atmospheric reanalysis products. During dust outbreak events rainfall along the ITCZ shifts northward by 1 to 4 degrees latitude. Dust outbreaks coincide with warmer lower-tropospheric temperatures compared to low dust conditions, which is attributable to advection of the warm Saharan Air Layer, enhanced subtropical subsidence, and radiative heating of dust. The enhanced positive meridional temperature gradient coincident with dust outbreaks is accompanied by an acceleration of the easterly winds on the n011h side of the African Easterly Jet (AEJ). The center of the positive vorticity region south of the AEJ moves north drawing the center of low-level convergence and ITCZ rainfall northward with it. The enhanced precipitation on the north side of the ITCZ occurs in spite of widespread sea surface temperature cooling north of the ITCZ owing to reduced surface solar insolation by dust scattering.

  12. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10

    NASA Astrophysics Data System (ADS)

    Chirizzi, Daniela; Cesari, Daniela; Guascito, Maria Rachele; Dinoi, Adelaide; Giotta, Livia; Donateo, Antonio; Contini, Daniele

    2017-08-01

    Exposure to atmospheric particulate matter (PM) leads to adverse health effects although the exact mechanisms of toxicity are still poorly understood. Several studies suggested that a large number of PM health effects could be due to the oxidative potential (OP) of ambient particles leading to high concentrations of reactive oxygen species (ROS). The contribution to OP of specific anthropogenic sources like road traffic, biomass burning, and industrial emissions has been investigated in several sites. However, information about the OP of natural sources are scarce and no data is available regarding the OP during Saharan dust outbreaks (SDO) in Mediterranean regions. This work uses the a-cellular DTT (dithiothreitol) assay to evaluate OP of the water-soluble fraction of PM2.5 and PM10 collected at an urban background site in Southern Italy. OP values in three groups of samples were compared: standard characterised by concentrations similar to the yearly averages; high carbon samples associated to combustion sources (mainly road traffic and biomass burning) and SDO events. DTT activity normalised by sampled air volume (DTTV), representative of personal exposure, and normalised by collected aerosol mass (DTTM), representing source-specific characteristics, were investigated. The DTTV is larger for high PM concentrations. DTTV is well correlated with secondary organic carbon concentration. An increased DTTV response was found for PM2.5 compared to the coarse fraction PM2.5-10. DTTV is larger for high carbon content samples but during SDO events is statistically comparable with that of standard samples. DTTM is larger for PM2.5 compared to PM10 and the relative difference between the two size fractions is maximised during SDO events. This indicates that Saharan dust advection is a natural source of particles having a lower specific OP with respect to the other sources acting on the area (for water-soluble fraction). OP should be taken into account in epidemiological

  13. Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution.

    PubMed

    Telloli, Chiara; Chicca, Milvia; Pepi, Salvatore; Vaccaro, Carmela

    2017-12-21

    Southern European countries are often affected in summer by transboundary air pollution from Saharan dust. However, very few studies deal with Saharan dust pollution at high altitudes in winter. In Italy, the exceptional event occurred on February 19, 2014, colored in red the entire mountain range (Alps and Apennines) and allowed to characterize the particulate matter deposited on snow from a morphological and chemical point of view. Snow samples were collected after this event in four areas in the Alps and one in the Apennines. The particulate matter of the melted snow samples was analyzed by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) and by inductively coupled plasma mass spectrometry (ICP-MS). These analyses confirmed the presence of Saharan dust particle components in all areas with similar percentages, supported also by the positive correlations between Mg-Ca, Al-Ca, Al-Mg, and Al-K in all samples.

  14. The formation of a large summertime Saharan dust plume: Convective and synoptic-scale analysis

    PubMed Central

    Roberts, A J; Knippertz, P

    2014-01-01

    Haboobs are dust storms produced by the spreading of evaporatively cooled air from thunderstorms over dusty surfaces and are a major dust uplift process in the Sahara. In this study observations, reanalysis, and a high-resolution simulation using the Weather Research and Forecasting model are used to analyze the multiscale dynamics which produced a long-lived (over 2 days) Saharan mesoscale convective system (MCS) and an unusually large haboob in June 2010. An upper level trough and wave on the subtropical jet 5 days prior to MCS initiation produce a precipitating tropical cloud plume associated with a disruption of the Saharan heat low and moistening of the central Sahara. The restrengthening Saharan heat low and a Mediterranean cold surge produce a convergent region over the Hoggar and Aïr Mountains, where small convective systems help further increase boundary layer moisture. Emerging from this region the MCS has intermittent triggering of new cells, but later favorable deep layer shear produces a mesoscale convective complex. The unusually large size of the resulting dust plume (over 1000 km long) is linked to the longevity and vigor of the MCS, an enhanced pressure gradient due to lee cyclogenesis near the Atlas Mountains, and shallow precipitating clouds along the northern edge of the cold pool. Dust uplift processes identified are (1) strong winds near the cold pool front, (2) enhanced nocturnal low-level jet within the aged cold pool, and (3) a bore formed by the cold pool front on the nocturnal boundary layer. PMID:25844277

  15. Preliminary Results from an Assimilation of Saharan Dust Using TOMS Radiances and the GOCART Model

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; daSilva, Arlindo; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions. Surface mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from .08-10 microns and only simulates Saharan dust. We draw the assimilation to two observables in this study: the TOMS aerosol index (Al) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance alone. The forward model that simulates the observables requires the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer from the GOCART fields. The forward model also requires a refractive index for the dust. We test three index values to see which best fits the TOMS observables. These are 1) for Saharan dust reported by Patterson, 2) for a mixture of Saharan dust and a highly reflective material (sea salt or sulfate) and 3) for pure illite. The assimilation works best assuming either pure illite or the dust mixture. Our assimilation cycle first determines values of the aerosol index (Al) and the radiance at 380 nm based on the GOCART aerosol fields. Differences between the observed and GOCART model calculated Al and 380 nm radiance are first analyzed horizontally using the Physical-space Statistical Analysis System (PSAS). A quasi-Newton iteration is then performed to produce analyzed 3D aerosol fields according to parameterized background and observation error covariances. We only assimilate observations into the the GOCART

  16. Microbial communities established on Mont Blanc summit with Saharan dust deposition

    NASA Astrophysics Data System (ADS)

    Chuvochina, M.; Alekhina, I.; Normand, P.; Petit, J. R.; Bulat, S.

    2009-04-01

    Dust originating from the Sahara desert can be uplifted during storms, transported across the Mediterranean towards the Alpine region and deposited during snowfalls. The microbes associated with dust particles can be involved in establishing microbiota in icy environments as well as affect ecosystem and human health. Our objective was to use a culture-free DNA-based approach to assess bacterial content and diversity and furthermore, to identify ‘icy' microbes which could be brought on the Mont Blanc (MtBl) summit with Saharan dust and became living in the snow. Saharan dust fallout on MtBl summit from one event (MB5, event June 2006) vs. control libraries and that from another event (May 2008) were collected in Grenoble (SD, 200 m a.s.l.) and at Col du Dome (MB-SD, 4250 m a.s.l.). Soil from Ksar Ghilane (SS, Saharan desert, Tunisia, March 2008) was taken for overall comparison as a possible source population. Fresh snow falling in Grenoble (85) was collected as example of diversity in this area. To assess the microbial diversity 16S rRNA gene libraries (v3-v5 region) were constructed for corresponding dust-snow samples (MB5, SS, SD, 85 and MB-SD) along with clear snow samples and several controls. For both MB5 and MB-SD samples full-gene technique was evoked in attempt to differentiate reproduced bacteria from damaged DNA. Before sequencing the clones were rybotyped. All clone libraries were distinct in community composition except for some single phylotypes (or closely related groups) overlap. Thus, clone libraries from two different events that were collected at Col du Dome area within 2 year interval (MB5 and MB-SD) were different in community composition except one of the abundant phylotype from MB-SD library (Geodermatophilus sp.) which was shared (98% sequence similarity) with single representative from MB-5 library. These bacteria are pigmented and radiation-resistant, so it could be an indicator of desert origin for our sequences. For MB5 library two

  17. Summer variability of Saharan dust transport events in mountain areas north and south of Po basin

    NASA Astrophysics Data System (ADS)

    Landi, Tony C.; Marinoni, Angela; Cristofanelli, Paolo; Putero, Davide; Duchi, Rocco; Alborghetti, Marcello; Bonafè, Ubaldo; Calzolari, Francescopiero; Pietro Verza, Gian; Bonasoni, Paolo

    2013-04-01

    Mineral dust intrusions from northern African desert regions have a strong impact on the Mediterranean areas and Italian peninsula as they can cause an anomalous increase of aerosol concentrations in the tropospheric column and often an increase of particulate matter at ground level. The estimate of Saharan dust contribution to aerosols concentrations is therefore a key issue in air quality assessment and policy formulation, since can cause air quality exceedances of the PM10 daily limits (50 μg m-3) set by the European Union (EU/2008/50). This study presents a first identification and characterization of Saharan dust outbreaks observed during summer season at two high mountain stations located both South (Mt. Cimone, 2165 m asl) and North (Rifugio Guasti, Stelvio National Park, 3285 m asl) of Po valley. An estimation of their impact on PM10 concentrations in both sites, and in urban and rural areas of the Po basin is provided. Joining specific measurements (ground and satellite based) and numerical modeling, an investigation into the vertical structure of dust load will be presented. Actually, methodologies conceived for distinguishing dust outbreaks transported above the boundary layer without any impact at the ground level from those causing deposition are currently still lacking. Basically, the approach proposed in this work includes a deep analysis of in-situ measurements starting from long-term observation of Saharan dust carried out at the Mt. Cimone and more recent measurements performed in the framework of SHARE Stelvio Project, as well as the usage of ad hoc model chain (meteorological processor, chemical transport model, and aerosols optical properties calculation) to describe emission, transport and deposition dynamics of mineral dust that - in summertime - often affect the North Italy.

  18. Shape-induced Gravitational Sorting of Saharan Dust During Transatlantic Voyage: Evidence from CALIOP Lidar Depolarization Measurements

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Kostinski, Alexander B.; Varnai, Tamas

    2013-01-01

    Motivated by the physical picture of shape-dependent air resistance and, consequently, shape-induced differential sedimentation of dust particles, we searched for and found evidence of dust particle asphericity affecting the evolution and distribution of dust-scattered light depolarization ratio (delta). Specifically, we examined a large data set of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of Saharan dust from June to August 2007. Observing along a typical transatlantic dust track, we find that (1) median delta is uniformly distributed between 2 and 5?km altitudes as the elevated dust leaves the west coast of Africa, thereby indicating uniformly random mixing of particle shapes with height; (2) vertical homogeneity of median delta breaks down during the westward transport: between 2 and 5?km delta increases with altitude and this increase becomes more pronounced with westward progress; (3) delta tends to increase at higher altitude (greater than 4?km) and decrease at lower altitude (less than 4?km) during the westward transport. All these features are captured qualitatively by a minimal model (two shapes only), suggesting that shape-induced differential settling and consequent sorting indeed contribute significantly to the observed temporal evolution and vertical stratification of dust properties. By implicating particle shape as a likely cause of gravitational sorting, these results will affect the estimates of radiative transfer through Saharan dust layers.

  19. Dust emission and transport associated with a Saharan depression: The February 2007 case

    NASA Astrophysics Data System (ADS)

    Karam, Diana Bou; Flamant, Cyrille; Cuesta, Juan; Pelon, Jacques; Williams, Earle

    2010-05-01

    The dust activity over North Africa associated with the Saharan depression event in February 2007 is investigated by mean of spaceborne observations, ground based measurements and mesoscale simulation with Meso-NH. The main characteristics of the cyclone as well as the meteorological conditions during this event are described using the European Centre for Medium-range Weather Forecasts (ECMWF). The dust storm and cloud cover over North Africa is thoroughly described combining for the first time Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) images for the spatio-temporal evolution and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat observations for the vertical distribution. The Saharan depression formed over Algeria in the lee of the Atlas Mountain on the afternoon of February 20 in response to midlatitude trough intrusion. It migrated eastward with a speed of 11 m s-1 and reached Libya on February 22 before exiting the African continent toward the Mediterranean Sea on February 23. The horizontal scale of the cyclone at the surface varied between 800 km and 1000 km during its lifetime. On the vertical the cyclone extended over 8 km and a potential vorticity of 2 PVU was reported on its centre at 3 km in altitude. The cyclone was characterised by a surface pressure anomaly of about 9 hPa with respect to the environment, a warm front typified at the surface by an increase in surface temperature of 5°C, and a sharp cold front characterized by a drop in surface temperature of 8°C and an increase in 10 m wind speed of 15 m s-1. The cyclone provided a dynamical forcing that led to strong near-surface winds and produced a major dust storm over North Africa. The dust was transported all around the cyclone leaving a clear eye on its centre and was accompanied by a deep cloud band along the northwestern edge of the cyclone. On the vertical, slanted dust layers were consistently observed during the event over North Africa

  20. AEROSE 2004 - An Interdisciplinary Atmosphere-Ocean Saharan Dust Expedition

    NASA Astrophysics Data System (ADS)

    Clemente-Colón, P.

    2004-05-01

    The NOAA Center for Atmospheric Sciences (NCAS) is sponsoring a Trans-Atlantic Saharan Dust AERosol and Ocean Science Expedition (AEROSE) aboard the NOAA Ship Ronald H. Brown in March 2004. The fundamental purpose of this aerosol cruise is to study the impacts and microphysical evolution of Saharan dust aerosol as it is transported across the Atlantic Ocean. The mission encompasses both, atmospheric and oceanographic components. Participating institutions include Howard University, NCAS lead institution, the University of Puerto Rico at Mayagüez, the Canary Institute of Marine Sciences, the Spanish Institute of Oceanography, the Laboratory of Atmospheric Physics Siméon Fongang, the University of Miami Rosenstiel School of Marine and Atmospheric Science, the University of Washington Applied Physics Laboratory, NASA Goddard Space Flight Center, the NOAA Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison, NASA Jet Propulsion Laboratory, and the NOAA/NESDIS Office of Research and Applications. This collaboration provides unique atmospheric and oceanic observations across the North Tropical Atlantic during eastward and westward tracks during a period of nearly one month. Characterization of microphysical properties of Saharan dust aerosol is done trough direct observations of mass, size, and particle number distributions, chemical composition, spatial distributions, and air chemistry. Aerosol radiative properties are studied through a suite of sensors that include a Multi-Angle Absorption Photometer (MAAP), the Marine-Atmosphere Emitted Radiance Interferometer (M-AERI), sunphotometers, and an assortment of other radiometers. Characterization of atmospheric conditions is done through a combination of over 250 radiosonde and ozonesonde launches at 3 to 5 hour intervals during the duration of the cruise and in coordination with satellite overpasses. AEROSE is also supporting the collection of bio-optics and oceanographic

  1. PM10 composition during an intense Saharan dust transport event over Athens (Greece).

    PubMed

    Remoundaki, E; Bourliva, A; Kokkalis, P; Mamouri, R E; Papayannis, A; Grigoratos, T; Samara, C; Tsezos, M

    2011-09-15

    The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM(10) monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM(10) concentrations exceeded the EU limit (50 μg/m(3)) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM(10) reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes <2 μm. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles <1 μm. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Long-range-transported Saharan dust in the Caribbean - an electron microscopy perspective of aerosol composition and modification

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Hartmann, Markus; Ebert, Martin; Weinbruch, Stephan; Weinzierl, Bernadett; Walser, Adrian; Sauer, Daniel; Wadinga Fomba, Khanneh

    2015-04-01

    -based - is composed of mainly silicates and minor amounts of Ca-rich and Fe-/Fe-Ti-rich particles (less than 10 % of dust fraction). The composition of the silicates indicates a major contribution of kaolinite (Al/Si atomic ratio between 0.6 and 1) and a minor contribution of quartz and feldspar particles. The inter-sample variation of the dust composition is generally low, pointing to a very thorough mixing from differently-composed Saharan sources. The temporal evolution of aerosol composition at Ragged Point shows a variation in dust abundance, but strong isolated events could not be identified. An airmass change induced by the passing by of a hurricane, however, is visible in sulfate abundance and their composition. Strong internally mixed particles of dust and sulfate or dust and sea-salt are very rare (up to 1 % of particles in the airborne samples), but a slight increasing tendency with decreasing altitude was found. In the lower MBL at Ragged point, dust/sea-salt mixtures are more frequent (in the same abundance range as pure dust particles). A first conclusion from the data set is that dust aging with respect to internal mixtures does not happen during the long-range transport across the Atlantic Ocean, but rather at the end during the down-mixing of mineral dust into the Caribbean MBL.

  3. Using thermal infrared (TIR) data to characterize dust sources, dust fall and the linkage to climate in the Middle East

    NASA Astrophysics Data System (ADS)

    Mohammad, R.; Ramsey, M.; Scheidt, S. P.

    2010-12-01

    Prior to mineral dust deposition affecting albedo, aerosols can have direct and indirect effects on local to regional scale climate by changing both the shortwave and longwave radiative forcing. In addition, mineral dust causes health hazards, such as respiratory-related illnesses and deaths, loss of agricultural soil, and safety hazards to aviation and motorists due to reduced visibility. Previous work utilized satellite and ground-based TIR data to describe the direct longwave radiative effect of the Saharan Air Layer (SAL) over the Atlantic Ocean originating from dust storms in the Western Sahara. TIR emission spectroscopy was used to identify the spectral absorption features of that dust. The current research focuses on Kuwait and utilizes a comprehensive set of spatial, analytical and geological tools to characterize dust emissions and its radiative effects. Surface mineral composition maps for the Kuwait region were created using ASTER images and GIS datasets in order to identify the possible sources of wind-blown dust. Backward trajectory analysis using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggests the dust source areas were located in Iraq, Syria, Jordan and Saudi Arabia. Samples collected from two dust storms (May and July 2010) were analyzed for their mineral composition and to validate the dust source areas identified by the modeling and remote sensing analysis. These air fall dust samples were collected in glass containers on a 13 meter high rooftop in the suburb of Rumaithiya in Kuwait. Additional samples will be collected to expand the analysis and their chemical compositions will be characterized by a combination of laboratory X-ray fluorescence (XRF), Scanning Electron Microscopy (SEM) and TIR emission spectroscopy. The overarching objective of this ongoing research is to both characterize the effects of mineral dust on climate as well as establish a predictive tool that can identify dust storm sources and

  4. Intensity of African Humid Periods Estimated from Saharan Dust Fluxes.

    PubMed

    Ehrmann, Werner; Schmiedl, Gerhard; Beuscher, Sarah; Krüger, Stefan

    2017-01-01

    North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the intensities and characteristics of pre-Holocene humid periods. Here we present a high-resolution record of fine-grained eastern Saharan dust from the Eastern Mediterranean Sea spanning the last 180 kyr, which is based on the clay mineral composition of the marine sediments, especially the kaolinite/chlorite ratio. Minimum aeolian kaolinite transport occurred during the African Humid Periods because kaolinite deflation was hampered by increased humidity and vegetation cover. Instead, kaolinite weathering from kaolinite-bearing Cenozoic rocks was stored in lake basins, river beds and soils during these periods. During the subsequent dry phases, fine-grained dust was mobilised from the desiccated lakes, rivers and soils resulting in maximum aeolian uptake and transport of kaolinite. The kaolinite transport decreased again when these sediment sources exhausted. We conclude that the amount of clay-sized dust blown out of the Sahara into the Eastern Mediterranean Sea is proportional to the intensity of the kaolinite weathering and accumulation in soils and lake sediments, and thus to the strength of the preceding humid period. These humid periods provided the windows for the migration of modern humans out of Africa, as postulated previously. The strongest humid period occurred during the Eemian and was followed by two weaker phases centred at ca. 100 ka and ca. 80 ka.

  5. Intensity of African Humid Periods Estimated from Saharan Dust Fluxes

    PubMed Central

    Ehrmann, Werner; Schmiedl, Gerhard; Beuscher, Sarah; Krüger, Stefan

    2017-01-01

    North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the intensities and characteristics of pre-Holocene humid periods. Here we present a high-resolution record of fine-grained eastern Saharan dust from the Eastern Mediterranean Sea spanning the last 180 kyr, which is based on the clay mineral composition of the marine sediments, especially the kaolinite/chlorite ratio. Minimum aeolian kaolinite transport occurred during the African Humid Periods because kaolinite deflation was hampered by increased humidity and vegetation cover. Instead, kaolinite weathering from kaolinite-bearing Cenozoic rocks was stored in lake basins, river beds and soils during these periods. During the subsequent dry phases, fine-grained dust was mobilised from the desiccated lakes, rivers and soils resulting in maximum aeolian uptake and transport of kaolinite. The kaolinite transport decreased again when these sediment sources exhausted. We conclude that the amount of clay-sized dust blown out of the Sahara into the Eastern Mediterranean Sea is proportional to the intensity of the kaolinite weathering and accumulation in soils and lake sediments, and thus to the strength of the preceding humid period. These humid periods provided the windows for the migration of modern humans out of Africa, as postulated previously. The strongest humid period occurred during the Eemian and was followed by two weaker phases centred at ca. 100 ka and ca. 80 ka. PMID:28129378

  6. Investigating Sensitivity to Saharan Dust in Tropical Cyclone Formation Using Nasa's Adjoint Model

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel

    2015-01-01

    As tropical cyclones develop from easterly waves coming of the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the

  7. Investigating sensitivity to Saharan dust in tropical cyclone formation using NASA's adjoint model

    NASA Astrophysics Data System (ADS)

    Holdaway, Daniel

    2015-04-01

    As tropical cyclones develop from easterly waves coming off the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the

  8. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    PubMed

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  9. Longwave Radiative Forcing of Saharan Dust Aerosols Estimated from MODIS, MISR and CERES Observations on Terra

    NASA Technical Reports Server (NTRS)

    Zhang, Jiang-Long; Christopher, Sundar A.

    2003-01-01

    Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth's Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean LW forcing for September 2000 is 7 W/sq m and the LW forcing efficiency' (LW(sub eff)) is 15 W/sq m. Using radiative transfer calculations, we also show that the vertical distribution of aerosols and water vapor are critical to the understanding of dust aerosol forcing. Using well calibrated, spatially and temporally collocated data sets, we have combined the strengths of three sensors from the same satellite to quantify the LW radiative forcing, and show that dust aerosols have a "warming" effect over the Saharan desert that will counteract the shortwave "cooling effect" of aerosols.

  10. Dust loading of the normal atmosphere

    NASA Astrophysics Data System (ADS)

    Hall, F. F., Jr.

    1983-01-01

    Soil dust can contribute to atmospheric turbidity over most of the globe. The major sources of this dust are in the world's arid regions, where loadings of over 1000 micrograms/cu m can occur during strong winds. Saharan dust transported across the Atlantic can produce loadings up to 100 micrograms/cu m in the Western Hemisphere. Asian sources yield springtime loadings of 5-10 micrograms/cu m at Midway Island. Other important sources of dust are agricultural plowing and vehicular traffic on graded roads. The U.S. air quality standard of 75 micrograms/cu m is often exceeded in rural areas.

  11. Impact of Saharan dust events on radionuclide levels in Monaco air and in the water column of the northwest Mediterranean Sea.

    PubMed

    Pham, Mai Khanh; Chamizo, Elena; Mas Balbuena, José Luis; Miquel, Juan-Carlos; Martín, Jacobo; Osvath, Iolanda; Povinec, Pavel P

    2017-01-01

    Characterization of atmospheric aerosols collected in Monaco (2004-2008) and in sediment traps at 200 m and 1000 m water depths at the DYFAMED (Dynamics of Atmospheric Fluxes in the Mediterranean Sea) station (2004) was carried out to improve our understanding of the impact of Saharan dust on ground-level air and on the water column. Activity concentrations of natural ( 210 Pb, 210 Po, uranium and radium isotopes) and anthropogenic ( 137 Cs, 239 Pu, 240 Pu, and 239+240 Pu) radionuclides and their isotopic ratios confirmed a Saharan impact on the investigated samples. In association with a large particulate matter deposition event in Monaco on 20 February 2004, the 137 Cs (∼40 Bq kg -1 ) and 239+240 Pu (∼1 Bq kg -1 ) activities were almost a factor of two higher than other Saharan deposition dust events. This single-day particle flux represented 72% of the annual atmospheric deposition in Monaco. The annual deposition of Saharan dust on the sea was 232-407 mBq m -2 for 137 Cs and 6.8-9.8 mBq m -2 for 239+240 Pu and contributed significantly (28-37% for 137 Cs and 34-45% for 239+240 Pu) to the total annual atmospheric input to the northwest Mediterranean Sea. The 137 Cs/ 239+240 Pu activity ratios in dust samples collected during different Saharan dust events confirmed their global fallout origin or mixing with local re-suspended soil particles. In the sediment trap samples the 137 Cs activity varied by a factor of two, while the 239+240 Pu activity was constant, confirming the different behaviors of Cs (dissolved) and Pu (particle reactive) in the water column. The 137 Cs and 239+240 Pu activities of sinking particles during the period of the highest mass flux collected in 20 February 2004 at the 200 m and 1000 m water depths represented about 10% and 15%, respectively, of annual deposition from Saharan dust events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Influence of atmospheric processes on the solubility and composition of iron in Saharan dust

    DOE PAGES

    Longo, Amelia F.; Feng, Yan; Lai, Barry; ...

    2016-06-10

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation statemore » became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.« less

  13. Satellite Reveals How Much Saharan Dust Feeds Amazon's Plants

    NASA Image and Video Library

    2015-02-24

    What connects Earth's largest, hottest desert to its largest tropical rainforest? The Sahara Desert is a near-uninterrupted brown band of sand and scrub across the northern third of Africa. The Amazon rainforest is a dense green mass of humid jungle that covers northeast South America. But after strong winds sweep across the Sahara, a tan cloud rises in the air, stretches between the continents, and ties together the desert and the jungle. It’s dust. And lots of it. For the first time, a NASA satellite has quantified in three dimensions how much dust makes this trans-Atlantic journey. Scientists have not only measured the volume of dust, they have also calculated how much phosphorus – a natural plant fertilizer present in Saharan sands from part of the desert’s past as a lake bed – gets carried across the ocean from one of the planet’s most desolate places to one of its most fertile. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Improving Public Health DSSs by Including Saharan Dust Forecasts Through Incorporation of NASA's GOCART Model Results

    NASA Technical Reports Server (NTRS)

    Berglund, Judith

    2007-01-01

    Approximately 2-3 billion metric tons of soil dust are estimated to be transported in the Earth's atmosphere each year. Global transport of desert dust is believed to play an important role in many geochemical, climatological, and environmental processes. This dust carries minerals and nutrients, but it has also been shown to carry pollutants and viable microorganisms capable of harming human, animal, plant, and ecosystem health. Saharan dust, which impacts the eastern United States (especially Florida and the southeast) and U.S. Territories in the Caribbean primarily during the summer months, has been linked to increases in respiratory illnesses in this region and has been shown to carry other human, animal, and plant pathogens. For these reasons, this candidate solution recommends integrating Saharan dust distribution and concentration forecasts from the NASA GOCART global dust cycle model into a public health DSS (decision support system), such as the CDC's (Centers for Disease Control and Prevention's) EPHTN (Environmental Public Health Tracking Network), for the eastern United States and Caribbean for early warning purposes regarding potential increases in respiratory illnesses or asthma attacks, potential disease outbreaks, or bioterrorism. This candidate solution pertains to the Public Health National Application but also has direct connections to Air Quality and Homeland Security. In addition, the GOCART model currently uses the NASA MODIS aerosol product as an input and uses meteorological forecasts from the NASA GEOS-DAS (Goddard Earth Observing System Data Assimilation System) GEOS-4 AGCM. In the future, VIIRS aerosol products and perhaps CALIOP aerosol products could be assimilated into the GOCART model to improve the results.

  15. Airborne lidar observations of Saharan dust during FENNEC

    NASA Astrophysics Data System (ADS)

    Marenco, Franco; Garcia-Carreras, Luis; Rosenberg, Phil; McQuaid, Jim

    2013-04-01

    In June 2011 and June 2012, the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft took part in the Fennec campaign. The main purpose was to quantify and model boundary layer and aerosol processes over the Saharan "heat low" region, the greatest dust region during summer. Although the central Sahara is extremely remote, the meteorology of this region is vital in driving the West African monsoon, and the dry and dusty air layers are closely related to the formation of Atlantic tropical cyclones. In this presentation, we shall characterise these air layers using data collected with the on-board lidar together with dropsondes. The interpretation of lidar signals in this particular geometry represents a challenge (nadir observations of thick layers), but we shall show that a suitable data inversion framework is possible under certain assumptions. The quality of the lidar data will be assessed using in-situ data from the nephelometer and optical particle counters. Deep air layers containing dust have been observed up to altitude of 5-6 km above mean sea level. The analysis of temperature and dew point profiles are used to identify the boundary layer and residual layer tops, and in conjunction with lidar observations this serves to quantify the dust content of both layers. An aerosol-laden residual layer is usually found during the campaign at an altitude of 2-6 km in the morning hours, with little aerosol below. The aerosol in the boundary layer is seen to develop later when solar heating of the surface induces turbulence until in the late afternoon the top of the boundary layer reaches up to ~ 6 km. Clouds embedded in aerosol layers and aerosol-cloud interactions have also been revealed. Dust aerosol has been observed in most cases, but a thin polluted non-dusty layer has been observed during one flight.

  16. Saharan dust plume charging observed over the UK

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.

    2018-05-01

    A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.

  17. Detection of saharan mineral dust aerosol transport over brazilian northeast through a depolarization lidar

    NASA Astrophysics Data System (ADS)

    Guedes, Anderson G.; Landulfo, Eduardo; Montilla-Rosero, Elena; Lopes, Fábio J. S.; Hoelzemann, Judith J.; Fernandez, José Henrique; Silva, Marcos P. A.; Santos, Renata S. S.; Guerrero-Rascado, Juan L.; Alados-Arboledas, Lucas

    2018-04-01

    In this study we present results of linear volume depolarization ratio profiles obtained by a depolarization lidar in operation in Natal, Brazil. The DUSTER system has 4 channels, namely: 1064, 532 s/p and 355 nm. This system is calibrated with a half-wave plate using the Δ90° methodology. The data obtained from this system is correlated with AERONET sunphotometer data, and, when available, CALIPSO satellite data. In addition a trajectory model (HYSPLIT) is used to calculate backward trajectories to assess the origin of the dust polluted air parcels. The objective is to create a transport database of Saharan dust.

  18. Understanding the impact of saharan dust aerosols on tropical cyclones

    NASA Astrophysics Data System (ADS)

    Naeger, Aaron

    Genesis of Tropical Cyclones (TCs) in the main development region for Atlantic hurricanes is tied to convection initiated by African easterly waves (AEWs) during Northern hemisphere summer and fall seasons. The main development region is also impacted by dust aerosols transported from the Sahara. It has been hypothesized that dust aerosols can modulate the development of TCs through aerosol-radiation and aerosol-cloud interaction processes. In this study, we investigate the impact of dust aerosols on TC development using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We first develop a technique to constrain the WRF-Chem model with a realistic three-dimensional spatial distribution of dust aerosols. The horizontal distribution of dust is specified using the Moderate Resolution Imaging Spectroradiometer (MODIS) derived aerosol products and output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The vertical distribution of dust is constrained using the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). We validate our technique through in situ aircraft measurements where both showed aerosol number concentrations from 20-30 cm-3 in the atmosphere for Saharan dust moving over the eastern Atlantic Ocean. Then, we use the satellite data constraint technique to nudge the WRF-Chem aerosol fields throughout the simulation of TC Florence developing over the eastern Atlantic Ocean during September 2006. Three different experiments are conducted where the aerosol-radiation and aerosol-cloud interaction processes are either activated or deactivated in the model while all other model options are identical between the experiments. By comparing the model experiment results, the impact of the aerosol interaction processes on TC development can be understood. The results indicate that dust aerosols can delay or prevent the development of a TC as the minimum sea level pressure of TC Florence was 13 h

  19. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany

    NASA Astrophysics Data System (ADS)

    Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike

    2017-11-01

    The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.

  20. Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect

    NASA Astrophysics Data System (ADS)

    Amiri-Farahani, Anahita; Allen, Robert J.; Neubauer, David; Lohmann, Ulrike

    2017-05-01

    One component of aerosol-cloud interactions (ACI) involves dust and marine stratocumulus clouds (MSc). Few observational studies have focused on dust-MSc interactions, and thus this effect remains poorly quantified. We use observations from multiple sensors in the NASA A-Train satellite constellation from 2004 to 2012 to obtain estimates of the aerosol-cloud radiative effect, including its uncertainty, of dust aerosol influencing Atlantic MSc off the coast of northern Africa between 45° W and 15° E and between 0 and 35° N. To calculate the aerosol-cloud radiative effect, we use two methods following Quaas et al. (2008) (Method 1) and Chen et al. (2014) (Method 2). These two methods yield similar results of -1.5 ± 1.4 and -1.5 ± 1.6 W m-2, respectively, for the annual mean aerosol-cloud radiative effect. Thus, Saharan dust modifies MSc in a way that acts to cool the planet. There is a strong seasonal variation, with the aerosol-cloud radiative effect switching from significantly negative during the boreal summer to weakly positive during boreal winter. Method 1 (Method 2) yields -3.8 ± 2.5 (-4.3 ± 4.1) during summer and 1 ± 2.9 (0.6 ± 1) W m-2 during winter. In Method 1, the aerosol-cloud radiative effect can be decomposed into two terms, one representing the first aerosol indirect effect and the second representing the combination of the second aerosol indirect effect and the semidirect effect (i.e., changes in liquid water path and cloud fraction in response to changes in absorbing aerosols and local heating). The first aerosol indirect effect is relatively small, varying from -0.7 ± 0.6 in summer to 0.1 ± 0.5 W m-2 in winter. The second term, however, dominates the overall radiative effect, varying from -3.2 ± 2.5 in summer to 0.9 ± 2.9 W m-2 during winter. Studies show that the semidirect effect can result in a negative (i.e., absorbing aerosol lies above low clouds like MSc) or positive (i.e., absorbing aerosol lies within low clouds) aerosol

  1. SMART-COMMIT Observations and Deep-Blue Retrievals of Saharan Dust Properties during NAMMA

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, N. Christina; Ji, Qiang; Jeong, Myeong-Jae

    2007-01-01

    Monsoon rainfalls sustain the livelihood of more than half of the world's population. The interaction between natural/anthropogenic aerosols, clouds, and precipitation is a critical mechanism that drives the water cycle and fresh water distribution. Analyses of the longterm trend of July-August precipitation anomaly for the last 50 years in the 20" century depict that the largest regional precipitation deficit occurs over the Sahel, where the monsoon water cycle plays an important role. Thus, it is of paramount importance to study how dust aerosols, as well as air pollution and smoke, influence monsoon variability. The NASA African Monsoon Multidisciplinary Activities (NAMMA) was conducted during the international AMMA Special Observation Period (SOP-3) of September 2006 to better comprehend the key attributes of the Saharan Air Layer (SAL) and how they evolve from the source regions to the Atlantic Ocean. The SAL occurs during the late spring through early fall and originates as a result of low-level convergence induced by heat lows over the Sahara that lifts hot, dry, dust laden air aloft into a well mixed layer that extends up to 500mb. This is crucial for understanding the impact of SAL on the key atmospheric processes that determine precipitation over West Africa and tropical cyclogenesis. Results obtained from the synergy of satellite (Deep- Blue) and surface (SMART-COMMIT) observations will be presented and discussed how the physical, optical and radiative properties of the dust in the SAL evolve from the continental to the marine environment.

  2. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  3. Detecting and assessing Saharan dust contribution to PM10 loads: A pilot study within the EU-Life+10 project DIAPASON

    NASA Astrophysics Data System (ADS)

    Gobbi, Gian Paolo; Barnaba, Francesca; Bolignano, Andrea; Costabile, Francesca; Di Liberto, Luca; Dionisi, Davide; Drewnick, Frank; Lucarelli, Franco; Manigrasso, Maurizio; Nava, Silvia; Sauvage, Laurent; Sozzi, Roberto; Struckmeier, Caroline; Wille, Holger

    2015-04-01

    The EC LIFE+2010 DIAPASON Project (Desert dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs, www.diapason-life.eu) intends to contribute new methodologies to assess the role of aerosol advections of Saharan dust to the local PM loads recorded in Europe. To this goal, automated Polarization Lidar-Ceilometers (PLCs) were prototyped within DIAPASON to certify the presence of Saharan dust plumes and support evaluating their mass loadings in the lowermost atmosphere. The whole process also involves operational dust forecasts, as well as satellite and in-situ observations. Demonstration of the Project is implemented in the pilot region of Rome (Central Italy) where three networked DIAPASON PLCs started, in October 2013 a year-round, 24h/day monitoring of the altitude-resolved aerosol backscatter and depolarization profiles. Two intensive observational periods (IOPs) involving chemical analysis and detailed physical characterization of aerosol samples have also been carried out in this year-long campaign, namely in Fall 2013 and Spring 2014. These allowed for an extensive interpretation of the PLC observations, highlighting important synergies between the PLC and the in situ data. The presentation will address capabilities of the employed PLCs, observations agreement with model forecasts of dust advections, retrievals of aerosol properties and methodologies developed to detect Saharan advections and to evaluate the relevant mass contribution to PM10. This latter task is intended to provide suggestions on possible improvements to the current EC Guidelines (2011) on this matter. In fact, specific Guidelines are delivered by the European Commission to provide the Member States a common method to asses the Saharan dust contribution to the currently legislated PM-related Air Quality metrics. The DIAPASON experience shows that improvements can be proposed to make the current EC Methodology more robust and flexible. The methodology DIAPASON

  4. The evolution of Saharan dust input in Lanzarote (Canary Islands): Lower Holocene triggering by human activity in the northwest Sahara?

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, H.; Oberhänsli, H.; Faust, D.; Zöller, L.; Hambach, U.; Fuchs, M.

    2009-04-01

    A Holocene increase of Saharan dust input to the area of the Canary islands is accompanied by a strong coarsening of this material during the Early Holocene as recorded in loess-like sediments deposited on Lanzarote. Whereas natural causes can be ruled out for the coarsening that is exceptional during the period of the last 180 ka, it is assumed that anthropogenic activity strongly mobilized dust in an area on the pathway of dust prior to its arrival in Lanzarote comprising parts of Western Sahara and northern Mauritania. Although scarce archaeological data from the coastal area of that region do not point to strong anthropogenic activity during the Early Holocene yet, a high density of unexplored archaeological remains reported from the coastal hinterlands does not exclude this hypothesis. Thus, the results of this study highlight the need of further archaeological investigations in that Saharan region.

  5. Analysis of Measurements of Saharan Dust by Airborne and Ground-based Remote Sensing Methods during the Puerto Rico Dust Experiment (PRIDE)

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, E. Judd; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James; Christopher, Sundar A.; Jonsson, Haflidi H.

    2003-01-01

    For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on findings on African dust transported into the Caribbean utilizing Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum less than 0.5 and with clean marine periods of _0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged _0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a, weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of Maring et al. that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes which may impact dust vertical distribution and determine and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection couple with mixing by easterly waves and regional subsidence.

  6. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    NASA Technical Reports Server (NTRS)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0

  7. Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales

    PubMed Central

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  8. Saharan Air Layer Interaction with Hurricane Claudette (2003)

    NASA Astrophysics Data System (ADS)

    Rothman, G. S.; Gill, T. E.; Chang, C.

    2004-12-01

    well as the MODIS-TERRA (Moderate Imaging Spectroradiometer) aerosol product suggested that the intensity of Saharan dust was well correlated to heating in the environment. NOGAPS (Navy Operational Global Atmospheric Prediction System) model analysis outputs revealed that the mid-level easterly jet along the southern SAL boundary was a source for potential combined barotropic-baroclinic instability, possibly contributing to the growth of the formative easterly wave. The Charney-Stern condition was satisfied for the formative tropical wave throughout most of its evolution, corresponding to the mostly progressive wave growth occurring almost consistently throughout its evolution. The current research suggests that there was a dual-celled set of circulations, forced by the SAL boundaries, but modified by the mid-level easterly jet. The presence of the dust layer appears to have been a factor playing an important role in the life cycle of this tropical cyclone. In this case, the dusty Saharan Air Layer apparently facilitated growth of the formative easterly wave, but later suppressed the intensity of Claudette until shortly before landfall.

  9. A Model for Saharan Dust Transport.

    NASA Astrophysics Data System (ADS)

    D'Almeida, Guillaume A.

    1986-07-01

    In this paper the source strength and the deposition rate of the dust emerging from the Sahara are assessed. For this purpose a multichannel sunphotometer has been developed and a turbidity network covering 11 stations has been set up in the Sahara, in the Sahel region and the surrounding southern area for a duration of about two years. A correlation analysis connecting observed aerosol turbidity parameters and mineral dust mass concentration has been performed during a four-week field campaign in Agadez (Niger). An appropriate box model including the aerosol turbidity parameters, actual wind field data of the source regions, the general circulation pattern over Africa and dry and wet deposition reveals a total mass production of about 630 × 106 and 710 × 106 t yr1 for all suspended particulate matter, 80 × 106 and 90 × 106 t yr1 for aerosol particles smaller than 5 m radius for the years 1981 and 1982 respectively. About 60% of the mass moves southward to the Gulf of Guinea, 28% westward to the equatorial North Atlantic Ocean and 12% northward to Europe. A considerable part is deposited in the Atlantic Ocean and the Mediterranean forming deep-sea sediments.

  10. Identification of Dust Source Regions at High-Resolution and Dynamics of Dust Source Mask over Southwest United States Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Sahoo, S.; Prasad, A. K.; Venkatesh, A. S.; Vukovic, A.; Nickovic, S.

    2015-12-01

    Identification and evaluation of sources of aeolian mineral dust is a critical task in the simulation of dust. Recently, time series of space based multi-sensor satellite images have been used to identify and monitor changes in the land surface characteristics. Modeling of windblown dust requires precise delineation of mineral dust source and its strength that varies over a region as well as seasonal and inter-annual variability due to changes in land use and land cover. Southwest USA is one of the major dust emission prone zone in North American continent where dust is generated from low lying dried-up areas with bare ground surface and they may be scattered or appear as point sources on high resolution satellite images. In the current research, various satellite derived variables have been integrated to produce a high-resolution dust source mask, at grid size of 250 m, using data such as digital elevation model, surface reflectance, vegetation cover, land cover class, and surface wetness. Previous dust source models have been adopted to produce a multi-parameter dust source mask using data from satellites such as Terra (Moderate Resolution Imaging Spectroradiometer - MODIS), and Landsat. The dust source mask model captures the topographically low regions with bare soil surface, dried-up river plains, and lakes which form important source of dust in southwest USA. The study region is also one of the hottest regions of USA where surface dryness, land use (agricultural use), and vegetation cover changes significantly leading to major changes in the areal coverage of potential dust source regions. A dynamic high resolution dust source mask have been produced to address intra-annual change in the aerial extent of bare dry surfaces. Time series of satellite derived data have been used to create dynamic dust source masks. A new dust source mask at 16 day interval allows enhanced detection of potential dust source regions that can be employed in the dust emission and

  11. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air.

    PubMed

    Garrison, V H; Majewski, M S; Konde, L; Wolf, R E; Otto, R D; Tsuneoka, Y

    2014-12-01

    Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure. Published by Elsevier B.V.

  12. Satellite Observations from SEVIRI of Saharan dust over West Africa, within the context of the Fennec project

    NASA Astrophysics Data System (ADS)

    Banks, J.; Brindley, H.

    2012-04-01

    During the summer months, the atmosphere over the western half of the Sahara carries some of the highest dust loadings on the planet. This situation develops when intense solar heating over the dry desert creates a deep and hot low pressure system (the Saharan Heat Low, SHL), which allows a strong vertical mixing of dust. The Fennec* consortium project aims to address the deficiency in observations from the sparsely populated western Sahara through the use of field campaign measurements made in June 2011, incorporating observations from ground instruments, aircraft, and from satellite instruments such as SEVIRI, in combination with climate modelling. Fennec aims to study the poorly understood behaviour of the SHL, and the processes which take place within it. Due to their high temporal resolution, observations from SEVIRI can offer new insights into the timing of activation of specific dust sources, and the processes governing their behaviour. Here we employ a multi-year, high time-resolution record of dust detection and aerosol optical depth (AOD) derived from SEVIRI using an algorithm developed at Imperial College to both identify areas of high dust loading and diagnose diurnal patterns in their activation. We will present results from the SEVIRI record alongside results from other satellite instruments such as MODIS, and place these findings in the context of the initial ground-based and in-situ observations available from the Fennec field campaign. We will also identify surface features which can contaminate the dust detection retrieval, due to their emissivities in the 8.7 micron channel. New techniques can be used to filter out these features, based on the difference between the brightness temperatures at 10.8 and 8.7 microns. Using surface visibility measurements and AERONET data, we will evaluate the consequences of this on the dust detection and AOD record. * Fennec is a consortium project which includes groups from the universities of Oxford, Imperial

  13. Impact of Radiatively Interactive Dust Aerosols in the NASA GEOS-5 Climate Model: Sensitivity to Dust Particle Shape and Refractive Index

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.

    2013-01-01

    We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a

  14. Identifying sources of aeolian mineral dust: Present and past

    USGS Publications Warehouse

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  15. Characterization of Saharan dust properties transported towards Europe in the frame of the FENNEC project: a case study

    NASA Astrophysics Data System (ADS)

    Marnas, F.; Chazette, P.; Flamant, C.; Royer, P.; Sodemman, H.; Derimian, Y.

    2012-04-01

    In the framework of the FENNEC experiment (6 to 30 June 2011) an effort has been dedicated to characterize Saharan dust plumes transported towards southern Europe. Hence, a multi instrumented field campaign has been conducted. Ground based nitrogen Raman LIDAR (GBNRL) has been deployed in southern Spain close to Marbella, simultaneously with airborne lidar (AL) performing measurements over both the tropical Atlantic Ocean and the western Africa (from 2 to 23 June). The GBNRL was equipped with co-polar and cross-polar channels to perform continuous measurements of the dust aerosols trapped in the troposphere. It was developed by LSCE with the support of the LEOSPHERE Company. The French FALCON 20 research aircraft operated by SAFIRE (Service des Avions Francais Instrumentés pour la Recherche en Environnement) carried the AL Leandre Nouvelle Generation (LNG) as well as a dropsonde releasing system and radiometers. A major, one week long, dust event has been sampled over Spain from 25 June to 1 July with high optical depth (>0.5 at 355nm) and particular depolarization ratios (15 to 25%). Backtrajectory studies suggest that the dust particles observed were from dust uplifts that occurred in Southern Morocco and Northern Mauritania. The event has been also documented 3 days before by the AL flying over Mauritania. AERONET sunphotometer measurements of aerosol properties, along the dust plume transport path appear to be coherent with both the lidar and the backtrajectory analysis. These analysis exhibit a likely major contribution from the Western Sahara sources to the Southern Europe. Such a contribution may impact the visibility and then the airtrafic, modify the tropospheric chemistry, and add nutrients to both the Mediterranean Sea and the continental surfaces. It can also affect the health of European populations. We will present strategy of the experiment and the case study built from measurements performed at the end of June.

  16. Coastal Bacterioplankton Metabolism Is Stimulated Stronger by Anthropogenic Aerosols than Saharan Dust

    PubMed Central

    Marín, Isabel; Nunes, Sdena; Sánchez-Pérez, Elvia D.; Txurruka, Estibalitz; Antequera, Carolina; Sala, Maria M.; Marrasé, Cèlia; Peters, Francesc

    2017-01-01

    In oligotrophic regions, such as the Mediterranean Sea, atmospheric deposition has the potential to stimulate heterotrophic prokaryote growth and production in surface waters, especially during the summer stratification period. Previous studies focused on the role of leaching nutrients from mineral particles of Saharan (S) origin, and were restricted to single locations at given times of the year. In this study, we evaluate the effect of atmospheric particles from diverse sources and with a markedly different chemical composition [S dust and anthropogenic (A) aerosols] on marine planktonic communities from three locations of the northwestern Mediterranean with contrasted anthropogenic footprint. Experiments were also carried out at different times of the year, considering diverse initial conditions. We followed the dynamics of the heterotrophic community and a range of biogeochemical and physiological parameters in six experiments. While the effect of aerosols on bacterial abundance was overall low, bacterial heterotrophic production was up to 3.3 and 2.1 times higher in the samples amended with A and S aerosols, respectively, than in the controls. Extracellular enzymatic activities [leu-aminopeptidase (AMA) and β-glucosidase (β-Gl)] were also enhanced with aerosols, especially from A origin. AMA and β-Gl increased up to 7.1 in the samples amended with A aerosols, and up to 1.7 and 2.1 times, respectively, with S dust. The larger stimulation observed with A aerosols might be attributed to their higher content in nitrate. However, the response was variable depending the initial status of the seawater. In addition, we found that both A and S aerosols stimulated bacterial abundance and metabolism significantly more in the absence of competitors and predators. PMID:29187835

  17. Intercomparison of observations and model aerosol parameters during two Saharan dust events over the southern United Kingdom

    NASA Astrophysics Data System (ADS)

    Buxmann, Joelle; Adam, Mariana; Ordonez, Carlos; Tilbee, Marie; Smyth, Tim; Claxton, Bernard; Sugier, Jacqueline; Agnew, Paul

    2015-04-01

    Saharan desert dust lifted by convection over the hot desert surface can reach high altitudes and be transported over great distances. In the UK, Saharan dust episodes occur several times a year, usually during the spring. Dust lifted by cyclonic circulation is often blown into the Atlantic and transported to the UK. This can result in a rapid degradation of air quality due to the increase in the levels of particulate matter (PM). The ability to model the transport and deposition of dust remains an important challenge in order to characterize different pollution events. We present a comparison of observed Aerosol Optical Depth (AOD) with modelled AOD from the Met Office Air Quality Unified Model (AQUM), performed for two dust events in March 2014 (at 380nm, 440nm, 870nm and 1020nm). The observations are derived from five sun photometers located in the southern UK at Exeter, Cardington, Bayfordbury, Chilbolton, and Plymouth. Correlations are investigated between model column integrated PM2.5 and PM10, and observed fine and coarse mode AOD from AERONET. Vertical profiles of attenuated backscatter and extinction from the Jenoptik Nimbus ceilometers part of the Met Office Laser Cloud Base Recorder (LCBR) network are investigated as well (see also session AS3.17/GI2.2 Lidar and Applications). The Met Office air quality model AQUM is an on-line meteorology, chemistry and aerosol modelling system. It runs at a resolution of 12km over a domain covering the UK and north-western Europe. Atmospheric composition modelling employs two-way coupling between aerosol and chemistry evolution, with explicit modelling of sulphate, nitrate, black carbon, organic carbon, biomass burning and wind-blown mineral dust aerosol components. Both the model and observations show an increase in AOD during the first period from 12 -13 March 2014. For example AOD levels of up to 0.52 for the 380nm channel were recorded by the sun photometer in Exeter. This is relatively high compared to average

  18. Improved Dust Forecast Products for Southwest Asia Forecasters through Dust Source Database Advancements

    NASA Astrophysics Data System (ADS)

    Brooks, G. R.

    2011-12-01

    Dust storm forecasting is a critical part of military theater operations in Afghanistan and Iraq as well as other strategic areas of the globe. The Air Force Weather Agency (AFWA) has been using the Dust Transport Application (DTA) as a forecasting tool since 2001. Initially developed by The Johns Hopkins University Applied Physics Laboratory (JHUAPL), output products include dust concentration and reduction of visibility due to dust. The performance of the products depends on several factors including the underlying dust source database, treatment of soil moisture, parameterization of dust processes, and validity of the input atmospheric model data. Over many years of analysis, seasonal dust forecast biases of the DTA have been observed and documented. As these products are unique and indispensible for U.S. and NATO forces, amendments were required to provide the best forecasts possible. One of the quickest ways to scientifically address the dust concentration biases noted over time was to analyze the weaknesses in, and adjust the dust source database. Dust source database strengths and weaknesses, the satellite analysis and adjustment process, and tests which confirmed the resulting improvements in the final dust concentration and visibility products will be shown.

  19. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  20. Saharan dust, convective lofting, aerosol enhancement zones, and potential impacts on ice nucleation in the tropical upper troposphere

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, B. E.; Ferrare, R. A.; Sauter, K. E.; L'Ecuyer, T. S.; van den Heever, S. C.; Heymsfield, A. J.; Ismail, S.; Diskin, G. S.

    2017-08-01

    Dry aerosol size distributions and scattering coefficients were measured on 10 flights in 32 clear-air regions adjacent to tropical storm anvils over the eastern Atlantic Ocean. Aerosol properties in these regions were compared with those from background air in the upper troposphere at least 40 km from clouds. Median values for aerosol scattering coefficient and particle number concentration >0.3 μm diameter were higher at the anvil edges than in background air, showing that convective clouds loft particles from the lower troposphere to the upper troposphere. These differences are statistically significant. The aerosol enhancement zones extended 10-15 km horizontally and 0.25 km vertically below anvil cloud edges but were not due to hygroscopic growth since particles were measured under dry conditions. Number concentrations of particles >0.3 μm diameter were enhanced more for the cases where Saharan dust layers were identified below the clouds with airborne lidar. Median number concentrations in this size range increased from 100 l-1 in background air to 400 l-1 adjacent to cloud edges with dust below, with larger enhancements for stronger storm systems. Integration with satellite cloud frequency data indicates that this transfer of large particles from low to high altitudes by convection has little impact on dust concentrations within the Saharan Air Layer itself. However, it can lead to substantial enhancement in large dust particles and, therefore, heterogeneous ice nuclei in the upper troposphere over the Atlantic. This may induce a cloud/aerosol feedback effect that could impact cloud properties in the region and downwind.

  1. CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.

    2012-01-01

    CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios during the summer of 2007 are used to study transatlantic dust properties downwind of Saharan sources, and to examine the interaction of clouds and dust. We discuss the following findings: (1) while lidar backscatter doesn't change much with altitude in the Saharan Air Layer (SAL), depolarization and color ratios both increase with altitude in the SAL; (2) lidar backscatter and color ratio increase as dust is transported westward in the SAL; (3) the vertical lapse rate of dust depolarization ratio increases within SAL as plumes move westward; (4) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Finally, (5) the odds of CALIOP finding dust below SAL next to clouds are about 2/3 of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dusty volumes lose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.

  2. Characterization of alluvial dust sources and their temporal development - a multi-sensor approach for the Aïr Massif, Niger

    NASA Astrophysics Data System (ADS)

    Feuerstein, Stefanie; Schepanski, Kerstin

    2017-04-01

    One of the world's largest sources of atmospheric dust is the Sahara. It is said that 55% of the total global dust emission can be linked to the desert in northern Africa. Thus, understanding the Saharan dust sources is of great importance to estimate the total global dust load and its variability. Especially one type of dust sources has gained attention in dust research in recent years: The emission of dust from sediments formed by hydrologic processes, so called alluvial dust sources. These sediments were either formed in the past under the influences of a more humid paleoclimate or are deposited recently, e.g. during strong precipitation events when surficial runoff leads to the activation of wadi systems or to the occurrence of flash floods. Especially the latter phenomenon is able to deliver a huge amount of potentially erodible sediments. The research presented here focuses on the characterization of these alluvial dust sources with special attention on their temporal variability in relation to wet and dry phases. A study area covering the Aïr Massif in Niger is analysed over a four years time span from January 2013 to December 2016. The whole cycle from sediment formation to dust emission is illustrated by using data of various satellite sensors that are able to capture the processes taking place at the land surface as well as in the atmosphere: (1) The rainfall distribution for the study area is shown by time series of the TRMM precipitation estimates. A catchment analysis of the area helps to estimate the amount of surficial runoff and to detect areas of potential sediment accumulation. (2) Changes in the sediment structure of the land surface are analysed using atmospherically corrected time series of NASA's Landsat-8 OLI satellite. A land cover classification shows the distribution of alluvial sediments over the area; fresh layers of alluvial deposits are detected. Furthermore, the evolution of the vegetation cover, which inhibits dust emission, is

  3. Identification of mineral dust layers in high alpine snow packs

    NASA Astrophysics Data System (ADS)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne

    2017-04-01

    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  4. Human thermal perception related to Föhn winds due to Saharan dust outbreaks in Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Bleta, A. G.; Matsangouras, I. T.

    2017-05-01

    Crete Island is located in the southmost border of East Mediterranean basin, facing exacerbating atmospheric conditions (mainly concentrations of particulates) due to Saharan dust outbreaks. It is worth to note that these episodes are more frequent during spring and autumn, when mild biometeorological conditions become intolerable due to the synergy of the so called Föhn winds. Cretan mountains, especially Psiloritis Mt. (summit at 2456 m), are orientated perpendicularly to the southwest air mass flow, generating the Föhn winds. Propagating from the leeward of the mountains, these dry, hot winds have an effect on prevailing biometeorological conditions. While descending to the lowlands on the leeward side of the range, the wind becomes strong, gusty, and desiccating. This wind often lasts less than an hour to several days, with gradual weakening after the first or the second day. Sometimes, it stops very abruptly. In this work, the authors examined and analyzed the abrupt changes of human thermal perception within specific case studies during which Föhn winds appeared in Heraklion city at the leeward of Psiloritis Mt, associated with extreme Saharan dust episodes, observed within the period 2006-2010. In order to verify the development of Föhn winds, Meteorological Terminal Aviation Routine Weather Reports (METARs, meteorological observations every half hour), were acquired from the Heraklion meteorological station installed by the Hellenic National Meteorological Service (HNMS). The biometeorological conditions analyzed are based on human thermal bioclimatic indices such as the Physiologically equivalent temperature (PET) and the Universal Thermal Climate Index (UTCI). METAR recordings of meteorological variables, such as air temperature, vapor pressure, wind speed, and cloudiness, were used as input variables in modeling the aforementioned thermal indices, so that to interpret the grade of the thermo-physiological stress. The PET and UTCI analysis was

  5. Combined use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of imaginary part of refractive index of desert dust aerosol in UV part of spectrum along with aerosol layer height above the ground. The method uses Total Ozone Mapping Spectrometer' (TOMS) measurements of the top of atmosphere radiances (331 nm, 360 nm) and aerosol optical depth provided by Aerosol Robotic Network (AERONET) (440 nm). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations. The time variability of retrieved values for aerosol layer height is consistent with the predictions of dust transport model.

