Science.gov

Sample records for salado mass concrete

  1. Variability in properties of Salado Mass Concrete

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  2. USINT. Heat and Mass Transfer In Concrete

    SciTech Connect

    Eyberger, L.R.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  3. USINT. Heat and Mass Transfer in Concrete

    SciTech Connect

    Beck, J.V.; Knight, R.L.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  4. Code System to Calculate Heat and Mass Transfer In Concrete

    1999-05-26

    Version 00 This version is designated USINTC and was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as watermore » and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.« less

  5. The development of a lower heat concrete mixture for mass concrete placement conditions

    NASA Astrophysics Data System (ADS)

    Crowley, Aaron Martin

    The hydration process of portland cement (PC) is exothermic; therefore, the thermal behavior of concrete has to be taken into consideration when placed in a large mass. The research presented involves a Tennessee Department of Transportation (TDOT) Class S (seal) portland cement concrete (PCC) which is used as a foundation seal during construction of bridge abutments and piers. A Class S PCC mixture meeting the 2006 TDOT specifications has the potential to generate excessive amounts of heat and induce thermal cracking in structural elements. The purpose of the study is to reduce the heat generation of a Class S PCC while maintaining adequate values of other engineering properties. Due to the possibility of underwater placement of a Class S PCC, reduction in the total cementing materials content were not considered in this study. Five candidate mixtures were used to compare against a typical TDOT Class S mixture. The five candidate Class S-LH (lower heat) mixtures were 45, 60, 70% Grade 120 slag substitutions for PC as well as two ternary mixtures containing Grade 120 slag and Class F fly ash. Ten batches of each mixture were produced. All plastic and hardened properties met TDOT 604.03 Class S requirements for analytical comparison. The 70% Grade 120 slag Class S-LH mixture was analytically superior for all hardened properties and at reducing heat generation. Since the 70% Grade 120 slag Class S-LH mixture proved to be superior in laboratory conditions; it was selected for further evaluation in the field testing portion of the research. The 70% Grade 120 slag mixture produced a significantly lower maximum temperature as well as a significantly lower maximum differential temperature than a TDOT Class S mixture with 20% Class C fly ash in side-by-side 18 cubic yard cube field placements. Research results and literature recommend that engineers should decide when mass concrete conditions are appropriate during construction practices. When mass concrete conditions are

  6. Performance of intact and partially degraded concrete barriers in limiting mass transport

    SciTech Connect

    Walton, J.C. )

    1992-06-01

    Mass transport through concrete barriers and release rate from concrete vaults are quantitatively evaluated. The thorny issue of appropriate diffusion coefficients for use in performance assessment calculations is covered, with no ultimate solution found. Release from monolithic concrete vaults composed of concrete waste forms is estimated with a semi-analytical solution. A parametric study illustrates the importance of different parameters on release. A second situation of importance is the role of a concrete shell or vault placed around typical waste forms in limiting mass transport. In both situations, the primary factor controlling concrete performance is cracks. The implications of leaching behavior on likely groundwater concentrations is examined. Frequently, lower groundwater concentrations can be expected in the absence of engineered covers that reduce infiltration.

  7. Determination of test methods for the prediction of the behavior of mass concrete

    NASA Astrophysics Data System (ADS)

    Ferraro, Christopher C.

    Hydration at early ages results from chemical and physical processes that take place between Portland cement and water, and is an exothermic process. The resultant heat evolution and temperature rise for massive concrete placements can be so great that the temperature differentials between the internal concrete core and outer concrete stratum can cause cracking due to thermal gradients. Accurate prediction of temperature distribution and stresses in mass concrete is needed to determine if a given concrete mixture design may have problems in the field, so that adjustments to the design can be made prior to its use. This research examines calorimetric, strength, and physical testing methods in an effort to predict the thermal and physical behavior of mass concrete. Four groups of concrete mixture types containing different cementitious materials are examined. One group contains Portland cement, while the other three groups incorporate large replacements of supplementary cementitious materials: granulated blast furnace slag, fly ash, and a ternary blend (combining Portland cement, fly ash, and slag).

  8. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    SciTech Connect

    Beauheim, R.L.; Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A.

    1993-12-01

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

  9. Durability of concrete materials in high-magnesium brine

    SciTech Connect

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.

  10. Direct analysis of ethylenediaminetetraacetic acid (EDTA) on concrete by reactive-desorption electrospray ionization mass spectrometry.

    PubMed

    Lebeau, D; Reiller, P E; Lamouroux, C

    2015-01-01

    Analysis of organic ligands such as ethylenediaminetetraacetic acid (EDTA) is today an important challenge due to their ability to increase the mobility of radionuclides and metals. Reactive desorption electrospray ionization mass spectrometry (reactive-DESI-MS) was used for direct analysis of EDTA on concrete samples. EDTA forms complexes and those with Fe(III) ions are among the most thermodynamically favored. This complexing capacity was used to improve the specific detection of EDTA directly on a concrete matrix by doping the solvent spray of DESI with a solution of FeCl3 to selectively create the complex between EDTA and Fe(III). Thus, EDTA sensitivity was largely improved by two orders of magnitude with reactive-DESI-MS experiments thanks to the specific detection of EDTA as a [EDTA-4H+Fe(III)](-) complex. The proof of principle that reactive DESI can be applied to concrete samples to detect EDTA has been demonstrated. Its capacity for semi-quantitative determination and localization of EDTA under ambient conditions and with very little sample preparation, minimizing sample manipulations and solvent volumes, two important conditions for the development of new methodologies in the field of analytical chemistry, has been shown.

  11. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  12. Numerical Analysis of Simultaneous Heat and Mass Transfer in Cork Lightweight Concretes Used in Building Envelopes

    NASA Astrophysics Data System (ADS)

    Sotehi, Nassima; Chaker, Abla

    A numerical study was carried out in order to investigate the behaviour of building envelopes made of lightweight concretes. In this work, we are particularly interested to the building envelopes which are consist of cement paste with incorporation of cork aggregates in order to obtain small thermal conductivity and low-density materials. The mathematical formulation of coupled heat and mass transfer in wet porous materials has been made using Luikov's model, the system describing temperature and moisture transfer processes within building walls is solved numerically with the finite elements method. The obtained results illustrate the temporal evolutions of the temperature and the moisture content, and the distributions of the temperature and moisture content inside the wall for several periods of time. They allow us to specify the effect of the nature and dosage of fibre on the heat and mass transfer.

  13. Waste Isolation Pilot Plant Salado hydrology program data report {number_sign}3

    SciTech Connect

    Chace, D.A.; Roberts, R.M.; Palmer, J.B.; Kloska, M.B.; Fort, M.D.; Martin, G.J.; Stensrud, W.A.

    1998-01-01

    WIPP Salado Hydrology Program Data Report {number_sign}3 presents hydrologic data collected during permeability testing, coupled permeability and hydrofracture testing, and gas-threshold-pressure testing of the Salado Formation performed from November 1991 through October 1995. Fluid-pressure monitoring data representing August 1989 through May 1995 are also included. The report presents data from the drilling and testing of three boreholes associated with the permeability testing program, nine boreholes associated with the coupled permeability and hydrofracture testing program, and three boreholes associated with the gas-threshold-pressure testing program. The purpose of the permeability testing program was to provide data with which to interpret the disturbed and undisturbed permeability and pore pressure characteristics of the different Salado Formation lithologies. The purpose of the coupled permeability and hydrofracture testing program was to provide data with which to characterize the occurrence, propagation, and direction of pressure induced fractures in the Salado Formation lithologies, especially MB139. The purpose of the gas-threshold-pressure testing program was to provide data with which to characterize the conditions under which pressurized gas displaces fluid in the brine-saturated Salado Formation lithologies. All of the holes were drilled from the WIPP underground facility 655 m below ground surface in the Salado Formation.

  14. Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavy-weight and normal-weight concretes.

    PubMed

    Un, Adem; Demir, Faruk

    2013-10-01

    Total mass attenuation coefficients, effective atomic numbers and effective electron numbers values for different 16 heavy-weight and normal-weight concretes are calculated in the energy range from 1 keV to 100 GeV. The values of mass attenuation coefficients used in calculations are taken from the WinXCom computer program. The obtained results for heavy-weight concretes are compared with the results for normal-weight concretes. The results of heavy-weight concretes fairly differ from results for normal-weight concretes.

  15. Simulation of Mass Transfer of Calcium in Concrete by the Lattice Kinetic Scheme for a Binary Miscible Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Yoshino, Masato; Murayama, Toshiro; Matsuzaki, Akihiro; Hitomi, Takashi

    The lattice kinetic scheme (LKS) for a binary miscible fluid mixture was applied to the simulation of the mass transfer of calcium in concrete. Cement paste, a major component of concrete, is a porous medium with a complicated three-dimensional geometry. The structure of the model concrete was selected on the basis of experimental data obtained by high-intensity X-ray computed tomography. The LKS, an improved version of the original lattice Boltzmann method, was used to save computational memory and to maintain numerical stability. First, an unsteady convection-diffusion problem was examined, and the accuracy of the method and the error norms with various lattice resolutions were investigated. Next, the problem of the calcium current in concrete was simulated. Pressure drops in the concrete were calculated for various Reynolds numbers, and the results were compared with those of an empirical equation based on experimental data. Also, velocity fields and concentration profiles were obtained at a pore scale for a structure with inhomogeneous mass diffusivities. These simulations showed that the present method might be useful for predicting calcium leaching in concrete from the microscopic point of view.

  16. Estimation of explosive charge mass used for explosions on concrete surface for the forensic purpose.

    PubMed

    Bjelovuk, Ivana D; Jaramaz, Slobodan; Mickovic, Dejan

    2012-03-01

    The method of choice used by most terrorists for achieving political goals remains the utilization of explosive devices and there is always visible evidence at a crime scene after the deployment of such devices. Given favorable circumstances, forensic analysis can determine the cause of the explosion - the type of the explosive device, the means of detonation, the type and mass of the explosive charge that has been used and perhaps provide information to lead to the identity of the individual who may have constructed or deployed the explosive device, etc. Evidence of an explosion may take the form of a crater or other damage which may provide some information facilitating and estimating the mass of explosive material used. This paper reports the findings obtained by performing experimental explosions of known charges on a concrete surface, in order to establish the correlation between the charge weight and the effects of the explosion. Known masses of explosives were fired and the dimensions of craters made by explosions were measured. Five empirical equations for estimation of the explosive charge mass from crater dimensions were used.

  17. Non-Salado flow and transport position paper. Revision 1

    SciTech Connect

    Axness, C.; Beauheim, R.; Behl, Y.

    1994-12-15

    The US Department of Energy (DOE) is preparing to request the US Environmental Protection Agency (EPA) to certify compliance of the Waste Isolation Pilot Plant (WIPP) with long-term requirements of the environmental Radiation Protection Standards for Management and Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Waste (40 CFR Part 191). The DOE must also demonstrate compliance with the long-term requirements of the Land Disposal Restrictions of the Resource Conservation and Recovery Act (RCRA) (40 CFR Part 268.6). Sandia National Laboratories (SNL) has ben conducting iterative performance assessments (PAs) for the the WIPP to provide guidance to the project on the technical activities required to determine long-term performance of the WIPP disposal system. The most recent PA was conducted in 1992. The objectives of this paper are to: (1) Identify and describe the relationship between non-Salado hydrology and the array of scenarios that might be relevant to the long-term performance of the repository. (2) Identify and describe the array of conceptual and mechanistic models that are required to evaluate the scenarios for the purpose of compliance. (3) Identify and describe the data/information that are required to support the conceptual and mechanistic models.

  18. Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern.

    PubMed

    Garrabrants, Andrew C; Kosson, David S; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Concerns about the environmental safety of coal combustion fly ash use as a supplemental cementitious material have necessitated comprehensive evaluation of the potential for leaching concrete materials containing fly ash used as a cement replacement. Using concrete formulations representative of US residential and commercial applications, test monoliths were made without fly ash replacement (i.e., controls) and with 20% or 45% of the portland cement fraction replaced by fly ash from four coal combustion sources. In addition, microconcrete materials were created with 45% fly ash replacement based on the commercial concrete formulation but with no coarse aggregate and an increased fine aggregate fraction to maintain aggregate-paste interfacial area. All materials were cured for 3 months prior to mass transport-based leach testing of constituents of potential concern (i.e., Sb, As, B, Ba, Cd, Cr, Mo, Pb, Se, Tl and V) according to EPA Method 1315. The cumulative release results were consistent with previously tested samples of concretes and mortars from international sources. Of the 11 constituents tested, only Sb, Ba, B, Cr and V were measured in quantifiable amounts. Microconcretes without coarse aggregate were determined to be conservative surrogates for concrete in leaching assessment since cumulative release from microconcretes were only slightly greater than the associated concrete materials. Relative to control materials without fly ash, concretes and microconcretes with fly ash replacement of cement had increased 28-d and 63-d cumulative release for a limited number 10 comparison cases: 2 cases for Sb, 7 cases for Ba and 1 case for Cr. The overall results suggest minimal leaching impact from fly ash use as a replacement for up to 45% of the cement fraction in typical US concrete formulations; however, scenario-specific assessment based on this leaching evaluation should be used to determine if potential environmental impacts exist.

  19. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    SciTech Connect

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-07-01

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico.

  20. Assessment of actinide mass embedded in large concrete waste packages by photon interrogation and photofission.

    PubMed

    Gmar, M; Jeanneau, F; Lainé, F; Makil, H; Poumarède, B; Tola, F

    2005-01-01

    This paper describes a method based on photofission developed in our laboratory to characterize in depth large waste packages. The method consists in using photons of high-energy (Bremsstrahlung radiation) in order to induce reactions of photofission on the heavy nuclei present in the wastes. The measurement of the delayed neutrons allows quantifying the actinides in the wastes. We present the first results of measurement performed with a concrete mock-up of 870l and two real waste packages. PMID:15982895

  1. Assessment of actinide mass embedded in large concrete waste packages by photon interrogation and photofission.

    PubMed

    Gmar, M; Jeanneau, F; Lainé, F; Makil, H; Poumarède, B; Tola, F

    2005-01-01

    This paper describes a method based on photofission developed in our laboratory to characterize in depth large waste packages. The method consists in using photons of high-energy (Bremsstrahlung radiation) in order to induce reactions of photofission on the heavy nuclei present in the wastes. The measurement of the delayed neutrons allows quantifying the actinides in the wastes. We present the first results of measurement performed with a concrete mock-up of 870l and two real waste packages.

  2. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part II: Structural stability analyses

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; Fang, Qin; He, Li-Lin

    2014-12-01

    The initial oblique and attacking angles as well as the asymmetrical nose abrasion may lead to bending or even fracture of a projectile, and the penetration efficiency decreases distinctly. The structural stability of a high-speed projectile non-normally penetrating into concrete and the parametric influences involved are analyzed with the mass abrasion taken into account. By considering the symmetrical or asymmetrical nose abrasion as well as the initial oblique and attacking angles, both the axial and the transverse drag forces acting on the projectile are derived. Based on the ideal elastic-plastic yield criterion, an approach is proposed for predicting the limit striking velocity (LSV) that is the highest velocity at which no yielding failure has occurred and the projectile can still maintain its integral structural stability. Furthermore, some particular penetration scenarios are separately discussed in detail. Based on the engineering model for the mass loss and nose-blunting of ogive-nose projectiles established in Part I of this study, the above approach is validated by several high-speed penetration tests. The analysis on parametric influences indicates that the LSV is reduced with an increase in the asymmetrical nose abrasion, the length-diameter-ratio, and the concrete strength, as well as the oblique and attacking angles. Also, the LSV raises with an increase in the initial caliber-radius-head (CRH) and the dimensionless cartridge thickness of a projectile.

  3. How Concrete Is Concrete?

    ERIC Educational Resources Information Center

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  4. Test plan: Gas-threshold-pressure testing of the Salado Formation in the WIPP underground facility

    SciTech Connect

    Saulnier, G.J. Jr.

    1992-03-01

    Performance assessment for the disposal of radioactive waste from the United States defense program in the WIPP underground facility must assess the role of post-closure was generation by waste degradation and the subsequent pressurization of the facility. be assimilated by the host formation will Whether or not the generated gas can be assimilated by the host formation will determine the ability of the gas to reach or exceed lithostatic pressure within the repository. The purpose of this test plan is (1) to present a test design to obtain realistic estimates of gas-threshold pressure for the Salado Formation WIPP underground facility including parts of the formation disturbed by the underground of the Salado, and (2) to provide a excavations and in the far-field or undisturbed part framework for changes and amendments to test objectives, practices, and procedures. Because in situ determinations of gas-threshold pressure in low-permeability media are not standard practice, the methods recommended in this testplan are adapted from permeability-testing and hydrofracture procedures. Therefore, as the gas-threshold-pressure testing program progresses, personnel assigned to the program and outside observers and reviewers will be asked for comments regarding the testing procedures. New and/or improved test procedures will be documented as amendments to this test plan, and subject to similar review procedures.

  5. Histopathological changes in the gills and liver of Prochilodus lineatus from the Salado River basin (Santa Fe, Argentina).

    PubMed

    Troncoso, Ileana C; Cazenave, Jimena; Bacchetta, Carla; Bistoni, María de Los Angeles

    2012-06-01

    This study evaluated the histopathological changes in gills and liver of Prochilodus lineatus inhabiting the Salado River basin. Fish were collected in four different sampling stations. The histological lesions in the tissues were examined under light microscopy and evaluated with quantitative analyses. The morphometric analysis of the gills showed a significant shortening of secondary lamellae and a lower percentage of area for gas exchange in fish from station 1 (an urban area, located near the mouth of the Salado River) in comparison with fish gills from the reference site (station 4, a relatively pristine area). Moreover, a significantly higher area occupied with necrotic foci and the occurrence of an important inflammatory response were observed in fish liver of station 1 than the samples caught from other stations. Thus, histopathological evidences showed differences among sites, which could be related to different environmental conditions. PMID:21850399

  6. Seismic activity response as observed in mantled howlers (Alouatta palliata), Cuero y Salado Wildlife Refuge, Honduras.

    PubMed

    Snarr, Kymberley Anne

    2005-10-01

    This report documents the response of wild mantled howlers (Alouatta palliata) to coseismic activity (seismic activity at the time of an earthquake). During field work on the north coast of Honduras, data were collected on a habituated troop of mantled howlers as they responded to coseismic activity. The seismic event occurred on 13 February 2001 at 0822 hours local time with a magnitude of Richter scale 6.6, focus depth of approximately 15 km at a distance of 341 km from the epicentre to the field site, Cuero y Salado. At the field site, based upon Jeffreys and Bullen (1988), body waves, noted as P and S waves, arrived at 60 and 87 s, respectively, with surface waves arriving approximately 103 s post-origin time of the seismic event. While there are three reports on non-human primate response to coseismic activity in the literature, they report on captive non-human primates. This is the first documented response on a non-captive troop. In addition, this report compares the intensity measure encountered by a wild troop of howlers and one captive group of orangutans as set out by the Modified Mercalli Intensity scale. The Modified Mercalli measure of intensity is one of two standard measures of seismic activity and rates what a person sees and feels at their location (Wood and Neumann 1931; Richter 1958). Thus, arboreal nonhuman primates are found to respond to coseismic activity ranging from Level IV to Level VI as based upon the modified Mercalli intensity scale.

  7. Literature review and recommendation of methods for measuring relative permeability of anhydrite from the Salado Formation at the Waste Isolation Pilot Plant

    SciTech Connect

    Christiansen, R.L.; Howarth, S.M.

    1995-08-01

    This report documents a literature review of methods for measuring relative permeability as applied to low permeability anhydrite rock samples from the Salado Formation. About one hundred papers were reviewed, and four methods were identified as promising techniques for measuring the relative permeability of the Salado anhydrite: (1) the unsteady-state high-rate method, (2) the unsteady-state stationary-liquid method, (3) the unsteady-state centrifuge method, and (4) the unsteady-state low-rate method. Except for the centrifuge method, all have been used for low permeability rocks. The unsteady-state high-rate method is preferred for measuring relative permeability of Salado anhydrite, and the unsteady-state stationary-liquid method could be well suited for measuring gas relative permeability of Salado anhydrite. The unsteady-state low-rate method, which combines capillary pressure effects with relative permeability concepts may also prove effective. Likewise, the unsteady-state centrifuge method may be an efficient means for measuring brine relative permeability for Salado anhydrite, especially at high gas saturations.

  8. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part I: Engineering model for the mass loss and nose-blunting of ogive-nosed projectiles

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; He, Li-Lin; Fang, Qin

    2014-12-01

    The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator, obviously reducing the penetration efficiency of penetrator. Provided that the work of friction between projectile and target is totally transformed into the heat to melt penetrator material at its nose surface, an engineering model is established for the mass loss and nose-blunting of the ogive-nosed projectile. A dimensionless formula for the relative mass loss of projectile is obtained by introducing the dimensionless impact function I and geometry function N of the projectile. The critical value V {0/c} of the initial striking velocity is formulated, and the mass loss of projectile tends to increase weakly nonlinearly with I/ N when V 0 < V {0/c}, whilst the mass loss is proportional to the initial kinetic energy of projectile when V 0 < V {0/c}. The theoretical prediction of V {0/c} is further confirmed to be very close to the experimental value of 1.0 km/s based on 11 sets of different penetration tests. Also the validity of the proposed expressions of mass loss and nose-blunting coefficients of a projectile are verified by the tests. Therefore, a theoretical basis is for the empirical conclusions drawn in previous publications. Regarding the completely empirical determinations of the mass loss and nose-blunting coefficients given in previous papers, the present analysis reveals its physical characteristic and also guarantees its prediction accuracy. The engineering model established in the present paper forms the basis for further discussions on the structural stability and the terminal ballistic stability of ogive-nosed projectiles high-speed penetrating into concrete targets, which will respectively be elaborated in Part II and Part III of the present study.

  9. Dissolution of the Upper Seven Rivers and Salado salt in the interior Palo Duro Basin, Texas: Revision: Topical report

    SciTech Connect

    DeConto, R.T.; Murphy, P.J.

    1987-09-01

    The Upper Seven Rivers and Salado Formations contain the uppermost salts within the interior Palo Duro Basin, Stratigraphic and structural evidence based on geophysical well logs indicate that both dissolution and facies change have influenced the thickness of these uppermost salts. The magnitude of vertical salt loss due to dissolution is interminable at this time because original salt thickness is unknown. Gradual thinning of the Upper Seven Rivers Formation is recognized from south to north across the Palo Duro Basin. Anhydrites within the formation pinch out toward the basin margins, indicating that section loss is in part depositionally controlled. Additionally, informal subdivision of the Upper Seven Rivers Formation suggests that salt dissolution has occurred in the uppermost salt. A northeast-trending zone of thin Upper Seven Rivers Formation in portions of Deaf Smith, Randall, Castro, and Parmer Counties is possibly related to Tertiary dissolution. In New Mexico, local thinning of the Upper Seven Rivers Formation may be associated with faulting. Triassic erosion on uplifted fault blocks has affected the Upper Permian section. The Salado salt margin is located within the interior Palo Duro Basin. Geophysical well logs and core evidence indicate that the salt margin has migrated basinward as a result of dissolution. Permian dissolution probably contributed to some salt loss. 106 refs., 31 figs., 2 tabs.

  10. Rotifer dynamics in three shallow lakes from the Salado river watershed (Argentina): the potential modulating role of incident solar radiation.

    PubMed

    Diovisalvi, Nadia; Rennella, Armando M; Zagarese, Horacio E

    2015-11-01

    In turbid Pampean lakes, incident solar radiation is a major driver of plankton seasonal dynamics. Higher light availability in summer translates into higher primary production, and therefore more food for zooplankton grazers. However, experimental evidence suggests that food produced under the high irradiance conditions prevailing in summer are less suitable to sustain rotifer population growth than that produced under the lower irradiance conditions typical of winter. Here, we analysed time series datasets corresponding to three shallow lakes from the Salado river watershed. This analysis provided evidence for similar seasonal patterns of rotifer relative abundance over a large geographic area. In addition, we performed life table experiments to test the hypothesis that natural seston produced in winter could sustain higher population growth rates than seston produced in summer. We suggest that the natural seasonal changes in temperature and food generate successive time windows, which may be capitalized by the different grazer species, resulting in predictable phenology of grazer populations.

  11. Phytoplankton chlorophyte structure as related to ENSO events in a saline lowland river (Salado River, Buenos Aires, Argentina).

    PubMed

    Solari, Lía C; Gabellone, Néstor A; Claps, María C; Casco, María A; Quaíni, Karina P; Neschuk, Nancy C

    2014-04-01

    We analyzed the phytoplankton present in the lower sector of the Salado River (Buenos Aires, Argentina) for 10 years (1995-2005) and detected significant changes occurring in chlorophyte abundance and species richness during La Niña event (1998-1999), which period was analyzed throughout the entire basin (main stream and tributaries). We compared the physicochemical and biologic variables between two El Niño-La Niña-Southern Oscillation (ENSO) periods - El Niño (March 1997-January 1998) and La Niña (May 1998-May 1999) - to identify possible indicators of a relationship between climatic anomalies and chlorophyte performance. Chlorophyte density increased during the La Niña. Under normal or extreme hydrologic conditions, mobile (Chlamydomonas spp.) and nonmobile (Monoraphidium spp.) chlorophytes codominated. These species belonged to Reynolds's functional groups X1 and X2, those typical of nutrient-enriched environments. Comparative analyses between El Niño and La Niña periods indicated significant differences in physicochemical (K(+), dissolved polyphenols, particulate reactive phosphorus, alkalinity, pH) and biologic (species diversity and richness, phytoplankton and chlorophyte total densities) variables between the two periods at all basin sites. During the La Niña condition, species richness was greater owing to interconnected shallow lakes and drainage-channel inputs, while the Shannon diversity index was lower because of the high abundance values of Monoraphidium minutum. A detailed analysis of the chlorophytes in the entire basin, indicated that changes in density and species dominance occurred on a regional scale although diverse chlorophyte assemblages were identified in the different sectors of the Salado River basin. After La Niña event, the entire basin had the potential to revert to the previous density values, showing the resilience to global environmental changes and the ability to reestablish the general conditions of stability. PMID

  12. Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

    SciTech Connect

    Beauheim, R.L. ); Saulnier, G.J. Jr.; Avis, J.D. )

    1991-08-01

    Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

  13. Evaluation of methods for measuring relative permeability of anhydride from the Salado Formation: Sensitivity analysis and data reduction

    SciTech Connect

    Christiansen, R.L.; Kalbus, J.S.; Howarth, S.M.

    1997-05-01

    This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relative permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties.

  14. Phytoplankton chlorophyte structure as related to ENSO events in a saline lowland river (Salado River, Buenos Aires, Argentina)

    PubMed Central

    Solari, Lía C; Gabellone, Néstor A; Claps, María C; Casco, María A; Quaíni, Karina P; Neschuk, Nancy C

    2014-01-01

    We analyzed the phytoplankton present in the lower sector of the Salado River (Buenos Aires, Argentina) for 10 years (1995–2005) and detected significant changes occurring in chlorophyte abundance and species richness during La Niña event (1998–1999), which period was analyzed throughout the entire basin (main stream and tributaries). We compared the physicochemical and biologic variables between two El Niño–La Niña–Southern Oscillation (ENSO) periods – El Niño (March 1997–January 1998) and La Niña (May 1998–May 1999) – to identify possible indicators of a relationship between climatic anomalies and chlorophyte performance. Chlorophyte density increased during the La Niña. Under normal or extreme hydrologic conditions, mobile (Chlamydomonas spp.) and nonmobile (Monoraphidium spp.) chlorophytes codominated. These species belonged to Reynolds's functional groups X1 and X2, those typical of nutrient-enriched environments. Comparative analyses between El Niño and La Niña periods indicated significant differences in physicochemical (K+, dissolved polyphenols, particulate reactive phosphorus, alkalinity, pH) and biologic (species diversity and richness, phytoplankton and chlorophyte total densities) variables between the two periods at all basin sites. During the La Niña condition, species richness was greater owing to interconnected shallow lakes and drainage-channel inputs, while the Shannon diversity index was lower because of the high abundance values of Monoraphidium minutum. A detailed analysis of the chlorophytes in the entire basin, indicated that changes in density and species dominance occurred on a regional scale although diverse chlorophyte assemblages were identified in the different sectors of the Salado River basin. After La Niña event, the entire basin had the potential to revert to the previous density values, showing the resilience to global environmental changes and the ability to reestablish the general conditions of

  15. Phytoplankton chlorophyte structure as related to ENSO events in a saline lowland river (Salado River, Buenos Aires, Argentina).

    PubMed

    Solari, Lía C; Gabellone, Néstor A; Claps, María C; Casco, María A; Quaíni, Karina P; Neschuk, Nancy C

    2014-04-01

    We analyzed the phytoplankton present in the lower sector of the Salado River (Buenos Aires, Argentina) for 10 years (1995-2005) and detected significant changes occurring in chlorophyte abundance and species richness during La Niña event (1998-1999), which period was analyzed throughout the entire basin (main stream and tributaries). We compared the physicochemical and biologic variables between two El Niño-La Niña-Southern Oscillation (ENSO) periods - El Niño (March 1997-January 1998) and La Niña (May 1998-May 1999) - to identify possible indicators of a relationship between climatic anomalies and chlorophyte performance. Chlorophyte density increased during the La Niña. Under normal or extreme hydrologic conditions, mobile (Chlamydomonas spp.) and nonmobile (Monoraphidium spp.) chlorophytes codominated. These species belonged to Reynolds's functional groups X1 and X2, those typical of nutrient-enriched environments. Comparative analyses between El Niño and La Niña periods indicated significant differences in physicochemical (K(+), dissolved polyphenols, particulate reactive phosphorus, alkalinity, pH) and biologic (species diversity and richness, phytoplankton and chlorophyte total densities) variables between the two periods at all basin sites. During the La Niña condition, species richness was greater owing to interconnected shallow lakes and drainage-channel inputs, while the Shannon diversity index was lower because of the high abundance values of Monoraphidium minutum. A detailed analysis of the chlorophytes in the entire basin, indicated that changes in density and species dominance occurred on a regional scale although diverse chlorophyte assemblages were identified in the different sectors of the Salado River basin. After La Niña event, the entire basin had the potential to revert to the previous density values, showing the resilience to global environmental changes and the ability to reestablish the general conditions of stability.

  16. Bacterial concrete

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Venkataswamy; Ramesh, K. P.; Bang, S. S.

    2001-04-01

    Cracks in concrete are inevitable and are one of the inherent weaknesses of concrete. Water and other salts seep through these cracks, corrosion initiates, and thus reduces the life of concrete. So there was a need to develop an inherent biomaterial, a self-repairing material which can remediate the cracks and fissures in concrete. Bacterial concrete is a material, which can successfully remediate cracks in concrete. This technique is highly desirable because the mineral precipitation induced as a result of microbial activities is pollution free and natural. As the cell wall of bacteria is anionic, metal accumulation (calcite) on the surface of the wall is substantial, thus the entire cell becomes crystalline and they eventually plug the pores and cracks in concrete. This paper discusses the plugging of artificially cracked cement mortar using Bacillus Pasteurii and Sporosarcina bacteria combined with sand as a filling material in artificially made cuts in cement mortar which was cured in urea and CaCl2 medium. The effect on the compressive strength and stiffness of the cement mortar cubes due to the mixing of bacteria is also discussed in this paper. It was found that use of bacteria improves the stiffness and compressive strength of concrete. Scanning electron microscope (SEM) is used to document the role of bacteria in microbiologically induced mineral precipitation. Rod like impressions were found on the face of calcite crystals indicating the presence of bacteria in those places. Energy- dispersive X-ray (EDX) spectra of the microbial precipitation on the surface of the crack indicated the abundance of calcium and the precipitation was inferred to be calcite (CaCO3).

  17. Diffusion of Radionuclides in Concrete and Soil

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Recknagle, Kurtis P.; Clayton, Libby N.; Wood, Marcus I.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.

  18. Configuration and Correlation of Fluvial Terrace Deposits In the Lower Rio Salado Valley: A Record of Magmatic Uplift and Active Normal Faulting in the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Sion, B. D.; Axen, G. J.; Phillips, F. M.; Harrison, B.

    2015-12-01

    The Rio Salado is a western tributary of the Rio Grande whose valley is flanked by six major terrace levels. The Rio crosses several active rift-related normal faults and the active, mid-crustal Socorro Magma Body (SMB; a sill at 19 km depth that is actively doming the land surface), providing an unusual opportunity to explore the effects of deep magma emplacement and active faulting on the terraces. Rio Salado terraces were mapped using a high-resolution DEM and digital color stereophotographs and were projected onto a valley-parallel vertical plane to construct longitudinal profiles. Three new soil pits were described to aid terrace correlation. A net incision rate of 0.41 ± 0.06 m/ka was inferred from the correlation of a major fill-cut terrace to the 122 ± 18 ka Airport surface ~25 km south of the Rio Salado. This incision rate is >1.5 times more rapid than estimated rates nearby or in other parts of New Mexico, but yields age estimates for other terraces that are consistent with soil development. Terrace gradients in the Rio Salado have increased through time, indicating either stream response to Rio Grande incision or footwall tilting from the Quaternary Loma Blanca fault (LBF). Two terraces in the LBF hanging wall are back-tilted relative to their footwall counterparts, suggesting a listric geometry for the LBF. However, two others (Qtf and Qtc) are east-tilted relative to their footwall counterparts. Both Qtf and Qtc merge eastward with the next youngest terrace in the flight, and Qtc is arched, consistent with an earlier episode of surface uplift above the SMB. Future work will involve (a) additional terrace mapping over the SMB, (b) cosmogenic 36Cl depth profile dating of the Rio Salado terraces to determine incision rates, allow regional terrace correlations, and constrain fault-slip slip rates and the record of SMB-related surface uplift, and (c) numerical modeling of SMB inflation constrained by uplift signals.

  19. Origins of the Salado, Seven Rivers, and San Andres salt margins in Texas and New Mexico: Revision 1: Topical report

    SciTech Connect

    Boyd, S.D.; Murphy, P.J.