  6. Impact of a Saharan dust intrusion over southern Spain on DNI estimation with sky cameras

    NASA Astrophysics Data System (ADS)

    Alonso-Montesinos, J.; Barbero, J.; Polo, J.; López, G.; Ballestrín, J.; Batlles, F. J.

    2017-12-01

    To operate Central Tower Solar Power (CTSP) plants properly, solar collector systems must be able to work under varied weather conditions. Therefore, knowing the state of the atmosphere, and more specifically the level of incident radiation, is essential operational information to adapt the electricity production system to atmospheric conditions. In this work, we analyze the impact of a strong Saharan dust intrusion on the Direct normal irradiance (DNI) registered at two sites 35 km apart in southeastern Spain: the University of Almería (UAL) and the Plataforma Solar de Almería (PSA). DNI can be inputted into the European Solar Radiation Atlas (ESRA) clear sky procedure to derive Linke turbidity values, which proved to be extremely high at the UAL. By using the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) at the PSA site, AERONET data from PSA and assuming dust dominated aerosol, DNI estimations agreed strongly with the measured DNI values. At the UAL site, a SMARTS simulation of the DNI values also seemed to be compatible with dust dominated aerosol.

  7. Dust Deposition Events on Mt. Elbrus, Caucasus Mountains in the 21st Century Reconstructed from the Shallow Firn and Ice Cores (Invited)

    NASA Astrophysics Data System (ADS)

    Shahgedanova, M.; Kutuzov, S.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.

    2013-12-01

    This paper presents and discusses a record of dust deposition events reconstructed from the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus, Caucasus Mountains, Russia. A combination of SEVIRI imagery, HYSPLIT trajectory model, meteorological and atmospheric optical depth data were used to establish timing of deposition events and source regions of dust with very high temporal (hours) and spatial (c. 50-100 km) resolution. The source regions of the desert dust transported to Mt. Elbrus were primarily located in the Middle East, in particular in eastern Syria and in the Syrian Desert at the border between Saudi Arabia, Iraq and Jordan. Northern Sahara, the foothills of the Djebel Akhdar Mountains in eastern Libya and the border region between Libya and Algeria were other important sources of desert dust. Dust sources in the Sahara were natural (e.g. palaeolakes and alluvial deposits in the foothills) while in the Middle East, dust entrainment occurred from both natural (e.g. dry river beds) and anthropogenic (e.g. agricultural fields) sources. The overall majority of dust deposition events occurred between March and June and, less frequently, dust deposition events occurred in February and October. In all cases, dust deposition was associated with depressions causing strong surface wind and dust uplift in the source areas, transportation of dust to the Caucasus with a strong south-westerly flow from the Sahara or southerly flow from the Middle East, merging of the dust clouds with precipitation-bearing weather fronts and precipitation over the Caucasus region. The Saharan depressions were vigorous and associated with stronger daily wind speeds of 20-30 m/s at the 700 hPa level; depressions forming over the Middle East and the associated wind speeds were weaker at 12-15 m/s. The Saharan depressions were less frequent than those carrying dust from the Middle East but higher dust loads were associated with the Saharan depressions. A higher

  8. CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.

    2014-01-01

    We use CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios, as well as particulate retrievals during the summer of 2007 to study transatlantic dust properties downwind of Saharan sources, and to examine the influence of nearby clouds on dust. Our analysis suggests that (1) under clear skies, while lidar backscatter and color ratio do not change much with altitude and longitude in the Saharan Air Layer (SAL), depolarization ratio increases with altitude and decreases westward in the SAL (2) the vertical lapse rate of dust depolarization ratio, introduced here, increases within SAL as plumes move westward (3) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Moreover, the presence of nearby clouds tends to decrease the depolarization of dust volumes within SAL. Finally, (4) the odds of CALIOP finding dust below SAL next to clouds are about of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dust volumes loose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.

  9. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm     ... ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated ... cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of ...

  10. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Thornhill, Kenneth L., II; Kittaka, Chieko; Ismail, Syed; Chen, Gao; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; hide

    2010-01-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements

  11. Interactive Soil Dust Aerosol Model in the GISS GCM. Part 1; Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Tegen, Ina; Miller, Ron L.

    2000-01-01

    The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably

  12. Combined Use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of the imaginary part of refractive index of desert dust aerosol in the near UV part of spectrum. The method uses Total Ozone Mapping Spectrometer (TOMS) measurements of the top of the atmosphere radiances at 331 and 360 run and aerosol optical depth provided by the Aerosol Robotic Network (AERONET). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations.

  13. Retrieval of Saharan desert dust optical depth from thermal infrared measurements by IASI

    NASA Astrophysics Data System (ADS)

    Vandenbussche, S.; Kochenova, S.; Vandaele, A.-C.; Kumps, N.; De Mazière, M.

    2012-04-01

    Aerosols are a major actor in the climate system. They are responsible for climate forcing by both direct (by emission, absorption and scattering) and indirect effects (for example, by altering cloud microphysics). A better knowledge of aerosol optical properties, of the atmospheric aerosol load and of aerosol sources and sinks may therefore significantly improve the modeling of climate changes. Aerosol optical depth and other properties are retrieved on an operational basis from daytime measurements in the visible and near infrared spectral range by a number of instruments, like the satellite instruments MODIS, CALIOP, POLDER, MISR and ground-based sunphotometers. Aerosol retrievals from day and night measurements at thermal infrared (TIR) wavelengths (for example, from SEVIRI, AIRS and IASI satellite instruments) are less common, but they receive growing interest in more recent years. Among those TIR measuring instruments, IASI on METOP has one major advantage for aerosol retrievals: its large continuous spectral coverage, allowing to better capture the broadband signature of aerosols. Furthermore, IASI has a high spectral resolution (0.5cm-1 after apodization) which allows retrieving a large number of trace gases at the same time, it will nominally be in orbit for 15 years and offers a quasi global Earth coverage twice a day. Here we will show recently obtained results of desert aerosol properties (concentration, altitude, optical depth) retrieved from IASI TIR measurements, using the ASIMUT software (BIRA-IASB, Belgium) linked to (V)LIDORT (R. Spurr, RTsolutions Inc, US) and to SPHER (M. Mishchenko, NASA GISS, USA). In particular, we will address the case of Saharan desert dust storms, which are a major source of desert dust particles in the atmosphere. Those storms frequently transport sand to Europe, Western Asia or even South America. We will show some test-case comparisons between our retrievals and measurements from other instruments like those listed

  14. Understanding the Role of the Saharan Heat Low in Modifying Atmospheric Dust Distributions - Observations From Two Research Aircraft Flying Simultaneously Over Western Africa

    NASA Astrophysics Data System (ADS)

    Engelstaedter, S.; Washington, R.; Allen, C.; Flamant, C.; Chaboureau, J.-P.; Kocha, C.; Lavaysse, C.

    2012-04-01

    The near-surface low pressure system that develops over western Africa in Boreal summer (know as the Saharan Heat Low) is thought to have a significant influence on regional and global climate due to its links with the Monsoon, the Northern Atlantic and the Mediterranean climate system. The SHL is associated with the deepest atmospheric boundary layer on the planet and is co-located with the highest dust loadings in the world. The processes that link the heat low and dust distribution are only poorly understood. Improving the representation of the heat low and the processes that control the emission and atmospheric distribution of dust in climate and NWP models is crucial if we are to reduce known systematic errors in climate predictions and weather forecasts. In collaboration with European partners, the UK-based consortium project "Fennec - The Saharan Climate System" aims at improving our understanding of this complex climate system by integrating for the first time coordinated ground and aircraft observations from the central Sahara, newly developed satellite products, and the application of regional and global models. On 22 June 2011, two research aircraft operating out of Fuerteventura (Spain) surveyed the Saharan Heat Low centred over Mauritania-Mali border. The aircraft flew simultaneously in the morning and in the afternoon on two different tracks thereby sampling each track four times on that day. Both aircraft were equipped with a downward looking LIDAR for aerosol detection. In total, 51 sondes were dropped during the flights making this the most comprehensive dataset to study the spatio-temporal diurnal evolution of the heat low including the interactions between the atmospheric boundary layer and dust distributions. Combining LIDAR observations, satellite imagery and back-trajectory modelling we show that an aged dust layer was present in the heat low region resulting from previous day's dust activity associated with a south-moving density current from

  15. Meteorological and dust aerosol conditions over the western Saharan region observed at Fennec Supersite-2 during the intensive observation period in June 2011

    NASA Astrophysics Data System (ADS)

    Todd, M. C.; Allen, C. J. T.; Bart, M.; Bechir, M.; Bentefouet, J.; Brooks, B. J.; Cavazos-Guerra, C.; Clovis, T.; Deyane, S.; Dieh, M.; Engelstaedter, S.; Flamant, C.; Garcia-Carreras, L.; Gandega, A.; Gascoyne, M.; Hobby, M.; Kocha, C.; Lavaysse, C.; Marsham, J. H.; Martins, J. V.; McQuaid, J. B.; Ngamini, J. B.; Parker, D. J.; Podvin, T.; Rocha-Lima, A.; Traore, S.; Wang, Y.; Washington, R.

    2013-08-01

    The climate of the Sahara is relatively poorly observed and understood, leading to errors in forecast model simulations. We describe observations from the Fennec Supersite-2 (SS2) at Zouerate, Mauritania during the June 2011 Fennec Intensive Observation Period. These provide an improved basis for understanding and evaluating processes, models, and remote sensing. Conditions during June 2011 show a marked distinction between: (i) a "Maritime phase" during the early part of the month when the western sector of the Sahara experienced cool northwesterly maritime flow throughout the lower troposphere with shallow daytime boundary layers, very little dust uplift/transport or cloud cover. (ii) A subsequent "heat low" phase which coincided with a marked and rapid westward shift in the Saharan heat low towards its mid-summer climatological position and advection of a deep hot, dusty air layer from the central Sahara (the "Saharan residual layer"). This transition affected the entire western-central Sahara. Dust advected over SS2 was primarily from episodic low-level jet (LLJ)-generated emission in the northeasterly flow around surface troughs. Unlike Fennec SS1, SS2 does not often experience cold pools from moist convection and associated dust emissions. The diurnal evolution at SS2 is strongly influenced by the Atlantic inflow (AI), a northwesterly flow of shallow, cool and moist air propagating overnight from coastal West Africa to reach SS2 in the early hours. The AI cools and moistens the western Saharan and weakens the nocturnal LLJ, limiting its dust-raising potential. We quantify the ventilation and moistening of the western flank of the Sahara by (i) the large-scale flow and (ii) the regular nocturnal AI and LLJ mesoscale processes.

  16. The pulsating nature of large-scale Saharan dust transport as a result of interplays between mid-latitude Rossby waves and the North African Dipole Intensity

    NASA Astrophysics Data System (ADS)

    Cuevas, E.; Gómez-Peláez, A. J.; Rodríguez, S.; Terradellas, E.; Basart, S.; García, R. D.; García, O. E.; Alonso-Pérez, S.

    2017-10-01

    It was previously shown that during August the export of Saharan dust to the Atlantic was strongly affected by the difference of the 700-hPa geopotential height anomaly between the subtropics and the tropics over North Africa, which was termed the North African Dipole Intensity (NAFDI). In this work a more comprehensive analysis of the NAFDI is performed, focusing on the entire summer dust season (June-September), and examining the interactions between the mid-latitude Rossby waves (MLRWs) and NAFDI. Widespread and notable aerosol optical depth (AOD) monthly anomalies are found for each NAFDI-phase over the dust corridors off the Sahara, indicating that NAFDI presents intra-seasonal variability and drives dust transport over both the Mediterranean basin and the North Atlantic. Those summer months with the same NAFDI-phase show similar AOD-anomaly patterns. Variations in NAFDI-phase also control the displacement of the Saharan Heat Low (SHL) westwards or eastwards through horizontal advection of temperature over Morocco-Western Sahara or eastern Algeria-Western Libya, respectively. The connection between the SHL and the NAFDI is quantified statistically by introducing two new daily indexes that account for their respective phases (NAFDI daily index -NAFDIDI-, and SHL longitudinal shift index -SHLLSI-) and explained physically using the energy equation of the atmospheric dynamics. The Pearson's correlation coefficient between the one-day-lag SHLLSI and the NAFDIDI for an extended summer season (1980-2013) is 0.78. A positive NAFDI is associated with the West-phase of the SHL, dust sources intensification on central Algeria, and positive AOD anomalies over this region and the Subtropical North Atlantic. A negative NAFDI is associated with the East-phase of the SHL, and positive AOD anomalies over central-eastern Sahara and the central-western Mediterranean Sea. The results point out that the phase changes of NAFDI at intra-seasonal time scale are conducted by those

  17. Single particle chemical composition, state of mixing and shape of fresh and aged Saharan dust in Morocco and at Cape Verde Islands during SAMUM I and II

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Emmel, Carmen; Ebert, Martin; Lieke, Kirsten; Müller-Ebert, Dörthe; Schütz, Lothar; Weinbruch, Stephan

    2010-05-01

    The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosol was measured. The winter campaign of Saharan Mineral Dust Experiment II in 2008 was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Ground-based and airborne measurements were performed in the winter season, where mineral dust from the Western Sahara and biomass burning aerosol from the Sahel region occurred. Samples were collected with a miniature impactor system, a sedimentation trap, a free-wing impactor, and a filter sampler. Beryllium discs as well as carbon coated nickel discs, carbon foils, and nuclepore and fiber filters were used as sampling substrates. The size-resolved particle aspect ratio and the chemical composition are determined by scanning electron microscopy and energy-dispersive X-ray microanalysis of single particles. Mineralogical bulk composition is determined by X-ray diffraction analysis. In Morocco, three size regimes are identified in the aerosol: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 µm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 µm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). More detailed results are found in Kandler et al. (2009) At Praia, Cape Verde, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as

  18. Direct Radiative Forcing from Saharan Mineral Dust Layers from In-situ Measurements and Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.

    2016-12-01

    Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.

  19. Analysis of two Saharan dust events of North Africa in the Mediterranean region by Using SKIRON/Eta model

    NASA Astrophysics Data System (ADS)

    Benaouda, D.; Kallos, G.; Azzi, A.; Louka, P.; Benlefki, A.

    2009-04-01

    As it is well known established that significant ecosystems effects can be produced by pollutants generated many hundreds of kilometres away. Desert is natural laboratories containing valuable mineral deposits that were formed in the arid environment or that were exposed by erosion. Dust is a key species of many biogeochemical. One important effect of the dust cycle is triggering of various biochemical reactions between dust ingredients and the environment. The biogeochemical impact of desert dust also remains a matter of discussion regarding its contribution for different major and minor elements to terrestrial and marine systems and especially its potential fertilising role for remote oceanic areas by supplying micronutrients such as phosphorus and iron. Saharan dust is responsible for the supply of nutrients resulting in the increase of the production of the pelagic system, but competitively may remove phosphorus, through the adsorption on dust particles, contributing to the oligotrophy of the system, in addition, the presence of Si and Fe in the dust deposition may change the phytoplankton communities resulting in fast growth rates leading to blooms. In addition to direct radiative forcing, dust participates in indirect climate forcing through its role as a cloud-condensation nucleus and potential atmospheric CO2 regulator via biospheric nutrient delivery. Scattering and absorption of radiation by dust have impacts on the Earth's radiation budget, the thermal structure of the troposphere, and actinic fluxes, altering dynamical and photochemical processes. Coating of dust particles under polluted conditions can change microphysical properties and promote surface chemical. The Mediterranean Sea is a semi-enclosed basin, which receives substances sporadically from the arid regions of the Sahara desert. In such processes, dust modifies biochemistry of the Mediterranean water, changes features of the terrestrial ecosystems, and neutralises acid rains. Mineral dust

  20. High Latitude Dust Sources, Transport Pathways and Impacts

    NASA Astrophysics Data System (ADS)

    Bullard, J. E.; Baddock, M. C.; Darlington, E.; Mockford, T.; Van-Soest, M.

    2017-12-01

    Estimates from field studies, remote sensing and modelling all suggest around 5% of global dust emissions originate in the high latitudes (≥50°N and ≥40°S), a similar proportion to that from the USA (excluding Alaska) or Australia. This paper identifies contemporary sources of dust within the high latitudes and their role within local, regional and hemispherical environmental systems. Field data and remote sensing analyses are used to identify the environmental and climatic conditions that characterize high latitude dust sources in both hemispheres. Examples from Arctic and sub-Arctic dust sources are used to demonstrate and explain the different regional relationships among dust emissions, glacio-fluvial dynamics and snow cover. The relative timing of dust input to high latitude terrestrial, cryospheric and marine systems determines its short to medium term environmental impact. This is highlighted through quantifying the importance of locally-redistributed dust as a nutrient input to high latitude soils and lakes in West Greenland.

  1. Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.

    2010-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.

  2. The formation and dust lifting processes associated with a large Saharan meso-scale convective system (MCS)

    NASA Astrophysics Data System (ADS)

    Roberts, Alex; Knippertz, Peter

    2013-04-01

    This work focusses on the meteorology that produced a large Mesoscale Convective System (MCS) and the dynamics of its associated cold pool. The case occurred between 8th-10th June 2010 and was initiated over the Hoggar and Aïr Mountains in southern Algeria and northern Niger respectively. The dust plume created covered parts of Algeria, Mali and Mauritania and was later deformed the by background flow and transported over the Atlantic and Mediterranean. This study is based on: standard surface observations (where available), ERA-Interim reanalysis, Meteosat imagery, MODIS imagery, Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat and a high resolution (3.3km) limited area simulation using the Weather Research and Forecasting (WRF) model. A variety of different processes appear to be important for the generation of this MCS and the spreading of the associated dusty cold pool. These include: the presence of a trough on the subtropical jet, the production of a tropical cloud plume, disruption to the structure of the Saharan heat low and the production of a Libyan high. These features produced moistening of the boundary layer and a convergence zone over the region of MCS initiation. Another important factor appears to have been the production of a smaller MCS and cold pool on the evening of the 7th June. This elevated low-level moisture and encouraged convective initiation the following day. Once triggered on the 8th June some cells grew and merged into a single large system that propagated south westward and produced a large cold pool that emanated from its northern edge. The cells on the northern edge of the system over the Hoggar grew and collapsed producing a haboob that spread over a large area. Cells further south continued to develop into the MCS and actively produce a cold pool over the system's lifetime. This undercut the dusty air from the earlier cold pool and

  3. Short-Term Effects of the Particulate Pollutants Contained in Saharan Dust on the Visits of Children to the Emergency Department due to Asthmatic Conditions in Guadeloupe (French Archipelago of the Caribbean)

    PubMed Central

    Cadelis, Gilbert; Tourres, Rachel; Molinie, Jack

    2014-01-01

    Background The prevalence of asthma in children is a significant phenomenon in the Caribbean. Among the etiologic factors aggravating asthma in children, environmental pollution is one of the main causes. In Guadeloupe, pollution is primarily transported by Saharan dust including inhalable particles. Methods This study assesses, over one year (2011), the short-term effects of pollutants referred to as PM10 (PM10: particulate matter <10 µm) and PM2.5–10 (PM2.5–10: particulate matter >2.5 µm and <10 µm) contained in Saharan dust, on the visits of children aged between 5 and 15 years for asthma in the health emergency department of the main medical facility of the archipelago of Guadeloupe. A time-stratified case-crossover model was applied and the data were analysed by a conditional logistic regression for all of the children but also for sub-groups corresponding to different age classes and genders. Results The visits for asthma concerned 836 children including 514 boys and 322 girls. The Saharan dust has affected 15% of the days of the study (337 days) and involved an increase in the average daily concentrations of PM10 (49.7 µg/m3 vs. 19.2 µg/m3) and PM 2.5–10 (36.2 µg/m3 vs. 10.3 µg/m3) compared to days without dust. The excess risk percentages (IR%) for visits related to asthma in children aged between 5 and 15 years on days with dust compared to days without dust were, for PM10, ((IR %: 9.1% (CI95%, 7.1%–11.1%) versus 1.1%(CI95%, −5.9%–4.6%)) and for PM2.5–10 (IR%: 4.5%(CI95%, 2.5%–6.5%) versus 1.6% (CI95%, −1.1%–3.4%). There was no statistical difference in the IR% for periods with Saharan dust among different age group of children and between boys and girls for PM10 and PM2.5–10. Conclusion The PM10 and PM2.5–10 pollutants contained in the Saharan dust increased the risk of visiting the health emergency department for children with asthma in Guadeloupe during the study period. PMID:24603899

  4. Casting Light and Shadows on a Saharan Dust Storm

    NASA Technical Reports Server (NTRS)

    2003-01-01

    On March 2, 2003, near-surface winds carried a large amount of Saharan dust aloft and transported the material westward over the Atlantic Ocean. These observations from the Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's Terra satellite depict an area near the Cape Verde Islands (situated about 700 kilometers off of Africa's western coast) and provide images of the dust plume along with measurements of its height and motion. Tracking the three-dimensional extent and motion of air masses containing dust or other types of aerosols provides data that can be used to verify and improve computer simulations of particulate transport over large distances, with application to enhancing our understanding of the effects of such particles on meteorology, ocean biological productivity, and human health.

    MISR images the Earth by measuring the spatial patterns of reflected sunlight. In the upper panel of the still image pair, the observations are displayed as a natural-color snapshot from MISR's vertical-viewing (nadir) camera. High-altitude cirrus clouds cast shadows on the underlying ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated stereoscopic processing of MISR's multi-angle imagery show the cirrus clouds (yellow areas) to be situated about 12 kilometers above sea level. The distinctive spatial patterns of these clouds provide the necessary contrast to enable automated feature matching between images acquired at different view angles. For most of the dust layer, which is spatially much more homogeneous, the stereoscopic approach was unable to retrieve elevation data. However, the edges of shadows cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of the dust layer's height, and indicate that the top of layer is only about 2.5 kilometers above sea level.

    Motion of the dust and clouds is directly

  5. Effective and Accurate Morphology Models for Asian and Saharan Mineral Dust Scattering Properties

    NASA Astrophysics Data System (ADS)

    Stegmann, P.; Yang, P.

    2017-12-01

    It is well known that mineral dust particles from desert sources can have a significant influence on the planetary radiation balance. In order to determine the sign and magnitude of the dust radiative forcing effect, complex models have been and continue to be developed. Key factors which influence the single-scattering properties of mineral dust are dust source regions and thus mineralogical composition, and its mixture with water, sea salt, and products of human activity, such as soot. The ensemble of mineral dust scattering particles may then be modeled either as a simple placeholder shape, often ellipsoidal, through the utilization of an appropriate effective medium refractive index scheme. On the other hand, the scattering particles may be represented in a more rigorous manner, such as Voronoi-tessellated aggregates including fractal soot chains. The consequences and differences of either choice are investigated in the project at hand. It will be shown that the effective medium model indicates a drastic dependence of the mineral dust particle composition on the particle size. Thus the refractive index of a dust particle is in fact a function of its size, amongst other factors. Regional differences between African and Asian mineral dust are also of significance.

  6. Identification of dust source regions and dust emission trends across North Africa and the Middle East using MISR satellite observations

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Kalashnikova, O. V.; Garay, M. J.; Notaro, M.

    2017-12-01

    Global arid and semi-arid regions supply 1100 to 5000 Tg of Aeolian dust to the atmosphere each year, primarily from North Africa and secondarily from the Middle East. Previous dust source identification methods, based on either remotely-sensed aerosol optical depth (AOD) or dust activity, yield distinct dust source maps, largely due to the limitations in each method and remote-sensing product. Here we apply a novel motion-based method for dust source identification. Dust plume thickness and motion vectors from Multi-angle Imaging SpectroRadiometer (MISR) Cloud Motion Vector Product (CMVP) are examined to identify the regions with high frequency of fast moving-dust plumes, by season. According to MISR CMVP, Bodele depression is the most important dust source across North Africa, consistent with previous studies. Seasonal variability of dust emission across the North Africa is largely driven by climatology of wind and precipitation, featuring the influence of Sharav Cyclone and western African monsoon. In the Middle East, Iraq, Kuwait, and eastern Saudi Arabia are identified as dust source regions, especially during summer months, when the Middle Eastern Shamal wind is active. Furthermore, dust emission trend at each dust source are diagnosed from the motion-based dust source dataset. Increase in dust emission from the Fertile Crescent, Sahel, and eastern African dust sources are identified from MISR CMVP, implying potential contribution from these dust sources to the upward trend in AOD and dust AOD over the Middle East in the 21st century. By comparing with various dust source identification studies, we conclude that the motion-based identification of dust sources is an encouraging alternative and compliment to the AOD-only source identification method.

  7. Ice nucleating particles in the Saharan Air Layer

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Sierau, Berko; García, M. Isabel; Rodríguez, Sergio; Alastuey, Andrés; Linke, Claudia; Schnaiter, Martin; Kupiszewski, Piotr; Kanji, Zamin A.; Lohmann, Ulrike

    2016-07-01

    This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L-1 in the deposition mode and up to 2500 std L-1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43-0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient

  8. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  9. Modification of Saharan Mineral Dust during Transport across the Atlantic Ocean - Overview and Results from the SALTRACE Field Experiment

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Groß, Silke; Sauer, Daniel; Althausen, Dietrich; Toledano, Carlos

    2014-05-01

    At present one of the largest uncertainties in our understanding of global climate concerns the interaction of aerosols with clouds and atmospheric dynamics. In the climate system, mineral dust aerosol is of key importance, because mineral dust contributes to about half of the global annual particle emissions by mass. Although our understanding of the effects of mineral dust on the atmosphere and the climate improved during the past decade, many questions such as the change of the dust size distribution during transport across the Atlantic Ocean and the associated impact on the radiation budget, the role of wet and dry dust removal mechanisms during transport, and the complex interaction between mineral dust and clouds remain open. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013 to investigate the transport and transformation of Saharan mineral dust during long-range transport from the Sahara across the Atlantic Ocean into the Caribbean. SALTRACE is a German initiative combining ground-based and airborne in-situ and lidar measurements with meteorological data, long-term measurements, satellite remote sensing and modeling which involved many national and international partners. During SALTRACE, the DLR Falcon research aircraft was based at Sal, Cape Verde, between 11 and 17 June 2013, and at Barbados between 18 June and 11 July 2013. The Falcon was equipped with a suite of in-situ instruments for the measurement of microphysical and optical aerosol properties, with sampling devices for offline particle analysis, with a nadir-looking 2-µm wind lidar, with dropsondes and instruments for standard meteorological parameters. Ground-based lidar and in-situ instruments were deployed in Cape Verde, Barbados and Puerto Rico. During SALTRACE, mineral dust from five dust outbreaks was studied by the Falcon research aircraft between Senegal, the Caribbean and Florida

  10. Principle Component Analysis of the Evolution of the Saharan Air Layer and Dust Transport: Comparisons between a Model Simulation and MODIS Retrievals

    NASA Technical Reports Server (NTRS)

    Wong, S.; Colarco, P. R.; Dessler, A.

    2006-01-01

    The onset and evolution of Saharan Air Layer (SAL) episodes during June-September 2002 are diagnosed by applying principal component analysis to the NCEP reanalysis temperature anomalies at 850 hPa, where the largest SAL-induced temperature anomalies are located. The first principal component (PC) represents the onset of SAL episodes, which are associated with large warm anomalies located at the west coast of Africa. The second PC represents two opposite phases of the evolution of the SAL. The positive phase of the second PC corresponds to the southwestward extension of the warm anomalies into the tropical-subtropical North Atlantic Ocean, and the negative phase corresponds to the northwestward extension into the subtropical to mid-latitude North Atlantic Ocean and the southwest Europe. A dust transport model (CARMA) and the MODIS retrievals are used to study the associated effects on dust distribution and deposition. The positive (negative) phase of the second PC corresponds to a strengthening (weakening) of the offshore flows in the lower troposphere around 10deg - 20degN, causing more (less) dust being transported along the tropical to subtropical North Atlantic Ocean. The variation of the offshore flow indicates that the subseasonal variation of African Easterly Jet is associated with the evolution of the SAL. Significant correlation is found between the second PC time series and the daily West African monsoon index, implying a dynamical linkage between West African monsoon and the evolution of the SAL and Saharan dust transport.

  11. Atmospheric response to Saharan dust deduced from ECMWF reanalysis increments

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-04-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data - the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely-sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (> 0.5), low correlation, and high negative correlation (<-0.5). The innermost positive correlation area (PCA) is a large area near the center of the Sahara desert. For some local maxima inside this area the correlation even exceeds 0.8. The outermost negative correlation area (NCA) is not uniform. It consists of some areas over the eastern and western parts of North Africa with a relatively small amount of dust. Inside those areas both positive and negative high correlations exist at pressure levels ranging from 850 to 700 hPa, with the peak values near 775 hPa. Dust-forced heating (cooling) inside the PCA (NCA) is accompanied by changes in the static stability of the atmosphere above the dust layer. The reanalysis data of the European Center for Medium Range Weather Forecast(ECMWF) suggests that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity, and downward (upward) airflow. These facts indicate an interaction between dust-forced heating /cooling and atmospheric circulation. The

  12. Dust storm off Western Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The impacts of Saharan dust storms reach far beyond Africa. Wind-swept deserts spill airborne dust particles out over the Atlantic Ocean where they can enter trade winds bound for Central and North America and the Caribbean. This Moderate Resolution Imaging Spectroradiometer (MODIS) image shows a dust storm casting an opaque cloud of cloud across the Canary Islands and the Atlantic Ocean west of Africa on June 30, 2002. In general it takes between 5 and 7 days for such an event to cross the Atlantic. The dust has been shown to introduce foreign bacteria and fungi that have damaged reef ecosystems and have even been hypothesized as a cause of increasing occurrences of respiratory complaints in places like Florida, where the amount of Saharan dust reaching the state has been increasing over the past 25 years.

  13. The effects of dust on Colorado mountain snow cover albedo and compositional links to dust-source areas

    NASA Astrophysics Data System (ADS)

    Goldstein, H. L.; Reynolds, R. L.; Landry, C.; Derry, J. E.; Kokaly, R. F.; Breit, G. N.

    2016-12-01

    Dust deposited on mountain snow cover (DOS) changes snow albedo, enhances absorption of solar radiation, and effectively increases rates of snow melt, leading to earlier-than-normal runoff and overall smaller late-season water supplies for tens of millions of people and industries in the American West. Visible-spectrum reflectance of DOS samples is on the order of 0.2 (80% absorption), in stark contrast to the high reflectivity of pure snow which approaches 1.0. Samples of DOS were collected from 12 high-elevation Colorado mountain sites near the end of spring from 2013 through 2016 prior to complete snow melt, when most dust layers had merged into one layer. These samples were analyzed to measure dust properties that affect snow albedo and to link DOS to dust-source areas. Dust mass loadings to snow during water year 2014 varied from 5 to 30 g/m2. Median particle sizes centered around 20 micrometers with more than 80% of the dust <63 micrometers. Dark minerals, carbonaceous matter, and iron oxides, including nano-sized hematite and goethite, together diminished reflectance according to their variable concentrations. Documenting variations in dust-particle masses, sizes, and compositions helps determine their influences on snow-melt and may be useful for modeling snow-melt effects from future dust. Furthermore, variations in dust components and particle sizes lead to new ways to recognize sources of dust by comparison with properties of fine-grained sediments in dust-source areas. Much of the DOS in the San Juan Mountains, Colorado can be linked to southern Colorado Plateau source areas by compositional similarities and satellite imagery. Understanding dust properties that affect snow albedo and recognizing the sources of dust deposited on snow cover may guide mitigation of dust emission that affects water resources of the Colorado River basin.

  14. A new dust source map of Central Asia derived from MODIS Terra/Aqua data using dust enhancement techniques

    NASA Astrophysics Data System (ADS)

    Nobakht, Mohamad; Shahgedanova, Maria; White, Kevin

    2017-04-01

    Central Asian deserts are a significant source of dust in the middle latitudes, where economic activity and health of millions of people are affected by dust storms. Detailed knowledge of sources of dust, controls over their activity, seasonality and atmospheric pathways are of crucial importance but to date, these data are limited. This paper presents a detailed database of sources of dust emissions in Central Asia, from western China to the Caspian Sea, obtained from the analysis of the Moderate Resolution Imaging Spectroradiometer (MODIS) data between 2003 and 2012. A dust enhancement algorithm was employed to obtain two composite images per day at 1 km resolution from MODIS Terra/Aqua acquisitions, from which dust point sources (DPS) were detected by visual analysis and recorded in a database together with meteorological variables at each DPS location. Spatial analysis of DPS has revealed several active source regions, including some which were not widely discussed in literature before (e.g. Northern Afghanistan sources, Betpak-Dala region in western Kazakhstan). Investigation of land surface characteristics and meteorological conditions at each source region revealed mechanisms for the formation of dust sources, including post-fire wind erosion (e.g. Lake Balkhash basin) and rapid desertification (e.g. the Aral Sea). Different seasonal patterns of dust emissions were observed as well as inter-annual trends. The most notable feature was an increase in dust activity in the Aral Kum.

  15. Entrepreneurship as a Source of Economic, Political, and Social Improvement in Sub-Saharan Africa

    DTIC Science & Technology

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited ENTREPRENEURSHIP AS A SOURCE OF...COVERED Master’s Thesis 4. TITLE AND SUBTITLE ENTREPRENEURSHIP AS A SOURCE OF ECONOMIC, POLITICAL, AND SOCIAL IMPROVEMENT IN SUB-SAHARAN AFRICA 5...economic, political, and social impacts of entrepreneurship , and the development of entrepreneurship in Sub-Saharan Africa was studied through the lens of

  16. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia

    NASA Astrophysics Data System (ADS)

    Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam

    2018-01-01

    Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and

  17. Dust deposition in southern Nevada and California, 1984-1989: Relations to climate, source area, and source lithology

    NASA Astrophysics Data System (ADS)

    Reheis, Marith C.; Kihl, Rolf

    1995-05-01

    Dust samples collected annually for 5 years from 55 sites in southern Nevada and California provide the first regional source of information on modern rates of dust deposition, grain size, and mineralogical and chemical composition relative to climate and to type and lithology of dust source. The average silt and clay flux (rate of deposition) in southern Nevada and southeastern California ranges from 4.3 to 15.7 g/m2/yr, but in southwestern California the average silt and clay flux is as high as 30 g/m2/yr. The climatic factors that affect dust flux interact with each other and with the factors of source type (playas versus alluvium), source lithology, geographic area, and human disturbance. Average dust flux increases with mean annual temperature but is not correlated to decreases in mean annual precipitation because the regional winds bring dust to relatively wet areas. In contrast, annual dust flux mostly reflects changes in annual precipitation (relative drought) rather than temperature. Although playa and alluvial sources produce about the same amount of dust per unit area, the total volume of dust from the more extensive alluvial sources is much larger. In addition, playa and alluvial sources respond differently to annual changes in precipitation. Most playas produce dust that is richer in soluble salts and carbonate than that from alluvial sources (except carbonate-rich alluvium). Gypsum dust may be produced by the interaction of carbonate dust and anthropogenic or marine sulfates. The dust flux in an arid urbanizing area may be as much as twice that before disturbance but decreases when construction stops. The mineralogic and major-oxide composition of the dust samples indicates that sand and some silt is locally derived and deposited, whereas clay and some silt from different sources can be far-traveled. Dust deposited in the Transverse Ranges of California by the Santa Ana winds appears to be mainly derived from sources to the north and east.

  18. Global dust sources detection using MODIS Deep Blue Collection 6 aerosol products

    NASA Astrophysics Data System (ADS)

    Pérez García-Pando, C.; Ginoux, P. A.

    2015-12-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Remote sensing sensors are the most useful tool to locate dust sources. These sensors include microwaves, visible channels, and lidar. On the global scale, major dust source regions have been identified using polar orbiting satellite instruments. The MODIS Deep Blue algorithm has been particularly useful to detect small-scale sources such as floodplains, alluvial fans, rivers, and wadis , as well as to identify anthropogenic sources from agriculture. The recent release of Collection 6 MODIS aerosol products allows to extend dust source detection to the entire land surfaces, which is quite useful to identify mid to high latitude dust sources and detect not only dust from agriculture but fugitive dust from transport and industrial activities. This presentation will overview the advantages and drawbacks of using MODIS Deep Blue for dust detection, compare to other instruments (polar orbiting and geostationary). The results of Collection 6 with a new dust screening will be compared against AERONET. Applications to long range transport of anthropogenic dust will be presented.

  19. Development of High-Resolution Dynamic Dust Source Function -A Case Study with a Strong Dust Storm in a Regional Model

    PubMed Central

    Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul

    2018-01-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events. PMID:29632432

  20. Development of High-Resolution Dynamic Dust Source Function -A Case Study with a Strong Dust Storm in a Regional Model.

    PubMed

    Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul

    2017-06-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  1. Development of High-Resolution Dynamic Dust Source Function - A Case Study with a Strong Dust Storm in a Regional Model

    NASA Technical Reports Server (NTRS)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul

    2017-01-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  2. Spatiotemporal Modelling of Dust Storm Sources Emission in West Asia

    NASA Astrophysics Data System (ADS)

    Khodabandehloo, E.; Alimohamdadi, A.; Sadeghi-Niaraki, A.; Darvishi Boloorani, A.; Alesheikh, A. A.

    2013-09-01

    Dust aerosol is the largest contributor to aerosol mass concentrations in the troposphere and has considerable effects on the air quality of spatial and temporal scales. Arid and semi-arid areas of the West Asia are one of the most important regional dust sources in the world. These phenomena directly or indirectly affecting almost all aspects life in almost 15 countries in the region. So an accurate estimate of dust emissions is very crucial for making a common understanding and knowledge of the problem. Because of the spatial and temporal limits of the ground-based observations, remote sensing methods have been found to be more efficient and useful for studying the West Asia dust source. The vegetation cover limits dust emission by decelerating the surface wind velocities and therefore reducing the momentum transport. While all models explicitly take into account the change of wind speed and soil moisture in calculating dust emissions, they commonly employ a "climatological" land cover data for identifying dust source locations and neglect the time variation of surface bareness. In order to compile the aforementioned model, land surface features such as soil moisture, texture, type, and vegetation and also wind speed as atmospheric parameter are used. Having used NDVI data show significant change in dust emission, The modeled dust emission with static source function in June 2008 is 17.02 % higher than static source function and similar result for Mach 2007 show the static source function is 8.91 % higher than static source function. we witness a significant improvement in accuracy of dust forecasts during the months of most soil vegetation changes (spring and winter) compared to outputs resulted from static model, in which NDVI data are neglected.

  3. The uranium-isotopic composition of Saharan dust collected over the central Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Aciego, Sarah M.; Aarons, Sarah M.; Sims, Kenneth W. W.

    2015-06-01

    Uranium isotopic compositions, (234U/238U)activity , are utilized by earth surface disciplines as chronometers and source tracers, including in soil science where aeolian dust is a significant source to the total nutrient pool. However, the (234U/238U)activity composition of dust is under characterized due to material and analytical constraints. Here we present new uranium isotope data measured by high precision MC-ICP-MS on ten airborne dust samples collected on the M55 trans-Atlantic cruise in 2002. Two pairs of samples are presented with different size fractions, coarse (1-30 μm) and fine (<1 μm), and all samples were processed to separate the water soluble component in order to assess the controls on the (234U/238U)activity of mineral aerosols transported from the Sahara across the Atlantic. Our results indicate (234U/238U)activity above one for both the water soluble (1.13-1.17) and the residual solid (1.06-1.18) fractions of the dust; no significant correlation is found between isotopic composition and travel distance. Residual solids indicate a slight dependance of (234U/238U)activity on particle size. Future modeling work that incorporates dust isotopic compositions into mixing or isotopic fractionation models will need to account for the wide variability in dust (234U/238U)activity .

  4. A detailed characterization of the Saharan dust collected during the Fennec campaign in 2011: in situ ground-based and laboratory measurements

    NASA Astrophysics Data System (ADS)

    Rocha-Lima, Adriana; Vanderlei Martins, J.; Remer, Lorraine A.; Todd, Martin; Marsham, John H.; Engelstaedter, Sebastian; Ryder, Claire L.; Cavazos-Guerra, Carolina; Artaxo, Paulo; Colarco, Peter; Washington, Richard

    2018-01-01

    Millions of tons of mineral dust are lifted by the wind from arid surfaces and transported around the globe every year. The physical and chemical properties of the mineral dust are needed to better constrain remote sensing observations and are of fundamental importance for the understanding of dust atmospheric processes. Ground-based in situ measurements and in situ filter collection of Saharan dust were obtained during the Fennec campaign in the central Sahara in 2011. This paper presents results of the absorption and scattering coefficients, and hence single scattering albedo (SSA), of the Saharan dust measured in real time during the last period of the campaign and subsequent laboratory analysis of the dust samples collected in two supersites, SS1 and SS2, in Algeria and in Mauritania, respectively. The samples were taken to the laboratory, where their size and aspect ratio distributions, mean chemical composition, spectral mass absorption efficiency, and spectral imaginary refractive index were obtained from the ultraviolet (UV) to the near-infrared (NIR) wavelengths. At SS1 in Algeria, the time series of the scattering coefficients during the period of the campaign show dust events exceeding 3500 Mm-1, and a relatively high mean SSA of 0.995 at 670 nm was observed at this site. The laboratory results show for the fine particle size distributions (particles diameter  < 5µm and mode diameter at 2-3 µm) in both sites a spectral dependence of the imaginary part of the refractive index Im(m) with a bow-like shape, with increased absorption in UV as well as in the shortwave infrared. The same signature was not observed, however, in the mixed particle size distribution (particle diameter < 10 µm and mode diameter at 4 µm) in Algeria. Im(m) was found to range from 0.011 to 0.001i for dust collected in Algeria and 0.008 to 0.002i for dust collected in Mauritania over the wavelength range of 350-2500 nm. Differences in the mean elemental

  5. Geochemical evidence for diversity of dust sources in the southwestern United States

    USGS Publications Warehouse

    Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.

    2002-01-01

    Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States. Copyright ?? 2002 Elsevier Science Ltd.

  6. Atmospheric Dust Modeling from Meso to Global Scales with the Online NMMB/BSC-Dust Model Part 2: Experimental Campaigns in Northern Africa

    NASA Technical Reports Server (NTRS)

    Haustein, K.; Perez, C.; Baldasano, J. M.; Jorba, O.; Basart, S.; Miller, R. L.; Janjic, Z.; Black, T.; Nickovic, S.; Todd, M. C.; hide

    2012-01-01

    The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Perez et al., 2011) develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD) was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6-0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1) in 2006 and the Bodele Dust Experiment (BoDEx) in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ) and the dust AOD over the Bodélé are well reproduced

  7. Ice nucleation of natural desert dust including organics sourced from nine deserts worldwide

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Welti, André; Atkinson, James; Danielczok, Anja; Bingemer, Heinz; Plötze, Michael; Lohmann, Ulrike; Kanji, Zamin A.

    2017-04-01

    The extraordinary high ice nucleation (IN) potential of microcline, a K-feldspar mineral, at temperatures (T) above 248 and up to 271 K has been show recently. However, it is unclear if microcline is also found at the surface of airborne mineral dust particles or if chemical and mechanical aging processes lead to its destruction or shielding and thus reduced IN ability in the atmosphere. It is suggested that instead organic material mixed with inorganic minerals is responsible for cloud glaciation at T ≥ 253 K. We collected airborne Saharan dust at 4 locations at different distances from the desert and 11 samples from the surface of 9 of the major deserts worldwide. We studied immersion IN on these samples between 235 - 263 K using the IMCA-ZINC (immersion mode cooling chamber - Zurich ice nucleation chamber) setup and the FRIDGE (Franfurt Ice Nuclei Deposition Freezing Experiment) instrument run in droplet freezing mode. By correlating the results with the bulk mineralogy of the dust samples, determined by X-ray diffraction analysis, we show that at 253 K, K-feldspar indeed predicts best the IN behavior of the samples. At lower T (238 - 245 K) however, quartz and the total feldspar contents correlate best. Furthermore, microcline is only found in one of the airborne Saharan dust samples (3.9 wt%) while in the others the amount is below the detection limit or completely absent. Relative humidity (RH) scans at constant T = 238, 240 and 242 K were additionally performed with the portable ice nucleation counter, PINC. Above and below water saturation a similar prominent role of quartz is found as in the immersion mode. To investigate the role of organic material on the IN ability, we heated some of the samples at 573 K for 10 h and repeated the RH-scans. Furthermore, we performed thermogravimetric analysis of the dusts. The two tested airborne Saharan samples loose between 2.8 and 7.5 % of their mass at T ≤ 573 K, partly due to water release, partly due to

  8. Identifying Dust Sources by Positive Matrix Factorization (PMF)

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann P.

    2010-05-01

    This presentation is on the source attribution by Positive Matrix Factorization (PMF) of aerosol samples collected in Iraq, a major source of mineral dust in the Middle East. Globally transported mineral dust from North Africa, the Middle East, China, and elsewhere are routinely being sampled at high elevation monitoring sites such as those on the Canary Islands and Hawaii, and many ambient monitoring sites worldwide. Chemical results of these filter samples reflect differences in sources impacting at each site, further complicated by the regional geomorphology and meteorology. Trace elements, isotopes, elemental ratios, and mineralogy are generally being used to pinpoint geological source regions of natural and anthropogenic dusts. A receptor site is seldom impacted by only one source at a time. Dust palls are continually being modified by added dust from soils across which they migrate, also by particle segregation in the dust plume, and precipitation of the coarser particles. The result is that dust is a mixture, with contributions from different sources, each with a different chemical and mineralogical signature. PMF is a non-negative factorization procedure that produces only positive factor scores and loadings, in contrast to classical factor analysis (FA) and Principal Components Analysis (PCA). PMF enables us to resolve factors (chemical signatures) for source types contributing to the ambient chemical data set, and also models the source-type contributions to individual ambient samples. The latter can often be related to specific source regions. PMF was applied separately to two ambient data sets collected in Iraq in 2006, the one on Teflon membrane filters and the other on quartz fiber. Each of the filter types were previously analyzed for different chemical species: Teflon membrane for elements, by XRF and ICP-MS, while quartz fiber filters were analyzed for ions and carbon. [Engelbrecht et al. 2009] A set of 392 Teflon filter samples analyzed for 25

  9. How Early Holocene Greening of the Afro-Asian Dust Belt Changed Sources of Mineral Dust in West Asia

    NASA Astrophysics Data System (ADS)

    Pourmand, A.; Sharifi, A.; Goes, L. M.; Clement, A. C.; Canuel, E. A.; Naderi Beni, A.; Ahmady-Birgani, H.

    2016-12-01

    Production, transport and deposition of mineral dust have significant temporal and spatial impacts on different components of the Earth systems. In modern times, dust plumes can be associated with their source origin(s) using satellite and land-based measurements and back-trajectory reconstruction of air masses. Reconstructing past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and their potential source origins. In this contribution, we present a 13,000-year record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in sources of dust over West Asia. The geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from times of high dust fluxes during the Younger Dryas, and that of the mid-late Holocene. This indicates that the composition of mineral dust deposited at the receptor site changed as a function of prevailing atmospheric circulation regimes and land exposure. Simulations of atmospheric circulation over the region show the Northern Hemisphere Westerly Jet (NHWJ) was displaced poleward across the study area during the early Holocene when solar insolation was higher. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia to dominate dust export to West Asia during this period, in contrast to the dominant western and southwest Asian and Eastern African sources that prevail during the modern period.

  10. Studies of saharan dust intrusions over bucharest using ceilometer's measurements and satellite data

    NASA Astrophysics Data System (ADS)

    Urlea, Denisa; Boscornea, Andreea; Nicolae Vâjâiac, Sorin; Ţoancă, Florica; Barbu, Nicu; Ştefan, Sabina; Bunescu, Ionuț

    2018-04-01

    Three case studies of Saharan dust intrusions over southern Romania were performed. For these studies the database from the ceilometers located at Magurele and Strejnic was used. In addition, the meteorological conditions were analyzed using the WLK Catalogue based on the Objektive Wetterlagenklassifikation classification of the weather types [1]. This catalogue uses information from three basic tropospheric levels: 925, 700 and 500 hPa, and information on the precipitable water content over the entire atmosphere column. Geopotential fields at 925hPa and 500hPa are used for establishing the cyclonicity or anticyclonicity, while the U and V components of wind at 700hPa for establishing the dominant direction of the wind flow. For better understanding of the atmospheric parameters we performed HYSPLIT dispersion and trajectories analysis in conjunction with DREAM model output data.

  11. Geochemical characterization of critical dust source regions in the American West

    NASA Astrophysics Data System (ADS)

    Aarons, Sarah M.; Blakowski, Molly A.; Aciego, Sarah M.; Stevenson, Emily I.; Sims, Kenneth W. W.; Scott, Sean R.; Aarons, Charles

    2017-10-01

    The generation, transport, and deposition of mineral dust are detectable in paleoclimate records from land, ocean, and ice, providing valuable insight into earth surface conditions and cycles on a range of timescales. Dust deposited in marine and terrestrial ecosystems can provide critical nutrients to nutrient-limited ecosystems, and variations in dust provenance can indicate changes in dust production, sources and transport pathways as a function of climate variability and land use change. Thus, temporal changes in locations of dust source areas and transport pathways have implications for understanding interactions between mineral dust, global climate, and biogeochemical cycles. This work characterizes dust from areas in the American West known for dust events and/or affected by increasing human settlement and livestock grazing during the last 150 years. Dust generation and uplift from these dust source areas depends on climate and land use practices, and the relative contribution of dust has likely changed since the expansion of industrialization and agriculture into the western United States. We present elemental and isotopic analysis of 28 potential dust source area samples analyzed using Thermal Ionization Mass Spectrometry (TIMS) for 87Sr/86Sr and 143Nd/144Nd composition and Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) for 176Hf/177Hf composition, and ICPMS for major and trace element concentrations. We find significant variability in the Sr, Nd, and Hf isotope compositions of potential source areas of dust throughout western North America, ranging from 87Sr/86Sr = 0.703699 to 0.740236, εNd = -26.6 to 2.4, and εHf = -21.7 to -0.1. We also report differences in the trace metal and phosphorus concentrations in the geologic provinces sampled. This research provides an important resource for the geochemical tracing of dust sources and sinks in western North America, and will aid in modeling the biogeochemical impacts of increased

  12. Evaluation of coral pathogen growth rates after exposure to atmospheric African dust samples

    USGS Publications Warehouse

    Lisle, John T.; Garrison, Virginia H.; Gray, Michael A.

    2014-01-01

    Laboratory experiments were conducted to assess if exposure to atmospheric African dust stimulates or inhibits the growth of four putative bacterial coral pathogens. Atmospheric dust was collected from a dust-source region (Mali, West Africa) and from Saharan Air Layer masses over downwind sites in the Caribbean [Trinidad and Tobago and St. Croix, U.S. Virgin Islands (USVI)]. Extracts of dust samples were used to dose laboratory-grown cultures of four putative coral pathogens: Aurantimonas coralicida (white plague type II), Serratia marcescens (white pox), Vibrio coralliilyticus, and V. shiloi (bacteria-induced bleaching). Growth of A. coralicida and V. shiloi was slightly stimulated by dust extracts from Mali and USVI, respectively, but unaffected by extracts from the other dust sources. Lag time to the start of log-growth phase was significantly shortened for A. coralicida when dosed with dust extracts from Mali and USVI. Growth of S. marcescens and V. coralliilyticus was neither stimulated nor inhibited by any of the dust extracts. This study demonstrates that constituents from atmospheric dust can alter growth of recognized coral disease pathogens under laboratory conditions.

  13. Using dust, gas and stellar mass-selected samples to probe dust sources and sinks in low-metallicity galaxies

    NASA Astrophysics Data System (ADS)

    De Vis, P.; Gomez, H. L.; Schofield, S. P.; Maddox, S.; Dunne, L.; Baes, M.; Cigan, P.; Clark, C. J. R.; Gomez, E. L.; Lara-López, M.; Owers, M.

    2017-10-01

    We combine samples of nearby galaxies with Herschel photometry selected on their dust, metal, H I and stellar mass content, and compare these to chemical evolution models in order to discriminate between different dust sources. In a companion paper, we used an H I-selected sample of nearby galaxies to reveal a subsample of very gas-rich (gas fraction >80 per cent) sources with dust masses significantly below predictions from simple chemical evolution models, and well below Md/M* and Md/Mgas scaling relations seen in dust and stellar-selected samples of local galaxies. We use a chemical evolution model to explain these dust-poor, but gas-rich, sources as well as the observed star formation rates (SFRs) and dust-to-gas ratios. We find that (I) a delayed star formation history is required to model the observed SFRs; (II) inflows and outflows are required to model the observed metallicities at low gas fractions; (III) a reduced contribution of dust from supernovae (SNe) is needed to explain the dust-poor sources with high gas fractions. These dust-poor, low stellar mass galaxies require a typical core-collapse SN to produce 0.01-0.16 M⊙ of dust. To match the observed dust masses at lower gas fractions, significant grain growth is required to counteract the reduced contribution from dust in SNe and dust destruction from SN shocks. These findings are statistically robust, though due to intrinsic scatter it is not always possible to find one single model that successfully describes all the data. We also show that the dust-to-metal ratio decreases towards lower metallicity.

  14. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Abouchami, W.; Galer, S. J. G.; Garrison, V. H.; Williams, E.; Andreae, M. O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers - Sr, Nd and Pb - to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  15. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    USGS Publications Warehouse

    Kumar, A.; Abouchami, W.; Galer, S.J.G.; Garrison, V.H.; Williams, E.; Andreae, M.O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers – Sr, Nd and Pb – to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  16. Saharan Dust Fertilizing Atlantic Ocean and Amazon Rainforest via Long-range Transport and Deposition: A Perspective from Multiyear Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L. A.; Prospero, J. M.; Omar, A. H.; Winker, D. M.; Yang, Y.; Zhang, Y.; Zhang, Z.; Zhao, C.

    2015-12-01

    Massive dust emitted from Sahara desert is carried by trade winds across the tropical Atlantic Ocean, reaching the Amazon Rainforest and Caribbean Sea. Airborne dust degrades air quality and interacts with radiation and clouds. Dust falling to land and ocean adds essential nutrients that could increase the productivity of terrestrial and aquatic ecosystems and modulate the biogeochemical cycles and climate. The resultant climate change will feed back on the production of dust in Sahara desert and its subsequent transport and deposition. Understanding the connections among the remote ecosystems requires an accurate quantification of dust transport and deposition flux on large spatial and temporal scales, in which satellite remote sensing can play an important role. We provide the first multiyear satellite-based estimates of altitude-resolved across-Atlantic dust transport and deposition based on eight-year (2007-2014) record of aerosol three-dimensional distributions from the CALIPSO lidar. On a basis of the 8-year average, 179 Tg (million tons) of dust leaves the coast of North Africa and is transported across Atlantic Ocean, of which 102, 20, and 28 Tg of dust is deposited into the tropical Atlantic Ocean, Caribbean Sea, and Amazon Rainforest, respectively. The dust deposition adds 4.3 Tg of iron and 0.1 Tg of phosphorus to the tropical Atlantic Ocean and Caribbean Sea where the productivity of marine ecosystem depends on the availability of these nutrients. The 28 Tg of dust provides about 0.022 Tg of phosphorus to Amazon Rainforest yearly that replenishes the leak of this plant-essential nutrient by rains and flooding, suggesting an important role of Saharan dust in maintaining the productivity of Amazon rainforest on timescales of decades or centuries. We will also discuss seasonal and interannual variations of the dust transport and deposition, and comparisons of the CALIOP-based estimates with model simulations.

  17. Health effects from Sahara dust episodes in Europe: literature review and research gaps.

    PubMed

    Karanasiou, A; Moreno, N; Moreno, T; Viana, M; de Leeuw, F; Querol, X

    2012-10-15

    The adverse consequences of particulate matter (PM) on human health have been well documented. Recently, special attention has been given to mineral dust particles, which may be a serious health threat. The main global source of atmospheric mineral dust is the Sahara desert, which produces about half of the annual mineral dust. Sahara dust transport can lead to PM levels that substantially exceed the established limit values. A review was undertaken using the ISI web of knowledge database with the objective to identify all studies presenting results on the potential health impact from Sahara dust particles. The review of the literature shows that the association of fine particles, PM₂.₅, with total or cause-specific daily mortality is not significant during Saharan dust intrusions. However, regarding coarser fractions PM₁₀ and PM₂.₅₋₁₀ an explicit answer cannot be given. Some of the published studies state that they increase mortality during Sahara dust days while other studies find no association between mortality and PM₁₀ or PM₂.₅₋₁₀. The main conclusion of this review is that health impact of Saharan dust outbreaks needs to be further explored. Considering the diverse outcomes for PM₁₀ and PM₂.₅₋₁₀, future studies should focus on the chemical characterization and potential toxicity of coarse particles transported from Sahara desert mixed or not with anthropogenic pollutants. The results of this review may be considered to establish the objectives and strategies of a new European directive on ambient air quality. An implication for public policy in Europe is that to protect public health, anthropogenic sources of particulate pollution need to be more rigorously controlled in areas highly impacted by the Sahara dust. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Laboratory study of PCB transport from primary sources to settled dust.

    PubMed

    Liu, Xiaoyu; Guo, Zhishi; Krebs, Kenneth A; Greenwell, Dale J; Roache, Nancy F; Stinson, Rayford A; Nardin, Joshua A; Pope, Robert H

    2016-04-01

    Dust is an important sink for indoor air pollutants, such as polychlorinated biphenyls (PCBs) that were used in building materials and products. In this study, two types of dust, house dust and Arizona Test Dust, were tested in a 30-m(3) stainless steel chamber with two types of panels. The PCB-containing panels were aluminum sheets coated with a PCB-spiked primer or caulk. The PCB-free panels were coated with the same materials but without PCBs. The dust evenly spread on each panel was collected at different times to determine its PCB content. The data from the PCB panels were used to evaluate the PCB migration from the source to the dust through direct contact, and the data from the PCB-free panels were used to evaluate the sorption of PCBs through the dust/air partition. Settled dust can adsorb PCBs from air. The sorption concentration was dependent on the congener concentration in the air and favored less volatile congeners. When the house dust was in direct contact with the PCB-containing panel, PCBs migrated into the dust at a much faster rate than the PCB transfer rate due to the dust/air partition. The dust/source partition was not significantly affected by the congener's volatility. For a given congener, the ratio between its concentration in the dust and in the source was used to estimate the dust/source partition coefficient. The estimated values ranged from 0.04 to 0.16. These values are indicative of the sink strength of the tested house dust being in the middle or lower-middle range. Published by Elsevier Ltd.