    1987-02-01

    The present boundaries of the San Andres, Seven Rivers, and Salado salts generally lie along the periphery of the Palo Duro and Tucumcari Basins. Various geologic mechanisms occurring singularly or in combination determined the positions of the salt margins. These mechanisms include nondeposition of salt and syndepositional and postdepositional dissolution. In New Mexico, San Andres units pinch out against the Pedernal and Sierra Grande Uplifts, indicating that nondeposition established the original salt margins there. Syndepositional dissolution of exposed Upper San Andres salts occurred in response to Guadalupian upwarp of the basin margins. Triassic erosion differentially removed Permian salt-bearing formations along the uplifts. Late Tertiary dissolution is indicated by fill of north-south trending collapse valleys. In Texas, Guadalupian upwarp along the Amarillo Uplift caused pinchout of Units 2 and 3 in the Lower San Andres and influenced the deposition of subsequent salt-bearing strata. The discontinuity of Upper San Andres evaporites across the Amarillo Uplift suggests syndepositional dissolution. Along the eastern and northeastern basin margin, dissolution may have accompanied Triassic erosion of locally uplifted Upper Permian strata. Tertiary dissolution is recognized beneath anomalously thick Ogallala Formation sections that overlie collasped Permian strata. 49 refs., 31 figs., 2 tabs.

  20. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  1. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  2. Hydraulic testing around Room Q: Evaluation of the effects of mining on the hydraulic properties of Salado Evaporites

    SciTech Connect

    Domski, P.S.; Upton, D.T.; Beauheim, R.L.

    1996-03-01

    Room Q is a 109-m-long cylindrical excavation in the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site. Fifteen boreholes were drilled and instrumented around Room Q so that tests could be conducted to determine the effects of room excavation on the hydraulic properties of the surrounding evaporate rocks. Pressure-buildup and pressure-pulse tests were conducted in all of the boreholes before Room Q was mined. The data sets from only eight of the boreholes are adequate for parameter estimation, and five of those are of poor quality. Constant-pressure flow tests and pressure-buildup tests were conducted after Room Q was mined, producing eleven interpretable data sets, including two of poor quality. Pre-mining transmissivities interpreted from the three good-quality data sets ranged from 1 x 10{sup -15} to 5 x 10{sup -14} m{sup 2}/s (permeability-thickness products of 2 x 10{sup -22} to 9 x 10{sup -21} m{sup 3}) for test intervals ranging in length from 0.85 to 1.37 m. Pre-mining average permeabilities, which can be considered representative of undisturbed, far-field conditions, were 6 x 10{sup -20} and 8 x 10{sup -20} m{sup 2} for anhydrite, and 3 x 10{sup -22} m{sup 2} for halite. Post-mining transmissivities interpreted from the good-quality data sets ranged from 1 x 10{sup -16} to 3 x 10{sup -13} m{sup 2}/s (permeability-thickness products of 2 x 10{sup -23} to 5 x 10{sup -20} m{sup 3}). Post-mining average permeabilities for anhydrite ranged from 8 x 10{sup -20} to 1 x 10{sup -19} m{sup 2}. The changes in hydraulic properties and pore pressures that were observed can be attributed to one or a combination of three processes: stress reduction, changes in pore connectivity, and flow towards Room Q. The effects of the three processes cannot be individually quantified with the available data.

  3. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes.

    PubMed

    Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K

    2016-09-01

    Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments. PMID:27315168

  4. Preliminary report on fluid inclusions from halites in the Castile and lower Salado formations of the Delaware Basin, southeastern New Mexico. [Freezing-point depression

    SciTech Connect

    Stein, C.L.

    1985-09-01

    A suite of samples composed primarily of halite from the upper Castile and lower Salado Formations of the Permian Basin was selected from Waste Isolation Pilot Plant (WIPP) core for a reconnaissance study of fluid inclusions. Volume percent of these trapped fluids averaged 0.7% to 1%. Freezing-point depressions varied widely and appeared to be unrelated to fluid-inclusion type, to sedimentary facies, or to stratigraphic depth. However, because very low freezing points were usually associated with anhydrite, a relation may exist between freezing-point data and lithology. Dissolved sulfate values were constant through the Castile, then decreased markedly with lesser depth in the lower Salado. This trend correlates very well with observed mineralogy and is consistent with an interpretation of the occurrence of secondary polyhalite as a result of gypsum or anhydrite alteration with simultaneous consumption of dissolved sulfate from the coexisting fluids. Together with the abundance and distribution of fluid inclusions in primary or ''hopper'' crystal structures, this evidence suggests that inclusions seen in these halites did not migrate any significant geographical distance since their formation. 28 refs., 17 figs., 2 tabs.

  5. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes.

    PubMed

    Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K

    2016-09-01

    Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.

  6. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  7. Genetic Diversity and Host Range of Rhizobia Nodulating Lotus tenuis in Typical Soils of the Salado River Basin (Argentina)▿ †

    PubMed Central

    Estrella, María Julia; Muñoz, Socorro; Soto, María José; Ruiz, Oscar; Sanjuán, Juan

    2009-01-01

    A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin. PMID

  8. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1992-01-01

    Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.

  9. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  10. Concrete radiation shielding

    SciTech Connect

    Kaplan, M.F.

    1989-01-01

    This book presents an introduction to the aspects of nuclear physics relevant to concrete technology. It covers a variety of materials that may be used to produce concrete for radiation shielding. Details of the physical, mechanical, and nuclear properties of these concretes are provided, and their applications in nuclear waste storage, shelter design, and reactor shielding are described. Radiation shield design considerations are addressed.

  11. Controlling chloride ions diffusion in concrete.

    PubMed

    Zeng, Lunwu; Song, Runxia

    2013-11-28

    The corrosion of steel in concrete is mainly due to the chemical reaction between the chloride ions and iron ions. Indeed, this is a serious threaten for reinforced concrete structure, especially for the reinforced concrete structure in the sea. So it is urgent and important to protect concrete against chloride ions corrosion. In this work, we report multilayer concrete can cloak chloride ions. We formulated five kinds of concrete A, B, C, D and E, which are made of different proportion of cement, sand and glue, and fabricated six-layer (ABACAD) cylinder diffusion cloak and background media E. The simulation results show that the six-layer mass diffusion cloak can protect concrete against chloride ions penetration, while the experiment results show that the concentration gradients are parallel and equal outside the outer circle in the diffusion flux lines, the iso-concentration lines are parallel outside the outer circle, and the concentration gradients in the inner circle are smaller than those outside the outer circle.

  12. Controlling chloride ions diffusion in concrete

    PubMed Central

    Zeng, Lunwu; Song, Runxia

    2013-01-01

    The corrosion of steel in concrete is mainly due to the chemical reaction between the chloride ions and iron ions. Indeed, this is a serious threaten for reinforced concrete structure, especially for the reinforced concrete structure in the sea. So it is urgent and important to protect concrete against chloride ions corrosion. In this work, we report multilayer concrete can cloak chloride ions. We formulated five kinds of concrete A, B, C, D and E, which are made of different proportion of cement, sand and glue, and fabricated six-layer (ABACAD) cylinder diffusion cloak and background media E. The simulation results show that the six-layer mass diffusion cloak can protect concrete against chloride ions penetration, while the experiment results show that the concentration gradients are parallel and equal outside the outer circle in the diffusion flux lines, the iso-concentration lines are parallel outside the outer circle, and the concentration gradients in the inner circle are smaller than those outside the outer circle. PMID:24285220

  13. Lunar concrete: Prospects and challenges

    NASA Astrophysics Data System (ADS)

    Khitab, Anwar; Anwar, Waqas; Mehmood, Imran; Kazmi, Syed Minhaj Saleem; Munir, Muhammad Junaid

    2016-02-01

    The possibility of using concrete as a construction material at the Moon surface is considered. Dissimilarities between the Earth and the Moon and their possible effects on concrete are also emphasized. Availability of constituent materials for concrete at lunar surface is addressed. An emphasis is given to two types of materials, namely, hydraulic concrete and sulfur concrete. Hydraulic concrete necessitates the use of water and sulfur concrete makes use of molten sulfur in lieu of cement and water.

  14. Fly ash sulfur concrete

    SciTech Connect

    Head, W.J.; Liao, M.

    1981-05-01

    Two waste products, flyash and elemental sulfur, can be combined with a modifying agent to produce a potentially useful construction material, flyash sulfur concrete. Manufacturing processes and characteristics of this concrete are described. Compared with a conventional crushed stone aggregate, flyash sulfur concrete is a viable highway pavement base course material. The material's strength characteristics are analyzed. (1 diagram, 4 graphs, 2 photos, 9 references, 5 tables)

  15. Modeling of concrete cracking due to corrosion of embedded reinforcement

    NASA Astrophysics Data System (ADS)

    Aligizaki, Kalliopi K.

    Corrosion of steel in concrete continues freely after concrete cracks, because concrete does not provide even physical protection to steel any more. In this Thesis, the effects of concrete quality and design parameters on concrete cracking due to corrosion of embedded reinforcement are examined. The parameters tested are concrete strength, thickness of concrete cover, diameter of steel bar, crack width at the concrete surface, the presence of polypropylene fibers, and corrosion occurring at a limited length. Four air-entrained concrete mixtures were proportioned having different water-cement ratios (0.40, 0.45, 0.50 and 0.55). The control mixture was selected according to the classifications used by the Eurocode and to represent concrete used in a marine environment. An additional mixture was proportioned containing polypropylene fibers. A total of 148 reinforced concrete specimens (250 x 140 x 140 mm) containing one ribbed steel bar were prepared in the laboratory. Corrosion of the reinforcing steel bars was accelerated by two ways: (a) by adding NaCl in the initial concrete mixtures in an amount of 3.7% by mass of cement, and (b) by anodically charging the steel bar with a current density of 500 mA/m2. Different electrochemical tests were carried out before anodically charging the steel bars and after concrete cracked due to corrosion of embedded reinforcement, in order to determine various electrochemical parameters. After the concrete specimens cracked, the average crack width at the concrete surface and the iron mass loss were determined. A theoretical model is proposed and is used as the basis for developing the final analytical equation. A polynomial regression analysis was carried out in order to relate the parameters tested in this study to the amount of oxides needed to cause cracking of the concrete cover. For the parameters examined and the assumptions made, the analysis indicates that the model proposed explains 30% of the variation of the iron mass

  16. Effective determination of the long-lived nuclide 41Ca in nuclear reactor bioshield concretes: comparison of liquid scintillation counting and accelerator mass spectrometry.

    PubMed

    Warwick, P E; Croudace, I W; Hillegonds, D J

    2009-03-01

    The routine application of liquid scintillation counting to (41)Ca determination has been hindered by the absence of traceable calibration standards of known (41)Ca activity concentrations. The introduction of the new IRMM (41)Ca mass-spectrometric standards with sufficiently high (41)Ca activities for radiometric detection has partly overcome this although accurate measurement of stable Ca concentrations coupled with precise half-life data are still required to correct the certified (41)Ca:(40)Ca ratios to (41)Ca activity concentrations. In this study, (41)Ca efficiency versus quench curves have been produced using the IRMM standard, and their accuracy validated by comparison with theoretical calculations of (41)Ca efficiencies. Further verification of the technique was achieved through the analysis of (41)Ca in a reactor bioshield core that had been previously investigated for other radionuclide variations. Calcium-41 activity concentrations of up to 25 Bq/g were detected. Accelerator mass spectrometry (AMS) measurements of the same suite of samples showed a very good agreement, providing validation of the procedure. Calcium-41 activity concentrations declined exponentially with distance from the core of the nuclear reactor and correlated well with the predicted neutron flux.

  17. Late Quaternary vegetation and climate history of a perennial river canyon in the Rīo Salado basin (22°S) of Northern Chile

    USGS Publications Warehouse

    Latorre, Claudio; Betancourt, Julio L.; Arroyo, Mary T.K.

    2006-01-01

    Plant macrofossils from 33 rodent middens sampled at three sites between 2910 and 3150 m elevation in the main canyon of the Rīo Salado, northern Chile, yield a unique record of vegetation and climate over the past 22,000 cal yr BP. Presence of low-elevation Prepuna taxa throughout the record suggests that mean annual temperature never cooled by more than 5°C and may have been near-modern at 16,270 cal yr BP. Displacements in the lower limits of Andean steppe and Puna taxa indicate that mean annual rainfall was twice modern at 17,520-16,270 cal yr BP. This pluvial event coincides with infilling of paleolake Tauca on the Bolivian Altiplano, increased ENSO activity inferred from a marine core near Lima, abrupt deglaciation in southern Chile, and Heinrich Event 1. Moderate to large increases in precipitation also occurred at 11,770-9550 (Central Atacama Pluvial Event), 7330-6720, 3490-2320 and at 800 cal yr BP. Desiccation occurred at 14,180, 8910-8640, and 4865 cal yr BP. Compared to other midden sites in the region, early Holocene desiccation seems to have happened progressively earlier farther south. Emerging trends from the cumulative midden record in the central Atacama agree at millennial timescales with improved paleolake chronologies for the Bolivian Altiplano, implying common forcing through changes in equatorial Pacific sea-surface temperature gradients.

  18. Antifouling marine concrete

    NASA Astrophysics Data System (ADS)

    Mathews, C. W.

    1980-03-01

    Various toxic agents were investigated for their ability to prevent the attachment and growth of marine fouling organisms on concrete. Three methods of incorporating antifoulants into concrete were also studied. Porous aggregate was impregnated with creosote and bis-(tri-n-butyltin) oxide (TBTO) and then used in making the concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, Calif. and Key Biscayne, Fla. Efficacy of toxicants was determined by periodically weighing the specimens and the fouling organisms that became attached. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture demonstrated the best antifouling performance of those specimens exposed for more than 1 year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties but have been exposed for a shorter time. Also, the strength of concrete prepared using the toxicants was acceptable and the corrosion rate of reinforcing rods did not increase. The concentration of organotin compounds was essentially unchanged in a concrete specimen exposed 6-1/2 years in seawater.

  19. Pedogenic Carbonate Concretions in the Russian Chernozem

    SciTech Connect

    Mikhailova, E. A.; Post, C. J.; Magrini-Bair, K.; Castle, J. W.

    2006-12-01

    Pedogenic carbonate concretions are commonly found in grassland soils, but their origin is not fully understood. This study was conducted to determine the radiocarbon age, the stable isotope geochemistry, and chemical composition of carbonate concretions in the Russian Chernozem, one of the typical soils in grasslands. Three sites were sampled: a native grassland field (not cultivated for at least 300 years), an adjacent 50-year continuous fallow field in the V. V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. The mineralogical composition of concretions varies from low-magnesium calcite to pure calcite. The concretion contains 0.05% N, 6.4% C, and has [delta]13C and [delta]18O values of -10.9[per mille sign] (the per mill symbol, parts per thousand) and -7.8[per mille sign], respectively. The outside part of the carbonate concretion is 1909 +/- 40 14C age Before Present (B.P.) compared with 1693 +/- 40 14C age B.P. for the inside part of the same concretion, even though the concretion is found in the C horizon of much older age (10,902 +/- 63 14C age B.P.). Remnants of soil organic matter in concretions are closely associated with the cropped and fallow/plowed soils by pyrolysis molecular beam mass spectrometry.

  20. The Structure of Concrete Operational Thought.

    ERIC Educational Resources Information Center

    Tomlinson-Keasey, C.: And Others

    1979-01-01

    In a four-year longitudinal study of the development of concrete operational thought, children were administered tests assessing seriation; numeration; class inclusion; hierarchical classification; and conservation of mass, weight, and volume. Levels of seriation and numeration skills in kindergarten were powerful predictors of the acquisition of…

  1. Concrete sample point: 304 Concretion Facility

    SciTech Connect

    Rollison, M.D.

    1995-03-10

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis.

  2. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.L.; SenGupta, A.K.; Yachmenev, V.

    1996-12-31

    ELECTROSORB Electrokinetic Extraction Technology, developed by ISOTRON Corp., offers a cost-effective approach to treating contaminated concrete. Heavy metals/radionuclides trapped in concrete can be extracted using this process if they are chemically solubilized; solubilizers used are citric acid alone and a mixture of citric and nitric acids. A DC electric field is applied across the contaminated concrete to electrokinetically transport the solubilized contaminants from the concrete pores to a collector on the concrete surface. The collector is an extraction pad laid on the surface. The pad provides confinement for a planar electrode and solubilizer solution; it is operated under a vacuum to hold the pad against the concrete surface. Operation requires little attendance, reducing the workers` health hazards. The process incorporates a mechanism for recycling the solubilizer solution. A field demonstration of the process took place in Building 21 of DOE`s Mound facility in Miamisburg, OH, over 12 days in June 1996. The thorium species present in this building`s concrete floors included ThO{sub 2} and thorium oxalate. The nitric acid was found to facilitate Th extraction.

  3. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  4. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  5. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  6. Biodecontamination of concrete

    SciTech Connect

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-12-31

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology.

  7. Concrete: Potential material for Space Station

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1992-01-01

    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

  8. Electrokenitic Corrosion Treatment of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  9. Corrosion-resistant sulfur concretes

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  10. Precast concrete pavements

    NASA Astrophysics Data System (ADS)

    Rollings, R. S.; Chou, Y. T.

    1981-11-01

    This report reviewed published literature on precast concrete pavements and found that precast concrete pavements have had some limited application in airfields, roads, and storage areas. This review of past experience and an analytical study of precast slabs concluded that existing design and construction techniques can be adapted for use with precast concrete pavements, but more work is needed to develop effective and easily constructed load transfer designs for slab joints. Precast concrete does not offer any advantage for conventional pavements due to its high cost and surface roughness, but it may find applications for special problems such as construction in adverse weather, subgrade settlement, temporary pavements that need to be relocated, and military operations.

  11. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  12. Shear Resistance between Concrete-Concrete Surfaces

    NASA Astrophysics Data System (ADS)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  13. Performance of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  14. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  15. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  16. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  17. Reclamation chain of waste concrete: A case study of Shanghai.

    PubMed

    Xiao, Jianzhuang; Ma, Zhiming; Ding, Tao

    2016-02-01

    A mass of construction and demolition (C&D) waste are generated in Shanghai every year, and it has become a serious environment problem. Reclaiming the waste concrete to produce recycled aggregate (RA) and recycled aggregate concrete (RAC) is an effective method to reduce the C&D waste. This paper develops a reclamation chain of waste concrete based on the researches and practices in Shanghai. C&D waste management, waste concrete disposition, RA production and RAC preparation are discussed respectively. In addition, technical suggestions are also given according to the findings in practical engineering, which aims to optimize the reclamation chain. The results show that the properties of RA and RAC can well meet the requirement of design and practical application through a series of technical measures. The reclamation chain of waste concrete is necessary and appropriate for Shanghai, which provides more opportunities for the wider application of RA and RAC, and it shows a favorable environmental benefit. PMID:26452425

  18. Reclamation chain of waste concrete: A case study of Shanghai.

    PubMed

    Xiao, Jianzhuang; Ma, Zhiming; Ding, Tao

    2016-02-01

    A mass of construction and demolition (C&D) waste are generated in Shanghai every year, and it has become a serious environment problem. Reclaiming the waste concrete to produce recycled aggregate (RA) and recycled aggregate concrete (RAC) is an effective method to reduce the C&D waste. This paper develops a reclamation chain of waste concrete based on the researches and practices in Shanghai. C&D waste management, waste concrete disposition, RA production and RAC preparation are discussed respectively. In addition, technical suggestions are also given according to the findings in practical engineering, which aims to optimize the reclamation chain. The results show that the properties of RA and RAC can well meet the requirement of design and practical application through a series of technical measures. The reclamation chain of waste concrete is necessary and appropriate for Shanghai, which provides more opportunities for the wider application of RA and RAC, and it shows a favorable environmental benefit.

  19. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  20. 10. CONCRETE BRIDGE, REINFORCED BEAM TYPE ON CONCRETE, SOUTH CAROLINA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. CONCRETE BRIDGE, REINFORCED BEAM TYPE ON CONCRETE, SOUTH CAROLINA STATE HIGHWAY DEPARTMENT, COLUMBIA, SOUTH CAROLINA (photocopy of drawing) - Salkehatchie Bridge, State Route No. 64 spanning Salkehatchie River, Barnwell, Barnwell County, SC

  1. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  2. Heidrun concrete TLP: Update

    SciTech Connect

    Munkejord, T.

    1995-10-01

    This paper gives a summary of the Heidrun substructure including tethers and foundations. The focus will although be on the concrete substructure. The Heidrun Field is located in 345 m water depth in the northern part of the Haltenbanken area, approximately 100N miles from the west coast of mid-Norway. The field is developed by means of a concrete Tension Leg Platform (TLP) by Conoco Norway Inc. The TLP will be moored by 16 steel tethers, arranged in groups of four per corner, which secure the substructure (hull) to the concrete foundations. A general view of the TLP is shown. The Heidrun TLP will be the northern most located platform in the North Sea when installed at Haltenbanken in 1995. Norwegian Contractors a.s (NC) is undertaking the Engineering, Procurement, Construction and Installation (EPCI) contract for the Heidrun TLP substructure. This comprises the complete delivery of the hull with two module support beams (MSB), including all mechanical outfitting. Furthermore, NC will perform all marine operations related to the substructure. For the concrete foundations NC has performed the detailed engineering work and has been responsible for the two to field and installation of the foundations.

  3. High temperature polymer concrete

    DOEpatents

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  4. Electroosmotic decontamination of concrete

    SciTech Connect

    Bostick, W.D.; Bush, S.A.; Marsh, G.C.; Henson, H.M.; Box, W.D.; Morgan, I.L.

    1993-03-01

    A method is described for the electroosmotic decontamination of concrete surfaces, in which an electrical field is used to induce migration of ionic contaminants from porous concrete into an electrolyte solution that may be disposed of as a low-level liquid radioactive waste (LLRW); alternately, the contaminants from the solution can be sorbed onto anion exchange media in order to prevent contaminant buildup in the solution and to minimize the amount of LLRW generated. We have confirmed the removal of uranium (and infer the removal of {sup 99}Tc) from previously contaminated concrete surfaces. In a typical experimental configuration, a stainless steel mesh is placed in an electrolyte solution contained within a diked cell to serve as the negative electrode (cathode) and contaminant collection medium, respectively, and an existing metal penetration (e.g., piping, conduit, or rebar reinforcement within the concrete surface) serves as the positive electrode (anode) to complete the cell. Typically we have achieved 70 to >90% reductions in surface activity by applying <400 V and <1 A for 1--3 h (energy consumption of 0.4--12 kWh/ft{sup 2}).

  5. Frost resistance of concrete surfaces coated with waterproofing materials

    NASA Astrophysics Data System (ADS)

    Klovas, A.; Dauksys, M.; Ciuprovaite, G.

    2015-03-01

    Present research lays emphasis on the problem of concrete surface exposed to aggressive surrounding quality. The test was conducted with concrete surfaces coated with different waterproofing materials exposed in solution of 3 % of sodium sulphate. Research was performed according to LST EN 1338:2003 standard requirements. Technological properties of concrete mixture as well as physical-mechanical properties of formed concrete specimens were established. The resistance of concrete to freezing - thawing cycles was prognosticated according to the porosity parameters established by the kinetic of water absorption. Five different waterproofing materials (coatings) such as liquid bitumen-rubber based, elastic fiber-strengthened, silane-siloxane based emulsion, mineral binder based and liquid rubber (caoutchouc) based coatings were used. Losses by mass of coating materials and specimens surface fractures were calculated based on the results of frost resistance test. Open code program "ImageJ" was used for visual analysis of concrete specimens. Based on the results, aggressive surrounding did not influence specimens coated with elastic, fibre-strengthened, mineral materials. On the other hand, specimens coated with liquid rubber (caoutchouc) based material were greatly influenced by aggressive surrounding. The biggest losses of specimen surface concrete (fractures) were obtained with silane-siloxane based emulsion coating. Generally, specimens coated with waterproofing materials were less influenced by aggressive surrounding compared with those without.

  6. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  7. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseney, Jonathan A.; Arp, Larry Dean; Lindbergh, Charles

    1989-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar based subjected to one atmosphere internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design: (1) during construction; (2) under pressurization; and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the air-tightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the moon.

  8. Concrete containment aging study

    SciTech Connect

    Pachner, J.; Tai, T.M.; Naus, D.

    1994-04-01

    In 1989, IAEA initiated a pilot study on the management of aging of nuclear power plant components. The Phase I and II studies of concrete containment are discussed. With the data base, plant owners will be able to review and enhance their existing programs. IAEA will analyze data provided by participating plants and the report is scheduled to be released by late 1994 (final report release mid-1995).

  9. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  10. Optimization of reinforced concrete slabs

    NASA Technical Reports Server (NTRS)

    Ferritto, J. M.

    1979-01-01

    Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.

  11. Prolong the life of concrete

    SciTech Connect

    Ilaria, J.E.

    1995-07-01

    The most widely used construction materials are concrete and related cement-based products, such as common building block. The excellent reputation of concrete as a durable material of construction has been questioned i modern times. The expanded use of Portland cement concrete, the increase in corrosive environments, and lack of understanding of the composition of concrete all indicate a need for methods to increase life expectancy. Chemical and mechanical factors can shorten service life. Understanding these properties will lead to the proper application of protective coatings.

  12. Microwave NDE for Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Melapudi, Vikram R.; Rothwell, Edward J.; Udpa, Lalita; Udpa, Satish S.

    2006-03-01

    Nondestructive assessment of the integrity of civil structures is of paramount importance for ensuring safety. In concrete imaging, radiography, ground penetrating radar and infrared thermography are some of the widely used techniques for health monitoring. Other emerging technologies that are gaining impetus for detecting and locating flaws in steel reinforcement bar include radioactive computed tomography, microwave holography, microwave and acoustic tomography. Of all the emerging techniques, microwave NDT is a promising imaging modality largely due to their ability to penetrate thick concrete structures, contrast between steel rebar and concrete and their non-radioactive nature. This paper investigates the feasibility of a far field microwave NDE technique for reinforced concrete structures.

  13. Temperature and pore pressure distribution in a concrete slab during the microwave decontamination process

    SciTech Connect

    Li, W.; Ebadian, M.A.; White, T.L.; Grubb, R.G.; Foster, D. Jr.

    1994-10-01

    As an application of microwave engineering, the new technology of concrete decontamination and decommissioning using microwave energy has been recently developed. The temperature and pore pressure within the concrete are studied theoretically in this paper. The heat and mass transfer within the porous concrete, coupled with temperature dependent dielectric property are investigated. The effects of microwave frequency (f), microwave power intensity (Q{sub 0,ave}), concrete porosity ({phi}) on the temperature and pore pressure distributions and their variations are fully discussed. The effects of the variation of complex dielectric permittivity ({epsilon}) and presentation of different steel reinforcements are also illustrated.

  14. Performance of concrete barriers in radioactive waste disposal in the unsaturated zone

    SciTech Connect

    Walton, J.C. ); Otis, M.D. )

    1989-09-14

    Concrete barriers are an important component of many designs for disposal of radioactive waste in the unsaturated zone. In order to evaluate the effectiveness of the concrete barriers performance assessment models representing the material degradation rates and transport properties must be developed. Models for evaluation of fluid flow and mass transport through partially failed concrete barriers located in the unsaturated zone are presented. Implications of the use of impermeable barriers design are discussed. Concrete of highest quality may not always be desirable for use in all components of waste disposal vaults. 7 refs., 5 figs.

  15. Concrete Mixing Methods and Concrete Mixers: State of the Art.

    PubMed

    Ferraris, C F

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined.

  16. Concrete Mixing Methods and Concrete Mixers: State of the Art

    PubMed Central

    Ferraris, Chiara F.

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029

  17. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  18. Multiscale Constitutive Modeling of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Underwood, Benjamin Shane

    Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also

  19. Biodecontamination of radionuclide contaminated concrete

    SciTech Connect

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-10-01

    Within the nuclear industry, there are literally hundreds of square miles of radionuclide contaminated concrete surfaces. A novel technology for biologically decontaminating concrete is being developed. The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of the concrete. Accelerated testing in laboratory conditions was conducted. The bacteria Thiobacillus thiooxidans, supplied from a continuous flow bioreactor, was applied to an exposed concrete surface. A control chamber exposing concrete to sterile media was operated under the same conditions. One hundred percent of surrogate cobalt contamination was recovered from the Thiobacillus treated concrete and 1 mm thickness of concrete material was removed in 60 days. Prototype chambers that can be mounted directly to concrete surfaces have been designed to allow control of environmental conditions to promote MID after inoculation of the surface with bacteria. Studies to determine optimum source and quantity of reduced sulfur, bacterial species or consortia best suited for rapid MID, and methods of application and delivery of bacteria and nutrients will be discussed.

  20. Concrete Masonry Designs: Educational Issue.

    ERIC Educational Resources Information Center

    Hertzberg, Randi, Ed.

    2001-01-01

    This special journal issue addresses concrete masonry in educational facilities construction. The issue's feature articles are: (1) "It Takes a Village To Construct a Massachusetts Middle School," describing a middle school constructed almost entirely of concrete masonry and modeled after a typical small New England village; (2) "Lessons Learned,"…

  1. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  2. Molded Concrete Center Mine Wall

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  3. Technology Solutions Case Study: Insulating Concrete Forms

    SciTech Connect

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete forms—rigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  4. Solar-Array Substrate From Glass-Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Eirls, J. L.

    1985-01-01

    Design elminiates glass superstrate and associated metal framing. Panel has two trapezoidal stiffening ribs for structural support. Strategic placement of ribs with embedded support tubes (standard PVC tubing) minimizes bending moments and resulting stresses produced by installation and windloads. Glass-reinforced concrete panel has smooth flat surface suitable for solar substrate and includes structural bracing for rigidity and design adaptable to mass production.

  5. The Puzzle of Septarian Concretions

    NASA Astrophysics Data System (ADS)

    John, C. M.; Dale, A.; Mozley, P.; Smalley, P. C.; Muggeridge, A. H.

    2014-12-01

    Carbonate concretions in clastic rocks and their septarian fracture fills act as 'time capsules', capturing the signatures of chemical and biological processes during diagenesis. However, many aspects of the formation of concretions and septarian fractures remain poorly understood, for although concretions occur in clastic rocks throughout the geological record, they are rarely documented in recent shallow-burial environments. Consequently, the depth and temperature at which concretion-forming processes occur are often poorly constrained. Carbonate clumped isotopes have recently been applied successfully to concretions and fracture fills that begin to unravel the conditions for the formation of concretions and septarian fractures. Here, we present carbonate clumped isotope results of fracture fills from eight different concretions from various locations, including multiple phases of fill in 4 concretions. Our results suggest that they precipitated over a range of temperatures (22°C - 85°C) from d18Oporewater values between -12‰ to 3‰ and within different d13Ccarbonate zones. The majority of fills precipitated at lower (<50°C) temperatures, although the fluids were not always meteoric. For 3 concretions containing fractures with multiple phases, the d18Oporewater becomes progressively heavier with each later phase and increasing temperature. The one exception to this is in the Barton Clay Formation (UK) where the fractures must have been continuously filled during exhumation as the latest cement phase is the coolest with a d18Oporewater more 18O-depleted than the earliest phase. Therefore, concretion growth must usually initiate early on (<~1 km burial), and subsequent fracturing is also usually early. However, the fracture infilling can occur over a range of depths and can record the diagenetic history of a formation. We gratefully acknowledge a BP and EPSRC Case Studentship for funding this project, and the Natural History Museum London for providing

  6. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  7. Sorptivity of fly ash concretes

    SciTech Connect

    Gopalan, M.K.

    1996-08-01

    A factorial experiment was designed to measure the sorptivity of cement and fly ash concretes in order to compare the durability of fly ash concrete against the cement concrete. Sorptivity measurements based on the capillary movement of water was made on three grades of cement concrete and six grades of fly ash mixes. The effect of curing was also studied by treating the samples in two curving conditions. A functional relationship of sorptivity against the strength, curing condition and fly ash content has been presented. The results were useful to analyze the factors influencing the durability of cement and fly ash concretes and to explain why some of the previously reported findings were contradictory. Curing conditions have been found to be the most important factor that affected the durability properties of fly ash concrete. When proper curing was provided, a mix with 40% fly ash was found to reduce the sorptivity by 37%. Under inadequate curing the sorptivity was found to increase by 60%. The influence of curing on cement concrete was found to be of much less importance.

  8. Testing of concrete by laser ablation

    DOEpatents

    Flesher, D.J.; Becker, D.L.; Beem, W.L.; Berry, T.C.; Cannon, N.S.

    1997-01-07

    A method is disclosed for testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed. 1 fig.

  9. Testing of concrete by laser ablation

    DOEpatents

    Flesher, Dann J.; Becker, David L.; Beem, William L.; Berry, Tommy C.; Cannon, N. Scott

    1997-01-01

    A method of testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed.

  10. Effects of fertilizer and pesticides on concrete

    SciTech Connect

    Broder, M.F.; Nguyen, D.T.; Harner, A.L.

    1994-12-31

    Concrete is the most common material of construction for secondary containment of fertilizers and pesticides because of its relative low cost and structural properties. Concrete, however, is porous to some products it is designed to contain and is subject to corrosion. In this paper, concrete deterioration mechanisms and corrosion resistant concrete formulation are discussed, as well as exposure tests of various concrete mixes to some common liquid fertilizers and herbicides.

  11. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  12. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  13. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  14. Protective coatings for concrete

    SciTech Connect

    NAGY, KATHRYN L.; CYGAN, RANDALL T.; BRINKER, C. JEFFREY; SELLINGER, ALAN

    2000-05-01

    The new two-layer protective coating developed for monuments constructed of limestone or marble was applied to highway cement and to tobermorite, a component of cement, and tested in batch dissolution tests. The goal was to determine the suitability of the protective coating in retarding the weathering rate of concrete construction. The two-layer coating consists of an inner layer of aminoethylaminopropylsilane (AEAPS) applied as a 25% solution in methanol and an outer layer of A2** sol-gel. In previous work, this product when applied to calcite powders, had resulted in a lowering of the rate of dissolution by a factor of ten and was shown through molecular modeling to bind strongly to the calcite surface, but not too strongly so as to accelerate dissolution. Batch dissolution tests at 22 C of coated and uncoated tobermorite (1.1 nm phase) and powdered cement from Gibson Blvd. in Albuquerque indicated that the coating exhibits some protective behavior, at least on short time scales. However, the data suggest that the outer layer of sol-gel dissolves in the high-pH environment of the closed system of cement plus water. Calculated binding configuration and energy of AEAPS to the tobermorite surface suggests that AEAPS is well-suited as the inner layer binder for protecting tobermorite.

  15. Becoming Reactive by Concretization

    NASA Technical Reports Server (NTRS)

    Prieditis, Armand; Janakiraman, Bhaskar

    1992-01-01

    One way to build a reactive system is to construct an action table indexed by the current situation or stimulus. The action table describes what course of action to pursue for each situation or stimulus. This paper describes an incremental approach to constructing the action table through achieving goals with a hierarchical search system. These hierarchies are generated with transformations called concretizations, which add constraints to a problem and which can reduce the search space. The basic idea is that an action for a state is looked up in the action table and executed whenever the action table has an entry for that state; otherwise, a path is found to the nearest (cost-wise in a graph with costweighted arcs) state that has a mappring from a state in the next highest hierarchy. For each state along the solution path, the successor state in the path is cached in the action table entry for that state. Without caching, the hierarchical search system can logarithmically reduce search. When the table is complete the system no longer searches: it simply reacts by proceeding to the state listed in the table for each state. Since the cached information is specific only to the nearest state in the next highest hierarchy and not the goal, inter-goal transfer of reactivity is possible. To illustrate our approach, we show how an implemented hierarchical search system can completely reactive.

  16. Steam injection system for lunar concrete

    NASA Astrophysics Data System (ADS)

    Pakulski, Dennis M.; Knox, Kenneth J.

    Results of lunar concrete research into steam hydration of concrete currently under way at the USAF Academy by the Department of Civil Engineering are presented. The use of Design of Experiments methodologies to quantify the effects input factors to a process have on the measured responses of the process is demonstrated. The feasibility of hydrating high alumina cement concrete (mortar) using steam injection is shown; the process yields compressible strengths comparable to Portland cement concrete cast with water. The concrete strength is increased with increasing steam exposure (to a point) and with increased density of the dry cement aggregate mixture. Cure time seems to have little effect on the concrete strength.

  17. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  18. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  19. Corrosion rate measurements of steel in carbonated concrete

    SciTech Connect

    Saito, H.; Miyata, Y.; Takazawa, H.; Takai, K.; Yamauchi, G.

    1995-12-01

    The polarization resistance of steel bars in concrete after exposure to several environments, as measured by the potential step method, was compared to the actual mass losses of the bars. Each test sample consist of two steel bars embedded in concrete blocks, which were carbonated and exposed to one of several environments, outdoors, indoors, underground, in tunnel, or in water, for one year. Electrochemical measurements of these samples by using the potential step method were carried out at least once a week. The polarization resistance data thus obtained were changed into corrosion currents and mass losses. These calculated mass losses were compared with the actual mass losses of the rods. In some cases, such as indoors, outdoors or in tunnel, the corrosion rate of steel is determined by the amount of water in the concrete. In other cases, such as underground or in water, the oxygen supply determines the corrosion rate. This work demonstrate that in former condition, the potential step method can be use to measure the corrosion rate of steel easily and quickly.

  20. 27. DIVERSION STRUCTURE WITH CONCRETE SIDEWALLS AND CONCRETE CHANNEL BEYOND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DIVERSION STRUCTURE WITH CONCRETE SIDEWALLS AND CONCRETE CHANNEL BEYOND, A SHORT DISTANCE WEST OF D STREET ABOUT ONE-QUARTER MILE SOUTH OF 9TH AVENUE (SECTION 26). - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  1. Perforation of thin unreinforced concrete slabs

    SciTech Connect

    Cargile, J.D.; Giltrud, M.E.; Luk, V.K.

    1993-10-01

    This report discusses fourteen tests which were conducted to investigate the perforation of thin unreinforced concrete slabs. The 4340-steel projectile used in the test series is 50.8 mm in diameter, 355.6 mm in length, has a mass of 2.34 kg. and an ogive nose with caliber radius head of 3. The slabs, contained within steel culverts, are 1.52 m in diameter and consist of concrete with a nominal unconfined compressive strength of 38.2 MPa and maxima aggregate size of 9.5 mm. Slab thicknesses are 284.4, 254.0, 215.9 and 127.0 mm. Tests were conducted at impact velocities of about 313 m/s on all slab thicknesses and about 379 and 471 m/s on the 254.0-mm-thick slab. All tests were conducted at normal incidence to the slab. All tests were conducted at normal incidence to the slab. Information obtained from the tests used to determine the loading (deceleration) on the projectile during the perforation process, the velocity-displacement of the projectile as it perforated the slab, and the projectile position as damage occurred on the backface of the slab. The test projectile behaved essentially as a rigid body for all of the tests.

  2. Temperature-Dependent Thermal Conductivity of High Strength Lightweight Raw Perlite Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Tandiroglu, Ahmet

    2010-06-01

    Twenty-four types of high strength lightweight concrete have been designed with raw perlite aggregate (PA) from the Erzincan Mollaköy region as new low-temperature insulation material. The effects of the water/cement ratio, the amount of raw PA, and the temperature on high strength lightweight raw perlite aggregate concrete (HSLWPAC) have been investigated. Three empirical equations were derived to correlate the thermal conductivity of HSLWPAC as a function of PA percentage and temperature depending on the water/cement ratio. Experimentally observed thermal conductivities of concrete samples were predicted 92 % of the time for each set of concrete matrices within 97 % accuracy and over the range from 1.457 W · m-1 · K-1 to 1.777 W · m-1 · K-1. The experimental investigation revealed that the usage of raw PA from the Erzincan Mollaköy region in concrete production reduces the concrete unit mass, increases the concrete strength, and furthermore, the thermal conductivity of the concrete has been improved. The proposed empirical correlations of thermal conductivity were considered to be applicable within the range of temperatures 203.15 K ≤ T ≤ 303.15 K in the form of λ = a( PAP b ) + c( T d ).

  3. Fracture Mechanics Modelling of an In Situ Concrete Spalling Experiment

    NASA Astrophysics Data System (ADS)

    Siren, Topias; Uotinen, Lauri; Rinne, Mikael; Shen, Baotang

    2015-07-01

    During the operation of nuclear waste disposal facilities, some sprayed concrete reinforced underground spaces will be in use for approximately 100 years. During this time of use, the local stress regime will be altered by the radioactive decay heat. The change in the stress state will impose high demands on sprayed concrete, as it may suffer stress damage or lose its adhesion to the rock surface. It is also unclear what kind of support pressure the sprayed concrete layer will apply to the rock. To investigate this, an in situ experiment is planned in the ONKALO underground rock characterization facility at Olkiluoto, Finland. A vertical experimental hole will be concreted, and the surrounding rock mass will be instrumented with heat sources, in order to simulate an increase in the surrounding stress field. The experiment is instrumented with an acoustic emission system for the observation of rock failure and temperature, as well as strain gauges to observe the thermo-mechanical interactive behaviour of the concrete and rock at several levels, in both rock and concrete. A thermo-mechanical fracture mechanics study is necessary for the prediction of the damage before the experiment, in order to plan the experiment and instrumentation, and for generating a proper prediction/outcome study due to the special nature of the in situ experiment. The prediction of acoustic emission patterns is made by Fracod 2D and the model later compared to the actual observed acoustic emissions. The fracture mechanics model will be compared to a COMSOL Multiphysics 3D model to study the geometrical effects along the hole axis.

  4. Models for estimation of service life of concrete barriers in low-level radioactive waste disposal

    SciTech Connect

    Walton, J.C.; Plansky, L.E.; Smith, R.W. )

    1990-09-01

    Concrete barriers will be used as intimate parts of systems for isolation of low level radioactive wastes subsequent to disposal. This work reviews mathematical models for estimating the degradation rate of concrete in typical service environments. The models considered cover sulfate attack, reinforcement corrosion, calcium hydroxide leaching, carbonation, freeze/thaw, and cracking. Additionally, fluid flow, mass transport, and geochemical properties of concrete are briefly reviewed. Example calculations included illustrate the types of predictions expected of the models. 79 refs., 24 figs., 6 tabs.

  5. Preliminary report on the correlations among pineal concretions, prostatic calculi and age in human adult males.

    PubMed

    Mori, Ryoichi; Kodaka, Tetsuo; Sano, Tsuneyoshi

    2003-09-01

    By using quantitative image analysis of soft X-ray photographs on the bulk of extracted pineal glands and prostates, we made a preliminary investigation into the correlations among pineal concretions (% by mass), prostatic calculi (% by mass) and age (years) in 40 human adult males, ranging in age from 31 to 95 years (mean (+/-SD) 69.9 +/- 15.2 years), who died and underwent the routine dissection course. The mass concentrations of pineal concretions and prostatic calculi were 17.68 +/- 13.56% (range 0-51.34%) and 0.93 +/- 1.31% (range 0-5.82%), respectively. There was no correlation between the mass concentration of pineal concretions and aging (r = 0.03; P < 1.0). There was no correlation between mass concentration of prostatic calculi and aging (r = 0.28; P < 0.5). No pineal concretions and no prostatic calculi were observed in seven and 10 cases, respectively; in addition, in one case, neither-concretions nor calculi were seen. From such data and from the previously reported suggestion on the counteracting functions between the pineal gland and prostate, a negative correlation between the mass concentrations of pineal concretions and prostatic calculi was expected. This was certainly obtained, but the correlation was low (r = -0.39; P < 0.05). Such a low correlation and no correlations between the concentrations of pineal concretions and aging or between prostatic calculi and aging may have been caused by the examination of relatively older humans. Therefore, further investigations using a number of pair samples collected from males including younger age generations will be necessary. PMID:14527133

  6. Preliminary report on the correlations among pineal concretions, prostatic calculi and age in human adult males.

    PubMed

    Mori, Ryoichi; Kodaka, Tetsuo; Sano, Tsuneyoshi

    2003-09-01

    By using quantitative image analysis of soft X-ray photographs on the bulk of extracted pineal glands and prostates, we made a preliminary investigation into the correlations among pineal concretions (% by mass), prostatic calculi (% by mass) and age (years) in 40 human adult males, ranging in age from 31 to 95 years (mean (+/-SD) 69.9 +/- 15.2 years), who died and underwent the routine dissection course. The mass concentrations of pineal concretions and prostatic calculi were 17.68 +/- 13.56% (range 0-51.34%) and 0.93 +/- 1.31% (range 0-5.82%), respectively. There was no correlation between the mass concentration of pineal concretions and aging (r = 0.03; P < 1.0). There was no correlation between mass concentration of prostatic calculi and aging (r = 0.28; P < 0.5). No pineal concretions and no prostatic calculi were observed in seven and 10 cases, respectively; in addition, in one case, neither-concretions nor calculi were seen. From such data and from the previously reported suggestion on the counteracting functions between the pineal gland and prostate, a negative correlation between the mass concentrations of pineal concretions and prostatic calculi was expected. This was certainly obtained, but the correlation was low (r = -0.39; P < 0.05). Such a low correlation and no correlations between the concentrations of pineal concretions and aging or between prostatic calculi and aging may have been caused by the examination of relatively older humans. Therefore, further investigations using a number of pair samples collected from males including younger age generations will be necessary.

  7. Carbonation and its effects in reinforced concrete

    SciTech Connect

    Broomfield, J.P.

    2000-01-01

    Carbonation is the result of interaction of carbon dioxide (CO{sub 2}) gas in the atmosphere with the alkaline hydroxides in the concrete. CO{sub 2} diffuses through the concrete and rate of movement of the carbonation front roughly follows Fick's law of diffusion. Carbonation depth can be measured by exposing fresh concrete and spraying it with phenolphthalein indicator solution. An example of the test on a reinforced concrete mullion is given.

  8. Molecular Survey of Concrete Biofilm Microbial Communities

    EPA Science Inventory

    Although several studies have shown that bacteria can deteriorate concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different microbial communities associated with concrete biofilms using 16S rRNA g...

  9. RADON GENERATION AND TRANSPORT IN AGED CONCRETE

    EPA Science Inventory

    The report gives results of a characterization of radon generation and transport in Florida concretes sampled from 12- to 45-year-old residential slabs. It also compares measurements from old concrete samples to previous measurements on newly poured Florida residential concretes....

  10. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  11. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  12. Lightweight concrete with enhanced neutron shielding

    DOEpatents

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2016-09-13

    A lightweight concrete containing polyethylene terephthalate in an amount of 20% by total volume. The concrete is enriched with hydrogen and is therefore highly effective at thermalizing neutrons. The concrete can be used independently or as a component of an advanced neutron radiation shielding system.

  13. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    NASA Astrophysics Data System (ADS)

    Abulfaraj, Waleed H.; Kamal, Salah M.

    1994-07-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concretes shielding. Multiattribute utility theory is selected to accommodate decision makers' preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Ilmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Ilmenite Serpentine concrete.

  14. Concrete Finisher Program. Apprenticeship Training.

    ERIC Educational Resources Information Center

    Alberta Learning, Edmonton. Apprenticeship and Industry Training.

    This document presents information about the apprenticeship training program of Alberta, Canada, in general and the concrete finishing program in particular. The first part of the document discusses the following items: Alberta's apprenticeship and industry training system; the apprenticeship and industry training committee structure; local…

  15. Quick-setting concrete and a method for making quick-setting concrete

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Pullockaran, Jose D.; Knox, Lerry

    1997-01-01

    A method for producing quick setting concrete is provided comprising hydrng a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO.sub.3 of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring.

  16. Microbiologically induced deterioration of concrete - A Review

    PubMed Central

    Wei, Shiping; Jiang, Zhenglong; Liu, Hao; Zhou, Dongsheng; Sanchez-Silva, Mauricio

    2013-01-01

    Microbiologically induced deterioration (MID) causes corrosion of concrete by producing acids (including organic and inorganic acids) that degrade concrete components and thus compromise the integrity of sewer pipelines and other structures, creating significant problems worldwide. Understanding of the fundamental corrosion process and the causal agents will help us develop an appropriate strategy to minimize the costs in repairs. This review presents how microorganisms induce the deterioration of concrete, including the organisms involved and their colonization and succession on concrete, the microbial deterioration mechanism, the approaches of studying MID and safeguards against concrete biodeterioration. In addition, the uninvestigated research area of MID is also proposed. PMID:24688488

  17. Feasibility of using phase change materials to control the heat of hydration in massive concrete structures.

    PubMed

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  18. Fracture properties of lightweight concrete

    SciTech Connect

    Chang, T.P.; Shieh, M.M.

    1996-02-01

    This study presents the experimental results of fracture properties of concrete incorporating two kinds of domestic lightweight aggregate (LWA) manufactured through either a cold-bonding or a sintering process. The cold-bonded aggregates were mainly made of pulverized fly-ash through a cold-pelletization process at ambient temperature, while the sintered aggregates were made of clay and shale expanded by heat at a temperature near 1,200 C. Experimental results show that the 28-day compressive strengths of {phi} 100 x 200 mm cylindrical concrete specimen made of those LWAs range from 30.1 (sintered) to 33.9 MPa (cold-bonded). By means of size effect law, it is found that the fracture energies, G{sub f}, were 34.42 N/m (sintered) and 37.2 N/m (cold-bonded), respectively.

  19. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  20. Sodium Exposure Tests on Limestone Concrete Used as Sacrificial Protection Layer in FBR

    SciTech Connect

    Parida, F.C.; Das, S.K.; Sharma, A.K.; Rao, P.M.; Ramesh, S.S.; Somayajulu, P.A.; Malarvizhi, B.; Kasinathan, N.

    2006-07-01

    Hot sodium coming in contact with structural concrete in case of sodium leak in FBR system cause damage as a result of thermo-chemical attack by burning sodium. In addition, release of free and bound water from concrete leads to generation of hydrogen gas, which is explosive in nature. Hence limestone concrete, as sacrificial layer on the structural concrete in FBR, needs to be qualified. Four concrete blocks of dimension 600 mm x 600 mm x 300 mm with 300 mm x 300 mm x 150 mm cavity were cast and subjected to controlled sodium exposure tests. They have composition of ordinary portland cement, water, fine and coarse aggregate of limestone in the ratio of 1: 0.58: 2.547: 3.817. These blocks were subjected to preliminary inspection by ultrasonic pulse velocity technique and rebound hammer tests. Each block was exposed for 30 minutes to about 12 kg of liquid sodium ({approx} 120 mm liquid column) at 550 deg. C in open air, after which sodium was sucked back from the cavity of the concrete block into a sodium tank. On-line temperature monitoring was carried out at strategic locations of sodium pool and concrete block. After removing sodium from the cavity and cleaning the surfaces, rebound hammer testing was carried out on each concrete block at the same locations where data were taken earlier at pre-exposed stage. The statistical analysis of rebound hammer data revealed that one of the concrete block alone has undergone damage to the extent of 16%. The loss of mass occurred for all the four blocks varied from 0.6 to 2.4% due to release of water during the test duration. Chemical analysis of sodium in concrete samples collected from cavity floor of each block helped in generation of depth profiles of sodium monoxide concentration for each block. From this it is concluded that a bulk penetration of sodium up to 30 mm depth has taken place. However it was also observed that at few local spots, sodium penetrated into concrete up to 50 mm. Cylindrical core samples of 50 mm

  1. Aerosol and melt chemistry in the ACE molten core-concrete interaction experiments

    SciTech Connect

    Fink, J.K.; Thompson, D.H.; Spencer, B.W.; Sehgal, B.R.

    1995-01-01

    Experimental results are discussed from the internationally sponsored Advanced Containment Experiments (ACE) Program on the melt behavior and aerosols released during the interaction of molten reactor core material with concrete. A broad range of parameters were addressed in the experimental program: Seven large-scale tests were performed using four types of concrete (siliceous, limestone/sand, serpentine, and limestone) and a range of metal oxidations for both boiling water and pressurized waster reactor core debris. The release aerosols contained mainly constitutents of the concrete. In the tests with metal and limestone/sand siliceous concrete, silicon compounds comprised 50% or more of the aerosol mass. Releases of uranium and low-volatility fission-product elements were small in all tests. Releases of tellurium and neutron absorber materials (silver, indium, and boron from boron carbide) were high.

  2. Equations for nonbonded concrete overlays

    NASA Astrophysics Data System (ADS)

    Chou, Y. T.

    1985-09-01

    The nature of the design equations for the nonbonded concrete overlays currently used by the US Army Corps of Engineers was examined and the original source of the equation was also examined. Using simple mechanics, new overlay equations were developed which are suitable for different thicknesses and elastic properties in the overlay and base concrete slabs. The difference in the computed overlay thickness between the new and existing equations is not large when the overlay thickness is equal to or greater than the base slab. The difference can become excessive when the overlay thickness is much less than that of the base slab. The new equations were compared with the finite element computer program for concrete overlays with various combinations of slab thickness, elastic property, and subgrade modulus. The comparisons were very favorable, indicating that the overlay equations developed in this report are analytically correct. It was difficult to judge whether the new equations are superior to the existing equation. This conclusion was expected because for all the seven test sections analyzed, the overlay thicknesses were either equal to or greater than those of the base slabs.

  3. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  4. Radionuclide Migration through Sediment and Concrete: 16 Years of Investigations

    SciTech Connect

    Golovich, Elizabeth C.; Mattigod, Shas V.; Snyder, Michelle MV; Powers, Laura; Whyatt, Greg A.; Wellman, Dawn M.

    2014-11-01

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the U.S. Department of Energy (DOE) complex. Part of these services includes safe disposal of low-level waste and mixed low-level waste at the Hanford Low-Level Waste Burial Grounds in accordance with the requirements of DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, performance assessment analyses were completed and approved. DOE Order 435.1 also requires continuing data collection to increase confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied on to satisfy the performance objectives identified in the order. Cement-based solidification and stabilization is considered for hazardous waste disposal because it is easily done and cost-efficient. One critical assumption is that concrete will be used as a waste form or container material at the Hanford Site to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The radionuclides iodine-129, selenium-75, technetium-99, and uranium-238 have been identified as long-term dose contributors (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, these constituents of potential concern may be released from the encased concrete by mass flow and/or diffusion and migrate into the surrounding subsurface environment (Serne et al. 1989; 1992; 1993a, b; 1995). Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. Each of the

  5. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  6. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    SciTech Connect

    Shao, Yixin

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  7. Radiation shielding concrete made of Basalt aggregates.

    PubMed

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B

    2013-04-01

    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  8. Phase 2 microwave concrete decontamination results

    SciTech Connect

    White, T.L.; Foster, D. Jr.; Wilson, C.T.; Schaich, C.R.

    1995-04-01

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm{sup 2}/s and 4.9 cm{sup 3}/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard.

  9. Assessment of deterioration in RHA-concrete due to magnesium sulphate attack

    NASA Astrophysics Data System (ADS)

    Habeeb, G. A.; Mahmud, H. B.; Hamid, N. B. A. A.

    2010-12-01

    The assessment of magnesium sulphate attack on concretes containing rice husk ash (RHA, 20wt% of the cementitious materials) with various average particle sizes was investigated. The total cementitious materials were 390 kg and the water-to-binder ratio (W/B) was 0.53 for all mixtures. Specimens were initially cured in water for 7 d and then immersed in the 3wt% magnesium sulphate solution for up to 111 d of exposure. The specimens were subjected to drying-wetting cycles to accelerate sulphate attack. In addition to the visual monitoring of the specimens, the concrete specimens were subsequently tested for compressive strength, dynamic modulus of elasticity, and length and mass changes. The results show that the specimens exposed to sulphate attack exhibit higher strength and dynamic modulus than those kept in water. The length change is negligible and can be attributed to the normal swelling of concrete. On the other hand, concretes suffers mass loss and surface spalling and softening; the fine RHA-concrete results in a better resistance. For the accelerated sulphate attack method used in this study, mass change and visual monitoring are recommended for assessing the deterioration degree and the effectiveness of supplementary cementitious materials to resist sulphate attack.

  10. Moisture damage in asphalt concrete. Final report

    SciTech Connect

    Not Available

    1991-10-01

    Information is provided on physical and chemical explanations for moisture damage in asphalt concrete, along with a discussion of current practices and test methods for determining or reducing the susceptibility of various asphalt concrete components and mixtures to such damage. Moisture damage in asphalt concrete is a nationwide problem which often necessitates premature replacement of highway pavement surfaces. The report of the Transportation Research Board describes the underlying physical and chemical phenomena responsible for such damage. Current test methods used to determine the susceptibility of asphalt concretes, or their constituents, to moisture damage are described and evaluated. Additionally, current practices for minimizing the potential for moisture damage are examined.

  11. Economic analysis of recycling contaminated concrete

    SciTech Connect

    Stephen, A.; Ayers, K.W.; Boren, J.K.; Parker, F.L.

    1997-02-01

    Decontamination and Decommissioning activities in the DOE complex generate large volumes of radioactively contaminated and uncontaminated concrete. Currently, this concrete is usually decontaminated, the contaminated waste is disposed of in a LLW facility and the decontaminated concrete is placed in C&D landfills. A number of alternatives to this practice are available including recycling of the concrete. Cost estimates for six alternatives were developed using a spreadsheet model. The results of this analysis show that recycling alternatives are at least as economical as current practice.

  12. Proceedings of the concrete decontamination workshop

    SciTech Connect

    Halter, J.M.; Sullivan, R.G.; Currier, A.J.

    1980-05-28

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors.

  13. Pentek concrete scabbling system: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The Pentek concrete scabbling system consists of the MOOSE{reg_sign} scabbler, the SQUIRREL{reg_sign}-I and SQUIRREL{reg_sign}-III scabblers, and VAC-PAC. The scabblers are designed to scarify concrete floors and slabs using cross section, tungsten carbide tipped bits. The bits are designed to remove concrete in 3/8 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  14. High temperature polymer concrete compositions

    DOEpatents

    Fontana, Jack J.; Reams, Walter

    1985-01-01

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system. A preferred formulation emphasizing the major necessary components is as follows: ______________________________________ Component A: Silica sand 60-77 wt. % Silica flour 5-10 wt. % Portland cement 15-25 wt. % Acrylamide 1-5 wt. % Component B: Styrene 50-60 wt. % Trimethylolpropane 35-40 wt. % trimethacrylate ______________________________________ and necessary initiators, accelerators, and surfactants.

  15. 36. VAL, DETAIL OF TYPICAL INTERIOR OF CONCRETE 'A' FRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VAL, DETAIL OF TYPICAL INTERIOR OF CONCRETE 'A' FRAME STRUCTURE SHOWING PAINTED CONCRETE WALLS, CONCRETE STAIRS AND INTERIOR WOOD DOOR. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  16. A Gross Way to Teach Relative Mass.

    ERIC Educational Resources Information Center

    Horsch, Elizabeth; Burnett, Diane

    1995-01-01

    Describes an activity designed to give students practice in generating, analyzing, and interpreting class data to create a concrete representation of relative mass and atomic mass unit. The activity uses rice, corn, and beans and employs a historical approach to engage students. (DDR)

  17. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    SciTech Connect

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs.

  18. Quick-setting concrete and a method for making quick-setting concrete

    DOEpatents

    Wagh, A.S.; Singh, D.; Pullockaran, J.D.; Knox, L.

    1997-04-29

    A method for producing quick setting concrete is provided comprising mixing a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO{sub 3} of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring. 2 figs.

  19. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    SciTech Connect

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-07-01

    wall considering the time-dependent temperature distribution that evolves following the LOCA. The pressure distribution at each time increment is balanced for mass diffusion using Darcy's Law for mass flux under a pressure gradient. The total mass for the free water, the water vapor, and the non-condensable gases in the pore volumes is tracked to maintain conservation of mass. The evolution of liner back-pressure with time is then based on detailed finite element modeling that incorporates the pore pressure model into a concrete cracking analysis with full coupling between the temperatures, pressures, and liner displacements. (authors)

  20. Investigation of modified asphalt concrete

    NASA Astrophysics Data System (ADS)

    Zimich, Vita

    2016-01-01

    Currently the problem of improving the asphalt quality is very urgent. It is used primarily as topcoats exposed to the greatest relative to the other layers of the road, dynamic load - impact and shear. The number of cars on the road, the speed of their movement, as well as the traffic intensity increase day by day. We have to upgrade motor roads, which entails a huge cost. World experience shows that the issue is urgent not only in Russia, but also in many countries in Europe, USA and Asia. Thus, the subject of research is the resistance of asphalt concrete to water and its influence on the strength of the material at different temperatures, and resistance of pavement to deformation. It is appropriate to search for new modifiers for asphaltic binder and mineral additives for asphalt mix to form in complex the skeleton of the future asphalt concrete, resistant to atmospheric condensation, soil characteristics of the road construction area, as well as the growing road transport load. The important task of the work is searching special modifying additives for bitumen binder and asphalt mixture as a whole, which will improve the quality of highways, increasing the period between repairs. The methods described in the normative-technical documentation were used for the research. The conducted research allowed reducing the frequency of road maintenance for 7 years, increasing it from 17 to 25 years.

  1. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  2. 27 CFR 9.163 - Salado Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... are two 1:24,000 Scale USGS topographic maps. They are titled: (1) Patterson, California Quadrangle..., R8E; then (9) Follow Marshall Road straight west 1.1 miles, crossing onto the USGS Patterson map,...

  3. 27 CFR 9.163 - Salado Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... are two 1:24,000 Scale USGS topographic maps. They are titled: (1) Patterson, California Quadrangle..., R8E; then (9) Follow Marshall Road straight west 1.1 miles, crossing onto the USGS Patterson map,...

  4. 27 CFR 9.163 - Salado Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the levee on the east bank of the Delta-Mendota Canal in section 35, T5S, R7E; then (3) Proceed southeast approximately 0.3 miles along the Delta-Mendota Canal levee road to its intersection with...

  5. 27 CFR 9.163 - Salado Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the levee on the east bank of the Delta-Mendota Canal in section 35, T5S, R7E; then (3) Proceed southeast approximately 0.3 miles along the Delta-Mendota Canal levee road to its intersection with...

  6. 27 CFR 9.163 - Salado Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the levee on the east bank of the Delta-Mendota Canal in section 35, T5S, R7E; then (3) Proceed southeast approximately 0.3 miles along the Delta-Mendota Canal levee road to its intersection with...

  7. RADON GENERATION AND TRANSPORT THROUGH CONCRETE FOUNDATIONS

    EPA Science Inventory

    The report gives results of an examination of radon generation and transport through Florida residential concretes for their contribution to indoor radon concentrations. Radium concentrations in the 11 concretes tested were all <2.5 pCi/g and radon emanation coefficients were all...

  8. Construction Cluster Volume IV: [Concrete Work].

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.

    The document is the fourth of a series, to be integrated with a G.E.D. program, containing instructional materials for the construction cluster. The volume focuses on concrete work and consists of 20 instructional units which require a month of study. The units include: (1) uses of concrete and occupational information; (2) soils, drainage, and…

  9. "Concreteness Fading" Promotes Transfer of Mathematical Knowledge

    ERIC Educational Resources Information Center

    McNeil, Nicole M.; Fyfe, Emily R.

    2012-01-01

    Recent studies have suggested that educators should avoid concrete instantiations when the goal is to promote transfer. However, concrete instantiations may benefit transfer in the long run, particularly if they are "faded" into more abstract instantiations. Undergraduates were randomly assigned to learn a mathematical concept in one of three…

  10. Assessing the Concreteness of Relational Representation

    ERIC Educational Resources Information Center

    Rein, Jonathan R.; Markman, Arthur B.

    2010-01-01

    Research has shown that people's ability to transfer abstract relational knowledge across situations can be heavily influenced by the concrete objects that fill relational roles. This article provides evidence that the concreteness of the relations themselves also affects performance. In 3 experiments, participants viewed simple relational…

  11. Properties and uses of concrete, appendix B

    NASA Technical Reports Server (NTRS)

    Corley, Gene

    1992-01-01

    Concretes that can now be formed have properties which may make them valuable for lunar or space construction. These properties include high compressive strength, good flexural strength (when reinforced), and favorable responses to temperature extremes (even increased strength at low temperatures). These and other properties of concrete are discussed.

  12. A Study on the Cover Failure in Concrete Structure Following Concrete Deterioration

    SciTech Connect

    Choo, Y.H.; Lee, Y.H.; Lee, C.M.; Lee, K.J.

    2008-07-01

    The RC (Reinforced Concrete) structures in the spent fuel dry storage is required structural integrity for a long period of the service life time. A study on the concrete cracking behavior by stress on concrete is necessary for life time estimation of structures because concrete cracking can reduce the radiation shielding performance and deteriorate the durability of spent fuel dry storage. The purpose of this study is to analyze the relationship between the range of the steel expansion and the crack creation and propagation using the ABAQUS tool. Parameters used in this study were concrete strength, concrete cover depth and the steel diameter. The value of steel radius to volume expansion was applied to suppose the expansion of reinforcing bar under the load condition. As a result of this case study, it is confirmed that the critical steel expansion which can initiate cracking is proportional to tensile strength. And primary factors which effect crack creation of concrete cover are in order of concrete strength, cover thickness and steel diameter. If concrete strength is lowered about its 30%, the rate of surface crack occurrence accelerates 15 times maximally. The critical expansion value of steel increased as the increment of concrete cover depth. The surface cracking of concrete cover was created at the value of steel expansion, ranging from 0.019 to 0.051 mm under the cover depth 50 mm. (authors)

  13. Concreteness effects revisited: the influence of dynamic visual noise on memory for concrete and abstract words.

    PubMed

    Parker, Andrew; Dagnall, Neil

    2009-05-01

    Two experiments are presented that investigate the effects of dynamic visual noise (DVN) on memory for concrete and abstract words. Memory for concrete words is typically superior to that of abstract words and is referred to as the concreteness effect. DVN is a procedure that has been demonstrated to interfere selectively with visual working memory and the generation of images from long-term memory. It was reasoned that if concreteness effects arise because of the ability of the latter to activate visual representations, then DVN should selectively impair memory for concrete words. Experiment 1 found DVN to selectively reduce free recall of concrete words. Experiment 2 investigated recognition memory and found DVN to reduce memory accuracy and remember responses, while increasing know responses to concrete words.

  14. Quick-setting concrete and a method for making quick-setting concrete

    SciTech Connect

    Wagh, A.S.; Singh, D.; Pullockaran, J.D.; Knox, L.

    1995-12-31

    This invention relates to a method for producing concrete, and more specifically, this invention relates to a method for producing quick-setting concrete while simultaneously minimizing the release of carbon dioxide to the atmosphere, said release of carbon dioxide inherent in cement production. A method for producing quick setting concrete comprises hydrating a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO{sub 3} of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring.

  15. Metakaolin as a radon retardant from concrete.

    PubMed

    Lau, B M F; Balendran, R V; Yu, K N

    2003-01-01

    Granite aggregates are known to be the radon source in concrete. Recently, metakaolin has been introduced as a partial substitution of Portland cement to produce high strength concrete. It can effectively reduce the porosity of both the matrix and the aggregate/paste transition zone, which suggests its ability to retard radon emission from concrete aggregates. In the present work, radon exhalation rates from concrete cubes substituted with metakaolin were measured using charcoal canisters and gamma spectroscopy, and were considerably lower than those from normal concrete, by about 30%. The indoor radon concentration reduction is estimated as approximately 9 Bq m(-3) calculated using a room model, causing a 30% reduction in the indoor radon concentration and the corresponding radon dose. Therefore, metakaolin is a simple material to reduce the indoor radon concentration and the radon dose.

  16. Studies on recycled aggregates-based concrete.

    PubMed

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  17. Recent biogenic phosphorite: Concretions in mollusk kidneys

    USGS Publications Warehouse

    Doyle, L.J.; Blake, N.J.; Woo, C.C.; Yevich, P.

    1978-01-01

    Phosphorite concretions have been detected in the kidneys of two widespread species ofmollusks, Mercenaria mercenaria and Argopecten irradians, which have relatively high population densities. These concretions are thefirst documentation of the direct biogenic formation of phosphorite grains. The concretions are principally amorphous calcium phosphate, which upon being heated yields an x-ray diffraction pattern which is essentially that of chlorapatite. These concretions appear to be a normal formation of the excretory process of mollusks under reproductive, environmental, or pollutant-induced stress. Biogenic production of phosphorite concretions over long periods of time and diagenetic change from amorphous to crystalline structure, coupled with secondary enrichment, may account for the formation of some marine phosphorite desposits which are not easily explained by the chemical precipitation- replacement hypothesis. Copyright ?? 1978 AAAS.

  18. Concrete spaller. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The US Department of Energy (DOE) has numerous buildings and facilities that have become contaminated through operation of nuclear reactors, fuel fabrication processes, and research laboratory operations. These buildings and facilities, often constructed of concrete, need to be decontaminated before they can be safely decommissioned or demolished. Pacific Northwest National Laboratory`s concrete spaller is a hand-held tool that can be used for decontaminating flat or slightly curved concrete surfaces, obtaining concrete samples, and in-depth removal from cracks in concrete. The concrete spaller includes a 9-ton hydraulic cylinder and spalling bit. It runs from a hydraulic pump that expands the spaller in pre-drilled holes in the concrete. The result is removal of concrete chunks that fall into the attached metal shroud. The concrete spaller is more efficient than traditional tools such as hand-held pneumatic scabblers and scalers. For example, the spaller is capable of spalling 1.3 m{sup 3}/hr (0.23 ft{sup 2}/min), compared to 1.1 m{sup 2}/hr (0.20 ft{sup 2}/min), for the baseline scabbler and scaler demonstrated at 3-mm (1/8-in.) depth. The spaller is also capable of removing concrete at a greater depth than traditional tools. Operating cost of the spaller ($128/m{sup 2} or $11.93/ft{sup 2} [optimum conditions]) is less than the baseline tools: scaler ($155/m{sup 2} or $14.40/ft{sup 2}) and scabbler ($156/m{sup 2} or $14.53/ft{sup 2}).