  19. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  20. Constant Chinese Loess Plateau dust source since the Late Miocene

    NASA Astrophysics Data System (ADS)

    Bird, Anna; Millar, Ian; Stevens, Thomas; Rodenburg, Tanja; Rittner, Martin; Vermeesch, Pieter; Lu, Huayu

    2017-04-01

    The dramatic deepening of northern hemisphere glaciation at the Pliocene-Pleistocene boundary is accompanied by major changes in global climate. The role of the global atmospheric dust cycle in this event is not clear; in particular, whether, changes in the dust cycle influenced climates change, or resulted from it. Miocene and Quaternary wind-blown Chinese loess records past dust-cycle history, influences of aridification and monsoon circulation. Previous work on the vast Chinese Loess Plateau is in conflict over whether changes in dust source occur at the Pliocene-Pleistocene boundary (2.59 Ma), or at 1.2 Ma, despite these intervals marking major shifts in monsoon dynamics (Sun 2005; Nie et al. 2014a). Here we present Sr, Nd and Hf isotopic data from multiple sites and show that the dust source remains the same across these boundaries. The use of isotope tracers from multiple sites allows us to demonstrate that shifts in sediment geochemistry can be explained by grain-size and weathering changes. Nd and Hf isotopes show that the dust was dominantly sourced from the Tibetan Plateau, with some input from bedrock underlying the Badain Jaran/Tengger deserts. This shows that a major established and constant dust source on the northern Tibetan Plateau has been active and unchanged since the late Miocene, despite dramatically changing climate conditions. Changes in loess accumulation are therefore a function of climate change in the Tibetan Plateau source regions rather than due to expanding source areas controlled by aridification over a widening area over the Pliocene and Quaternary.

  1. Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005

    NASA Astrophysics Data System (ADS)

    Todd, Martin C.; Washington, Richard; Martins, José Vanderlei; Dubovik, Oleg; Lizcano, Gil; M'bainayel, Samuel; Engelstaedter, Sebastian

    2007-03-01

    Mineral dust in the atmosphere is an important component of the climate system but is poorly quantified. The Bodélé Depression of northern Chad stands out as the world's greatest source region of mineral dust into the atmosphere. Frequent dust plumes are a distinguishing feature of the region's climate. There is a need for more detailed information on processes of dust emission/transport and dust optical properties to inform model simulations of this source. During the Bodélé Dust Experiment (BoDEx) in 2005, instrumentation was deployed to measure dust properties and boundary layer meteorology. Observations indicate that dust emission events are triggered when near-surface wind speeds exceed 10 ms-1, associated with synoptic-scale variability in the large-scale atmospheric circulation. Dust emission pulses in phase with the diurnal cycle of near-surface winds. Analysis of dust samples shows that the dust consists predominantly of fragments of diatomite sediment. The particle size distribution of this diatomite dust estimated from sun photometer data, using a modified Aeronet retrieval algorithm, indicates a dominant coarse mode (radius centered on 1-2 μm) similar to other Saharan dust observations. Single-scattering albedo values are high, broadly in line with other Saharan dust even though the diatomite composition of dust from the Bodélé is likely to be unusual. The radiative impact of high dust loadings results in a reduction in surface daytime maximum temperature of around 7°C in the Bodélé region. Using optical and physical properties of dust obtained in the field, we estimate the total dust flux emitted from the Bodélé to be 1.18 ± 0.45 Tg per day during a substantial dust event. We speculate that the Bodélé Depression (˜10,800 km2) may be responsible for between 6-18% of global dust emissions, although the uncertainty in both the Bodélé and global estimates remains high.

  2. Role of Surface Wind and Vegetation Cover in Multi-decadal Variations of Dust Emission in the Sahara and Sahel

    NASA Technical Reports Server (NTRS)

    Kim, Dong; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas L.; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2016-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  3. Contrasting effect of Saharan dust and UVR on autotrophic picoplankton in nearshore versus offshore waters of Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    González-Olalla, J. M.; Medina-Sánchez, J. M.; Cabrerizo, M. J.; Villar-Argáiz, Manuel; Sánchez-Castillo, Pedro M.; Carrillo, Presentación

    2017-08-01

    Autotrophic picoplankton (APP) is responsible for the vast majority of primary production in oligotrophic marine areas, such as the Alboran Sea. The increase in atmospheric dust deposition (e.g., from Sahara Desert) associated with global warming, together with the high UV radiation (UVR) on these ecosystems, may generate effects on APP hitherto unknown. We performed an observational study across the Alboran Sea to establish which factors control the abundance and distribution of APP, and we made a microcosm experiment in two distinct areas, nearshore and offshore, to predict the joint UVR × dust impact on APP at midterm scales. Our observational study showed that temperature (T) was the main factor explaining the APP distribution whereas total dissolved nitrogen positively correlated with APP abundance. Our experimental study revealed that Saharan dust inputs reduced or inverted the UVR damage on the photosynthetic quantum yield (ΦPSII) and picoplanktonic primary production (PPP) in the nearshore area but accentuated it in the offshore. This contrasting effect is partially explained by the nonphotochemical quenching, acting as a photorepair mechanism. Picoeukaryotes reflected the observed effects on the physiological and metabolic variables, and Synechococcus was the only picoprokaryotic group that showed a positive response under UVR × dust conditions. Our study highlights a dual sensitivity of nearshore versus offshore picoplankton to dust inputs and UVR fluxes, just at the time in which these two global-change factors show their highest intensities and may recreate a potential future response of the microbial food web under global-change conditions.

  4. Atmospheric response to Saharan dust deduced from ECMWF reanalysis (ERA) temperature increments

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-09-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in the reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the lack of dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (>0.5), low correlation and high negative correlation (<-0.5). The innermost positive correlation area (PCA) is a large area near the center of the Sahara desert. For some local maxima inside this area the correlation even exceeds 0.8. The outermost negative correlation area (NCA) is not uniform. It consists of some areas over the eastern and western parts of North Africa with a relatively small amount of dust. Inside those areas both positive and negative high correlations exist at pressure levels ranging from 850 to 700 hPa, with the peak values near 775 hPa. Dust-forced heating (cooling) inside the PCA (NCA) is accompanied by changes in the static instability of the atmosphere above the dust layer. The reanalysis data of the European Center for Medium Range Weather Forecast (ECMWF) suggest that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity and downward (upward) airflow. These findings are associated with the interaction between dust-forced heating/cooling and

  5. Type II supernovae as a significant source of interstellar dust.

    PubMed

    Dunne, Loretta; Eales, Stephen; Ivison, Rob; Morgan, Haley; Edmunds, Mike

    2003-07-17

    Large amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2-4M(o) of dust. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations of supernova remnants in the Milky Way, however, have hitherto revealed only 10(-7)-10(-3)M(o) each, which is insufficient to explain the high-redshift data. Here we report the detection of approximately 2-4M(o) of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.

  6. Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Cacciani, Marco; Veselovskii, Igor; Dubovik, Oleg; Kolgotin, Alexey

    2012-04-01

    The Raman lidar system BASIL was operational in Achern (Black Forest) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The system performed continuous measurements over a period of approx. 36 h from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, capturing the signature of a severe Saharan dust outbreak episode. The data clearly reveal the presence of two almost separate aerosol layers: a lower layer located between 1.5 and 3.5 km above ground level (a.g.l.) and an upper layer extending between 3.0 and 6.0 km a.g.l. The time evolution of the dust cloud is illustrated and discussed in the paper in terms of several optical parameters (particle backscatter ratio at 532 and 1064 nm, the colour ratio and the backscatter Angström parameter). An inversion algorithm was used to retrieve particle size and microphysical parameters, i.e., mean and effective radius, number, surface area, volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution (PSD), from the multi-wavelength lidar data of particle backscattering, extinction and depolarization. The retrieval scheme employs Tikhonov's inversion with regularization and makes use of kernel functions for randomly oriented spheroids. Size and microphysical parameters of dust particles are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the presence of a fine mode with radii of 0.1-0.2 μm and a coarse mode with radii of 3-5 μm both in the lower and upper dust layers, and the dominance in the upper dust layer of a coarse mode with radii of 4-5 μm. Effective radius varies with altitude in the range 0.1-1.5 μm, while volume concentration is found to not exceed 92 μm3 cm-3. The real and imaginary part of the complex refractive index vary in the range 1.4-1.6 and 0.004-0.008, respectively.

  7. Urban dust in the Guanzhong Basin of China, part I: A regional distribution of dust sources retrieved using satellite data.

    PubMed

    Long, Xin; Li, Nan; Tie, Xuexi; Cao, Junji; Zhao, Shuyu; Huang, Rujin; Zhao, Mudan; Li, Guohui; Feng, Tian

    2016-01-15

    Urban dust pollution has been becoming an outstanding environmental problem due to rapid urbanization in China. However, it is very difficult to construct an urban dust inventory, owing to its small horizontal scale and strong temporal/spatial variability. With the analysis of visual interpretation, maximum likelihood classification, extrapolation and spatial overlaying, we quantified dust source distributions of urban constructions, barrens and croplands in the Guanzhong Basin using various satellite data, including VHR (0.5m), Lansat-8 OLI (30 m) and MCD12Q1 (500 m). The croplands were the dominant dust sources, accounting for 40% (17,913 km(2)) of the study area in summer and 36% (17,913 km(2)) in winter, followed by barrens, accounting for 5% in summer and 10% in winter. Moreover, the total constructions were 126 km(2), including 84% of active and 16% inactive. In addition, 59% of the constructions aggregated on the only megacity of the study area, Xi'an. With high accuracy exceeding 88%, the proposed satellite-data based method is feasible and valuable to quantify distributions of dust sources. This study provides a new perspective to evaluate regional urban dust, which is seldom quantified and reported. In a companied paper (Part-2 of the study), the detailed distribution of the urban dust sources is applied in a dynamical/aerosol model (WRF-Dust) to assess the effect of dust sources on aerosol pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Konde, Lassana; Wolf, Ruth E.; Otto, Richard D.; Tsuneoka, Yutaka

    2014-01-01

    Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan–Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 – 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara–Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.

  9. Saharan dust and the impact on adult and elderly allergic patients: the effect of threshold values in the northern sector of Gran Canaria, Spain.

    PubMed

    Menéndez, Inmaculada; Derbyshire, Edward; Carrillo, Teresa; Caballero, Elena; Engelbrecht, Johann P; Romero, Lidia E; Mayer, Pablo L; Rodríguez de Castro, Felipe; Mangas, José

    2017-04-01

    Gran Canaria Island is frequently impacted by Saharan dust, a health hazard of particular concern to the island population and health agencies. Airborne mineral dust has the severest impact on the higher age groups of the population, and those with respiratory conditions; despite that, on average, the ambient particulate matter (PM) concentrations fall within international PM guidelines. During 2010 and 2011, an epidemiological survey, in parallel with an air quality study, was conducted at the Dr Negrín hospital in Gran Canaria. This included the quarterly monitoring of outpatients and recording of emergency patients with respiratory diseases, together with the measurement of aerosol, meteorological, and PM-related air quality levels. The finer more toxic particles were collected with PM 2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) aerosol samplers. The filter samples were gravimetrically and chemically analyzed for their elemental, water-soluble ions, carbon, and mineralogical contents. Individual particle morphology was measured by Scanning Electron Microscopy. Statistical analysis of the chemical and clinical data included the analysis of variance and calculation of Spearman correlation coefficients. No statistically significant relations were found between the allergic control group, the emergency room admissions, pulmonary conditions, medication, and elevated Saharan dust levels. However, changing environmental conditions, such as an increase in humidity or a reduction in ambient air temperature made a significant difference to the outcomes recorded on the health statements of the allergic and respiratory illness groups of the Gran Canary population.

  10. Observation of a Saharan dust outbreaks in the frame of the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Caccaini, Marco; Veselovskii, Igor; Kolgotin, Alexey

    2009-03-01

    The Raman lidar system BASIL was operational in Achern (Supersite R, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) in the frame of the Convective and Orographically-induced Precipitation Study. BASIL operated continuously over a period of approx. 36 hours from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, to cover IOPs 13 a-b. In this timeframe the signature of a severe Saharan dust outbreak episode was captured. An inversion algorithm was used to retrieve particle size distribution parameters, i.e., mean and effective radius, number, surface area, and volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution, from the multi-wavelength lidar data of particle backscattering and extinction. The inversion method employs Tikhonov's inversion with regularization. Size distribution parameters are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the dominance in the upper dust layer of a coarse mode with radii 3-4 μm. Number density and volume concentration are in the range 100-800 cm-3 and 5-40 μm3/cm3, respectively, while real and imaginary part of the complex refractive index are in the range 1.41-1.53 and 0.003-0.014, respectively.

  11. [Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event].

    PubMed

    Qian, Peng; Zheng, Xiang-min; Zhou, Li-min

    2013-05-01

    Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.

  12. Sensitivity of WRF-chem predictions to dust source function specification in West Asia

    NASA Astrophysics Data System (ADS)

    Nabavi, Seyed Omid; Haimberger, Leopold; Samimi, Cyrus

    2017-02-01

    Dust storms tend to form in sparsely populated areas covered by only few observations. Dust source maps, known as source functions, are used in dust models to allocate a certain potential of dust release to each place. Recent research showed that the well known Ginoux source function (GSF), currently used in Weather Research and Forecasting Model coupled with Chemistry (WRF-chem), exhibits large errors over some regions in West Asia, particularly near the IRAQ/Syrian border. This study aims to improve the specification of this critical part of dust forecasts. A new source function based on multi-year analysis of satellite observations, called West Asia source function (WASF), is therefore proposed to raise the quality of WRF-chem predictions in the region. WASF has been implemented in three dust schemes of WRF-chem. Remotely sensed and ground-based observations have been used to verify the horizontal and vertical extent and location of simulated dust clouds. Results indicate that WRF-chem performance is significantly improved in many areas after the implementation of WASF. The modified runs (long term simulations over the summers 2008-2012, using nudging) have yielded an average increase of Spearman correlation between observed and forecast aerosol optical thickness by 12-16 percent points compared to control runs with standard source functions. They even outperform MACC and DREAM dust simulations over many dust source regions. However, the quality of the forecasts decreased with distance from sources, probably due to deficiencies in the transport and deposition characteristics of the forecast model in these areas.

  13. Atmospheric aging of dust ice nucleating particles - a combined laboratory and field approach

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Rodríguez, Sergio; García, M. Isabel; Linke, Claudia; Schnaiter, Martin; Zipori, Assaf; Crawford, Ian; Lohmann, Ulrike; Kanji, Zamin A.; Sierau, Berko

    2016-04-01

    We present INP data measured in-situ at two mostly free tropospheric locations: the High Altitude Research Station Jungfraujoch (JFJ) in the Swiss Alps, located at 3580 m above sea level (asl) and the Izaña observatory on Tenerife, off the West African shore (2373 m asl). INP concentrations were measured online with the Portable Ice Nucleation Chamber, PINC, at the Jungfraujoch in the winters of 2012, 2013 and 2014 and at Izaña in the summers of 2013 and 2014. Each measurement period lasted between 2 to 6 weeks. During summer, Izaña is frequently within the Saharan Air Layer and thus often exposed to Saharan dust events. Saharan dust also reaches the Jungfraujoch mainly during spring. For offline ice nucleation analysis in the laboratory under similar thermodynamic conditions, airborne dust was collected a) at Izaña with a cyclone directly from the air and b) collected from the surface of the Aletsch glacier close to the JFJ after deposition. Supporting measurements of aerosol particle size distributions and fluorescence were conducted at both locations, as well as cloud water isotope analysis at the Jungfraujoch and aerosol chemistry at Izaña. For both locations the origin of the INPs was investigated with a focus on dust and biological particles using back trajectories and chemical signature. Results show that dust aerosol is the dominant INP type at both locations at a temperature of 241 K. In addition to Saharan dust, also more local, basaltic dust is found at the Jungfraujoch. Biological particles are not observed to play a role for ice nucleation in clouds during winter at Jungfraujoch but are enriched in INP compared to the total aerosol at Izaña also during dust events. The comparison of the laboratory and the field measurements at Izaña indicates a good reproducibility of the field data by the collected dust samples. Field and laboratory data of the dust samples from both locations show that the dust arriving at JFJ is less ice nucleation active

  14. Assessing sources of airborne mineral dust and other aerosols, in Iraq

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann P.; Jayanty, R. K. M.

    2013-06-01

    Most airborne particulate matter in Iraq comes from mineral dust sources. This paper describes the statistics and modeling of chemical results, specifically those from Teflon® filter samples collected at Tikrit, Balad, Taji, Baghdad, Tallil and Al Asad, in Iraq, in 2006/2007. Methodologies applied to the analytical results include calculation of correlation coefficients, Principal Components Analysis (PCA), and Positive Matrix Factorization (PMF) modeling. PCA provided a measure of the covariance within the data set, thereby identifying likely point sources and events. These include airborne mineral dusts of silicate and carbonate minerals, gypsum and salts, as well as anthropogenic sources of metallic fumes, possibly from battery smelting operations, and emissions of leaded gasoline vehicles. Five individual PMF factors (source categories) were modeled, four of which being assigned to components of geological dust, and the fifth to gasoline vehicle emissions together with battery smelting operations. The four modeled geological components, dust-siliceous, dust-calcic, dust-gypsum, and evaporate occur in variable ratios for each site and size fraction (TSP, PM10, and PM2.5), and also vary by season. In general, Tikrit and Taji have the largest and Al Asad the smallest percentages of siliceous dust. In contrast, Al Asad has the largest proportion of gypsum, in part representing the gypsiferous soils in that region. Baghdad has the highest proportions of evaporite in both size fractions, ascribed to the highly salinized agricultural soils, following millennia of irrigation along the Tigris River valley. Although dust storms along the Tigris and Euphrates River valleys originate from distal sources, the mineralogy bears signatures of local soils and air pollutants.

  15. Identification of dust storm source areas in West Asia using multiple environmental datasets.

    PubMed

    Cao, Hui; Amiraslani, Farshad; Liu, Jian; Zhou, Na

    2015-01-01

    Sand and Dust storms are common phenomena in arid and semi-arid areas. West Asia Region, especially Tigris-Euphrates alluvial plain, has been recognized as one of the most important dust source areas in the world. In this paper, a method is applied to extract SDS (Sand and Dust Storms) sources in West Asia region using thematic maps, climate and geography, HYSPLIT model and satellite images. Out of 50 dust storms happened during 2000-2013 and collected in form of MODIS images, 27 events were incorporated as demonstrations of the simulated trajectories by HYSPLIT model. Besides, a dataset of the newly released Landsat images was used as base-map for the interpretation of SDS source regions. As a result, six main clusters were recognized as dust source areas. Of which, 3 clusters situated in Tigris-Euphrates plain were identified as severe SDS sources (including 70% dust storms in this research). Another cluster in Sistan plain is also a potential source area. This approach also confirmed six main paths causing dust storms. These paths are driven by the climate system including Siberian and Polar anticyclones, monsoon from Indian Subcontinent and depression from north of Africa. The identification of SDS source areas and paths will improve our understandings on the mechanisms and impacts of dust storms on socio-economy and environment of the region. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A Numerical Estimate of The Impact of The Saharan Dust On Medityerranean Trophic Web

    NASA Astrophysics Data System (ADS)

    Crise, A.; Crispi, G.

    A first estimate of the importance of Saharan dust as input of macronutrients on the phytoplankton standing crop concentration and primary production at basin scale is here presented using a three-dimensional numerical model of the Mediterranean Sea. The numerical scheme adopted is a 1/4 degree resolution 31 levels MOM-based eco- hydrodynamical model with climatological ('perpetual year') forcings coupled on-line with a structure including multi-nutrient, size-fractionated phytoplankton functional groups, herbivores and a parametrized recycling detritus submodel, so to (explicitely or implicitely) include the major energy pathways of the upper layer mediterranean ecosystem. This model takes into account as potential limiting factors, among others, Nitrogen (in its oxidized and reduced forms) and Phosphorus. A gridded data setof (wet and dry) dust deposition over Mediterranean derived from SKIRON operational model is used to identify statistically the areas and the duration/intensity of the events. Starting from this averaging process, experiments are carried out to study the dust induced episodes of release of bioavailable phosphorus which is supposed to be the limiting factor in the oligotrophic waters of the surface layer in Med Sea. The metrics for the evaluation of the impact of deposition have been identified in phyto standing crop, primary and export production and switching in the food web functioning. These global parameters, even if cannot exaust the whealth of the informations provided by the model, can help discriminate the sensitivity of food web to the nutrient pulses induced by the deposition. First results of a scenario analysis of typical atmospheric input events, provide evidence of the response of the upper layer ecosystem to assess the sensitivity of the model predictions to the variability to integrated intensity of external input.

  17. Sahara Dust Cloud

    NASA Image and Video Library

    2005-07-15

    In July of 2005, a continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean, captured by the Atmospheric Infrared Sounder onboard NASA Aqua satellite. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. http://photojournal.jpl.nasa.gov/catalog/PIA00448

  18. Dust altitude and infrared optical depth retrieved from 6 years of AIRS observations : a focus on Saharan dust using A-Train synergy (MODIS, CALIOP)

    NASA Astrophysics Data System (ADS)

    Peyridieu, S.; Chédin, A.; Capelle, V.; Pierangelo, C.; Lamquin, N.; Armante, R.

    2009-04-01

    Observation from space, being global and quasi-continuous, is a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the thermal infrared domain still remains marginal. However, knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing. Infrared remote sensing provides a way to retrieve other aerosol characteristics, including their mean altitude. Moreover, observations are possible at night and day, over ocean and over land. In this context, six years (2003-2008) of the 2nd generation vertical sounder AIRS observations have been processed over the tropical belt (30°N-30°S). Our results of the dust optical depth at 10 µm have been compared to the 0.55 µm Aqua/MODIS optical depth product for this period. The detailed study of Atlantic regions shows a very good agreement between the two products, with a VIS/IR ratio around 0.3-0.5 during the Saharan dust season. Comparing these two AOD products should allow separating different aerosols signals, given that our retrieval algorithm is specifically designed for dust coarse mode whereas MODIS retrieves both accumulation and fine aerosol modes. Mean aerosol layer altitude has also been retrieved from AIRS data and we show global maps and time series of altitude retrieved from space. Altitude retrievals are compared to the CALIOP/Calipso Level-2 product starting June 2006. This comparison, for a region located downwind from the Sahara, again shows a good agreement demonstrating that our algorithm effectively allows retrieving reliable mean dust layer altitude. A global climatology of the dust optical depth at 10 µm and of the aerosol layer mean altitude has also been established. An interesting conclusion is the fact that if the AOD decreases from Africa to the Caribbean

  19. A multidisciplinary approach to trace Asian dust storms from source to sink

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Sun, Youbin; Ma, Long; Long, Xin

    2015-03-01

    Tracing the source of dust storm (DS) in mega-cities of northern China currently suffers ambiguities from different approaches including source-sink proxy comparison, air mass back trajectory modeling, and satellite image monitoring. By integrating advantages of all three methods, we present a multidisciplinary approach to trace the provenance of dust fall in Xi'an during the spring season (March to May) of 2012. We collected daily dust fall to calculate dust flux variation, and detected eight DS events with remarkable high flux values based on meteorological comparison and extreme detection algorithm. By combining MODIS images and accompanying real-time air mass back trajectories, we attribute four of them as natural DS events and the other four as anthropogenic DS events, suggesting the importance of natural and anthropogenic processes in supplying long-range transported dust. The primary sources of these DS events were constrained to three possible areas, including the northern Chinese deserts, Taklimakan desert, and Gurbantunggut desert. Proxy comparisons based upon the quartz crystallinity index and oxygen isotope further confirmed the source-to-sink linkage between the natural DS events in Xi'an and the dust emissions from the northern Chinese deserts. The integration of geochemical and meteorological tracing approaches favors the dominant contribution of short-distance transportation of modern dust fall on the Chinese Loess Plateau. Our study shows that the multidisciplinary approach could permit a better source identification of modern dust and should be applied properly for tracing the provenance fluctuations of geological dust deposits.

  20. Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.

    1998-01-01

    Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  1. Characterization of Asian Dust Properties Near Source Region During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, N. Christina; King, Michael D.; Kaufman, Yoram J.; Herman, Jay R.

    2004-01-01

    Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia campaign, we have acquired ground- based (temporal) and satellite (spatial) measurements to infer aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over this region. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. In this paper, we will demonstrate new capability of the Deep Blue algorithm to track the evolution of the Asian dust storm from sources to sinks. Although there are large areas often covered by clouds in the dust season in East Asia, this algorithm is able to distinguish heavy dust from clouds over the entire regions. Examination of the retrieved daily maps of dust plumes over East Asia clearly identifies the sources contributing to the dust loading in the atmosphe. We have compared the satellite retrieved aerosol optical thickness to the ground-based measurements and obtained a reasonable agreement between these two. Our results also indicate that there is a large difference in the retrieved value of spectral single scattering albedo of windblown dust between different

  2. Atmospheric dust contribution to budget of U-series nuclides in weathering profiles. The Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Pelt, E.; Chabaux, F. J.; Innocent, C.; Ghaleb, B.

    2009-12-01

    Analysis of U-series nuclides in weathering profiles is developed today for constraining time scale of soil and weathering profile formation (e.g., Chabaux et al., 2008). These studies require the understanding of U-series nuclides sources and fractionation in weathering systems. For most of these studies the impact of aeolian inputs on U-series nuclides in soils is usually neglected. Here, we propose to discuss such an assumption, i.e., to evaluate the impact of dust deposition on U-series nuclides in soils, by working on present and paleo-soils collected on the Mount Cameroon volcano. Recent Sr, Nd, Pb isotopic analyses performed on these samples have indeed documented significant inputs of Saharan dusts in these soils (Dia et al., 2006). We have therefore analyzed 238U-234U-230Th nuclides in the same samples. Comparison of U-Th isotopic data with Sr-Nd-Pb isotopic data indicates a significant impact of the dust input on the U and Th budget of the soils, around 10% for both U and Th. Using Sr-Nd-Pb isotopic data of Saharan dusts given by Dia et al. (2006) we estimate U-Th concentrations and U-Th isotope ratios of dusts compatible with U-Th data obtained on Saharan dusts collected in Barbados (Rydell H.S. and Prospero J.M., 1972). However, the variations of U/Th ratios along the weathering profiles cannot be explained by a simple mixing scenario between material from basalt and from the defined atmospheric dust pool. A secondary uranium migration associated with chemical weathering has affected the weathering profiles. Mass balance calculation suggests that U in soils from Mount Cameroon is affected at the same order of magnitude by both chemical migration and dust accretion. Nevertheless, the Mount Cameroon is a limit case were large dust inputs from continental crust of Sahara contaminate basaltic terrain from Mount Cameroon volcano. Therefore, this study suggests that in other contexts were dust inputs are lower, or the bedrocks more concentrated in U and Th

  3. A Long-term Record of Saharan Dust Aerosol Properties from TOMS Observations: Optical Depth and Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Herman, J. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The interaction between the strong Rayleigh scattering in the near UV spectral region (330-380 nm) and the processes of aerosol absorption and scattering, produce a clear spectral signal in the upwelling radiance at the top of the atmosphere. This interaction is the basis of the TOMS (Total Ozone Mapping Spectrometer) aerosol retrieval technique that can be used for their characterization and to differentiate non-absorbing sulfates from strongly UV-absorbing aerosols such as mineral dust. For absorbing aerosols, the characterization is in terms of the optical depth and single scattering albedo with assumptions about the aerosol plume height. The results for non-absorbing aerosols are not dependent on plume height. Although iron compounds represent only between 5% to 8% of desert dust aerosol mass, hematite (Fe2O3) accounts for most of the near UV absorption. Because of the large ultraviolet absorption characteristic of hematite, the near UV method of aerosol sensing is especially suited for the detection and characterization of desert dust aerosols. Using the combined record of near UV measurements by the Nimbus7 (1978-1992) and Earth Probe (1996-present) TOMS instruments, a global longterm climatology of near UV optical depth and single scattering albedo has been produced. The multi-year long record of mineral aerosol properties over the area of influence of the Saharan desert, will be discussed.

  4. A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.

    2009-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0

  5. The Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment (SALTRACE 2013) - An overview

    NASA Astrophysics Data System (ADS)

    Weinzierl, Bernadett; Ansmann, Albert; Reitebuch, Oliver; Freudenthaler, Volker; Müller, Thomas; Kandler, Konrad; Althausen, Dietrich; Chouza, Fernando; Dollner, Maximilian; Farrell, David; Groß, Silke; Heinold, Bernd; Kristensen, Thomas B.; Mayol-Bracero, Olga L.; Omar, Ali; Prospero, Joseph; Sauer, Daniel; Schäfler, Andreas; Toledano, Carlos; Tegen, Ina

    2015-04-01

    Saharan mineral dust is regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the Sahara. During transport, the properties of mineral dust may be modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. To investigate the aging and modification of Saharan mineral dust during long-range transport across the Atlantic Ocean, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted in June/July 2013. SALTRACE was designed as a closure experiment combining ground-based lidar, in-situ and sun photometer instruments deployed on Cape Verde, Barbados and Puerto Rico, with airborne measurements of the DLR research aircraft Falcon, satellite observations and model simulations. During SALTRACE, mineral dust from five dust outbreaks was studied under different atmospheric conditions and a unique data set on the chemical, microphysical and optical properties of aged mineral dust was gathered. For the first time, Lagrangian sampling of a dust plume in the Cape Verde area on 17 June 2013 which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados was realized. Further highlights of SALTRACE include the formation and evolution of tropical storm Chantal in a dusty environment and the interaction of dust with mixed-phase clouds. In our presentation, we give an overview of the SALTRACE study, discuss the meteorological situation and the dust transport during SALTRACE and highlight selected results from SALTRACE.

  6. Characterization and quantification of bioaerosols in Saharan dust transported across the Atlantic

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Maier, Stefanie; Rodriguez-Caballero, Emilio; Ditas, Florian; Klimach, Thomas; Prass, Maria; Hrabe de Angelis, Isabella; Blades, Edmund; Holanda, Bruna; Pöhlker, Mira; Maurus, Isabel; Kopper, Gila; Farrell, David; Stevens, Bjorn; Prospero, Joseph M.; Ulrich, Pöschl; Andreae, Meinrat O.; Fröhlich-Nowoisky, Janine; Pöhlker, Christopher; Weber, Bettina

    2017-04-01

    Primary biological aerosols (bioaerosols), forming a subset of atmospheric particles, are directly released from the biosphere into the atmosphere. They comprise living and dead organisms (e.g., algae, bacteria, archaea), reproduction units (e.g., pollen, seeds, spores) as well as organism fragments and excretions. They play a key role in the dispersal of otherwise mostly sessile organisms (e.g. plants), but also in the spread of pathogens and diseases. Recently, also soil dust has been described to frequently occur in a close connection with biological particles (Conen et al., 2011). Bioaerosols can serve as nuclei for cloud droplets and ice crystals and may influence the radiative properties of the atmosphere, thus influencing the hydrological cycle and climate (Fröhlich-Nowoisky et al., 2016). It has been well described that dust masses are transported across the Atlantic comprising a large variety of bacteria and fungi, but the origin of the biological material remained largely unknown (Prospero et al., 2005). In the present study we aim to accomplish three major tasks, i.e., 1) Thorough identification and quantification of bioaerosol particles, 2) Characterization of ice nucleating (IN) properties of bioaerosols, and 3) Evaluation of similarities between bioaerosols and biological material in source regions of dust. For our field work we utilized filter techniques to collect aerosol samples of transatlantically transported dust at the easternmost site (Ragged Point) on the Caribbean island Barbados. Sampling took place from July to August 2016, when dust transport volumes were expected to reach peak amounts. Total suspended particles were collected ˜30 m above sea level using a high volume sampler (˜ 500 L min-1) and a micro-orifice uniform deposit impactor (MOUDI™) to obtain size-resolved samples. Directly after sampling at different time intervals (i.e. 24-hour, 48-hour, and 7-day samples) the filters were frozen until further analyses. In a

  7. Polycyclic Aromatic Hydrocarbons in Residential Dust: Sources of Variability

    PubMed Central

    Metayer, Catherine; Petreas, Myrto; Does, Monique; Buffler, Patricia A.; Rappaport, Stephen M.

    2013-01-01

    Background: There is interest in using residential dust to estimate human exposure to environmental contaminants. Objectives: We aimed to characterize the sources of variability for polycyclic aromatic hydrocarbons (PAHs) in residential dust and provide guidance for investigators who plan to use residential dust to assess exposure to PAHs. Methods: We collected repeat dust samples from 293 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001 through 2007 and during 2010) using household vacuum cleaners, and measured 12 PAHs using gas chromatography–mass spectrometry. We used a random- and a mixed-effects model for each PAH to apportion observed variance into four components and to identify sources of variability. Results: Median concentrations for individual PAHs ranged from 10 to 190 ng/g of dust. For each PAH, total variance was apportioned into regional variability (1–9%), intraregional between-household variability (24–48%), within-household variability over time (41–57%), and within-sample analytical variability (2–33%). Regional differences in PAH dust levels were associated with estimated ambient air concentrations of PAH. Intraregional differences between households were associated with the residential construction date and the smoking habits of residents. For some PAHs, a decreasing time trend explained a modest fraction of the within-household variability; however, most of the within-household variability was unaccounted for by our mixed-effects models. Within-household differences between sampling rounds were largest when the interval between dust sample collections was at least 6 years in duration. Conclusions: Our findings indicate that it may be feasible to use residential dust for retrospective assessment of PAH exposures in studies of health effects. PMID:23461863

  8. [Groups and sources of yeasts in house dust].

    PubMed

    Glushakova, A M; Zheltikova, T M; Chernov, I Iu

    2004-01-01

    House dust contains bacteria, mycelial fungi, microarthropods, and yeasts. The house dust samples collected in 25 apartments in Moscow and the Moscow region were found to contain yeasts belonging to the genera Candida, Cryptococcus, Debaryomyces, Rhodotorula, Sporobolomyces, and Trichosporon. The most frequently encountered microorganisms were typical epiphytic yeasts, such as Cryptococcus diffluens and Rhodotorula mucilaginosa, which are capable of long-term preservation in an inactive state. The direct source of epiphytic yeasts occurring in the house dust might be the indoor plants, which were contaminated with these yeasts, albeit to a lesser degree than outdoor plants. Along with the typical epiphytic yeasts, the house dust contained the opportunistic yeast pathogens Candida catenulata, C. guillermondii, C. haemulonii, C. rugosa, and C. tropicalis, which are known as the causal agents of candidiasis. We failed to reveal any correlation between the abundance of particular yeast species in the house dust, residential characteristics, and the atopic dermatitis of the inhabitants.

  9. Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing

    NASA Astrophysics Data System (ADS)

    Parajuli, Sagar Prasad; Yang, Zong-Liang; Kocurek, Gary

    2014-09-01

    Mineral dust in the atmosphere has implications for Earth's radiation budget, biogeochemical cycles, hydrological cycles, human health, and visibility. Currently, the simulated vertical mass flux of dust differs greatly among the existing dust models. While most of the models utilize an erodibility factor to characterize dust sources, this factor is assumed to be static, without sufficient characterization of the highly heterogeneous and dynamic nature of dust source regions. We present a high-resolution land cover map of the Middle East and North Africa (MENA) in which the terrain is classified by visually examining satellite images obtained from Google Earth Professional and Environmental Systems Research Institute Basemap. We show that the correlation between surface wind speed and Moderate Resolution Imaging Spectroradiometer deep blue aerosol optical depth (AOD) can be used as a proxy for erodibility, which satisfactorily represents the spatiotemporal distribution of soil-derived dust sources. This method also identifies agricultural dust sources and eliminates the satellite-observed dust component that arises from long-range transport, pollution, and biomass burning. The erodible land cover of the MENA region is grouped into nine categories: (1) bedrock: with sediment, (2) sand deposit, (3) sand deposit: on bedrock, (4) sand deposit: stabilized, (5) agricultural and urban area, (6) fluvial system, (7) stony surface, (8) playa/sabkha, and (9) savanna/grassland. Our results indicate that erodibility is linked to the land cover type and has regional variation. An improved land cover map, which explicitly accounts for sediment supply, availability, and transport capacity, may be necessary to represent the highly dynamic nature of dust sources in climate models.

  10. Source analysis of radiocesium in river waters using road dust tracers.

    PubMed

    Murakami, Michio; Saha, Mahua; Iwasaki, Yuichi; Yamashita, Rei; Koibuchi, Yukio; Tsukada, Hirofumi; Takada, Hideshige; Sueki, Keisuke; Yasutaka, Tetsuo

    2017-11-01

    Following the Fukushima Dai-ichi Nuclear Power Station accident, regional road dust, heavily contaminated with radiocesium, now represents a potential source of radiocesium pollution in river water. To promote effective countermeasures for reducing the risk from radiocesium pollution, it is important to understand its sources. This study evaluated the utility of metals, including Al, Fe, and Zn as road dust tracers, and applied them to analyze sources of 137 Cs in rivers around Fukushima during wet weather. Concentrations of Zn in road dust were higher than agricultural and forest soils, whereas concentrations of Fe and Al were the opposite. Concentrations of Zn were weakly but significantly correlated with benzothiazole, a molecular marker of tires, indicating Zn represents an effective tracer of road dust. Al, Fe, and Zn were frequently detected in suspended solids in river water during wet weather. Distribution coefficients of these metals and 137 Cs exceeded 10 4 , suggesting sorptive behavior in water. Although concentrations of Al, Fe, Zn, and 137 Cs were higher in fine fractions of road dust and soils than in coarse fractions, use of ratios of 137 Cs to Al, Fe, or Zn showed smaller differences among size fractions. The results demonstrate that combinations of these metals and 137 Cs are useful for analyzing sources of radiocesium in water. These ratios in river water during wet weather were found to be comparable with or lower than during dry weather and were closer to soils than road dust, suggesting a limited contribution from road dust to radiocesium pollution in river water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Paracas dust storms: Sources, trajectories and associated meteorological conditions

    NASA Astrophysics Data System (ADS)

    Briceño-Zuluaga, F.; Castagna, A.; Rutllant, J. A.; Flores-Aqueveque, V.; Caquineau, S.; Sifeddine, A.; Velazco, F.; Gutierrez, D.; Cardich, J.

    2017-09-01

    Dust storms that develop along the Pisco-Ica desert in Southern Peru, locally known as ;Paracas; winds have ecological, health and economic repercussions. Here we identify dust sources through MODIS (Moderate Resolution Imaging Spectroradiometer) imagery and analyze HYSPLIT (Hybrid Single Particles Lagrangian Integrated Trajectory) model trajectories and dispersion patterns, along with concomitant synoptic-scale meteorological conditions from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis (NCEP/NCAR). Additionally, surface pressure data from the hourly METeorological Aerodrome Report (METAR) at Arica (18.5°S, 70.3°W) and Pisco (13.7°S, 76.2°W) were used to calculate Alongshore (sea-level) Pressure Gradient (APG) anomalies during Paracas dust storms, their duration and associated wind-speeds and wind directions. This study provides a review on the occurrence and strength of the Paracas dust storms as reported in the Pisco airfield for five-year period and their correspondence with MODIS true-color imagery in terms of dust-emission source areas. Our results show that most of the particle fluxes moving into the Ica-Pisco desert area during Paracas wind events originate over the coastal zone, where strong winds forced by steep APGs develop as the axis of a deep mid-troposphere trough sets in along north-central Chile. Direct relationships between Paracas wind intensity, number of active dust-emission sources and APGs are also documented, although the scarcity of simultaneous METAR/MODIS data for clearly observed MODIS dust plumes prevents any significant statistical inference. Synoptic-scale meteorological composites from NCEP/NCAR reanalysis data show that Paracas wind events (steep APGs) are mostly associated with the strengthening of anticyclonic conditions in northern Chile, that can be attributed to cold air advection associated with the incoming trough. Compared to the MODIS images, HYSPLIT outputs were able

  12. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    NASA Astrophysics Data System (ADS)

    Papayannis, A.; Mamouri, R. E.; Amiridis, V.; Remoundaki, E.; Tsaknakis, G.; Kokkalis, P.; Veselovskii, I.; Kolgotin, A.; Nenes, A.; Fountoukis, C.

    2012-05-01

    A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E) between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients) properties of aerosols in the troposphere. The aerosol optical depth (AOD) values derived from the CIMEL ranged from 0.33-0.91 (355 nm) to 0.18-0.60 (532 nm), while the lidar ratio (LR) values retrieved from the Raman lidar ranged within 75-100 sr (355 nm) and 45-75 sr (532 nm). Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532) and Ångström-extinction-related (AER355/532) were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively), indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index) inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10) + 0.007( ± 0.007)i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide a possible aerosol composition

  13. [Chemical Compositions and Sources Apportionment of Re-suspended Dust in Jincheng].

    PubMed

    Wang, Yan; Peng, Lin; Li, Li-juan; Zhang, Teng; Liu, Hai-li; Mu, Ling

    2016-01-15

    In order to make effective plan to provide the scientific basis for prevention and control of re-suspended dust (RD), samples of particulate sources including RD and other pollution sources of Jincheng were collected. Elements, ions and carbon in particulate sources were analyzed. Enrichment factor, potential ecological risk assessment, and chemical mass balance model were used to analyze the chemical composition and the source of RD. The result indicated that the main components in RD of Jingeheng were Si, TC, Ca, OC, Al, Mg, Na, Fe, K and SO4(2-), contributing 61.14% of total mass of RD. The most abundant content of RD was crustal elements, and the ions were enriched in the fine particles. The mass fraction of OC in PM2. was higher, whereas the mass fraction of EC in PM10 was higher, indicating that secondary organic pollutants were mainly dominated in the fine particles. The dust PM2.5 and PM10 potential ecological risk indexes were extremely strong, and PM2.5 had higher ecological harm than PM10. Pb had the highest enrichment factor of 196.97 in PM2.5, which was followed by As, Cr, Ni, V, Zn and Cu, the enrichment factors of which were all greater than 10, indicating that they were apparently enriched and affected by human activities. Soil dust, construction dust, vehicle exhaust, and coal dust were the main sources of RD.

  14. Investigations of Desert Dust and Smoke in the North Atlantic in Support of the TOMS Instrument

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    2005-01-01

    During the initial period of the work we concentrated on Saharan dust storms and published a sequence of papers (Colarco et a1 2002,2003a,b, Toon, 2004). The U.S. Air Force liked the dust model so well that they appropriated it for operational dust storm forecasting (Barnum et al., 2004). The Air Force has used it for about 5 yrs in the Middle East where dust storms cause significant operational problems. The student working on this project, Peter Colarco, has graduated and is now a civil servant at Goddard where he continues to interact with the TOMS team. This work helped constrain the optical properties of dust at TOMS wavelengths, which is useful for climate simulations and for TOMS retrievals of dust properties such as optical depth. We also used TOMS data to constrain the sources of dust in Africa and the Middle East, to determine the actual paths taken by Saharan dust storms, to learn more about the mechanics of variations in the optical depths, and to learn more about the mechanisms controlling the altitudes of the dust. During the last two years we have been working on smoke from fires. Black carbon aerosols are one of the leading factors in radiative forcing. The US Climate Change Science Program calls this area out for specific study. It has been suggested by Jim Hansen, and Mark Jacobsen among others, that by controlling emissions of black carbon we might reduce greenhouse radiative forcing in a relatively painless manner. However, we need a greatly improved understanding of the amount of black carbon in the atmosphere, where it is located, where it comes from, how it is mixed with other particles, what its actual optical properties are, and how it evolves. In order to learn about these issues we are using a numerical model of smoke. We have applied this model to the SAFARI field program data, and used the TOMS satellite observations in that period (Sept. 2000). Our goal is to constrain source function estimates for black carbon, and smoke optical

  15. African Dust Blows over the Caribbean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shuttle astronauts frequently track Saharan dust storms as they blow from north Africa across the Atlantic Ocean. Dust palls blowing from Africa take about a week to cross the Atlantic. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The top photograph, a classic image showing African dust over the Caribbean, was taken at a time when few scientists had considered the possibility. The image was taken by Space Shuttle astronauts on July 11, 1994 (STS065-75-47). This photograph looks southwest over the northern edge of a large trans-Atlantic dust plume that blew off the Sahara desert in Africa. In this view, Caicos Island in the Bahamas and the mountainous spines of Haiti are partly obscured by the dust. Closer to the foreground, (about 26 degrees north latitude), the skies are clear. The lower photograph (STS105-723-7) was taken by Space Shuttle astronauts while docked to the International Space Station on August 19, 2001. The spacecraft is over the Atlantic Ocean at roughly 45oN, 60oW. The astronauts were looking obliquely to the south; the boundaries of the dust plumes can be traced visually by the abrupt change from clear to hazy atmosphere-the hazy line marks the northern edge of the dust pall near the Caribbean. Images provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  16. Monitoring of Saharan dust fallout on Crete and its contribution to soil formation

    NASA Astrophysics Data System (ADS)

    Nihlén, Tomas; Mattsson, Jan O.; Rapp, Anders; Gagaoudaki, Chrisoula; Kornaros, Georges; Papageorgiou, John

    1995-07-01

    A series of 6 dust traps was established in 1988 distributed over the island of Crete (Greece). Eolian dust has been collected in the traps each year and in each season during the 4years of investigation which is still going on. The mean deposition rate for the 6 stations and 4years was calculated as 21.3g m-2yr-1. Using the highest and lowest values, the deposition can be extrapolated to 6.6-21.4mm for 1000years, which is in agreement with other researchers' findings. The trapped dust shows a homogeneous grain-size distribution. Its mineralogy is similar to what characterizes soil samples from Psiloritis on Crete and source areas in southern Tunisia. In the fine fraction of the soil (particles < 10µm), the contents of the clay mineral kaolinite and of quartz are high. In addition, the oxygen isotope composition of the 3 types of substrate is similar but differs from the weathering products of the limestone bedrock. Statistics of dust episodes covering the period c. 1955-1990 from 10 meteorological stations in Greece revealed that long-distance transport of dust in combination with winds from a southerly sector is common in the Aegean area during spring.

  17. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor.

    PubMed

    Moreno, Teresa; Querol, Xavier; Castillo, Sonia; Alastuey, Andrés; Cuevas, Emilio; Herrmann, Ludger; Mounkaila, Mohammed; Elvira, Josep; Gibbons, Wes

    2006-10-01

    The Sahara-Sahel Dust Corridor runs from Chad to Mauritania and expels huge amounts of mineral aerosols into the Atlantic Ocean. Data on samples collected from Algeria, Chad, Niger, and Western Sahara illustrate how corridor dust mineralogy and chemistry relate to geological source and weathering/transport history. Dusts sourced directly from igneous and metamorphic massifs are geochemically immature, retaining soluble cations (e.g., K, Na, Rb, Sr) and accessory minerals containing HFSE (e.g., Zr, Hf, U, Th) and REE. In contrast, silicate dust chemistry in desert basins (e.g., Bodélé Depression) is influenced by a longer history of transport, physical winnowing (e.g., loss of Zr, Hf, Th), chemical leaching (e.g., loss of Na, K, Rb), and mixing with intrabasinal materials such as diatoms and evaporitic salts. Mineral aerosols blown along the corridor by the winter Harmattan winds mix these basinal and basement materials. Dusts blown into the corridor from sub-Saharan Africa during the summer monsoon source from deeply chemically weathered terrains and are therefore likely to be more kaolinitic and stripped of mobile elements (e.g., Na, K, Mg, Ca, LILE), but retain immobile and resistant elements (e.g., Zr, Hf, REE). Finally, dusts blown southwestwards into the corridor from along the Atlantic Coastal Basin will be enriched in carbonate from Mesozoic-Cenozoic marine limestones, depleted in Th, Nb, and Ta, and locally contaminated by uranium-bearing phosphate deposits.

  18. Physical and Chemical Characteristics of Desert Dust Deposited on Mt. Elbrus, Caucasus as Documented in Snow Pit and Shallow Core Records

    NASA Astrophysics Data System (ADS)

    Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Popov, G.

    2013-12-01

    We present a study of dust deposition events and its physical and chemical characteristics in Caucasus Mountains as documented by snow and firn pack at Mt Elbrus. Dust samples were collected from the shallow ice cores and snow pits in 2009-2013 at the western Elbrus plateau (5150 m a.s.l.). Particle size distribution and chemical analysis (major ions, trace elements) were completed for each sample using Coulter Counter Multisizer III, scanning electron microscopy (SEM), IC and ICPMS analysis. It was shown that desert dust deposition occurred in Caucasus 4-8 times a year and originates from the Northern Sahara and the deserts of the Middle East. Analysis of volumetric particle size distributions showed that the modal values ranged between 2 μm and 4 μm although most samples were characterised by modal values of 2.0-2.8 μm with an average of 2.6 μm. These values are lower than those obtained from the ice cores in central and southern Asia following the deposition of long-travelled dust and are closer to those reported for the European Alps and the polar ice cores. All samples containing dust have a single mode which is usually interpreted as a single source region. They do not reveal any significant differences between the Saharan and the Middle Eastern sources. The annual average dust mass concentrations were 10-15 mg kg-1 which is higher than the average concentrations reported for other mountain regions and this was strongly affected by dust deposition events. The deposition of dust resulted in elevated concentrations of most ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from multiple sources in the Middle East including Mesopotamia or passing over the Middle East was characterised by the elevated concentrations of nitrates and ammonia which is related to a high atmospheric loads of ammonium emitted by agricultural sources and high concentrations of ammonium in dust originating from this region. By contrast, samples of the Saharan dust showed

  19. Profiling of Saharan dust from the Caribbean to western Africa - Part 1: Layering structures and optical properties from shipborne polarization/Raman lidar observations

    NASA Astrophysics Data System (ADS)

    Rittmeister, Franziska; Ansmann, Albert; Engelmann, Ronny; Skupin, Annett; Baars, Holger; Kanitz, Thomas; Kinne, Stefan

    2017-11-01

    We present final and quality-assured results of multiwavelength polarization/Raman lidar observations of the Saharan air layer (SAL) over the tropical Atlantic. Observations were performed aboard the German research vessel R/V Meteor during the 1-month transatlantic cruise from Guadeloupe to Cabo Verde over 4500 km from 61.5 to 20° W at 14-15° N in April-May 2013. First results of the shipborne lidar measurements, conducted in the framework of SALTRACE (Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment), were reported by Kanitz et al.(2014). Here, we present four observational cases representing key stages of the SAL evolution between Africa and the Caribbean in detail in terms of layering structures and optical properties of the mixture of predominantly dust and aged smoke in the SAL. We discuss to what extent the lidar results confirm the validity of the SAL conceptual model which describes the dust long-range transport and removal processes over the tropical Atlantic. Our observations of a clean marine aerosol layer (MAL, layer from the surface to the SAL base) confirm the conceptual model and suggest that the removal of dust from the MAL, below the SAL, is very efficient. However, the removal of dust from the SAL assumed in the conceptual model to be caused by gravitational settling in combination with large-scale subsidence is weaker than expected. To explain the observed homogenous (height-independent) dust optical properties from the SAL base to the SAL top, from the African coast to the Caribbean, we have to assume that the particle sedimentation strength is reduced and dust vertical mixing and upward transport mechanisms must be active in the SAL. Based on lidar observations on 20 nights at different longitudes in May 2013, we found, on average, MAL and SAL layer mean values (at 532 nm) of the extinction-to-backscatter ratio (lidar ratio) of 17±5 sr (MAL) and 43±8 sr (SAL), of the particle linear depolarization ratio of 0

  20. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean

    DOE PAGES

    Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; ...

    2015-07-09

    Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOTmore » asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS cloud fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant cloud cover (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.« less

  1. The southern Kalahari as a dust source: preliminary results from the field

    USDA-ARS?s Scientific Manuscript database

    The Kalahari encompasses one of the largest drylands in the Southern Hemisphere and it is a potentially large source of atmospheric dust in its relatively low-dust region. The severe iron depletion in the southern Indian and Atlantic Oceans, the ocean basins that receive much of the Kalahari dust, ...

  2. AERONET-Based Nonspherical Dust Optical Models and Effects on the VIIRS Deep Blue/SOAR Over Water Aerosol Product

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Hsu, N. Christina; Sayer, Andrew M.; Bettenhausen, Corey; Yang, Ping

    2017-10-01

    Aerosol Robotic Network (AERONET)-based nonspherical dust optical models are developed and applied to the Satellite Ocean Aerosol Retrieval (SOAR) algorithm as part of the Version 1 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA "Deep Blue" aerosol data product suite. The optical models are created using Version 2 AERONET inversion data at six distinct sites influenced frequently by dust aerosols from different source regions. The same spheroid shape distribution as used in the AERONET inversion algorithm is assumed to account for the nonspherical characteristics of mineral dust, which ensures the consistency between the bulk scattering properties of the developed optical models and the AERONET-retrieved microphysical and optical properties. For the Version 1 SOAR aerosol product, the dust optical model representative for Capo Verde site is used, considering the strong influence of Saharan dust over the global ocean in terms of amount and spatial coverage. Comparisons of the VIIRS-retrieved aerosol optical properties against AERONET direct-Sun observations at five island/coastal sites suggest that the use of nonspherical dust optical models significantly improves the retrievals of aerosol optical depth (AOD) and Ångström exponent by mitigating the well-known artifact of scattering angle dependence of the variables, which is observed when incorrectly assuming spherical dust. The resulting removal of these artifacts results in a more natural spatial pattern of AOD along the transport path of Saharan dust to the Atlantic Ocean; that is, AOD decreases with increasing distance transported, whereas the spherical assumption leads to a strong wave pattern due to the spurious scattering angle dependence of AOD.

  3. Advances in Mineral Dust Source Composition Measurement with Imaging Spectroscopy at the Salton Sea, CA

    NASA Astrophysics Data System (ADS)

    Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.

    2015-12-01

    Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.

  4. Integrated spatiotemporal characterization of dust sources and outbreaks in Central and East Asia

    NASA Astrophysics Data System (ADS)

    Darmenova, Kremena T.

    The potential of atmospheric dust aerosols to modify the Earth's environment and climate has been recognized for some time. However, predicting the diverse impact of dust has several significant challenges. One is to quantify the complex spatial and temporal variability of dust burden in the atmosphere. Another is to quantify the fraction of dust originating from human-made sources. This thesis focuses on the spatiotemporal characterization of sources and dust outbreaks in Central and East Asia by integrating ground-based data, satellite multisensor observations, and modeling. A new regional dust modeling system capable of operating over a span of scales was developed. The modeling system consists of a dust module DuMo, which incorporates several dust emission schemes of different complexity, and the PSU/NCAR mesoscale model MM5, which offers a variety of physical parameterizations and flexible nesting capability. The modeling system was used to perform for the first time a comprehensive study of the timing, duration, and intensity of individual dust events in Central and East Asia. Determining the uncertainties caused by the choice of model physics, especially the boundary layer parameterization, and the dust production scheme was the focus of our study. Implications to assessments of the anthropogenic dust fraction in these regions were also addressed. Focusing on Spring 2001, an analysis of routine surface meteorological observations and satellite multi-sensor data was carried out in conjunction with modeling to determine the extent to which integrated data set can be used to characterize the spatiotemporal distribution of dust plumes at a range of temporal scales, addressing the active dust sources in China and Mongolia, mid-range transport and trans-Pacific, long-range transport of dust outbreaks on a case-by-case basis. This work demonstrates that adequate and consistent characterization of individual dust events is central to establishing a reliable

  5. Dust Storms and Mortality in the United States, 1995-2005

    EPA Science Inventory

    Extreme weather events, such as dust storms, are predicted to become more frequent as the global climate warms through the 21st century. The impact of dust storms on human health has been studied extensively in the context of Asian, Saharan, Arabian, and Australian storms, but t...

  6. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    NASA Astrophysics Data System (ADS)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending

  7. Anthropogenic- and natural sources of dust in peatland during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Fiałkiewicz-Kozieł, B.; Smieja-Król, B.; Frontasyeva, M.; Słowiński, M.; Marcisz, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Jassey, V. E. J.; Kaliszan, K.; Laggoun-Défarge, F.; Kołaczek, P.; Lamentowicz, M.

    2016-12-01

    As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch - the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of mullite in the peat.

  8. Anthropogenic- and natural sources of dust in peatland during the Anthropocene

    PubMed Central

    Fiałkiewicz-Kozieł, B.; Smieja-Król, B.; Frontasyeva, M.; Słowiński, M.; Marcisz, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Jassey, V. E. J.; Kaliszan, K.; Laggoun-Défarge, F.; Kołaczek, P.; Lamentowicz, M.

    2016-01-01

    As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch - the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of mullite in the peat. PMID:27995953

  9. Anthropogenic- and natural sources of dust in peatland during the Anthropocene.

    PubMed

    Fiałkiewicz-Kozieł, B; Smieja-Król, B; Frontasyeva, M; Słowiński, M; Marcisz, K; Lapshina, E; Gilbert, D; Buttler, A; Jassey, V E J; Kaliszan, K; Laggoun-Défarge, F; Kołaczek, P; Lamentowicz, M

    2016-12-20

    As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch - the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of mullite in the peat.

  10. Directional Unfolded Source Term (DUST) for Compton Cameras.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Horne, Steven M.; O'Brien, Sean

    2018-03-01

    A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

  11. Dust Storm over the Middle East: Retrieval Approach, Source Identification, and Trend Analysis

    NASA Astrophysics Data System (ADS)

    Moridnejad, A.; Karimi, N.; Ariya, P. A.

    2014-12-01

    The Middle East region has been considered to be responsible for approximately 25% of the Earth's global emissions of dust particles. By developing Middle East Dust Index (MEDI) and applying to 70 dust storms characterized on MODIS images and occurred during the period between 2001 and 2012, we herein present a new high resolution mapping of major atmospheric dust source points participating in this region. To assist environmental managers and decision maker in taking proper and prioritized measures, we then categorize identified sources in terms of intensity based on extracted indices for Deep Blue algorithm and also utilize frequency of occurrence approach to find the sensitive sources. In next step, by implementing the spectral mixture analysis on the Landsat TM images (1984 and 2012), a novel desertification map will be presented. The aim is to understand how human perturbations and land-use change have influenced the dust storm points in the region. Preliminary results of this study indicate for the first time that c.a., 39 % of all detected source points are located in this newly anthropogenically desertified area. A large number of low frequency sources are located within or close to the newly desertified areas. These severely desertified regions require immediate concern at a global scale. During next 6 months, further research will be performed to confirm these preliminary results.

  12. Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean

    NASA Astrophysics Data System (ADS)

    Ealo, Marina; Alastuey, Andrés; Ripoll, Anna; Pérez, Noemí; Cruz Minguillón, María; Querol, Xavier; Pandolfi, Marco

    2016-10-01

    The study of Saharan dust events (SDEs) and biomass burning (BB) emissions are both topics of great scientific interest since they are frequent and important polluting scenarios affecting air quality and climate. The main aim of this work is evaluating the feasibility of using near-real-time in situ aerosol optical measurements for the detection of these atmospheric events in the western Mediterranean Basin (WMB). With this aim, intensive aerosol optical properties (SAE: scattering Ångström exponent, AAE: absorption Ångström exponent, SSAAE: single scattering albedo Ångström exponent and g: asymmetry parameter) were derived from multi-wavelength aerosol light scattering, hemispheric backscattering and absorption measurements performed at regional (Montseny; MSY, 720 m a.s.l.) and continental (Montsec; MSA, 1570 m a.s.l.) background sites in the WMB. A sensitivity study aiming at calibrating the measured intensive optical properties for SDEs and BB detection is presented and discussed. The detection of SDEs by means of the SSAAE parameter and Ångström matrix (made up by SAE and AAE) depended on the altitude of the measurement station and on SDE intensity. At MSA (mountain-top site) SSAAE detected around 85 % of SDEs compared with 50 % at the MSY station, where pollution episodes dominated by fine anthropogenic particles frequently masked the effect of mineral dust on optical properties during less intense SDEs. Furthermore, an interesting feature of SSAAE was its capability to detect the presence of mineral dust after the end of SDEs. Thus, resuspension processes driven by summer regional atmospheric circulations and dry conditions after SDEs favoured the accumulation of mineral dust at regional level having important consequences for air quality. On average, SAE, AAE and g ranged between -0.7 and 1, 1.3 and 2.5 and 0.5 and 0.75 respectively during SDEs. Based on the aethalometer model, BB contribution to equivalent black carbon (BC) accounted for 36 and 40

  13. Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.

    2005-03-01

    . Moreover, some model assumptions on dust sources and particle size and the accuracy of model-simulated meteorological parameters are also likely to affect the dust forecast quality.

  14. CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM10

    NASA Astrophysics Data System (ADS)

    Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Custódio, D.; Cerqueira, M.; Patoilo, D.; Almeida, S. M.; Freitas, M. C.

    2012-04-01

    Every year, billions of tons of eroded mineral soils from the Saharan Desert and the Sahel region, the largest dust source in the world, cross Mediterranean towards Europe, western Asia and the tropical North Atlantic Ocean as far as the Caribbean and South America. Many aspects of the direct and indirect effects of dust on climate are not well understood and the bulk and surface chemistry of the mineral dust particles determines interactions with gaseous and other particle species. The quantification of the magnitude of warming or cooling remains open because of the strong variability of the atmospheric dust burden and the lack of representative data for the spatial and temporal distribution of the dust composition. CV-Dust is a project that aims at provide a detailed data on the size distribution and the size-resolved chemical and mineralogical composition of dust emitted from North Africa using a natural laboratory like Cape Verde. This archipelago is located in an area of massive dust transport from land to ocean, and is thus ideal to set up sampling devices that are able to characterize and quantify dust transported from Africa. Moreover, Cape Verde's future economic prospects depend heavily on the encouragement of tourism, therefore it is essential to elucidate the role of Saharan dust may play in the degradation of Cape Verde air quality. The main objectives of CV-Dust project are: 1) to characterize the chemical and mineralogical composition of dust transported from Africa by setting up an orchestra of aerosol sampling devices in the strategic archipelago of Cape Verde; 2) to identify the sources of particles in Cape Verde by using receptor models; 3) to elucidate the role Saharan dust may play in the degradation of Cape Verde air quality; 4) to model processes governing dust production, transport, interaction with the radiation field and removal from the atmosphere. Here we present part of the data obtained throughout the last year, involving a set of more

  15. Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.

    2002-12-01

    An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.

  16. Dust Storms in the United States are Associated with Increased Cardiovascular Mortality

    EPA Science Inventory

    Background: Extreme weather events such as dust storms are predicted to become more frequent as the global climate warms through the 21st century. Studies of Asian, Saharan, Arabian, and Australian dust storms have found associations with cardiovascular and total non-accidental...

  17. Applying geochemical signatures of atmospheric dust to distinguish current mine emissions from legacy sources

    NASA Astrophysics Data System (ADS)

    Dong, Chenyin; Taylor, Mark Patrick

    2017-07-01

    Resolving the source of environmental contamination is the critical first step in remediation and exposure prevention. Australia's oldest silver-zinc-lead mine at Broken Hill (>130 years old) has generated a legacy of contamination and is associated with persistent elevated childhood blood lead (Pb) levels. However, the source of environmental Pb remains in dispute: current mine emissions; remobilized mine-legacy lead in soils and dusts; and natural lead from geological weathering of the gossan ore body. Multiple lines of evidence used to resolve this conundrum at Broken Hill include spatial and temporal variations in dust Pb concentrations and bioaccessibility, Pb isotopic compositions, particle morphology and mineralogy. Total dust Pb loading (mean 255 μg/m2/day) and its bioaccessibility (mean 75% of total Pb) is greatest adjacent to the active mining operations. Unweathered galena (PbS) found in contemporary dust deposits contrast markedly to Pb-bearing particles from mine-tailings and weathered gossan samples. Contemporary dust particles were more angular, had higher sulfur content and had little or no iron and manganese. Dust adjacent to the mine has Pb isotopic compositions (208Pb/207Pb: 2.3197; 206Pb/207Pb: 1.0406) that are a close match (99%) to the ore body with values slightly lower (94%) at the edge of the city. The weight of evidence supports the conclusion that contemporary dust Pb contamination in Broken Hill is sourced primarily from current mining activities and not from weathering or legacy sources.

  18. Dust-Metal Sources in an Urbanized Arid Zone: Implications for Health-Risk Assessments.

    PubMed

    García-Rico, Leticia; Meza-Figueroa, Diana; Gandolfi, A Jay; Del Río-Salas, Rafael; Romero, Francisco M; Meza-Montenegro, Maria Mercedes

    2016-04-01

    The available information concerning metal pollution in different dust sources and the health effects in children remains limited in Mexico. This study focuses on Hermosillo, which is an urbanized area located in the Sonoran Desert in which soil resuspension and dust emission processes are common. The metal content of arsenic (As), chromium (Cr), manganese (Mn), and lead (Pb) were determined in three dust sources (playgrounds, roofs, and roads), each representing different exposure media (EM) for these elements. The metal levels in dust were found in the order of Mn > Cr > Pb > As with the highest metal content found in road dust. Despite the similar average metal distributions, principal component analysis shows a clear separation of the three EM with playground dust related to Cr and Mn and road dust to As and Pb. However, the geoaccumulation index results indicate that dust samples are uncontaminated to moderately polluted, except for Pb in road dust, which is considerably high. In addition, the enrichment factor suggests an anthropogenic origin for all of the studied metals except for Mn. In this context, the hazard index (HI) for noncarcinogenic risk is >1 in this population and thus represents a potential health risk. The spatial distribution for each metal on EM and the HI related to the marginality index could represent a more accurate decision-making tool in risk assessment studies.

  19. Longwave radiative effects of Saharan dust during the ICE-D campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie

    2017-04-01

    The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from Ice in Clouds Experiment - Dust (ICE-D) campaign. The ICE-D campaign occurred during August 2015 and was based from Cape Verde. The ICE-D campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. ICE-D encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean ICE-D size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2

  20. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S.

    PubMed

    Creamean, Jessie M; Suski, Kaitlyn J; Rosenfeld, Daniel; Cazorla, Alberto; DeMott, Paul J; Sullivan, Ryan C; White, Allen B; Ralph, F Martin; Minnis, Patrick; Comstock, Jennifer M; Tomlinson, Jason M; Prather, Kimberly A

    2013-03-29

    Winter storms in California's Sierra Nevada increase seasonal snowpack and provide critical water resources and hydropower for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation, whereas few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols probably serve as IN and play an important role in orographic precipitation processes over the western United States.

  1. Possible influence of dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Lohmann, Ulrike

    2014-05-01

    Tropical Cyclones (TCs) belong to the most extreme events in nature. In the past decade, the possible impact of dust on Atlantic hurricanes receives growing interest. As mineral dust is able to absorb incoming solar radiation and therefore warm the surrounding air, the presence of dust can lead to a reduction of sea surface temperature (SST) and an increase in atmospheric stability. Furthermore, resulting baroclinic effects and the dry Saharan easterly jet lead to an enhanced vertical shear of the horizontal winds. SST, stability, moisture and vertical wind shear are known to potentially impact hurricane activity. But how Saharan dust influences these prerequisites for hurricane formation is not yet clear. Some dynamical mechanisms induced by the SAL might even strengthen hurricanes. An adequate framework for investigating the possible impact of dust on hurricanes is comparing high resolution simulations (~0.5°x0.5°, 31 vertical levels) with and without radiatively active dust aerosols. To accomplish this task, we are using the general circulation model ECHAM6 coupled to a modified version of the aerosol model HAM, ECHAM6-HAM-Dust. Instead of the five aerosol species HAM normally contains, the modified version takes only insoluble dust into account, but modifies the scavenging parameters in order to have a similar lifetime of dust as in the full ECHAM6-HAM. All remaining aerosols are prescribed. To evaluate the effects of dust on hurricanes, a TC detection and tracking method is applied on the results. ECHAM6-HAM-Dust was used in two configurations, one with radiatively active dust aerosols and one with dust being not radiatively active. For both set-ups, 10 Monte-Carlo simulations of the year 2005 were performed. A statistical method which identifies controlling parameters of hurricane genesis was applied on North Atlantic developing and non-developing disturbances in all simulations, comparing storms in the two sets of simulations. Hereby, dust can be assigned

  2. Sensitivity of surface characteristics on the simulation of wind-blown-dust source in North America

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Gong, S. L.; Gong, W.; Makar, P. A.; Moran, M. D.; Stroud, C. A.; Zhang, J.

    Recently, a wind-blown-dust-emission module has been built based on a state-of-the-art wind erosion theory and evaluated in a regional air-quality model to simulate a North American dust storm episode in April 2001 (see Park, S.H., Gong, S.L., Zhao, T.L., Vet, R.J., Bouchet, V.S., Gong, W., Makar, P.A., Moran, M.D., Stroud, C., Zhang, J. 2007. Simulation of entrainment and transport of dust particles within North America in April 2001 ("Red Dust episode"). J. Geophys. Res. 112, D20209, doi:10.1029/2007JD008443). A satisfactorily detailed assessment of that module, however, was not possible because of a lack of information on some module inputs, especially soil moisture content. In this paper, the wind-blown-dust emission was evaluated for two additional dust storms using improved soil moisture inputs. The surface characteristics of the wind-blown-dust source areas in southwestern North America were also investigated, focusing on their implications for wind-blown-dust emissions. The improved soil moisture inputs enabled the sensitivity of other important surface characteristics, the soil grain size distribution and the land-cover, to dust emission to be investigated with more confidence. Simulations of the two 2003 dust storm episodes suggested that wind-blown-dust emissions from the desert areas in southwestern North America are dominated by emissions from dry playas covered with accumulated alluvial deposits whose particle size is much smaller than usual desert sands. As well, the source areas in the northwestern Texas region were indicated to be not desert but rather agricultural lands that were "activated" as a wind-blown-dust sources after harvest. This finding calls for revisions to the current wind-blown-dust-emission module, in which "desert" is designated to be the only land-cover category that can emit wind-blown dust.

  3. Tracing geogenic and anthropogenic sources in urban dusts: Insights from lead isotopes

    NASA Astrophysics Data System (ADS)

    Del Rio-Salas, R.; Ruiz, J.; De la O-Villanueva, M.; Valencia-Moreno, M.; Moreno-Rodríguez, V.; Gómez-Alvarez, A.; Grijalva, T.; Mendivil, H.; Paz-Moreno, F.; Meza-Figueroa, D.

    2012-12-01

    Tracing the source of metals in the environment is critical to understanding their pollution level and fate. Geologic materials are an important source of airborne particulate matter, but the contribution of contaminated soil to concentrations of Pb in airborne dust is not yet widely documented. To examine the potential significance of this mechanism, surface soil samples were collected, as well as wind-transported dust trapped at 1 and 2 m height at seven different locations including residential, industrial, high-traffic and rural sites. Samples of dust deposited on roofs from 24 schools were also obtained and analyzed for Pb isotope ratios. Spatial distribution of Pb of airborne and sedimented dust suggests a process dominated by re-suspension/sedimentation, which was controlled by erosion, traffic and topography of the urban area. Anthropogenic lead input in the city grades outward the urban zone toward geogenic values. Our results shows that Pb-isotopic signatures of leaded gasoline are imprinted in dust sedimented on roofs. Considering that leaded-gasoline has not been in use in Mexico since two decades ago, this signature shows not only a Pb-legacy in soil, but also a re-suspension process affecting air column below 3 m in height. The combination of the 207Pb/206Pb data of the surrounding rocks and urban dust, reveal three well-defined zones with remarkable anthropogenic influence, which correspond to the oldest urban sectors. This work highlights the importance of spatial characterization of metals in particles suspended below a height of 3 m of the airborne column, a fact that should be considered to identify exposure paths to humans and the potential risks. Lead isotope signatures allowed the identification of geogenic and anthropogenic emission sources for dust, a matter that deserves consideration in the efforts to control airborne metal emissions.

  4. Enhancing weak transient signals in SEVIRI false colour imagery: application to dust source detection in southern Africa

    NASA Astrophysics Data System (ADS)

    Murray, Jon E.; Brindley, Helen E.; Bryant, Robert G.; Russell, Jacqui E.; Jenkins, Katherine F.

    2013-04-01

    Understanding the processes governing the availability and entrainment of mineral dust into the atmosphere requires dust sources to be identified and the evolution of dust events to be monitored. To achieve this aim a wide range of approaches have been developed utilising observations from a variety of different satellite sensors. Global maps of source regions and their relative strengths have been derived from instruments in low Earth orbit (e.g. Total Ozone Monitoring Spectrometer (TOMS) (Prospero et al., 2002), MODerate resolution Imaging Spectrometer (MODIS) (Ginoux et al., 2012)). Instruments such as MODIS can also be used to improve precise source location (Baddock et al., 2009) but the information available is restricted to the satellite overpass times which may not be coincident with active dust emission from the source. Hence, at a regional scale, some of the more successful approaches used to characterise the activity of different sources use high temporal resolution data available from instruments in geostationary orbit. For example, the widely used red-green-blue (RGB) dust scheme developed by Lensky and Rosenfeld (2008) (hereafter LR2008) makes use of observations from selected thermal channels of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) in a false colour rendering scheme in which dust appears pink. This scheme has provided the basis for numerous studies of north African dust sources and factors governing their activation (e.g. Schepanski et al., 2007, 2009, 2012). However, the LR2008 imagery can fail to identify dust events due to the effects of atmospheric moisture, variations in dust layer height and optical properties, and surface conditions (Brindley et al., 2012). Here we introduce a new method designed to circumvent some of these issues and enhance the signature of dust events using observations from SEVIRI. The approach involves the derivation of a composite clear-sky signal for selected channels on an individual time-step and

  5. The Evolution and Role of the Saharan Air Layer During Hurricane Helene (2006)

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Shie, Chung-Lin; Boller, Ryan A.

    2013-01-01

    The Saharan air layer (SAL) has received considerable attention in recent years as a potential negative influence on the formation and development of Atlantic tropical cyclones. Observations of substantial Saharan dust in the near environment of Hurricane Helene (2006) during the National Aeronautics and Space Administration (NASA) African Monsoon Multidisciplinary Activities (AMMA) Experiment (NAMMA) field campaign led to suggestions about the suppressing influence of the SAL in this case. In this study, a suite of satellite remote sensing data, global meteorological analyses, and airborne data are used to characterize the evolution of the SAL in the environment of Helene and assess its possible impact on the intensity of the storm. The influence of the SAL on Helene appears to be limited to the earliest stages of development, although the magnitude of that impact is difficult to determine observationally. Saharan dust was observed on the periphery of the storm during the first two days of development after genesis when intensification was slow. Much of the dust was observed to move well westward of the storm thereafter, with little SAL air present during the remainder of the storm's lifetime and with the storm gradually becoming a category-3 strength storm four days later. Dry air observed to wrap around the periphery of Helene was diagnosed to be primarily non-Saharan in origin (the result of subsidence) and appeared to have little impact on storm intensity. The eventual weakening of the storm is suggested to result from an eyewall replacement cycle and substantial reduction of the sea surface temperatures beneath the hurricane as its forward motion decreased.

  6. The Association between Dust Storms and Daily Non-Accidental Mortality in the United States, 1993-2005.

    EPA Science Inventory

    Background:The impact of dust storms on human health has been studied in the context of Asian,Saharan, Arabian, and Australian storms,but there has been no recent population-level epidemiological research on the dust storms in North America . The relevance of dust storms to publi...

  7. High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom

    PubMed Central

    Shoenfelt, Elizabeth M.; Sun, Jing; Winckler, Gisela; Kaplan, Michael R.; Borunda, Alejandra L.; Farrell, Kayla R.; Moreno, Patricio I.; Gaiero, Diego M.; Recasens, Cristina; Sambrotto, Raymond N.; Bostick, Benjamin C.

    2017-01-01

    Little is known about the bioavailability of iron (Fe) in natural dusts and the impact of dust mineralogy on Fe utilization by photosynthetic organisms. Variation in the supply of bioavailable Fe to the ocean has the potential to influence the global carbon cycle by modulating primary production in the Southern Ocean. Much of the dust deposited across the Southern Ocean is sourced from South America, particularly Patagonia, where the waxing and waning of past and present glaciers generate fresh glaciogenic material that contrasts with aged and chemically weathered nonglaciogenic sediments. We show that these two potential sources of modern-day dust are mineralogically distinct, where glaciogenic dust sources contain mostly Fe(II)-rich primary silicate minerals, and nearby nonglaciogenic dust sources contain mostly Fe(III)-rich oxyhydroxide and Fe(III) silicate weathering products. In laboratory culture experiments, Phaeodactylum tricornutum, a well-studied coastal model diatom, grows more rapidly, and with higher photosynthetic efficiency, with input of glaciogenic particulates compared to that of nonglaciogenic particulates due to these differences in Fe mineralogy. Monod nutrient accessibility models fit to our data suggest that particulate Fe(II) content, rather than abiotic solubility, controls the Fe bioavailability in our Fe fertilization experiments. Thus, it is possible for this diatom to access particulate Fe in dusts by another mechanism besides uptake of unchelated Fe (Fe′) dissolved from particles into the bulk solution. If this capability is widespread in the Southern Ocean, then dusts deposited to the Southern Ocean in cold glacial periods are likely more bioavailable than those deposited in warm interglacial periods. PMID:28691098

  8. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    PubMed

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks. © 2013 John Wiley & Sons Ltd.

  9. Dust: a metric for use in residential and building exposure assessment and source characterization.

    PubMed Central

    Lioy, Paul J; Freeman, Natalie C G; Millette, James R

    2002-01-01

    In this review, we examine house dust and residential soil and their use for identifying sources and the quantifying levels of toxicants for the estimation of exposure. We answer critical questions that focus on the selection of samples or sampling strategies for collection and discuss areas of uncertainty and gaps in knowledge. We discuss the evolution of dust sampling with a special emphasis on work conducted after the publication of the 1992 review by McArthur [Appl Occup Environ Hyg 7(9):599-606 (1992)]. The approaches to sampling dust examined include surface wipe sampling, vacuum sampling, and other sampling approaches, including attic sampling. The metrics of presentation of results for toxicants in dust surface loading (micrograms per square centimeter) or surface concentration (micrograms per gram) are discussed. We evaluate these metrics in terms of how the information can be used in source characterization and in exposure characterization. We discuss the types of companion information on source use and household or personal activity patterns required to assess the significance of the dust exposure. The status and needs for wipe samplers, surface samplers, and vacuum samplers are summarized with some discussion on the strengths and weaknesses of each type of sampler. We also discuss needs for research and development and the current status of standardization. Case studies are provided to illustrate the use of house dust and residential soil in source characterization, forensic analyses, or human exposure assessment. PMID:12361921

  10. Dust: a metric for use in residential and building exposure assessment and source characterization.

    PubMed

    Lioy, Paul J; Freeman, Natalie C G; Millette, James R

    2002-10-01

    In this review, we examine house dust and residential soil and their use for identifying sources and the quantifying levels of toxicants for the estimation of exposure. We answer critical questions that focus on the selection of samples or sampling strategies for collection and discuss areas of uncertainty and gaps in knowledge. We discuss the evolution of dust sampling with a special emphasis on work conducted after the publication of the 1992 review by McArthur [Appl Occup Environ Hyg 7(9):599-606 (1992)]. The approaches to sampling dust examined include surface wipe sampling, vacuum sampling, and other sampling approaches, including attic sampling. The metrics of presentation of results for toxicants in dust surface loading (micrograms per square centimeter) or surface concentration (micrograms per gram) are discussed. We evaluate these metrics in terms of how the information can be used in source characterization and in exposure characterization. We discuss the types of companion information on source use and household or personal activity patterns required to assess the significance of the dust exposure. The status and needs for wipe samplers, surface samplers, and vacuum samplers are summarized with some discussion on the strengths and weaknesses of each type of sampler. We also discuss needs for research and development and the current status of standardization. Case studies are provided to illustrate the use of house dust and residential soil in source characterization, forensic analyses, or human exposure assessment.

  11. Observation of Dust Aging Processes During Transport from Africa into the Caribbean - A Lagrangian Case Study

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Walser, A.; Dollner, M.; Reitebuch, O.; Gross, S.; Chouza, F.; Ansmann, A.; Toledano, C.; Freudenthaler, V.; Kandler, K.; Schäfler, A.; Baumann, R.; Tegen, I.; Heinold, B.

    2014-12-01

    Aerosol particles are regularly transported over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. During transport, particle properties are modified thereby changing the associated impact on the radiation budget. Although mineral dust is of key importance for the climate system many questions such as the change of the dust size distribution during long-range transport, the role of wet and dry removal mechanisms, and the complex interaction between mineral dust and clouds remain open. In June/July 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace) was conducted to study the transport and transformation of Saharan mineral dust. Besides ground-based lidar and in-situ instruments deployed on Cape Verde, Barbados and Puerto Rico, the DLR research aircraft Falcon was equipped with an extended aerosol in-situ instrumentation, a nadir-looking 2-μm wind lidar and instruments for standard meteorological parameters. During SALTRACE, five large dust outbreaks were studied by ground-based, airborne and satellite measurements between Senegal, Cape Verde, the Caribbean, and Florida. Highlights included the Lagrangian sampling of a dust plume in the Cape Verde area on 17 June which was again measured with the same instrumentation on 21 and 22 June 2013 near Barbados. Between Cape Verde and Barbados, the aerosol optical thickness (500 nm) decreased from 0.54 to 0.26 and the stratification of the dust layers changed significantly from a rather homogenous structure near Africa to a 3-layer structure with embedded cumulus clouds in the Caribbean. In the upper part of the dust layers in the Caribbean, the aerosol properties were similar to the observations near Africa. In contrast, much more variability in the dust properties was observed between 0.7 and 2.5 km altitude probably due to interaction of the mineral dust with clouds. In our

  12. An Israeli haboob: Sea breeze activating local anthropogenic dust sources in the Negev loess

    NASA Astrophysics Data System (ADS)

    Crouvi, Onn; Dayan, Uri; Amit, Rivka; Enzel, Yehouda

    2017-02-01

    Meso-scale weather systems, such as convective haboobs, are considered to be an important dust generation mechanism. In Israel, however, rather than of meso-scale weather systems, most dust storms are generated by synoptic-scale systems, originating from Sahara and Arabia. Consequently, only distal sources of suspended and deposited dust in Israel are currently reported. Here we report the first detailed study on the merging of synoptic- and meso-scale weather systems leading to a prominent dust outbreak over the Negev, Israel. During the afternoon of May 2nd, 2007, a massive dust storm covered the northern Negev, forming a one kilometer high wall of dust. The haboob was associated with PM10 concentrations of 1000-1500 μg m-3 that advanced at a speed of 10-15 m s-1 and caused temporary closure of local airports. In contrast to most reported haboobs, this one was generated by a sea breeze front acting as a weak cold front enhanced by a cold core cyclone positioned over Libya and Egypt. The sea breeze that brought cold and moist marine air acted as a gravity current with strong surface winds. The sources for the haboob were the loessial soils of the northwestern Negev, especially agricultural fields that were highly disturbed in late spring to early summer. Such surface disturbance is caused by agricultural and/or intensive grazing practices. Our study emphasizes the importance of local dust sources in the Negev and stresses loess recycling as an important process in contemporary dust storms over Israel.

  13. A new false color composite technique for dust enhancement and point source determination in Middle East

    NASA Astrophysics Data System (ADS)

    Karimi, Khadijeh; Taheri Shahraiyni, Hamid; Habibi Nokhandan, Majid; Hafezi Moghaddas, Naser; Sanaeifar, Melika

    2011-11-01

    The dust storm happens in the Middle East with very high frequency. According to the dust storm effects, it is vital to study on the dust storms in the Middle East. The first step toward the study on dust storm is the enhancement of dust storms and determination of the point sources. In this paper, a new false color composite (FCC) map for the dust storm enhancement and point sources determination in the Middle East has been developed. The 28 Terra-MODIS images in 2008 and 2009 were utilized in this study. We tried to replace the Red, Green and Blue bands in RGB maps with the bands or maps that enhance the dust storms. Hence, famous indices for dust storm detection (NDDI, D and BTD) were generated using the different bands of MODIS images. These indices with some bands of MODIS were utilized for FCC map generation with different combinations. Among the different combinations, four better FCC maps were selected and these four FCC are compared using visual interpretation. The results of visual interpretations showed that the best FCC map for enhancement of dust storm in the middle east is an especial combination of the three indices (Red: D, Green: BTD and Blue: NDDI). Therefore, we utilized of this new FCC method for the enhancement of dust storms and determination of point sources in Middle East.

  14. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wen, Hui; Shi, Jinsen; Bi, Jianrong; Huang, Zhongwei; Zhang, Beidou; Zhou, Tian; Fu, Kaiqi; Chen, Quanliang; Xin, Jinyuan

    2018-02-01

    Mineral dust aerosols (MDs) not only influence the climate by scattering and absorbing solar radiation but also modify cloud properties and change the ecosystem. From 3 April to 16 May 2014, a ground-based mobile laboratory was deployed to measure the optical and microphysical properties of MDs near dust source regions in Wuwei, Zhangye, and Dunhuang (in chronological order) along the Hexi Corridor over northwestern China. Throughout this dust campaign, the hourly averaged (±standard deviation) aerosol scattering coefficients (σsp, 550 nm) of the particulates with aerodynamic diameters less than 2.5 µm (PM2.5) at these three sites were sequentially 101.5 ± 36.8, 182.2 ± 433.1, and 54.0 ± 32.0 Mm-1. Correspondingly, the absorption coefficients (σap, 637 nm) were 9.7 ± 6.1, 6.0 ± 4.6, and 2.3 ± 0.9 Mm-1; single-scattering albedos (ω, 637 nm) were 0.902 ± 0.025, 0.931 ± 0.037, and 0.949 ± 0.020; and scattering Ångström exponents (Åsp, 450-700 nm) of PM2.5 were 1.28 ± 0.27, 0.77 ± 0.51, and 0.52 ± 0.31. During a severe dust storm in Zhangye (i.e., from 23 to 25 April), the highest values of σsp2.5 ( ˜ 5074 Mm-1), backscattering coefficient (σbsp2.5, ˜ 522 Mm-1), and ω637 ( ˜ 0.993) and the lowest values of backscattering fraction (b2.5, ˜ 0.101) at 550 nm and Åsp2.5 ( ˜ -0.046) at 450-700 nm, with peak values of aerosol number size distribution (appearing at the particle diameter range of 1-3 µm), exhibited that the atmospheric aerosols were dominated by coarse-mode dust aerosols. It is hypothesized that the relatively higher values of mass scattering efficiency during floating dust episodes in Wuwei and Zhangye are attributed to the anthropogenic soil dust produced by agricultural cultivations.

  15. Tracing the Sources of Atmospheric Phosphorus Deposition to a Tropical Rain Forest in Panama Using Stable Oxygen Isotopes.

    PubMed

    Gross, A; Turner, B L; Goren, T; Berry, A; Angert, A

    2016-02-02

    Atmospheric dust deposition can be a significant source of phosphorus (P) in some tropical forests, so information on the origins and solubility of atmospheric P is needed to understand and predict patterns of forest productivity under future climate scenarios. We characterized atmospheric dust P across a seasonal cycle in a tropical lowland rain forest on Barro Colorado Nature Monument (BCNM), Republic of Panama. We traced P sources by combining remote sensing imagery with the first measurements of stable oxygen isotopes in soluble inorganic phosphate (δ(18)OP) in dust. In addition, we measured soluble inorganic and organic P concentrations in fine (<1 μm) and coarse (>1 μm) aerosol fractions and used this data to estimate the contribution of P inputs from dust deposition to the forest P budget. Aerosol dry mass was greater in the dry season (December to April, 5.6-15.7 μg m(-3)) than the wet season (May to November, 3.1-7.1 μg m(-3)). In contrast, soluble P concentrations in the aerosols were lower in the dry season (980-1880 μg P g(-1)) than the wet season (1170-3380 μg P g(-1)). The δ(18)OP of dry-season aerosols resembled that of nearby forest soils (∼19.5‰), suggesting a local origin. In the wet season, when the Trans-Atlantic Saharan dust belt moves north close to Panama, the δ(18)OP of aerosols was considerably lower (∼15.5‰), suggesting a significant contribution of long-distance dust P transport. Using satellite retrieved aerosol optical depth (AOD) and the P concentrations in aerosols we sampled in periods when Saharan dust was evident we estimate that the monthly P input from long distance dust transport during the period with highest Saharan dust deposition is 88 ± 31 g P ha(-1) month(-1), equivalent to between 10 and 29% of the P in monthly litter fall in nearby forests. These findings have important implications for our understanding of modern nutrient budgets and the productivity of tropical forests in the region under future

  16. Composition and source apportionment of dust fall around a natural lake.

    PubMed

    Latif, Mohd Talib; Ngah, Sofia Aida; Dominick, Doreena; Razak, Intan Suraya; Guo, Xinxin; Srithawirat, Thunwadee; Mushrifah, Idris

    2015-07-01

    The aim of this study was to determine the source apportionment of dust fall around Lake Chini, Malaysia. Samples were collected monthly between December 2012 and March 2013 at seven sampling stations located around Lake Chini. The samples were filtered to separate the dissolved and undissolved solids. The ionic compositions (NO3-, SO4(2-), Cl- and NH4+) were determined using ion chromatography (IC) while major elements (K, Na, Ca and Mg) and trace metals (Zn, Fe, Al, Ni, Mn, Cr, Pb and Cd) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the average concentration of total solids around Lake Chini was 93.49±16.16 mg/(m2·day). SO4(2-), Na and Zn dominated the dissolved portion of the dust fall. The enrichment factors (EF) revealed that the source of the trace metals and major elements in the rain water was anthropogenic, except for Fe. Hierarchical agglomerative cluster analysis (HACA) classified the seven monitoring stations and 16 variables into five groups and three groups respectively. A coupled receptor model, principal component analysis multiple linear regression (PCA-MLR), revealed that the sources of dust fall in Lake Chini were dominated by agricultural and biomass burning (42%), followed by the earth's crust (28%), sea spray (16%) and a mixture of soil dust and vehicle emissions (14%). Copyright © 2015. Published by Elsevier B.V.

  17. Coal fly ash as a source of iron in atmospheric dust.

    PubMed

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A; Scherer, Michelle M; Grassian, Vicki H

    2012-02-21

    Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.

  18. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall.

    PubMed

    Zhang, Wei; Zhang, Shucai; Wan, Chao; Yue, Dapan; Ye, Youbin; Wang, Xuejun

    2008-06-01

    Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.

  19. Effects of Saharan Mineral Dust Aerosols on the Dynamics of an Idealized African Easterly Jet-African Easterly Wave System over North Africa

    NASA Astrophysics Data System (ADS)

    Grogan, Dustin Francis Phillip

    The central objective of this work is to examine the direct radiative effects of Saharan mineral dust aerosols on the dynamics of African easterly waves (AEWs) and the African easterly jet (AEJ). Achieving this objective is built around two tasks that use the Weather Research and Forecasting (WRF) model coupled to an online dust model (WRF-dust model). The first task (Chapter 2) examines the linear dynamics of AEWs; the second task (Chapter 3) examines the nonlinear evolution of AEWs and their interactions with the AEJ. In Chapter 2, the direct radiative effects of dust on the linear dynamics of AEWs are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the generation of eddy available potential energy (APE) by the dust field. The generation of eddy APE is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis calculates the linear dynamics of AEWs using zonally averaged basic states for wind, temperature and dust consistent with summertime conditions over North Africa. For the fastest growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from tau=1.0 to tau=2.5. A local energetics analysis shows that for tau=1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation of APE and conversions of energy are co-located and occur where the meridional dust gradient is maximized near the critical layer, i.e., where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis. In Chapter 3, the direct radiative effects of dust

  20. Composition and Source Identification of Chemical Species in Dust from Selected Indoor Environments in Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Ogundele, Lasun T.; Olasinde, Roseline T.; Owoade, Oyediran K.; Olise, Felix S.

    2018-05-01

    This study presents the elemental compositions and concentrations of indoor dust and identifies the major sources in some selected indoor environments in Ile-Ife, Nigeria. The dust samples were collected from 16 indoor environments comprising offices, churches, residential and staff quarters using a cyclonic high power vacuum cleaner. The dust samples were analyzed for elemental concentrations using x-ray fluorescences. The data sets were analyzed for the possible sources and their contributions using Principal Component Factor Analysis (PCFA). The result showed that dust samples contained several elements: K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Ga, As, Rb, Sr, Se, Zr, V, and Sc. The PCFA identified three factors with the percentage variance of 92, 77, 71 and 68%, for the office, church, residential, and staff quarters, respectively, for the combined elemental data of each of the site classes. The identified sources were track-in-soil, road and windblown soil dust, paint debris, household dust from personal care materials, cooking, and cleaning activities. The unintentional track-in-soil due to mobility of the occupants, structural materials, and outdoor air was the major sources contributing to the indoor dust.

  1. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Abouchami, W.; Galer, S. J. G.; Singh, Satinder Pal; Fomba, K. W.; Prospero, J. M.; Andreae, M. O.

    2018-04-01

    In order to assess the impact of mineral dust on climate and biogeochemistry, it is paramount to identify the sources of dust emission. In this regard, radiogenic isotopes have recently been used successfully for tracing North African dust provenance and its transport across the tropical Atlantic to the Caribbean. Here we present two time series of radiogenic isotopes (Pb, Sr and Nd) in dusts collected at the Cape Verde Islands and Barbados in order to determine the origin of the dust and examine the seasonality of westerly dust outflow from Northern Africa. Aerosol samples were collected daily during two campaigns - February 2012 (winter) and June-July 2013 (summer) - at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente (16.9°N, 24.9°W). A one-year-long time series of aerosols from Barbados (13.16°N, 59.43°W) - a receptor region in the Caribbean - was sampled at a lower, monthly resolution. Our results resolve a seasonal isotopic signal at Cape Verde shown by daily variations, with a larger radiogenic isotope variability in winter compared to that in summer. This summer signature is also observed over Barbados, indicating similar dust provenance at both locations, despite different sampling years. This constrains the isotope fingerprint of Saharan Air Layer (SAL) dust that is well-mixed during its transport. This result provides unequivocal evidence for a permanent, albeit of variable strength, long-range transport of African dust to the Caribbean and is in full agreement with atmospheric models of North African dust emission and transport across the tropical Atlantic in the SAL. The seasonal isotopic variability is related to changes in the dust source areas - mainly the Sahara and Sahel regions - that are active all-year-round, albeit with variable contributions in summer versus the winter months. Our results provide little support for much dust contributed from the Bodélé Depression in Chad - the "dustiest" place on Earth

  2. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  3. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Test chamber investigation of the volatilization from source materials of brominated flame retardants and their subsequent deposition to indoor dust.

    PubMed

    Rauert, C; Harrad, S; Stranger, M; Lazarov, B

    2015-08-01

    Numerous studies have reported elevated concentrations of brominated flame retardants (BFRs) in dust from indoor micro-environments. Limited information is available, however, on the pathways via which BFRs in source materials transfer to indoor dust. The most likely hypothesized pathways are (a) volatilization from the source with subsequent partitioning to dust, (b) abrasion of the treated product, transferring microscopic fibers or particles to the dust (c) direct uptake to dust via contact between source and dust. This study reports the development and application of an in-house test chamber for investigating BFR volatilization from source materials and subsequent partitioning to dust. The performance of the chamber was evaluated against that of a commercially available chamber, and inherent issues with such chambers were investigated, such as loss due to sorption of BFRs to chamber surfaces (so-called sink effects). The partitioning of polybrominated diphenyl ethers to dust, post-volatilization from an artificial source was demonstrated, while analysis in the test chamber of a fabric curtain treated with the hexabromocyclododecane formulation, resulted in dust concentrations exceeding substantially those detected in the dust pre-experiment. These results provide the first experimental evidence of BFR volatilization followed by deposition to dust. Brominated flame retardants (BFRs) are ubiquitous in indoor air and dust, leading to human exposure and resultant concerns about their adverse impact on health. Indoor dust has been demonstrated to constitute an important vector of human exposure to BFRs, especially for toddlers. Despite the greater importance of dust contamination in the context of human exposure to BFRs, the mechanisms via which BFRs transfer from source materials to dust have hitherto been subject to only limited research. In this study, a test chamber is utilized to simulate the migration of BFRs to dust via volatilization from source materials

  5. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms.

    PubMed

    Weil, Tobias; De Filippo, Carlotta; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Pavarini, Lorenzo; Carotenuto, Federico; Pasqui, Massimiliano; Poto, Luisa; Gabrieli, Jacopo; Barbante, Carlo; Sattler, Birgit; Cavalieri, Duccio; Miglietta, Franco

    2017-03-10

    A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.

  6. Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China.

    PubMed

    Qi, Hong; Li, Wen-Long; Zhu, Ning-Zheng; Ma, Wan-Li; Liu, Li-Yan; Zhang, Feng; Li, Yi-Fan

    2014-09-01

    Indoor dust samples were collected across China in the winter of 2010 from 45 private domiciles and 36 public buildings. 16 polycyclic aromatic hydrocarbons (PAHs) were determined by GC-MS. Total concentrations of PAHs ranged from 1.00 μg/g to 470 μg/g with a mean value of 30.9 μg/g. High-molecular weight (HMW) PAHs (4 to 6 rings) are the predominant PAHs found in indoor dust, accounting for 68% of the total PAH concentration in private domiciles, and 84.6% in public buildings. Traffic conditions and cooking methods were the two key factors controlling PAH levels, especially for coal combustion and vehicular traffic emission sources. A significant positive correlation was observed between PAH concentrations in indoor dust and based on location (latitude and longitude). The latitudinal distribution indicated a higher usage of coal for heating in Northern China than in Southern China. The longitudinal distribution indicated that the usage of oil and mineral fuels as well as economic development and population density increased from West China to East China. In addition, diagnostic ratios and principal component analysis (PCA) were used to explore source apportion, as indicated in both the pyrogenic and petrogenic sources of PAHs in indoor dust in China. Furthermore, the BaP equivalent was applied to assess the carcinogenic risk of PAHs, which also indicated that traffic emissions and coal combustion were the two major contributions to carcinogenic risk of PAHs in indoor dust in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach

    NASA Astrophysics Data System (ADS)

    Hartmann, Markus; Heim, Lars-Oliver; Ebert, Martin; Weinbruch, Stephan; Kandler, Konrad

    2015-04-01

    Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach Markus Hartmann(1), Lars-Oliver Heim(2), Martin Ebert(1), Stephan Weinbruch(1), Konrad Kandler(1) The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) took place at Barbados from June 10 to July 15 2013. During this period, dust was frequently transported from Africa across the Atlantic Ocean toward the Caribbean. In this study, we investigate the atmospheric aging of the dust aerosol based on its hygroscopicity. Aerosol samples were collected ground-based at Ragged Point (13°9'54.4"N, 59°25'55.7"W) with a single round jet cascade impactor on nickel-substrates. The particles from the stage with a 50% efficiency cutoff size of 1 µm were analyzed with an Environmental Scanning Electron Microscope (ESEM) equipped with an energy-dispersive X-ray detector (EDX) and a cooling stage. In an initial automated run, information on particle size and chemical composition for elements heavier than carbon were gathered. Afterwards, electron microscope images of the same sample areas as before were taken during a stepwise increase of relative humidities (between 50 % and 92%), so that the hygroscopic growth of the droplets could be directly observed. The observed hygroscopic growth can be correlated to the chemical composition of the respective particles. For the automated analysis of several hundred images of droplets an image processing algorithm in Python was developed. The algorithm is based on histogram equalization and watershed segmentation. Since SEM images can only deliver two-dimensional information, but the hygroscopic growth factor usually refers to the volume of a drop, Atomic Force Microscopy (AFM) was used to derive an empirical function for the drop volume depending on the apparent drop diameter in the electron images. Aside from the mineral dust, composed of mostly silicates and

  8. Sahara Dust Cloud

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24

    A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean.

    These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward.

    In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005.

    In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie

    The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the

  9. Size- and density-distributions and sources of polycyclic aromatic hydrocarbons in urban road dust.

    PubMed

    Murakami, Michio; Nakajima, Fumiyuki; Furumai, Hiroaki

    2005-11-01

    Polycyclic aromatic hydrocarbons (PAHs) present in size- and density-fractionated road dust were measured to identify the important fractions in urban runoff and to analyse their sources. Road dust was collected from a residential area (Shakujii) and a heavy traffic area (Hongo Street). The sampling of road dust from the residential area was conducted twice in different seasons (autumn and winter). The collected road dust was separated into three or four size-fractions and further fractionated into light (<1.7 g/cm3) and heavy (>1.7 g/cm3) fractions by using cesium chloride solution. Light particles constituted only 4.0+/-1.4%, 0.69+/-0.03% and 3.4+/-1.0% of the road dust by weight for Shakujii (November), Shakujii (February) and Hongo Street, respectively but contained 28+/-10%, 33+/-3% and 44+/-8% of the total PAHs, respectively. The PAH contents in the light fractions were 1-2 orders of magnitude higher than those in the heavy fractions. In the light fractions, the 12PAH contents in February were significantly higher than the 12PAH contents in November (P<0.01), whereas in the heavy fractions, no significant difference was found (P>0.05). Cluster analysis revealed that there was a significant difference in the PAH profiles between locations rather than between size-fractions, density-fractions and sampling times. Multiple regression analysis indicated that asphalt/pavement was the major source of Shakujii road dust, and that tyre and diesel vehicle exhaust were the major sources of finer and coarser fractions collected from Hongo Street road dust, respectively.

  10. Changes in Stratiform Clouds of Mesoscale Convective Complex Introduced by Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Lin, B.; Min, Q.-L.; Li, R.

    2010-01-01

    Aerosols influence the earth s climate through direct, indirect, and semi-direct effects. There are large uncertainties in quantifying these effects due to limited measurements and observations of aerosol-cloud-precipitation interactions. As a major terrestrial source of atmospheric aerosols, dusts may serve as a significant climate forcing for the changing climate because of its effect on solar and thermal radiation as well as on clouds and precipitation processes. Latest satellites measurements enable us to determine dust aerosol loadings and cloud distributions and can potentially be used to reduce the uncertainties in the estimations of aerosol effects on climate. This study uses sensors on various satellites to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective complex (MCC). A trans-Atlantic dust outbreak of Saharan origin occurring in early March 2004 is considered. For the observed MCCs under a given convective strength, small hydrometeors were found more prevalent in the dusty stratiform regions than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust regions, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of clouds and precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the size spectrum of precipitation-sized hydrometeors from heavy precipitation to light precipitation and ultimately to suppress precipitation and increase the lifecycle of cloud systems, especially over stratiform areas.

  11. Sr-Nd-Hf Isotopic Analysis of <10 mg Dust Samples: Implications for Ice Core Dust Source Fingerprinting

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Wegner, Wencke; Klötzli, Urs; Horschinegg, Monika; Hippler, Dorothee

    2018-01-01

    Combined Sr-Nd-Hf isotopic data of two reference materials (AGV-1/BCR2) and 50, 10, and 5 mg aliquots of carbonate-free fine grain (<10 μm) separates of three loess samples (Central Europe/NUS, China/BEI, USA/JUD) are presented. Good agreement between measured and reference Sr-Nd-Hf isotopic compositions (ICs) demonstrate that robust isotopic ratios can be obtained from 5 to 10 mg size rock samples using the ion exchange/mass spectrometry techniques applied. While 87Sr/86Sr ratios of dust aluminosilicate fractions are affected by even small changes in pretreatments, Nd isotopic ratios are found to be insensitive to acid leaching, grain-size or weathering effects. However, the Nd isotopic tracer is sometimes inconclusive in dust source fingerprinting (BEI and NUS both close to ɛNd(0) -10). Hafnium isotopic values (<10 μm fractions) are homogenous for NUS, while highly variable for BEI. This heterogeneity and vertical arrays of Hf isotopic data suggest zircon depletion effects toward the clay fractions (<2 μm). Monte Carlo simulations demonstrate that the Hf IC of the dust <10 μm fraction is influenced by both the abundance of zircons present and maturity of crustal rocks supplying this heavy mineral, while the <2 μm fraction is almost unaffected. Thus, ɛHf(0) variations in the clay fraction are largely controlled by the Hf IC of clays/heavy minerals having high Lu/Hf and radiogenic 176Hf/177Hf IC. Future work should be focused on Hf IC of both the <10 and <2 μm fractions of dust from potential source areas to gain more insight into the origin of last glacial dust in Greenland ice cores.

  12. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Fung, Inez

    1994-01-01

    A global three-dimensional model of the atmospheric mineral dust cycle is developed for the study of its impact on the radiative balance of the atmosphere. The model includes four size classes of minearl dust, whose source distributions are based on the distributions of vegetation, soil texture and soil moisture. Uplift and deposition are parameterized using analyzed winds and rainfall statistics that resolve high-frequency events. Dust transport in the atmosphere is simulated with the tracer transport model of the Goddard Institute for Space Studies. The simulated seasonal variations of dust concentrations show general reasonable agreement with the observed distributions, as do the size distributions at several observing sites. The discrepancies between the simulated and the observed dust concentrations point to regions of significant land surface modification. Monthly distribution of aerosol optical depths are calculated from the distribution of dust particle sizes. The maximum optical depth due to dust is 0.4-0.5 in the seasonal mean. The main uncertainties, about a factor of 3-5, in calculating optical thicknesses arise from the crude resolution of soil particle sizes, from insufficient constraint by the total dust loading in the atmosphere, and from our ignorance about adhesion, agglomeration, uplift, and size distributions of fine dust particles (less than 1 micrometer).

  13. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Hahnenberger, Maura; Nicoll, Kathleen

    2014-01-01

    This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern

  14. Sources of cosmic dust in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.; Plane, J. M. C.

    2016-12-01

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d-1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  15. Enhancing weak transient signals in SEVIRI false color imagery: Application to dust source detection in southern Africa

    NASA Astrophysics Data System (ADS)

    Murray, J. E.; Brindley, H. E.; Bryant, R. G.; Russell, J. E.; Jenkins, K. F.; Washington, R.

    2016-09-01

    A method is described to significantly enhance the signature of dust events using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI). The approach involves the derivation of a composite clear-sky signal for selected channels on an individual time step and pixel basis. These composite signals are subtracted from each observation in the relevant channels to enhance weak transient signals associated with either (a) low levels of dust emission or (b) dust emissions with high salt or low quartz content. Different channel combinations, of the differenced data from the steps above, are then rendered in false color imagery for the purpose of improved identification of dust source locations and activity. We have applied this clear-sky difference (CSD) algorithm over three (globally significant) source regions in southern Africa: the Makgadikgadi Basin, Etosha Pan, and the Namibian and western South African coast. Case study analyses indicate three notable advantages associated with the CSD approach over established image rendering methods: (i) an improved ability to detect dust plumes, (ii) the observation of source activation earlier in the diurnal cycle, and (iii) an improved ability to resolve and pinpoint dust plume source locations.

  16. Polybrominated Diphenyl Ethers in Residential Dust: Sources of Variability

    PubMed Central

    Whitehead, Todd P.; Brown, F. Reber; Metayer, Catherine; Park, June-Soo; Does, Monique; Petreas, Myrto X.; Buffler, Patricia A.; Rappaport, Stephen M.

    2013-01-01

    We characterized the sources of variability for polybrominated diphenyl ethers (PBDEs) in residential dust and provided guidance for investigators who plan to use residential dust to assess exposure to PBDEs. We collected repeat dust samples from 292 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001–2007 and during 2010) using household vacuum cleaners and measured 22 PBDEs using high resolution gas chromatography-high resolution mass spectrometry. Median concentrations for individual PBDEs ranged from <0.1–2,500 ng per g of dust. For each of eight representative PBDEs, we used a random-effects model to apportion total variance into regional variability (0–11%), intra-regional between-household variability (17–50%), within-household variability over time (38–74%), and within-sample variability (0–23%) and we used a mixed-effects model to identify determinants of PBDE levels. Regional differences in PBDE dust levels were associated with residential characteristics that differed by region, including the presence of furniture with exposed or crumbling foam and the recent installation of carpets in the residence. Intra-regional differences between households were associated with neighborhood urban density, racial and ethnic characteristics, and to a lesser extent, income. For some PBDEs, a decreasing time trend explained a modest fraction of the within-household variability; however, most of the within-household variability was unaccounted for by our mixed-effects models. Our findings indicate that it may be feasible to use residential dust for retrospective assessment of PBDE exposures in studies of children’s health (e.g., the Northern California Childhood Leukemia Study). PMID:23628589

  17. Global trends in visibility: Implications for dust sources

    USGS Publications Warehouse

    Mahowald, N.M.; Ballantine, J.A.; Feddema, J.; Ramankutty, N.

    2007-01-01

    There is a large uncertainty in the relative roles of human land use, climate change and carbon dioxide fertilization in changing desert dust source strength over the past 100 years, and the overall sign of human impacts on dust is not known. We used visibility data from meteorological stations in dusty regions to assess the anthropogenic impact on long term trends in desert dust emissions. Visibility data are available at thousands of stations globally from 1900 to the present, but we focused on 359 stations with more than 30 years of data in regions where mineral aerosols play a dominant role in visibility observations. We evaluated the 1974 to 2003 time period because most of these stations have reliable records only during this time. We first evaluated the visibility data against AERONET aerosol optical depth data, and found that only in dusty regions are the two moderately correlated. Correlation coefficients between visibility derived variables and AERONET optical depths indicate a moderate correlation (???0.47), consistent with capturing about 20% of the variability in optical depths. Two visibility derived variables appear to compare the best with AERONET observations: the fraction of observations with visibility less than 5 km (VIS5) and the surface extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are statistically significantly correlated with the palmer drought severity index (based on precipitation and temperature) or surface wind speeds, consistent with dust temporal variability being largely driven by meteorology. This is especially true for North African and Chinese dust sources, but less true in the Middle East, Australia or South America, where there are not consistent patterns in the correlations. Climate indices such as El Nino or the North Atlantic Oscillation are not correlated with visibility derived variables in this analysis. There are few stations where visibility measures are correlated with cultivation or

  18. Global trends in visibility: Implications for dust sources

    USGS Publications Warehouse

    Mahowald, N.M.; Ballantine, J.A.; Feddema, J.; Ramankutty, N.

    2007-01-01

    There is a large uncertainty in the relative roles of human land use, climate change and carbon dioxide fertilization in changing desert dust source strength over the past 100 years, and the overall sign of human impacts on dust is not known. We used visibility data from meteorological stations in dusty regions to assess the anthropogenic impact on long term trends in desert dust emissions. We did this by looking at time series of visibility derived variables and their correlations with precipitation, drought, winds, land use and grazing. Visibility data are available at thousands of stations globally from 1900 to the present, but we focused on 357 stations with more than 30 years of data in regions where mineral aerosols play a dominant role in visibility observations. We evaluated the 1974 to 2003 time period because most of these stations have reliable records only during this time. We first evaluated the visibility data against AERONET aerosol optical depth data, and found that only in dusty regions are the two moderately correlated. Correlation coefficients between visibility-derived variables and AERONET optical depths indicate a moderate correlation (0.47), consistent with capturing about 20% of the variability in optical depths. Two visibility-derived variables appear to compare the best with AERONET observations: the fraction of observations with visibility less than 5 km (VIS5) and the surface extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are statistically significantly correlated with the Palmer drought severity index (based on precipitation and temperature) or surface wind speeds, consistent with dust temporal variability being largely driven by meteorology. This is especially true for North African and Chinese dust sources, but less true in the Middle East, Australia or South America, where there are not consistent patterns in the correlations. Climate indices such as El Nino or the North Atlantic Oscillation are not

  19. Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance

    USGS Publications Warehouse

    Herwitz, S.R.; Muhs, D.R.; Prospero, J.M.; Mahan, S.; Vaughn, B.

    1996-01-01

    Red clayey paleosols that are chiefly the product of aerosolic dust deposition are interbedded in the Quaternary carbonate formations of the Bermuda oceanic island system. These paleosols provide a basis for reconstructing Quaternary atmospheric circulation patterns in the northwestern Atlantic. Geochemical analyses were performed on representative paleosol samples to identify their parent dust source. Fine-grained fractions were analyzed by energy-dispersive X ray fluorescence to determine trace element (Zr, Y, La, Ti, and Nb) concentrations and to derive geochemical signatures based on immobile element ratios. These ratios were compared with geochemical signatures determined for three possible sources of airborne dust: (1) Great Plains loess, (2) Mississippi River Valley loess, and (3) Saharan dust. The Zr/Y and Zr/La ratios provided the clearest distinction between the hypothesized dust sources. The low ratios in the paleosol B horizons most closely resemble Saharan dust in the <2-??m size class fraction. Contributions from the two North American loessial source areas could not be clearly detected. Thus Bermuda paleosols have a predominantly Saharan aerosolic dust signature. Saharan dust deposition on Bermuda during successive Quaternary glacial periods is consistent with patterns of general circulation models, which indicate that during glacial maxima the northeast summer trade winds were stronger than at present and reached latitudes higher than 30 ?? N despite lower-than-present sea surface temperatures in the North Atlantic.

  20. 40 CFR 63.1544 - Standards for fugitive dust sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... according to, a standard operating procedures manual that describes in detail the measures that will be put... (c) of this section, the standard operating procedures manual shall be submitted to the Administrator... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Standards for fugitive dust sources. 63...

  1. 40 CFR 63.1544 - Standards for fugitive dust sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... according to, a standard operating procedures manual that describes in detail the measures that will be put... (c) of this section, the standard operating procedures manual shall be submitted to the Administrator... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Standards for fugitive dust sources. 63...

  2. Growth impacts of Saharan dust, mineral nutrients, and CO2 on a planktonic herbivore in southern Mediterranean lakes.

    PubMed

    Villar-Argaiz, Manuel; Cabrerizo, Marco J; González-Olalla, Juan Manuel; Valiñas, Macarena S; Rajic, Sanja; Carrillo, Presentación

    2018-05-17

    Rising levels of CO 2 can boost plant biomass but reduce its quality as a food source for herbivores. However, significant uncertainties remain as to the degree to which the effect is modulated by other environmental factors and the underlying processes causing these responses in nature. To address these questions, we carried out CO 2 -manipulation experiments using natural seston from three lakes under nutrient-enriched conditions (mimicking eutrophication and atmospheric dust-input processes) as a food source for the planktonic Daphnia pulicaria. Contrary to expectations, there were no single effects of rising CO 2 on herbivorous growth. Instead, synergistic CO 2  × nutrient interactions indicated that CO 2 did not support higher zooplankton growth rates unless supplemented with dust or inorganic nutrients (nitrogen, N; phosphorus, P) in two of three studied lakes. The overall positive correlation between zooplankton growth and seston carbon (C), but not seston C:P, suggested that this was a food quantity-mediated response. In addition, we found that this correlation improved when the data were grouped according to the nutrient treatments, and that the response was largest for dust. The synergistic CO 2  × nutrient effects reported here imply that the effects of rising CO 2 levels on herbivorous growth may be strongly influenced by eutrophication processes and the increase in dust deposition predicted for the Mediterranean region. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Radiative Energetics of Mineral Dust Aerosols from Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hansell, Richard A.

    2011-01-01

    Airborne dust aerosols worldwide contribute a significant part to air quality problems and, to some extent, regional climatic issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in oceans). Evaluating the direct solar radiative effect of dust aerosols is relatively straightforward due in part to the relatively large SIN ratio in broadband irradiance measurements. The longwave (LW) impact, on the other hand, is rather difficult to ascertain since the measured dust signal level (approx.10 W/sq m) is on the same order as the instrumental uncertainties. Although the magnitude of the LW impact is much smaller than that of the shortwave (SW), it can still have a noticeable influence on the energy distribution of Earth-atmosphere system, particularly due to the strong light-absorptive properties commonly found in many terrestrial minerals. The current effort is part of an ongoing research study to perform a global assessment of dust direct aerosol radiative effects (DARE) during major field deployments of key dust source regions worldwide. In this work we present results stemming from two previous field deployments: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years, both utilizing NASA Goddard's mobile ground-based facility. The former study focused on transported Saharan dust at Sal (16.73degN, 22.93degW), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye (39.082degN, 100.276degE), China near the source between the Taklimakan and Gobi deserts. Due to the compelling variability in spatial and temporal scale of dust properties during field experiments, a deterministic I-D radiative transfer model constrained by local measurements (i.e., spectral photometry/interferometry and lidar for physical/microphysical, mineralogy, and single-scattering properties) is employed to evaluate dust's local instantaneous SW/LW DARE both at the surface and at the top of

  4. Dust Episodes in Hong Kong (South China) and their Relationship with the Sharav and Mongolian Cyclones and Jet Streams

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Wenig, Mark; Zhang, Zhenxi; Sugimoto, Nobuo; Larko, Dave; Diehl, Thomas

    2012-01-01

    The study presented in this paper analyses two dust episodes in Hong Kong, one occurring in March 2006 and the other on 22 March 2010. The latter is the worst dust episode on Hong Kong record. The focus is on the relationship between the dust episodes and the Sharav/Mongolian cyclones and jet streams. The 16 March 2006 episode is traceable to a continental-scale Saharan dust outbreak of 5-9 March 2006 caused by the cold front of an East Mediterranean Sharav cyclone arriving at north-west Africa on 5 March 2006. The eastward movement of the cyclone along the North African coast is clearly illustrated in the geopotential height contours. Simulations by the chemistry transport model GOCART provide a visible evidence of the transport as well as an estimate of contributions from the Sahara to the aerosol concentration levels in Hong Kong. The transport simulations suggest that the dust is injected to the polar jet north of the Caspian Sea, while it is transported eastward simultaneously by the more southerly subtropical jet. The major source of dust for Hong Kong is usually the Gobi desert. Despite the effect of remote sources, the 16 March 2006 dust episode was still mainly under the influence of the Mongolian cyclone cold fronts. In the recent episode of 22 March 2010, the influence of the Mongolian cyclone predominated as well. It appears that the concurrent influence of the Sharav and Mongolian cyclones on Hong Kong and East Asia is not a common occurrence. Besides transporting dusts from non-East Asian sources to Hong Kong and East Asia, the strong subtropical jet on 21 March 2010 (i.e. 1 day prior to the major dust episode) is believed to have strengthened an easterly monsoon surge to South China causing the transport of voluminous dusts to Taiwan and Hong Kong the following day.