  19. Radiation Damage In Reactor Cavity Concrete

    SciTech Connect

    Field, Kevin G; Le Pape, Yann; Naus, Dan J; Remec, Igor; Busby, Jeremy T; Rosseel, Thomas M; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete. Much of the historical mechanical performance data of irradiated concrete does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  20. Numerical simulation of hydro-thermo-mechanical behavior of concrete structures exposed to elevated temperatures

    NASA Astrophysics Data System (ADS)

    Chung, Jae Hyeon

    In this study, thermal spalling of high-strength concrete structural elements has been investigated by developing numerical models capable of analyzing the combined effects of mass and heat transfer phenomena on thermally induced stresses. Through the use of finite difference simulations, this study investigates moisture effects on thermodynamic states of concrete at elevated temperatures and the influence of pore pressure on development of thermal stress induced by temperature gradients. A finite element stress analysis model is combined with finite difference simulations to predict stress states capable of inducing spalling of the type that has been observed both in the field and in laboratory fire testing of concrete structural elements. The combined hydro-thermo-mechanical analysis procedure presented here may eventually serve as a critical component of stress analysis used for evaluating the fire resistance of high-strength concrete structural systems. The model of concrete exposed to fire that is developed herein involves mass and heat transport phenomena in a multi-phase continuum. Simultaneous flow of multiple fluid phases (i.e., liquid and gaseous) is modeled using newly proposed constitutive relationships that are considered more accurate than those previously available in terms of assessment of thermodynamic state variables of concrete system. In addition, numerical simulations are used to explore the effects that steel reinforcing bars have on internal temperature and pressure within concrete members. Pore pressure and temperature time histories from hydro-thermal finite difference simulations are presented and discussed. Results from the simulations yield an improved understanding of the thermodynamic state variables such as pore pressure, temperature, and degree of liquid water saturation. Selection of constitutive models to describe the flow characteristics of concrete and the procedures implemented for the creation of the concrete models are also

  1. Examination of Behavior of Fresh Concrete Under Pressure

    NASA Astrophysics Data System (ADS)

    Yücel, K. T.

    2012-05-01

    Transporting fresh concrete constitutes a significant part of the production process. Transferring ready-mixed concrete on-site is done using concrete pumps. Recent developments in concrete technology, and in mineral and chemical additives, have resulted in new developments in pumping techniques and the use of different concrete mixtures and equipment. These developments required further knowledge of the behavior of fresh concrete under pressure. Two criteria were determined for the pumpability of concrete: the power required to move the concrete or of the repulsive force; and the cohesion of the fresh concrete. It would be insufficient to relate pumpability to these two criteria; the values of segregation pressure, diffusion ability, water retention capacity, and side friction of the mixture are significant parameters in ensuring that concrete is pumped freely along the pipe. To solve the pumpability problem, friction stresses should be determined as a function of the linear pressure gradient, the pressure leading to segregation of the fresh concrete should be determined, and tests for the bleeding of concrete under pressure should be examined. The scope of the research is the examination of the behavior of fresh concrete under pressure. To determine the segregation pressures, a test apparatus was designed for the bleeding of concrete under pressure. The main purpose of the study is to determine whether the concrete can be pumped easily and whether it will lose its cohesion during the pumping, based on tests of concrete workability and bleeding of concrete under pressure.

  2. Immobilization of iodine in concrete

    DOEpatents

    Clark, Walter E.; Thompson, Clarence T.

    1977-04-12

    A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3-20 wt. % iodine as Ba(IO.sub.3).sub.2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO.sub.3).sub.2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. BACKGROUND OF THE INVENTION This invention was made in the course of, or under a contract with the Energy Research and Development Administration. It relates in general to reactor waste solidification and more specifically to the immobilization of fission product radioactive iodine recovered from irradiated nuclear fuel for underground storage.

  3. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  4. SA-based concrete seismic stress monitoring: a case study for normal strength concrete

    NASA Astrophysics Data System (ADS)

    Hou, S.; Zhang, H. B.; Ou, J. P.

    2016-09-01

    The stress history of concrete structures that have survived an earthquake can serve as a critical index to evaluate the health of the structure. There are currently few reliable monitoring methods to assess concrete stress after a seismic event. Piezoelectric-based smart aggregate (SA) provides an innovative experimental approach to monitor stress on concrete. The principle of SA-based concrete seismic stress monitoring is based on the assumption that concrete stress can be reliably predicted by the average output voltages of limited SAs with an acceptable margin of error. In this study, the meso-scale randomness of concrete was evaluated throughout the overall stress range of concrete and the influence of different load paths was considered. Four cylindrical specimens of normal strength concrete were embedded with a total of 24 SAs. The SA output sensitivity curve in the paths of loading-unloading with different amplitudes and monotonic loading up to failure was obtained. Monitoring errors were analyzed during pre- and post-peak stages from the experimental results. This research suggests that SA-based concrete seismic stress monitoring for normal strength concrete is reliable.

  5. SA-based concrete seismic stress monitoring: a case study for normal strength concrete

    NASA Astrophysics Data System (ADS)

    Hou, S.; Zhang, H. B.; Ou, J. P.

    2016-09-01

    The stress history of concrete structures that have survived an earthquake can serve as a critical index to evaluate the health of the structure. There are currently few reliable monitoring methods to assess concrete stress after a seismic event. Piezoelectric-based smart aggregate (SA) provides an innovative experimental approach to monitor stress on concrete. The principle of SA-based concrete seismic stress monitoring is based on the assumption that concrete stress can be reliably predicted by the average output voltages of limited SAs with an acceptable margin of error. In this study, the meso-scale randomness of concrete was evaluated throughout the overall stress range of concrete and the influence of different load paths was considered. Four cylindrical specimens of normal strength concrete were embedded with a total of 24 SAs. The SA output sensitivity curve in the paths of loading–unloading with different amplitudes and monotonic loading up to failure was obtained. Monitoring errors were analyzed during pre- and post-peak stages from the experimental results. This research suggests that SA-based concrete seismic stress monitoring for normal strength concrete is reliable.

  6. Self-cleaning geopolymer concrete - A review

    NASA Astrophysics Data System (ADS)

    Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.

  7. Microbially influenced degradation of concrete structures

    NASA Astrophysics Data System (ADS)

    Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.

    1998-03-01

    Steel reinforced concrete is the most widely used construction material in the world. The economic costs of repair or replacement of environmentally damaged concrete structures is astronomical. For example, half of the concrete bridges in the Federal Department of Transportation highway system are in need of major repairs. Microbially influenced degradation of concrete (MID) is one of the recognized degradative processes known to adversely affect concrete integrity. It is not possible to assign a specific percent of effect to any of these processes. However, MID has been shown to be as aggressive as any of the physical/chemical phenomena. In addition, the possibility exists that there is a synergism which results in cumulative effects from all the processes. Three groups of bacteria are known to promote MID. Of these, sulfur-oxidizing bacteria (SOB) are the most aggressive. Much is known about the nutritional needs of these bacteria. However, there has not been a biological linkage established between the presence of environmental, polluting sulfur sources and the degradation of concrete structures. It has been shown that the environmental pollutants sulfur dioxide and sulfite can be utilized by active SOB for the biological production of sulfuric acid. Therefore, it is not a reach of reality to assume that SOB exposed to these pollutants could have a major impact on the degradation of concrete structures. But, until the environment sulfur loop is closed it will not be possible to calculate how important SOB activity is in initiating and promoting damage.

  8. Modeling the electrokinetic decontamination of concrete

    SciTech Connect

    Harris, M.T.; DePaoli, D.W.; Ally, M.R.

    1997-01-01

    The decontamination of concrete is a major concern in many Department of (DOE) facilities. Numerous techniques (abrasive methods, manual methods, ultrasonics, concrete surface layer removal, chemical extraction methods, etc.) have been used to remove radioactive contamination from the surface of concrete. Recently, processes that are based on electrokinetic phenomena have been developed to decontaminate concrete. Electrokinetic decontamination has been shown to remove from 70 to over 90% of the surface radioactivity. To evaluate and improve the electrokinetic processes, a model has been developed to simulate the transport of ionic radionuclei constituents through the pores of concrete and into the anolyte and catholyte. The model takes into account the adsorption and desorption kinetics of the radionuclei from the pore walls, and ion transport by electro-osmosis, electromigration, and diffusion. A numerical technique, orthogonal collocation, is used to simultaneously solve the governing convective diffusion equations for a porous concrete slab and the current density equation. This paper presents the theoretical framework of the model and the results from the computation of the dynamics of ion transport during electrokinetic treatment of concrete. The simulation results are in good agreement with experimental data.

  9. The Apparent Thermal Conductivity of Pozzolana Concrete

    NASA Astrophysics Data System (ADS)

    Bessenouci, M. Z.; Triki, N. E. Bibi; Khelladi, S.; Draoui, B.; Abene, A.

    The recent development of some lightweight construction materials, such as light concrete, can play an important role as an insulator, while maintaining sufficient levels of mechanical performance. The quality of insulation to provide depends on the climate, the exposure of the walls and also the materials used in the construction. The choice of a material to be used as an insulator, obviously, depends on its availability and its cost. This is a study of natural pozzolanas as basic components in building materials. It is intended to highlight their thermal advantage. It is economically advantageous to use pozzolana in substitution for a portion of the clinker as hydraulically active additions, as well as in compositions of lightweight concretes in the form of pozzolanic aggregate mixtures, which provide mechanical strengths that comply with current standards. A theoretical study is conducted on the apparent thermal conductivity of building materials, namely concrete containing pozzolana. Thermal modeling, apparent to that commonly used for porous materials, has been applied to pozzolana concrete. Experimental results on measurements of the apparent thermal conductivity of pozzolana concrete are reported in this study, using an approach that considers that concrete is composed of two solid ingredients, a binding matrix (hydrated cement paste) and all aggregates. A second comparative theoretical approach is used for the case where concrete consists of a solid phase and a fluid phase (air).

  10. Nondestructive evaluation of thick concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2015-03-01

    Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.

  11. Reusing recycled aggregates in structural concrete

    NASA Astrophysics Data System (ADS)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  12. Investigation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Morgan, I.L.; Ally, M.R.

    1995-12-31

    Experiments have been conducted to investigate the capabilities of electrokinetic decontamination of concrete. Batch equilibration studies have determined that the loading of cesium and strontium on concrete may be decreased using electrolyte solutions containing competing cations, while solubilization of uranium and cobalt, that precipitate at high pH, will require lixiviants containing complexing agents. Dynamic electrokinetic experiments showed greater mobility of cesium than strontium, while some positive results were obtained for the transport of cobalt through concrete using EDTA and for uranium using carbonate.

  13. Molecular Survey of Concrete Sewer Biofilm Microbial Communities

    EPA Science Inventory

    Although bacteria are implicated in deteriorating concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different concrete biofilms by performing sequence analysis of 16S rDNA concrete clone libraries. ...

  14. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  15. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  16. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  17. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  18. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  19. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    PubMed

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  20. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    PubMed

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  1. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    PubMed Central

    Carrión, Francisco; Montalbán, Laura; Real, Julia I.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  2. Concrete using waste oil palm shells as aggregate

    SciTech Connect

    Basri, H.B.; Mannan, M.A.; Zain, M.F.M.

    1999-04-01

    Concrete with oil palm shells (OPS) as coarse aggregate was investigated for its workability, density, and compressive strength development over 56 days under three curing conditions. The effect of fly ash as partial cement replacement was also studied. Fresh OPS concrete was found to have better workability while its 28-day air-dry density was 19--20% lower than ordinary concrete. Compressive strength after 56 days was found to be 41--50% lower than ordinary concrete. These results were still within the normal range for structural lightweight concrete. Fly ash was found to lower the compressive strength of OPS concrete, which was the opposite of its effect on normal concrete.

  3. Maintenance and preservation of concrete structures. Report 3: Abrasion-erosion resistance of concrete

    NASA Astrophysics Data System (ADS)

    Liu, T. C.

    1980-07-01

    This report describes a laboratory test program on abrasion-erosion resistance of concrete, including the development of a new underwater abrasion-erosion test method. This program was designed to evaluate the relative abrasion-erosion resistance of various materials considered for use in the repair of erosion-damaged concrete structures. The test program encompassed three concrete types (conventional concrete, fiber-reinforced concrete, and polymer concrete); seven aggregate types (limestone, chert, trap rock, quartzite, granite, siliceous gravel, and slag); three principal water-cement rations (0.72, 0.54, and 0.40); and six types of surface treatment (vacuum, polyurethane coating, acrylic mortar coating, epoxy mortar coating, furan resin mortar coating, and iron aggregate topping). A total of 114 specimens made from 41 batches of concrete was tested. Based on the test data obtained, a comprehensive evaluation of the effects of various parameters on the abrasion-erosion resistance of concrete was presented. Materials suitable for use in the repair of erosion-damaged concrete structures were recommended. Additional work to correlate the reported findings with field performance was formulated.

  4. Electro-osmotic techniques for removal of chloride from concrete and for emplacement of concrete sealants

    NASA Astrophysics Data System (ADS)

    Jayaprakash, G. P.; Bukovatz, J. E.; Ramamurti, K.; Gilliland, W. J.

    1982-08-01

    Chloride ion from bridge deck concrete can be removed by application of a direct current potential between bridge reinforcing steel (-) and a copper screen (+) conductor on the bridge surface. Soaring prices of all types of energy would make removal of all chloride prohibitatively expensive. The importance of verification of all electrical connections prior to the treatment is emphasized by the demonstration of concrete cracking when the steel was made a positive instead of a negative electrode. Data on effectiveness of calcium nitrite corrosion inhibitor added to the concrete overlay placed on electrotreated concrete is not extensive due to accidental damage to the test slabs.

  5. Use of incinerator bottom ash in concrete

    SciTech Connect

    Pera, J.; Coutaz, L.; Ambroise, J.; Chababbet, M.

    1997-01-01

    The aim of the present work was to show if municipal solid waste incinerator (MSWI) bottom ash could be an alternative aggregate for the production of building concrete presenting a characteristic 28-day compressive strength of 25 MPa. The aggregates passing the 20-mm sieve and retained on the 4-mm sieve were considered for investigation. They showed lower density, higher water absorption, and lower strength than natural gravel. They could be considered as average quality aggregates for use in concrete. When directly introduced in concrete, they led to swelling and cracking of specimens, due to the reaction between cement and metallic aluminium. Therefore, a treatment by sodium hydroxide was proposed to avoid such degradation, which made possible the partial replacement (up to 50%) of gravel in concrete without affecting the durability.

  6. Electrical conductivity of concrete containing silica fume

    SciTech Connect

    Abo El-Enein, S.A.; Kotkata, M.F.; Hanna, G.B.; Saad, M.; Abd El Razek, M.M.

    1995-12-01

    The influence of silica fume on concrete properties represents an important technical research. In general, silica fume tends to improve both mechanical characteristics and durability of concrete. Thus the electrical properties of concrete containing silica fume can be studied to clarify its physical performance during hydration. The electrical conductivity of neat cement, mortar and concrete pastes was measured during setting and hardening. The ordinary Portland cement was partially replaced by different amounts of silica fume by weight. The changes in the electrical conductivity were reported during setting and hardening after gauging with water. The results of this study showed that the electrical conductivity can be used as an indication for the setting characteristics as well as the structural changes of the hardened pastes made with and without silica fume.

  7. Concrete "Waffle" Provides Laser Beam Accuracy

    ERIC Educational Resources Information Center

    Building Design and Construction, 1978

    1978-01-01

    A massive concrete "waffle," riding on a bed of specially treated gravel and sand inside another building, provides the structural rigidity needed by the University of Rochester's Laboratory for Laser Energetics. (Author)

  8. Seismic safety of high concrete dams

    NASA Astrophysics Data System (ADS)

    Chen, Houqun

    2014-08-01

    China is a country of high seismicity with many hydropower resources. Recently, a series of high arch dams have either been completed or are being constructed in seismic regions, of which most are concrete dams. The evaluation of seismic safety often becomes a critical problem in dam design. In this paper, a brief introduction to major progress in the research on seismic aspects of large concrete dams, conducted mainly at the Institute of Water Resources and Hydropower Research (IWHR) during the past 60 years, is presented. The dam site-specific ground motion input, improved response analysis, dynamic model test verification, field experiment investigations, dynamic behavior of dam concrete, and seismic monitoring and observation are described. Methods to prevent collapse of high concrete dams under maximum credible earthquakes are discussed.

  9. Concrete hulls for tension-leg platforms

    SciTech Connect

    De Oliveira, J.G. ); Fjeld, S. )

    1990-06-01

    This paper describes the main features of a concrete-hull tension-leg-platform (TLP) concept developed for the Heidrun field in the Haltenbanken area of the Norwegian sector of the North Sea. The hydrodynamic response and the methods adopted to optimize the hull dimensions, as well as the mooring system and hull mechanical outfitting, are discussed first. Then construction methods are briefly described. Inspection, maintenance, and repair are also addressed. Finally, the advantages of the concrete-hull TLP concept are summarized, including the concrete hull's adaptability to a large range of design requirements, low cost, and short construction time. This paper shows that the concrete-hull TLP is a very cost-efficient solution for the development of deepwater fields.

  10. Laboratory constitutive characterization of cellular concrete.

    SciTech Connect

    Hardy, Robert Douglas; Lee, Moo Yul; Bronowski, David R.

    2004-03-01

    To establish mechanical material properties of cellular concrete mixes, a series of quasi-static, compression and tension tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results from the constitutive experimental efforts. Results from the uniaxial and triaxial compression tests established failure criteria for the cellular concrete in terms of stress invariants I{sub 1} and J{sub 2}. {radical}J{sub 2} (MPa) = 297.2 - 278.7 exp{sup -0.000455 I}{sub 1}{sup (MPa)} for the 90-pcf concrete {radical}J{sub 2} (MPa) = 211.4 - 204.2 exp {sup -0.000628 I}{sub 1}{sup (MPa)} for the 60-pcf concrete

  11. Exploring Floating Concrete and Beam Design.

    ERIC Educational Resources Information Center

    Snell, Billie G.; Snell, Luke M.

    2002-01-01

    Presents two construction activities that address both state and federal science standards and encourage students to consider career options in mathematics and science. Includes floating concrete and paper bridge activities. (YDS)

  12. Pentek concrete scabbling system: Baseline report

    SciTech Connect

    1997-07-31

    The Pentek scabbling technology was tested at Florida International University (FIU) and is being evaluated as a baseline technology. This report evaluates it for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek concrete scabbling system consisted of the MOOSE{reg_sign}, SQUIRREL{reg_sign}-I, and SQUIRREL{reg_sign}-III scabblers. The scabblers are designed to scarify concrete floors and slabs using cross-section, tungsten carbide tipped bits. The bits are designed to remove concrete in 318 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  13. Sequestration of CO2 by concrete carbonation.

    PubMed

    Galan, Isabel; Andrade, Carmen; Mora, Pedro; Sanjuan, Miguel A

    2010-04-15

    Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. The characteristics of the concrete cover should ensure alkaline protection for the steel bars but should also be able to combine CO2 to a certain depth. This work attempts to advance the knowledge of the carbon footprint of cement. As it is one of the most commonly used materials worldwide, it is very important to assess its impact on the environment. In order to quantify the capacity of cement based materials to combine CO2 by means of the reaction with hydrated phases to produce calcium carbonate, Thermogravimetry and the phenolphthalein indicator have been used to characterize several cement pastes and concretes exposed to different environments. The combined effect of the main variables involved in this process is discussed. The moisture content of the concrete seems to be the most influential parameter. PMID:20225850

  14. Ulexite-galena intermediate-weight concrete as a novel design for overcoming space and weight limitations in the construction of efficient shields against neutrons and photons.

    PubMed

    Aghamiri, S M R; Mortazavi, S M J; Razi, Z; Mosleh-Shirazi, M A; Baradaran-Ghahfarokhi, M; Rahmani, F; Faeghi, F

    2013-01-01

    Recently, due to space and weight limitations, scientists have tried to design and produce concrete shields with increased attenuation of radiation but not increased mass density. Over the past years, the authors' had focused on the production of heavy concrete for radiation shielding, but this is the first experience of producing intermediate-weight concrete. In this study, ulexite (hydrated sodium calcium borate hydroxide) and galena (lead ore) have been used for the production of a special intermediate-weight concrete. Shielding properties of this intermediate-weight concrete against photons have been investigated by exposing the samples to narrow and broad beams of gamma rays emitted from a ⁶⁰Co radiotherapy unit. Densities of the intermediate-weight concrete samples ranged 3.64-3.90 g cm⁻³, based on the proportion of the ulexite in the mix design. The narrow-beam half-value layer (HVL) of the ulexite-galena concrete samples for 1.25 MeV ⁶⁰Co gamma rays was 2.84 cm, much less than that of ordinary concrete (6.0 cm). The Monte Carlo (MC) code MCNP4C was also used to model the attenuation of ⁶⁰Co gamma-ray photons and Am-Be neutrons of the ulexite-galena concrete with different thicknesses. The ⁶⁰Co HVL calculated by MCNP simulation was 2.87 cm, indicating a good agreement between experimental measurements and MC simulation. Furthermore, MC-calculated results showed that thick ulexite-galena concrete shields (60-cm thickness) had a 7.22 times (722 %) greater neutron attenuation compared with ordinary concrete. The intermediate-weight ulexite-galena concrete manufactured in this study may have many important applications in the construction of radiation shields with weight limitations such as the swing or sliding doors that are currently used for radiotherapy treatment rooms.

  15. Ulexite-galena intermediate-weight concrete as a novel design for overcoming space and weight limitations in the construction of efficient shields against neutrons and photons.

    PubMed

    Aghamiri, S M R; Mortazavi, S M J; Razi, Z; Mosleh-Shirazi, M A; Baradaran-Ghahfarokhi, M; Rahmani, F; Faeghi, F

    2013-01-01

    Recently, due to space and weight limitations, scientists have tried to design and produce concrete shields with increased attenuation of radiation but not increased mass density. Over the past years, the authors' had focused on the production of heavy concrete for radiation shielding, but this is the first experience of producing intermediate-weight concrete. In this study, ulexite (hydrated sodium calcium borate hydroxide) and galena (lead ore) have been used for the production of a special intermediate-weight concrete. Shielding properties of this intermediate-weight concrete against photons have been investigated by exposing the samples to narrow and broad beams of gamma rays emitted from a ⁶⁰Co radiotherapy unit. Densities of the intermediate-weight concrete samples ranged 3.64-3.90 g cm⁻³, based on the proportion of the ulexite in the mix design. The narrow-beam half-value layer (HVL) of the ulexite-galena concrete samples for 1.25 MeV ⁶⁰Co gamma rays was 2.84 cm, much less than that of ordinary concrete (6.0 cm). The Monte Carlo (MC) code MCNP4C was also used to model the attenuation of ⁶⁰Co gamma-ray photons and Am-Be neutrons of the ulexite-galena concrete with different thicknesses. The ⁶⁰Co HVL calculated by MCNP simulation was 2.87 cm, indicating a good agreement between experimental measurements and MC simulation. Furthermore, MC-calculated results showed that thick ulexite-galena concrete shields (60-cm thickness) had a 7.22 times (722 %) greater neutron attenuation compared with ordinary concrete. The intermediate-weight ulexite-galena concrete manufactured in this study may have many important applications in the construction of radiation shields with weight limitations such as the swing or sliding doors that are currently used for radiotherapy treatment rooms. PMID:23019599

  16. Assessment of permeation quality of concrete through mercury intrusion porosimetry

    SciTech Connect

    Kumar, Rakesh; Bhattacharjee, B

    2004-02-01

    Permeation quality of laboratory cast concrete beams was determined through initial surface absorption test (ISAT). The pore system characteristics of the same concrete beam specimens were determined through mercury intrusion porosimetry (MIP). Data so obtained on the measured initial surface absorption rate of water by concrete and characteristics of pore system of concrete estimated from porosimetry results were used to develop correlations between them. Through these correlations, potential of MIP in assessing the durability quality of concrete in actual structure is demonstrated.

  17. Electromagnetic Metrology on Concrete and Corrosion.

    PubMed

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S 11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete.

  18. Monitoring of Concrete Structures Using Ofdr Technique

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  19. Organic compounds in concrete from demolition works.

    PubMed

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work. PMID:26164853

  20. Ultrasonic testing of reactive powder concrete.

    PubMed

    Washer, Glenn; Fuchs, Paul; Graybeal, Benjamin A; Hartmann, Joseph Lawrence

    2004-02-01

    Concrete is a critical material for the construction of infrastructure facilities throughout the world. Traditional concretes consist of cement paste and aggregates ranging in size from 6 to 25 mm that form a heterogeneous material with substantial compressive strength and a very low tensile strength. Steel reinforcement is used to provide tensile strength for reinforced concrete structures and as a composite the material is useful for structural applications. A new material known as reactive powder concrete (RPC) is becoming available. It differs significantly from traditional concrete; RPC has no large aggregates, and contains small steel fibers that provide additional strength and, in some cases, can replace traditional steel reinforcement. Due to its high density and lack of aggregates, ultrasonic inspections at frequencies 10 to 20 times that of traditional concrete inspections are possible. This paper reports on the initial findings of research conducted to determine the applicability of ultrasonic testing techniques for the condition assessment of RPC. Pulse velocities for shear and longitudinal waves and ultrasonic measurement of the modulus of elasticity for RPC are reported. Ultrasonic crack detection for RPC also is investigated. PMID:15055809

  1. Organic compounds in concrete from demolition works.

    PubMed

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work.

  2. Electromagnetic Metrology on Concrete and Corrosion*

    PubMed Central

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete. PMID:26989590

  3. Measurement of the U-235 Content of Concreted Waste Drums

    SciTech Connect

    Rackham, J.; Hughes, K.; Oldeide, R.; Sharpe, J.; Morgan, S.

    2008-07-01

    A challenging assay situation recently arose, whereby the fissile (i.e. total plutonium plus U-235) content of a population of 164 historical waste drums containing concrete needed to be measured, to comply with nuclear safety limits for transport to, and interim storage within, an Engineered Drum Store. BIL Solutions Ltd has developed a new methodology for measurement of the U-235 content of these 'concrete' drums, because the approach normally used by the in-situ Drum Monitors was found to be overly pessimistic. Initial investigations indicated significant quantities of uranium were present in these drums (but negligible plutonium), mixed with Np-237 and / or Ra-226. These initial measurements also indicated that the uranium was likely to be depleted in enrichment. The U-235 content was therefore determined by measuring the U-238 mass via the passive coincident neutron emission, and combining this with the U-235 and U-238 isotopic abundances, obtained by analysis of a gamma spectrum. Of the uranium isotopic analysis codes available, the FRAM (Fixed energy, Response function Analysis with Multiple efficiencies) software was selected as being most suitable for this application. A wide gamma-ray energy range is used (i.e. 120 keV to 1200 keV) which was considered more likely to yield results when there is significant attenuation. The software is also user configurable, enabling interferences from the other radionuclides present (i.e. Np-237 and Ra-226) to be accounted for. A series of test measurements were performed with well-characterised uranium sources attenuated by concrete shielding, to gain confidence in the performance of FRAM under such conditions. These test measurements indicated that FRAM was able to correctly determine the enrichment of heavily shielded uranium. The new U-235 measurement methodology was then applied to the population of concrete drums; successfully yielding U-235 results despite the dense waste matrix and significant interference from

  4. Moisture Transport Through Sprayed Concrete Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar; Geving, Stig

    2016-01-01

    Waterproofing of permanent sprayed concrete tunnel linings with sprayed membranes in a continuous sandwich structure has been attempted since 2000 and has seen increased use in some countries. The main function of a sprayed membrane from a waterproofing perspective is to provide crack bridging and hence prevent flow of liquid water into the tunnel through cracks and imperfections in the concrete material. However, moisture can migrate through the concrete and EVA-based membrane materials by capillary and vapor diffusion mechanisms. These moisture transport mechanisms can have an influence on the degree of saturation, and may influence the pore pressures in the concrete material as well as risk of freeze-thaw damage of the concrete and membrane. The paper describes a detailed study of moisture transport material parameters, moisture condition in tunnel linings and climatic conditions tunnels in hard rock in Norway. These data have been included in a hygrothermal simulation model in the software WUFI for moisture transport to substantiate moisture transport and long-term effects on saturation of the concrete and membrane material. The findings suggest that EVA-based membranes exhibit significant water absorption and vapor transport properties although they are impermeable to liquid water flow. State-of-the-art sprayed concrete material applied with the wet mix method exhibits very low hydraulic conductivities, lower than 10-14 m/s, thus saturated conductive water flow is a very unlikely dominant transport mechanism. Moisture transport through the lining structure by capillary flow and vapor diffusion are calculated to approximately 3 cm3/m2 per day for lining thicknesses in the range of 25-35 cm and seasonal Nordic climate variations. The calculated moisture contents in the tunnel linings from the hygrothermal simulations are largely in agreement with the measured moisture contents in the tunnel linings. The findings also indicate that the concrete material exhibits

  5. Penetration analysis of projectile with inclined concrete target

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  6. Concrete shaver. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The US Department of Energy (DOE) is in the process of decontamination and decommissioning (D and D) for many of its nuclear facilities throughout the United States. These facilities must be dismantled and the demolition waste sized into manageable pieces for handling and disposal. The facilities undergoing D and D are typically chemically and/or radiologically contaminated. To facilitate this work, DOE requires a tool capable of removing the surface of radiologically contaminated concrete floors. Operating requirements for the tool include simple and economical operation, the capability of operating in ambient temperatures from 3 C to 40 C (37 F to 104 F), and the ability to be easily decontaminated. The tool also must be safe for workers. The Marcrist Industries Limited concrete shaver is an electrically driven, self-propelled concrete and coating removal system. This technology consists of a 25-cm (10-in.)-wide diamond impregnated shaving drum powered by an electric motor and contains a vacuum port for dust extraction. The concrete shaver is ideal for use on open, flat, floor areas. The shaver may also be used on slightly curved surfaces. This shaver is self-propelled and produces a smooth, even surface with little vibration. The concrete shaver is an attractive alternative to traditional pneumatic scabbling tools, which were considered the baseline in this demonstration. The use of this tool reduces worker fatigue (compared to the baseline) due to lower vibration. The shaver is more than five times faster than the five-piston pneumatic scabbler at removing contamination from concrete. Because of this increased productivity, the shaver is 50% less costly to operate than baseline technologies. The DOE has successfully demonstrated the concrete shaver for decontaminating floors for free-release surveys prior to demolition work.

  7. Abstract and concrete sentences, embodiment, and languages.

    PubMed

    Scorolli, Claudia; Binkofski, Ferdinand; Buccino, Giovanni; Nicoletti, Roberto; Riggio, Lucia; Borghi, Anna Maria

    2011-01-01

    One of the main challenges of embodied theories is accounting for meanings of abstract words. The most common explanation is that abstract words, like concrete ones, are grounded in perception and action systems. According to other explanations, abstract words, differently from concrete ones, would activate situations and introspection; alternatively, they would be represented through metaphoric mapping. However, evidence provided so far pertains to specific domains. To be able to account for abstract words in their variety we argue it is necessary to take into account not only the fact that language is grounded in the sensorimotor system, but also that language represents a linguistic-social experience. To study abstractness as a continuum we combined a concrete (C) verb with both a concrete and an abstract (A) noun; and an abstract verb with the same nouns previously used (grasp vs. describe a flower vs. a concept). To disambiguate between the semantic meaning and the grammatical class of the words, we focused on two syntactically different languages: German and Italian. Compatible combinations (CC, AA) were processed faster than mixed ones (CA, AC). This is in line with the idea that abstract and concrete words are processed preferentially in parallel systems - abstract in the language system and concrete more in the motor system, thus costs of processing within one system are the lowest. This parallel processing takes place most probably within different anatomically predefined routes. With mixed combinations, when the concrete word preceded the abstract one (CA), participants were faster, regardless of the grammatical class and the spoken language. This is probably due to the peculiar mode of acquisition of abstract words, as they are acquired more linguistically than perceptually. Results confirm embodied theories which assign a crucial role to both perception-action and linguistic experience for abstract words. PMID:21954387

  8. Technology for concrete pipe manipulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dan; Lin, Renzhi

    2010-01-01

    The pipe manipulator is a developing mechatronic system to enhance productivity and protects workers from cave-ins in the trench while excavating and laying pipe. The pipe manipulator is for installing concrete pipe into the trench. It is an optical-electro-mechanical system. The mechanism is make up of two parts, the upside and underside. The upside is for lifting the equipment by backhoe and rotating the underside mechanism. It includes rigidity lift beams, holding pad, four-bar linkages, hydraulic cylinder, rotating support, and rotating mechanism. Holding pad will press the bucket back to keep the bucket hooking the pipe man safely and stably. The underside mechanism is for lifting, holding and adjusting the pipe section's stance. The underside mechanism includes support trolley, and lift fork. The support trolley is driven by hydraulic cylinder for moving the fork forward or backward while laying a pipe into trench. The fork is with a self-lock mechanism for preventing the pipe from slide out of the prongs. A new photoelectric locating system is developed for auto-measuring the installing pipe section's stance within the work area. The laser target has been developed as a key part in the photoelectric locating systems. The photoelectric target is a rotating polar coordinate. Photodiodes are used for making the polar radius. There is an angular displacement sensor sitting on the heart-axis of the target for measuring angle of the target rotating. The pipe manipulator can be located by the system, and the locating methods have been presented at last of the paper.

  9. Technology for concrete pipe manipulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dan; Lin, Renzhi

    2009-12-01

    The pipe manipulator is a developing mechatronic system to enhance productivity and protects workers from cave-ins in the trench while excavating and laying pipe. The pipe manipulator is for installing concrete pipe into the trench. It is an optical-electro-mechanical system. The mechanism is make up of two parts, the upside and underside. The upside is for lifting the equipment by backhoe and rotating the underside mechanism. It includes rigidity lift beams, holding pad, four-bar linkages, hydraulic cylinder, rotating support, and rotating mechanism. Holding pad will press the bucket back to keep the bucket hooking the pipe man safely and stably. The underside mechanism is for lifting, holding and adjusting the pipe section's stance. The underside mechanism includes support trolley, and lift fork. The support trolley is driven by hydraulic cylinder for moving the fork forward or backward while laying a pipe into trench. The fork is with a self-lock mechanism for preventing the pipe from slide out of the prongs. A new photoelectric locating system is developed for auto-measuring the installing pipe section's stance within the work area. The laser target has been developed as a key part in the photoelectric locating systems. The photoelectric target is a rotating polar coordinate. Photodiodes are used for making the polar radius. There is an angular displacement sensor sitting on the heart-axis of the target for measuring angle of the target rotating. The pipe manipulator can be located by the system, and the locating methods have been presented at last of the paper.