  5. Long range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the Western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ancellet, G.; Pelon, J.; Totems, J.; Chazette, P.; Bazureau, A.; Sicard, M.; Di Iorio, T.; Dulac, F.; Mallet, M.

    2015-11-01

    Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.

  6. An Isotopic Map of Dust Source Areas in the McMurdo Sound Sector of Antarctica

    NASA Astrophysics Data System (ADS)

    Blakowski, M. A.; Aciego, S.; Delmonte, B.; Baroni, C.; Salvatore, M. C.

    2014-12-01

    The McMurdo Sound sector of Antarctica features a unique, polar desert ecosystem characterized by low temperatures, hyper-aridity, and high-speed winds. These climatic conditions result in limited water sources, sparse vegetation, underdeveloped soils, and abundant unconsolidated sediment easily influenced by wind-driven transport. Radiogenic isotopes (87Sr/86Sr, 143Nd/144Nd) provide constant signatures of dust from source- to sink-areas. Accordingly, aeolian dust derived from arid regions has been recognized in many studies as an important tracer of atmospheric circulation, as well as a tool for deciphering past climatic conditions in dust source regions. However, while major global dust sources (e.g. from South America, Africa, and Asia) are well studied and easily identifiable via distinct isotopic signatures when encountered in different depositional environments (e.g. Antarctic ice cores), local material from sources in and around the ice-free Dry Valleys and surrounding areas have remained in need of further documentation. We analyzed 40 samples of silt, sand, glacial drift, and weathered regolith material in both fine (<5μm) and coarse fractions collected from Victoria Land and the McMurdo Sound sector, including Cape Royds, Cape Bird, and the McMurdo Ice Shelf. Here we present an ArcGIS-generated, high-precision geochemical map of Antarctic PSAs synthesized from our data and combined with geomorphological and stratigraphic information on the studied sites. We believe that our expanded isotopic catalogue and map can be used to enhance and/or prompt regional studies in a variety of disciplines, such as by providing greater constraints on models of regional dust variability and transport pathways and of the melting history of the Antarctic ice sheet, and by determining the provenance of dust archived in ice cores, lake sediment, soil records, and impurities in Antarctic sea-ice.

  7. Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.

    2016-12-01

    An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.

  8. Sources of cosmic dust in the Earth's atmosphere.

    PubMed

    Carrillo-Sánchez, J D; Nesvorný, D; Pokorný, P; Janches, D; Plane, J M C

    2016-12-16

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d -1 ), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  9. Sources of cosmic dust in the Earth's atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.

    2016-01-01

    Abstract There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d−1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud. PMID:28275286

  10. Dust Storm, Sahara Desert, Algeria/Niger Border, Africa

    NASA Image and Video Library

    1992-05-16

    STS049-92-071 (13 May 1992) --- The STS-49 crew aboard the Earth-orbiting Space Shuttle Endeavour captured this Saharan dust storm on the Algeria-Niger border. The south-looking, late-afternoon view shows one of the best examples in the Shuttle photo data base of a dust storm. A series of gust fronts, caused by dissipating thunderstorms have picked up dust along the outflow boundaries. Small cumulus clouds have formed over the most vigorously ascending parts of the dust front, enhancing the visual effect of the front. The storm is moving roughly north-northwest, at right angles to the most typical path for dust storms in this part of the Sahara (shown by lines of sand on the desert surface in the foreground). Storms such as this can move out into the Atlantic, bringing dust even as far as the Americas on some occasions. A crewmember used a 70mm handheld Hasselblad camera with a 100mm lens to record the frame.

  11. Depletion of tropospheric ozone associated with mineral dust outbreaks.

    PubMed

    Soler, Ruben; Nicolás, J F; Caballero, S; Yubero, E; Crespo, J

    2016-10-01

    From May to September 2012, ozone reductions associated with 15 Saharan dust outbreaks which occurred between May to September 2012 have been evaluated. The campaign was performed at a mountain station located near the eastern coast of the Iberian Peninsula. The study has two main goals: firstly, to analyze the decreasing gradient of ozone concentration during the course of the Saharan episodes. These gradients vary from 0.2 to 0.6 ppb h(-1) with an average value of 0.39 ppb h(-1). The negative correlation between ozone and coarse particles occurs almost simultaneously. Moreover, although the concentration of coarse particles remained high throughout the episode, the time series shows the saturation of the ozone loss. The highest ozone depletion has been obtained during the last hours of the day, from 18:00 to 23:00 UTC. Outbreaks registered during this campaign have been more intense in this time slot. The second objective is to establish from which coarse particle concentration a significant ozone depletion can be observed and to quantify this reduction. In this regard, it has been confirmed that when the hourly particle concentration recorded during the Saharan dust outbreaks is above the hourly particle median values (N > N-median), the ozone concentration reduction obtained is statistically significant. An average ozone reduction of 5.5 % during Saharan events has been recorded. In certain cases, this percentage can reach values of higher than 15 %.

  12. Global Distributions of Mineral Dust Properties from SeaWiFS and MODIS: From Sources to Sinks

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Bettenhausen, C.; Sayer, A.

    2011-01-01

    The impact of natural and anthropogenic sources of mineral dust has gained increasing attention from scientific communities in recent years. Indeed, these airborne dust particles, once lifted over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the oceans resulting in important biogeochemical impacts on the ecosystem. Due to the relatively short lifetime (a few hours to about a week), the distributions of these mineral dust particles vary extensively in both space and time. Consequently, satellite observations are needed over both source and sink regions for continuous temporal and spatial sampling of aerosol properties. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented satellite data records, studies of the radiative and biogeochemical effects due to dust aerosols are now possible. In this study, we will show the comparisons of satellite retrieved aerosol optical thickness using Deep Blue algorithm with data from AERONET sunphotometers over desert and semi-desert regions as well as vegetated areas. Our results indicate reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from Sea WiFS and MODIS-like instruments. The multiyear satellite measurements since 1997 from Sea WiFS will be compared with those retrieved from MODIS and MISR, and will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with the dust outbreaks over the entire globe. Finally, the trends observed over the last decade based upon the SeaWiFS time series in the amounts of tropospheric aerosols due to natural and anthropogenic sources (such as changes in the frequency

  13. Resuspended dust as a novel source of marine ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Cornwell, G.; Sultana, C. M.; Schill, G. P.; Hill, T. C. J.; Cochran, R. E.; DeMott, P. J.; Prather, K. A.

    2017-12-01

    Recent studies of marine ice nucleating particles (INPs) have focused upon their production from phytoplankton blooms, the products of their metabolism, and resulting from their decomposition. In this work, we provide evidence for an additional, inorganic source of marine INPs independent of the marine mesocosm. Laboratory studies of aerosols generated from both synthetic seawater solutions spiked with mineral dust and from nascent coastal Pacific Ocean seawater indicate that dust can be ejected from seawater during the bubble bursting processes. Online and offline measurements of INP concentrations showed that these dust particles were ice nucleation-active in concentrations up to 40 L-1 at -30 °C, an order of magnitude more than those found in marine boundary layers or in laboratory mesocosms. Additional single particle composition measurements using an aerosol time of flight mass spectrometer (ATOFMS) collected along the Californian coast at Bodega Marine Laboratory found dust particles that contained markers from internal mixing with sea salt similar to those observed in the laboratory studies. The evidence from both laboratory and field studies suggests that there is a reservoir of dust particles within the ocean that can be ejected from the ocean's surface and act as INPs.

  14. Mixing of Dust and NH3 Observed Globally over Anthropogenic Dust Sources

    NASA Technical Reports Server (NTRS)

    Ginoux, P.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Dubovik, O.; Hsu, N. C.; Van Damme, M.

    2012-01-01

    The global distribution of dust column burden derived from MODIS Deep Blue aerosol products is compared to NH3 column burden retrieved from IASI infrared spectra. We found similarities in their spatial distributions, in particular their hot spots are often collocated over croplands and to a lesser extent pastures. Globally, we found 22% of dust burden collocated with NH3, with only 1% difference between land-use databases. This confirms the importance of anthropogenic dust from agriculture. Regionally, the Indian subcontinent has the highest amount of dust mixed with NH3 (26 %), mostly over cropland and during the pre-monsoon season. North Africa represents 50% of total dust burden but accounts for only 4% of mixed dust, which is found over croplands and pastures in Sahel and the coastal region of the Mediterranean. In order to evaluate the radiative effect of this mixing on dust optical properties, we derive the mass extinction efficiency for various mixtures of dust and NH3, using AERONET sunphotometers data. We found that for dusty days the coarse mode mass extinction efficiency decreases from 0.62 to 0.48 square meters per gram as NH3 burden increases from 0 to 40 milligrams per square meter. The fine mode extinction efficiency, ranging from 4 to 16 square mters per gram, does not appear to depend on NH3 concentration or relative humidity but rather on mineralogical composition and mixing with other aerosols. Our results imply that a significant amount of dust is already mixed with ammonium salt before its long range transport. This in turn will affect dust lifetime, and its interactions with radiation and cloud properties

  15. Determining Source Strength of Semivolatile Organic Compounds using Measured Concentrations in Indoor Dust

    PubMed Central

    Shin, Hyeong-Moo; McKone, Thomas E.; Nishioka, Marcia G.; Fallin, M. Daniele; Croen, Lisa A.; Hertz-Picciotto, Irva; Newschaffer, Craig J.; Bennett, Deborah H.

    2014-01-01

    Consumer products and building materials emit a number of semivolatile organic compounds (SVOCs) in the indoor environment. Because indoor SVOCs accumulate in dust, we explore the use of dust to determine source strength and report here on analysis of dust samples collected in 30 U.S. homes for six phthalates, four personal care product ingredients, and five flame retardants. We then use a fugacity-based indoor mass-balance model to estimate the whole house emission rates of SVOCs that would account for the measured dust concentrations. Di-2-ethylhexyl phthalate (DEHP) and di-iso-nonyl phthalate (DiNP) were the most abundant compounds in these dust samples. On the other hand, the estimated emission rate of diethyl phthalate (DEP) is the largest among phthalates, although its dust concentration is over two orders of magnitude smaller than DEHP and DiNP. The magnitude of the estimated emission rate that corresponds to the measured dust concentration is found to be inversely correlated with the vapor pressure of the compound, indicating that dust concentrations alone cannot be used to determine which compounds have the greatest emission rates. The combined dust-assay modeling approach shows promise for estimating indoor emission rates for SVOCs. PMID:24118221

  16. Spatial and Temporal Dust Source Variability in Northern China Identified Using Advanced Remote Sensing Analysis

    NASA Technical Reports Server (NTRS)

    Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.

    2013-01-01

    The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.

  17. Desert dust suppressing precipitation: A possible desertification feedback loop

    PubMed Central

    Rosenfeld, Daniel; Rudich, Yinon; Lahav, Ronen

    2001-01-01

    The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process. PMID:11353821

  18. Source reconciliation of atmospheric dust causing visibility impairment in Class I areas of the western United States

    NASA Astrophysics Data System (ADS)

    Kavouras, Ilias G.; Etyemezian, Vicken; Dubois, David W.; Xu, Jin; Pitchford, Marc

    2009-01-01

    Aerosol data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, air mass backward trajectories, land use maps, soil characteristics maps, diagnostic ratios of elemental composition, and multivariate linear regression were utilized as part of a semiquantitative analysis. The purpose of the analysis was to determine the types of dust-causing events that contribute to low visibility at a given site when the sum of extinction from coarse mass (CM) and fine soil (FS) was larger than any other aerosol component and the reconstructed aerosol extinction coefficient was among the 20% highest (calculated on a calendar year basis) for that site. For these "worst dust days," the above tools were used to ascribe the cause of low visibility to one of the following types of events: (1) transcontinental transport of dust originating from Asia; (2) windblown dust events from sources located nearby the site and; (3) transport of windblown dust from sources upwind of the site. Depending on the weight of evidence, a low or high level of confidence was associated with the assignment of one of these three events. Absence of convincing evidence resulted in ascribing the worst dust day to "undetermined events." Of the 610 worst dust days over the 2001-2003 period, 51% were associated with one of the three event types with high confidence and an additional 30% were accounted for with low confidence. Of the 496 worst dust days associated with an event (either low or high confidence), Asian dust was the assigned event on 55 days (for 2001-2002), locally generated windblown dust on 201 days, and transport from upwind source areas susceptible to wind erosion on 240 days. Events associated with windblown episodes from source areas in the United States and Mexico exhibited the highest dust concentrations. Asian dust events were associated with lower dust concentrations and a larger FS-to-CM ratio. Some variations between Asian dust and continental North American

  19. A large source of dust missing in particulate matter emission inventories? Wind erosion of post-fire landscapes

    Treesearch

    N. S. Wagenbrenner; S. H. Chung; B. K. Lamb

    2017-01-01

    Wind erosion of soils burned by wildfire contributes substantial particulate matter (PM) in the form of dust to the atmosphere, but the magnitude of this dust source is largely unknown. It is important to accurately quantify dust emissions because they can impact human health, degrade visibility, exacerbate dust-on-snow issues (including snowmelt timing, snow chemistry...

  20. Environmental tobacco smoke as a source of polycyclic aromatic hydrocarbons in settled household dust.

    PubMed

    Hoh, Eunha; Hunt, Richard N; Quintana, Penelope J E; Zakarian, Joy M; Chatfield, Dale A; Wittry, Beth C; Rodriguez, Edgar; Matt, Georg E

    2012-04-03

    Environmental tobacco smoke is a major contributor to indoor air pollution. Dust and surfaces may remain contaminated long after active smoking has ceased (called 'thirdhand' smoke). Polycyclic aromatic hydrocarbons (PAHs) are known carcinogenic components of tobacco smoke found in settled house dust (SHD). We investigated whether tobacco smoke is a source of PAHs in SHD. House dust was collected from 132 homes in urban areas of Southern California. Total PAHs were significantly higher in smoker homes than nonsmoker homes (by concentration: 990 ng/g vs 756 ng/g, p = 0.025; by loading: 1650 ng/m(2) vs 796 ng/m(2), p = 0.012). We also found significant linear correlations between nicotine and total PAH levels in SHD (concentration, R(2) = 0.105; loading, R(2) = 0.385). Dust collected per square meter (g/m(2)) was significantly greater in smoker homes and might dilute PAH concentration in SHD inconsistently. Therefore, dust PAH loading (ng PAH/m(2)) is a better indicator of PAH content in SHD. House dust PAH loadings in the bedroom and living room in the same home were significantly correlated (R(2) = 0.468, p < 0.001) suggesting PAHs are distributed by tobacco smoke throughout a home. In conclusion, tobacco smoke is a source of PAHs in SHD, and tobacco smoke generated PAHs are a component of thirdhand smoke.

  1. Deciphering the Role of Desert Dust in the Climate Puzzle: The Mediterranean Israeli Dust Experiment (MEIDEX)

    NASA Technical Reports Server (NTRS)

    Levin, Zev; Joseph, Joachim; Mekler, Yuri; Israelevich, Peter; Ganor, Eli; Hilsenrath, Ernest; Janz, Scott

    2002-01-01

    Numerous studies have shown that aerosol particles may be one of the primary agents that can offset the climate warming induced by the increase in the amount of atmospheric greenhouse gases. Desert aerosols are probably the most abundant and massive type of aerosol particles that are present in the atmosphere worldwide. These aerosols are carried over large distances and have various global impacts. They interact with clouds, impact the efficiency of their rain production and change their optical properties. They constitute one of the primary sources of minerals for oceanic life and influence the health of coral reefs. They have direct effects on human health, especially by inducing breathing difficulties in children. It was lately discovered that desert particles carry pathogens from the Sahara desert over the Atlantic Ocean, a fact that may explain the migration of certain types of diseases. Aerosols not only absorb solar radiation but also scatter it, so that their climatic effect is influenced not only by their physical properties and height distribution but also by the reflectivity of the underlying surface. This latter property changes greatly over land and is low over ocean surfaces. Aerosol plumes are emitted from discrete, sporadic sources in the desert areas of the world and are transported worldwide by the atmosphere's wind systems. For example, Saharan dust reaches Mexico City, Florida, Ireland, Switzerland and the Mediterranean region, while Asian dust reaches Alaska, Hawaii and the continental United States. This means that in order to assess its global effects, one must observe dust from space. The Space Shuttle is a unique platform, because it flies over the major deserts of our planet, enabling measurements and remote sensing of the aerosols as they travel from source to sink regions. Such efforts must always be accompanied by in-situ data for validation and calibration, with direct sampling of the airborne particles. MEIDEX is a joint project of

  2. Surface Properties Associated With Dust Storm Plume's Point-Source Locations In The Border Region Of The US And Mexico

    NASA Astrophysics Data System (ADS)

    Bleiweiss, M. P.; DuBois, D. W.; Flores, M. I.

    2013-12-01

    Dust storms in the border region of the Southwest US and Northern Mexico are a serious problem for air quality (PM10 exceedances), health (Valley Fever is pandemic in the region) and transportation (road closures and deadly traffic accidents). In order to better understand the phenomena, we are attempting to identify critical characteristics of dust storm sources so that, possibly, one can perform more accurate predictions of events and, thus, mitigate some of the deleterious effects. Besides the emission mechanisms for dust storm production that are tied to atmospheric dynamics, one must know those locations whose source characteristics can be tied to dust production and, therefore, identify locations where a dust storm is eminent under favorable atmospheric dynamics. During the past 13 years, we have observed, on satellite imagery, more than 500 dust events in the region and are in the process of identifying the source regions for the dust plumes that make up an event. Where satellite imagery exists with high spatial resolution (less than or equal to 250m), dust 'plumes' appear to be made up of individual and merged plumes that are emitted from a 'point source' (smaller than the resolution of the imagery). In particular, we have observed events from the ASTER sensor whose spatial resolution is 15m as well as Landsat whose spatial resolution is 30m. Tying these source locations to surface properties such as NDVI, albedo, and soil properties (percent sand, silt, clay, and gravel; soil moisture; etc.) will identify regions with enhanced capability to produce a dust storm. This, along with atmospheric dynamics, will allow the forecast of dust events. The analysis of 10 events from the period 2004-2013, for which we have identified 1124 individual plumes, will be presented.

  3. Trace Metals in Saharan Dust: The Use of in Vitro Bioaccessibility Extractions To Assess Potential Health Risks in a Dustier World: Chapter 3

    USGS Publications Warehouse

    Morman, Suzette A.; Garrison, Virginia H.; Plumlee, Geoffrey S.

    2013-01-01

    Exposure to fine particulate matter (PM) is acknowledged as a risk factor for human morbidity and mortality. Epidemiology and toxicology studies have focused on anthropogenic sources of PM and few consider contributions produced by natural processes (geogenic), or PM produced from natural sources as a result of human activities (geoanthropogenic PM). The focus of this study was to elucidate relationships between human/ecosystem health and dusts produced by a system transitioning from a dominantly natural to a geoanthropogenic PM source. As part of a larger study investigating the relationship between atmospheric transportation of African dust, human health, and coral reef declines, we examined dust samples sourced in Mali, Africa, collected using high-volume samplers from three sites (Mali, Tobago and U.S. Virgin Islands). Inhalation and ingestion exposure pathways were explored by filter extractions using simulated lung and gastric fluids. Bioaccessibility varied by metal and extraction fluid. Although too few samples were analyzed for robust statistics, concentrations for several metals decreased slightly while bioaccessibility increased at downwind sites.

  4. Seventeen-year systematic measurements of dust aerosol optical properties using the eole ntua lidar system (2000-2016)

    NASA Astrophysics Data System (ADS)

    Soupiona, Ourania; Mylonaki, Maria; Papayannis, Alexandros; Argyrouli, Athina; Kokkalis, Panayotis; Tsaknakis, Georgios

    2018-04-01

    A comprehensive analysis of the seasonal variability of the optical properties of Saharan dust aerosols over Athens, Greece, is presented for a 17-year time period (2000-2016), as derived from multi-wavelength Raman lidar measurements (57 dust events with more than 80 hours of measurements). The profiles of the derived aerosol optical properties (aerosol backscatter and extinction coefficients, lidar ratio and aerosol Ångström exponent) at 355 nm are presented. For these dust events we found a mean value of the lidar ratio of 52±13 sr at 355 nm and of 58±8 sr (not shown) at 532 nm (2-4 km a.s.l. height). For our statistical analysis, presented here, we used monthly-mean values and time periods under cloud-free conditions. The number of dust events was greatest in late spring, summer, and early autumn periods. In this paper we also present a selected case study (04 April 2016) of desert dust long-range transport from the Saharan desert.

  5. Measuring Dust Emission from the Mojave Desert (USA) by Daily Remote-Camera Observations and Wind-Erosion Measurements: Bearing on "Unseen" Sources and Global Dust Abundance

    NASA Astrophysics Data System (ADS)

    Reynolds, R. L.; Urban, F.; Goldstein, H. L.; Fulton, R.

    2017-12-01

    A large gap in understanding the effects of atmospheric dust at all spatial scales is uncertainty about how much and whence dust is emitted annually. Digital recording of dust emission at high spatial and temporal resolution would, together with periodic flux measurements, support improved estimates of local-scale dust flux where infrastructure could support remote internet enabled cameras. Such recording would also elucidate wind-erosion dynamics when combined with meteorological data. Remote camera recording of dust-emitting settings on and around Soda Lake (Mojave Desert) was conducted every 15 minutes during daylight between 10 Nov. 2010 and 31 Dec. 2016 and images uploaded to a web server. Examination of 135,000 images revealed frequent dust events, termed "dust days" when plumes obscured mountains beyond source areas. Such days averaged 68 (sd=10) per year (2011 through 2016). We examined satellite retrievals (MODIS, GOES) for dust events during six cloudless days of highest and longest duration dust emission but none were observed. From Apr. 2000 through May 2013, aeolian sediments collected at three sites were sampled and weighed. Estimates of the emitted mass of silt- and clay-size fractions were made on the basis of measured horizontal mass flux, particle sizes of sediment in collectors, and roughly determined areas of dust generation. Over this period, nearly 4 Tg yr-1 of dust (as particulate matter <63 micrometers) were emitted across the study area. Much higher rates (about 7 Tg yr-1) were estimated for a subset period from Jan. 2011 through May 2013 following a major Mojave River flood in the basin in late Dec. 2010 that deposited flood sediment across the lake basin. Increased emission was likely related to the availability of fresh, unanchored flood sediment. Within the Mojave and Great Basin deserts of North America, many settings akin to those at Soda Lake similarly emit dust that is rarely detected in satellite retrievals. These findings strongly

  6. Herschel-ATLAS: Dust Temperature and Redshift Distribution of SPIRE and PACS Detected Sources Using Submillimetre Colours

    NASA Technical Reports Server (NTRS)

    Amblard, A.; Cooray, Asantha; Serra, P.; Temi, P.; Barton, E.; Negrello, M.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.; hide

    2010-01-01

    We present colour-colour diagrams of detected sources in the Herschel-ATLAS Science Demonstration Field from 100 to 500/microns using both PACS and SPIRE. We fit isothermal modified-blackbody spectral energy distribution (SED) models in order to extract the dust temperature of sources with counterparts in GAMA or SDSS with either a spectroscopic or a photometric redshift. For a subsample of 331 sources detected in at least three FIR bands with significance greater than 30 sigma, we find an average dust temperature of (28 plus or minus 8)K. For sources with no known redshifts, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters and compare to colours of observed sources to establish the redshift distribution of those samples. For another subsample of 1686 sources with fluxes above 35 mJy at 350 microns and detected at 250 and 500 microns with a significance greater than 3sigma, we find an average redshift of 2.2 plus or minus 0.6.

  7. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    NASA Astrophysics Data System (ADS)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  8. Online Characterisation of Mineral Dust Aerosol by Single Particle Mass Spectrometry: Mineralogical Signatures of Potential Source Areas in North Africa.

    NASA Astrophysics Data System (ADS)

    Marsden, N. A.; Allan, J. D.; Flynn, M.; Ullrich, R.; Moehler, O.; Coe, H.

    2017-12-01

    The mineralogy of individual dust particles is important for atmospheric processes because mineralogy influences optical properties, their potential to act as ice nucleating particles (INP) and geochemical cycling of elements to the ocean. Bulk mineralogy of transported mineral dust has been shown to be a reflection of the source area and size fractionation during transport. Online characterisation of single particle mineralogy is highly desirable as the composition of individual particles can be reported at a temporal resolution that is relevant to atmospheric processes. Single particle mass spectrometry (SPMS) has indentified and characterised the composition of ambient dust particles but is hampered by matrix effects that result in a non-quantatative measurement of composition. The work presented describes a comparison of mass spectral characteristics of sub 2.5μm particle fractions generated from; i) nominally pure samples from the clay mineral society (CMS), ii) soil samples collected from potential source areas in North Africa and iii) ambient measurement of transported African dust made at the Cape Verde Islands. Using a novel approach to analyse the mass spectra, the distinct characteristics of the various dust samples are obtained from the online measurements. Using this technique it was observed that dust generated from sources on the North West Margin of the Sahara Desert have distinct characteristics of illite in contrast to the kaolinitic characteristics of dust generated from sources in the Sahel. These methods offer great potential for describing the hourly variation in the source and mineralogy of transported mineral dust and the online differentiation of mineral phase in multi-mineralic dust samples.

  9. Hf-Nd isotopic variability in mineral dust from Chinese and Mongolian deserts: implications for sources and dispersal

    PubMed Central

    Zhao, Wancang; Sun, Youbin; Balsam, William; Lu, Huayu; Liu, Lianwen; Chen, Jun; Ji, Junfeng

    2014-01-01

    Mineral dust provenances are closely related to the orogenic processes which may have distinct Hf-Nd isotopic signatures. Here we report the clay-sized (<2 μm) Hf-Nd isotope data from Asian dust sources to better constrain the source and transport dynamics of dust deposition in the North Pacific. Our results show that there is a more positive radiogenic Hf isotopic composition with clay-sized fractions than the corresponding bulk sample and a decoupling of the Hf-Nd couplets in the clay formation during the weathering process. The clay-sized Hf-Nd isotopic compositions of the desert samples from the Sino-Korean-Tarim Craton (SKTC) are different from those of the Gobi and deserts from the Central Asian Orogeny Belt (CAOB) due to varying tectonic and weathering controls. The Hf-Nd isotopic compositions of dust in the North Pacific central province (NPC) match closely with those from the Taklimakan, Badain Jaran and adjacent Tengger deserts, implying that the NPC dust was mainly transported from these potential sources by the westerly jet. Our study indicates that dusts from the CAOB Gobi deserts either didn't arrive in NPC or were quantitatively insignificant, but they were likely transported to the North Pacific margin province (NPM) by East Asian winter monsoon. PMID:25060781

  10. Hf-Nd isotopic variability in mineral dust from Chinese and Mongolian deserts: implications for sources and dispersal.

    PubMed

    Zhao, Wancang; Sun, Youbin; Balsam, William; Lu, Huayu; Liu, Lianwen; Chen, Jun; Ji, Junfeng

    2014-07-25

    Mineral dust provenances are closely related to the orogenic processes which may have distinct Hf-Nd isotopic signatures. Here we report the clay-sized (<2 μm) Hf-Nd isotope data from Asian dust sources to better constrain the source and transport dynamics of dust deposition in the North Pacific. Our results show that there is a more positive radiogenic Hf isotopic composition with clay-sized fractions than the corresponding bulk sample and a decoupling of the Hf-Nd couplets in the clay formation during the weathering process. The clay-sized Hf-Nd isotopic compositions of the desert samples from the Sino-Korean-Tarim Craton (SKTC) are different from those of the Gobi and deserts from the Central Asian Orogeny Belt (CAOB) due to varying tectonic and weathering controls. The Hf-Nd isotopic compositions of dust in the North Pacific central province (NPC) match closely with those from the Taklimakan, Badain Jaran and adjacent Tengger deserts, implying that the NPC dust was mainly transported from these potential sources by the westerly jet. Our study indicates that dusts from the CAOB Gobi deserts either didn't arrive in NPC or were quantitatively insignificant, but they were likely transported to the North Pacific margin province (NPM) by East Asian winter monsoon.

  11. Sources of zodiacal dust particles

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2007-08-01

    The orbital evolution of dust particles produced by asteroids, comets, and trans- Neptunian objects was integrated [1-3]. Analysis of results of these integrations testify in favor of a considerable fraction of particles produced by comets among overall zodiacal dust particles, but it does not contradict to >30% of asteroidal dust needed for explanation of formation of dust bands. Fractions of asteroidal particles, particles originating beyond Jupiter's orbit (including trans-Neptunian particles), and cometary particles originating inside of Jupiter's orbit are estimated to be about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. Comparison of the plots of the number density vs. the distance R from the Sun obtained for particles produced by different small bodies with the plots based on observations shows that asteroidal and trans- Neptunian particles alone can not explain the observed almost constant number density at R ∼3-18 AU and a lot of particles must be produced by comets at R ∼5-10 AU [2-3]. Comparison of the WHAM (Wisconsin H-Alpha Mapper spectrometer) observations of spectra of zodiacal light with our models showed [4-5] that a significant fraction of particles produced by short-period comets is required to fit the observations of the width and velocity of the Mg I line. Comparison of the observations of the number density inside Jupiter's orbit with the number density of particles produced by different small bodies leads to the same conclusion about a considerable fraction of cometary particles. This comparison does not make limitations on cometary particles produced beyond Jupiter's orbit, but it shows that the fraction of particles produced by Encke-type comets (with eccentricities ∼0.8-0.9) does not exceed 0.15 of the overall population. The estimated fraction of particles produced by long-period and Halley-type comets among zodiacal dust also does not exceed 0.1-0.15. Though trans-Neptunian particles fit different observations of

  12. Long-term Satellite Observations of Asian Dust Storm: Source, Pathway, and Interannual Variability

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina

    2008-01-01

    Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. Outbreaks of Asian dust storms occur often in the arid and semi-arid areas of northwestern China -about 1.6x10(exp 6) square kilometers including the Gobi and Taklimakan deserts- with continuous expanding of spatial coverage. These airborne dust particles, originating in desert areas far from polluted regions, interact with anthropogenic sulfate and soot aerosols emitted from Chinese megacities during their transport over the mainland. Adding the intricate effects of clouds and marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from their sources. Furthermore, these aerosols, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol properties (e.g., optical thickness, single scattering albedo) over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. This new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. Reasonable agreements have been achieved

  13. Field-testing a new directional passive air sampler for fugitive dust in a complex industrial source environment.

    PubMed

    Ferranti, E J S; Fryer, M; Sweetman, A J; Garcia, M A Solera; Timmis, R J

    2014-01-01

    Quantifying the sources of fugitive dusts on complex industrial sites is essential for regulation and effective dust management. This study applied two recently-patented Directional Passive Air Samplers (DPAS) to measure the fugitive dust contribution from a Metal Recovery Plant (MRP) located on the periphery of a major steelworks site. The DPAS can collect separate samples for winds from different directions (12 × 30° sectors), and the collected dust may be quantified using several different measurement methods. The DPASs were located up and down-prevailing-wind of the MRP processing area to (i) identify and measure the contribution made by the MRP processing operation; (ii) monitor this contribution during the processing of a particularly dusty material; and (iii) detect any changes to this contribution following new dust-control measures. Sampling took place over a 12-month period and the amount of dust was quantified using photographic, magnetic and mass-loading measurement methods. The DPASs are able to effectively resolve the incoming dust signal from the wider steelworks complex, and also different sources of fugitive dust from the MRP processing area. There was no confirmable increase in the dust contribution from the MRP during the processing of a particularly dusty material, but dust levels significantly reduced following the introduction of new dust-control measures. This research was undertaken in a regulatory context, and the results provide a unique evidence-base for current and future operational or regulatory decisions.

  14. Magnetic characteristics of industrial dust from different sources of emission: A case study of Poland

    NASA Astrophysics Data System (ADS)

    Szuszkiewicz, Marcin; Magiera, Tadeusz; Kapička, Aleš; Petrovský, Eduard; Grison, Hanna; Gołuchowska, Beata

    2015-05-01

    Dust emission and deposition in topsoil have negative effect on individual components of the ecosystem. In addition to routine geochemical analyses, magnetic measurements may provide useful complementary information related to the type, concentration and grain-size distribution of the technogenic magnetic particles (TMPs) and thus the degree of contamination of the environment. The aim of this contribution is to use magnetic parameters in distinguishing dust from a wide range of sources of air pollution (power industry, cement, coke, ceramic industries and biomass combustion). We measured magnetic susceptibility, hysteresis parameters and thermomagnetic curves. Our results suggest that predominant component in tested samples is magnetite, only dust from coking plant and the combustion of lignite contained also maghemite and/or hematite. Mixture of sizes, ranging from fine single-domain to coarse multi-domain grains, was detected. Our results indicate that industrial dusts from various sources of emissions have different specific magnetic properties and magnetic measurements may provide very helpful information.

  15. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.

    2014-06-01

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion freezing

  16. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.

    2015-01-01

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration

  17. Providing the Caribbean community with VIIRS-derived weather satellite and dust model output in preparation for African dust impacts

    NASA Astrophysics Data System (ADS)

    Kuciauskas, A. P.; Xian, P.; Hyer, E. J.; Oyola, M. I.; Campbell, J. R.

    2016-12-01

    The Naval Research Laboratory Marine Meteorology Division (NRL-MMD) predicts, monitors, and trains Caribbean agencies in preparing for and mitigating unhealthy episodes of Saharan-based dust. Of critical concern is the Saharan Air Layer (SAL), an elevated air mass of hot, dry, and often very dusty conditions that can be environmentally persistent and dangerous to the downstream Caribbean populace, resulting in respiratory illnesses; some of the world's highest asthma rates and associated premature deaths have been documented within the Caribbean islands. The SAL not only impacts the greater Caribbean, but also the Gulf of Mexico, northern South America, and southern and central US. One of the major responsibilities of the National Weather Service forecast office at San Juan, Puerto Rico (NWS-PR) is preparing the public within their area of responsibility for such events. The NRL-MMD has been at the forefront of implementing and demonstrating the positive impact of Suomi-VIIRS during SAL events. In preparation for SAL events, NRL-MMD is currently supporting the NWS-PR with near real time web-based products, primarily from VIIRS datasets. Preliminary studies have shown that VIIRS has demonstrated improvements in the assessment and prediction of dust intensities related to SAL passages. The upcoming launches of JPSS-1 and GOES-R are eagerly anticipated in possibly revolutionizing the R&D related toward further improvements in understanding Saharan dust dynamics and characteristics. Besides NWS-PR, NRL-MMD also collaborates with the Caribbean Institute for Meteorology and Hydrology (CIMH) in both providing and gathering in-situ measurements that stretch from the French Guyana northward through the West Indies island chain. Finally, NRL-MMD is involved with the Caribbean Aerosol Health Network (CAHN),an international network of health and environmental agencies whose mission is to improve the understanding of the impacts (e.g., air quality, health, climate, weather

  18. Direct Radiative Effect of Mineral Dust on the Development of African Easterly Wave in Late Summer, 2003-2007

    NASA Technical Reports Server (NTRS)

    Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong; Matsui, Toshihisa; Arking, Albert

    2012-01-01

    Episodic events of both Saharan dust outbreaks and African Easterly Waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan Air Layer (SAL) on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting (WRF) model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximum tropical cyclone activity, in years 2003-2007. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, most AEWs intensify in the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. We conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.

  19. Source apportionment and environmental fate of lead chromates in atmospheric dust in arid environments.

    PubMed

    Meza-Figueroa, Diana; González-Grijalva, Belem; Romero, Francisco; Ruiz, Joaquin; Pedroza-Montero, Martín; Rivero, Carlos Ibañez-Del; Acosta-Elías, Mónica; Ochoa-Landin, Lucas; Navarro-Espinoza, Sofía

    2018-07-15

    The environmental fate of lead derived from traffic paint has been poorly studied in developing countries, mainly in arid zones. For this purpose, a developing city located in the Sonoran desert (Hermosillo, Mexico), was chosen to conduct a study. In this paper the lead chromate (crocoite) sources in atmospheric dust were addressed using a combination of Raman microspectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and Pb isotope measurements. A high concentration of Pb and Cr as micro- and nanostructured pigments of crocoite is reported in yellow traffic paint (n=80), road dust (n=146), settled dust in roofs (n=21), and atmospheric dust (n=20) from a developing city located in the Sonoran Desert. 10 samples of peri-urban soils were collected for local geochemical background. The paint photodegradation and erosion of the asphaltic cover are enhanced by the climate, and the presence of the mineral crocoite (PbCrO 4 ) in road dust with an aerodynamic diameter ranging from 100nm to 2μm suggests its integration into the atmosphere by wind resuspension processes. A positive PbCr correlation (R 2 =0.977) was found for all studied samples, suggesting a common source. The Pb-isotope data show signatures in atmospheric dust as a product of the mixing of two end members: i) local soils and ii) crocoite crystals as pigments in paint. The presence of lead chromates in atmospheric dust has not been previously documented in Latin America, and it represents an unknown health risk to the exposed population because the identified size of crystals can reach the deepest part of lungs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations

    NASA Astrophysics Data System (ADS)

    Rizza, Umberto; Barnaba, Francesca; Marcello Miglietta, Mario; Mangia, Cristina; Di Liberto, Luca; Dionisi, Davide; Costabile, Francesca; Grasso, Fabio; Gobbi, Gian Paolo

    2017-01-01

    In this study, the Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate an intense Saharan dust outbreak event that took place over the Mediterranean in May 2014. Comparison of a simulation using a physics-based desert dust emission scheme with a numerical experiment using a simplified (minimal) emission scheme is included to highlight the advantages of the former. The model was found to reproduce well the synoptic meteorological conditions driving the dust outbreak: an omega-like pressure configuration associated with a cyclogenesis in the Atlantic coasts of Spain. The model performances in reproducing the atmospheric desert dust load were evaluated using a multi-platform observational dataset of aerosol and desert dust properties, including optical properties from satellite and ground-based sun photometers and lidars, plus in situ particulate matter mass concentration (PM) data. This comparison allowed us to investigate the model ability in reproducing both the horizontal and the vertical displacement of the dust plume, as well as its evolution in time. The comparison with satellite (MODIS-Terra) and sun photometers (AERONET) showed that the model is able to reproduce well the horizontal field of the aerosol optical depth (AOD) and its evolution in time (temporal correlation coefficient with AERONET of 0.85). On the vertical scale, the comparison with lidar data at a single site (Rome, Italy) confirms that the desert dust advection occurs in several, superimposed "pulses" as simulated by the model. Cross-analysis of the modeled AOD and desert dust emission fluxes further allowed for the source regions of the observed plumes to be inferred. The vertical displacement of the modeled dust plume was in rather good agreement with the lidar soundings, with correlation coefficients among aerosol extinction profiles up to 1 and mean discrepancy of about 50 %. The model-measurement comparison for PM10 and PM2.5 showed a

  1. Wet Dust Deposition Across Texas, USA

    NASA Astrophysics Data System (ADS)

    Collins, J. D., Jr.; Ponette-González, A.; Gill, T. E.; Glass, G. A.; Weathers, K. C.

    2016-12-01

    Atmospheric dust deposition is of critical importance in terrestrial biogeochemical cycles, supplying essential limiting nutrients, such as calcium and phosphorus as well as pollutants, such as lead, to ecosystems. Dust particles are delivered to terrestrial ecosystems directly as dry deposition or in precipitation (wet deposition) as a result of rainout (particles incorporated into cloud droplets) and washout (particles that collide with raindrops as they fall). Compared to dry deposition, wet dust deposition (dissolved + particulate) is a poorly understood yet potentially significant pathway for dust input, especially in humid regions. We quantified wet dust deposition to two National Atmospheric Deposition Monitoring (NADP) sites across Texas-one in west (Guadalupe Mountains) and one in east (near Houston) Texas-with contrasting climate/dust regimes and land cover. We focused on 2012 during one of the most severe droughts in Texas since 1895. Dust event days (DEDs) were identified using meteorological data for stations within 150 km of the NADP sites where wet deposition was sampled weekly. DEDs were defined using the following criteria: visibility <10 km, <30% relative humidity, and wind speed >50 km, supplemented with other Saharan dust incursion and dust observations. A total of 34 DEDs (20 sample weeks) were identified for the west and 5 DEDs (4 sample weeks) for the east Texas sites. Bulk elemental composition of washout particles is analyzed using Particle Induced X-ray Emission (PIXE) spectroscopy and X-ray Fluorescence (XRF) spectroscopy. Using these data, we will examine differences in the chemical composition of rainwater and aerosol particles filtered from rain samples for dust versus non-dust event days at each study site. Deposition fluxes for dust and non-dust event weeks are also compared. Quantifying the magnitude of wet dust deposition is necessary to improve evaluation of dust impacts on biogeochemical cycles.

  2. Using Si depletion in aerosol to identify the sources of crustal dust in two Chinese megacities

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; He, Kebin; Rahn, Kenneth A.; Ma, Yongliang; Yang, Fumo; Duan, Fengkui

    2010-07-01

    Depletion of Si in transported dust has been recognized for many years. It can be used to distinguish between transported and local dust in cities, although it rarely has been. Here we use the variations of the Si/Al ratio in 15 months of continuous PM 2.5 samples at Beijing (northern China) and Chongqing (southwestern China) to reveal the seasonal patterns of their dust sources. For both cities, peaks of concentration for Si and Al in PM 2.5 corresponded with minima of Si/Al, and could often be linked to pulsed air flow from deserts to the northwest. With significant depletion (up to 80%) and homogeneous distribution at urban and rural sites, Si/Al showed a clear seasonal evolution, which decreased from spring to summer, increased from fall to winter, and collapsed during Chinese Spring Festival, indicating the dominance of transported dust, local fugitive dust and firework influence, respectively. The low ratios implied that desert dust is a common source during spring at Chongqing, whereas its presence during cold season at Beijing was also more frequent than expected. Failing to recognize the depletion of Si may lead to an overestimate of desert dust by 15%-65% when using the average abundance of Al in crust (6%-8%), as in previous studies. The difference in Si/Al ratio between local and transported dust implies that >60% of the dust at Beijing came from outside the city during the springs of 2004-2006. This result can help resolve the contradictory findings on this topic that have been presented earlier.

  3. Sensitivity of Sahelian Precipitation to Desert Dust under ENSO variability: a regional modeling study

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.

    2016-12-01

    Mineral dust is estimated to comprise over half the total global aerosol burden, with a majority coming from the Sahara and Sahel region. Bounded by the Sahara Desert to the north and the Sahelian Savannah to the south, the Sahel experiences high interannual rainfall variability and a short rainy season during the boreal summer months. Observation-based data for the past three decades indicates a reduced dust emission trend, together with an increase in greening and surface roughness within the Sahel. Climate models used to study regional precipitation changes due to Saharan dust yield varied results, both in sign convention and magnitude. Inconsistency of model estimates drives future climate projections for the region that are highly varied and uncertain. We use the NASA-Unified Weather Research and Forecasting (NU-WRF) model to quantify the interaction and feedback between desert dust aerosol and Sahelian precipitation. Using nested domains at fine spatial resolution we resolve changes to mesoscale atmospheric circulation patterns due to dust, for representative phases of El Niño-Southern Oscillation (ENSO). The NU-WRF regional earth system model offers both advanced land surface data and resolvable detail of the mechanisms of the impact of Saharan dust. Results are compared to our previous work assessed over the Western Sahel using the Geophysical Fluid Dynamics Laboratory (GFDL) CM2Mc global climate model, and to other previous regional climate model studies. This prompts further research to help explain the dust-precipitation relationship and recent North African dust emission trends. This presentation will offer a quantitative analysis of differences in radiation budget, energy and moisture fluxes, and atmospheric dynamics due to desert dust aerosol over the Sahel.

  4. Airborne Sunphotometry of African Dust and Marine Boundary Layer Aerosols in PRIDE

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Redemann, Jens; Russell, Philip; Schmid, Beat; Reid, Jeff; Pilewskie, Peter; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during summer 2000 to study the radiative, microphysical and transport properties of Saharan dust in the Caribbean region. During PRIDE, NASA Ames Research Center's six-channel airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane based at Roosevelt Roads Naval Station on the northeast coast of Puerto Rico. AATS-6 measurements were taken during 21 science flights off the coast of Puerto Rico in the western Caribbean. Data were acquired within and above the Marine Boundary Layer (MBL) and the Saharan Aerosol Layer (SAL) up to 5.5 km altitude tinder a wide range of dust loadings. Aerosol optical depth (AOD) spectra and columnar water vapor (CWV) values have been calculated from the AATS-6 measurements by using sunphotometer calibration data obtained at Mauna Loa Observatory (3A kin ASL) before (May) and after (October) PRIDE. Mid-visible AOD values measured near the surface during PRIDE ranged from 0.07 on the cleanest day to 0.55 on the most turbid day. Values measured above the MBL were as high as 0.35; values above the SAL were as low as 0.01. The fraction of total column AOD due to Saharan dust cannot be determined precisely from AATS-6 AOD data alone due to the uncertainty in the extent of vertical mixing of the dust down through the MBL. However, analyses of ground-based and airborne in-situ aerosol sampling measurements and ground-based aerosol lidar backscatter data should yield accurate characterization of the vertical mixing that will enable calculation of the Saharan dust AOD component from the sunphotometer data. Examples will be presented showing measured AATS-6 AOD spectra, calculated aerosol extinction and water vapor density vertical profiles, and aerosol size distributions retrieved by inversion of the AOD spectra. Near sea-surface AOD spectra acquired by AATS-6 during horizontal flight legs at 30 m ASL are available for validation of AOD derived from coincident

  5. Global dust model intercomparison in AeroCom phase I

    NASA Astrophysics Data System (ADS)

    Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Kinne, S.; Prospero, J.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; Diehl, T.; Easter, R.; Fillmore, D.; Ghan, S.; Ginoux, P.; Grini, A.; Horowitz, L.; Koch, D.; Krol, M. C.; Landing, W.; Liu, X.; Mahowald, N.; Miller, R.; Morcrette, J.-J.; Myhre, G.; Penner, J. E.; Perlwitz, J.; Stier, P.; Takemura, T.; Zender, C.

    2010-10-01

    Desert dust plays an important role in the climate system through its impact on Earth's radiative budget and its role in the biogeochemical cycle as a source of iron in high-nutrient-low-chlorophyll regions. A large degree of diversity exists between the many global models that simulate the dust cycle to estimate its impact on climate. We present the results of a broad intercomparison of a total of 15 global aerosol models within the AeroCom project. Each model is compared to observations focusing on variables responsible for the uncertainties in estimating the direct radiative effect and the dust impact on the biogeochemical cycle, i.e., aerosol optical depth (AOD) and dust deposition. Additional comparisons to Angström Exponent (AE), coarse mode AOD and dust surface concentration are included to extend the assessment of model performance. These datasets form a benchmark data set which is proposed for model inspection and future dust model developments. In general, models perform better in simulating climatology of vertically averaged integrated parameters (AOD and AE) in dusty sites than they do with total deposition and surface concentration. Almost all models overestimate deposition fluxes over Europe, the Indian Ocean, the Atlantic Ocean and ice core data. Differences among the models arise when simulating deposition at remote sites with low fluxes over the Pacific and the Southern Atlantic Ocean. This study also highlights important differences in models ability to reproduce the deposition flux over Antarctica. The cause of this discrepancy could not be identified but different dust regimes at each site and issues with data quality should be considered. Models generally simulate better surface concentration at stations downwind of the main sources than at remote ones. Likewise, they simulate better surface concentration at stations affected by Saharan dust than at stations affected by Asian dust. Most models simulate the gradient in AOD and AE between the

  6. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models

    NASA Astrophysics Data System (ADS)

    Philip, Sajeev; Martin, Randall V.; Snider, Graydon; Weagle, Crystal L.; van Donkelaar, Aaron; Brauer, Michael; Henze, Daven K.; Klimont, Zbigniew; Venkataraman, Chandra; Guttikunda, Sarath K.; Zhang, Qiang

    2017-04-01

    Global measurements of the elemental composition of fine particulate matter across several urban locations by the Surface Particulate Matter Network reveal an enhanced fraction of anthropogenic dust compared to natural dust sources, especially over Asia. We develop a global simulation of anthropogenic fugitive, combustion, and industrial dust which, to our knowledge, is partially missing or strongly underrepresented in global models. We estimate 2-16 μg m-3 increase in fine particulate mass concentration across East and South Asia by including anthropogenic fugitive, combustion, and industrial dust emissions. A simulation including anthropogenic fugitive, combustion, and industrial dust emissions increases the correlation from 0.06 to 0.66 of simulated fine dust in comparison with Surface Particulate Matter Network measurements at 13 globally dispersed locations, and reduces the low bias by 10% in total fine particulate mass in comparison with global in situ observations. Global population-weighted PM2.5 increases by 2.9 μg m-3 (10%). Our assessment ascertains the urgent need of including this underrepresented fine anthropogenic dust source into global bottom-up emission inventories and global models.

  7. Discernible rhythm in the spatio/temporal distributions of transatlantic dust

    NASA Astrophysics Data System (ADS)

    Ben-Ami, Y.; Koren, I.; Altaratz, O.; Kostinski, A. B.; Lehahn, Y.

    2011-08-01

    southern retreat of the dust transport route are in accordance with the simultaneous shift of the Inter Tropical Front. Based on cross-correlation analyses, we attribute the observed rhythm to the contrast between the northwestern and southern Saharan dust source spatial distributions. Despite the vast difference in areas, the Bodélé Depression, located in Chad, appears to modulate transatlantic dust patterns about half the time. The proposed partition captures the essence of transatlantic dust climatology and may, therefore, supply a natural temporal framework for dust analysis via models and observations.

  8. Tracing anthropogenic aerosol Fe sources in the North Atlantic Ocean using dissolved Fe isotope ratios

    NASA Astrophysics Data System (ADS)

    Conway, T. M.; Shelley, R.; Aguilar-Islas, A. M.; Landing, W. M.; Mahowald, N. M.; John, S.

    2016-02-01

    Supply of iron (Fe) to the surface ocean from atmospheric deposition plays a vital role in marine biogeochemical cycles, especially in Fe-limited areas or regions close to dust sources. However, large uncertainties remain over the fluxes, solubility and bioavailability of Fe supplied by aerosol dust. Additionally, aerosol Fe is likely to consist of a mixture of natural and anthropogenic (urban, biomass burning and combustion) components, which may have very different solubilities in seawater [e.g. 1]. To constrain soluble Fe supply to the oceans, it is thus vitally important to understand the relative contributions of different types of aerosol Fe, their solubilities and spatial distributions. Stable Fe isotopes (δ56Fe) may offer a way to discriminate between different dust sources [2], because of differential fractionation during a range of chemical processes. In this study, we measured δ56Fe in North Atlantic marine aerosols collected during two US GEOTRACES GA03 cruises (Lisbon to Woods Hole via Cape Verde, 2010-11) and we present δ56Fe measurements (relative to IRMM-014) from both the bulk aerosol (HF-HNO3 digested) and the water-soluble (10s ultrapure water leach) fractions. Aerosols collected from different air-masses (Saharan, European and N. American) allowed us to investigate the variability in δ56Fe due to different regional dust sources. The bulk phase was characterized by near-crustal δ56Fe values of +0.1±0.2‰, indicating the dominance of mineral dust. In contrast, the water-soluble fraction showed great variability; aerosols from European and North American air-masses were very isotopically light (-1.2±0.2‰ and -1.1±0.7‰) while those from Saharan air-masses were crustal (+0.1‰). Comparison of this data with isotope-informed model predictions of soluble Fe from mineral and anthropogenic sources (combustion, biofuels and biomass burning) [1], suggests that the data is consistent with mixing of either 1) Fe from mineral dust (+0.1‰) and

  9. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ancellet, Gerard; Pelon, Jacques; Totems, Julien; Chazette, Patrick; Bazureau, Ariane; Sicard, Michaël; Di Iorio, Tatiana; Dulac, Francois; Mallet, Marc

    2016-04-01

    Long-range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (i) pure BB layer, (ii) weakly dusty BB, (iii) significant mixture of BB and dust transported from the trade wind region, and (iv) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct northward dust outflow

  10. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    PubMed Central

    Reynolds, Richard; Belnap, Jayne; Reheis, Marith; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20–30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt. PMID:11390965

  11. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    USGS Publications Warehouse

    Reynolds, R.; Belnap, Jayne; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20a??30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

  12. Probing the Interstellar Dust towards the Galactic Centre using X-ray Dust Scattering Halos

    NASA Astrophysics Data System (ADS)

    Jin, C.; Ponti, G.; Haberl, F.; Smith, R.

    2017-10-01

    Dust scattering creates an X-ray halo that contains abundant information about the interstellar dust along the source's line-of-sight (LOS), and is most prominent when the LOS nH is high. In this talk, I will present results from our latest study of a bright dust scattering halo around an eclipsing X-ray binary at 1.45 arcmin away from Sgr A*, namely AX J1745.6-2901. This study is based on a large set of XMM-Newton and Chandra observations, and is so-far the best dust scattering halo study of a X-ray transient in the Galactic centre (GC). I will show that the foreground dust of AX J1745.6-2901 can be decomposed into two major thick dust layers. One layer contains (66-81)% of the total LOS dust and is several kpc away from the source, and so is most likely to reside in the Galactic disc. The other layer is local to the source. I will also show that the dust scattering halo can cause the source spectrum to severely depend on the source extraction region. Such spectral bias can be corrected by our new Xspec model, which is likely to be applicable to Sgr A* and other GC sources as well.

  13. Characterization of Dust Properties at the Source Region During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Lau, William (Technical Monitor)

    2001-01-01

    ACE (Aerosol Characterization Experiment)-Asia is designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally-occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. The phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, east coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of dust aerosol radiative flux in addition to measurements of loading and optical thickness. At the time of the Terra/MODIS overpass, these ground-based observations can provide valuable data to compare with MODIS retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  14. Does the long-range transport of African mineral dust across the Atlantic enhance their hygroscopicity?

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Caquineau, Sandrine; Desboeufs, Karine; Laurent, Benoit; Quiñones Rosado, Mariana; Vallejo, Pamela; Mayol-Bracero, Olga; Formenti, Paola

    2015-04-01

    Influence of mineral dust on radiation balance is largely dependent on their ability to interact with water. While fresh mineral dusts are highly hydrophobic, various transformation processes (coagulation, heterogeneous chemical reaction) can modify the dust physical and chemical properties during long-range transport, which, in turn, can change the dust hygroscopic properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of dust hygroscopic properties, and their temporal evolution during long-range transport. We present the first direct surface measurements of the hygroscopicity of Saharan dust after long-range transport over the Atlantic Ocean, their relationship with chemical composition, their influence on particle size and shape and implications for optical properties. Particles were collected during the DUST Aging and TransporT from Africa to the Caribbean (Dust-AttaCk) campaign at the Cape San Juan Puerto Rico station in June-July 2012. Environmental scanning electron microscopy (ESEM) was used to analyze the size, shape, chemical composition and hygroscopic properties of individual particles. At different levels of concentrations in summertime, the coarse mode of atmospheric aerosols in Puerto Rico is dominated by Saharan mineral dust. Most of aged dust particles survived atmospheric transport intact with no observed internal mixture with other species and did not show hygroscopic growth up to 94% relative humidity. This is certainly due to the fact that in summertime dust is mostly transported above the marine boundary layer. A minor portion of mineral dust (approximately 19-28% by number) were involved in atmospheric heterogeneous reactions with acidic gases (likely SO2 and HCl) and sea salt aggregation. While sulfate- and chloride-coated dust remained extremely hydrophobic, dust particles in internal mixing with NaCl underwent profound changes in their hygroscopicity, therefore in size and shape. We

  15. Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara

    USGS Publications Warehouse

    Moskowitz, Bruce M; Reynolds, Richard L.; Goldstein, Harland L.; Beroquo, Thelma; Kokaly, Raymond F.; Bristow, Charlie S

    2016-01-01

    Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002–0.57 wt%) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM < 0.1 μm. For all examined samples, the average iron apportionment is estimated at about 33% in ferric oxide minerals, 1.4% in magnetite, and 65

  16. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Richon, Camille; Dutay, Jean-Claude; Dulac, François; Wang, Rong; Balkanski, Yves

    2018-04-01

    Daily modeled fields of phosphate deposition to the Mediterranean from natural dust, anthropogenic combustion and wildfires were used to assess the effect of this external nutrient on marine biogeochemistry. The ocean model used is a high-resolution (1/12°) regional coupled dynamical-biogeochemical model of the Mediterranean Sea (NEMO-MED12/PISCES). The input fields of phosphorus are for 2005, which are the only available daily resolved deposition fields from the global atmospheric chemical transport model LMDz-INCA. Traditionally, dust has been suggested to be the main atmospheric source of phosphorus, but the LMDz-INCA model suggests that combustion is dominant over natural dust as an atmospheric source of phosphate (PO4, the bioavailable form of phosphorus in seawater) for the Mediterranean Sea. According to the atmospheric transport model, phosphate deposition from combustion (Pcomb) brings on average 40.5×10-6 mol PO4 m-2 yr-1 over the entire Mediterranean Sea for the year 2005 and is the primary source over the northern part (e.g., 101×10-6 mol PO4 m-2 yr-1 from combustion deposited in 2005 over the north Adriatic against 12.4×10-6 from dust). Lithogenic dust brings 17.2×10-6 mol PO4 m-2 yr-1 on average over the Mediterranean Sea in 2005 and is the primary source of atmospheric phosphate to the southern Mediterranean Basin in our simulations (e.g., 31.8×10-6 mol PO4 m-2 yr-1 from dust deposited in 2005 on average over the south Ionian basin against 12.4×10-6 from combustion). The evaluation of monthly averaged deposition flux variability of Pdust and Pcomb for the 1997-2012 period indicates that these conclusions may hold true for different years. We examine separately the two atmospheric phosphate sources and their respective flux variability and evaluate their impacts on marine surface biogeochemistry (phosphate concentration, chlorophyll a, primary production). The impacts of the different phosphate deposition sources on the biogeochemistry of the

  17. Dust Concentrations and Composition During African Dust Incursions in the Caribbean Region

    NASA Astrophysics Data System (ADS)

    Mayol-Bracero, O. L.; Santos-Figueroa, G.; Morales-Garcia, F.