  10. Nanomechanics and Multiscale Modeling of Sustainable Concretes

    NASA Astrophysics Data System (ADS)

    Zanjani Zadeh, Vahid

    The work presented in this dissertation is aimed to implement and further develop the recent advances in material characterization for porous and heterogeneous materials and apply these advances to sustainable concretes. The studied sustainable concretes were concrete containing fly ash and slag, Kenaf fiber reinforced concrete, and lightweight aggregate concrete. All these cement-based materials can be categorized as sustainable concrete, by achieving concrete with high strength while reducing cement consumption. The nanoindentation technique was used to infer the nanomechanical properties of the active hydration phases in bulk cement paste. Moreover, the interfacial transition zone (ITZ) of lightweight aggregate, normal aggregate, and Kenaf fibers were investigated using nanoindentation and imagine techniques, despite difficulties regarding characterizing this region. Samples were also tested after exposure to high temperature to evaluate the damage mechanics of sustainable concretes. It has been shown that there is a direct correlation between the nature of the nanoscale structure of a cement-based material with its macroscopic properties. This was addressed in two steps in this dissertation: (i) Nanoscale characterization of sustainable cementitious materials to understand the different role of fly ash, slag, lightweight aggregate, and Kenaf fibers on nanoscale (ii) Link the nanoscale mechanical properties to macroscale ones with multiscale modeling. The grid indentation technique originally developed for normal concrete was extended to sustainable concretes with more complex microstructure. The relation between morphology of cement paste materials and submicron mechanical properties, indentation modulus, hardness, and dissipated energy is explained in detail. Extensive experimental and analytical approaches were focused on description of the materials' heterogeneous microstructure as function of their composition and physical phenomenon. Quantitative

  11. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    SciTech Connect

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1% by volume steel

  12. Protocols for Authorized Release of Concrete

    SciTech Connect

    Smith, Agatha Marie; Meservey, Richard Harlan; Chen, S.Y.; Powell, James Edward; PArker, F.

    2000-06-01

    Much of the clean or slightly contaminated concrete from Decontamination and Decommissioning (D&D) activities could be re-used. Currently, there is no standardized approach, or protocol, for managing the disposition of such materials. Namely, all potential disposition options for concrete, including authorized release for re-use, are generally not fully evaluated in D&D projects, so large quantities have been unduly disposed of as low-level radioactive waste. As a result, costs of D&D have become prohibitively high, hindering expedient cleanup of surplus facilities. The ability to evaluate and implement the option of authorized release of concrete from demolition would result in significant cost savings, while maintaining protection of environmental health and safety, across the Department of Energy (DOE) complex. The Idaho National Engineering and Environmental Laboratory (INEEL), Argonne National Laboratory East (ANL-E), and Vanderbilt University have teamed to develop a protocol for the authorized release of concrete, based on the existing DOE guidance of Order 5400.5, that applies across the DOE complex. The protocol will provide a streamlined method for assessing risks and costs, and reaching optimal disposal options, including re-use of the concrete within the DOE system.

  13. Acoustic inspection of concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Henderson, Mark E.; Dion, Gary N.; Costley, R. Daniel

    1999-02-01

    The determination of concrete integrity, especially in concrete bridge decks, is of extreme importance. Current systems for testing concrete structures are expensive, slow, or tedious. State of the art systems use ground penetrating radar, but they have inherent problems especially with ghosting and signal signature overlap. The older method of locating delaminations in bridge decks involves either tapping on the surface with a hammer or metal rod, or dragging a chain-bar across the bridge deck. Both methods require a `calibrated' ear to determine the difference between good sections and bad sections of concrete. As a consequence, the method is highly subjective, different from person to person and even day to day for a given person. In addition, archival of such data is impractical, or at least improbable, in most situations. The Diagnostic Instrumentation and Analysis Laboratory has constructed an instrument that implements the chain-drag method of concrete inspection. The system is capable of real-time analysis of recorded signals, archival of processed data, and high-speed data acquisition so that post-processing of the data is possible for either research purposes or for listening to the recorded signals.

  14. Boric Acid Corrosion of Concrete Rebar

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Yang, L.; Chiang, K.–T.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i) borated water flowing in a simulated concrete crack, (ii) borated water flowing over a concrete surface, (iii) borated water that has reacted with concrete, and (iv) 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS) and linear polarization resistance (LPR) probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or less)when the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  15. Predicting the remaining service life of concrete

    SciTech Connect

    Clifton, J.F.

    1991-11-01

    Nuclear power plants are providing, currently, about 17 percent of the U.S. electricity and many of these plants are approaching their licensed life of 40 years. The U.S. Nuclear Regulatory Commission and the Department of Energy`s Oak Ridge National Laboratory are carrying out a program to develop a methodology for assessing the remaining safe-life of the concrete components and structures in nuclear power plants. This program has the overall objective of identifying potential structural safety issues, as well as acceptance criteria, for use in evaluations of nuclear power plants for continued service. The National Institute of Standards and Technology (NIST) is contributing to this program by identifying and analyzing methods for predicting the remaining life of in-service concrete materials. This report examines the basis for predicting the remaining service lives of concrete materials of nuclear power facilities. Methods for predicting the service life of new and in-service concrete materials are analyzed. These methods include (1) estimates based on experience, (2) comparison of performance, (3) accelerated testing, (4) stochastic methods, and (5) mathematical modeling. New approaches for predicting the remaining service lives of concrete materials are proposed and recommendations for their further development given. Degradation processes are discussed based on considerations of their mechanisms, likelihood of occurrence, manifestations, and detection. They include corrosion, sulfate attack, alkali-aggregate reactions, frost attack, leaching, radiation, salt crystallization, and microbiological attack.

  16. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  17. Flow conditions of fresh mortar and concrete in different pipes

    SciTech Connect

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-11-15

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  18. Concrete Waste Recycling Process for High Quality Aggregate

    SciTech Connect

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-15

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  19. Concrete decontamination by electro-hydraulic scabbling

    SciTech Connect

    Goldfarb, V.; Gannon, R.

    1995-10-01

    Textron Defense Systems (TDS) is developing an electro-hydraulic device that has the potential for faster, safer, and less expensive scabbling of contaminated concrete surfaces. In the device, shock waves and cavitating bubbles are produced in water by the electric pulses, and the direct and reflected shock waves impinging on the concrete surface result in the crushing and cracking of the concrete. Pulse energy, frequency, and traverse speed control the depth of the scabbling action. Performance thus far has demonstrated the capability of a prototype unit to process a swath 24 inches wide, up to 3/4 inch deep at a linear velocity of up to 6 feet per hour, i.e., at a scabbling rate of 12 sq. ft. per hour.

  20. The feasibility of recycling contaminated concrete

    SciTech Connect

    Ayers, K.W,; Corroon, W.; Parker, F.L.

    1999-07-01

    The changing mission of the Department of Energy along with the aging of many of its facilities has resulted in renewed emphasis on decontaminating and decommissioning surplus structures. Currently DOE is decontaminating some concrete and sending the clean material to C and D disposal facilities. In other instance, DOE is sending contaminated concrete to LLW disposal facilities. This paper examines the economic feasibility of decontaminating the concrete and recycling the rubble as clean aggregate. A probabilistic cost model was used to examine six potential recycling and disposal scenarios. The model predicted potential costs saving across the DOE complex of nearly one billion dollars. The ability of local markets to assimilate the recycled material was estimated for Washington, Idaho, Tennessee, New Mexico, and South Carolina. The relationships between a number of the economic model's variables were examined to develop operating ranges for initial managerial evaluation of recycling.

  1. Service life prediction of reinforced concrete structures

    SciTech Connect

    Liang, M.T.; Wang, K.L.; Liang, C.H.

    1999-09-01

    This paper is focused on the estimation of durability and service life of reinforced concrete structures. Assuming that the chloride ion in concrete can be absorbed on tricalcium aluminate, calcium silicate hydrate, and by other constituents of hardened cement paste, hydrated or not, the exact analytical solution of the governing partial differential equation together with its boundary and initial conditions can be obtained through nondimensional parameters and Laplace's transform. When the results of an exact analytical solution using suitable parameters were compared with the results of previous experimental work, the differences were found to be very small. This suggests that the absorption model is of considerable value. The exact analytical solution with the saturation parameter and time and diffusion coefficients under different effective electrical potential could be used to predict both the experimental results and the service life of reinforced concrete structures.

  2. Mesoscale simulation of concrete spall failure

    NASA Astrophysics Data System (ADS)

    Knell, S.; Sauer, M.; Millon, O.; Riedel, W.

    2012-05-01

    Although intensively studied, it is still being debated which physical mechanisms are responsible for the increase of dynamic strength and fracture energy of concrete observed at high loading rates, and to what extent structural inertia forces on different scales contribute to the observation. We present a new approach for the three dimensional mesoscale modelling of dynamic damage and cracking in concrete. Concrete is approximated as a composite of spherical elastic aggregates of mm to cm size embedded in an elastic cement stone matrix. Cracking within the matrix and at aggregate interfaces in the μm range are modelled with adaptively inserted—initially rigid—cohesive interface elements. The model is applied to analyse the dynamic tensile failure observed in Hopkinson-Bar spallation experiments with strain rates up to 100/s. The influence of the key mesoscale failure parameters of strength, fracture energy and relative weakening of the ITZ on macromechanic strength, momentum and energy conservation is numerically investigated.

  3. Nonlinear fracture of concrete and ceramics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.

    1989-01-01

    The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.

  4. Concrete decontamination by electro-hydraulic scabbling

    SciTech Connect

    Goldfarb, V.; Gannon, R.

    1995-12-01

    Textron Defense Systems (TDS) is developing an electro-hydraulic device that has the potential for faster, safer, and less expensive scabbling of contaminated concrete surfaces. In the device, shock waves and cavitating bubbles are produced in water by the electric pulses, and the direct and reflected shock waves impinging on the concrete surface result in the crushing and cracking of the concrete. Pulse energy, frequency, and traverse speed control the depth of the scabbling action. Performance thus far has demonstrated the capability of a prototype unit to process a swath 24 inches wide, up to 3/4 inches deep at a linear velocity of up to 6 feet per hour, i.e., at a scabbling rate of 12 sq. ft. per hour.

  5. Nuclear Concrete Materials Database Phase I Development

    SciTech Connect

    Ren, Weiju; Naus, Dan J

    2012-05-01

    The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

  6. Concentration profiles of tritium penetrated into concrete

    SciTech Connect

    Takata, H.; Furuichi, K.; Nishikawa, M.; Fukada, S.; Katayama, K.; Takeishi, T.; Kobayashi, K.; Hayashi, T.; Namba, H.

    2008-07-15

    Concentration profiles of tritium in cement paste, mortar and concrete were measured after exposure to tritiated water vapor for a given time. Tritium penetrated a distance of about 5 cm from the exposed surface during an exposure of 6 months. The model of tritium behavior in concrete materials reported by the present authors was developed in this study with the consideration of the effects of sand and aggregate on both the diffusion coefficient of tritiated water vapor and the isotope exchange capacity. Predictive calculations based on the tritium transport model were also carried out in some situations of tritium leakage. The results of the calculations show that a large amount of tritium will be trapped in the concrete walls, and the trapped tritium will be gradually released back to the tritium handling room over the time of months to years even after the decontamination of the room is completed. (authors)

  7. Occurrence and morphology of carbonate concretions in the Beulah-Zap coal bed, Williston basin, North Dakota

    USGS Publications Warehouse

    Keighin, C.W.M.; Flores, R.M.; Rowland, T.

    1996-01-01

    Carbonate concretionary bodies were encountered during mining of the Beulah-Zap lignite seam in the Coteau Properties' Freedom mine, Mercer County, North Dakota. Preliminary studies show that areal and vertical distribution of the concretions are variable. All concretions examined are composed almost entirely of calcite. They occur as thin tabular bodies, as more or less elliptical forms, or as tear shaped bodies, and may occur individually or as clusters of buff-colored, poorly consolidated to solidly crystalline material. The carbonate masses vary in size from a few millimeters to tens of centimeters. Bedding in the lignite may display some compactional folding over dense spheroidal to elliptical concretions, indicating formation of the concretions prior to compaction. Internal morphology of the concretions is complex, and includes cone-in-cone structure, cross-cutting calcite veinlets, and multiple generations of calcite. Carbon isotope values suggest the concretions are composed of biogenic carbonate, probably related to early diagenesis and decomposition of organic matter (peat); oxygen isotope values are light, and consistent with a freshwater origin.

  8. Comparative performance of various smart aggregates during strength gain and damage states of concrete

    NASA Astrophysics Data System (ADS)

    Jothi Saravanan, T.; Balamonica, K.; Bharathi Priya, C.; Likhith Reddy, A.; Gopalakrishnan, N.

    2015-08-01

    Information regarding the early strength gain of fresh concrete determines the time for the removal of form work and the transfer of pre-stressing forces for pre-stressed concrete. An ultrasonic based non-destructive evaluation of early strength gain may not work for concrete in fluid and semi-solid phases. A possible alternative is a lead zirconate titanate (PZT)-based smart aggregate embedded in concrete, which can evaluate the micro-structural and rheological properties right from the fluid phase. A set of five smart aggregates embedded in a concrete cube were investigated for their suitability to evaluate electromechanical impedance (EMI) signatures. Cubes were loaded to failure and the EMI during progressive strength loss under compressive loads was studied. To show the generalized applicability of this, experimental results for the performance of typical smart aggregates on a larger specimen, namely a concrete beam, are also discussed. Different statistical metrics were examined computationally on a three peak admittance curve with a parametric variation of stiffness, damping and simple scaling. The root mean square deviation (RMSD), mean absolute percentage deviation (MAPD), cross correlation (CC) and modified cross correlation (MCC) were investigated, in addition to the rate of change of the RMSD. Variations between the reference and modified states were studied. Both stiffness and mass gains occur for the smart aggregates, resulting in an increase or decrease of frequency and amplitude peaks due to progressive C-S-H gel formation. The trend of increasing stiffness and the consequent rightward shift of the resonant peaks and decrease of damping, with the consequent upward shift of amplitudes that happens during curing and strength gain, was observed to be reversed during the application of damaging loads.

  9. Innovative technology summary report: Concrete grinder

    SciTech Connect

    1998-09-01

    The Flex concrete grinder is a lightweight, hand-held concrete and coating removal system used for decontaminating or stripping concrete surfaces. The US Department of Energy has successfully demonstrated it for decontaminating walls and floors for free release surveys prior to demolition work. The grinder is an electric-powered tool with a vacuum port for dust extraction and a diamond grinding wheel. The grinder is suitable for flat or slightly curved surfaces and results in a smooth surface, which makes release surveys more reliable. The grinder is lightweight and produces very little vibration, thus reducing worker fatigue. The grinder is more efficient than traditional baseline, tools at removing contamination from concrete surfaces (more than four times faster than hand-held pneumatic scabbling and scaling tools). Grinder consumables (i.e., replacement diamond grinding wheel) are more expensive than the replacement carbide parts for the scaler and scabbler. However, operating costs are outweighed by the lower purchase price of the grinder (50% of the price of the baseline scaler and 8% of the price of the baseline scabbler). Overall, the concrete grinder is an attractive alternative to traditional scabbling and scaling pneumatic tools. To this end, in July 1998, the outer rod room exposed walls of the Safe Storage Enclosure (SSE), an area measuring approximately 150 m{sup 2}, may be decontaminated with the hand-held grinder. This concrete grinder technology was demonstrated for the first time at the DOE`s Hanford Site. Decontamination of a sample room walls was performed at the C Reactor to free release the walls prior to demolition. The demonstration was conducted by onsite D and D workers, who were instructed by the vendor prior to and during the demonstration.

  10. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  11. Estimating crack growth in temperature damaged concrete

    NASA Astrophysics Data System (ADS)

    Recalde, Juan Jose

    2009-12-01

    Evaluation of the structural condition of deteriorated concrete infrastructure and evaluation of new sustainable cementitious materials require an understanding of how the material will respond to applied loads and environmental exposures. A fundamental understanding of how microstructural changes in these materials relate to changes in mechanical properties and changes in fluid penetrability is needed. The ability to provide rapid, inexpensive assessment of material characteristics and relevant engineering properties is valuable for decision making and asset management purposes. In this investigation, the effects of changes in dynamic elastic properties with water content and fluid penetrability properties before and after a 300°C exposure were investigated based on estimates of the crack density parameter from dry and saturated cracked media. The experimental and analytical techniques described in this dissertation allow calculation of a value for the crack density parameter using nondestructive determination of wet and dry dynamic shear modulus of relatively thin disks. The techniques were used to compare a conventional concrete mixture to several mixtures with enhanced sustainability characteristics. The three enhanced sustainable materials investigated were a very high fly ash mixture, a magnesium phosphate cement based mortar, and a magnesium phosphate cement based concrete, and were compared to a conventional concrete mixture. The analysis provided both quantitative assessment of changes with high temperature damage and autogenous healing, and estimates of changes in mean crack trace lengths. The results showed that water interaction, deterioration due to damage, and autogenous healing recovery were different for the magnesium phosphate cement based mixtures than the portland cement based concrete mixtures. A strong correlation was found between log-transformed Air Permeability Index, dynamic shear modulus, and crack density parameter. The findings imply

  12. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    NASA Astrophysics Data System (ADS)

    Winkel, B. V.

    1995-03-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/sq in mix and a 4.5 kip/sq in mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/sq in. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  13. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect

    Winkel, B.V.

    1995-03-03

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  14. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    PubMed

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa.

  15. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    PubMed

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa. PMID:27478022

  16. Detection Of Concrete Deterioration By Staining

    DOEpatents

    Guthrie, Jr., George D.; Carey, J. William

    1999-09-21

    A method using concentrated aqueous solutions of sodium cobaltinitrite and a rhodamine dye is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR), and to identify degraded concrete which results in a porous or semi-permeable paste due to carbonation or leaching. These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.

  17. Prediction of creep of polymer concrete

    SciTech Connect

    Khristova, Yu.; Aniskevich, K.

    1995-11-01

    We studied the applicability of the phenomenological approach to the prediction of long-time creep of polymer concrete consisting of polyester binder with diabase filler and diabase aggregate. We discovered that the principles of temperature-time analogy, of moisture-time analogy, and of temperature-moisture-time analogy are applicable to the description of the diagrams of short-time creep and to the prediction of long-time creep of polymer concrete at different temperatures and constant moisture content of the material.

  18. Repair and rehabilitation with polymer concrete

    SciTech Connect

    Kukacka, L.E.

    1988-09-01

    As a result of their fast setting characteristics and excellent mechanical and physical properties, polymer concretes (PC) are finding ever increasing useage for the repair of deteriorated portland cement concrete structures. Applications include the repair of highway pavements and bridge decks, airport runways, hydrotechnical structures, tunnels, and industrial flooring. The most commonly used resins and monomer systems for these applications are epoxies, polyesters and methylmethacrylate. Furfuryl alcohol has been used experimentally, and shows promise for use in making emergency repairs under adverse moisture or extreme temperature conditions. In the paper, repair procedures will be discussed and several case histories given. 6 refs.

  19. Evaluation of concrete reinforcements using magnetostrictive sensors

    NASA Astrophysics Data System (ADS)

    Bartels, Keith A.; Dynes, Chris P.; Lu, Yichi; Kwun, Hegeon

    1999-02-01

    In this paper, a review is presented of various applications of the magnetostrictive sensor (MsS) technology to the nondestructive evaluation of steel reinforcing bars and seven-wire strands. MsSs have been applied to the detection of corrosion in and out of concrete, the quantification of corrosion, the detection of debonding, the measurement of tensile stress, the monitoring of concrete curing, the monitoring of wire breakage, and the location of broken or fractured wires. A review of the MsS technology is given along with an assessment of the utility of the technology in the above-mentioned applications.

  20. Use of cactus in mortars and concrete

    SciTech Connect

    Chandra, S.; Eklund, L.; Villarreal, R.R.

    1998-01-01

    Natural polymers have been used in ancient times to improve the durability of lime-based mortars and concretes. The natural polymers used were locally available. In this work, cactus extract from Mexico has been tested in a Portland cement mortar. It is seen that cactus extract increases the plasticity of the mortar and improves water absorption and freeze-salt resistance. Calcium hydroxide produced by Portland cement hydration interacts with the components of cactus extract, polysaccharides or proteins, and forms complexes. It affects the crystallization process. Painting of the concrete with this extract has also shown improved water resistance.

  1. Advanced Numerical Model for Irradiated Concrete

    SciTech Connect

    Giorla, Alain B.

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  2. 7. Detail view of reinforced concrete archrings comprising dam's upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view of reinforced concrete arch-rings comprising dam's upstream face. Impressions of the wooden formwork used in construction are visible in the concrete. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  3. 51. Photocopied August 1978. PREMOULDED TONGUE AND GROOVE CONCRETE BLOCKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopied August 1978. PRE-MOULDED TONGUE AND GROOVE CONCRETE BLOCKS FOR TAIL RACE AND FOREBAY WALLS AND THE CONCRETE MIXER IN MID-1900. (70) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  4. WEST FACADE. THREESTORY BRICK AND STEEL BUILDING WITH CONCRETE ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST FACADE. THREE-STORY BRICK AND STEEL BUILDING WITH CONCRETE ADDITION AT SOUTH FACE. NOTE OPENINGS INTO BUILDING ARE BOARDED OR BRICKED UP WITH WOODEN BOARDS OR CONCRETE BLOCK - National Can Company, 2566 East Grand Boulevard, Detroit, MI

  5. 2. LONGITUDINAL VIEW OF THE CONCRETE ARCH (ONEWAY BRIDGE), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LONGITUDINAL VIEW OF THE CONCRETE ARCH (ONE-WAY BRIDGE), LOOKING NORTHEAST. - Washington Water Power Company Post Falls Power Plant, Concrete Arch Bridge, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  6. Cohesive fracture model for functionally graded fiber reinforced concrete

    SciTech Connect

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-06-15

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  7. Effect of exposure delay of concrete into aggressive environment

    NASA Astrophysics Data System (ADS)

    Abimouloud, Youcef; Kriker, Abdelouahed

    2016-07-01

    Some regions in the world suffered since several years from environmental problems such as underground level water rising. Water table effects durability of concrete implantation in the underground by the ease of luckless chemical elements ingress mainly through concrete the foundations of structures such as sulfate, chloride, and acids. For that reason a lot of foundations structures were made with SRPC (sulfate resisting Portland cement). This study is a contribution to assess the effect of exposure delay of concrete into aggressive fields, as a kind of cure which protects concrete from aggressive factors and allows it to acquire the needed strength. The study has shown that concrete exposure delay into aggressive environment is not a kind of cure mainly for concrete made with SRPC. Concrete with SRPC immediately exposed to aggressive environment shows a better mechanical resistance than concrete that has known exposure delay.

  8. 31. VIEW OF CONCRETE SLAB AT WEST ENTRANCE OF WALKWAY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF CONCRETE SLAB AT WEST ENTRANCE OF WALKWAY. '1944 JOE LANDETA' SCRATCHED INTO FRESH CONCRETE. March 1987 - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ

  9. Strength of masonry blocks made with recycled concrete aggregates

    NASA Astrophysics Data System (ADS)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  10. 1. VIEW SHOWING REMAINS OF CAMOUFLAGE COVERING CONCRETE FOOTING FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SHOWING REMAINS OF CAMOUFLAGE COVERING CONCRETE FOOTING FOR A GENERATOR PAD - Fort Cronkhite, Anti-Aircraft Battery No. 1, Concrete Footing-Generator Pad, Wolf Road, Sausalito, Marin County, CA

  11. Tierra concrete homes: Low-energy residential building design

    SciTech Connect

    Hayter, S.J.; Torcellini, P.A.; Neimeyer, J.

    1997-12-31

    Using a whole building design concept, Tierra Concrete Homes, a home builder in Pueblo, Colorado, created low-energy, passive solar home designs. Passive solar features incorporated into the designs include house orientation, high-mass walls for thermal storage, exterior insulation, appropriate glazing type combined with overhangs to prevent summer overheating, open interior spaces to maximize daylighting potential, and high efficiency lighting. These ranch-style homes require no cooling and minimum heating equipment to maintain comfortable indoor conditions. They are economically competitive to build, consume little fossil fuel, and produce virtually no construction waste. This paper discusses how the design of one of these homes was optimized to further minimize energy consumption while maintaining an attractive livable environment. It also describes monitoring activities that are currently underway to verify predicted energy consumption.

  12. Comparative testing of nondestructive examination techniques for concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.; Smith, Cyrus M.

    2014-03-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties, its inexpensiveness, its structural strength, and its ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include containment building, spent fuel pool, and cooling towers. Comparative testing of the various NDE concrete measurement techniques requires concrete samples with known material properties, voids, internal microstructure flaws, and reinforcement locations. These samples can be artificially created under laboratory conditions where the various properties can be controlled. Other than NPPs, there are not many applications where critical concrete structures are as thick and reinforced. Therefore, there are not many industries other than the nuclear power plant or power plant industry that are interested in performing NDE on thick and reinforced concrete structures. This leads to the lack of readily available samples of thick and heavily reinforced concrete for performing NDE evaluations, research, and training. The industry that typically performs the most NDE on concrete structures is the bridge and roadway industry. While bridge and roadway structures are thinner and less reinforced, they have a good base of NDE research to support their field NDE programs to detect, identify, and repair concrete failures. This paper will summarize the initial comparative testing of two concrete samples with an emphasis on how these techniques could perform on NPP concrete structures.

  13. 7 CFR 2902.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused...

  14. 7 CFR 2902.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused...

  15. Shear transfer in concrete reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  16. Introduction to Concrete Reinforcing. Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in concrete reinforcing to students who have chosen to explore careers in construction. It contains three units: concrete reinforcing materials, concrete reinforcing tools, and applied skills. Each instructional unit includes some or all of the…

  17. Introduction to Concrete Finishing. Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in concrete finishing to students who have chosen to explore careers in construction. The following topics are covered in the course's three instructional units: concrete materials, concrete tools, and applied skills. Each unit contains some or…

  18. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  19. 7 CFR 3201.87 - Wood and concrete stains.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wood and concrete stains. 3201.87 Section 3201.87... Designated Items § 3201.87 Wood and concrete stains. (a) Definition. Products that are designed to be applied as a finish for concrete and wood surfaces and that contain dyes or pigments to change the...

  20. 8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING MACHINE USED BY VON SCHON IN EXPERIMENTS ON METHODS OF MIXING CONCRETE AND ON CONCRETE AGGREGATES WHICH USED LOCAL MATERIALS. (4) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  1. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  2. 13. VIEW EAST OF NORTHEAST CONCRETE PIER AND WING WALL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW EAST OF NORTHEAST CONCRETE PIER AND WING WALL. NOTE DETAIL OF 1920 CONCRETE PIER WHICH WAS CAST IN PLACE AROUND A VERTICAL POST, AND STOP LOCK NOTCH TO LEFT OF CONCRETE PIER. - Chesapeake & Ohio Canal, Conococheague Creek Aqueduct, Milepost 99.80, Williamsport, Washington County, MD

  3. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  4. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  5. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  6. 7 CFR 3201.87 - Wood and concrete stains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wood and concrete stains. 3201.87 Section 3201.87... Designated Items § 3201.87 Wood and concrete stains. (a) Definition. Products that are designed to be applied as a finish for concrete and wood surfaces and that contain dyes or pigments to change the...

  7. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  8. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  9. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  10. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  11. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  12. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  13. Patio Stone Project Gives Students a Concrete Learning Experience

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2005-01-01

    In this article, the author presents an overview of concrete as a building material and as an example of a particle composite, and discusses the origins of concrete in ancient Rome. He then describes an activity in which students can cast a concrete patio stone. Students can apply the technological design process, as well as the elements of…

  14. CONCRETE BLOCKS' ADVERSE EFFECTS ON INDOOR AIR AND RECOMMENDED SOLUTIONS

    EPA Science Inventory

    Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants. An easy approach to avoiding these pollutants is to select a less–air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a fa...

  15. Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel

    NASA Astrophysics Data System (ADS)

    Siu, Sam; Ji, Qing; Wu, Wenhao; Song, Gangbing; Ding, Zhi

    2014-12-01

    In this paper, we explore the characteristics of a concrete block as a communication medium with piezoelectric transducers. Lead zirconate titanate (PZT) is a piezoceramic material used in smart materials intended for structural health monitoring (SHM). Additionally, a PZT based smart aggregate (SA) is capable of implementing stress wave communications which is utilized for investigating the properties of an SA based concrete channel. Our experiments characterize single-input single-output and multiple-input multiple-output (MIMO) concrete channels in order to determine the potential capacity limits of SAs for stress wave communication. We first provide estimates and validate the concrete channel response. Followed by a theoretical upper bound for data rate capacity of our two channels, demonstrating a near-twofold increase in channel capacity by utilizing multiple transceivers to form an MIMO system. Our channel modeling techniques and results are also helpful to researchers using SAs with regards to SHM, energy harvesting and stress wave communications.

  16. Concrete Property and Radionuclide Migration Tests

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Powers, Laura; Parker, Kent E.; Clayton, Libby N.; Wood, Marcus I.

    2008-10-01

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the DOE Complex. Part of theses services includes safe disposal of LLW and MLLW at the Hanford Low-Level Waste Burial Grounds (LLBG) in accordance with the requirements listed in DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, a Performance Assessment (PA) analyses were completed and approved. DOE Order 435.1 also requires that continuing data collection be conducted to enhance confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied upon to satisfy the performance objectives identified in the Order. One critical assumption is that concrete will frequently be used as waste form or container material to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Data was collected to (1) quantify radionuclide migration through concrete materials similar to those used to encapsulate waste in the LLBG, (2) measure the properties of the concrete materials, especially those likely to influence radionuclide migration, and (3) quantify the stability of U-bearing solid phases of limited solubility in concrete.

  17. Concrete Spatial Language: See What I Mean?

    ERIC Educational Resources Information Center

    Wallentin, M.; Ostergaard, S.; Lund, T.E.; Ostergaard, L.; Roepstorff, A.

    2005-01-01

    Conveying complex mental scenarios is at the heart of human language. Advances in cognitive linguistics suggest this is mediated by an ability to activate cognitive systems involved in non-linguistic processing of spatial information. In this fMRI-study, we compare sentences with a concrete spatial meaning to sentences with an abstract meaning.…

  18. Acoustic Emission Analysis of Prestressed Concrete Structures

    NASA Astrophysics Data System (ADS)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  19. Sulfur 'Concrete' for Lunar Applications - Environmental Considerations

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2008-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. For the purpose of this Technical Memorandum, it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, bricks. With this stipulation, it is then noted that the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. The work presented here evaluates two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar simulant as an aggregate addition. One set was subjected to extended periods in high vacuum to evaluate sublimation issues, and the other was cycled between room and liquid nitrogen temperatures to investigate their subsequent mechanical integrity. Results are presented from both investigations, discussed, and put into the context of the lunar environment.

  20. Sulfur "Concrete" for Lunar Applications - Sublimation Concerns

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    Melting sulfur and mixing it with an aggregate to form "concrete" is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment.

  1. Anodes for cathodic protection of reinforced concrete

    SciTech Connect

    S.J. Bullard; B.S. Covino, Jr.; S.D. Cramer; G.R. Holcomb; J.H. Russell

    2000-03-01

    Consumable anodes were evaluated in the laboratory for use in cathodic protection systems for steel reinforced concrete bridges in coastal environments and in areas where de-icing salts are employed. The anode materials include Zn-hydrogel and thermal-sprayed Zn, Zn-15Al, and Al-12Zn-0.2In. These anodes were evaluated for service in both galvanic (GCP) and impressed current (ICCP) cathodic protection systems. ICCP anodes were electrochemically aged at a factor of 15 times greater than used by the Oregon Department of Transportation in typical coastal ICCP systems (2.2 mA/m{sup 2} based on anode area). Increasing moisture at the anode-concrete interface reduced the operating voltage of all the anodes. The pH at the anode-concrete interface fell to 7 to 8.5 with electrochemical age. Bond strength between the anodes and concrete decreased with electrochemical aging. Interfacial chemistry was the critical link between long-term anode performance and electrochemical age. Zn-hydrogel and the rmal-sprayed Zn and Al-12Zn-0.2In GCP anodes appear to supply adequate protection current to rebar in the Cape Perpetua Viaduct.

  2. Fractal characterization of fracture surfaces in concrete

    USGS Publications Warehouse

    Saouma, V.E.; Barton, C.C.; Gamaleldin, N.A.

    1990-01-01

    Fractal geometry is used to characterize the roughness of cracked concrete surfaces through a specially built profilometer, and the fractal dimension is subsequently correlated to the fracture toughness and direction of crack propagation. Preliminary results indicate that the fracture surface is indeed fractal over two orders of magnitudes with a dimension of approximately 1.20. ?? 1990.

  3. Nuclear waste package fabricated from concrete

    SciTech Connect

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400/sup 0/C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs.

  4. Transport properties of self-consolidating concrete

    SciTech Connect

    Sonebi, M.; Nanukuttan, S.

    2009-03-15

    This study reports the findings from an investigation carried out to study the effect of the mixture variations on the durability of medium- and high-strength self-consolidating concrete (SCC). The mixture variations studied include the type of mineral admixtures, such as limestone powder (LSP) and pulverized fuel ash (PFA), and viscosity-modifying admixtures (VMA) for both medium- and high-strength SCC. Air permeability, water permeability, capillary absorption, and chloride diffusivity were used to assess the durability of SCC mixtures in comparison with normal, vibrated concretes. The results showed that SCC mixtures, for medium- and high-strength grades using PFA followed by LSP give lower permeability, properties compared with normal concretes. SCC made with VMA had a higher sorptivity, air permeability, and water permeability compared with other SCC mixtures, which can be attributed to higher water-cement ratio (w/c) and lack of pore filling effect. An in-place migration coefficient was obtained using the in-place ion migration test. This was used to compare the potential diffusivity of different concretes. The results indicated that SCC, for both grades of strength, made with PFA showed much lower diffusivity values in comparison with other mixtures, whereas the SCC mixtures with VMA showed higher diffusivity.

  5. Training Guidelines. Operatives-Precast Concrete.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    This manual is intended to provide guidelines for firms in the precast concrete industry in planning their training programs particularly with reference to new entrants into the industry. Details for preparing training syllabuses for various job specifications are given--mould makers in timber, steel, and glass fiber; makers; finishers; site…

  6. Concrete Practices & Procedures. Instructor Manual. Trainee Manual.

    ERIC Educational Resources Information Center

    Laborers-AGC Education and Training Fund, Pomfret Center, CT.

    This packet consists of the instructor and trainee manuals for a concrete practices and procedures course. The instructor manual contains a schedule for an 80-hour, 10-day course and instructor outline. The outline provides a step-by-step description of the instructor's activities and includes answer sheets to accompany questions on information…

  7. Concrete. Course in Carpentry. Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This workbook is one of a series of individually bound units of instruction for carpentry apprenticeship classes in a four-year apprenticeship program. It consists of two sections--the workbook section and a test section. The workbook section provides instructional materials on 10 topics: introduction to cement and concrete, specifications for…

  8. GPR measurements of attenuation in concrete

    SciTech Connect

    Eisenmann, David Margetan, Frank J. Pavel, Brittney

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  9. Improving Representational Competence with Concrete Models

    ERIC Educational Resources Information Center

    Stieff, Mike; Scopelitis, Stephanie; Lira, Matthew E.; DeSutter, Dane

    2016-01-01

    Representational competence is a primary contributor to student learning in science, technology, engineering, and math (STEM) disciplines and an optimal target for instruction at all educational levels. We describe the design and implementation of a learning activity that uses concrete models to improve students' representational competence and…

  10. Concrete structure construction on the Moon

    NASA Technical Reports Server (NTRS)

    Matsumoto, Shinji; Namba, Haruyuki; Kai, Yoshiro; Yoshida, Tetsuji

    1992-01-01

    This paper describes a precast prestressed concrete structure system on the Moon and erection methods for this system. The horizontal section of the structural module is hexagonal so that various layouts of the modules are possible by connecting the adjacent modules to each other. For erection of the modules, specially designed mobile cranes are used.

  11. Hydraulic design of pervious concrete highway shoulders

    NASA Astrophysics Data System (ADS)

    Grahl, Nathan Andrew

    Stormwater drainage has been a factor in roadway design for years. Now stormwater quantity and quality are also becoming regulated for roadways. As regulations of stormwater management continue to increase so does the need for more viable and effect management practices. The research presented and discussed in this thesis presents the option of using pervious concrete in highway shoulders as a best management practice for stormwater management. Research focused on the hydraulic response of pervious concrete pavements exposed to sheet flowing water. Pervious concrete samples were placed in a hydraulic flume to determine capture discharges, infiltration rates, and by-pass flowrates for a broad range of void contents, across a broad range of pavement cross slopes. The results demonstrate that the capture discharge and infiltration rates are inversely related to the cross slope of the pavement. Results also showed the infiltration rate of the permeable pavement exposed to sheet flowing water, in the model, is significantly lower than the measured infiltration rate. Pervious concrete samples were also tested to determine hydraulic response when exposed to clogging associated with sand used in roadway de-icing. The results of the clogging of the permeable pavements followed similar trends as the unclogged samples, with the only difference being a more significant reduction in infiltration rates at higher applications of sand. Preliminary discussion of a design methodology is included with a design example.

  12. Identifying Concrete and Formal Operational Children.

    ERIC Educational Resources Information Center

    Docherty, Edward M.

    This paper presents a study designed to determine if groups of concrete and formal operational children can be identified through the technique of cluster analysis, using a battery of Piagetian tasks. A Total of 64 subjects, 8 boys and 8 girls from each of the second, fourth, sixth, and eighth grade levels, were selected from a public elementary…

  13. Math & the Dyslexic: Making the Abstract Concrete.

    ERIC Educational Resources Information Center

    Kitzen, Kay

    1983-01-01

    Math historian Morris Kline suggests that math instruction should be made concrete and that teachers should not turn kids off by making intuitively understood concepts complex through the use of fancy language. He advocates using pictorial representations and examples of actual physical occurrences. The dyslexic student has special difficulties in…

  14. Radiation resistant concrete for applications in nuclear power and radioactive waste industries

    NASA Astrophysics Data System (ADS)

    Burnham, Steven Robert

    Elemental components of ordinary concrete contain a variety of metals and rare earth elements that are susceptible to neutron activation. This activation occurs by means of radiative capture, a neutron interaction that results in formation of radioisotopes such as Co-60, Eu-152, and Eu-154. Studies have shown that these three radioisotopes are responsible for the residual radioactivity found in nuclear power plant concrete reactor dome and shielding walls. Such concrete is classified as Low Level Radioactive Waste (LLRW) and Very Low Level Waste (VLLW) by International Atomic Energy Agency (IAEA) standards and requires disposal at appropriate disposal sites. There are only three such sites in the USA, and every nuclear power plant will produce at the time of decommissioning approximately 1,500 tonnes of activated concrete classified as LLRW and VLLW. NAVA ALIGA (ancient word for a new stone) is a new concrete mixture developed mainly by research as presented in this thesis. The purpose of NAVA ALIGA is to satisfy IAEA clearance levels if used as a material for reactor dome, spent fuel pool, or radioactive waste canisters. NAVA ALIGA will never be activated above the IAEA clearance level after long-term exposure to neutron radiation when used as a material for reactor dome, spent fuel pool, and radioactive waste canisters. Components of NAVA ALIGA were identified using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ISP-MS) to determine trace element composition. In addition, it was tested for compressive strength and permeability, important for nuclear infrastructure. The studied mixture had a high water to cement ratio of 0.56, which likely resulted in the high measured permeability, yet the mixture also showed a compressive strength greater than 6 000 psi after 28 days. In addition to this experimental analysis, which goal was to develop a standard approach to define the concrete mixtures in satisfying the IAEA

  15. Assessment of waterfront location in hardened concrete by GPR within COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Rodríguez-Abad, Isabel; Klysz, Gilles; Balayssac, Jean Paul; Pajewski, Lara

    2016-04-01

    This work focuses on the analysis of the capability of Ground-Penetrating radar (GPR) technique for evaluating how the water penetrates into concrete samples by means of the assessment of the waterfront advance. Research activities have been carried out during a Short-Term Scientific Missions (STSMs) funded by the COST (European Cooperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" in November 2015. The evaluation of water penetrability is crucial in most building materials, such us concrete, since, water and aggressive chemical agents dissolved therein contribute to the deterioration of the material. A number of techniques have been developed to measure their advance in concrete. Although the most common method for measuring water content is the gravimetric method by observing the change in mass, this method has a large number of disadvantages. In this context, non-destructive techniques as GPR play an interesting role. In particular, the application of GPR in the building materials area is providing very promising and interesting results regarding the building materials characterization and especially concrete deterioration evaluation [1-3]. In addition, recent experimental studies highlight the strong relation between wave propagation parameters (velocity and energy level) and water content advance [4-5]. Water content has a decisive influence on dielectric properties and those might be assessed by the study of the wave properties that are derived by using GPR. Therefore, the waterfront advance will result in a change on wave parameters. In line with this, this research is focused on the development of specific processing algorithms necessary to understand how the water penetrates and how the wave parameters will be affected regarding the location of the antenna in reference to the water absorption direction. For this purpose, concrete samples were manufactured, which after curing (90 days) and oven

  16. Mechanical Properties and Durability of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to

  17. Mechanism of frost damage to concrete

    NASA Astrophysics Data System (ADS)

    Sun, Zhenhua

    We studied several topics that are important to explain the mechanisms of frost damage to concrete, including the volume change of concrete during freezing, the role of air voids in protecting concrete from frost damage, the pore structure of concrete, and the nucleation and propagation of ice in concrete. By combining calorimetric measurements with dilatometry, we were able to calculate the contributions of thermal expansion, pore pressure, and crystallization pressure of ice to the strain observed in a mortar during freezing/thawing cycles. Air-entrained mortars contract upon freezing due to the cryo-suction effect, while non-air-entrained mortars expand primarily due to hydraulic pressure. Based on the theory originally proposed by Powers and Helmuth, we show that the poromechanical calculations account quantitatively for the contraction of samples with air entrainment, which is shown to quantitatively account for a reduction of salt scaling damage based on the glue-spall theory. The method of thermoporometry (TPM) that we used to study the pore structure of concrete is also discussed. In a study of ice propagation inside concrete, we re-examined experiments by Helmuth [Proc. 4th Int. Cong. Chem. Cement, NBS Monog. 43, Vol. II (National Bureau of Standards, Washington, D.C., 1962) pp. 855--869] from which he concluded that ice grows in the pores of cement paste under heat-flow control, and that the internal temperature rises to the melting point given by the Gibbs-Thomson equation. Using experimental and computational methods, we find that his conclusions are correct, but the growth rates he reports are misleading. Our experiment reveals the true growth rate, which is about three times smaller than found by Helmuth. The dendritic morphology explains how fast constant growth rates can occur when the interior temperature of the sample is very near the melting point: the temperature at the tip of the dendrite is a few degrees below the melting point, but the liquid

  18. Understanding the scabbling of concrete using microwave energy

    SciTech Connect

    Buttress, A.J.; Jones, D.A.; Dodds, C.; Dimitrakis, G.; Campbell, C.J.; Dawson, A.; Kingman, S.W.

    2015-09-15

    Concrete blocks supplied by the UK Sellafield nuclear site were treated with microwave energy using a 15 kW system operating at 2.45 GHz. The effect of aggregate type (Whinstone, Gravel and Limestone); standoff distance; and effect of surface coating were studied to determine their influence on the systems performance in terms of mass and area removal rates and evaluate the controllability of the process. All blocks were scabbled successfully, with mass and area removal rates averaging 11.3 g s{sup −} {sup 1} and 3 cm s{sup −} {sup 1} respectively on treating large areas to a depth of 25 mm. The use of a Kevlar barrier between the block and applicator was found to significantly reduce the generation of dust as only 1.6% of the scabbled mass was in the < 106 μm — that generally considered to be airborne. Importantly Brazilian disc testing of the scabbled block showed that the process did not adversely affect structural properties of the test blocks after treatment.

  19. Infiltration and Evaporation of Diesel and Gasoline Droplets Spilled onto Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Adria-Mora, B.

    2015-12-01

    Pollution at gas stations due to small spills that occur during refueling of customer vehicles has received little attention. We have performed laboratory experiments in order to assess the processes of evaporation and infiltration of fuel spilled onto concrete samples. Changes in mass of both spilled diesel and gasoline droplets as a function of time have been analyzed. The infiltrated mass is affected by variations in humidity, among other parameters, which influence the amount of water condensed onto the concrete. Therefore, we used a humidity data logger and statistical tools to predict the evolution of the real mass of infiltrated fuel. The infiltrated mass roughly decreases exponentially, but the difference in behavior between both fuel types is important. The percentage of evaporated mass is much larger for gasoline, while infiltration is more significant for diesel. Also, the percentage of infiltrated liquid depends on the initial droplet mass. We also developed a multiphysics model, which couples pore-scale infiltration to turbulent atmospheric transport, to explain the experimental data. In conclusion, a substantial amount of fuel could both seep into the ground to contaminate groundwater and be released to the atmosphere. More studies are needed to quantify the public health implications of the released pollutants.

  20. Life cycle CO{sub 2} evaluation on reinforced concrete structures with high-strength concrete

    SciTech Connect

    Tae, Sungho; Baek, Cheonghoon Shin, Sungwoo

    2011-04-15

    The purpose of this study is to evaluate the environment performance of high-strength concrete used in super tall buildings as material of environmental load reduction. To this end, this study proposed a plan for the evaluation of energy consumption and CO{sub 2} emission throughout the life cycle of the building, and calculated the energy consumption and CO{sub 2} emission throughout the life cycle of tall apartment building that was actually constructed using this plan. Then, we evaluated the energy consumption and CO{sub 2} emission reduction performance for the life cycle of the building by the decrease of concrete and reinforced rebar quantities and the increase of building lifespan obtained through conversion of existing building's concrete compressive strength to 40 MPa high-strength concrete. As a result, the life cycle energy consumption in case 3, a high-strength concrete building, decreased 15.53% and 2.95% respectively compared with cases 1 and 2. The evaluation of the general strength concrete buildings and the life cycle CO{sub 2} emission also decreased 16.70% and 3.37% respectively, compared with cases 1 and 2.

  1. Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2009-04-01

    In this study, we investigated the feasibility of using sludge water from a ready-mixed concrete plant as mixing water in concrete containing either fly ash as an additive or a superplasticizer admixture based on sulfonated naphthalene-formaldehyde condensates (SNF). The chemical and physical properties of the sludge water and the dry sludge were investigated. Cement pastes were mixed using sludge water containing various levels of total solids content (0.5, 2.5, 5, 7.5, 10, 12.5, and 15%) in order to determine the optimum content in the sludge water. Increasing the total solids content beyond 5-6% tended to reduce the compressive strength and shorten the setting time. Concrete mixes were then prepared using sludge water containing 5-6% total solids content. The concrete samples were evaluated with regard to water required, setting time, slump, compressive strength, permeability, and resistance to acid attack. The use of sludge water in the concrete mix tended to reduce the effect of both fly ash and superplasticizer. Sludge water with a total solids content of less than 6% is suitable for use in the production of concrete with acceptable strength and durability.

  2. Degradation of the blister agent sulfur mustard, bis(2-chloroethyl) sulfide, on concrete.

    PubMed

    Brevett, Carol A S; Sumpter, Kenneth B; Wagner, George W; Rice, Jeffrey S

    2007-02-01

    The products formed from the degradation of the blister agent sulfur mustard [bis(2-chloroethyl) sulfide] on concrete were identified using gas chromatography with mass spectrometry detection (GC/MSD), (1)H NMR, 2D (1)H-(13)C NMR and (13)C solid state magic angle spinning (SSMAS) NMR. In situ and extraction experiments were performed. Sulfur mustard was detected in the in situ (13)C SSMAS samples for 12 weeks, whereas less than 5% of the sulfur mustard was detected in extracts from the concrete monoliths after 8 days. Sulfonium ions and (2-chloroethylthio)ethyl ether (T) were observed on the in situ samples after a period of 12 weeks, whereas vinyl species and bis(2-chloroethyl) sulfoxide were observed in the extracts of the concrete monoliths within 24h. The differences between the extraction and the SSMAS data indicated that the sulfur mustard existed in the concrete in a non-extractable form prior to its degradation. Extraction methods alone were not sufficient to identify the products; methods to identify the presence of non-extractable degradation products were also required. PMID:17049727

  3. Degradation of the blister agent sulfur mustard, bis(2-chloroethyl) sulfide, on concrete.

    PubMed

    Brevett, Carol A S; Sumpter, Kenneth B; Wagner, George W; Rice, Jeffrey S

    2007-02-01

    The products formed from the degradation of the blister agent sulfur mustard [bis(2-chloroethyl) sulfide] on concrete were identified using gas chromatography with mass spectrometry detection (GC/MSD), (1)H NMR, 2D (1)H-(13)C NMR and (13)C solid state magic angle spinning (SSMAS) NMR. In situ and extraction experiments were performed. Sulfur mustard was detected in the in situ (13)C SSMAS samples for 12 weeks, whereas less than 5% of the sulfur mustard was detected in extracts from the concrete monoliths after 8 days. Sulfonium ions and (2-chloroethylthio)ethyl ether (T) were observed on the in situ samples after a period of 12 weeks, whereas vinyl species and bis(2-chloroethyl) sulfoxide were observed in the extracts of the concrete monoliths within 24h. The differences between the extraction and the SSMAS data indicated that the sulfur mustard existed in the concrete in a non-extractable form prior to its degradation. Extraction methods alone were not sufficient to identify the products; methods to identify the presence of non-extractable degradation products were also required.

  4. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures.

    PubMed

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100 °C during heating to ~800 °C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m(-1) K(-1). The surrogate aggregates effectively reduce the conductivity to ~1.25 W m(-1) K(-1) at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  5. Effect of Surrogate Aggregates on the Thermal Conductivity of Concrete at Ambient and Elevated Temperatures

    PubMed Central

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100°C during heating to ~800°C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m−1 K−1. The surrogate aggregates effectively reduce the conductivity to ~1.25 W m−1 K−1 at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating. PMID:24696666

  6. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures.

    PubMed

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100 °C during heating to ~800 °C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m(-1) K(-1). The surrogate aggregates effectively reduce the conductivity to ~1.25 W m(-1) K(-1) at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating. PMID:24696666

  7. Electrical resistance tomography for imaging concrete structures

    SciTech Connect

    Buettner, M.; Ramirez, A.; Daily, W.

    1995-11-08

    Electrical Resistance Tomography (ERT) has been used to non-destructively examine the interior of reinforced concrete pillars in the laboratory during a water infiltration experiment. ERT is a technique for determining the electrical resistivity distribution within a volume from measurement of injected currents and the resulting electrical potential distribution on the surface. The transfer resistance (ratio of potential to injected current) data are inverted using an algorithm based on a finite element forward solution which is iteratively adjusted in a least squares sense until the measured and calculated transfer resistances agree to within some predetermined value. Laboratory specimens of concrete pillars, 61.0 cm (24 in) in length and 20.3 cm (8 in) on a side, were prepared with various combinations of steel reinforcing bars and voids (1.27 cm diameter) which ran along the length of the pillars. An array of electrodes was placed around the pillar to allow for injecting current and measuring the resulting potentials. After the baseline resistivity distribution was determined, water was added to a void near one comer of the pillar. ERT was used to determine the resistivity distribution of the pillar at regular time intervals as water was added. The ERT images show very clearly that the water was gradually imbibed into the concrete pillar during the course of the experiment. The resistivity decreased by nearly an order of magnitude near the point of water addition in the first hour, and by nearly two orders of magnitude by the end of the experiment. Other applications for this technology include monitoring of curing in concrete structures, detecting cracks in concrete structures, detecting rebar location and corrosion state, monitoring slope stability and the stability of footings, detecting and monitoring leaks from storage tanks, monitoring thermal processes during environmental remediation, and for detecting and monitoring contaminants in soil and groundwater.

  8. Permeability and corrosion resistance of reinforced sulfur concrete

    SciTech Connect

    Wrzesinski, W.R.; McBee, W.C.

    1988-01-01

    This report presents the findings form a 1-yr Bureau of Mines program in which sulfur concrete reinforcing materials were tested and evaluated to determine their resistance to corrosion. It also summarizes the permeation characteristics of sulfur concrete and the exemplary of precast, reinforced sulfur concrete structures in various industrial environments. The Bureau is furthering the development of sulfur concrete technology as part of a larger effort to find uses for the Nation's plentiful sulfur resources in construction materials. Sulfur concrete is a corrosion-resistant material that can be used in acid and salt environments where conventional materials fail.

  9. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    SciTech Connect

    1994-11-01

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete.

  10. Workability and mechanical properties of alkali activated slag concrete

    SciTech Connect

    Collins, F.G.; Sanjayan, J.G.

    1999-03-01

    This paper reports the results of an investigation on concrete containing alkali activated slag (AAS) as the binder, with emphasis on achievement of reasonable workability and equivalent one-day strength to portland cement concrete at normal curing temperatures. Two types of activators were used: sodium hydroxide in combination with sodium carbonate and sodium silicate in combination with hydrated lime. The fresh concrete properties reported include slump and slump loss, air content, and bleed. Mechanical properties of AAS concrete, including compressive strength, elastic modulus, flexural strength, drying shrinkage, and creep are contrasted with those of portland cement concrete.

  11. A quantitative empirical analysis of the abstract/concrete distinction.

    PubMed

    Hill, Felix; Korhonen, Anna; Bentz, Christian

    2014-01-01

    This study presents original evidence that abstract and concrete concepts are organized and represented differently in the mind, based on analyses of thousands of concepts in publicly available data sets and computational resources. First, we show that abstract and concrete concepts have differing patterns of association with other concepts. Second, we test recent hypotheses that abstract concepts are organized according to association, whereas concrete concepts are organized according to (semantic) similarity. Third, we present evidence suggesting that concrete representations are more strongly feature-based than abstract concepts. We argue that degree of feature-based structure may fundamentally determine concreteness, and we discuss implications for cognitive and computational models of meaning.

  12. Microbiologically induced deterioration of concrete--a review.

    PubMed

    Wei, Shiping; Jiang, Zhenglong; Liu, Hao; Zhou, Dongsheng; Sanchez-Silva, Mauricio

    2013-12-01

    Microbiologically induced deterioration (MID) causes corrosion of concrete by producing acids (including organic and inorganic acids) that degrade concrete components and thus compromise the integrity of sewer pipelines and other structures, creating significant problems worldwide. Understanding of the fundamental corrosion process and the causal agents will help us develop an appropriate strategy to minimize the costs in repairs. This review presents how microorganisms induce the deterioration of concrete, including the organisms involved and their colonization and succession on concrete, the microbial deterioration mechanism, the approaches of studying MID and safeguards against concrete biodeterioration. In addition, the uninvestigated research area of MID is also proposed.

  13. Foam concrete with porous mineral and organic additives

    NASA Astrophysics Data System (ADS)

    Kudiakov, A.; Prischepa, I.; Tolchennickov, M.

    2015-01-01

    The article presents results of studies of structural heat insulating foam concrete with porous mineral and organic additives. By mixing additives with the concrete the speed of the initial structure formation increases. The additives of ash loss and thermal-modified peat TMT 600 provide a stable increase of strength by compression and bending of foam concrete. In the dried foam concrete with the addition of TMT and ash loss thermal conductivity decreases by 20% and 7% respectively. The regularities of changes in the thermal conductivity at various moisture of foam concrete have been investigated.

  14. Survival of Ancylostoma caninum on bare ground, pea gravel, and concrete.

    PubMed

    Mark, D L

    1975-12-01

    Studies were done to determine the survival of infective Ancylostoma caninum 3rd-stage larvae on 3 ground covers commonly used in dog run construction: bare ground, pea gravel, and concrete. Changes in numbers of recovered larvae were compared to meterologic data and the most significant weather variables were determined. Larvae were recovered 1 to 7 days on bare ground. Larvae survived longer in the fecal mass (mean of 3 days) than on the bare ground (mean of 2 days). Rain was the most significant variable, in that it was positive in its effects (higher larval count) early in the experiment (causing fecal mass breakdown and release of larvae) and negative (lower larval count) later in the experiment (spreading larvae away from test site). Larvae were also recovered 1 to 7 days on pea gravel. They were recovered for a mean 2.6 days from the fecal sample, a mean of 1.5 days from the rocks directly below the fecal mass, and a mean of 1.3 days from the remaining rocks. Here also, rain was the most significant weather factor. It was negatively significant (lower larval count) for the fecal mass (spreading of the larvae) and positive for those in the pebbles (increasing the moisture in the pebbles). Survival time of larvae on concrete was shorter than that on the other 2 substrates: from 0 to 2 days. Larvae were recovered a mean of 1.3 days from the fecal mass and a mean of 0., days from the surrounding concrete. Rain was positively significant early in the experiments in that it released trapped larvae from the fecal mass. Sunlight consistently was negatively significant (lower larval count) due to its lethality to the unprotected larvae.

  15. HTGR Base Technology Program. Task 2: concrete properties in nuclear environment. A review of concrete material systems for application to prestressed concrete pressure vessels

    SciTech Connect

    Naus, D.J.

    1981-05-01

    Prestressed concrete pressure vessels (PCPVs) are designed to serve as primary pressure containment structures. The safety of these structures depends on a correct assessment of the loadings and proper design of the vessels to accept these loadings. Proper vessel design requires a knowledge of the component (material) properties. Because concrete is one of the primary constituents of PCPVs, knowledge of its behavior is required to produce optimum PCPV designs. Concrete material systems are reviewed with respect to constituents, mix design, placing, curing, and strength evaluations, and typical concrete property data are presented. Effects of extreme loadings (elevated temperature, multiaxial, irradiation) on concrete behavior are described. Finally, specialty concrete material systems (high strength, fibrous, polymer, lightweight, refractory) are reviewed. 235 references.

  16. Composition of Meridiani Hematite-rich Spherules: A Mass-Balance Mixing-Model Approach

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.; Athena Science Team

    2005-03-01

    A mass-balance model using APXS data and microscopic images indicates that the composition of spherules ("blueberries"), found at the Meridiani site by the Mars Exploration Rover Opportunity and thought to be concretions, contain ~45-60 wt% hematite.

  17. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    NASA Astrophysics Data System (ADS)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  18. Surface treated polypropylene (PP) fibres for reinforced concrete

    SciTech Connect

    López-Buendía, Angel M.; Romero-Sánchez, María Dolores; Climent, Verónica

    2013-12-15

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in the mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.

  19. Recycling of PET bottles as fine aggregate in concrete

    SciTech Connect

    Frigione, Mariaenrica

    2010-06-15

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365 days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility.

  20. An Investigation of Tendon Corrosion-Inhibitor Leakage into Concrete

    SciTech Connect

    Costello, J.F.; Naus, D.J.; Oland, C.B.

    1999-07-05

    During inspections performed at US nuclear power plants several years ago, some of the prestressed concrete containment had experienced leakage of the tendon sheathing filler. A study was conducted to indicate the extent of the leakage into the concrete and its potential effects on concrete properties. Concrete core samples were obtained from the Trojan Nuclear Plant. Examination and testing of the core samples indicated that the appearance of tendon sheathing filler on the surface was due to leakage of the filler from the conduits and its subsequent migration to the concrete surface through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks with no perceptible movement into the concrete. Results of compressive strength tests indicated that the concrete quality was consistent in the containment and that the strength had increased relative to the strength at 28 days age.

  1. Innovative process routes for a high-quality concrete recycling.

    PubMed

    Menard, Y; Bru, K; Touze, S; Lemoign, A; Poirier, J E; Ruffie, G; Bonnaudin, F; Von Der Weid, F

    2013-06-01

    This study presents alternative methods for the processing of concrete waste. The mechanical stresses needed for the embrittlement of the mortar matrix and further selective crushing of concrete were generated by either electric impulses or microwaves heating. Tests were carried out on lab-made concrete samples representative of concrete waste from concrete mixer trucks and on concrete waste collected on a French demolition site. The results obtained so far show that both techniques can be used to weaken concrete samples and to enhance aggregate selective liberation (that is the production of cement paste-free aggregates) during crushing and grinding. Electric pulses treatment seems to appear more efficient, more robust and less energy consuming (1-3 kWh t(-1)) than microwave treatment (10-40 kWh t(-1)) but it can only be applied on samples in water leading to a major drawback for recycling aggregates or cement paste in the cement production process. PMID:23490359

  2. Recycling of PET bottles as fine aggregate in concrete.

    PubMed

    Frigione, Mariaenrica

    2010-06-01

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility. PMID:20176466

  3. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    SciTech Connect

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  4. Innovative process routes for a high-quality concrete recycling.

    PubMed

    Menard, Y; Bru, K; Touze, S; Lemoign, A; Poirier, J E; Ruffie, G; Bonnaudin, F; Von Der Weid, F

    2013-06-01

    This study presents alternative methods for the processing of concrete waste. The mechanical stresses needed for the embrittlement of the mortar matrix and further selective crushing of concrete were generated by either electric impulses or microwaves heating. Tests were carried out on lab-made concrete samples representative of concrete waste from concrete mixer trucks and on concrete waste collected on a French demolition site. The results obtained so far show that both techniques can be used to weaken concrete samples and to enhance aggregate selective liberation (that is the production of cement paste-free aggregates) during crushing and grinding. Electric pulses treatment seems to appear more efficient, more robust and less energy consuming (1-3 kWh t(-1)) than microwave treatment (10-40 kWh t(-1)) but it can only be applied on samples in water leading to a major drawback for recycling aggregates or cement paste in the cement production process.

  5. Numerical Study Of The Effects Of Preloading, Axial Loading And Concrete Shrinkage On Reinforced Concrete Elements Strengthened By Concrete Layers And Jackets

    SciTech Connect

    Lampropoulos, A. P.; Dritsos, S. E.

    2008-07-08

    In this study, the technique of seismic strengthening existing reinforced concrete columns and beams using additional concrete layers and jackets is examined. The finite element method and the finite element program ATENA is used in this investigation. When a reinforced jacket or layer is being constructed around a column it is already preloaded due to existing service loads. This effect has been examined for different values of the axial load normalized to the strengthened column. The techniques of strengthening with a concrete jacket or a reinforced concrete layer on the compressive side of the column are examined. Another phenomenon that is examined in this study is the shrinkage of the new concrete of an additional layer used to strengthen an existing member. For this investigation, a simply supported beam with an additional reinforced concrete layer on the tensile side is examined. The results demonstrate that the effect of preloading is important when a reinforced concrete layer is being used with shear connectors between the old and the new reinforcement. It was also found that the shrinkage of the new concrete reduces the strength of the strengthened beam and induces an initial sliding between the old and the new concrete.

  6. COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway

    NASA Astrophysics Data System (ADS)

    Cepuritis, Rolands; Willy Danielsen, Svein

    2014-05-01

    COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway Rolands Cepuritis, Norcem/NTNU and Svein Willy Danielsen, SINTEF Aggregate production is a mining operation where no purification of the "ore" is necessary. Still it is extremely rare that an aggregate production plant is operating on the basis of zero-waste concept. This is since historically the fine crushed aggregate (particles with a size of less than 2, 4 or sometimes 8 mm) has been regarded as a by-product or waste of the more valuable coarse aggregate production. The reason is that the crushed coarse aggregates can easily replace coarse rounded natural stones in almost any concrete composition; while, the situation with the sand is different. The production of coarse aggregate normally yields fine fractions with rough surface texture, flaky or elongated particles an inadequate gradation. When such a material replaces smooth and rounded natural sand grains in a concrete mix, the result is usually poor and much more water and cement has to be used to achieve adequate concrete flow. The consequences are huge stockpiles of the crushed fine fractions that can't be sold (mass balance problems) for the aggregate producers, sustainability problems for the whole industry and environmental issues for society due to dumping and storing of the fine co-generated material. There have been attempts of utilising the material in concrete before; however, they have mostly ended up in failure. There have been attempts to adjust the crushed sand to the properties of the natural sand, which would still give a lot of waste, especially if the grading would have to be adjusted and the high amounts of fines abundantly present in the crushed sand would have to be removed. Another fundamental reason for failure has been that historically such attempts have mainly ended up in a research carried out by people (both industrial and academic) with aggregate background (= parties willing to find market

  7. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  8. Precast concrete sandwich panels subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Runge, Matthew W.

    Precast concrete sandwich panels are a relatively new product in the construction industry. The design of these panels incorporates properties that allow for great resilience against temperature fluctuation as well as the very rapid and precise construction of facilities. The concrete sandwich panels investigated in this study represent the second generation of an ongoing research and development project. This second generation of panels have been engineered to construct midsized commercial buildings up to three stories in height as well as residential dwellings. The panels consist of a double-tee structural wythe, a foam core and a fascia wythe, joined by shear connectors. Structures constructed from these panels may be subjected to extreme loading including the effects of seismic and blast loading in addition to wind. The aim of this work was to investigate the behaviour of this particular sandwich panel when subjected to structural impact events. The experimental program consisted of fourteen concrete sandwich panels, five of which were considered full-sized specimens (2700 mm X 1200mm X 270 mm) and nine half-sized specimens (2700mm X 600mm X 270 mm) The panels were subjected to impact loads from a pendulum impact hammer where the total energy applied to the panels was varied by changing the mass of the hammer. The applied loads, displacements, accelerations, and strains at the mid-span of the panel as well as the reaction point forces were monitored during the impact. The behaviour of the panels was determined primarily from the experimental results. The applied loads at low energy levels that caused little to no residual deflection as well as the applied loads at high energy levels that represent catastrophic events and thus caused immediate failure were determined from an impact on the structural and the fascia wythes. Applied loads at intermediate energy levels representing extreme events were also used to determine whether or not the panels could withstand

  9. Strength and Durability of Fly Ash-Based Fiber-Reinforced Geopolymer Concrete in a Simulated Marine Environment

    NASA Astrophysics Data System (ADS)

    Martinez Rivera, Francisco Javier

    This research is aimed at investigating the corrosion durability of polyolefin fiberreinforced fly ash-based geopolymer structural concrete (hereafter referred to as GPC, in contradistinction to unreinforced geopolymer concrete referred to as simply geopolymer concrete), where cement is completely replaced by fly ash, that is activated by alkalis, sodium hydroxide and sodium silicate. The durability in a marine environment is tested through an electrochemical method for accelerated corrosion. The GPC achieved compressive strengths in excess of 6,000 psi. Fiber reinforced beams contained polyolefin fibers in the amounts of 0.1%, 0.3%, and 0.5% by volume. After being subjected to corrosion damage, the GPC beams were analyzed through a method of crack scoring, steel mass loss, and residual flexural strength testing. Fiber reinforced GPC beams showed greater resistance to corrosion damage with higher residual flexural strength. This makes GPC an attractive material for use in submerged marine structures.

  10. Terrestrial Fe-oxide Concretions and Mars Blueberries: Comparisons of Similar Advective and Diffusive Chemical Infiltration Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Chan, M. A.

    2006-12-01

    Abundant iron oxide concretions occurring in Navajo Sandstone of southern Utah and those discovered at Meridiani Planum, Mars share many common observable physical traits such as their spheriodal shapes, occurrence, and distribution patterns in sediments. Terrestrial concretions are products of interaction between oxygen-rich aquifer water and basin-derived reducing (iron-rich) water. Water-rock interaction simulations show that diffusion of oxygen and iron supplied by slow-moving water is a reasonable mechanism for producing observed concretion patterns. In short, southern Utah iron oxide concretions are results of Liesegang-type diffusive infiltration reactions in sediments. We propose that the formation of blueberry hematite concretions in Mars sediments followed a similar diagenetic mechanism where iron was derived from the alteration of volcanic substrate and oxygen was provided by the early Martian atmosphere. Although the terrestrial analog differs in the original host rock composition, both the terrestrial and Mars iron-oxide precipitation mechanisms utilize iron and oxygen interactions in sedimentary host rock with diffusive infiltration of solutes from two opposite sources. For the terrestrial model, slow advection of iron-rich water is an important factor that allowed pervasive and in places massive precipitation of iron-oxide concretions. In Mars, evaporative flux of water at the top of the sediment column may have produced a slow advective mass-transfer mechanism that provided a steady source and the right quantity of iron. The similarities of the terrestrial and Martian systems are demonstrated using a water-rock interaction simulator Sym.8, initially in one-dimensional systems. Boundary conditions such as oxygen content of water, partial pressure of oxygen, and supply rate of iron were varied. The results demonstrate the importance of slow advection of water and diffusive processes for producing diagenetic iron oxide concretions.