    2016-12-01

    The World Health Organization (WHO) indicates that exposure to PM10 concentrations higher than 50 µg/m³ 24-hour mean in both developed and developing countries could have an adverse impact on public health. Recent studies showed that in the Caribbean region the PM10 concentrations often exceed the WHO guidelines for PM10. These exceedances are largely driven by the presence of African Dust particles that reach the Caribbean region every year during the summer months. These dust particles also influence the Earth's radiative budget directly by scattering solar radiation in the atmosphere and indirectly by affecting cloud formation and, thus, cloud albedo. In order to have a better understanding of the impacts of African Dust on public health and climate, we determine the concentration of dust particles, the carbonaceous fraction (total, elemental and organic carbon: TC, EC, and OC) and water-soluble ions (e.g., Na+, Cl-, Ca+2, NH4+, SO4-2) of aerosol samples in the presence and absence of African Dust. Samples were collected using a Hi-Vol and Stacked-Filter Units for the sampling of total suspended particles (TSP) at two stations in Puerto Rico: a marine site located at Cabezas de San Juan (CSJ) Nature Reserve, in Fajardo, and an urban site located at the University of Puerto Rico, in San Juan. The presence of African Dust was supported with Saharan Air Layer (SAL) imagery and with the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Preliminary results showed that the total mass concentration of aerosols obtained at the urban site is about two times that at the marine site for SFU samples during African Dust incursions. The average dust concentration obtained at CSJ for Hi Vol samples was 22 µg/m³ during the summer 2015. African Dust concentrations, TC, EC, OC, and ionic speciation results for the marine and urban sites will be presented at the conference.

  18. Direct Radiative Effect of Mineral Dust on the Development of African Easterly Waves in Late Summer, 2003-07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong

    2012-12-19

    Episodic events of both Saharan dust outbreaks and African easterly waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan air layer on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximumtropical cyclone activity, in years 2003–07. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, mostAEWsintensify inmore » the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. The authors conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.« less

  19. The summer 2012 Saharan dust season in the western Mediterranean with focus on the intense event of late June during the Pre-ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Dulac, François; Nicolas, José B.; Sciare, Jean; Mallet, Marc; Léon, Jean-François; Pont, Véronique; Sicard, Michaël; Renard, Jean-Baptiste; Nabat, Pierre; El Amraoui, Laaziz; Jaumouillé, Elodie; Roberts, Greg; Attié, Jean-Luc; Somot, Samuel; Laurent, Benoît; Losno, Rémi; Vincent, Julie; Formenti, Paola; Bergametti, Gilles; Ravetta, François

    2013-04-01

    Saharan dust is an usual aerosol over the Mediterranean basin that contributes to the high average aerosol load during summer in the western Mediterranean marine environment. Satellite monitoring shows that dust events were numerous during summer 2012. Even though most of the transport of dust particles occurs in altitude, as shown by surface lidars and airborne data, dust events significantly impact surface PM10 concentrations even in urban traffic type of air quality monitoring stations, and background stations are needed to assess the contribution of desert dust. During the pre-ChArMEx field campaign and associated field campaigns TRAQA and VESSAER in the north-western Mediterranean, a large scale African dust event occurred in late June-early July with optical depth levels in the visible up to 0.5-0.7 rather unusual in that area according to long time remote sensing AERONET or satellite series. We have performed measurements in the dust plume for several days with a particularly large variety of both ground-based and airborne (from sounding balloons, an aircraft and an ultra-light aircraft) remote sensing and in situ instruments. In addition to satellite aerosol products including MSG/SEVIRI, which provides the spatial distribution of the aerosol optical depth over the basin up to 4 times per hour, POLDER and CALIOP, this yields a complete set of unusual quantitative constraints for model simulations of this event, combining data on aerosol optical depth, vertical distribution, particle size distribution, chemical, optical and microphysical properties. We shall provide an overview of the data set that includes original measurements of the vertical profile of the aerosol size distribution with a new small balloon borne OPC called LOAC (Light Optical Aerosol Counter) showing large dust particles (up to 30 µm in diameter) within a thick dust layer between 1 and 5 km above south-eastern France, and original network measurement of weekly dust deposition with a new

  20. Introduction to project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    NASA Astrophysics Data System (ADS)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2014-01-01

    The main goal of project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of eolian mineral dust. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension after atmospheric deposition at the sea surface. This introductory paper describes the objectives of DUNE and the implementation plan of a series of mesocosm experiments conducted in the Mediterranean Sea in 2008 and 2010 during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated based on the production of dust analogs from erodible soils of a source region. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented. From laboratory results on the solubility of trace elements in dust to biogeochemical results from the mesocosm experiments and associated modeling, these papers describe how the strong simulated dust deposition events impacted the marine biogeochemistry. Those multidisciplinary results are bringing new insights into the role of atmospheric deposition on oligotrophic ecosystems and its impact on the carbon budget. The dissolved trace metals with crustal origin - Mn, Al and Fe - showed different behaviors as a function of time after the seeding. The increase in dissolved Mn and Al concentrations was attributed to dissolution processes. The observed decrease in dissolved Fe was due to scavenging on sinking dust particles and aggregates. When a second dust seeding followed, a dissolution of Fe from the dust particles was then observed due to the excess Fe binding ligand concentrations present at that time. Calcium nitrate and sulfate were formed in the dust

  1. Composition and sources of atmospheric dusts in snow at 3200 meters in the St. Elias Range, southeastern Alaska, USA

    USGS Publications Warehouse

    Hinkley, T.K.

    1994-01-01

    Dusts in snow from the accumulation zone in the St. Elias Range appear from their chemical compositions to have come from terranes of rocks of ferromagnesian composition. These dusts, with respect to their composition and to the moderate degree of variation that occurs through a depositional year, are similar those deposited in Greenland. The high portion of the St. Elias Range is isolated from dominance by any local dust source terranes, because of altitude and the extent of the surrounding glacierized and snow-covered region. In Greenland the altitude is typically lower, but local sources are even less likely to dominate the character of the dusts deposited into the ice record there. The similar compositions and moderate compositional variations of dusts from these two places bear on the question of whether the dusts that are transported over long distances by the atmosphere under modern and glacial-period conditions are uniform and representative of a broad regional or even hemispheric background dust. The dusts in the snow were measured by means of a suite of major, minor, and trace rock-forming metals chosen to give information about rock types, their constituent minerals, degree of degradation (weathering), and energies of atmospheric uptake from source. The variations in amounts of rock dust through the year in the St. Elias Range snowpack have no time-stratigraphic correspondence to the also large variations in concentrations of other species that are not constituents of rock-derived dusts, such the anions chloride, sulfate, and nitrate; the highs and lows of the two types of materials are apparently completely independent. The structure revealed by the moderately fine-scale sampling of the present study (??? 10 increments/y) serves as a background for the interpretation of analysis of ice core samples, in which annual layers may be too compressed to permit analysis of sub-annual samples. ?? 1994.

  2. A novel integrated approach for the hazardous radioactive dust source terms estimation in future nuclear fusion power plants.

    PubMed

    Poggi, L A; Malizia, A; Ciparisse, J F; Gaudio, P

    2016-10-01

    An open issue still under investigation by several international entities working on the safety and security field for the foreseen nuclear fusion reactors is the estimation of source terms that are a hazard for the operators and public, and for the machine itself in terms of efficiency and integrity in case of severe accident scenarios. Source term estimation is a crucial key safety issue to be addressed in the future reactors safety assessments, and the estimates available at the time are not sufficiently satisfactory. The lack of neutronic data along with the insufficiently accurate methodologies used until now, calls for an integrated methodology for source term estimation that can provide predictions with an adequate accuracy. This work proposes a complete methodology to estimate dust source terms starting from a broad information gathering. The wide number of parameters that can influence dust source term production is reduced with statistical tools using a combination of screening, sensitivity analysis, and uncertainty analysis. Finally, a preliminary and simplified methodology for dust source term production prediction for future devices is presented.

  3. Linking Barbados Mineral Dust Aerosols to North African Sources Using Elemental Composition and Radiogenic Sr, Nd, and Pb Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Bozlaker, Ayse; Prospero, Joseph M.; Price, Jim; Chellam, Shankararaman

    2018-01-01

    Large quantities of African dust are carried across the Atlantic to the Caribbean Basin and southern United States where it plays an important role in the biogeochemistry of soils and waters and in air quality. Dusts' elemental and isotopic composition was comprehensively characterized in Barbados during the summers of 2013 and 2014, the season of maximum dust transport. Although total suspended insoluble particulate matter (TSIP) mass concentrations varied significantly daily and between the two summers, the abundances (μg element/g TSIP) of 50 elements during "high-dust days" (HDD) were similar. Aerosols were regularly enriched in Na, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, and W relative to the upper continental crust. Enrichment of these elements, many of which are anthropogenically emitted, was significantly reduced during HDD, attributed to mixing and dilution with desert dust over source regions. Generally, Ti/Al, Si/Al, Ca/Al, Ti/Fe, Si/Fe, and Ca/Fe ratios during HDD differed from their respective values in hypothesized North African source regions. Nd isotope composition was relatively invariant for "low-dust days" (LDD) and HDD. In contrast, HDD-aerosols were more radiogenic exhibiting higher 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios compared to LDD. Generally, Barbados aerosols' composition ranged within narrow limits and was much more homogeneous than that of hypothesized African source soils. Our results suggest that summertime Barbados aerosols are dominated by a mixture of particles originating from sources in the Sahara-Sahel regions. The Bodélé Depression, long suspected as a major source, appears to be an insignificant contributor of summertime western Atlantic dust.

  4. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...

    2014-06-27

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterizationmore » developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion

  5. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...

    2015-01-13

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. Themore » parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including

  6. Linkages between observed, modeled Saharan dust loading and meningitis in Senegal during 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Diokhane, Aminata Mbow; Jenkins, Gregory S.; Manga, Noel; Drame, Mamadou S.; Mbodji, Boubacar

    2016-04-01

    The Sahara desert transports large quantities of dust over the Sahelian region during the Northern Hemisphere winter and spring seasons (December-April). In episodic events, high dust concentrations are found at the surface, negatively impacting respiratory health. Bacterial meningitis in particular is known to affect populations that live in the Sahelian zones, which is otherwise known as the meningitis belt. During the winter and spring of 2012, suspected meningitis cases (SMCs) were with three times higher than in 2013. We show higher surface particular matter concentrations at Dakar, Senegal and elevated atmospheric dust loading in Senegal for the period of 1 January-31 May during 2012 relative to 2013. We analyze simulated particulate matter over Senegal from the Weather Research and Forecasting (WRF) model during 2012 and 2013. The results show higher simulated dust concentrations during the winter season of 2012 for Senegal. The WRF model correctly captures the large dust events from 1 January-31 March but has shown less skill during April and May for simulated dust concentrations. The results also show that the boundary conditions are the key feature for correctly simulating large dust events and initial conditions are less important.

  7. Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model.

    PubMed

    Li, Nan; Long, Xin; Tie, Xuexi; Cao, Junji; Huang, Rujin; Zhang, Rong; Feng, Tian; Liu, Suixin; Li, Guohui

    2016-01-15

    We developed a regional dust dynamical model (WRF-Dust) to simulate surface dust concentrations in the Guanzhong (GZ) basin of China during two typical dust cases (19th Aug. and 26th Nov., 2013), and compared model results with the surface measurements at 17 urban and rural sites. The important improvement of the model is to employ multiple high-resolution (0.5-500 m) remote sensing data to construct dust sources. The new data include the geographic information of constructions, croplands, and barrens over the GZ basin in summer and winter of 2013. For the first time, detailed construction dust emissions have been introduced in a regional dust model in large cities of China. Our results show that by including the detailed dust sources, model performance at simulating dust pollutions in the GZ basin is significantly improved. For example, the simulated dust concentration average for the 17 sites increases from 28 μg m(-3) to 59 μg m(-3), closing to the measured concentration of 66 μg m(-3). In addition, the correlation coefficient (r) between the calculated and measured dust concentrations is also improved from 0.17 to 0.57, suggesting that our model better presents the spatial variation. Further analysis shows that urban construction activities are the crucial source in controlling urban dust pollutions. It should be considered by policy makers for mitigating particulate air pollution in many Chinese cities. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  9. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    NASA Astrophysics Data System (ADS)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  10. Aeolian system dynamics derived from thermal infrared data

    NASA Astrophysics Data System (ADS)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a

  11. Spectral Remote Sensing of Dust Sources on the U.S. Great Plains from 1930s Panchromatic Aerial Phtography

    NASA Astrophysics Data System (ADS)

    Bolles, K.; Forman, S. L.

    2017-12-01

    Understanding the spatiotemporal dynamics of dust sources is essential to accurately quantify the various impacts of dust on the Earth system; however, a persistent deficiency in modeling dust emission is detailed knowledge of surface texture, geomorphology, and location of dust emissive surfaces, which strongly influence the effects of wind erosion. Particle emission is closely linked to both climatic and physical surface factors - interdependent variables that respond to climate nonlinearly and are mitigated by variability in land use or management practice. Recent efforts have focused on development of a preferential dust source (PDS) identification scheme to improve global dust-cycle models, which posits certain surfaces are more likely to emit dust than others, dependent upon associated sediment texture and geomorphological limitations which constrain sediment supply and availability. In this study, we outline an approach to identify and verify the physical properties and distribution of dust emissive surfaces in the U.S. Great Plains from historical aerial imagery in order to establish baseline records of dust sources, associated erodibility, and spatiotemporal variability, prior to the satellite era. We employ a multi-criteria, spatially-explicit model to identify counties that are "representative" of the broader landscape on the Great Plains during the 1930s. Parameters include: percentage of county cultivated and uncultivated per the 1935 Agricultural Census, average soil sand content, mean annual Palmer Drought Severity Index (PDSI), maximum annual temperature and percent difference to the 30-year normal maximum temperature, and annual precipitation and percent difference to the 30-year normal precipitation level. Within these areas we generate random points to select areas for photo reproduction. Selected frames are photogrammetrically scanned at 1200 dpi, radiometrically corrected, mosaicked and georectified to create an IKONOS-equivalent image. Gray

  12. North African dust emissions and transport

    NASA Astrophysics Data System (ADS)

    Engelstaedter, Sebastian; Tegen, Ina; Washington, Richard

    2006-11-01

    The need for a better understanding of the role of atmospheric dust in the climate system and its impact on the environment has led to research of the underlying causes of dust variability in space and time in recent decades. North Africa is one of the largest dust producing regions in the world with dust emissions being highly variable on time scales ranging from diurnal to multiannual. Changes in the dust loading are expected to have an impact on regional and global climate, the biogeochemical cycle, and human environments. The development of satellite derived products of global dust distributions has improved our understanding of dust source regions and transport pathways in the recent years. Dust models are now capable of reproducing more realistic patterns of dust distributions due to an improved parameterization of land surface conditions. A recent field campaign has improved our understanding of the natural environment and emission processes of the most intense and persistent dust sources in the world, the Bodélé Depression in Chad. In situ measurements of dust properties during air craft observations in and down wind of source regions have led to new estimates of the radiative forcing effects which are crucial in predicting future climate change. With a focus on the North African desert regions, this paper provides a review of the understanding of dust source regions, the variability of dust emissions, climatic controls of dust entrainment and transport, the role of human impact on dust emission, and recent developments of global and regional dust models.

  13. Regional prediction of carbon isotopes in soil carbonates for Asian dust source tracer

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Cui, Xinjuan; Wang, Yaqiang

    2016-10-01

    Dust particles emitted from deserts and semi-arid lands in northern China cause particulate pollution that increases the burden of disease particularly for urban population in East Asia. The stable carbon isotopes (δ13C) of carbonates in soils and dust aerosols in northern China were investigated. We found that the δ13C of carbonates in surface soils in northern China showed clearly the negative correlation (R2 = 0.73) with Normalized Difference Vegetation Index (NDVI). Using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived NDVI, we predicted the regional distribution of δ13C of soil carbonates in deserts, sandy lands, and steppe areas. The predictions show the mean δ13C of -0.4 ± 0.7‰ in soil carbonates in Taklimakan Desert and Gobi Deserts, and the isotope values decrease to -3.3 ± 1.1‰ in sandy lands. The increase in vegetation coverage depletes 13C in soil carbonates, thus the steppe areas are predicted by the lowest δ13C levels (-8.1 ± 1.7‰). The measurements of atmospheric dust samples at eight sites showed that the Asian dust sources were well assigned by the 13C mapping in surface soils. Predicting 13C in large geographical areas with fine resolution offers a cost-effective tracer to monitor dust emissions from sandy lands and steppe areas which show an increasing role in Asian dust loading driven by climate change and human activities.

  14. Probing the Spatial Distribution of the Interstellar Dust Medium by High Angular Resolution X-ray Halos of Point Sources

    NASA Astrophysics Data System (ADS)

    Xiang, Jingen

    X-rays are absorbed and scattered by dust grains when they travel through the interstellar medium. The scattering within small angles results in an X-ray ``halo''. The halo properties are significantly affected by the energy of radiation, the optical depth of the scattering, the grain size distributions and compositions, and the spatial distribution of dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is an important tool to study the size distribution and spatial distribution of interstellar grains, which plays a central role in the astrophysical study of the interstellar medium, such as the thermodynamics and chemistry of the gas and the dynamics of star formation. With excellent angular resolution, good energy resolution and broad energy band, the Chandra ACIS is so far the best instrument for studying the X-ray halos. But the direct images of bright sources obtained with ACIS usually suffer from severe pileup which prevents us from obtaining the halos in small angles. We first improve the method proposed by Yao et al to resolve the X-ray dust scattering halos of point sources from the zeroth order data in CC-mode or the first order data in TE mode with Chandra HETG/ACIS. Using this method we re-analyze the Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scattering halos around 17 bright X-ray point sources using Chandra data. All sources were observed with the HETG/ACIS in CC-mode or TE-mode. Using the interstellar grain models of WD01 model and MRN model to fit the halo profiles, we get the hydrogen column densities and the spatial distributions of the scattering dust grains along the line of sights (LOS) to these sources. We find there is a good linear correlation not only between the scattering hydrogen column density from WD01 model and the one from MRN model, but also between N_{H} derived from spectral fits and the one derived from the grain models WD01 and MRN (except for GX 301-2 and Vela X-1): N

  15. Composition and sources of atmospheric dusts in snow at 3200 meters in the St. Elias Range, southeastern Alaska, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkley, T.K.

    1994-08-01

    Dusts in snow from the accumulation zone in the St. Elias Range appear from their chemical compositions to have come from terranes of rocks of ferromagnesian composition. These dusts, with respect to their composition and to the moderate degree of variation that occurs through a depositional year, are similar to those deposited in Greenland. The high portion of the St. Elias Range is isolated from dominance by any local dust source terranes, because of altitude and the extent of the surrounding glacierized and snow-covered region. In Greenland the altitude is typically lower, but local sources are even less likely tomore » dominate the character of the dusts deposited into the ice record there. The similar compositions and moderate compositional variations of dusts from these two places bear on the question of whether the dusts that are transported over long distances by the atmosphere under modern and glacial-period conditions are uniform and representative of a broad regional or even hemispheric background dust. The dusts in the snow were measured by means of a suite of major, minor, and track rock-forming metals chosen to give information about rock types, their constituent minerals, degree of degradation (weathering), and energies of atmospheric uptake from source. The variations in amounts of rock dust through the year in the St. Elias Range snowpack have no time-stratigraphic correspondence to the also-large variations in concentrations of other species that are not constituents of rock-derived dusts, such the anions chloride, sulfate, and nitrate; the highs and lows of the two types of materials are apparently completely independent. The structure revealed by the moderately fine-scale sampling of the present study ([approximately]10 increments/y) serves as a background for the interpretation of analysis of ice core samples, in which annual layers may be too compressed to permit analysis of sub-annual samples.« less

  16. Long-term systematic profiling of dust aerosol optical properties using the EOLE NTUA lidar system over Athens, Greece (2000-2016)

    NASA Astrophysics Data System (ADS)

    Soupiona, O.; Papayannis, A.; Kokkalis, P.; Mylonaki, M.; Tsaknakis, G.; Argyrouli, A.; Vratolis, S.

    2018-06-01

    residence time over the Saharan region, the European continent and the Mediterranean Sea. We finally concluded that even if the dust source regions are about the same, the aging and mixing processes of these air masses, passing over different areas, might have an impact on the aerosol optical properties.

  17. Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean.

    PubMed

    Mazar, Yinon; Cytryn, Eddie; Erel, Yigal; Rudich, Yinon

    2016-04-19

    We evaluated the impact of Saharan dust storms on the local airborne microbiome in a city in the Eastern Mediterranean area. Samples of particles with diameter less than 10 μm were collected during two spring seasons on both dusty and nondusty days. DNA was extracted, and partial 16S rRNA gene amplicons were sequenced using the Illumina platform. Bioinformatic analysis showed the effect of dust events on the diversity of the atmospheric microbiome. The relative abundance of desert soil-associated bacteria increased during dust events, while the relative abundance of anthropogenic-influenced taxa decreased. Quantitative polymerase chain reaction measurements of selected clinically significant antibiotic resistance genes (ARGs) showed that their relative abundance decreased during dust events. The ARG profiles on dust-free days were similar to those in aerosol collected in a poultry house, suggesting a strong agricultural influence on the local ambient profiles. We conclude that dust storms enrich the ambient airborne microbiome with new soil-derived bacteria that disappear as the dust settles, suggesting that the bacteria are transported attached to the dust particles. Dust storms do not seem to be an important vector for transport of probed ARGs.

  18. Development of Atmospheric Chemistry-Aerosol Transport Model for Bioavailable Iron From Dust and Combustion Source

    NASA Astrophysics Data System (ADS)

    Ito, A.; Feng, Y.

    2009-12-01

    An accurate prediction of bioavailable iron fraction for ocean biota is hampered by uncertainties in modeling soluble iron fractions in atmospheric aerosols. It has been proposed that atmospheric processing of mineral aerosols by anthropogenic pollutants may be a key pathway to transform insoluble iron into soluble forms. The dissolution of dust minerals strongly depends on solution pH, which is sensitive to the heterogeneous uptake of soluble gases by the dust particle. Due to the complexity, previous model assessments generally use a common assumption in thermodynamical equilibrium between gas and aerosol phases. Here, we compiled an emission inventory of iron from combustion and dust source, and incorporated a dust iron dissolution scheme in a global chemistry-aerosol transport model (IMPACT). We will examine and discuss the uncertainties in estimation of dissolved iron as well as comparisons of the model results with available observations.

  19. Modern dust aerosol availability in northwestern China.

    PubMed

    Wang, Xunming; Cheng, Hong; Che, Huizheng; Sun, Jimin; Lu, Huayu; Qiang, Mingrui; Hua, Ting; Zhu, Bingqi; Li, Hui; Ma, Wenyong; Lang, Lili; Jiao, Linlin; Li, Danfeng

    2017-08-18

    The sources of modern dust aerosols and their emission magnitudes are fundamental for linking dust with climate and environment. Using field sample data, wind tunnel experiments and statistical analysis, we determined the contributions of wadis, gobi (stony desert), lakebeds, riverbeds, and interdunes to modern dust aerosol availability in the three important potential dust sources including the Tarim Basin, Qaidam Basin, and Ala Shan Plateau of China. The results show that riverbeds are the dominant landscape for modern dust aerosol availabilities in the Qaidam Basin, while wadis, gobi, and interdunes are the main landscapes over the Ala Shan Plateau and Tarim Basin. The Ala Shan Plateau and Tarim Basin are potential dust sources in northwestern China, while the Qaidam Basin is not a major source of the modern dust aerosols nowadays, and it is not acting in a significant way to the Loess Plateau presently. Moreover, most of modern dust aerosol emissions from China originated from aeolian processes with low intensities rather than from major dust events.

  20. Polybrominated diphenyl ethers in indoor dust in Ottawa, Canada: implications for sources and exposure.

    PubMed

    Wilford, Bryony H; Shoeib, Mahiba; Harner, Tom; Zhu, Jiping; Jones, Kevin C

    2005-09-15

    Polybrominated diphenyl ethers (PBDEs) are widely used as additive flame retardants in plastics, soft furnishings, electrical and electronic equipment, and insulation in the indoor environment, and may be released indoors via volatilization or as dusts. The penta-and octa-brominated mixes are now banned in most parts of Europe, and phasing out of their use has recently begun in North America. This study follows a previous investigation into indoor air levels of PBDEs. House dust was analyzed from the family vacuum cleaners of 68 of the same 74 randomly selected homes, in Ottawa, Canada during the winter of 2002-2003. PBDEs, comprising on average 42% BDE-209, were found in all samples. The levels were log-normally distributed with a geometric mean sigmaPBDE of 2000 ng g(-1), and a median of 1800 ng g(-1) dust. The levels in dust did not correlate with questionnaire information on house characteristics. Correlations were found between pentamix congener levels in dust and in air from the same homes, but not for congeners of the more highly brominated mixes. Exposure scenarios are presented for mean and high dust ingestion rates, and compared against exposures from other pathways, for both adults and toddlers (6 months-2 years). Assuming a mean dust ingestion rate and median dust and air concentrations, adults would be exposed to ca. 7.5 ng sigmaPBDE d(-1) via the dust ingestion pathway, which represents approximately 14% of total daily exposure when compared to diet (82%) and inhalation (4%). However, for toddlers the equivalent intakes would be 99 ng d(-1), representing 80% of their daily PBDE exposure. At high dust ingestion rates these values increase to 180 ng d(-1) (80% daily intake) for adults and 360 ng d(-1) (89% daily intake) for toddlers. The data give a clearer picture of sources of PBDE exposure in the home environment and suggest that dust could be a significant exposure pathway for some individuals, particularly children.

  1. Evaluation of atmospheric dust prediction models using ground-based observations

    NASA Astrophysics Data System (ADS)

    Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco

    2013-04-01

    An important step in numerical prediction of mineral dust is the model evaluation aimed to assess its performance to forecast the atmospheric dust content and to lead to new directions in model development and improvement. The first problem to address the evaluation is the scarcity of ground-based routine observations intended for dust monitoring. An alternative option would be the use of satellite products. They have the advantage of a large spatial coverage and a regular availability. However, they do have numerous drawbacks that make the quantitative retrievals of aerosol-related variables difficult and imprecise. This work presents the use of different ground-based observing systems for the evaluation of dust models in the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The dust optical depth at 550 nm forecast by different models is regularly compared with the AERONET measurements of Aerosol Optical Depth (AOD) for 40 selected stations. Photometric measurements are a powerful tool for remote sensing of the atmosphere allowing retrieval of aerosol properties, such as AOD. This variable integrates the contribution of different aerosol types, but may be complemented with spectral information that enables hypotheses about the nature of the particles. Comparison is restricted to cases with low Ångström exponent values in order to ensure that coarse mineral dust is the dominant aerosol type. Additionally to column dust load, it is important to evaluate dust surface concentration and dust vertical profiles. Air quality monitoring stations are the main source of data for the evaluation of surface concentration. However they are concentrated in populated and industrialized areas around the Mediterranean. In the present contribution, results of different models are compared with observations of PM10 from the Turkish air quality network for

  2. Anthropogenic Air Pollution Observed Near Dust Source Regions in Northwestern China During Springtime 2008

    NASA Technical Reports Server (NTRS)

    Li, Can; Tsay, Si-Chee; Fu, Joshua S.; Dickerson, Russell R.; Ji, Qiang; Bell, Shaun W.; Gao, Yang; Zhang, Wu; Huang, Jianping; Li, Zhanqing; hide

    2010-01-01

    Trace gases and aerosols were measured in Zhangye (39.082degN, 100.276degE, 1460 m a.s. 1.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO:265 ppb; SO2:3.4 ppb; NO(*y): 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 micro-g/cu m) and light scattering (159/Mm at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3/Mm at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 mn) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to Pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NO(y), NO(y)/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 x 10(exp -3), respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 x 10(exp -3) for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles.

  3. Subjective Mapping of Dust-Emission Sources by Using MODIS Imagery

    DTIC Science & Technology

    2017-05-01

    within the inset of Panel A. Panel A is a True Color image that depicts white clouds against a brown landscape; a bird’s eye representation of Earth...shows the location of the Hamun dry lakes, which are an important dust source in the region. The enlarged image box in the top right depicts the...Bacon and McDonald 2016). For example, dry lakebeds filled with unconsolidated ERDC/CRREL TR-17-8 4 fine-grained sediments are commonly

  4. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China.

    PubMed

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.

  5. Influence of mineral dust transport on the chemical composition and physical properties of the Eastern Mediterranean aerosol

    NASA Astrophysics Data System (ADS)

    Koçak, M.; Theodosi, C.; Zarmpas, P.; Séguret, M. J. M.; Herut, B.; Kallos, G.; Mihalopoulos, N.; Kubilay, N.; Nimmo, M.

    2012-09-01

    Bulk aerosol samples were collected from three different coastal rural sites located around the Eastern Mediterranean, (i) Erdemli (ER), Turkey, (ii) Heraklion (HR), Crete, Greece, and (iii) Tel Shikmona (TS), Israel, during two distinct mineral dust periods (October, 2007 and April, 2008) in order to explore the temporal and geographical variability in the aerosol chemical composition. Samples were analyzed for trace elements (Al, Fe, Mn, Ca, Cr, Zn, Cu, V, Ni, Cd, Pb) and water-soluble ions (Cl-, NO3-, SO42-, C2O42-, Na+, NH4+, K+, Mg2+ and Ca2+). The dust events were categorized on the basis of Al concentrations >1000 ng m-3, SKIRON dust forecast model and 3-day back trajectories into three groups namely, Middle East, Mixed and Saharan desert. ER and TS were substantially affected by dust events originating from the Middle East, particularly in October, whilst HR was not influenced by dust transport from the Middle East. Higher AOT values were particularly associated with higher Al concentrations. Contrary to the highest Al concentration: 6300 ng m-3, TS showed relatively lower AI and AOT. Al concentrations at ER were similar for October and April, whilst OMI-AI and AOT values were ˜2 times higher in April. This might be attributed to the weak sensitivity of the TOMS instrument to absorbing aerosols near the ground and optical difference between Middle East and Saharan desert dusts. The lowest enhancement of anthropogenic aerosol species was observed at HR during dust events (nssSO42-/nssCa2+ ˜ 0.13). These species were particularly enhanced when mineral dust arrived at sites after passing through populated and industrialized urban areas.

  6. Status, sources, and human health risk assessment of PAHs via foliar dust from different functional areas in Nanjing, China.

    PubMed

    Zha, Yan; Zhang, Yin L; Tang, Jie; Sun, Kai

    2018-05-12

    The present study was carried out to assess and understand the potential health risk, level of contamination, composition pattern, and sources of urban foliar dust in Nanjing City with respect to polycyclic aromatic hydrocarbons (PAHs). Five urban functional areas of foliar dust were analysed and the contents of 16 priority PAHs were determined. Total PAH concentrations in foliar dust ranged from 1.77 to 19.02 μg·g -1 , with an average value of 6.98 μg·g -1 . The PAH pattern was dominated by four and five-ring PAHs (contributing > 38% of total PAHs) in all of the five functional areas. The results indicated that the combustion of fossil fuel, coal, and biomass, as well as vehicle traffic emissions were the major sources of PAHs. The estimated incremental lifetime cancer risk due to PAHs in foliar dust were 8.19 × 10 -6 , 6.63 × 10 -6 , and 9.65 × 10 -6 for childhood, adolescence and adulthood, respectively, indicating a high risk of cancer from exposure to foliar dust in Nanjing. Our results indicated that foliar dust might be a useful indicator of atmospheric PAH pollution.

  7. Impacts of Dust on Tropical Volcanic Soil Formation: Insights from Strontium and Uranium-Series Isotopes in Soils from Basse-Terre Island, French Guadeloupe

    NASA Astrophysics Data System (ADS)

    Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.

    2015-12-01

    Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and

  8. Supply of Soluble Iron from Combustion and Dust Sources to the Ocean

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2012-12-01

    Bioavailable iron (Fe) from atmospheric particle is an essential nutrient for phytoplankton. Global models have been used to deduce atmospheric iron supply to the ocean, but uncertainty in the deposition flux remains large, which can influence the air-sea fluxes of carbon dioxide and thus radiative forcing significantly. Here, a global chemical transport model is used to investigate the effect of aerosol emissions from ship plumes on iron solubility in particles from the combustion and dust sources. The emission data sets for combustion-generated aerosols such as those from biomass and fossil fuel burnings are taken from the emission inventory. The iron from combustion sources such as biomass and fossil fuels burning is readily released into solutions in aerosols assuming constant iron solubility (i.e., the mass fraction of dissolved to total iron). In contrast, the emissions of dust are calculated on-line, based on the surface wind speed and soil wetness from the GMAO assimilated meteorological fields. Further, the iron solubility dynamically changes from that in the originally emitted dust aerosols (which is 0.45%) due to reactions with acidic species. The model results reveal that the oil combustion from shipping mainly contributes to high iron solubility at low mass concentration observed over the high latitude North Atlantic Ocean. The model results suggest that the combustion source from ships contributes to a significant deposition of soluble iron to the high latitude oceans in the Northern Hemisphere. Due to continuing growth in global shipping and no regulations regarding particles emissions, the input of bioavailable iron from ship plumes is likely to increase in a future warmer climate when oceanic primary production may be more dependent on the nutrient input from atmospheric aerosols.

  9. Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust

    NASA Astrophysics Data System (ADS)

    Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.

    2018-05-01

    Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.

  10. Sources of halogenated brominated retardants in house dust in an industrial city in southern China and associated human exposure.

    PubMed

    Chen, She-Jun; Ding, Nan; Zhu, Zhi-Cheng; Tian, Mi; Luo, Xiao-Jun; Mai, Bi-Xian

    2014-11-01

    Halogenated flame retardants (HFRs) are a class of ubiquitous pollutants in the environment and attract increasing attention. In the present study, HFR concentrations were measured in indoor and outdoor dust in an important industrial city (Dongguan) in southern China, in which their presence and associated human exposure are unknown. The HFRs were dominated by polybrominated diphenyl ethers (PBDEs) and decabromodiphenyl ethane (DBDPE), with mean concentrations of 2365 and 2441 ng/g in the indoor dust, respectively, which were 2-3 order of magnitude higher the concentrations of other HFRs. However elevated tri- to hepta-BDE concentrations (869 ng/g) were found in Houjie Town, a furniture manufacturing center. The mean indoor/outdoor (I/O) ratios of HFR concentrations in the dust were all larger than one (1.55-16.4), suggesting the importance of indoors sources for HFRs in indoor dust in this industrial city. Principal component analysis (PCA) showed that the correlations among the HFRs in the indoor dust probably revealed differences in their commercial applications, while most HFRs in the outdoor dust have similar sources except for phased-out BDE47 and 99. The compositions of lower brominated PBDEs varied among the towns, probably due to their different sources or influence of photo-degradation. Nevertheless, the similar composition of highly brominated congeners indicated little photo-degradation encountered in the ambient environment. The non-cancer risk associated with indoor dust ingestion is low for the general population in Dongguan, but some children in the furniture manufacturing center have significantly high risk of exposure to banned PBDEs. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Impact of Dust on Air Quality and Radiative Forcing : AN Episodic Study for the Megacity Istanbul Using RegCM4.1

    NASA Astrophysics Data System (ADS)

    Agacayak, T.; Kindap, T.; Unal, A.; Mallet, M.; Pozzoli, L.; Karaca, M.; Solmon, F.

    2012-04-01

    Istanbul is a megacity (with population over 15 million) that has significant levels of Particulate Matter concentrations. It is suspected that long-range transport of Saharan dust is one of the main contributors. The purpose of this study is to investigate the relationship between high PM concentrations and dust transport using atmospheric modeling, satellite data as well as in-situ observations. Measurements of PM10 concentrations at 10 different stations in Istanbul for the period 2004-2010 were provided by the Turkish Ministry of Environment. Daily mean PM10 concentrations exceeding the European standard of 50 µg/m3 were found to be, on average, 49 days for the Spring period, 45 days for the Winter period, and 41 days for the Fall period. DREAM model output (Nickovic et al. 2001; Perez et al. 2006) suggests that high PM10 concentrations correlate highly with mineral dust transport episodes from Saharan desert (i.e., 23% for winter and 58% for spring). In this study, we have utilized RegCM4.1 model to further investigate the Saharan dust transport in the selected episodes. During the period between March 21st and 24th, 2008, observed daily mean of PM10 concentrations reach up to 140 µg/m3 in Istanbul. Simulations conducted by RegCM4.1 provides AOD (350-640 nm model band) values ranging between 0.04 and 0.98during this episode. Central Anatolia is affected from the dust transport on 21 and 22 March 2008, with a daily mean AOD of 0.9. On 23th March 2008, the dust plume reaches the Marmara Sea and AOD increases about 1.0 over the region according to both DREAM and RegCM4.1 model outputs. On the fourth day of the episode, the dust event stops and AOD decreases to 0.5 over the region. Asymmetry parameters can be seen as 0.62 during the dust episode, while single scattering albedo is about 0.93 during the entire dust episode over Istanbul. The effect of the dust episode on the regional radiative budget over Istanbul was also estimated. Model results indicate a daily

  12. Characterization of Dust Properties during ACE-Asia and PRIDE: A Column Satellite-Surface Perspective

    NASA Technical Reports Server (NTRS)

    Lau, William K. M. (Technical Monitor); Tsay, Si-Chee; Hsu, N. Christina; Herman, Jay R.; Ji, Q. Jack

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentration over particular pathways around the globe. For example, the ACE-Asia (Aerosol Characterization Experiment-Asia) was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). The PRIDE (Puerto RIco Dust Experiment, July 2000) was designed to measure the properties of Saharan dust transported across the Atlantic Ocean to the Caribbean. Dust particles typically originate in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of dust aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the ocean. During ACE-Asia and PRIDE we had measured aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from ground-based remote sensing. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. We will present the results and discuss their implications in regional climatic effects.

  13. Capability of the CALIPSO lidar observations to detect the dust source regions

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kharol, Shailesh Kumar; Kambezidis, H. D.; Nastos, P. T.; Rani Sharma, Anu; Kvs, Badarinath

    about 3-km in depth and moved northwards. As the dust layer moved towards Greece its intensity seems to decrease while its vertical extent was limited to lower altitudes within the first 2 km. The ceilometer also detected an elevated aerosol layer due to dust transport within the first 3 km, while the vertical profiles of dust predicted by DREAM were in close agreement with those of the ceilometer. The main goal of this study is the investigation via satellite vertical-profiling instrumentation not only the vertical extent and the transport of dust, but also its source region. Keywords: Dust, CALIPSO, DREAM model and AOD

  14. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    NASA Astrophysics Data System (ADS)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  15. Satellite and Ground-based Radiometers Reveal Much Lower Dust Absorption of Sunlight than Used in Climate Models

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Dubovik, O.; Karnieli, A.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The ability of dust to absorb solar radiation and heat the atmosphere is one of the main uncertainties in climate modeling and the prediction of climate change. Dust absorption is not well known due to limitations of in situ measurements. New techniques to measure dust absorption are needed in order to assess the impact of dust on climate. Here we report two new independent remote sensing techniques that provide sensitive measurements of dust absorption. Both are based on remote sensing. One uses satellite spectral measurements, the second uses ground based sky measurements from the AERONET network. Both techniques demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. Dust cooling of the earth system in the solar spectrum is therefore significantly stronger than recent calculations indicate. We shall also address the issue of the effects of dust non-sphericity on the aerosol optical properties.

  16. The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts.

    PubMed

    Men, Cong; Liu, Ruimin; Wang, Qingrui; Guo, Lijia; Shen, Zhenyao

    2018-10-01

    Due to significant human activity, road dust is becoming contaminated by heavy metals in many cities. To comprehensively investigate the variation of contamination level and sources of heavy metals in road dust, 10 heavy metals in road dust samples from Beijing, China, in both summer and winter, were evaluated by spatial analysis using geographic information system (GIS) mapping technology and the positive matrix factorization (PMF) Model. Although the concentrations of some heavy metals between summer and winter had similarities, the differences of others and spatial distributions of heavy metals between summer and winter were considerable. The mean concentrations of As, Cd, Cr, Cu, and Fe were lower in winter, while those of Hg, Mn, Ni, Pb, and Zn were higher. According to the values of the Pollution Index (PI) and Nemerow Integrated Pollution Index (NIPI), there were no obvious differences between summer and winter, but the range between different sites in winter was nearly twice that of summer. Based on the PMF model, four sources of heavy metals in the dust samples were identified. Although the types of sources were consistent, the relative contributions of each source differed between summer and winter. Non-exhaust vehicle emissions was the most important source in summer (34.47 wt%), while fuel combustion contributed the largest proportion to the total heavy metals in winter (32.40 wt%). The impact of each source also showed spatial variation different trends in summer and winter. With the alteration of seasons, intensity of human activities also changed, such as the number of tourists, energy needs for building temperature regulation, construction, and the amount of pesticides and fertilizer. That might be the reason for the variation of heavy metal concentrations and relative contribution of their sources between summer and winter. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Palaeo-dust records: A window to understanding past environments

    NASA Astrophysics Data System (ADS)

    Marx, Samuel K.; Kamber, Balz S.; McGowan, Hamish A.; Petherick, Lynda M.; McTainsh, Grant H.; Stromsoe, Nicola; Hooper, James N.; May, Jan-Hendrik

    2018-06-01

    Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with

  18. Evidence of a Weakly Absorbing Intermediate Mode of Aerosols in AERONET Data from Saharan and Sahelian Sites

    NASA Technical Reports Server (NTRS)

    Gianelli, Scott M.; Lacis, Andrew A.; Carlson, Barbara E.; Hameed, Sultan

    2013-01-01

    Accurate retrievals of aerosol size distribution are necessary to estimate aerosols' impact on climate and human health. The inversions of the Aerosol Robotic Network (AERONET) usually retrieve bimodal distributions. However, when the inversion is applied to Saharan and Sahelian dust, an additional mode of intermediate size between the coarse and fine modes is sometimes seen. This mode explains peculiarities in the behavior of the Angstrom exponent, along with the fine mode fraction retrieved using the spectral deconvolution algorithm, observed in a March 2006 dust storm. For this study, 15 AERONET sites in northern Africa and on the Atlantic are examined to determine the frequency and properties of the intermediate mode. The mode is observed most frequently at Ilorin in Nigeria. It is also observed at Capo Verde and multiple sites located within the Sahel but much less frequently at sites in the northern Sahara and the Canary Islands. The presence of the intermediate mode coincides with increases in Angstrom exponent, fine mode fraction, single-scattering albedo, and to a lesser extent percent sphericity. The Angstrom exponent decreases with increasing optical depth at most sites when the intermediate mode is present, but the fine mode fraction does not. Single-scattering albedo does not steadily decrease with fine mode fraction when the intermediate mode is present, as it does in typical mixtures of dust and biomass-burning aerosols. Continued investigation is needed to further define the intermediate mode's properties, determine why it differs from most Saharan dust, and identify its climate and health effects.

  19. Dust Aerosols at the Source Region During ACE-ASIA: A Surface/Satellite Perspective

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2001-01-01

    ACE (Aerosol Characterization Experiment)-Asia is designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. The phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of dust aerosol radiative flux in addition to measurements of loading and optical thickness. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  20. Fugitive Dust Emission Factors for Puff and Mobile Military Sources Measured by Micro-pulse Lidar - A Summary of Results

    NASA Astrophysics Data System (ADS)

    Yuen, W.; Du, K.; Rood, M. J.; Kemme, M. R.; Kim, B.; Hashmonay, R. A.

    2010-12-01

    A summary of the development of a novel optical remote sensing (ORS) method that determined fugitive dust emission factors for unique military activities is described for puff and mobile sources. Four field campaigns characterized artillery back blasts as puff sources (M549A1 and M107), and movement of military vehicles (M1A1, M113, Bradley Fighting Vehicle (BFV), M88, M270, M577, and HEMTT) and an airborne helicopter (Bell 210) as mobile sources. The ORS method includes a Micro-Pulse Lidar (MPL) and a reflective target that determines one-dimensional (1-D) light extinction coefficient profiles. The MPL was mounted on a positioner that allows the MPL to automatically scan vertically, which allowed 1-D extinction coefficient profiles to be measured at select angles from horizontal. Two-dimensional (2-D) light extinction coefficient profiles were then determined by interpolating the 1-D extinction profiles measured at select angles. Dust property, in the form of the mass extinction efficiency (MEE), was measured using Open Path- Fourier Transform Infrared Spectrometry (OP-FTIR) and Open Path- Laser Transmissometry (OP-LT) in the first three field campaigns and an OP-LT and DustTrak™ in the fourth field campaign. MEE was used to convert the 2-D light extinction coefficient profiles to 2-D dust mass concentration profiles. Emission factors were determined by integrating the 2-D mass concentration profiles with measured wind vectors. Results from these field campaigns show that: 1) artillery with stronger recoiling forces generates more fugitive dust; 2) the dust emission factors for tracked vehicles are correlated with vehicle momentum; 3) emission factor decreases with increasing speed for airborne helicopters; and 4) wheeled vehicles (HEMTT) generate more fugitive dust than tracked vehicles (M88, M270, M577).

  1. Case study of dust event sources from the Gobi and Taklamakan deserts: An investigation of the horizontal evolution and topographical effect using numerical modeling and remote sensing.

    PubMed

    Fan, Jin; Yue, Xiaoying; Sun, Qinghua; Wang, Shigong

    2017-06-01

    A severe dust event occurred from April 23 to April 27, 2014, in East Asia. A state-of-the-art online atmospheric chemistry model, WRF/Chem, was combined with a dust model, GOCART, to better understand the entire process of this event. The natural color images and aerosol optical depth (AOD) over the dust source region are derived from datasets of moderate resolution imaging spectroradiometer (MODIS) loaded on a NASA Aqua satellite to trace the dust variation and to verify the model results. Several meteorological conditions, such as pressure, temperature, wind vectors and relative humidity, are used to analyze meteorological dynamic. The results suggest that the dust emission occurred only on April 23 and 24, although this event lasted for 5days. The Gobi Desert was the main source for this event, and the Taklamakan Desert played no important role. This study also suggested that the landform of the source region could remarkably interfere with a dust event. The Tarim Basin has a topographical effect as a "dust reservoir" and can store unsettled dust, which can be released again as a second source, making a dust event longer and heavier. Copyright © 2016. Published by Elsevier B.V.

  2. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China

    PubMed Central

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area. PMID:27992518

  3. Mineral dust transport in the Arctic modelled with FLEXPART

    NASA Astrophysics Data System (ADS)

    Groot Zwaaftink, Christine; Grythe, Henrik; Stohl, Andreas

    2016-04-01

    Aeolian transport of mineral dust is suggested to play an important role in many processes. For instance, mineral aerosols affect the radiation balance of the atmosphere, and mineral deposits influence ice sheet mass balances and terrestrial and ocean ecosystems. While many efforts have been done to model global dust transport, relatively little attention has been given to mineral dust in the Arctic. Even though this region is more remote from the world's major dust sources and dust concentrations may be lower than elsewhere, effects of mineral dust on for instance the radiation balance can be highly relevant. Furthermore, there are substantial local sources of dust in or close to the Arctic (e.g., in Iceland), whose impact on Arctic dust concentrations has not been studied in detail. We therefore aim to estimate contributions of different source regions to mineral dust in the Arctic. We have developed a dust mobilization routine in combination with the Lagrangian dispersion model FLEXPART to make such estimates. The lack of details on soil properties in many areas requires a simple routine for global simulations. However, we have paid special attention to the dust sources on Iceland. The mobilization routine does account for topography, snow cover and soil moisture effects, in addition to meteorological parameters. FLEXPART, driven with operational meteorological data from European Centre for Medium-Range Weather Forecasts, was used to do a three-year global dust simulation for the years 2010 to 2012. We assess the model performance in terms of surface concentration and deposition at several locations spread over the globe. We will discuss how deposition and dust load patterns in the Arctic change throughout seasons based on the source of the dust. Important source regions for mineral dust found in the Arctic are not only the major desert areas, such as the Sahara, but also local bare-soil regions. From our model results, it appears that total dust load in the

  4. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    NASA Astrophysics Data System (ADS)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  5. Cold Dust and its Heating Sources in M 33

    NASA Astrophysics Data System (ADS)

    Komugi, Shinya; Tosaki, Tomoka; Kohno, Kotaro; Tsukagoshi, Takashi; Tamura, Yoichi; Miura, Rie; Onodera, Sachiko; Kuno, Nario; Kawabe, Ryohei; Nakanishi, Koichiro; Sawada, Tsuyoshi; Ezawa, Hajime; Wilson, Grant W.; Yun, Min S.; Scott, Kimberly S.; Hughes, David H.; Aretxaga, Itziar; Perera, Thushara A.; Austermann, Jason E.; Tanaka, Kunihiko; Muraoka, Kazuyuki; Egusa, Fumi

    2011-12-01

    We have mapped the nearby face-on spiral galaxy M 33 in the 1.1 mm dust continuum using AzTEC on Atacama Submillimeter Telescope Experiment (ASTE). The preliminary results are presented here. The observed dust has a characteristic temperature of ~ 21 K in the central kpc, radially declining down to ~ 13 K at the edge of the star forming disk. We compare the dust temperatures with KS band flux and star formation tracers. Our results imply that cold dust heating may be driven by long-lived stars even nearby star forming regions.

  6. Mineral Dust Instantaneous Radiative Forcing in the Arctic

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Groot Zwaaftink, C. D.; Stohl, A.

    2018-05-01

    Mineral dust sources at high and low latitudes contribute to atmospheric dust loads and dust deposition in the Arctic. With dust load estimates from Groot Zwaaftink et al. (https://doi.org/10.1002/2016JD025482), we quantify the mineral dust instantaneous radiative forcing (IRF) in the Arctic for the year 2012. The annual-mean top of the atmosphere IRF is 0.225 W/m2, with the largest contributions from dust transported from Asia south of 60°N and Africa. High-latitude (>60°N) dust sources contribute about 39% to top of the atmosphere IRF and have a larger impact (1 to 2 orders of magnitude) on IRF per emitted kilogram of dust than low-latitude sources. Mineral dust deposited on snow accounts for nearly all of the bottom of the atmosphere IRF of 0.135 W/m2. More than half of the bottom of the atmosphere IRF is caused by dust from high-latitude sources, indicating substantial regional climate impacts rarely accounted for in current climate models.

  7. Exploring the Longwave Radiative Effects of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Hansell, Richard A., Jr.

    2012-01-01

    Dust aerosols not only affect air quality and visibility where they pose a significant health and safety risk, but they can also play a role in modulating the energy balance of the Earth-atmosphere system by directly interacting with local radiative fields. Consequently, dust aerosols can impact regional climate patterns such as changes in precipitation and the evolution of the hydrological cycle. Assessing the direct effect of dust aerosols at the solar wavelengths is fairly straightforward due in part to the relatively large signal-to-noise ratio in broadband irradiance measurements. The longwave (LW) impacts, on the other hand, are rather difficult to ascertain since the measured dust signal level (10 Wm-2) is on the same order as the instrumental uncertainties. Moreover, compared to the shortwave (SW), limited experimental data on the LW optical properties of dust makes it a difficult challenge for constraining the LW impacts. Owing to the strong absorption features found in many terrestrial minerals (e.g., silicates and clays), the LW effects, although much smaller in magnitude compared to the SW, can still have a sizeable impact on the energetics of the Earth-atmosphere system, which can potentially trigger changes in the heat and moisture surface budgets, and dynamics of the atmosphere. The current endeavor is an integral part of an on-going research study to perform detailed assessments of dust direct aerosol radiative effects (DARE) using comprehensive global datasets from NASA Goddards mobile ground-based facility (cf. http://smartlabs.gsfc.nasa.gov/) during previous field experiments near key dust source regions. Here we examine and compare the results from two of these studies: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years. The former study focused on transported Saharan dust at Sal Island (16.73N, 22.93W), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye China (39

  8. Plants as antimalarial agents in Sub-Saharan Africa.

    PubMed

    Chinsembu, Kazhila C

    2015-12-01

    Although the burden of malaria is decreasing, parasite resistance to current antimalarial drugs and resistance to insecticides by vector mosquitoes threaten the prospects of malaria elimination in endemic areas. Corollary, there is a scientific departure to discover new antimalarial agents from nature. Because the two antimalarial drugs quinine and artemisinin were discovered through improved understanding of the indigenous knowledge of plants, bioprospecting Sub-Saharan Africa's enormous plant biodiversity may be a source of new and better drugs to treat malaria. This review analyses the medicinal plants used to manage malaria in Sub-Saharan Africa. Chemical compounds with antiplasmodial activity are described. In the Sub-Saharan African countries cited in this review, hundreds of plants are used as antimalarial remedies. While the number of plant species is not exhaustive, plants used in more than one country probably indicate better antimalarial efficacy and safety. The antiplasmodial data suggest an opportunity for inventing new antimalarial drugs from Sub-Saharan-African flora. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Combustibility Determination for Cotton Gin Dust and Almond Huller Dust.

    PubMed

    Hughs, Sidney E; Wakelyn, Phillip J

    2017-04-26

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar, can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, the Occupational Safety and Health Administration (OSHA) initiated action to develop a mandatory standard to comprehensively address the fire and explosion hazards of combustible dusts. Cotton fiber and related materials from cotton ginning, in loose form, can support smoldering combustion if ignited by an outside source. However, dust fires and other more hazardous events, such as dust explosions, are unknown in the cotton ginning industry. Dust material that accumulates inside cotton gins and almond huller plants during normal processing was collected for testing to determine combustibility. Cotton gin dust is composed of greater than 50% inert inorganic mineral dust (ash content), while almond huller dust is composed of at least 7% inert inorganic material. Inorganic mineral dust is not a combustible dust. The collected samples of cotton gin dust and almond huller dust were sieved to a known particle size range for testing to determine combustibility potential. Combustibility testing was conducted on the cotton gin dust and almond huller dust samples using the UN test for combustibility suggested in NFPA 652.. This testing indicated that neither the cotton gin dust nor the almond huller dust should be considered combustible dusts (i.e., not a Division 4.1 flammable hazard per 49 CFR 173.124). Copyright© by the American Society of Agricultural Engineers.

  10. Soluble dust as source of nutrients to the oceans and the role of humans

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Myriokefalitakis, S.; Nikolaou, P.; Daskalakis, N.; Theodosi, C.; Nenes, A.; Mihalopoulos, N.

    2014-12-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. The link between the soluble iron (Fe) and phosphorus (P) atmospheric deposition and atmospheric acidity, as well as anthropogenic sources, is investigated. The global atmospheric Fe, P and N cycle are parameterized in the global 3-D chemical transport model TM4-ECPL. Both primary emissions of total and soluble Fe and P associated with dust and combustion processes are taken into account, as well as inorganic and organic N emissions. The impact of atmospheric acidity on nutrient solubility is parameterised based on experimental findings. The model results are evaluated by comparison with available observations. The impact of air-quality changes on soluble nutrient deposition is studied by performing sensitivity simulations using preindustrial, present and future emission scenarios. The response of the chemical composition of nutrient-containing aerosols to environmental changes is demonstrated and quantified. This work has been supported by ARISTEIA - PANOPLY grant co-financed by European Union (ESF) and Greek national funds NSRF.

  11. Isomer Profiles of Perfluorochemicals in Matched Maternal, Cord, and House Dust Samples: Manufacturing Sources and Transplacental Transfer

    PubMed Central

    Beesoon, Sanjay; Webster, Glenys M.; Shoeib, Mahiba; Harner, Tom; Benskin, Jonathan P.

    2011-01-01

    Background: Perfluorochemicals (PFCs) are detectable in the general population and in the human environment, including house dust. Sources are not well characterized, but isomer patterns should enable differentiation of historical and contemporary manufacturing sources. Isomer-specific maternal–fetal transfer of PFCs has not been examined despite known developmental toxicity of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in rodents. Objectives: We elucidated relative contributions of electrochemical (phased out in 2001) and telomer (contemporary) PFCs in dust and measured how transplacental transfer efficiency (TTE; based on a comparison of maternal and cord sera concentrations) is affected by perfluorinated chain length and isomer branching pattern. Methods: We analyzed matching samples of house dust (n = 18), maternal sera (n = 20), and umbilical cord sera (n = 20) by isomer-specific high-performance liquid chromatography tandem mass spectrometry. Results: PFOA isomer signatures revealed that telomer sources accounted for 0–95% of total PFOA in house dust (median, 31%). This may partly explain why serum PFOA concentrations are not declining in some countries despite the phase-out of electrochemical PFOA. TTE data indicate that total branched isomers crossed the placenta more efficiently than did linear isomers for both PFOS (p < 0.01) and PFOA (p = 0.02) and that placental transfer of branched isomers of PFOS increased as the branching point moved closer to the sulfonate (SO3–) end of the molecule. Conclusions: Results suggest that humans are exposed to telomer PFOA, but larger studies that also account for dietary sources should be conducted. The exposure profile of PFOS and PFOA isomers can differ between the mother and fetus—an important consideration for perinatal epidemiology studies of PFCs. PMID:21757419

  12. Metals and metalloids in atmospheric dust: Use of lead isotopic analysis for source apportionment

    NASA Astrophysics Data System (ADS)

    Felix Villar, Omar I.