  11. The Syntactic and Semantic Processing of Mass and Count Nouns: An ERP Study

    PubMed Central

    Chiarelli, Valentina; El Yagoubi, Radouane; Mondini, Sara; Bisiacchi, Patrizia; Semenza, Carlo

    2011-01-01

    The present study addressed the question of whether count and mass nouns are differentially processed in the brain. In two different ERP (Event-Related Potentials) tasks we explored the semantic and syntactic levels of such distinction. Mass and count nouns typically differ in concreteness, hence the effect of this important variable was factorially examined in each task. Thus the stimuli presented were: count concrete, count abstract, mass concrete or mass abstract. The first experiment (concrete/abstract semantic judgment task) involved the interaction between the N400 concreteness effect and the Mass/Count condition, revealing a substantial effect between mass and count nouns at the semantic level. The second experiment (sentence syntactic violation task) showed a Mass/Count distinction on left anterior negativity (LAN) and on P600 components, confirming the difference at the syntactic level. This study suggests that the brain differentiates between count and mass nouns not only at the syntactic level but also at the semantic level. Implications for our understanding of the brain mechanisms underlying the Mass/Count distinction are discussed. PMID:21998715

  12. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete

    SciTech Connect

    Akcaoezoglu, Semiha; Atis, Cengiz Duran; Akcaoezoglu, Kubilay

    2010-02-15

    In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.

  13. Mix design and pollution control potential of pervious concrete with non-compliant waste fly ash.

    PubMed

    Soto-Pérez, Linoshka; Hwang, Sangchul

    2016-07-01

    Pervious concrete mix was optimized for the maximum compressive strength and the desired permeability at 7 mm/s with varying percentages of water-to-binder (W/B), fly ash-to-binder (FA/B), nano-iron oxide-to-binder (NI/B) and water reducer-to-binder (WR/B). The mass ratio of coarse aggregates in sizes of 4.75-9.5 mm to the binder was fixed at 4:1. Waste FA used in the study was not compliant with a standard specification for use as a mineral admixture in concrete. One optimum pervious concrete (Opt A) targeting high volume FA utilization had a 28-day compressive strength of 22.8 MPa and a permeability of 5.6 mm/s with a mix design at 36% W/B, 35% FA/B, 6% NI/B and 1.2% WR/B. The other (Opt B) targeting a less use of admixtures had a 28-day compressive strength and a permeability of 21.4 MPa and 7.6 mm/s, respectively, at 32% W/B, 10% FA/B, 0.5% NI/B and 0.8% WR/B. During 10 loads at a 2-h contact time each, the Opt A and Opt B achieved the average fecal coliform removals of 72.4% and 77.9% and phosphorus removals of 49.8% and 40.5%, respectively. Therefore, non-compliant waste FA could be utilized for a cleaner production of pervious concrete possessing a greater structural strength and compatible hydrological property and pollution control potential, compared to the ordinary pervious concrete.

  14. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete.

    PubMed

    Akçaözoğlu, Semiha; Atiş, Cengiz Duran; Akçaözoğlu, Kubilay

    2010-02-01

    In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependent on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving. PMID:19853433

  15. Engineering properties of inorganic polymer concretes (IPCs)

    SciTech Connect

    Sofi, M.; Deventer, J.S.J. van . E-mail: jannie@unimelb.edu.au; Mendis, P.A. . E-mail: pamendis@unimelb.edu.au; Lukey, G.C.

    2007-02-15

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures.

  16. Isolation and Identification of Concrete Environment Bacteria

    NASA Astrophysics Data System (ADS)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  17. Brittle failure kinetics model for concrete

    SciTech Connect

    Silling, S.A.

    1997-03-01

    A new constitutive model is proposed for the modeling of penetration and large stress waves in concrete. Rate effects are incorporated explicitly into the damage evolution law, hence the term brittle failure kinetics. The damage variable parameterizes a family of Mohr-Coulomb strength curves. The model, which has been implemented in the CTH code, has been shown to reproduce some distinctive phenomena that occur in penetration of concrete targets. Among these are the sharp spike in deceleration of a rigid penetrator immediately after impact. Another is the size scale effect, which leads to a nonlinear scaling of penetration depth with penetrator size. This paper discusses the theory of the model and some results of an extensive validation effort.

  18. Mortar constituent of concrete under cyclic compression

    NASA Astrophysics Data System (ADS)

    Maher, A.; Darwin, D.

    1980-10-01

    The behavior of the mortar constituent of concrete under cyclic compression was studied and a simple analytic model was developed to represent its cyclic behavior. Experimental work consisted of monotonic and cyclic compressive loading of mortar. Two mixes were used, with proportions corresponding to concretes having water cement ratios of 0.5 and 0.6. Forty-four groups of specimens were tested at ages ranging from 5 to 70 days. complete monotonic and cyclic stress strain envelopes were obtained. A number of loading regimes were investigated, including cycles to a constant maximum strain. Major emphasis was placed on tests using relatively high stress cycles. Degradation was shown to be a continuous process and a function of both total strain and load history. No stability or fatigue limit was apparent.

  19. Use of POTW biosolids in bituminous concrete

    SciTech Connect

    Smith, R.C.; Angelbeck, D.I.

    1995-11-01

    Although wastewater treatment helps alleviate water pollution, it creates residual by-products that can pose a disposal dilemma. Four main practices are presently employed to dispose of wastewater treatment plant sludge: land application, composting, incineration, and landfilling. A fifth disposal method that may help to alleviate the sludge disposal problem in future years is the incorporation of sludge into useful end products such as fertilizer or construction materials. This research was designed to evaluate the properties of bituminous concrete mixes that had anaerobically digested sewage sludge incorporated into their design. In doing so, it was desired to verify the work of Wells concerning sludge incorporation into bituminous concrete mixes using today`s asphalts. Hot mix and cold mix designs were studied.

  20. Electrical resistance tomography of concrete structures

    SciTech Connect

    Daily, W.; Ramirez, A.; Binley, A.; Henry-Poulter, S.

    1993-10-01

    The purpose of this work is to determine the feasibility of using Electrical resistance tomography (ERT) to nondestructively examine the interior of concrete structures such as bridge pillars and roadways. We report the results of experiments wherein ERT is used to image the two concrete specimens in the laboratory. Each specimen is 5 inches square and 12 inches long and contained steel reinforcing rods along its length. Twenty electrodes were placed on each sample and an-image of electrical resistivity distribution was generated from current and voltage measurements. We found that the images show the general location of the reinforcing steel and, what`s more important, delineate the absence of the steel. The method may therefore be useful for determining if such steel has been destroyed by corrosion, however to make it useful, the technique must have better resolution so that individual reinforcing steel units are resolved.

  1. Nondestructive Evaluation of Thick Concrete Structures

    SciTech Connect

    Clayton, Dwight A

    2015-01-01

    Materials issues are a key concern for the existing nuclear reactor fleet in the United States as material degradation can lead to increased maintenance, increased downtime, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of both known and new forms of degradation. A multitude of concrete-based structures are typically part of a light water reactor plant to provide foundation, support, shielding, and containment functions. The size and complexity of nuclear power plant containment structures and the heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. This paper examines the benefits of using time-frequency analysis with Synthetic Aperture Focusing Technique (SAFT). By using wavelet packet decomposition, the original ultrasound signals are decomposed into various frequency bands that facilitates highly selective analysis of the signal’s frequency content and can be visualized using the familiar SAFT image reconstruction algorithm.

  2. Composite binders for concrete with reduced permeability

    NASA Astrophysics Data System (ADS)

    Fediuk, R.; Yushin, A.

    2016-02-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m2, it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa).

  3. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    NASA Astrophysics Data System (ADS)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  4. Environmental evaluation of green concretes versus conventional concrete by means of LCA.

    PubMed

    Turk, Janez; Cotič, Zvonko; Mladenovič, Ana; Šajna, Aljoša

    2015-11-01

    A number of green concrete mixes having similar basic properties were evaluated from the environmental point of view by means of the Life Cycle Assessment method, and compared with a corresponding conventional concrete mix. The investigated green concrete mixes were prepared from three different types of industrial by-products, i.e. (1) foundry sand, and (2) steel slag, both of which were used as manufactured aggregates, and (3) fly ash, which was used as a mineral admixture. Some green concrete mixes were also prepared from a recycled aggregate, which was obtained from reinforced concrete waste. In some of the green concrete mixes the recycled aggregate was used in combination with the above-mentioned types of manufactured aggregate and fly ash. All of these materials are able, to some extent, to replace natural aggregate or Portland cement in concrete mixes, thus providing an environmental benefit from the point of view of the saving of natural resources. Taking into account consequential modelling, the credit related to the avoidance of the need to dispose of the waste materials is considered as a benefit. In case of the recycling of waste concrete into aggregate, credit is attributed to the recovery of scrap iron from the steel reinforcement. In the case of the use of steel slag, credit is attributed to the recovery of metals, which are extracted from the slag before being used as an alternative material. The disadvantage of using alternative materials and recycled aggregates can sometimes be their relatively long delivery distance. For this reason, a transport sensitivity analysis was carried out. The results indicate that the use of the discussed alternative and recycled materials is beneficial in the concrete production industry. Preference is given to the fly ash and foundry sand scenarios, and especially to those scenarios which are based on the combined use of recycled aggregate with these two alternative materials. It was found that longer delivery

  5. Environmental evaluation of green concretes versus conventional concrete by means of LCA.

    PubMed

    Turk, Janez; Cotič, Zvonko; Mladenovič, Ana; Šajna, Aljoša

    2015-11-01

    A number of green concrete mixes having similar basic properties were evaluated from the environmental point of view by means of the Life Cycle Assessment method, and compared with a corresponding conventional concrete mix. The investigated green concrete mixes were prepared from three different types of industrial by-products, i.e. (1) foundry sand, and (2) steel slag, both of which were used as manufactured aggregates, and (3) fly ash, which was used as a mineral admixture. Some green concrete mixes were also prepared from a recycled aggregate, which was obtained from reinforced concrete waste. In some of the green concrete mixes the recycled aggregate was used in combination with the above-mentioned types of manufactured aggregate and fly ash. All of these materials are able, to some extent, to replace natural aggregate or Portland cement in concrete mixes, thus providing an environmental benefit from the point of view of the saving of natural resources. Taking into account consequential modelling, the credit related to the avoidance of the need to dispose of the waste materials is considered as a benefit. In case of the recycling of waste concrete into aggregate, credit is attributed to the recovery of scrap iron from the steel reinforcement. In the case of the use of steel slag, credit is attributed to the recovery of metals, which are extracted from the slag before being used as an alternative material. The disadvantage of using alternative materials and recycled aggregates can sometimes be their relatively long delivery distance. For this reason, a transport sensitivity analysis was carried out. The results indicate that the use of the discussed alternative and recycled materials is beneficial in the concrete production industry. Preference is given to the fly ash and foundry sand scenarios, and especially to those scenarios which are based on the combined use of recycled aggregate with these two alternative materials. It was found that longer delivery

  6. Insecticide washoff from concrete surfaces: characterization and prediction.

    PubMed

    Luo, Yuzhou; Jorgenson, Brant C; Thuyet, Dang Quoc; Young, Thomas M; Spurlock, Frank; Goh, Kean S

    2014-01-01

    Pesticide runoff from impervious surfaces is a significant cause of aquatic contamination and ecologic toxicity in urban waterways. Effective mitigation requires better understanding and prediction of off-site transport processes. Presented here is a comprehensive study on pesticide washoff from concrete surfaces, including washoff tests, experimental data analysis, model development, and application. Controlled rainfall experiments were conducted to characterize washoff loads of commercially formulated insecticides with eight different active ingredients. On the basis of the analysis of experimental results, a semimechanistic model was developed to predict pesticide buildup and washoff processes on concrete surfaces. Three pesticide product specific parameters and their time dependences were introduced with empirical functions to simulate the persistence, transferability, and exponential characteristics of the pesticide washoff mechanism. The parameters were incorporated using first-order kinetics and Fick's second law to describe pesticide buildup and washoff processes, respectively. The model was applied to data from 21 data sets collected during 38 rainfall events, with parameters calibrated to pesticide products and environmental conditions. The model satisfactorily captured pesticide mass loads and their temporal variations for pesticides with a wide range of chemical properties (log KOW = 0.6-6.9) under both single and repeated (1-7 times) rainfall events after varying set times (1.5 h∼238 days after application). Results of this study suggested that, in addition to commonly reported physicochemical properties for the active ingredient of a pesticide product, additional parameters determined from washoff experiments are required for risk assessments of pesticide applications on urban impervious surfaces. PMID:24304124

  7. Acid depositions and concrete attack: Main influences

    SciTech Connect

    Sersale, R.; Frigione, G.; Bonavita, L.

    1998-01-01

    The results of an experimental research on the factors responsible to a greater extent for the action of simulated acid precipitations on cement concrete works, both in static and in dynamic conditions, are discussed. The influence of the cement type, the role of calcium hydroxide, the influence of water-cement ratio, and the retard effect on assault, owing to a surface treatment with a water repellent agent, are emphasized.

  8. Production of Lunar Concrete Using Molten Sulfur

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1993-01-01

    The United States has made a commitment to go back to the moon to stay in the early part of the next century. In order to achieve this objective it became evident to NASA that a Lunar Outpost will be needed to house scientists and astronauts who will be living on the moon for extended periods of time. A study has been undertaken by the authors and supported by NASA to study the feasibility of using lunar regolith with different binders such as molten sulfur, epoxy or hydraulic cement as a construction material for different lunar structures. The basic premise of this study is that it will be more logical and cost effective to manufacture lunar construction materials utilizing indigenous resources rather than transporting needed materials from earth. Lunar concrete (made from Hydraulic Cement and lunar soil) has been studied and suggested as the construction material of choice for some of the lunar projects. Unfortunately, its hydration requires water which is going to be a precious commodity on the moon. Therefore this study explores the feasibility of using binders other than hydraulic cement such as sulfur or epoxy with lunar regolith as a construction material. This report describes findings of this study which deals specifically with using molten sulfur as a binder for Lunar concrete. It describes laboratory experiments in which the sulfur to lunar soil simulant ratios by weight were varied to study the minimum amount of sulfur required to produce a particular strength. The compressive and tensile strengths of these mixes were evaluated. Metal and fiber glass fibers were added to some of the mixes to study their effects on the compressive and tensile strengths. This report also describes experiments where the sulfur is melted and mixed with the lunar regolith in a specially designed vacuum chamber. The properties of the produced concrete were compared to those of concrete produced under normal pressure.

  9. Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces

    NASA Astrophysics Data System (ADS)

    Moghaddasi B., Nasim S.; Zhang, Yunfeng; Hu, Xiaobin

    2012-03-01

    This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program — OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.

  10. Review of concrete biodeterioration in relation to nuclear waste.

    PubMed

    Turick, Charles E; Berry, Christopher J

    2016-01-01

    Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces.

  11. Methods for ultimate load analysis of concrete containments

    SciTech Connect

    Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.; Lu, Y.M.

    1985-06-01

    The objective of the research project described in this interim report is to develop a qualified methodology for the ultimate load analysis of concrete containment structures. The EPRI-sponsored nonlinear finite element code ABAQUS-EPGEN, which has recently been modified to incorporate a constitutive model for plain concrete and modeling capabilities for reinforced and prestressed concrete containments, is utilized as the structural analysis tool in this development. The ABAQUS-EPGEN concrete modeling and analysis capabilities are first evaluated by comparing measured data with code predictions for full-scale reinforced concrete slab specimens tested under uniaxial and biaxial tension. These specimen tests simulate the behavior of the cylindrical wall of a typical concrete containment structure under internal pressure. The calculated and measured strain comparisons are used to improve the constitutive model and to qualify the code for concrete containment analysis. The second part of this effort deals with the ultimate load analysis of reinforced and prestressed containments to determine bounds on the global overpressure capacities of typical concrete containment structures. The third part of this effort further examines such local effects through a substructural analysis of the liner-concrete interaction at major concrete cracks.

  12. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  13. Review of concrete biodeterioration in relation to nuclear waste.

    PubMed

    Turick, Charles E; Berry, Christopher J

    2016-01-01

    Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. PMID:26397745

  14. Prompt gamma analysis of chlorine in concrete for corrosion study.

    PubMed

    Naqvi, A A; Nagadi, M M; Al-Amoudi, O S B

    2006-02-01

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine gamma-rays and calcium gamma-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine gamma-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples. PMID:16129605

  15. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  16. Concrete enclosure for shielding a neutron source.

    PubMed

    Vega-Carrillo, H R; Villagrana-Muñoz, L E; Rivera-Perez, E; de Leon-Martinez, H A; Soto-Bernal, T G; Hernández-Davila, V M

    2013-09-01

    In the aim to design a shielding for a 0.185 TBq (239)PuBe isotopic neutron source several Monte Carlo calculations were carried out using MCNP5 code. First, a point-like source was modeled in vacuum and the neutron spectrum and ambient dose equivalent were calculated at several distances ranging from 5 cm up to 150 cm, these calculations were repeated modeling a real source, including air, and a 1×1×1 m(3) enclosure with 5, 15, 20, 25, 30, 50 and 80 cm-thick Portland type concrete walls. At all the points located inside the enclosure neutron spectra from 10(-8) up to 0.5 MeV were the same regardless the distance from the source showing the room-return effect in the enclosure, for energies larger than 0.5 MeV neutron spectra are diminished as the distance increases. Outside the enclosure it was noticed that neutron spectra becomes "softer" as the concrete thickness increases due to reduction of mean neutron energy. With the ambient dose values the attenuation curve in terms of concrete thickness was calculated.

  17. Radionuclide Retention in Concrete Waste Forms

    SciTech Connect

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  18. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  19. The experimental investigation of concrete carbonation depth

    SciTech Connect

    Chang, C.-F. . E-mail: s83808@yahoo.com.tw; Chen, J.-W.

    2006-09-15

    Phenolphthalein indicator has traditionally been used to determine the depth of carbonation in concrete. This investigation uses the thermalgravimetric analysis (TGA) method, which tests the concentration distribution of Ca(OH){sub 2} and CaCO{sub 3}, while the X-ray diffraction analysis (XRDA) tests the intensity distribution of Ca(OH){sub 2} and CaCO{sub 3}. The Fourier transformation infrared spectroscopy (FTIR) test method detects the presence of C-O in concrete samples as a basis for determining the presence of CaCO{sub 3}. Concrete specimens were prepared and subjected to accelerated carbonation under conditions of 23 deg. C temperature, 70% RH and 20% concentration of CO{sub 2}. The test results of TGA and XRDA indicate that there exist a sharp carbonation front. Three zones of carbonation were identified according to the degree of carbonation and pH in the pore solutions. The TGA, XRDA and FTIR results showed the depth of carbonation front is twice of that determined from phenolphthalein indicator.

  20. Assessment of corrosion rate in prestressed concrete with acoustic emission

    NASA Astrophysics Data System (ADS)

    Mangual, Jesé; ElBatanouny, Mohamed K.; Vélez, William; Ziehl, Paul; Matta, Fabio; González, Miguel

    2011-04-01

    Acoustic Emission (AE) sensing was employed to assess the rate of corrosion of steel strands in small scale concrete block specimens. The corrosion process was accelerated in a laboratory environment using a potentiostat to supply a constant potential difference with a 3% NaCl solution as the electrolyte. The embedded prestressing steel strand served as the anode, and a copper plate served as the cathode. Corrosion rate, half-cell potential measurements, and AE activity were recorded continuously throughout each test and examined to assess the development of corrosion and its rate. At the end of each test the steel strands were cleaned and re-weighed to determine the mass loss and evaluate it vis-á-vis the AE data. The initiation and propagation phases of corrosion were correlated with the percentage mass loss of steel and the acquired AE signals. Results indicate that AE monitoring may be a useful aid in the detection and differentiation of the steel deterioration phases, and estimation of the locations of corroded areas.

  1. Removal of 2,4-dinitrotoluene from concrete using bioremediation, agar extraction, and photocatalysis.

    PubMed

    Phutane, S R; Renner, J N; Nelson, S L; Seames, W S; Páca, J; Sundstrom, T J; Kozliak, E I

    2007-01-01

    Three methods, i.e. bioremediation by application of bacteria-laden agar, physical absorption of DNT by agar, or illumination by UV light were evaluated for the removal of 2,4-dinitrotoluene (DNT) from building-grade concrete. DNT biodegradation by Pseudomonas putida TOD was turned "on" and "off" by using toluene as a co-substrate thus allowing for rate-limiting step assessment. Bioremediation efficiency can be > 95-97% in 5-7 d if the process occurs at optimum growth temperature with the biological processes appearing to be rate-limiting. Sterile agar can remove up to 80% of DNT from concrete thus allowing DNT desorption and biodegradation to be conducted separately. Photoremediation results in 50% DNT removal in 9-12 d with no further removal, most likely due to mass transfer limitations.

  2. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability.

    PubMed

    Wang, Jianyun; Ersan, Yusuf Cagatay; Boon, Nico; De Belie, Nele

    2016-04-01

    The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined.

  3. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability.

    PubMed

    Wang, Jianyun; Ersan, Yusuf Cagatay; Boon, Nico; De Belie, Nele

    2016-04-01

    The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined. PMID:26896159

  4. The art of thermal mass

    SciTech Connect

    Miller, B.

    1999-10-01

    From cave dwellers to pueblo builders, early people of the southwest used the earth to moderated the extremes of their climate. Now, at the turn of the 21st century, a Colorado builder combines ancient knowledge with high technology to create modern homes that stay naturally warm in the winter and cool in the summer. With passive solar design, incorporating lots concrete mass, Judy Niemeyer builds custom homes that hardly even need thermostats. Before clients Ralph and Sharon Dickman stumbled into Niemeyer, owner of Tierra Concrete Homes in Pueblo, Colorado, thermal mass was not in their vocabulary. Now, when temperatures reach 100 F (38 C) in July and their neighbors are running up their electric bills, the Dickmans are saving for vacation. With the thermal mass integrated into their new home, they don't need a cooling system. And in winter, their gas-fired log fireplace is about all they need to supplement the sun. ``We love the natural lighting, the open feeling and the great view out the huge windows,'' says Sharon. And they stay comfortable year-round with very low energy bills.

  5. The effects of utilizing silica fume in Portland Cement Pervious Concrete

    NASA Astrophysics Data System (ADS)

    Mann, Daniel Allen

    Silica fume has long been used as a supplementary cementing material to provide a high density, high strength, and durable building material. Silica fume has a particle size a fraction of any conventional cement, which allows it to increase concrete strength by decreasing the porosity especially near the aggregates surface. Because Portland Cement Pervious Concrete (PCPC) has a smaller bond area between aggregate and paste, silica fume has significant impacts on the properties of the PCPC. The research in this paper studies the workability of a cement paste containing silica fume in addition to analyzing the results of testing on Portland Cement Pervious Concrete mixtures that also contained silica fume. Testing conducted included a study of the effects of silica fume on cement's rheological properties at various dosage rates ranging from zero to ten percent by mass. It was determined that silica fume has negligible effects on the viscosity of cement paste until a dosage rate of five percent, at which point the viscosity increases rapidly. In addition to the rheological testing of the cement paste, trials were also conducted on the pervious concrete samples. Sample groups included mixes with river gravel and chipped limestone as aggregate, washed and unwashed, and two different void contents. Workability tests showed that mixtures containing a silica fume dosage rate of 5 percent or less had comparable or slightly improved workability when compared to control groups. Workability was found to decrease at a 7 percent dosage rate. Samples were tested for compressive strength at 7 and 28 days and splitting tensile strength at 28 days. It was found in most sample groups, strength increased with dosage rates of 3 to 5 percent but often decreased when the dosage reached 7 percent. Abrasion testing showed that both samples containing washed aggregate and samples containing silica fume exhibited a reduced mass loss.

  6. Modeling and assessment of concrete and the energy infrastructure

    SciTech Connect

    Guthrie, G.; Carey, J.

    1998-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Concrete is an essential component of the energy infrastructure. The characteristics of concrete that determine its effectiveness in any application--be it construction (e.g., roads, bridges, dams) or waste isolation--result from the chemical and structural evolution of the particular concrete structure. Geochemical and mineralogical factors are among the most important, yet most overlooked, controls of this evolutionary process. This project is geared at using a combination of advanced geochemical and mineralogical experimentation, characterization, and modeling (much of which was developed to understand geological systems such as Yucca Mountain) to understand the evolution of concrete in a mechanistic way. The goal was to develop a systematic approach to problems ranging from premature degradation of concrete to the design of next-generation concretes.

  7. Hydrothermal alteration of concrete: Yucca Mountain repository analogues

    SciTech Connect

    Myers, K.B.; Meike, A.

    1997-10-01

    Concrete could comprise a major share of construction materials present in the potential Yucca Mountain high-level radioactive waste repository. Concrete and shotcrete would be used as mechanical support (precast concrete liners), or road bed (invert) in repository emplacement drifts. These drifts could reach at least 150 to 200{degrees}C for extended periods of time, possibly in the presence of fluids. This study characterizes chemical and structural transformations in concrete that may occur as a result of a repository hydrothermal cycle. The specific concrete formulation to be used in the potential Yucca Mountain repository had not been determined at the time of the experiment. Invert and Fibercrete{sup TM} materials from the Exploratory Studies Facility (ESF) were chosen for these experiments as representatives of standard construction concrete used in this setting.

  8. Relationship between liquid sorptivity and capillarity in concrete

    SciTech Connect

    Hanzic, L.; Ilic, R

    2003-09-01

    Neutron radiography (NR) was applied to study liquid transport processes in concrete. With this method, it is possible to monitor the liquid distribution inside specimens and to measure the height of the liquid front for liquids of high hydrogen content inside concrete. The experiment was performed with water and fuel oil for three different types of concrete. The results are compared with the sorptivity measured by the gravimetric method. It is shown that the ratio between the capillarity coefficient and sorptivity depends upon the combination of liquid and solid phases. For water, this value was found to be 5.5{+-}0.6, 5.8{+-}0.6 and 7.1{+-}0.7 in concrete without additives, concrete with an air-entraining agent and concrete with a plasticizer, respectively. For fuel oil, the value is about 50% higher than that for water.

  9. Concrete decontamination by Electro-Hydraulic Scabbling (EHS). Topical report

    SciTech Connect

    1996-03-30

    Electro-Hydraulic Scabbling (EHS) technology and equipment for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals is being developed by Textron Systems Division (TSD). This wet scabbling technique involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface. The high pressure impulse results in stresses which crack and peel off a concrete layer of a controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. This new technology is being developed under Contract No. DE-AC21-93MC30164. The project objective is to develop and demonstrate a cost-efficient, rapid, controllable process to remove the surface layer of contaminated concrete while generating minimal secondary waste. The primary target of this program is uranium-contaminated concrete floors which constitute a substantial part of the contaminated area at DOE weapon facilities.

  10. Failure of underground concrete structures subjected to blast loadings

    NASA Technical Reports Server (NTRS)

    Ross, C. A.; Nash, P. T.; Griner, G. R.

    1979-01-01

    The response and failure of two edges of free reinforced concrete slabs subjected to intermediate blast loadings are examined. The failure of the reinforced concrete structures is defined as a condition where actual separation or fracture of the reinforcing elements has occurred. Approximate theoretical methods using stationary and moving plastic hinge mechanisms with linearly varying and time dependent loadings are developed. Equations developed to predict deflection and failure of reinforced concrete beams are presented and compared with the experimental results.

  11. 19. Virginia Route 605 grade separation structure. This reinforced concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Virginia Route 605 grade separation structure. This reinforced concrete rigid frame structure. This reinforced concrete rigid frame structure was built in 1950. It is an example of the most common ornament used on the parkway where the headwall, wingwalls, and railing is faced rusticated stone, but not the interior abutment walls and the bottom of the arch are plain concrete. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  12. 5. SUPERINTENDENT'S COTTAGE WEST WALL AND NORTH FRONT SHOWING CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SUPERINTENDENT'S COTTAGE WEST WALL AND NORTH FRONT SHOWING CONCRETE BLOCK UTILITY ROOM ADDITION. - Tucson Plant Materials Center, Superintendent's Cottage, 3241 North Romero Road, Tucson, Pima County, AZ

  13. An investigation of tendon sheathing filler migration into concrete

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1998-03-01

    During some of the inspections at nuclear power plants with prestressed concrete containments, it was observed that the containments has experienced leakage of the tendon sheathing filler (i.e., streaks). The objective of this activity was to provide an indication of the extent of tendon sheathing filler leakage into the concrete and its affects on concrete properties. Literature was reviewed and concrete core samples were obtained from the Trojan Nuclear Plant and tested. The literature primarily addressed effects of crude or lubricating oils that are known to cause concrete damage. However, these materials have significantly different characteristics relative to the materials used as tendon sheathing fillers. Examination and testing of the concrete cores indicated that the appearance of tendon sheathing filler on the concrete surface was due to leakage from the conduits and its subsequent migration through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks and there was no perceptible movement into the concrete. Results of compressive strength testing indicated that the concrete quality was consistent in the containment and that the strength had increased over 40% in 25.4 years relative to the average compressive strength at 28-days age.

  14. Microstructural characterization of concrete prepared with recycled aggregates.

    PubMed

    Guedes, Mafalda; Evangelista, Luís; de Brito, Jorge; Ferro, Alberto C

    2013-10-01

    Several authors have reported the workability, mechanical properties, and durability of concrete produced with construction waste replacing the natural aggregate. However, a systematic microstructural characterization of recycled aggregate concrete has not been reported. This work studies the use of fine recycled aggregate to replace fine natural aggregate in the production of concrete and reports the resulting microstructures. The used raw materials were natural aggregate, recycled aggregate obtained from a standard concrete, and Portland cement. The substitution extent was 0, 10, 50, and 100 vol%; hydration was stopped at 9, 24, and 96 h and 28 days. Microscopy was focused on the cement/aggregate interfacial transition zone, enlightening the effect of incorporating recycled aggregate on the formation and morphology of the different concrete hydration products. The results show that concretes with recycled aggregates exhibit typical microstructural features of the transition zone in normal strength concrete. Although overall porosity increases with increasing replacement, the interfacial bond is apparently stronger when recycled aggregates are used. An addition of 10 vol% results in a decrease in porosity at the interface with a corresponding increase of the material hardness. This provides an opportunity for development of increased strength Portland cement concretes using controlled amounts of concrete waste. PMID:23673273

  15. Carbonate concretions: an ideal sedimentary host for microfossils.

    USGS Publications Warehouse

    Blome, C.D.; Albert, N.R.

    1985-01-01

    Enhanced preservation correlates with early diagenetic concretion formation at or near the sediment-water interface and with higher carbonate, organic material, and metallic cation content than in surrounding rocks. Early diagenetic growth is inferred by diverging sedimentary laminations and small-scale sedimentary structures in fossiliferous carbonate concretions. High initial concentration of microorganisms or fecal pellets may commonly be responsible for incipient carbonate-concretion growth. Excellent preservation is demonstrated by radiolarians and palynomorphs extracted from a carbonate concretion from the Middle Jurassic Shelikof Formation, S Alaska.-from Authors

  16. Delamination detection in reinforced concrete using thermal inertia

    SciTech Connect

    Del Grande, N K; Durbin, P F

    1998-11-30

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  17. Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638

    SciTech Connect

    Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2013-07-01

    Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas while the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)

  18. Protecting steel in concrete in the Persian Gulf

    SciTech Connect

    Matta, Z.G. )

    1994-06-01

    The climate and geomorphology of the Persian Gulf make it one of the world's most severe environments for reinforced concrete. The concrete mix ingredients are usually contaminated with chloride, and the environment around reinforced concrete structures also contains salts, both under- and above-ground. Prevailing high temperatures also promote rapid rates of corrosion. Fusion-bonded epoxy-coated rebar, polyvinyl butyral-based coated rebar, calcium nitrile corrosion-inhibiting admixture, and microsilica are reviewed as corrosion prevention measures for steel in concrete for Persian Gulf service. Detrimental effects and user-friendliness are discussed.

  19. Guidelines for identification of concrete in a materials property database

    SciTech Connect

    Oland, C.B.; Frohnsdorff, G.

    1995-12-31

    Guidelines for the identification of concrete in a materials property database are presented to address the complex problem of distinguishing one concrete from another. These guidelines are based on a logical scheme for systematically organizing and subdividing data and information about concrete and its constituents; they reflect consensus recommendations for a multilevel material description and designation system. Aspects of the guidelines include a classification system used to establish a series of primary identifiers, methods for reporting constituent information and mixture proportions, fields describing the source of the concrete and its processing history, and recommendations for reporting baseline or reference properties.

  20. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    NASA Astrophysics Data System (ADS)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  1. Neutron imaging of water penetration into cracked steel reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Wittmann, F. H.; Zhao, T.; Lehmann, E. H.

    2010-04-01

    Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.

  2. Evaluating the strength of concrete structure on terrace houses

    NASA Astrophysics Data System (ADS)

    Hasbullah, Mohd. Amran; Yusof, Rohana; Rahman, Mohd Nazaruddin Yusoff @ Abdul

    2016-08-01

    The concrete structure is the main component to support the structure of the building, but when concrete has been used for an extended period hence, it needs to be evaluated to determine the current strength, durability and how long it can last. The poor quality of concrete structures will cause discomfort to the user and, the safety will be affected due to lack of concrete strength. If these issues are not monitored or not precisely known performance, and no further action done then, the concrete structure will fail and eventually it will collapse. Five units of terrace houses that are built less than 10 years old with extension or renovations and have cracks at Taman Samar Indah, Samarahan, Sarawak have been selected for this study. The instrument used in this research is Ultrasonic Pulse Velocity (UPV), with the objective to determine the current strength and investigate the velocity of a pulse at the concrete cracks. The data showed that the average velocity of the pulse is less than 3.0 km/s and has shown that the quality of the concrete in the houses too weak scale / doubt in the strength of concrete. It also indicates that these houses need to have an immediate repair in order to remain secure other concrete structures.

  3. Development of ultrasonic methods for the nondestructive inspection of concrete

    SciTech Connect

    Claytor, T.N.; Ellingson, W.A.

    1983-08-01

    Nondestructive inspection of Portland cement and refractory concrete is conducted to determine strength, thickness, presence of voids or foreign matter, presence of cracks, amount of degradation due to chemical attack, and other properties without the necessity of coring the structure (which is usually accomplished by destructively removing a sample). This paper reviews the state of the art of acoustic nondestructive testing methods for Portland cement and refractory concrete. Most nondestructive work on concrete has concentrated on measuring acoustic velocity by through transmission methods. Development of a reliable pitch-catch or pulse-echo system would provide a method of measuring thickness with access from only one side of the concrete.