    Mining activities generate aerosol in a wide range of sizes. Smelting activities produce mainly fine particles (<1 microm). On the other hand, milling, crushing and refining processes, as well tailings management, are significant sources of coarse particles (> 1 microm). The adverse effects of aerosols on human health depend mainly on two key characteristics: size and chemical composition. One of the main objectives of this research is to analyze the size distribution of contaminants in aerosol produced by mining operations. For this purpose, a Micro-Orifice Uniform Deposit Impactor (MOUDI) was utilized. Results from the MOUDI samples show higher concentrations of the toxic elements like lead and arsenic in the fine fraction (<1 microm). Fine particles are more likely to be deposited in the deeper zones of the respiratory system; therefore, they are more dangerous than coarse particles that can be filtered out in the upper respiratory system. Unfortunately, knowing the total concentration of contaminants does not give us enough information to identify the source of contamination. For this reason, lead isotopes have been introduced as fingerprints for source apportionment. Each source of lead has specific isotopic ratios; by knowing these ratios sources can be identified. During this research, lead isotopic ratios were analyzed at different sites and for different aerosol sizes. From these analyses it can be concluded that lead isotopes are a powerful tool to identify sources of lead. Mitigation strategies could be developed if the source of contamination is well defined. Environmental conditions as wind speed, wind direction, relative humidity and precipitation have an important role in the concentration of atmospheric dust. Dry environments with low relative humidity are ideal for the transport of aerosols. Results obtained from this research show the relationship between dust concentrations and meteorological parameters. Dust concentrations are highly correlated

  13. The paleo-ocean characteristics of the Taklimakan dust aerosol: high sulfate from primary sources and implication for climate modeling

    NASA Astrophysics Data System (ADS)

    Huang, K.; Zhuang, G.; Fu, J. S.; Dong, X.

    2017-12-01

    Multi-year monitoring of dust aerosol from the Taklimakan Desert has been conducted at one site in the hinterland of the desert, Tazhong and another site at the southern edge of the desert, Hotan. Compared to the other two important desert source regions of China, i.e. Gobi and Loess Plateau, the Taklimakan Desert is characterized of high calcium with a Ca/Al elemental ratio of around 1.50. The unique feature of the Taklimakan dust aerosol is its abundant sulfate. For instance, the mean concentration of sulfate over Tazhong reached as high as 34.7 and 48.8 ug/m3 during the spring of 2007 and 2008, respectively. During the dust storm events, the daily concentration of sulfate frequently exceeded 100 ug/m3. Sulfate showed strong correlations with the primary aerosol species such as Ca2+, Mg2+, Na+, Cl-, Al, Fe, Ti, etc. but weakly correlated with the secondary aerosol species such as NO3- and NH4+. The mass ratio of sulfate in the total suspended particles showed a relatively stable percentage of around 2.5% regardless of the intensity of the dust events. In addition, individual particle analysis using the scanning electron microscope (SEM) technique found that gypsum (CaSO4) particles could account for 11.1% of total number of particles as well as abundant Na2SO4 and NaCl particles. All the evidences above suggested the high sulfate observed in the Taklimakan Desert were largely attributed to primary sources but not formed via the traditional gas-to-particle formation pathway. As the Taklimakan Desert was speculated to be ocean 5-7 million years, the dried sea salts from the paleo-ocean should be the major source of the dust aerosol. Also, the dried salt lakes in the northwestern China may contribute to the high sulfate. Based on two different methods, the contribution of primary sources to sulfate over the Taklimakan Desert is estimated to be around 43% - 82%. This study implied that the cooling effect of the Taklimakan dust aerosol could be underestimated if the

  14. Synoptic conditions favouring the occurrence of dust transport from Africa toward Sardinia Island.

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Pellizzaro, Grazia; Pintus, Gabriella; Duce, Pierpaolo

    2016-04-01

    Dust events that reach Italy have usually origin in the Sahara and Sahel regions (north-western part of Africa), which represent the dust sources nearest to Italy. In those regions the dust-lifting activity occurs in a remarkable way. Every dust event is different from the others; in fact dust transport and dust concentration in the air can vary remarkably depending on the synoptic situation. In Sardinia, dust events are more frequent in the May-November period, but they can also take place in the December-April period. The main aim of this work was to describe dust outbreaks in Sardinia and to identify the main meteorological scenarios that originate the transport of dust towards the central and western Mediterranean Basin. The evaluation of the geographical dispersion of Saharan dust was performed by using MODIS satellite data and Meteosat imagery combined with SKIRON forecasting model. The origin and the trajectory of the dust carried by winds towards Italy were inferred by the NOAA HYSPLIT model (Hybrid Single Particle Lagrangian Integrated Trajectory Model). In addition, PM10 (particulate matter with a diameter of less than 10 μm) and meteorological data registered by the ARPAS (Regional Environmental Protection Agency of Sardinia) monitoring stations were used to highlight the arrival of African air masses in Sardinia. The study was carried out during the 2014. A total of five events occurred during the year (two in spring and three in autumn) were analyzed. The origin of air masses loaded with dust from North Africa was confirmed by satellite imagery and 3-days air mass backward trajectories calculated by the NOAA HYSPLIT model. The analysis of the PM10 daily pattern registered at northern and southern Sardinia sites showed a rising of values during the dust event. The arrival of air masses from Africa caused the daily mean air temperature to rise whereas relative humidity values decreased. Finally, the results showed that all the event analyzed were

  15. Variability of North African hydroclimate during the last two climatic cycles: New insights from dust flux and provenance

    NASA Astrophysics Data System (ADS)

    Skonieczny, C.; McGee, D.; Bory, A. J. M.; Winckler, G.; Bradtmiller, L.; Bout-Roumazeilles, V.; Perala-Dewey, J.; Delattre, M.; Kinsley, C. W.; Polissar, P. J.; Malaizé, B.

    2016-12-01

    Every year, several hundred teragrams of dust are emitted from the Sahara and Sahel regions. These mineral particles sensitively track variations in atmospheric circulation and continental aridity. Sediments of the Northeastern Tropical Atlantic Ocean (NETAO) are fed by this intense dust supply and comprise unique long-term archives of past Saharan/Sahelian dust emissions. Past modifications of dust characteristics in these sedimentary archives can provide unique insights into changes in environmental conditions in source areas (aridity, weathering), as well as changes in atmospheric transport (wind direction and strength). Here we document changes in sediment supply to the NETAO using marine sediment core MD03-2705 (18°05N; 21°09W; 3085m water depth). This record is strategically located under the influence of seasonal dust plumes, and marine sediments of this area have revealed that past dust inputs were sensitive to global climate changes over the late Quaternary. We will focus our study on the last two climatic cycles (0-240ka), a period orbitally characterized by changes in the amplitude of both precession (MIS6-5 vs. MIS1-2) and ice volume (MIS 7 vs. MIS5). We will present, for the first time in this area, a continuous high-resolution record of dust, opal, carbonate and organic matter fluxes using 230Th-normalization. The constant flux proxy 230Thxs provides flux data that are not substantially affected by lateral advection or age model errors. These fluxes data will be complemented by grain-size, clay mineralogical and geochemical (major elements) analysis. By pairing dust flux measurements with complementary proxy data reflecting changes in aridity, wind strength and dust source, this study will provide a robust, continuous record of the magnitude and pacing of the North African hydroclimate variability through the last two climatic cycles. In particular, this long-term study will offer the opportunity to compare the well-documented North African climate

  16. Biological response to coastal upwelling and dust deposition in the area off Northwest Africa

    NASA Astrophysics Data System (ADS)

    Ohde, T.; Siegel, H.

    2010-05-01

    Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll- a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll- a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll- a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll- a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll- a was caused by Saharan dust input and not by

  17. The Association between Dust Storms and Daily Non ...

    EPA Pesticide Factsheets

    Background:The impact of dust storms on human health has been studied in the context of Asian,Saharan, Arabian, and Australian storms,but there has been no recent population-level epidemiological research on the dust storms in North America . The relevance of dust storms to public health is likely to increase as extreme weather events are predicted to become more frequent with anticipated changes in climate through the 21st century.Objectives: We examined the association between dust storms and county-level non-accidental mortality in the United States from 1993 through 2005.Methods:Dust storm incidence data, including date and approximate location. are taken from the U.S. National Weather Service storm database. County-level mortality data for the years 1993-2005 were acquired from the National Center for Health Statistics. Distributed lag conditionallogistic regression models under a time-stratified case-crossover design were used to study the relationship between dust storms and daily mortality counts over the whole United States and in Arizona and California specifically. End points included total non-accidental mortality and three mortality subgroups (cardiovascular, respiratory, and other non-acc idental).Results: We estimated that for the United States as a whole, total non-accidental mortality increased by 7.4% (95% Cl: 1.6, 13.5; p = 0.011) and 6.7% (95% Cl: 1.1,12.6; p = 0.018) at 2- and 3-day lags, respectively, and by an average of 2.7% (95% Cl: 0.4,

  18. Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil.

    PubMed

    Yu, Yang; Li, Yingxia; Li, Ben; Shen, Zhenyao; Stenstrom, Michael K

    2016-09-01

    To understand the metal accumulation in the environment and identify its sources, 29 different metal contents and lead (Pb) isotope ratios were determined for 40 urban dust samples, 36 surface soil samples, and one river sediment sample collected in the municipality of Beijing, China. Results showed that cadmium, copper (Cu), mercury, Pb, antimony (Sb), and zinc demonstrated to be the typical urban contaminants and mostly influenced by the adjacent human activities with higher content to background ratios and SD values. Among the 29 metal elements investigated, Cu and Sb were found to be the most distinct elements that were highly affected by the developing level and congestion status of the cities with much higher contents in dust in more developed and congested cities. There was a relatively wider range of Pb isotope ratios of country surface soil than those of urban dust. The results of source identification based on Pb isotope ratios showed that coal combustion was the first largest Pb source and vehicle exhaust was the second largest source. The sum of them accounted for 74.6% mass proportion of overall Pb pollution on average. The surface soil sample collected at an iron mine had the highest (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios indicating ore had much higher ratios than other sources. The fine particle subsamples had higher (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios than the coarse particle subsamples indicating more anthropogenic sources of coal combustion and vehicle exhaust for fine particles and more background influence for coarse particles. These results help with pinpointing the major Pb sources and applying suitable measures for the target sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Laboratory estimate of the regional shortwave refractive index and single scattering albedo of mineral dust from major sources worldwide

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Formenti, P.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Balkanski, Y.; Doussin, J. F.

    2017-12-01

    Mineral dust is one of the most abundant aerosol species in the atmosphere and strongly contributes to the global and regional direct radiative effect. Still large uncertainties persist on the magnitude and overall sign of the dust direct effect, where indeed one of the main unknowns is how much mineral dust absorbs light in the shortwave (SW) spectral range. Aerosol absorption is represented both by the imaginary part (k) of the complex refractive index or the single scattering albedo (SSA, i.e. the ratio of the scattering to extinction coefficient). In this study we present a new dataset of SW complex refractive indices and SSA for mineral dust aerosols obtained from in situ measurements in the 4.2 m3 CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Investigated dust aerosol samples were issued from major desert sources worldwide, including the African Sahara and Sahel, Eastern Asia, the Middle East, Southern Africa, Australia, and the Americas, with differing iron oxides content. Results from the present study provide a regional mapping of the SW absorption by dust and show that the imaginary part of the refractive index largely varies (by up to a factor 6, 0.003-0.02 at 370 nm and 0.001-0.003 at 950 nm) for the different source areas due to the change in the particle iron oxide content. The SSA for dust varies between 0.75-0.90 at 370 nm and 0.95-0.99 at 950 nm, with the largest absorption observed for Sahelian and Australian dust aerosols. Our range of variability for k and SSA is well bracketed by already published literature estimates, but suggests that regional‒dependent values should be used in models. The possible relationship between k and the dust iron oxides content is investigated with the aim of providing a parameterization of the regional‒dependent dust absorption to include in climate models.

  20. Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.

    2010-11-01

    We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH=1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three phases, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe is solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models, these

  1. Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.

    2011-02-01

    We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k (h-1) of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH = 1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three pools, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe may be solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models

  2. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China.

    PubMed

    Lin, Manli; Gui, Herong; Wang, Yao; Peng, Weihua

    2017-01-01

    To analyze the pollution characteristics, source apportionment, and health risk of heavy metals (HMs) in street dust of Suzhou, China, 23 sampling sites were selected and periodically sampled for 12 months. A total of 276 samples were collected, and the concentrations of selected HMs (e.g., Cr, Cu, Fe, Mn, Pb, V, and Zn) were examined with an X-ray fluorescence spectrum analyzer. Results showed that the mean concentrations of Cr, Cu, Fe, Mn, Pb, V, and Zn in the street dust of Suzhou were 112.9, 27.5, 19941.3, 410.3, 45.2, 75.6, and 225.3 mg kg -1 , respectively. Cr, Cu, Pb, and Zn exceeded their background values in local natural soils by 1.3-3.6-fold, whereas Fe, Mn, and V were all within their background values. However, enrichment factor analysis revealed that Cr, Cu, Mn, Pb, V, and Zn, especially Cr, Cu, Pb, and Zn, were enriched in Suzhou street dust. The HMs showed no significant seasonal changes overall, but spatial distribution analysis implied that the high values of Cr, Cu, Mn, Pb, V, and Zn were mainly distributed in areas with frequent human activities. Results of multivariate techniques (e.g., Pearson correlation, hierarchical cluster, and principal components analyses) suggested that Pb and Zn had complicated sources; Cu and V mainly originated from traffic sources; Fe and Mn mainly came from natural sources; and Cr was dominantly related to industrial district. Health risk assessment revealed that a single heavy metal might not cause both non-cancer and carcinogenic risks to local residents. Nevertheless, the sum of the hazard index of all selected HMs for children slightly exceeded the safety value, thereby implying that the HMs from Suzhou street dust can possibly produce significant risk to children. Cr was the priority pollutant in the study area because of its high concentration, high enrichment, and high contribution to non-cancer risk values.

  3. Magnetic Properties of Iron Oxide Minerals in Atmospheric Dust and Source Sediments from Western US

    NASA Astrophysics Data System (ADS)

    Moskowitz, B. M.; Yauk, K.; Till, J. L.; Berquo, T. S.; Banerjee, S. K.; Reynolds, R. L.; Goldstein, H. L.

    2011-12-01

    Atmospheric dust contains iron oxide minerals that can play important roles in various physical and biological processes affecting atmospheric and surface temperatures, marine phytoplankton productivity, and human health. Iron oxide minerals in dust deposited on mountain snow cover are especially important because these minerals absorb solar and IR radiation leading to changes in albedo and affecting the timing and rate of spring and summer snowpack melting. As part of an ongoing project to study physical and chemical properties of dust from sources to sinks in the western US, we will describe one approach to characterize iron oxide mineralogy using magnetic property measurements and Mossbauer spectroscopy. Magnetic property measurements over a wide range of temperatures (2-300 K) and magnetic fields (0-5 T) are particularly sensitive to composition, particle size (from nanometer to micrometer), and concentration of iron oxide and oxyhydroxide minerals. The high sensitivity of magnetic measurements to target minerals allows the measurement of bulk samples preventing any aliasing of composition or grain size resulting from attempts at prior magnetic separation. In addition, different magnetic measurement protocols can isolate different particle-size assemblages and different compositions in multicomponent mixtures and help to identify dust-source areas. These techniques have been applied to dust deposited on snow (DOS) cover of the San Juan Mountains, Colorado (collected 2005-2010) and Wasatch Mountains, Utah (collected 2010) and possible dust-source sediments from the North American Great Basin and Colorado Plateau deserts. Results show that all samples contain a high coercivity phase consistent with hematite and/or goethite as the dominate ferric oxide mineral plus minor amounts of magnetite (<0.5 wt%). The presence of magnetite was determined from the detection of the characteristic Verwey transition (T=121 K) on low-temperature (< 300 K) remanence and

  4. Distribution of dust during two dust storms in Iceland

    NASA Astrophysics Data System (ADS)

    Ösp Magnúsdóttir, Agnes; Dagsson-Waldhauserova, Pavla; Arnalds, Ólafur; Ólafsson, Haraldur

    2017-04-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 ?g?m?3 (PM10 = 7 to 583 ?g?m?3). The mean PM1 concentrations were 97-241 ?g?m?3 with a maximum of 261 ?g?m?3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34-0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  5. Impact of aerosols, dust, water vapor and clouds on fair weather PG and implications for the Carnegie curve

    NASA Astrophysics Data System (ADS)

    Kourtidis, Konstantinos; Georgoulias, Aristeidis

    2017-04-01

    We studied the impact of anthropogenic aerosols, fine mode natural aerosols, Saharan dust, atmospheric water vapor, cloud fraction, cloud optical depth and cloud top height on the magnitude of fair weather PG at the rural station of Xanthi. Fair weather PG was measured in situ while the other parameters were obtained from the MODIS instrument onboard the Terra and Aqua satellites. All of the above parameteres were found to impact fair weather PG magnitude. Regarding aerosols, the impact was larger for Saharan dust and fine mode natural aerosols whereas regarding clouds the impact was larger for cloud fraction while less than that of aerosols. Water vapour and ice precipitable water were also found to influence fair weather PG. Since aerosols and water are ubiquitous in the atmosphere and exhibit large spatial and temporal variability, we postulate that our understanding of the Carnegie curve might need revision.

  6. Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.

    2009-11-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star

  7. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGsmore » are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive

  8. Dust Optical Properties Over North Africa and Arabian Peninsula Derived from the AERONET Dataset

    NASA Technical Reports Server (NTRS)

    Kim, D.; Chin, M.; Yu, H.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Holben, B. N.

    2011-01-01

    Dust optical properties over North Africa and the Arabian Peninsula are extracted from the quality assured multi-year datasets obtained at 14 sites of the Aerosol Robotic Network (AERONET). We select the data with (a) large aerosol optical depth (AOD >= 0.4 at 440 nm) and (b) small Angstrom exponent (A(sub ext)<= 0.2) for retaining high accuracy and reducing interference of non-dust aerosols. The result indicates that the major fraction of high aerosol optical depth days are dominated by dust over these sites even though it varies depending on location and time. We have found that the annual mean and standard deviation of single scattering albedo, asymmetry parameter, real refractive index, and imaginary refractive index for Saharan and Arabian desert dust is 0.944 +/- 0.005, 0.752 +/- 0.014, 1.498 +/- 0.032, and 0.0024 +/- 0.0034 at 550 nm wavelength, respectively. Dust aerosol selected by this method is less absorbing than the previously reported values over these sites. The weaker absorption of dust from this study is consistent with the studies using remote sensing techniques from satellite. These results can help to constrain uncertainties in estimating global dust shortwave radiative forcing.

  9. High Latitude Dust in the Earth System

    NASA Technical Reports Server (NTRS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; hide

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  10. High-latitude dust in the Earth system

    USGS Publications Warehouse

    Bullard, Joanna E; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; NcKenna Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80–100 Tg yr−1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  11. Global dust cycle

    NASA Astrophysics Data System (ADS)

    Ridgwell, Andy

    Dust, micron to submicron particles and mostly comprising soil mineral fragments, affects a multitude of climatic and biogeochemical processes during its journey from its sources on land to sinks on land and in the ocean. Suspended in the atmosphere, the presence of dust can alter both shortwave and longwave radiation balances, enhance cloud nucleation, and affect photochemical reaction rates. Deposited to the land surface, dust has beneficial impacts on soil quality but detrimental implications for human health. At the interface of surface ocean and lower atmosphere, dust deposited to seawater supplies plankton with the essential micronutrient iron and hence provides an important control on marine ecosystems. This chapter reviews these various roles of dust in the Earth system; summarizes the factors controlling the production, transport, and deposition of dust; and, because the causes and consequences of dust are interlinked via climate and atmospheric CO2, discusses the potential importance of dusty feedback in past and future climate change.

  12. Natural dust and acid rain

    Treesearch

    Erhard M. Winkler

    1976-01-01

    Atmospheric dust originates from three sources, terrestrial airborn matter, volcanic, and cosmic. Terrestrial natural dust makes up the main bulk reflecting the soil composition to 150 miles away. Soil erosion from flood plains, plowed fields and construction sites are the main source. Quartz, feldspar, the carbonates calcite and dolomite, and clay minerals are the...

  13. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  14. Long-range Transported African Dust in the Caribbean Region: Dust Concentrations and Water-soluble Ions

    NASA Astrophysics Data System (ADS)

    Santos-Figueroa, G.; Avilés-Piñeiro, G. M.; Mayol-Bracero, O. L.

    2017-12-01

    Long-range transported African dust (LRTAD) particles reach the Caribbean region every year during the summer months causing an increase in PM10 concentrations and by consequence degradation of air quality. During African dust (AD) incursions at the Caribbean region, PM10 concentration could exceeds the exposure limit of 50 µg/m³ 24-hour mean established by the World Health Organization (WHO). To have a better understanding of the impacts of AD particles to climate and public health at the Caribbean region it is necessary to study and determine the spatial and temporal distribution of dust particles. In order to address this, aerosols samples were collected during and absence of AD incursions during the summer of 2017 using a Hi-Volume (Hi-Vol) sampler for total suspended particles (TSP) at two sampling stations in Puerto Rico. The first station is a marine site located at Cabezas de San Juan (CSJ) Nature Reserve in Fajardo, and the second station is an urban site located at the Facundo Bueso (FB) building at the University of Puerto Rico-Rio Piedras. Aerosol samples were collected using Whatman 41 grade filters from which we determined the concentration of dust particles and the water-soluble ions (e.g., Na+, NH4+, Ca+2, Cl-, SO4-2) in the presence and absence of LRTAD particles. Saharan Air Layer (SAL) imagery, the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the spectral coefficients from measurements at CSJ were used to monitor and confirm the presence of air masses coming from North Africa. Average dust concentrations using the Stacked-Filter Units (SFUs) at CSJ are around 4 μg/m3. LRTAD concentrations and ionic speciation results using the Hi-Vol for the marine and urban sites will be presented at the conference.

  15. Financing the HIV response in sub-Saharan Africa from domestic sources: Moving beyond a normative approach.

    PubMed

    Remme, Michelle; Siapka, Mariana; Sterck, Olivier; Ncube, Mthuli; Watts, Charlotte; Vassall, Anna

    2016-11-01

    Despite optimism about the end of AIDS, the HIV response requires sustained financing into the future. Given flat-lining international aid, countries' willingness and ability to shoulder this responsibility will be central to access to HIV care. This paper examines the potential to expand public HIV financing, and the extent to which governments have been utilising these options. We develop and compare a normative and empirical approach. First, with data from the 14 most HIV-affected countries in sub-Saharan Africa, we estimate the potential increase in public HIV financing from economic growth, increased general revenue generation, greater health and HIV prioritisation, as well as from more unconventional and innovative sources, including borrowing, health-earmarked resources, efficiency gains, and complementary non-HIV investments. We then adopt a novel empirical approach to explore which options are most likely to translate into tangible public financing, based on cross-sectional econometric analyses of 92 low and middle-income country governments' most recent HIV expenditure between 2008 and 2012. If all fiscal sources were simultaneously leveraged in the next five years, public HIV spending in these 14 countries could increase from US$3.04 to US$10.84 billion per year. This could cover resource requirements in South Africa, Botswana, Namibia, Kenya, Nigeria, Ethiopia, and Swaziland, but not even half the requirements in the remaining countries. Our empirical results suggest that, in reality, even less fiscal space could be created (a reduction by over half) and only from more conventional sources. International financing may also crowd in public financing. Most HIV-affected lower-income countries in sub-Saharan Africa will not be able to generate sufficient public resources for HIV in the medium-term, even if they take very bold measures. Considerable international financing will be required for years to come. HIV funders will need to engage with broader

  16. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    PubMed Central

    Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación

    2016-01-01

    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks. PMID:27775100

  17. Large Contribution of Coarse Mode to Aerosol Microphysical and Optical Properties: Evidence from Ground-Based Observations of a Transpacific Dust Outbreak at a High-Elevation North American Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, E.; Pekour, M.; Flynn, C.

    Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented bymore » quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.« less

  18. Dust emission mechanisms in the central Sahara: new insights from remote field observations

    NASA Astrophysics Data System (ADS)

    Allen, C.; Washington, R.; Engelstaedter, S.

    2013-12-01

    North Africa is the world's largest source of mineral aerosol (dust). The Fennec Project, an international consortium led by the University of Oxford, is the first project to systematically instrument the remote central Sahara Desert. These observations have, among others, provided new insights into the atmospheric mechanisms of dust emission. Bordj Badji Mokhtar, in south-west Algeria, is within kilometres of the centre of the global mean summer dust maximum. The site, operated by Fennec partners ONM Algerie, has been heavily instrumented since summer 2011. During the Intensive Observation Period (IOP) in June 2011, four main emission mechanisms were observed and documented: cold pool outflows, low level jets (LLJs), monsoon surges and dry convective plumes. Establishing the relative importance of dust emission mechanisms has been a long-standing research goal. A detailed partitioning exercise of dust events during the IOP shows that 45% of the dust over BBM was generated by local emission in cold pool outflows, 14% by LLJs and only 2% by dry convective plumes. 27% of the dust was advected to the site rather than locally emitted and 12% of the dust was residual or ';background' dust. The work shows the primacy of cold pool outflows for dust emission in the region and also the important contribution of dust advection. In accordance with long-held ideas, the cube of wind speed is strongly correlated with dust emission. Surprisingly however, particles in long-range advection (>500km) were found to be larger than locally emitted dust. Although a clear LLJ wind structure is evident in the mean diurnal cycle during the IOP (12m/s peak winds at 935hPa between 04-05h), LLJs are only responsible for a relatively small amount of dust emission. There is significant daily variability in LLJ strength; the strongest winds are produced by a relatively small number of events. The position and strength of the Saharan Heat Low is strongly associated with the development (or

  19. PM10 and PM2.5 chemical source profiles with optical attenuation and health risk indicators of paved and unpaved road dust in Bhopal, India.

    PubMed

    Samiksha, Shilpi; Sunder Raman, Ramya; Nirmalkar, Jayant; Kumar, Samresh; Sirvaiya, Rohit

    2017-03-01

    Size classified (PM 10 and PM 2.5 ) paved and unpaved road dust chemical source profiles, optical attenuation and potential health risk from exposure to these sources are reported in this study. A total of 45 samples from 9 paved road and 6 unpaved road sites located in and around Bhopal were re-suspended in the laboratory, collected onto filter substrates and subjected to a variety of chemical analyses. In general, road dust was enriched (compared to upper continental crustal abundance) in anthropogenic pollutants including Sb, Cu, Zn, Co, and Pb. Organic and elemental carbon (OC/EC) in PM 10 and PM 2.5 size fractions were 50-75% higher in paved road dust compared to their counterparts in unpaved road dust. Further, the results suggest that when it is not possible to include carbon fractions in source profiles, the inclusion of optical attenuation is likely to enhance the source resolution of receptor models. Additionally, profiles obtained in this study were not very similar to the US EPA SPECIATE composite profiles for PM 10 and PM 2.5 , for both sources. Specifically, the mass fractions of Si, Fe, OC, and EC were most different between SPECIATE composite profiles and Bhopal composite profiles. An estimate of health indicators for Bhopal road dust revealed that although Cr was only marginally enriched, its inhalation may pose a health risk. The estimates of potential lifetime incremental cancer risk induced by the inhalation of Cr in paved and unpaved road dust (PM 10 and PM 2.5 ) for both adults and children were higher than the baseline values of acceptable risk. These results suggest that road dust Cr induced carcinogenic risk should be further investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sources of hydrocarbons in urban road dust: Identification, quantification and prediction.

    PubMed

    Mummullage, Sandya; Egodawatta, Prasanna; Ayoko, Godwin A; Goonetilleke, Ashantha

    2016-09-01

    Among urban stormwater pollutants, hydrocarbons are a significant environmental concern due to their toxicity and relatively stable chemical structure. This study focused on the identification of hydrocarbon contributing sources to urban road dust and approaches for the quantification of pollutant loads to enhance the design of source control measures. The study confirmed the validity of the use of mathematical techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for source identification and principal component analysis/absolute principal component scores (PCA/APCS) receptor model for pollutant load quantification. Study outcomes identified non-combusted lubrication oils, non-combusted diesel fuels and tyre and asphalt wear as the three most critical urban hydrocarbon sources. The site specific variabilities of contributions from sources were replicated using three mathematical models. The models employed predictor variables of daily traffic volume (DTV), road surface texture depth (TD), slope of the road section (SLP), effective population (EPOP) and effective impervious fraction (EIF), which can be considered as the five governing parameters of pollutant generation, deposition and redistribution. Models were developed such that they can be applicable in determining hydrocarbon contributions from urban sites enabling effective design of source control measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Polluted Dust Classification and Its Optical Properties Analysis Using CALIPSO Data and Simulation

    NASA Astrophysics Data System (ADS)

    Ding, J.; Yang, P.; Holz, R.; Vaughan, M. A.; Hu, Y.

    2015-12-01

    In CALIPSO Level 2 aerosol data, dust particles are classified into two subtypes, namely, pure dust and polluted dust based on lidar backscatter, depolarization ratio and surface types. In this research, the polluted dust subtype is found to have two distinct modes in terms of integrated depolarization ratio (IDR) and integrated total color ratio (ICR). Dust with smaller IDR and ICR occurs mainly over areas with strong smoke emissions such as industrial cities. This kind of polluted dust originating from East Asia is also found over the Pacific Ocean. In contrast, the other type originating from the Saharan desert with larger IDR and ICR occurs mainly over the Atlantic Ocean. The disparities of IDR and ICR may result from different pollutants. The polluted dust with smaller ICR and IDR should have stronger absorption of light and may contain black carbon. Other chemical compounds such as sea salts may account for polluted dust with larger ICR and IDR. To further separate the types of polluted dust, cluster analysis is applied to determine the centroid of each type in terms of IDR and ICR. Furthermore, scattering models of dust mixed with various pollutants are constructed to be included in a CALIPSO simulator. The simulated IDR and ICR values are compared with data to retrieve the chemical compositions of polluted dust. The difference of polluted dust over the Pacific and Atlantic Ocean provides new evidence about long-range transport of Asian dust to North America. The distribution of dust polluted by black carbon is determined, which can improve knowledge about the effect of black carbon on the earth's radiation budget.

  2. Mineralogical, chemical, and optical interrelationships of mineral dusts from desert source regions

    NASA Astrophysics Data System (ADS)

    Engelbrecht, J. P.; Moosmüller, H.; Pincock, S.; Jayanty, J.; Casuccio, G.

    2013-12-01

    The goal of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected from global dust sources. Surface soil samples were previously collected from more than 64 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment facility, from which the airborne mineral dust could be sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic instrument with integrating reciprocal nephelometer for monitoring aerosol absorption and scattering coefficients during the re-suspension process. Filter sample media included Teflon membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm fractions were further mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interrelationships, of the entrained dust samples. Information from this data base will be available for research in global climate, remote sensing, visibility, and health (medical geology).

  3. Dating Saharan dust deposits on Lanzarote (Canary Islands) by luminescence dating techniques and their implication for palaeoclimate reconstruction of NW Africa

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, H.; Fuchs, M.; ZöLler, L.

    2008-02-01

    Lava flow dammed valleys (Vegas) on Lanzarote (Canary Islands) represent unique sediment traps, filled with autochthonous volcanic material and allochthonous Saharan dust. These sediments and the intercalated palaeosoil sediments document past environmental change of the last glacial-interglacial cycles, both on Lanzarote and in NW Africa. A reliable chronology must be established to use these sediment archives for palaeoclimate reconstructions. Owing to the lack of organic material and the limiting time range of the 14C-dating method, luminescence dating is the most promising method for these sediments. However, the fluvio-eolian character of these sediments is a major problem for luminescence dating, because these sediments are prone to insufficient resetting of the parent luminescence signal (bleaching) prior to sedimentation. To check for the best age estimates, we compare the bleaching behavior of (1) different grain sizes (coarse- versus fine-grain quartz OSL) and (2) different minerals (fine-grain feldspar IRSL versus fine-grain quartz OSL). The results show that owing to its bleaching characteristics, quartz is the preferable mineral for luminescence dating. On the basis of the fine- and coarse-grain quartz OSL age estimates, a chronostratigraphy up to 100 ka could be established. Beyond this age limit for OSL quartz, the chronostratigraphy could be extended up to 180 ka by correlating the vega sediments with dated marine sediment archives.

  4. Improving dust emission characterization in dust models using dynamic high-resolution geomorphic erodibility map

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z.; Kocurek, G.

    2013-12-01

    Dust is known to affect the earth radiation budget, biogeochemical cycle, precipitation, human health and visibility. Despite the increased research effort, dust emission modeling remains challenging because dust emission is affected by complex geomorphological processes. Existing dust models overestimate dust emission and rely on tuning and a static erodibility factor in order to make simulated results comparable to remote sensing and ground-based observations. In most of current models, dust emission is expressed in terms of threshold friction speed, which ultimately depends mainly upon the percentage clay content and soil moisture. Unfortunately, due to the unavailability of accurate and high resolution input data of the clay content and soil moisture, estimated threshold friction speed commonly does not represent the variability in field condition. In this work, we attempt to improve dust emission characterization by developing a high resolution geomorphic map of the Middle East and North Africa (MENA), which is responsible for more than 50% of global dust emission. We develop this geomorphic map by visually examining high resolution satellite images obtained from Google Earth Pro and ESRI base map. Albeit subjective, our technique is more reliable compared to automatic image classification technique because we incorporate knowledge of geological/geographical setting in identifying dust sources. We hypothesize that the erodibility is unique for different geomorphic landforms and that it can be quantified by the correlation between observed wind speed and satellite retrieved aerosol optical depth (AOD). We classify the study area into several key geomorphological categories with respect to their dust emission potential. Then we quantify their dust emission potential using the correlation between observed wind speed and satellite retrieved AOD. The dynamic, high-resolution geomorphic erodibility map thus prepared will help to reduce the uncertainty in current

  5. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J.; Liu, J.; Chen, B.; Nasiri, S. L.

    2015-04-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pasture, and urbanized regions and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data on source distribution and magnitude, and on their effect on radiative forcing which may be comparable to other anthropogenic aerosols. To understand the contribution of anthropogenic dust to the total global dust load and its effect on radiative transfer and climate, it is important to identify them from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use dataset. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25% of the global continental dust load. Of these anthropogenic dust aerosols, more than 53% come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2 with a maximum in India to 0.12 g m-2 with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be better able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change and air quality in the future.

  6. Satellite Monitoring of Long-Range Transport of Asian Dust Storms from Sources to Sinks

    NASA Astrophysics Data System (ADS)

    Hsu, N.; Tsay, S.; Jeong, M.; King, M.; Holben, B.

    2007-05-01

    Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of spring-time cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such popu-lation centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been dif-ficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. Deep Blue algorithm has recently been integrated into the MODIS processing stream and began to provide aerosol products over land as part of the opera-tional MYD04 products. In this talk, we will show the comparisons of the MODIS Deep Blue products with data from AERONET sunphotometers on a global ba-sis. The results indicate reasonable agreements between these two. These new

  7. Sexual behavior, knowledge and information sources of very young adolescents in four sub-Saharan African countries.

    PubMed

    Bankole, Akinrinola; Biddlecom, Ann; Guiella, Georges; Singh, Susheela; Zulu, Eliya

    2007-12-01

    Adolescents are a key target group for HIV and pregnancy prevention efforts, yet very little is known about the youngest adolescents: those under age 15. New survey data from 12-14 year olds in Burkina Faso, Ghana, Malawi and Uganda are used to describe their sexual activity, knowledge about HIV, STIs and pregnancy prevention, and sources of sexual and reproductive health information, including sex education in schools. Results show that very young adolescents are already beginning to be sexually active and many believe their close friends are sexually active. They have high levels of awareness but little in-depth knowledge about pregnancy and HIV prevention. Multiple information sources are used and preferred by very young adolescents. Given their needs for HIV, STI and pregnancy prevention information that is specific and practical and considering that the large majority are attending school in most countries in Sub-Saharan Africa, school-based sex education is a particularly promising avenue for reaching adolescents under age 15.

  8. Probing the interstellar dust towards the Galactic Centre: dust-scattering halo around AX J1745.6-2901

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall

    2017-07-01

    AX J1745.6-2901 is an X-ray binary located at only 1.45 arcmin from Sgr A⋆, showcasing a strong X-ray dust-scattering halo. We combine Chandra and XMM-Newton observations to study the halo around this X-ray binary. Our study shows two major thick dust layers along the line of sight (LOS) towards AX J1745.6-2901. The LOS position and NH of these two layers depend on the dust grain models with different grain size distributions and abundances. But for all the 19 dust grain models considered, dust layer-1 is consistently found to be within a fractional distance of 0.11 (mean value: 0.05) to AX J1745.6-2901 and contains only (19-34) per cent (mean value: 26 per cent) of the total LOS dust. The remaining dust is contained in layer-2, which is distributed from the Earth up to a mean fractional distance of 0.64. A significant separation between the two layers is found for all the dust grain models, with a mean fractional distance of 0.31. Besides, an extended wing component is discovered in the halo, which implies a higher fraction of dust grains with typical sizes ≲590 Å than considered in current dust grain models. Assuming AX J1745.6-2901 is 8 kpc away, dust layer-2 would be located in the Galactic disc several kpc away from the Galactic Centre (GC). The dust scattering halo biases the observed spectrum of AX J1745.6-2901 severely in both spectral shape and flux, and also introduces a strong dependence on the size of the instrumental point spread function and the source extraction region. We build xspec models to account for this spectral bias, which allow us to recover the intrinsic spectrum of AX J1745.6-2901 free from dust-scattering opacity. If dust layer-2 also intervenes along the LOS to Sgr A⋆ and other nearby GC sources, a significant spectral correction for the dust-scattering opacity would be necessary for all these GC sources.

  9. Multiple sources supply eolian mineral dust to the Atlantic sector of coastal Antarctica: Evidence from recent snow layers at the top of Berkner Island ice sheet

    NASA Astrophysics Data System (ADS)

    Bory, Aloys; Wolff, Eric; Mulvaney, Robert; Jagoutz, Emil; Wegner, Anna; Ruth, Urs; Elderfield, Harry

    2010-03-01

    The Sr and Nd isotopic composition of dust extracted from recent snow layers at the top of Berkner Island ice sheet (located within the Filchner-Ronne Ice Shelf at the southern end of the Weddell Sea) enables us, for the first time, to document dust provenance in Antarctica outside the East Antarctic Plateau (EAP) where all previous studies based on isotopic fingerprinting were carried out. Berkner dust displays an overall crust-like isotopic signature, characterized by more radiogenic 87Sr/ 86Sr and much less radiogenic 143Nd/ 144Nd compared to dust deposited on the EAP during glacial periods. Differences with EAP interglacial dust are not as marked but still significant, indicating that present-day Berkner dust provenance is distinct, at least to some extent, from that of the dust reaching the EAP. The fourteen snow-pit sub-seasonal samples that were obtained span a two-year period (2002-2003) and their dust Sr and Nd isotopic composition reveals that multiple sources are at play over a yearly time period. Southern South America, Patagonia in particular, likely accounts for part of the observed spring/summer dust deposition maxima, when isotopic composition is shifted towards "younger" isotopic signatures. In the spring, possible additional inputs from Australian sources would also be supported by the data. Most of the year, however, the measured isotopic signatures would be best explained by a sustained background supply from putative local sources in East Antarctica, which carry old-crust-like isotopic fingerprints. Whether the restricted East Antarctic ice-free areas produce sufficient eolian material has yet to be substantiated however. The fact that large (> 5 μm) particles represent a significant fraction of the samples throughout the entire time-series supports scenarios that involve contributions from proximal sources, either in Patagonia and/or Antarctica (possibly including snow-free areas in the Antarctic Peninsula and other areas as well). This also

  10. Observations of cross-Saharan transport of water vapour via cycle of cold pools and moist convection

    NASA Astrophysics Data System (ADS)

    Trzeciak, Tomasz; Garcia-Carreras, Luis; Marsham, John H.

    2017-04-01

    Very limited observational data has previously limited our ability to study meteorological processes in the Sahara. The Sahara is a key component of the West African monsoon and the world's largest dust source, but its representation is a major uncertainty in global models. Past studies have shown that there is a persistent warm and dry model bias throughout the Sahara, and this has been attributed to the lack of convectively-generated cold pools in the model, which can ventilate the central Sahara from its margins. Here we present an observed case from June 2012 which explains how cold pools are able to transport water vapour across a large area of the Sahara over a period of several days. A daily cycle is found to occur, where deep convection in the evening generates moist cold pools that then feed the next day's convection; the new convection in turn generates new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses can capture the general direction of transport, but not its full extent, especially at night when cold pools are most active, highlighting the difficulties for models to capture these processes. These results show the importance of cold pools for moisture transport, dust and clouds in the region, and demonstrate the need to include these processes in models to improve the representation of the Saharan atmosphere.

  11. Isotopically constrained lead sources in fugitive dust from unsurfaced roads in the southeast Missouri mining district.

    PubMed

    Witt, Emitt C; Pribil, Michael J; Hogan, John P; Wronkiewicz, David J

    2016-09-01

    The isotopic composition of lead (Pb) in fugitive dust suspended by a vehicle from 13 unsurfaced roads in Missouri was measured to identify the source of Pb within an established long-term mining area. A three end-member model using (207)Pb/(206)Pb and concentration as tracers resulted in fugitive dust samples plotting in the mixing field of well characterized heterogeneous end members. End members selected for this investigation include the (207)Pb/(206)Pb for 1) a Pb-mixture representing mine tailings, 2) aerosol Pb-impacted soils within close proximity to the Buick secondary recycling smelter, and 3) an average of soils, rock cores and drill cuttings representing the background conditions. Aqua regia total concentrations and (207)Pb/(206)Pb of mining area dust suggest that 35.4-84.3% of the source Pb in dust is associated with the mine tailings mixture, 9.1-52.7% is associated with the smelter mixture, and 0-21.6% is associated with background materials. Isotope ratios varied minimally within the operational phases of sequential extraction suggesting that mixing of all three Pb mixtures occurs throughout. Labile forms of Pb were attributed to all three end members. The extractable carbonate phase had as much as 96.6% of the total concentration associated with mine tailings, 51.8% associated with smelter deposition, and 34.2% with background. The next most labile geochemical phase (Fe + Mn Oxides) showed similar results with as much as 85.3% associated with mine tailings, 56.8% associated with smelter deposition, and 4.2% associated with the background soil. Published by Elsevier Ltd.

  12. Isotopically constrained lead sources in fugitive dust from unsurfaced roads in the southeast Missouri mining district

    USGS Publications Warehouse

    Witt, Emitt C.; Pribil, Michael; Hogan, John P; Wronkiewicz, David

    2016-01-01

    The isotopic composition of lead (Pb) in fugitive dust suspended by a vehicle from 13 unsurfaced roads in Missouri was measured to identify the source of Pb within an established long-term mining area. A three end-member model using 207Pb/206Pb and concentration as tracers resulted in fugitive dust samples plotting in the mixing field of well characterized heterogeneous end members. End members selected for this investigation include the 207Pb/206Pb for 1) a Pb-mixture representing mine tailings, 2) aerosol Pb-impacted soils within close proximity to the Buick secondary recycling smelter, and 3) an average of soils, rock cores and drill cuttings representing the background conditions. Aqua regia total concentrations and 207Pb/206Pb of mining area dust suggest that 35.4–84.3% of the source Pb in dust is associated with the mine tailings mixture, 9.1–52.7% is associated with the smelter mixture, and 0–21.6% is associated with background materials. Isotope ratios varied minimally within the operational phases of sequential extraction suggesting that mixing of all three Pb mixtures occurs throughout. Labile forms of Pb were attributed to all three end members. The extractable carbonate phase had as much as 96.6% of the total concentration associated with mine tailings, 51.8% associated with smelter deposition, and 34.2% with background. The next most labile geochemical phase (Fe + Mn Oxides) showed similar results with as much as 85.3% associated with mine tailings, 56.8% associated with smelter deposition, and 4.2% associated with the background soil.

  13. Concentrations and sources of cadmium, copper, lead and zinc in house dust in Christchurch, New Zealand.

    PubMed

    Kim, N; Fergusson, J

    1993-09-30

    The amounts (microgram m-2) and concentrations (microgram g-1) of cadmium, copper, lead and zinc have been measured in house dust in Christchurch, New Zealand. For 120 houses surveyed the geometric mean concentrations of the four metals are 4.24 micrograms g-1, 165 micrograms g-1, 573 micrograms g-1 and 10,400 micrograms g-1, respectively. In addition eleven variables, such as house age, carpet wear and traffic density, were recorded for each property and the results analysed with respect to their effects on the amounts and concentrations of the four elements. The amounts of all the metals were highly correlated with the overall dustiness of the houses, which was found to be predominantly determined by the degree of carpet wear. No one dominant source of cadmium was identified, although several minor sources including carpet wear, galvanized iron roofs and red/orange/yellow coloured carpets were implicated. Petrol lead and lead-based paints were identified as significant sources of lead in house dust. Rubber carpet underlays or backings were identified as a significant source of zinc, with some contribution from galvanized iron roofs. Road traffic and probably the existence of a fire place appear to contribute to the copper levels.

  14. An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Saharan Dust During the NAMMA Field Campaign

    NASA Technical Reports Server (NTRS)

    Hansell, R. A.; Tsay, S. C.; Ji, Q.; Hsu, N. C.; Jeong, M. J.; Wang, S. H.; Reid, J. S.; Liou, K. N.; Ou, S. C.

    2010-01-01

    In September 2006, NASA Goddard s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73degN, 22.93degW) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadow-band radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu-Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRE(sub LW)) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRE(sub LW) and longwave heating rate profiles are also evaluated. Instantaneous surface DRE(sub LW) ranges from 2 to 10 W/sq m and exhibits a strong linear dependence with dust AOT yielding a DRE(sub LW) of 16 W/sq m per unit dust AOT. The DRE(sub LW) is estimated to be approx.42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRE(sub LW) can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.

  15. Satellite Monitoring of Asian Dust Storms from SeaWiFS and MODIS: Source, Pathway, and Interannual Variability

    NASA Astrophysics Data System (ADS)

    Hsu, N.; Tsay, S.; Jeong, M.; Holben, B.

    2006-12-01

    Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of spring-time cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such popu-lation centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been dif-ficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The compari-sons show reasonable agreements between these two. These new satellite prod-ucts will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and

  16. Satellite Monitoring of Asian Dust Storms from SeaWiFS and MODIS: Source, pathway and Interannual Variability

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina

    2007-01-01

    Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS

  17. Satellite Monitoring of Asian Dust Storms from SeaWiFS and MODIS: Source, Pathway, and Interannual Variability

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Tsay, S.-C.; Bettenhausen, C.; Salustro, C.; Jeong, M. J.

    2010-01-01

    Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochernical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS

  18. Satellite Monitoring of Asian Dust Storms from SeaWiFS and MODIS: Source, Pathway, and Interannual Variability

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Tsay, S.-C.; Bettenhausen, C.; Sayer, A.

    2011-01-01

    Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces peop Ie indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be tran sported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over brightreflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as Sea WiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from Sea WiFS and

  19. Dust storm from Syria- a potential new aerosol source in the E. Mediterranean- A ceilometer and synoptic study

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; Egert, Smadar; Uzan, Leenes

    2017-04-01

    On 7 Sep 2015 an unprecedented huge dust plume approached the SE Mediterranean basin from the northeast- Syria region. According to the Israeli meteorological service it is the first time in 75 years of measurements, that a dust storm reaches Israel early September, lasts several days and dust concentrations reach values 100 times the normal (1700µg/m3). Dust storms are normally monitored in the east Mediterranean using satellites and surface PM data. Obviously, these cannot show the vertical evolution of the dust including penetration, sinking and cleaning since vertical profiles are not available. High-resolution, micro Lidar Ceilometer network is gradually established in Israel. A few instruments of this network were already operational during the dust storm. The most crucial vertical information, monitored by these Ceilometers with 10m resolution vertically, every 16s, is analyzed. The difference in the cloud-layers allow the investigation of the high altitude of 1000m dust penetration, its sinking into the complex structured 250-500m mixed layer and the gradual 3D cleaning. This finding contradicts the conventional understanding that cleaning is due to gradual descent and shows not only the vertical fluctuation during the entire event but also the vertical rise to 2000m at the end of the event. The vertical information showed that the actual event period duration was 7 days, compared to only 90 hours based on traditional detectors. Is it a new dust source in the E. Mediterranean-long and short term trends?

  20. Cosmic meteor dust: potentially the dominant source of bio-available iron in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Marsh, D. R.; Del Castillo, C. E.; Fentzke, J.; Lopez-Rosado, R.; Behrenfeld, M.

    2012-12-01

    Johnson, 2001 [Johnson, Kenneth. S. (2001), Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?, Global Biogeochem. Cycles, 15(1), 61-63, doi:10.1029/2000GB001295], first suggested that meteoric particulate flux could be a significant source of bio-available iron, particularly in regions with little or no eolean sources, such as the Southern Ocean. While these calculations raised intriguing questions, there were many large unknowns in the input calculations between meteor flux and bio-available ocean molecular densities. There has been significant research in the intervening decade on related topics, such as the magnitude (~200 ktons per year) and composition of the meteoric flux, its atmospheric evaporation, transport, mesospheric formation of potentially soluble meteoric smoke, and extraterrestrial iron isotope identification. Paramount of these findings are recent NCAR WACCM atmosphere model results demonstrating that the majority of meteoric constituents are transported towards the winter poles and the polar vortex. This may lead to a focusing of meteoritic iron deposition towards the Southern Ocean. We present a proposed research plan involving Southern Ocean sample collection and analysis and atmospheric and biological modeling to determine both the current relevance of meteoric iron, and examine the past and future consequences of cosmic dust under a changing climate.

  1. Chemical composition and sources of atmospheric aerosols at Djougou (Benin)

    NASA Astrophysics Data System (ADS)

    Ouafo-Leumbe, Marie-Roumy; Galy-Lacaux, Corinne; Liousse, Catherine; Pont, Veronique; Akpo, Aristide; Doumbia, Thierno; Gardrat, Eric; Zouiten, Cyril; Sigha-Nkamdjou, Luc; Ekodeck, Georges Emmanuel

    2017-06-01

    In the framework of the INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) program, atmospheric aerosols were collected in PM2.5 and PM10 size fractions at Djougou, Benin, in the West Africa, from November, 2005 to October, 2009. Particulate carbon, ionic species, and trace metals were analyzed. Weekly PM2.5 and PM10 total mass concentrations varied between 0.7 and 47.3 µg m-3 and 1.4-148.3 µg m-3, respectively. We grouped the aerosol chemical compounds into four classes: dust, particulate organic matter (POM), elemental carbon (EC), and ions. We studied the annual variation of each class to determine their contribution in the total aerosol mass concentration and finally to investigate their potential emission sources. On an annual basis, the species presented a well-marked seasonality, with the peak of mass concentration for both sizes registered in dry season, 67 ± 2 to 86 ± 9 versus 14 ± 9 to 34 ± 5% in wet season. These values emphasized the seasonality of the emissions and the relative weak interannual standard deviation indicates the low variability of the seasonality. At the seasonal scale, major contributions to the aerosol chemistry in the dry season are: dust (26-59%), POM (30-59%), EC (5-9%), and ions (3-5%), suggesting a predominance of Sahelian and Saharan dust emissions and biomass burning source in this season. In the wet season, POM is predominant, followed by dust, EC, and ions. These results point out the contribution of surrounded biofuel combustion used for cooking and biogenic emissions during the wet season.

  2. Evolution of efficient methods to sample lead sources, such as house dust and hand dust, in the homes of children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que Hee, S.S.; Peace, B.; Clark, C.S.

    Efficient sampling methods to recover lead-containing house dust and hand dust have been evolved so that sufficient lead is collected for analysis and to ensure that correlational analyses linking these two parameters to blood lead are not dependent on the efficiency of sampling. Precise collection of loose house dust from a 1-unit area (484 cmS) with a Tygon or stainless steel sampling tube connected to a portable sampling pump (1.2 to 2.5 liters/min) required repetitive sampling (three times). The Tygon tube sampling technique for loose house dust <177 m in diameter was around 72% efficient with respect to dust weightmore » and lead collection. A representative house dust contained 81% of its total weight in this fraction. A single handwipe for applied loose hand dust was not acceptably efficient or precise, and at least three wipes were necessary to achieve recoveries of >80% of the lead applied. House dusts of different particle sizes <246 m adhered equally well to hands. Analysis of lead-containing material usually required at least three digestions/decantations using hot plate or microwave techniques to allow at least 90% of the lead to be recovered. It was recommended that other investigators validate their handwiping, house dust sampling, and digestion techniques to facilitate comparison of results across studies. The final methodology for the Cincinnati longitudinal study was three sampling passes for surface dust using a stainless steel sampling tube; three microwave digestion/decantations for analysis of dust and paint; and three wipes with handwipes with one digestion/decantation for the analysis of six handwipes together.« less

  3. An automatic collector to monitor insoluble atmospheric deposition: application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-07-01

    Deposition is one of the key terms of the mineral dust cycle. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims to present an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programmed sampling frequency (from 1 day to 2 weeks respectively). This collector is used to sample atmospheric deposition of Saharan dust on the Frioul islands in the Gulf of Lions in the Western Mediterranean. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Almost 2 years of continuous deposition measurements performed on a weekly sampling basis on Frioul Island are presented and discussed with air mass trajectories and satellite observations of dust. Insoluble mineral deposition measured on Frioul Island was 2.45 g m-2 for February to December 2011 and 3.16 g m-2 for January to October 2012. Nine major mineral deposition events, measured during periods with significant MODIS aerosol optical depths, were associated with air masses coming from the southern Mediterranean Basin and North Africa.

  4. Interactions Between Mineral Dust, Climate, and Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Grassian, Vicki H.; Miller, Ron L.

    2010-01-01

    Over the past decade, technological improvements in the chemical and physical characterization of dust have provided insights into a number of phenomena that were previously unknown or poorly understood. In addition, models are now incorporating a wider range of physical processes, which will allow us to better quantify the climatic and ecological impacts of dust. For example, some models include the effect of dust on oceanic photosynthesis and thus on atmospheric CO 2 (Friedlingstein et al. 2006). The impact of long-range dust transport, with its multiple forcings and feedbacks, is a relatively new and complex area of research, where input from several disciplines is needed. So far, many of these effects have only been parameterized in models in very simple terms. For example, the representation of dust sources remains a major uncertainty in dust modeling and estimates of the global mass of airborne dust. This is a problem where Earth scientists could make an important contribution, by working with climate scientists to determine the type of environments in which easily erodible soil particles might have accumulated over time. Geologists could also help to identify the predominant mineralogical composition of dust sources, which is crucial for calculating the radiative and chemical effects of dust but is currently known for only a few regions. Understanding how climate and geological processes control source extent and characterizing the mineral content of airborne dust are two of the fascinating challenges in future dust research.

  5. Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment

    NASA Astrophysics Data System (ADS)

    Kertész, Zs.; Szoboszlai, Z.; Angyal, A.; Dobos, E.; Borbély-Kiss, I.

    2010-06-01

    In this work a source apportionment study is presented which aimed to characterize the PM 2.5 and PM 2.5-10 sources in the urban area of Debrecen, East-Hungary by using streaker samples, IBA methods and positive matrix factorization (PMF) analysis. Samples of fine (PM 2.5) and coarse (PM 2.5-10) urban particulate matter were collected with 2 h time resolution in the frame of five sampling campaigns during 2007-2009 in different seasons in the downtown of Debrecen. Elemental concentrations from Al to Pb of over 1000 samples were obtained by particle induced X-ray emission (PIXE); concentrations of black carbon (BC) were determined with a smoke stain reflectometer. On this data base source apportionment was carried out by using the PMF method. Seven factors were identified for both size fractions, including soil dust, traffic, secondary aerosol - sulphates, domestic heating, oil combustion, agriculture and an unknown factor enriched with chlorine. Seasonal and daily variation of the different factors was studied as well as their dependence on meteorological parameters. Besides determining the time patterns characteristic to the city, several emission episodes were identified including a Saharan dust intrusion on 21st-24th May, 2008.

  6. Occurrence, sources and human exposure assessment of SCCPs in indoor dust of northeast China.

    PubMed

    Liu, Li-Hua; Ma, Wan-Li; Liu, Li-Yan; Huo, Chun-Yan; Li, Wen-Long; Gao, Chong-Jing; Li, Hai-Ling; Li, Yi-Fan; Chan, Hing Man

    2017-06-01

    Short-chain chlorinated paraffins (SCCPs) are widely used chemicals in household products and might cause adverse human health effects. However, limited information is available on the occurrence of SCCPs in indoor environments and their exposure risks on humans. In this study the concentrations, profiles and human exposure of SCCPs in indoor dust from five different indoor environments, including commercial stores, residential apartments, dormitories, offices and laboratories were characterized. The SCCPs levels ranged from 10.1 to 173.0 μg/g, with the median and mean concentration of 47.2 and 53.6 μg/g, respectively. No significant difference was found on concentrations among the five microenvironments. The most abundant compounds in indoor dust samples were homologues of C 13 group, Cl 7 group and N 20 (N is the total number of C and Cl) group. In the five microenvironments, commercial stores were more frequently exposed to shorter carbon chained and higher chlorinated homologues. Three potential sources for SCCPs were identified by the multiple linear regression of factor score model and correspondence analysis. The major sources of SCCPs in indoor dust were technical mixtures of CP-42 (42% chlorine, w/w) and CP-52 b (52% chlorine, w/w). The total daily exposure doses and hazard quotients (HQ) were calculated by the human exposure models, and they were all below the reference doses and threshold values, respectively. Monte Carlo simulation was applied to predict the human exposure risk of SCCPs. Infants and toddlers were at risk of SCCPs based on predicted HQ values, which were exceeded the threshold for neoplastic effects in the worst case. Our results on the occurrences, sources and human exposures of SCCPs will be useful to provide a better understanding of SCCPs behaviors in indoor environment in China, and to support environmental risk evaluation and regulation of SCCPs in the world. Copyright © 2017. Published by Elsevier Ltd.

  7. Martian Dust Cycle

    NASA Astrophysics Data System (ADS)

    Cantor, B. A.; James, P. B.

    to date. With MOC we have observed that global dust events are not individual storms but are composed of a number of local and regional storms (sources) and that they do not signify climatic changes, but are only short-term perturbations to the general interannually repeatable Martian dust storm cycle.

  8. Characterisation of nutrients wet deposition under influence of Saharan dust at Puerto-Rico in Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Desboeufs, Karine; Formenti, Paola; Triquet, Sylvain; Laurent, Benoit; Denjean, Cyrielle; Gutteriez-Moreno, Ian E.; Mayol-Bracero, Olga L.

    2015-04-01

    Large quantities of African dust are carried across the North Atlantic toward the Caribbean every summer by Trade Winds. Atmospheric deposition of dust aerosols, and in particular wet deposition, is widely acknowledged to be the major delivery pathway for nutrients to ocean ecosystems, as iron, phosphorus and various nitrogen species. The deposition of this dustis so known to have an important impact on biogeochemical processes in the Tropical and Western Atlantic Ocean and Caribbean including Puerto-Rico. However, very few data exists on the chemical composition in nutrients in dusty rain in this region. In the framework of the Dust-ATTAcK project, rainwater was collected at the natural reserve of Cape San Juan (CSJ) (18.38°N, 65.62°W) in Puerto-Ricobetween 20 June 2012 and 12 July 2012 during thedusty period. A total of 7 rainwater events were sampled during various dust plumes. Complementary chemical analyses on aerosols in suspension was also determined during the campaign. The results on dust composition showed that no mixing with anthropogenic material was observed, confirming dust aerosols were the major particles incorporated in rain samples. The partitioning between soluble and particulate nutrients in rain samples showed that phosphorous solubility ranged from 30 and 80%. The average Fe solubility was around 0.5%, in agreement with Fe solubility observed in rains collected in Niger during African monsoon. That means that the high solubility measurements previously observed in Caribbean was probably due to an anthropogenic influence. Atmospheric wet deposition fluxes of soluble and total nutrients (N, P, Si, Fe, Co, Cu, Mn, Ni, Zn) to Caribbean Sea were determined. Atmospheric P and N inputs were strongly depleted relative to the stoichiometry of phytoplankton Fe, N, P and Si requirements.The nitrogen speciation was also determined and showed the predominance of ammonium form. 3-D modeling was used to estimate the spatial extend of these fluxes over the

  9. Eolian Dust and the Origin of Sedimentary Chert

    USGS Publications Warehouse

    Cecil, C. Blaine

    2004-01-01

    This paper proposes an alternative model for the primary source of silica contained in bedded sedimentary chert. The proposed model is derived from three principal observations as follows: (1) eolian processes in warm-arid climates produce copious amounts of highly reactive fine-grained quartz particles (dust), (2) eolian processes in warm-arid climates export enormous quantities of quartzose dust to marine environments, and (3) bedded sedimentary cherts generally occur in marine strata that were deposited in warm-arid paleoclimates where dust was a potential source of silica. An empirical integration of these observations suggests that eolian dust best explains both the primary and predominant source of silica for most bedded sedimentary cherts.

  10. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    PubMed

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  11. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies

    NASA Astrophysics Data System (ADS)

    Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Makhmudov, Abduvosit N.; Nazarov, Bakhron I.; Schettler, Georg; Engelmann, Ronny; Baars, Holger; Wadinga Fomba, K.; Müller, Konrad; Heinold, Bernd; Kandler, Konrad; Ansmann, Albert

    2017-12-01

    For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment) in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar, a sun photometer was also operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-month measurement campaign, mineral dust was detected frequently from ground to the cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT) of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer) and an Ångström exponent of -0.08. The observed lidar ratios (and particle linear depolarization ratios) in the presented dust cases range from 40.3 to 46.9 sr (and 0.18-0.29) at 355 nm and from 35.7 to 42.9 sr (0.31-0.35) at 532 nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio values are lower than typical

  12. Trans boundary transport of pollutants by atmospheric mineral dust.

    PubMed

    Erel, Yigal; Dayan, Uri; Rabi, Reut; Rudich, Yinon; Stein, Mordechai

    2006-05-01

    The transport of anthropogenic pollution by desert dust in the Eastern Mediterranean region was studied by analyzing major and trace element composition, organic species, and Pb isotope ratios in suspended dust samples collected in Jerusalem, Israel. Dust storms in this region are associated with four distinct synoptic conditions (Red Sea Trough (RS), Eastern High (EH), Sharav Cyclone (SC), and Cold Depression (Cyprus low, CD)) that carry dust mostly from North African (SC, CD, EH) and Arabian and Syrian (RS, EH) deserts. Substantial contamination of dust particles by Pb, Cu, Zn, and Ni is observed, while other elements (Na, Ca, Mg, Mn, Sr, Rb, REE, U, and Th) display natural concentrations. Sequential extraction of the abovementioned elements from the dust samples shows that the carbonate and sorbed fractions contain most of the pollution, yet the Al-silicate fraction is also contaminated, implying that soils and sediments in the source terrains of the dust are already polluted. We identified the pollutant sources by using Pb isotopes. It appears that before the beginning of the dust storm, the pollutants in the collected samples are dominated by local sources but with the arrival of dust from North Africa, the proportion of foreign pollutants increases. Organic pollutants exhibit behavior similar and complementary to that of the inorganic tracers, attesting to the importance of anthropogenic-pollutant addition en route of the dust from its remote sources. Pollution of suspended dust is observed under all synoptic conditions, yet it appears that easterly winds carry higher proportions of local pollution and westerly winds carry pollution emitted in the Cairo basin. Therefore, pollution transport by mineral dust should be accounted for in environmental models and in assessing the health-related effects of mineral dust.

  13. Northern hemisphere dust storms on Mars

    NASA Technical Reports Server (NTRS)

    James, P. B.

    1993-01-01

    Dust storms in the northern hemisphere of Mars appear to be less common than the more familiar southern hemisphere storms, and essentially, no activity north of about 30 latittude has been documented. The data are, however, subject to an observational bias because Mars is near aphelion during oppositions, which occur during the most likely seasons for dust activity in the north. The amount of dust activity in the northern hemisphere is clearly very relevant to the role of atmospheric transport in the dust cycle. The classic global storms that occur during spring in the southern hemisphere are observed to transport dust from sources in the southern hemisphere to sinks or temporary depositories in the north. The question of whether atmospheric transport can close the dust cycle, i.e., return the dust to the southern hemisphere sources on some timescale, is clearly relevant to the solution of the puzzle of how the dust storm cycle is modulated, i.e., why storms occur in some years but not in others. There are data that suggest that the spring/early summer season in the northern hemisphere of Mars during the year following the major 1977 storms observed by Viking was very dusty. A number of observations of the vicinity of the receding north polar cap showed clear evidence of substantial dust activity in the sub-Arctic region.

  14. Modelling absorbing aerosol with ECHAM-HAM: Insights from regional studies

    NASA Astrophysics Data System (ADS)

    Tegen, Ina; Heinold, Bernd; Schepanski, Kerstin; Banks, Jamie; Kubin, Anne; Schacht, Jacob

    2017-04-01

    Quantifying distributions and properties of absorbing aerosol is a basis for investigations of interactions of aerosol particles with radiation and climate. While evaluations of aerosol models by field measurements can be particularly successful at the regional scale, such results need to be put into a global context for climate studies. We present an overview over studies performed at the Leibniz Institute for Tropospheric Research aiming at constraining the properties of mineral dust and soot aerosol in the global aerosol model ECHAM6-HAM2 based on different regional studies. An example is the impact of different sources for dust transported to central Asia, which is influenced, by far-range transport of dust from Arabia and the Sahara together with dust from local sources. Dust types from these different source regions were investigated in the context of the CADEX project and are expected to have different optical properties. For Saharan dust, satellite retrievals from MSG SEVIRI are used to constrain Saharan dust sources and optical properties. In the Arctic region, on one hand dust aerosol is simulated in the framework of the PalMod project. On the other hand aerosol measurements that will be taken during the DFG-funded (AC)3 field campaigns will be used to evaluate the simulated transport pathways of soot aerosol from European, North American and Asian sources, as well as the parameterization of soot ageing processes in ECHAM6-HAM2. Ultimately, results from these studies will improve the representation of aerosol absorption in the global model.

  15. Desert Dust and Health: A Central Asian Review and Steppe Case Study.

    PubMed

    Sternberg, Troy; Edwards, Mona

    2017-11-03

    In Asian deserts environmental and anthropomorphic dust is a significant health risk to rural populations. Natural sources in dry landscapes are exacerbated by human activities that increase the vulnerability to dust and dust-borne disease vectors. Today in Central and Inner Asian drylands, agriculture, mining, and rapid development contribute to dust generation and community exposure. Thorough review of limited dust investigation in the region implies but does not quantify health risks. Anthropogenic sources, such as the drying of the Aral Sea, highlight the shifting dust dynamics across the Central EurAsian steppe. In the Gobi Desert, our case study in Khanbogd, Mongolia addressed large-scale mining's potential dust risk to the health of the local population. Dust traps showed variable exposure to particulates among herder households and town residents; dust density distribution indicated that sources beyond the mine need to be considered when identifying particulate sources. Research suggests that atmospheric dust from multiple causes may enhance human particulate exposure. Greater awareness of dust in greater Central Asia reflects community concern about related health implications. Future human well-being in the region will require more thorough information on dust emissions in the changing environment.

  16. Desert Dust and Health: A Central Asian Review and Steppe Case Study

    PubMed Central

    Sternberg, Troy; Edwards, Mona

    2017-01-01

    In Asian deserts environmental and anthropomorphic dust is a significant health risk to rural populations. Natural sources in dry landscapes are exacerbated by human activities that increase the vulnerability to dust and dust-borne disease vectors. Today in Central and Inner Asian drylands, agriculture, mining, and rapid development contribute to dust generation and community exposure. Thorough review of limited dust investigation in the region implies but does not quantify health risks. Anthropogenic sources, such as the drying of the Aral Sea, highlight the shifting dust dynamics across the Central EurAsian steppe. In the Gobi Desert, our case study in Khanbogd, Mongolia addressed large-scale mining’s potential dust risk to the health of the local population. Dust traps showed variable exposure to particulates among herder households and town residents; dust density distribution indicated that sources beyond the mine need to be considered when identifying particulate sources. Research suggests that atmospheric dust from multiple causes may enhance human particulate exposure. Greater awareness of dust in greater Central Asia reflects community concern about related health implications. Future human well-being in the region will require more thorough information on dust emissions in the changing environment. PMID:29099792

  17. Seasonal Variation and Exposure Risks of Perchlorate in Soil, Indoor Dust, and Outdoor Dust in China.

    PubMed

    Li, Yiwen; Liao, Ruoying; Gan, Zhiwei; Qu, Bing; Wang, Rong; Chen, Mengqin; Ding, Sanglan; Su, Shijun

    2018-04-25

    A total of 97 paired soil, outdoor dust, and indoor dust samples were collected in the national scale of China in summer, and the perchlorate levels were compared with those in soil and outdoor dust samples collected in winter in our previous study. The median perchlorate concentrations in the outdoor dust, indoor dust, and soil samples were 8.10, 11.4, and 0.05 mg/kg, respectively, which were significantly lower than those in the winter samples due to the natural factors and human activities. No significant differences in perchlorate concentrations were found between Northern and Southern China in the dust samples, whereas the difference was obtained in the soil samples. In the terms of possible source, the perchlorate levels in the outdoor dust exhibited strong correlation with SO 4 2- (r 2  = 0.458**) and NO 3 - (r 2  = 0.389**), indicating part of perchlorate in outdoor environment was likely from atmospheric oxidative process in summer. The perchlorate, SO 4 2- , and Cl - levels in the indoor dust were significantly related to those in the outdoor dust, suggesting that outdoor contaminants might be an important source for indoor environment. Furthermore, the human exposure to perchlorate was under relatively safe state in China except for special sites or periods with high perchlorate levels. Dust made an unexpected contribution of 41.3% to the total daily perchlorate intake for children, whereas 2.46% for adults in China based on biomonitoring, which deserves more attention.

  18. Diarrhea management in children under five in sub-Saharan Africa: does the source of care matter? A Countdown analysis.

    PubMed

    Carvajal-Vélez, Liliana; Amouzou, Agbessi; Perin, Jamie; Maïga, Abdoulaye; Tarekegn, Hayalnesh; Akinyemi, Akanni; Shiferaw, Solomon; Young, Mark; Bryce, Jennifer; Newby, Holly

    2016-08-19

    Diarrhea remains a high burden disease, responsible for nine percent of deaths in children under five globally. We analyzed diarrhea management practices in young children and their association with the source of care. We used Demographic and Health Survey data from 12 countries in sub-Saharan Africa with high burdens of childhood diarrhea. We classified the quality of diarrhea management practices as good, fair, or poor based on mothers' reports for children with diarrhea, using WHO/UNICEF recommendations for appropriate treatment. We described the prevalence of diarrhea management by type and assessed the association between good management and source of care, adjusting for potential confounders. Prevalence of good diarrhea management is low in 11 of the 12 analyzed surveys, varying from 17 % in Cote d'Ivoire to 38 % in Niger. The exception is Sierra Leone, where prevalence of good practice is 67 %. Prevalence of good management was low even among children taken to health facilities [median 52 %, range: 34-64 %]. Diarrhea careseeking from health facilities or community providers was associated with higher odds of good management than care from traditional/informal sources or no care. Careseeking from facilities did not result systematically in a higher likelihood of good diarrhea management than care from community providers. The odds of good diarrhea management were similar for community versus facility providers in six countries, higher in community than facility providers in two countries, and higher in facility than in community providers in four countries. Many children's lives can be saved with correct management of childhood diarrhea. Too many children are not receiving adequate care for diarrhea in high-burden sub-Saharan African countries, even among those seen in health facilities. Redoubling efforts to increase careseeking and improve quality of care for childhood diarrhea in both health facilities and at community level is an urgent priority.

  19. Dust escape from Io

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  20. An electrified dust storm over the Negev desert, Israel

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Price, C. G.; Yaniv, R.; Katz, S.

    2015-12-01

    We report on atmospheric electrical measurements conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30035'N, 34045'E) during a massive dust storm that occurred over the Eastern Mediterranean region on 10-11 February 2015. The event transported Saharan dust from Egypt and the Sinai Peninsula in advance of the warm front of a Cyprus low pressure system. Satellite images show the dust plume covering the Negev desert and Southern Israel and moving north. The concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 450 μg m-3 and AOT from the AERONET station in Sde-Boker was 1.5 on the 10th. The gradual intensification of the event reached peak values on February 11th of over 1200 μg m-3 and AOT of 1.8. This was the most severe dust event in a decade. Continuous measurements of the fair weather vertical electric field (Ez) and vertical current density (Jz) were conducted with 1 minute temporal resolution. Meteorological data was also recorded at the site. As the dust was advected over the observation site, we noted very large fluctuations in the electrical parameters. Since the onset of the dust storm, the Ez values changed between +1000 and +8000 V m-1 while the Jz fluctuated between -10 pA m2 and +20 pA m2, both on time-scales of a few minutes. These values are a significant departures from the mean fair-weather values measured at the site, which are -~200 V m-1 and ~2 pA m2. The disturbed episodes lasted for several hours on the 10th and 11th and coincided with local meteorological conditions related to the wind direction, which carried large amounts of dust particles. We interpret the rapid changes as caused by the transport of electrically charged dust. Calculation of the total electrical charge during the dust storm will be presented.

  1. A parameterization of dust emission (PM10) fluxes of dust events observed at Naiman in Inner Mongolia using the monitored tower data

    NASA Astrophysics Data System (ADS)

    Park, Soon-Ung; Ju, Jae-Won; Lee, In-Hye; Joo, Seung Jin

    2016-09-01

    The optimal regression equations for the dust emission flux parameterized with the friction velocity (u*) only, the friction velocity with the threshold friction velocity (u*t) and the friction velocity together with the flux Richardson number (Rf) in the dust source region are derived using the sonic anemometer measured momentum and kinematic heat fluxes at 8 m height and the two-level (3 m and 15 m height) measured PM10 concentrations from a 20-m monitoring tower located at Naiman in the Asian dust source region in China for the period from March 2013 to November 2014. The analysis period is divided into three sub-periods based on the Normalized Difference Vegetation Index (NDVI) to eliminate the effect of vegetation on the dust emission flux. The dust event is identified as a peak half hourly mean dust concentration (PM10) at 3 m height exceeding the sub-period mean dust concentration plus one standard deviation of the sub-period. The total of 317 dust events is identified with the highest number of dust event of 18.8 times a month in summer. The optimal regression equations of the dust emission flux (Fc) for dust events parameterized with u* and Rf are found to simulate quite well the dust emission flux estimated by the observed data at the site for all periods especially for the unstable stratification, suggesting the potential usefulness of these equations parameterized by u* with Rf rather than those by u* only and u* together with u*t for the estimation of the dust emission flux in the Asian dust source region.

  2. Ensemble classification for identifying neighbourhood sources of fugitive dust and associations with observed PM10

    NASA Astrophysics Data System (ADS)

    Khuluse-Makhanya, Sibusisiwe; Stein, Alfred; Breytenbach, André; Gxumisa, Athi; Dudeni-Tlhone, Nontembeko; Debba, Pravesh

    2017-10-01

    In urban areas the deterioration of air quality as a result of fugitive dust receives less attention than the more prominent traffic and industrial emissions. We assessed whether fugitive dust emission sources in the neighbourhood of an air quality monitor are predictors of ambient PM10 concentrations on days characterized by strong local winds. An ensemble maximum likelihood method is developed for land cover mapping in the vicinity of an air quality station using SPOT 6 multi-spectral images. The ensemble maximum likelihood classifier is developed through multiple training iterations for improved accuracy of the bare soil class. Five primary land cover classes are considered, namely built-up areas, vegetation, bare soil, water and 'mixed bare soil' which denotes areas where soil is mixed with either vegetation or synthetic materials. Preliminary validation of the ensemble classifier for the bare soil class results in an accuracy range of 65-98%. Final validation of all classes results in an overall accuracy of 78%. Next, cluster analysis and a varying intercepts regression model are used to assess the statistical association between land cover, a fugitive dust emissions proxy and observed PM10. We found that land cover patterns in the neighbourhood of an air quality station are significant predictors of observed average PM10 concentrations on days when wind speeds are conducive for dust emissions. This study concludes that in the absence of an emissions inventory for ambient particulate matter, PM10 emitted from dust reservoirs can be statistically accounted for by land cover characteristics. This supports the use of land cover data for improved prediction of PM10 at locations without air quality monitoring stations.

  3. Sensitivity of WRF-Chem model to land surface schemes: Assessment in a severe dust outbreak episode in the Central Mediterranean (Apulia Region)

    NASA Astrophysics Data System (ADS)

    Rizza, Umberto; Miglietta, Mario Marcello; Mangia, Cristina; Ielpo, Pierina; Morichetti, Mauro; Iachini, Chiara; Virgili, Simone; Passerini, Giorgio

    2018-03-01

    The Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate a severe Saharan dust outbreak event that took place over Southern Italy in March 2016. Numerical experiments have been performed applying a physics-based dust emission model, with soil properties generated from three different Land Surface Models, namely Noah, RUC and Noah-MP. The model performance in reproducing the severe desert dust outbreak is analysed using an observational dataset of aerosol and desert dust features that includes optical properties from satellite and ground-based sun-photometers, and in-situ particulate matter mass concentration (PM) data. The results reveal that the combination of the dust emission model with the RUC Land Surface Model significantly over-predicts the emitted mineral dust; on the other side, the combination with Noah or Noah-MP Land Surface Model (LSM) gives better results, especially for the daily averaged PM10.

  4. Performance evaluation of CESM in simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z. L.; Kocurek, G.; Lawrence, D. M.

    2014-12-01

    Mineral dust in the atmosphere has implications for Earth's radiation budget, biogeochemical cycles, hydrological cycles, human health and visibility. Mineral dust is injected into the atmosphere during dust storms when the surface winds are sufficiently strong and the land surface conditions are favorable. Dust storms are very common in specific regions of the world including the Middle East and North Africa (MENA) region, which contains more than 50% of the global dust sources. In this work, we present simulation of the dust cycle under the framework of CESM1.2.2 and evaluate how well the model captures the spatio-temporal characteristics of dust sources, transport and deposition at global scale, especially in dust source regions. We conducted our simulations using two existing erodibility maps (geomorphic and topographic) and a new erodibility map, which is based on the correlation between observed wind and dust. We compare the simulated results with MODIS satellite data, MACC reanalysis data, and AERONET station data. Comparison with MODIS satellite data and MACC reanalysis data shows that all three erodibility maps generally reproduce the spatio-temporal characteristics of dust optical depth globally. However, comparison with AERONET station data shows that the simulated dust optical depth is generally overestimated for all erodibility maps. Results vary greatly by region and scale of observational data. Our results also show that the simulations forced by reanalysis meteorology capture the overall dust cycle more realistically compared to the simulations done using online meteorology.

  5. Featured Image: Making Dust in the Lab

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224

  6. Sources, Sinks, and Transatlantic Transport of North African Dust Aerosol: A Multimodel Analysis and Comparison With Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Kim, Dongchul; Chin, Mian; Yu, Hongbin; Diehl, Thomas; Tan, Qian; Kahn, Ralph A.; Tsigaridis, Kostas; Bauer, Susanne E.; Takemura, Toshihiko; Pozzoli, Luca; hide

    2014-01-01

    This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.

  7. Source apportion of atmospheric particulate matter: a joint Eulerian/Lagrangian approach.

    PubMed

    Riccio, A; Chianese, E; Agrillo, G; Esposito, C; Ferrara, L; Tirimberio, G

    2014-12-01

    PM2.5 samples were collected during an annual monitoring campaign (January 2012-January 2013) in the urban area of Naples, one of the major cities in Southern Italy. Samples were collected by means of a standard gravimetric sampler (Tecora Echo model) and characterized from a chemical point of view by ion chromatography. As a result, 143 samples together with their ionic composition have been collected. We extend traditional source apportionment techniques, usually based on multivariate factor analysis, interpreting the chemical analysis results within a Lagrangian framework. The Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model was used, providing linkages to the source regions in the upwind areas. Results were analyzed in order to quantify the relative weight of different source types/areas. Model results suggested that PM concentrations are strongly affected not only by local emissions but also by transboundary emissions, especially from the Eastern and Northern European countries and African Saharan dust episodes.

  8. Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas

    NASA Astrophysics Data System (ADS)

    Karnae, Saritha; John, Kuruvilla

    2011-07-01

    Corpus Christi is a growing industrialized urban airshed in South Texas impacted by local emissions and regional transport of fine particulate matter (PM 2.5). Positive matrix factorization (PMF2) technique was used to evaluate particulate matter pollution in the urban airshed by estimating the types of sources and its corresponding mass contributions affecting the measured ambient PM 2.5 levels. Fine particulate matter concentrations by species measured during July 2003 through December 2008 at a PM 2.5 speciation site were used in this study. PMF2 identified eight source categories, of which secondary sulfates were the dominant source category accounting for 30.4% of the apportioned mass. The other sources identified included aged sea salt (18.5%), biomass burns (12.7%), crustal dust (10.1%), traffic (9.7%), fresh sea salt (8.1%), industrial sources (6%), and a co-mingled source of oil combustion & diesel emissions (4.6%). The apportioned PM mass showed distinct seasonal variability between source categories. The PM levels in Corpus Christi were affected by biomass burns in Mexico and Central America during April and May, sub-Saharan dust storms from Africa during the summer months, and a continental haze episode during August and September with significant transport from the highly industrialized areas of Texas and the neighboring states. Potential source contribution function (PSCF) analysis was performed and it identified source regions and the influence of long-range transport of fine particulate matter affecting this urban area.

  9. New Zealand as a Potential Source of Mineral Dust to the Atmosphere and Ocean during Glacial Periods

    NASA Astrophysics Data System (ADS)

    Koffman, B. G.; Goldstein, S. L.; Winckler, G.; Kaplan, M. R.; Bolge, L.; Cai, Y.; Recasens, C.; Koffman, T. N. B.

    2017-12-01

    The geochemical composition of sediments and dust can be used to trace their provenance, thereby providing insights into a range of Earth surface processes. During past glacial climates, much of the South Island of New Zealand (NZ) was blanketed by temperate erosive glacier systems, which significantly would have enhanced sediment production, including from associated active outwash plains. Such glacially-derived mineral dust from NZ may have impacted climate and ecological systems. In addition, dust and sediment can be used to trace downstream aeolian and oceanic transport. To this end, we systematically characterized the geochemical compositions of likely sediment- and dust-producing regions from the NZ South Island. We observe a strong relationship between sediment geochemical composition and geologic setting. Specifically, sediments from the central South Island, including the Canterbury Plains and Mackenzie Basin, where glaciers eroded mainly the Torlesse Greywacke, have a relatively homogenous isotopic composition, with 87Sr/86Sr = 0.7095-0.7165, ɛNd = -6.5 to -4.0, 206Pb/204Pb = 18.75-19.04, 207Pb/204Pb = 15.65-15.68, 208Pb/204Pb = 38.68-38.93. Southern South Island sediment sources, including southern Otago and Southland, show younger crust formation ages and more variable Sr and Nd isotopic compositions, reflecting the presence of Paleozoic volcanic complexes. Here 87Sr/86Sr = 0.7041-0.7140, ɛNd = -4.0 to +5.3, 206Pb/204Pb = 18.71-18.92, 207Pb/204Pb = 15.62-15.65, 208Pb/204Pb = 38.44-38.87. During the Last Glacial Maximum (LGM), glacial outwash and associated fluvial systems downstream were greatly expanded relative to present day, which could have provided regions for dust deflation - especially given a sea level lowering of 130 m. Due to processes linked to glaciations and lower sea levels, we suggest that the NZ South Island, though limited in extent compared to larger southern landmasses, may still have served as an important source of detritus

  10. How Much Dust Does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Southworth, B.; Srama, R.; Schmidt, J.; Postberg, F.

    2016-12-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about 􏱱5 kg/s. On the other hand, Ingersoll and Ewald (2005) derived a dust production rate of 51 kg/s from the total plume brightness. Knowledge of the production rate is essential for estimating the dust to gas mass ratio, which in turn is an important constraint for finding the plume source mechanism. Here we report on measurements of the plume dust density during the last close Cassini flyby at Enceladus in October 2015. The data match our numerical model for the Enceladus plume. The model is based on a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated self-consistently. Our numerical simulations reproduce all Enceladus data sets obtained by Cassini's Cosmic Dust Analyzer (CDA). Our model calculations together with the new density data constrain the Enceladus dust source rate to < 5 kg/s. Based on our simulation results we are able to draw conclusions about the emission of plume particles along the fractures in the south polar terrain.

  11. Coal in sub-Saharan-African countries undergoing desertification

    NASA Astrophysics Data System (ADS)

    Weaver, J. N.; Brownfield, M. E.; Bergin, M. J.

    Coal has been reported in 11 of the 16 sub-Saharan countries discussed in this appraisal: Mauritania, Senegal, Mali, Niger, Benin, Nigeria, Cameroon, Central African Republic, Sudan, Ethiopia, and Somalia. No coal occurrences have been reported in Gambia, Togo, Burkina, Chad, and Djibouti but coal may be present within these countries because neighboring countries do contain coal-bearing rocks. Most of these countries are undergoing desertification or will in the near future. Wood, directly or in the form of charcoal, constitutes two-thirds of the fuel used in Africa. Destruction of forest and shrub lands for fuel is occurring at an increasing rate because of desertification and increasing energy demands. The decline in biological productivity, coupled with concentration of population in areas where water is available and crops may be grown, leads to increasing shortages of wood for fuel. Part of the present and future energy needs of the sub-Saharan region could be met by use of indigenous coal and peat. Nine sedimentary basins, completely or partially within the sub-Saharan region, have the potential of either coal and/or peat deposits of economic value: 1- Senegal Basin, 2- Taoudeni Basin and Gao Trough, 3- Niger Basin, 4- Chad Basin, 5- Chari Basin, 6- Benue Trough (Depression), 7- Sudan Trough, 8- Plateau and Rift Belt, and 9- Somali Basin. Niger and Nigeria are the only countries in sub-Saharan Africa in which coal is presently being mined as a fuel source for powerplants and domestic use. Peat occurs in the deltas, lower river, and interdunal basin areas of Senegal, Mauritania, and Sudan. Peat can be used as an alternate fuel source and is currently being tested as a soil amendment in the agricultural sector. Coal and peat exploration and development studies are urgently required and should be initiated so the coal and peat utilization potential of each country can be determined. The overall objective of these studies is to establish, within the sub-Saharan

  12. Coal in sub-Saharan-African countries undergoing desertification

    USGS Publications Warehouse

    Weaver, J.N.; Brownfield, M.E.; Bergin, M.J.

    1990-01-01

    Coal has been reported in 11 of the 16 sub-Saharan countries discussed in this appraisal: Mauritania, Senegal, Mali, Niger, Benin, Nigeria, Cameroon, Central African Republic, Sudan, Ethiopia, and Somalia. No coal occurrences have been reported in Gambia, Togo, Burkina, Chad, and Djibouti but coal may be present within these countries because neighboring countries do contain coal-bearing rocks. Most of these countries are undergoing desertification or will in the near future. Wood, directly or in the form of charcoal, constitutes two-thirds of the fuel used in Africa. Destruction of forest and shrub lands for fuel is occurring at an increasing rate because of desertification and increasing energy demands. The decline in biological productivity, coupled with concentration of population in areas where water is available and crops may be grown, leads to increasing shortages of wood for fuel. Part of the present and future energy needs of the sub-Saharan region could be met by use of indigenous coal and peat. Nine sedimentary basins, completely or partially within the sub-Saharan region, have the potential of either coal and/or peat deposits of economic value: 1- Senegal Basin, 2- Taoudeni Basin and Gao Trough, 3- Niger Basin, 4- Chad Basin, 5- Chari Basin, 6- Benue Trough (Depression), 7- Sudan Trough, 8- Plateau and Rift Belt, and 9- Somali Basin. Niger and Nigeria are the only countries in sub-Saharan Africa in which coal is presently being mined as a fuel source for powerplants and domestic use. Peat occurs in the deltas, lower river, and interdunal basin areas of Senegal, Mauritania, and Sudan. Peat can be used as an alternate fuel source and is currently being tested as a soil amendment in the agricultural sector. Coal and peat exploration and development studies are urgently required and should be initiated so the coal and peat utilization potential of each country can be determined. The overall objective of these studies is to establish, within the sub-Saharan

  13. Dust evolution from comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1977-01-01

    The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of the evolution of cometary dust. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tails is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.

  14. The geologic records of dust in the Quaternary

    USGS Publications Warehouse

    Muhs, Daniel R.

    2013-01-01

    Study of geologic records of dust composition, sources and deposition rates is important for understanding the role of dust in the overall planetary radiation balance, fertilization of organisms in the world’s oceans, nutrient additions to the terrestrial biosphere and soils, and for paleoclimatic reconstructions. Both glacial and non-glacial processes produce fine-grained particles that can be transported by the wind. Geologic records of dust flux occur in a number of depositional archives for sediments: (1) loess deposits; (2) lake sediments; (3) soils; (4) deep-ocean basins; and (5) ice sheets and smaller glaciers. These archives have several characteristics that make them highly suitable for understanding the dynamics of dust entrainment, transport, and deposition. First, they are often distributed over wide geographic areas, which permits reconstruction of spatial variation of dust flux. Second, a number of dating methods can be applied to sediment archives, which allows identification of specific periods of greater or lesser dust flux. Third, aeolian sediment particle size and composition can be determined so that dust source areas can be ascertained and dust transport pathways can be reconstructed. Over much of the Earth’s surface, dust deposition rates were greater during the last glacial period than during the present interglacial period. A dustier Earth during glacial periods is likely due to increased source areas, greater aridity, less vegetation, lower soil moisture, possibly stronger winds, a decreased intensity of the hydrologic cycle, and greater production of dust-sized particles from expanded ice sheets and glaciers.

  15. Emergency hospital visits in association with volcanic ash, dust storms and other sources of ambient particles: a time-series study in Reykjavík, Iceland.

    PubMed

    Carlsen, Hanne Krage; Gislason, Thorarinn; Forsberg, Bertil; Meister, Kadri; Thorsteinsson, Throstur; Jóhannsson, Thorsteinn; Finnbjornsdottir, Ragnhildur; Oudin, Anna

    2015-04-13

    Volcanic ash contributed significantly to particulate matter (PM) in Iceland following the eruptions in Eyjafjallajökull 2010 and Grímsvötn 2011. This study aimed to investigate the association between different PM sources and emergency hospital visits for cardiorespiratory causes from 2007 to 2012. Indicators of PM10 sources; "volcanic ash", "dust storms", or "other sources" (traffic, fireworks, and re-suspension) on days when PM10 exceeded the daily air quality guideline value of 50 µg/m3 were entered into generalized additive models, adjusted for weather, time trend and co-pollutants. The average number of daily emergency hospital visits was 10.5. PM10 exceeded the air quality guideline value 115 out of 2191 days; 20 days due to volcanic ash, 14 due to dust storms (two days had both dust storm and ash contribution) and 83 due to other sources. High PM10 levels from volcanic ash tended to be significantly associated with the emergency hospital visits; estimates ranged from 4.8% (95% Confidence Interval (CI): 0.6, 9.2%) per day of exposure in unadjusted models to 7.3% (95% CI: -0.4, 15.5%) in adjusted models. Dust storms were not consistently associated with daily emergency hospital visits and other sources tended to show a negative association. We found some evidence indicating that volcanic ash particles were more harmful than particles from other sources, but the results were inconclusive and should be interpreted with caution.

  16. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, Mariola; Dall'Osto, Manuel; Amato, Fulvio; Cruz Minguillón, María; Karanasiou, Angeliki; Alastuey, Andrés; Querol, Xavier

    2016-06-01

    anthropogenic components and were thus further investigated. Overall, three types of dust were identified to affect the urban study area: road dust (35 % of the mineral dust load, 2-4 µg m-3 on average), Saharan dust (28 %, 2.1 µg m-3) and background mineral dust (37 %, 2.8 µg m-3). Our results evidence that although the city of Barcelona broadly shows a homogeneous distribution of PM10 pollution sources, non-exhaust traffic, exhaust traffic and local urban industrial activities are major coarse PM10 aerosol sources.

  17. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Amato, F.; Minguillón, M. C.; Karanasiou, A.; Alastuey, A.; Querol, X.

    2015-11-01

    anthropogenic components and were thus further investigated. Overall, three types of dust were identified to affect the urban study area: road dust (35 % of the mineral dust load, 2-4 μg m-3 on average), Saharan dust (28 %, 2.1 μg m-3) and background mineral dust (37 %, 2.8 μg m-3). Our results evidence that although the city of Barcelona broadly shows a homogeneous distribution of PM10 pollution sources, non-exhaust traffic, exhaust traffic and local urban industrial activities are major coarse PM10 aerosol sources.

  18. Re-evaluation of Dust Absorption and Radiative Forcing of Climate Using Satellite and Ground Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption and scattering properties. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo w = 0.88), almost no absorption, w = 0.98, was found for wavelengths > 0.6 microns. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 micron, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode. In the talk I shall also discuss recent observation of the impact of dust shape on the dust scattering properties.

  19. Measurment of threshold friction velocities at potential dust sources in semi-arid regions

    NASA Astrophysics Data System (ADS)

    King, Matthew A.

    The threshold friction velocities of potential dust sources in the US Southwest were measured in the field using a Portable Wind Tunnel, which is based on the Desert Research Institute's Portable In-Situ Wind Erosion Laboratory (PI-SWERL). A mix of both disturbed and undisturbed surfaces were included in this study. It was found that disturbed surfaces, such as those at the Iron King Mine tailings site, which is part of the EPA's Superfund program and contains surface concentrations of arsenic and lead reaching as high as 0.5% (w/w), had lower threshold friction velocities (0.32 m s -1 to 0.40 m s-1) in comparison to those of undisturbed surfaces (0.48 to 0.61 m s-1). Surface characteristics, such as particle size distribution, had effects on the threshold friction velocity (smaller grain sized distributions resulted in lower threshold friction velocities). Overall, the threshold friction velocities of disturbed surfaces were within the range of natural wind conditions, indicating that surfaces disturbed by human activity are more prone to causing windblown dust.

  20. Optical properties of mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  1. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Dionisio, Kathie L.; Verissimo, Thiago G.; Kerr, Americo S.; Coull, Brent; Arku, Raphael E.; Koutrakis, Petros; Spengler, John D.; Hughes, Allison F.; Vallarino, Jose; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-12-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m-3 (37%) of fine particle (PM2.5) mass and 128 μg m-3 (42%) of PM10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m-3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda.

  2. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J. P.; Liu, J. J.; Chen, B.; Nasiri, S. L.

    2015-10-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pastureland, and urbanized regions, and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data. To understand the contribution of anthropogenic dust to the total global dust load, it is important to identify it apart from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use data set. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25 % of the global continental dust load. Of these anthropogenic dust aerosols, more than 53 % come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2, with a maximum in India, to 0.12 g m-2, with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be more able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change, and air quality in the future.

  3. How Saharan Dust Slows River Knickpoints: Coupling Vegetation Canopy, Soils and the Foundation of the Critical Zone

    NASA Astrophysics Data System (ADS)

    Brocard, G. Y.; Willenbring, J. K.; Harrison, E. J.; Scatena, F. N.

    2015-12-01

    Forest succession theory maintains that trees drape existing landscapes as passive niche optimizers, but in the Luquillo Mountains in Puerto Rico, the forest exerts a powerful control on erosion. The Luquillo Critical Zone observatory is set in the Luquillo Mountains, an isolated massif at the northeastern tip of Puerto Rico Island which receives up to five meters of rainfall annually. Most of the rainfall received in the mountains is conveyed as quick flow through soil macropores, inhibiting soil erosion by overland flow. Physical erosion is kept low, occurring in the form of infrequent shallow landslides, thus increasing the residence time of minerals in the near-surface environment. The extensive chemical alteration of minerals generates a thick saprolite covered by fine-grained soil. Over the quartz diorite bedrock that characterizes the southern side of the mountains, the weathering process generates saprolite tens of meters deep that is almost completely devoid of weatherable minerals. Soils forming over this saprolite are nutrient-poor, forcing the rainforest to retrieve its nutrients from atmospheric fluxes, such as Saharan dust and marine aerosols. These atmospheric inputs are thus indirectly essential for the forest to be able to maintain slow erosion rates over the mountains. At lower elevation, using cosmogenic nuclide-derived denudation rates, we identified a wave of incision which has been propagating upstream over the past 4 My in the form of very steep and slowly migrating knickpoints. Bedrock abrasion and plucking are infrequent along the knickpoint faces, because the bedrock is massive and because rivers are bedload-starved. This situation is due to the highly weathered upland soils and slow erosion rates and high weathering rate upstream, which acts to reduce bedload grain size and limits bedload fluxes to the knickpoint, respectively. The soils change radically where the wave of erosion has passed and has increased erosion rates. There, nutrient

  4. The role of airborne mineral dusts in human disease

    USGS Publications Warehouse

    Morman, Suzette A.; Plumlee, Geoffrey S.

    2013-01-01

    Exposure to fine particulate matter (PM) is generally acknowledged to increase risk for human morbidity and mortality. However, particulate matter (PM) research has generally examined anthropogenic (industry and combustion by-products) sources with few studies considering contributions from geogenic PM (produced from the Earth by natural processes, e.g., volcanic ash, windborne ash from wildfires, and mineral dusts) or geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities, e.g., dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices). Globally, public health concerns are mounting, related to potential increases in dust emission from climate related changes such as desertification and the associated long range as well as local health effects. Recent epidemiological studies have identified associations between far-traveled dusts from primary sources and increased morbidity and mortality in Europe and Asia. This paper provides an outline of public health research and history as it relates to naturally occurring inorganic mineral dusts. We summarize results of current public health research and describe some of the many challenges related to understanding health effects from exposures to dust aerosols.

  5. Limited electricity access in health facilities of sub-Saharan Africa: a systematic review of data on electricity access, sources, and reliability

    PubMed Central

    Adair-Rohani, Heather; Zukor, Karen; Bonjour, Sophie; Wilburn, Susan; Kuesel, Annette C; Hebert, Ryan; Fletcher, Elaine R

    2013-01-01

    ABSTRACT Background: Access to electricity is critical to health care delivery and to the overarching goal of universal health coverage. Data on electricity access in health care facilities are rarely collected and have never been reported systematically in a multi-country study. We conducted a systematic review of available national data on electricity access in health care facilities in sub-Saharan Africa. Methods: We identified publicly-available data from nationally representative facility surveys through a systematic review of articles in PubMed, as well as through websites of development agencies, ministries of health, and national statistics bureaus. To be included in our analysis, data sets had to be collected in or after 2000, be nationally representative of a sub-Saharan African country, cover both public and private health facilities, and include a clear definition of electricity access. Results: We identified 13 health facility surveys from 11 sub-Saharan African countries that met our inclusion criteria. On average, 26% of health facilities in the surveyed countries reported no access to electricity. Only 28% of health care facilities, on average, had reliable electricity among the 8 countries reporting data. Among 9 countries, an average of 7% of facilities relied solely on a generator. Electricity access in health care facilities increased by 1.5% annually in Kenya between 2004 and 2010, and by 4% annually in Rwanda between 2001 and 2007. Conclusions: Energy access for health care facilities in sub-Saharan African countries varies considerably. An urgent need exists to improve the geographic coverage, quality, and frequency of data collection on energy access in health care facilities. Standardized tools should be used to collect data on all sources of power and supply reliability. The United Nations Secretary-General's “Sustainable Energy for All” initiative provides an opportunity to comprehensively monitor energy access in health care

  6. Analysis of land surface and synoptic conditions during dust storm events in the Middle East via a new high resolution inventory of mineral dust derived from SEVIRI.

    NASA Astrophysics Data System (ADS)

    Hennen, Mark

    2017-04-01

    This paper provides the most up-to-date dust climatology for the Middle East, presenting a new high resolution inventory of over 27,000 dust emission events observed over the Middle East in 2006 - 2013. The inventory was derived from the dust RGB product of the Spinning Enhanced Visual and InfraRed Imager (SEVIRI) on-board Meteosat's second generation satellite (MSG). Mineral dust emissions were derived from visual inspection of the SEVIRI scenes which have 4-5 km2 spatial and 15-minute temporal resolution. The location of every emission event was recorded in a database, along with time and trajectory of dust movement. This is an improvement on previous studies, which derive dust source areas from the daily observations of Aerosol Optical Depth whose maxima do not necessarily coincide with sources of emissions and produces more accurate information on the location of the key dust sources in the region. Results showed that dust sources are constrained to relatively small areas, with 21% of dust emission generated from just 0.9% of total surface area of the Middle East, mainly from eight source regions including the Tigris-Euphrates flood plains of Iraq and Syria, Western and Northern Saudi Arabia and the Sistan Basin in Eastern Iran. The Tigris-Euphrates flood plain was the most active dust region, producing 41% of all dust events with a peak activity in 2009. The southern areas of the Arabian Peninsula recorded very few dust emission observations, in contrast to many previous studies which do not use such high temporal resolution data. The activation and frequency of dust emissions are characterised by strong seasonality developing in response to specific synoptic conditions. To characterise synoptic conditions conducive to the development of dust storms, dust days' emission thresholds, based on number of dust emission events per day / per region and specific to each of the eight main dust emitting regions, were determined. ERA Interim reanalysis data were used to

  7. Russian Interests in Sub-Saharan Africa

    DTIC Science & Technology

    2013-07-01

    their independence struggles. Today’s African leaders remember that very well.20 Vladimir Putin’s visit to the Republic of South Af- rica in 2006...political engagement with Sub-Saharan Af- rica will be important to securing profitable and easily cultivated sources of natural resources. RUSSIA’S...appears built around the aim of achieving political gains at low financial cost . Talk is cheap, as indeed are promises, and with this in mind

  8. Sr-Nd-Hf isotopic fingerprinting of transatlantic dust derived from North Africa

    NASA Astrophysics Data System (ADS)

    Zhao, Wancang; Balsam, William; Williams, Earle; Long, Xiaoyong; Ji, Junfeng

    2018-03-01

    Long-range transport of African dust plays an important role in understanding dust-climate relationships including dust source areas, dust pathways and associated atmospheric and/or oceanic processes. Clay-sized Sr-Nd-Hf isotopic compositions can be used as geochemical fingerprints to constrain dust provenance and the pathways of long-range transported mineral dust. We investigated the clay-sized Sr-Nd-Hf isotopic composition of surface samples along four transects bordering the Sahara Desert. The transects are from Mali, Niger/Benin/Togo, Egypt and Morocco. Our results show that the Mali transect on the West African Craton (WAC) produces lower εNd (εNd-mean = -16.38) and εHf (εHf-mean = -9.59) values than the other three transects. The Egyptian transect exhibits the lowest 87Sr/86Sr ratios (87Sr/86Srmean = 0.709842), the highest εHf (εHf-mean = -0.34) and εNd values of the four transects. Comparison of the clay-sized Sr-Nd-Hf isotopic values from our North African samples to transatlantic African dust collected in Barbados demonstrates that the dust's provenance is primarily the western Sahel and Sahara as well as the central Sahel. Summer emission dust is derived mainly from the western Sahel and Sahara regions. The source of transatlantic dust in spring and autumn is more varied than in the summer and includes dust not only from western areas, but also south central areas. Comparison of the Sr-Nd-Hf isotopic fingerprints between the source and sink of transatlantic dust also suggests that a northwestward shift in dust source occurs from the winter, through the spring and into the summer. The isotopic data we develop here provide another tool for discriminating changes in dust archives resulting from paleoenvironmental evolution of source regions.

  9. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in 5 Southern European cities

    NASA Astrophysics Data System (ADS)

    Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V. L.; Colombi, C.; Alves, C.; Custódio, D.; Nunes, T.; Cerqueira, M.; Pio, C.; Eleftheriadis, K.; Diapouli, E.; Reche, C.; Minguillón, M. C.; Manousakas, M.; Maggos, T.; Vratolis, S.; Harrison, R. M.; Querol, X.

    2015-09-01

    source. Other significant sources are: - Local dust, 7-12 % of PM10 at SUB and UB sites and 19 % at the TR site, revealing a contribution from road dust resuspension. In PM2.5 percentages decrease to 2-7 % at SUB-UB sites and 15 % at the TR site. - Industries, mainly metallurgy, contributing 4-11 % of PM10 (5-12 % in PM2.5), but only at BCN-UB, POR-TR and MLN-UB. No clear impact of industrial emissions was found in FI-UB and ATH-SUB. - Natural contributions from sea salt (13 % of PM10 in POR-TR but only 2-7 % in the other cities) and Saharan dust (14 % in ATH-SUB), but less than 4 % in the other cities. During high pollution days, the largest specific source (i.e. excluding SSO and SNI) of PM10 and PM2.5 are: VEX+NEX in BCN-UB (27-22 %) and POR-TR (31-33 %), BB in FI-UB (30-33 %) and MLN-UB (35-26 %) and Saharan dust in ATH-SUB (52-45 %) During those days, there are also quite important Industrial contributions in BCN-UB (17-18 %) and Local dust in POR-TR (28-20 %).

  10. Evaluation of Dust Absorption and Radiative Forcing of Climate Using Satellite and Ground Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    1999-01-01

    Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo wo = 0.88), almost no absorption, wo = 0.98, was found for 1 greater than 0.6 microns. The results are in agreement with dust radiative measurements reported in the literature, and explain some previously reported but unexplained dust radiative properties. Therefore, the new finding should be of general relevance. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 @im, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode.

  11. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.

  12. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    PubMed

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  13. Mineral Identification of Dust Emissions at the Bodélé Depression

    NASA Astrophysics Data System (ADS)

    Millham, R. A.; Martins, V.; Todd, M.

    2008-12-01

    Atmospheric mineral dust plays an important role in climate that is not entirely understood. The complex meteorological processes, diverse source regions, compositional parameters of emissions, and physical and chemical properties and characteristics of dust emissions make modeling the affects on climate, climate change, and global climate modeling a difficult task. Understanding size, shape, distribution, and composition of mineral dust is required to successfully model climate change. The affect mineral dust has on climate relative to radiative forcing, cloud properties, and the suppression of precipitation makes modeling parameters for climate change more accurate and predictable. Mineral identification allows for accuracy in predicting results of internal and external mixing during dust transport, interactions with other aerosols, hygroscopic characteristics and impact on cloud properties. Studies conducted by Koren, et al.,(2006), suggest that 240 ± 80 Tg of atmospheric mineral dust is emitted from Africa to the Atlantic coast of Africa between 20° and 30° North Latitude annually. Of that total, it is estimated that ~120 ± 40 Tg is deposited in the Atlantic Ocean, ~30 Tg transported to northern Africa and Europe, ~70 Tg reach the Caribbean in NH summers, and some ~50 Tg reach the Amazon River Basin in NH winters. Of the ~50 Tg of dust deposited in the Amazon River Basin, ~50 percent is emitted from a single source, the Bodélé (Koren, et al., 2006; Kaufman, et al., 2005; Tegan, et al., 2006; Todd, et al., 2005; Washington, et al., 2005). Identification of mineral types in dust emissions from the Bodélé in NE Chad, Africa, is determined through a collection of data based on results achieved by traditional X-ray diffractometers, Scanning Electron Microscope images/chemical analyses (filters by Zahra Chaudhry), a new XRD XRF instrumentation, regional geomorphological history, and French geological survey maps. Samples for analysis were obtained by the Bod

  14. Compositional trends in aeolian dust along a transect across the southwestern United States

    USGS Publications Warehouse

    Goldstein, H.L.; Reynolds, R.L.; Reheis, M.C.; Yount, J.C.; Neff, J.C.

    2008-01-01

    Aeolian dust strongly influences ecology and landscape geochemistry over large areas that span several desert ecosystems of the southwestern United States. This study evaluates spatial and temporal variations and trends of the physical and chemical properties of dust in the southwestern United States by examining dust deposited in natural depressions on high isolated surfaces along a transect from the Mojave Desert to the central Colorado Plateau. Aeolian dust is recognized in these depressions on the basis of textural, chemical, isotopic, and mineralogical characteristics and comparisons of those characteristics to the underlying bedrock units. Spatial and temporal trends suggest that although local dust sources are important to the accumulated material in these depressions, Mojave Desert dust sources may also contribute. Depth trends in the depressions suggest that Mojave sources may have contributed more dust to the Colorado Plateau recently than in the past. These interpretations point to the important roles of far-traveled aeolian dust for landscape geochemistry and imply future changes to soil geochemistry under changing conditions in far-distant dust source areas. Copyright 2008 by the American Geophysical Union.

  15. Fugitive dust emission source profiles and assessment of selected control strategies for particulate matter at gravel processing sites in Taiwan.

    PubMed

    Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching

    2010-10-01

    Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.

  16. Quantifying global dust devil occurrence from meteorological analyses

    PubMed Central

    Jemmett-Smith, Bradley C; Marsham, John H; Knippertz, Peter; Gilkeson, Carl A

    2015-01-01

    Dust devils and nonrotating dusty plumes are effective uplift mechanisms for fine particles, but their contribution to the global dust budget is uncertain. By applying known bulk thermodynamic criteria to European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, we provide the first global hourly climatology of potential dust devil and dusty plume (PDDP) occurrence. In agreement with observations, activity is highest from late morning into the afternoon. Combining PDDP frequencies with dust source maps and typical emission values gives the best estimate of global contributions of 3.4% (uncertainty 0.9–31%), 1 order of magnitude lower than the only estimate previously published. Total global hours of dust uplift by dry convection are ∼0.002% of the dust-lifting winds resolved by ECMWF, consistent with dry convection making a small contribution to global uplift. Reducing uncertainty requires better knowledge of factors controlling PDDP occurrence, source regions, and dust fluxes induced by dry convection. Key Points Global potential dust devil occurrence quantified from meteorological analyses Climatology shows realistic diurnal cycle and geographical distribution Best estimate of global contribution of 3.4% is 10 times smaller than the previous estimate PMID:26681815

  17. A 16-year record of eolian dust in Southern Nevada and California, USA: Controls on dust generation and accumulation

    USGS Publications Warehouse

    Reheis, M.C.

    2006-01-01

    An ongoing project monitors modern dust accumulation in the arid southwestern United States to (1) determine the rate and composition of dust inputs to soils and (2) relate dust accumulation to weather patterns to help predict the effects of climate change on dust production and accumulation. The 16-year records of 35 dust-trap sites in the eastern Mojave Desert and southern Great Basin reveal how generation and accumulation of dust, including the silt-clay, carbonate, and soluble-salt fractions, is affected by the amount and seasonal distribution of rainfall and the behavior of different source types (alluvium, dry playas, and wet playas). Accumulation rates (fluxes) of the silt-clay fraction of dust, including carbonates, range from about 2-20 g/m2/yr. Average rates are higher in the southern part of the study area (south of latitude 36.5??N) and annually fluctuate over a larger range than rates in the northern part of the area. Sites throughout the study area show peaks in dust flux in the 1984-1985 sampling period and again in 1997-1999; northern sites also show increased flux in 1987-1988 and southern sites in 1989-1991. These peaks of dust flux correspond with both La Nina (dry) conditions and with strong El Nino (wet) periods. The accumulation rates of different components of mineral dusts fluctuate differently. For example, soluble-salt flux increases in 1987-1988, coincident with a moderate El Nino event, and increases very strongly in 1997-1999, overlapping with a strong El Nino event. Both of these high-rainfall winters were preceded and accompanied by strong summer rains. In contrast, little or no change in soluble-salt flux occurred during other periods of high winter rainfall but little summer rain, e.g. 1992-1995. The differences between northern vs. southern sites and between sites with playa dust sources vs. alluvial dust sources indicate that regional differences in the response of precipitation and vegetation growth to ENSO influence and

  18. Composition of dust deposited to snow cover in the Wasatch Range (Utah, USA): Controls on radiative properties of snow cover and comparison to some dust-source sediments

    USGS Publications Warehouse

    Reynolds, Richard L.; Goldstein, Harland L.; Moskowitz, Bruce M.; Bryant, Ann C.; Skiles, S. McKenzie; Kokaly, Raymond F.; Flagg, Cody B.; Yauk, Kimberly; Berquó, Thelma S.; Breit, George N.; Ketterer, Michael; Fernandez, Daniel; Miller, Mark E.; Painter, Thomas H.

    2014-01-01

    Dust layers deposited to snow cover of the Wasatch Range (northern Utah) in 2009 and 2010 provide rare samples to determine the relations between their compositions and radiative properties. These studies are required to comprehend and model how such dust-on-snow (DOS) layers affect rates of snow melt through changes in the albedo of snow surfaces. We evaluated several constituents as potential contributors to the absorption of solar radiation indicated by values of absolute reflectance determined from bi-conical reflectance spectroscopy. Ferric oxide minerals and carbonaceous matter appear to be the primary influences on lowering snow-cover albedo. Techniques of reflectance and Mössbauer spectroscopy as well as rock magnetism provide information about the types, amounts, and grain sizes of ferric oxide minerals. Relatively high amounts of ferric oxide, indicated by hard isothermal remanent magnetization (HIRM), are associated with relatively low average reflectance (<0.25) across the visible wavelengths of the electromagnetic spectrum. Mössbauer spectroscopy indicates roughly equal amounts of hematite and goethite, representing about 35% of the total Fe-bearing phases. Nevertheless, goethite (α-FeOOH) is the dominant ferric oxide found by reflectance spectroscopy and thus appears to be the main iron oxide control on absorption of solar radiation. At least some goethite occurs as nano-phase grain coatings less than about 50 nm thick. Relatively high amounts of organic carbon, indicating as much as about 10% organic matter, are also associated with lower reflectance values. The organic matter, although not fully characterized by type, correlates strongly with metals (e.g., Cu, Pb, As, Cd, Mo, Zn) derived from distal urban and industrial settings, probably including mining and smelting sites. This relation suggests anthropogenic sources for at least some of the carbonaceous matter, such as emissions from transportation and industrial activities. The composition

  19. Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran.

    PubMed

    Najmeddin, Ali; Keshavarzi, Behnam; Moore, Farid; Lahijanzadeh, Ahmadreza

    2017-10-28

    This study investigates the occurrence and spatial distribution of potentially toxic elements (PTEs) (Hg, Cd, Cu, Mo, Pb, Zn, Ni, Co, Cr, Al, Fe, Mn, V and Sb) in 67 road dust samples collected from urban industrial areas in Ahvaz megacity, southwest of Iran. Geochemical methods, multivariate statistics, geostatistics and health risk assessment model were adopted to study the spatial pollution pattern and to identify the priority pollutants, regions of concern and sources of the studied PTEs. Also, receptor positive matrix factorization model was employed to assess pollution sources. Compared to the local background, the median enrichment factor values revealed the following order: Sb > Pb > Hg > Zn > Cu > V > Fe > Mo > Cd > Mn > Cr ≈ Co ≈ Al ≈ Ni. Statistical results show that a significant difference exists between concentrations of Mo, Cu, Pb, Zn, Fe, Sb, V and Hg in different regions (univariate analysis, Kruskal-Wallis test p < 0.05), indicating the existence of highly contaminated spots. Integrated source identification coupled with positive matrix factorization model revealed that traffic-related emissions (43.5%) and steel industries (26.4%) were first two sources of PTEs in road dust, followed by natural sources (22.6%) and pipe and oil processing companies (7.5%). The arithmetic mean of pollution load index (PLI) values for high traffic sector (1.92) is greater than industrial (1.80) and residential areas (1.25). Also, the results show that ecological risk values for Hg and Pb in 41.8 and 9% of total dust samples are higher than 80, indicating their considerable or higher potential ecological risk. The health risk assessment model showed that ingestion of dust particles contributed more than 83% of the overall non-carcinogenic risk. For both residential and industrial scenarios, Hg and Pb had the highest risk values, whereas Mo has the lowest value.

  20. Dust temperature distributions in star-forming condensations

    NASA Technical Reports Server (NTRS)

    Xie, Taoling; Goldsmith, Paul F.; Snell, Ronald L.; Zhou, Weimin

    1993-01-01

    The FIR spectra of the central IR condensations in the dense cores of molecular clouds AFGL 2591. B335, L1551, Mon R2, and Sgr B2 are reanalyzed here in terms of the distribution of dust mass as a function of temperature. FIR spectra of these objects can be characterized reasonably well by a given functional form. The general shapes of the dust temperature distributions of these objects are similar and closely resemble the theoretical computations of de Muizon and Rouan (1985) for a sample of 'hot centered' clouds with active star formation. Specifically, the model yields a 'cutoff' temperature below which essentially no dust is needed to interpret the dust emission spectra, and most of the dust mass is distributed in a broad temperature range of a few tens of degrees above the cutoff temperature. Mass, luminosity, average temperature, and column density are obtained, and it is found that the physical quantities differ considerably from source to source in a meaningful way.