  4. Microstructural characterization of concrete prepared with recycled aggregates.

    PubMed

    Guedes, Mafalda; Evangelista, Luís; de Brito, Jorge; Ferro, Alberto C

    2013-10-01

    Several authors have reported the workability, mechanical properties, and durability of concrete produced with construction waste replacing the natural aggregate. However, a systematic microstructural characterization of recycled aggregate concrete has not been reported. This work studies the use of fine recycled aggregate to replace fine natural aggregate in the production of concrete and reports the resulting microstructures. The used raw materials were natural aggregate, recycled aggregate obtained from a standard concrete, and Portland cement. The substitution extent was 0, 10, 50, and 100 vol%; hydration was stopped at 9, 24, and 96 h and 28 days. Microscopy was focused on the cement/aggregate interfacial transition zone, enlightening the effect of incorporating recycled aggregate on the formation and morphology of the different concrete hydration products. The results show that concretes with recycled aggregates exhibit typical microstructural features of the transition zone in normal strength concrete. Although overall porosity increases with increasing replacement, the interfacial bond is apparently stronger when recycled aggregates are used. An addition of 10 vol% results in a decrease in porosity at the interface with a corresponding increase of the material hardness. This provides an opportunity for development of increased strength Portland cement concretes using controlled amounts of concrete waste.

  5. Properties of Refractory Concrete in Tension and Compression

    NASA Technical Reports Server (NTRS)

    Sampson, Jeffrey

    2009-01-01

    Refractory concrete on the LC-39A Flame Deflector has been damaged during multiple Space Shuttle launches (e.g. STS-124, STS-126, STS-119, and STS-125, STS-127). These events have prompted a better understanding of the system via an analytical model of the Flame Deflector assembly to include the Fondu Fyre refractory concrete. This model requires test data inputs of the refractory concrete's mechanical properties, which include stress versus strain curves in tension and compression, modulus of elasticity, and Poisson's ratio. Sections of Fondu Fyre refractory concrete removed from the LC-39A Flame Deflector were provided for this testing.

  6. Breaking/cracking and seating concrete pavements. Final report

    SciTech Connect

    Thompson, M.R.

    1989-03-01

    This synthesis will be of interest to pavement designers, maintenance engineers, and others interested in reducing reflection cracking of asphalt overlays on portland cement concrete (PCC) pavement. Information is presented on the technique of breaking or cracking of the concrete pavement into small segments before overlaying with asphalt concrete. Asphalt concrete overlays on existing PCC pavements are subject to reflection cracking induced by thermal movements of PCC pavement. The report of the Transportation Research Board discusses the technique of breaking/cracking and seating of the existing PCC before an overlay as a means to reduce or eliminate reflection cracking.

  7. MOISTURE CONTENT AND POROSITY OF CONCRETE RUBBLE STUDY.

    SciTech Connect

    Phifer, M

    2005-10-07

    Tritium contaminated concrete rubble from the 232-F Tritium Facility was disposed in the Slit 1 Trenches 1 and 2 in 1997. A Special Analysis (SA) has been performed to evaluate any impact this disposal may have on the groundwater. The SA assumed that the disposed concrete rubble was fully saturated at the time of disposal, however if the concrete was less than fully saturated, migration of tritium out of the concrete would be slower than under fully saturated conditions. Therefore if the concrete at disposal was less than fully saturated, the PA assumption of full saturation would be a conservative assumption. In order to evaluate whether the PA assumption resulted in a conservative analysis from the standpoint of the concrete saturation, concrete rubble samples were collected from various facilities being demolished at the Savannah River Site (SRS) and evaluated for in-field moisture content, absorbable moisture, and water exchangeable porosity. The purpose of this task was to collect concrete rubble samples from various demolished SRS facilities for the purpose of determining in-field moisture content, absorbable moisture, and water exchangeable porosity. Since moisture content testing for concrete rubble is not typical, existing ASTM Standards were reviewed for method and procedure development.

  8. Performance Enhancement of the Automated Concrete Evaluation System (ACES)

    SciTech Connect

    Baumgart,C.W.; Cave,S.P.; Linder,K.E.

    2002-02-14

    The objective of this proposed research is to improve and expand the detection and analysis capabilities of the automated, concrete evaluation (ACE) system. MoDOT and Honeywell jointly developed this system. The focus of this proposed research will be on the following: Coordination of concrete imaging efforts with other states, Validation and testing of the ACE system on a broad range of concrete samples, and Identification and development of software and hardware enhancements. These enhancements will meet the needs of diverse users in the field of concrete materials, construction, and research.

  9. EXTERIOR VIEW, LOOKING TOWARDS TUSCALOOSA, WITH CONCRETE PIERS AND CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING TOWARDS TUSCALOOSA, WITH CONCRETE PIERS AND CENTER SPAN. - Gulf, Mobile & Ohio Railroad Bridge, Spans Black Warrior River between Northport & Tuscaloosa, Tuscaloosa, Tuscaloosa County, AL

  10. EXTERIOR VIEW, LOOKING TOWARDS TUSCALOOSA, WITH APPROACH, CONCRETE PIERS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING TOWARDS TUSCALOOSA, WITH APPROACH, CONCRETE PIERS AND CENTER SPAN. - Gulf, Mobile & Ohio Railroad Bridge, Spans Black Warrior River between Northport & Tuscaloosa, Tuscaloosa, Tuscaloosa County, AL

  11. Research progress of microbial corrosion of reinforced concrete structure

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Li, Dawang; Jiang, Nan; Wang, Dongwei

    2011-04-01

    Microbial corrosion of reinforce concrete structure is a new branch of learning. This branch deals with civil engineering , environment engineering, biology, chemistry, materials science and so on and is a interdisciplinary area. Research progress of the causes, research methods and contents of microbial corrosion of reinforced concrete structure is described. The research in the field is just beginning and concerted effort is needed to go further into the mechanism of reinforce concrete structure and assess the security and natural life of reinforce concrete structure under the special condition and put forward the protective methods.

  12. 57. photographer unknown 30 October 1935 PIERS RISING FROM CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. photographer unknown 30 October 1935 PIERS RISING FROM CONCRETE DECK. BAFFLES IN VARIOUS STAGES OF CONSTRUCTION. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  13. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement

    SciTech Connect

    Butler, L. West, J.S.; Tighe, S.L.

    2011-10-15

    The purpose of this study was to investigate the influence that replacing natural coarse aggregate with recycled concrete aggregate (RCA) has on concrete bond strength with reinforcing steel. Two sources of RCA were used along with one natural aggregate source. Numerous aggregate properties were measured for all aggregate sources. Two types of concrete mixture proportions were developed replacing 100% of the natural aggregate with RCA. The first type maintained the same water-cement ratios while the second type was designed to achieve the same compressive strengths. Beam-end specimens were tested to determine the relative bond strength of RCA and natural aggregate concrete. On average, natural aggregate concrete specimens had bond strengths that were 9 to 19% higher than the equivalent RCA specimens. Bond strength and the aggregate crushing value seemed to correlate well for all concrete types.

  14. Resin systems for producing polymer concrete

    SciTech Connect

    Kukacka, L.E.

    1988-09-01

    When plastics are combined with mixtures of inorganic materials, high-strength, durable, fast-setting composites are produced. These materials are used in structural engineering and other applications, and as a result of the many commercial successes that have been achieved, considerable research and development work is in progress throughout the world. One family of polymer-based composites receiving considerable attention is called polymer concrete. Work in this area is directed toward developing new high-strength durable materials by combining cement and concrete technology with that of polymer chemistry. The purpose of this paper is to discuss the types of resins that can be used to form polymer concretes. Resin selection is normally based upon the desired properties for the composite and cost. However, the physical and chemical properties of the resins before and during curing are also important, particularly for field-applied materials. Currently, for normal temperature (0/degree/ to 30/degree/C) applications, epoxy resins, vinyl monomers such as polyester-styrene, methylmethacrylate, furfuryl alcohol, furan derivatives, urethane, and styrene, are being used. Styrene-trimethylolpropane trimethacrylate (TMPTMA) mixtures and styrene-acrylamide-TMPTMA mixtures yield composites with excellent hydrothermal stability at temperatures up to 150/degree/ and 250/degree/C, respectively, and organosiloxane resins have been successfully tested at 300/degree/C. Of equal importance is the selection of the composition of the inorganic phase of the composite, since chemical interactions between the two phases can significantly enhance the final properties. Further work to elucidate the mechanisms of these interactions is needed. 6 refs.

  15. Durability of an inorganic polymer concrete coating

    NASA Astrophysics Data System (ADS)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  16. Prestressed concrete using KEVLAR reinforced tendons

    SciTech Connect

    Dolan, C.W.

    1989-01-01

    KEVLAR is a high strength, high modulus synthetic fiber manufactured by the E.I. DuPont de Nemours Company. The fiber is resistant to chloride and alkali attack. The resistance is enhanced when the fibers are assembled into a resin matrix and fabricated as rods. These properties suggest that KEVLAR reinforced rods may be a substitute for high strength steel prestress tendons in certain applications such as bridge decks and parking structures. This dissertation presents the background, theoretical development, and experimental investigations of KEVLAR reinforced rod strength, anchorage, fabrication and performance in prestressed concrete structures. The study concludes that KEVLAR has significant potential for these prestressed concrete applications. However, the reliability of the long term anchorage of the KEVLAR reinforced rods must be improved before production applications are undertaken. KEVLAR has a low shear strength compared to its tensile capacity. The anchorage of KEVLAR reinforced rods is sensitive to the shear forces generated in the anchorage assembly. Finite element analyses, using interface elements to simulate the addition of a mold release agent in a conic anchor, predict the behavior of resin socketed anchors. Test results confirm that mold release agents reduce the anchor shear stresses and suggest that moderate strength resins may be used in the anchor. KEVLAR is nearly linearly elastic to failure, yet ductility of a structure is an important design concern. Prestressed concrete beam tests using both bonded and unbonded tendons demonstrated that ductile structural behavior is obtained. Methods of predicting the strength and deflection behavior of the prestressed beams are presented and the theoretical predictions are compared to the experimental results. The overall correlation between predicted and theoretical results is satisfactory.

  17. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    PubMed

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. PMID:27016667

  18. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    PubMed

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved.

  19. Preliminary tests of silicon carbide based concretes for hybrid rocket nozzles in a solar furnace

    NASA Astrophysics Data System (ADS)

    D'Elia, Raffaele; Bernhart, Gérard; Cutard, Thierry; Peraudeau, Gilles; Balat-Pichelin, Marianne

    2014-06-01

    This research is part of the PERSEUS project, a space program concerning hybrid propulsion and supported by CNES. The main goal of this study is to characterise silicon carbide based micro-concrete with a maximum aggregates size of 800 μm, in a hybrid propulsion environment. The nozzle throat has to resist to a highly oxidising polyethylene (PE)/N2O hybrid environment, under temperatures ranging up to 2980 K. The study is divided into two main parts: the first one deals with the thermo-mechanical characterisation of the material up to 1500 K and the second one with an investigation on the oxidation behaviour in a standard atmosphere, under a solar flux up to 13.5 MW/m2. Young's modulus was determined by resonant frequency method: results show an increase with the stabilisation temperature. Four point bending tests have shown a rupture tensile strength increasing with stabilisation temperature, up to 1473 K. Sintering and densification processes are primary causes of this phenomenon. Visco-plastic behaviour appears at 1373 K, due to the formation of liquid phases in cement ternary system. High-temperature oxidation in ambient air was carried out at PROMES-CNRS laboratory, on a 2 kW solar furnace, with a concentration factor of 15,000. A maximum 13.5 MW/m2 incident solar flux and a 7-90 s exposure times have been chosen. Optical microscopy, SEM, EDS analyses were used to determine the microstructure evolution and the mass loss kinetics. During these tests, silicon carbide undergoes active oxidation with production of SiO and CO smokes and ablation. A linear relation between mass loss and time is found. Oxidation tests performed at 13.5 MW/m2 solar flux have shown a mass loss of 10 mg/cm2 after 15 s. After 90 s, the mass loss reaches 60 mg/cm2. Surface temperature measurement is a main point in this study, because of necessity of a thermo-mechanical-ablative model for the material. Smokes appear at around 5.9 MW/m2, leading to the impossibility of useful temperature

  20. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. PMID:24316812

  1. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    SciTech Connect

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-07-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  2. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments.

    PubMed

    Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi

    2014-01-01

    In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration. PMID:24600839

  3. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments.

    PubMed

    Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi

    2014-01-01

    In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration.

  4. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete.

  5. Fiber optic extensometer for concrete deformation measurements

    NASA Astrophysics Data System (ADS)

    Yuan, Libo; Zhou, Li-min; Lau, K. T.; Jin, Wei; Demokan, M. S.

    2002-06-01

    A fiber optic extensometer based on a scanning white light Michelson interferometer is presented. The instrument employs a light emitting diode as the light source and a single mode fiber with predetermined gauge length as the extensometer sensor head. Light to and from the sensor head is transmitted through a single mode lead (i.e., in/out) fiber. The sensor performance is insensitive to the in/out fiber extensions. The fiber optic extensometer was applied to measure the compression and tension of concrete specimens. The measurement results compare well with that from a conventional extensometer.

  6. Reliability evaluation of prestressed concrete containment structures

    SciTech Connect

    Pires, J.; Hwang, H.; Reich, M.

    1985-01-01

    The probabilistic safety evaluation of a realistic unbonded prestressed concrete containment building subjected to combinations of static and dynamic loads is presented. Loads considered include dead load, prestressing, accidental internal pressure, tornado and earthquake loads. Pertinent load parameters are the occurrence rate, duration and intensity. These parameters are treated as random variables for most of the loads. Limit state probabilities conditional on a specific load combination are calculated using the analytical procedure developed at BNL, which makes use of the finite element method and random vibration theory. Lifetime limit state probabilities are calculated using a load coincidence formulation. 3 refs., 2 figs., 2 tabs.

  7. CONCRETE SUPPORT DESIGN FOR MISCELLANEOUS ESF UTILITIES

    SciTech Connect

    T.A. Misiak

    1999-06-21

    The purpose and objective of this analysis is to design concrete supports for the miscellaneous utility equipment used at the Exploratory Studies Facility (ESF). Two utility systems are analyzed: (1) the surface collection tanks of the Waste Water System, and (2) the chemical tracer mixing and storage tanks of the Non-Potable Water System. This analysis satisfies design recommended in the Title III Evaluation Reports for the Subsurface Fire Water System and Subsurface Portion of the Non-Potable Water System (CRWMS M&O 1998a) and Waste Water Systems (CRWMS M&O 1998b).

  8. Strength of concrete structures under dynamic loading

    NASA Astrophysics Data System (ADS)

    Kumpyak, O. G.; Galyautdinov, Z. R.; Kokorin, D. N.

    2016-01-01

    The use of elastic supports is one the efficient methods of decreasing the dynamic loading. The paper describes the influence of elastic supports on the stress-strain state of steel concrete structures exposed to one-time dynamic loading resulting in failure. Oblique bending beams on elastic supports and their elastic, elastoplastic, and elastoplastic consolidation behavior are considered in this paper. For numerical calculations the developed computer program is used based on the finite element method. Research findings prove high efficiency of elastic supports under dynamic loading conditions. The most effective behavior of elastic supports is demonstrated at the elastoplastic stage. A good agreement is observed between the theoretical and experimental results.

  9. Mass loss

    NASA Technical Reports Server (NTRS)

    Goldberg, Leo

    1987-01-01

    Observational evidence for mass loss from cool stars is reviewed. Spectra line profiles are used for the derivation of mass-loss rates with the aid of the equation of continuity. This equation implies steady mass loss with spherical symmetry. Data from binary stars, Mira variables, and red giants in globular clusters are examined. Silicate emission is discussed as a useful indicator of mass loss in the middle infrared spectra. The use of thermal millimeter-wave radiation, Very Large Array (VLA) measurement of radio emission, and OH/IR masers are discussed as a tool for mass loss measurement. Evidence for nonsteady mass loss is also reviewed.

  10. Use of waste ash from palm oil industry in concrete.

    PubMed

    Tangchirapat, Weerachart; Saeting, Tirasit; Jaturapitakkul, Chai; Kiattikomol, Kraiwood; Siripanichgorn, Anek

    2007-01-01

    Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.

  11. Abdominal mass

    MedlinePlus

    Mass in the abdomen ... care provider make a diagnosis. For example, the abdomen can be divided into four areas: Right-upper ... pain or masses include: Epigastric -- center of the abdomen just below the rib cage Periumbilical -- area around ...

  12. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.

    PubMed

    Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud

    2006-09-14

    Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion

  13. Mechanical properties of high performance concrete made with high calcium high sulfate fly ash

    SciTech Connect

    Zhang, Y.; Sun, W.; Shang, L.

    1997-07-01

    A high calcium fly ash with high SO{sub 3} content was used to produce high performance concrete. In all the mixes, the fly ash contents of 50% and 60% by weight were applied. Although fly ash cement pastes showed severe volume instability and poor pore structure development, mortars and concretes incorporating high mass high calcium fly ash exhibited good performance in both fresh and hardened state as those with low calcium fly ash did. The 3d and 28d compressive strength of mortars reached 25.2--42.2MPa respectively with the water binder ratio varying from 0.30 to 0.24. What is noticeable is that all the mortars and concretes showed good strength developing tendency with the 90d compressive strength up to 67.3--85.5MPa. This investigation reveals once more the fact that some materials which are not up to standard can still play a special role so long as the components are carefully chosen and proportions properly designed.

  14. Evaluation of concrete containing photocatalytic titanium dioxide

    NASA Astrophysics Data System (ADS)

    Hanson, Shannon

    The air pollution inversions in the mountain west are a societal problem that require a large-scale solution. With the more stringent Environmental Protection Agency (EPA) regulations established in 2010, and the recent discovery of the photocatalytic pollution reduction capabilities of titanium dioxide (TiO2), interest has developed to create pollution-reducing construction materials. Over the last decade, a number of laboratory studies have been performed and a few field studies have occurred around the world. There are commercially available photocatalytic materials that can be used in concrete construction; however, the materials are often cost prohibitive. This study investigated both practical application techniques and the effects of the climatic environment around the specimens. When concrete specimens were exposed to the weather for 120-days, the specimen's photocatalytic efficiency decreased significantly. Rejuvenation methods were investigated; however, no methods tested were able to increase the photocatalytic efficiency of the specimens to preweathered condition. The final element of this study focused on identifying practical and cost-effective methods of adding TiO2 to current production methods by working with a local precast manufacturer. This research is a stepping stone to develop methodologies to minimize the decline of photocatalytic efficiency due to the exposure to the environment. This element is critical in understanding this complex technology and identifying problems that need to be addressed before products are ready for widespread use.

  15. Multiscale Concrete Modeling of Aging Degradation

    SciTech Connect

    Hammi, Yousseff; Gullett, Philipp; Horstemeyer, Mark F.

    2015-07-31

    In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Giner et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].

  16. Radionuclide Retention in Concrete Wasteforms - FY13

    SciTech Connect

    Snyder, Michelle MV; Golovich, Elizabeth C.; Wellman, Dawn M.; Crum, Jarrod V.; Lapierre, Robert; Dage, Denomy C.; Parker, Kent E.; Cordova, Elsa A.

    2013-10-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of low-level waste and mixed low-level waste, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  17. CREATION OF MUSIC WITH FIBER REINFORCED CONCRETE

    NASA Astrophysics Data System (ADS)

    Kato, Hayato; Takeuchi, Masaki; Ogura, Naoyuki; Kitahara, Yukiko; Okamoto, Takahisa

    This research focuses on the Fiber Reinforcement Concrete(FRC) and its performance on musical tones. Thepossibility of future musical instruments made of this concrete is discussed. Recently, the technical properties of FRC had been improved and the different production styles, such as unit weight of binding material and volume of fiber in the structure, hardly affects the results of the acoustics. However, the board thickness in the FRC instruments is directly related with the variety of musical tone. The FRC musical effects were compared with those produced with wood on wind instruments. The sounds were compared with those produced with woodwind instruments. The sound pressure level was affected by the material and it becomes remarkably notorious in the high frequency levels. These differences had great influence on the spectrum analysis of the tone in the wind instruments and the sensory test. The results from the sensory test show dominant performances of brightness, beauty and power in the FRC instruments compared with those made of wood.

  18. Concrete spatial language: see what I mean?

    PubMed

    Wallentin, Mikkel; Ostergaard, Svend; Lund, Torben Ellegaard; Ostergaard, Leif; Roepstorff, Andreas

    2005-03-01

    Conveying complex mental scenarios is at the heart of human language. Advances in cognitive linguistics suggest this is mediated by an ability to activate cognitive systems involved in non-linguistic processing of spatial information. In this fMRI-study, we compare sentences with a concrete spatial meaning to sentences with an abstract meaning. Using this contrast, we demonstrate that sentence meaning involving motion in a concrete topographical context, whether linked to animate or inanimate subjects nouns, yield more activation in a bilateral posterior network, including fusiform/parahippocampal, and retrosplenial regions, and the temporal-occipital-parietal junction. These areas have previously been shown to be involved in mental navigation and spatial memory tasks. Sentences with an abstract setting activate an extended largely left-lateralised network in the anterior temporal, and inferior and superior prefrontal cortices, previously found activated by comprehension of complex semantics such as narratives. These findings support a model of language, where the understanding of spatial semantic content emerges from the recruitment of brain regions involved in non-linguistic spatial processing.

  19. A study of the coupling relationship between concrete surface temperature and concrete surface emissivity in natural conditions.

    PubMed

    Tang, Lin-Ling; Chen, Xiao-Ling; Wang, Jia-Ning; Zhao, Hong-Mei; Huang, Qi-Ting

    2014-07-01

    Land surface emissivity (LSE) has already been recognized as a crucial parameter for the determination of land surface temperature (LST). There is an ill-posed problem for the retrieval of LST and LSE. And laboratory-based emissivity is measured in natural constant conditions, which is limited in the application in thermal remote sensing. To solve the above problems, the coupling of LST and LSE is explored to eliminate temperature effects and improve the accuracy of LES. And then, the estimation accuracy of LST from passive remote sensing images will be improved. For different land surface materials, the coupling of land surface emissivity and land surface temperature is various. This paper focuses on studying concrete surface that is one of the typical man-made materials in urban. First the experiments of measuring concrete surface emissivity and concrete surface temperature in natural conditions are arranged reasonably and the suitable data are selected under ideal atmosphere conductions. Then to improve the determination accuracy of concrete surface emissivity, the algorithm worked on the computer of Fourier Transform Infrared Spectroradiometer (FTIR) has been improved by the most adapted temperature and emissivity separation algorithm. Finally the coupling of concrete surface temperature and concrete surface emissivity is analyzed and the coupling model of concrete surface temperature and concrete surface emissivity is established. The results show that there is a highest correlation coefficient between the second derivative of emissivity spectra and concrete surface temperature, and the correlation coefficient is -0.925 1. The best coupling model is the stepwise regression model, whose determination coefficient (R2) is 0.886. The determination coefficient (R2) is 0.905 and the root mean squares error (RMSE) is 0.292 1 in the validation of the model. The coupling model of concrete surface temperature and concrete surface emissivity under natural conditions

  20. 64. Paynes Creek Culvert. This concrete box culvert is a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. Paynes Creek Culvert. This concrete box culvert is a typical example of a concrete box culvert finished with rusticated stone. Its arches reflect the rigid frame structures. Looking west. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  1. Handout of the Month: Creating and Understanding Concrete Poetry.

    ERIC Educational Resources Information Center

    Notes Plus, 1983

    1983-01-01

    Teaching suggestions and questions on which to build a class discussion are presented regarding concrete poetry. An example of a poem about a bird's feather in which the words are arranged in the shape of a feather is included and is intended as a student handout. In addition to suggestions for student assignments, five sources of concrete poetry…

  2. Use of recycled fine aggregate in concretes with durable requirements.

    PubMed

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete. PMID:21775123

  3. Dataset of producing and curing concrete using domestic treated wastewater

    PubMed Central

    Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid

    2015-01-01

    We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m3 of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m3 of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96–100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m3 of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water. PMID:26862577

  4. Use of recycled plastics in concrete: A critical review.

    PubMed

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics. PMID:26970843

  5. Evaluation of microbially-influenced degradation of massive concrete structures

    SciTech Connect

    Hamilton, M.A.; Rogers, R.D.; Zolynski, M.; Veeh, R.

    1996-08-01

    Many low level waste disposal vaults, both above and below ground, are constructed of concrete. One potential contributing agent to the destruction of concrete structures is microbially-influenced degradation (MID). Three groups of bacteria are known to create conditions that are conducive to destroying concrete integrity. They are sulfur oxidizing bacteria, nitrifying bacteria, and heterotrophic bacteria. Research is being conducted at the Idaho National Engineering Laboratory to assess the extent of naturally occurring microbially influenced degradation (MID) and its contribution to the deterioration of massive concrete structures. The preliminary steps to understanding the extent of MID, require assessing the microbial communities present on degrading concrete surfaces. Ultimately such information can be used to develop guidelines for preventive or corrective treatments for MID and aid in formulation of new materials to resist corrosion. An environmental study was conducted to determine the presence and activity of potential MID bacteria on degrading concrete surfaces of massive concrete structures. Scanning electron microscopy detected bacteria on the surfaces of concrete structures such as bridges and dams, where corrosion was evident. Enumeration of sulfur oxidizing thiobacilli and nitrogen oxidizing Nitrosomonas sp. and Nitrobacter sp. from surface samples was conducted. Bacterial community composition varied between sampling locations, and generally the presence of either sulfur oxidizers or nitrifiers dominated, although instances of both types of bacteria occurring together were encountered. No clear correlation between bacterial numbers and degree of degradation was exhibited.

  6. Performance of Lightweight Concrete based on Granulated Foamglass

    NASA Astrophysics Data System (ADS)

    Popov, M.; Zakrevskaya, L.; Vaganov, V.; Hempel, S.; Mechtcherine, V.

    2015-11-01

    The paper presents an investigation of lightweight concretes properties, based on granulated foamglass (GFG-LWC) aggregates. The application of granulated foamglass (GFG) in concrete might significantly reduce the volume of waste glass and enhance the recycling industry in order to improve environmental performance. The conducted experiments showed high strength and thermal properties for GFG-LWC. However, the use of GFG in concrete is associated with the risk of harmful alkali-silica reactions (ASR). Thus, one of the main aims was to study ASR manifestation in GFG-LWC. It was found that the lightweight concrete based on porous aggregates, and ordinary concrete, have different a mechanism of ASR. In GFG-LWC, microstructural changes, partial destruction of granules, and accumulation of silica hydro-gel in pores were observed. According to the existing methods of analysis of ASR manifestation in concrete, sample expansion was measured, however, this method was found to be not appropriate to indicate ASR in concrete with porous aggregates. Microstructural analysis and testing of the concrete strength are needed to evaluate the damage degree due to ASR. Low-alkali cement and various pozzolanic additives as preventive measures against ASR were chosen. The final composition of the GFG-LWC provides very good characteristics with respect to compressive strength, thermal conductivity and durability. On the whole, the potential for GFG-LWC has been identified.

  7. Use of recycled fine aggregate in concretes with durable requirements.

    PubMed

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete.

  8. Delamination detection in reinforced concrete using thermal inertia

    NASA Astrophysics Data System (ADS)

    DelGrande, Nancy; Durbin, Philip F.

    1999-02-01

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks.

  9. 76 FR 18073 - Track Safety Standards; Concrete Crossties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... crossties are an acceptable design alternative for use in modern track. Test sections on various railroads... uneconomical. Modern concrete crossties are designed to accept the stresses imposed by irregular rail head... agency's promulgation of concrete crosstie regulations per the mandate of the RSIA. See 75 FR 52490....

  10. Methods for ultimate load analysis of concrete containments

    SciTech Connect

    Dameron, R.A.; Dunham, R.S.; Rashid, Y.R.; Sullaway, M.F. )

    1989-08-01

    This report describes the most recent concrete containment analyses that have been conducted in support of the EPRI-sponsored development of a concrete containment response and leakage prediction methodology. In this third phase of a six-year concrete containment research program, the effort consisted of: (1) compilation of strain concentration factors from Phases 1 and 2 for use with a newly developed leakage prediction criteria, and (2) continuation of analytical support which has involved the most complex concrete analyses used in the research program to date. This report presents the results of several concrete analyses, namely the pre-test and post-test analyses of a reinforced concrete containment specimen with penetration tested at Construction Technology Laboratories, as well as other 3D continuum analyses related to the development of the concrete containment analysis methodology. The analytical methods consist of ABAQUS-EPGEN, a general purpose nonlinear finite element code, combined with recently developed reinforced concrete modeling capabilities. The other analysis that is described is a 3D study of potential prestressed containment penetration punch shear force. 11 refs., 33 figs.

  11. Effects of Abstract and Concrete Simulation Elements on Science Learning

    ERIC Educational Resources Information Center

    Jaakkola, T.; Veermans, K.

    2015-01-01

    Contemporary evidence on the effectiveness of concrete and abstract representations in science education is based solely on studies conducted in college context. There it has been found that learning with abstract representations produces predominantly better outcomes than learning with concrete representations and combining the representations…

  12. Self-assembling particle-siloxane coatings for superhydrophobic concrete.

    PubMed

    Flores-Vivian, Ismael; Hejazi, Vahid; Kozhukhova, Marina I; Nosonovsky, Michael; Sobolev, Konstantin

    2013-12-26

    We report here, for the first time in the literature, a method to synthesize hydrophobic and superhydrophobic concrete. Concrete is normally a hydrophilic material, which significantly reduces the durability of concrete structures and pavements. To synthesize water-repellent concrete, hydrophobic emulsions were fabricated and applied on portland cement mortar tiles. The emulsion was enriched with the polymethyl-hydrogen siloxane oil hydrophobic agent as well as metakaolin (MK) or silica fume (SF) to induce the microroughness and polyvinyl alcohol (PVA) fibers to create hierarchical surfaces. Various emulsion types were investigated by using different mixing procedures, and single- and double-layer hydrophobic coatings were applied. The emulsions and coatings were characterized with optical microscope and scanning electron microscope (SEM), and their wetting properties, including the water contact angle (CA) and roll-off angle, were measured. A theoretical model for coated and non-coated concrete, which can be generalized for other types of materials, was developed to predict the effect of surface roughness and composition on the CA. An optimized distance between the aggregates was found where the CA has the highest value. The maximal CA measured was 156° for the specimen with PVA fibers treated with MK based emulsion. Since water penetration is the main factor leading to concrete deterioration, hydrophobic water-repellent concretes have much longer durability then regular concretes and can have a broad range of applications in civil and materials engineering.

  13. DETAIL OF THE SLOPING CONCRETE PAD AT THE SOUTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE SLOPING CONCRETE PAD AT THE SOUTH SIDE OF THE GUN EMPLACEMENT. NOTE ADDED BLOCK OF CAST CONCRETE AT THE LOW (RIGHT) END OF SLOPED PAD. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  14. VIEW OF GUN EMPLACEMENT AND THE TABLELIKE CAST CONCRETE STRUCTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF GUN EMPLACEMENT AND THE TABLE-LIKE CAST CONCRETE STRUCTURE SHOWING THE SPALLED AREA ON ITS EAST SIDE (LEFT) WHERE THE SECOND PROJECTING ARM WAS BROKEN OFF. NOTE THE SLOPED CONCRETE PAD IN THE BACKGROUND. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  15. Influence of Elevated Temperatures on Pet-Concrete Properties

    NASA Astrophysics Data System (ADS)

    Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.

    2008-08-01

    Lightweight aggregate is an important material in reducing the unit weight of concrete complying with special concrete structures of large high-rise buildings. Besides, the use of recycled PET bottles as lightweight aggregate in concrete is an effective contribution for environment preservation. So, the objective of the present work was to study experimentally the flexural strength of the PET -concrete blends and the thermal degradation of the PET in the concrete, when the blends with 10 and 20% in volume of PET were exposed to different temperatures (200, 400, 600 °C). The flexural strength of concrete-PET exposed to a heat source is strongly dependent on the temperature, water/cement ratio, as well as the content and particle size of PET. However, the activation energy is affected by the temperature, location of the PET particles on the slabs and the water/cement ratio. Higher water content originates thermal and hydrolytic degradation on the PET, while on the concrete, a higher vapor pressure which causes an increase in crack formation. The values of the activation energy are higher on the center of the slabs than on the surface, since concrete is a poor heat conductor.

  16. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  17. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  18. A Quantitative Empirical Analysis of the Abstract/Concrete Distinction

    ERIC Educational Resources Information Center

    Hill, Felix; Korhonen, Anna; Bentz, Christian

    2014-01-01

    This study presents original evidence that abstract and concrete concepts are organized and represented differently in the mind, based on analyses of thousands of concepts in publicly available data sets and computational resources. First, we show that abstract and concrete concepts have differing patterns of association with other concepts.…

  19. Concreteness Fading in Mathematics and Science Instruction: A Systematic Review

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; McNeil, Nicole M.; Son, Ji Y.; Goldstone, Robert L.

    2014-01-01

    A longstanding debate concerns the use of concrete versus abstract instructional materials, particularly in domains such as mathematics and science. Although decades of research have focused on the advantages and disadvantages of concrete and abstract materials considered independently, we argue for an approach that moves beyond this dichotomy and…

  20. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.

  1. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  2. Dataset of producing and curing concrete using domestic treated wastewater.

    PubMed

    Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid

    2016-03-01

    We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m(3) of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m(3) of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96-100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m(3) of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water.

  3. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  4. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  5. Use of recycled plastics in concrete: A critical review.

    PubMed

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics.

  6. Concrete decontamination by electro-hydraulic scabbling (EHS). Final report

    SciTech Connect

    1997-10-01

    Contamination of concrete structures by radionuclides, hazardous metals and organic substances (including PCB`s) occurs at many DOE sites. The contamination of concrete structures (walls, floors, ceilings, etc.) varies in type, concentration, and especially depth of penetration into the concrete. In many instances, only the surface layer of concrete is contaminated, up to a depth of one inch, according to estimates provided in the R and D ID document. Then, removal of the concrete surface layer (scabbling) is considered to be the most effective decontamination method. Textron Systems Corp. (TSC) has developed a scabbling concept based on electro-mechanical phenomena accompanying strong electric pulses generated by applying high voltage at the concrete/water interface. Depending on the conditions, the electric discharge may occur either through a waste layer or through the concrete body itself. This report describes the development, testing, and results of this electro-mechanical process. Phase 1 demonstrated the feasibility of the process for the controlled removal of a thin layer of contaminated concrete. Phase 2 designed, fabricated, and tested an integrated subscale unit. This was tested at Fernald. In Phase 3, the scabbling unit was reconfigured to increase its power and processing rate. Technology transfer to an engineering contracting company is continuing.

  7. 206. Big Witch Road grade separation structure. This concrete box ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    206. Big Witch Road grade separation structure. This concrete box culvert, built in 1950, is unusual in that the culvert's concrete bottom extends beyond the structure to the ends of its perpendicular wing walls. Facing northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  8. WEST FACADE. THREESTORY BRICK AND STEEL BUILDING WITH CONCRETE ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST FACADE. THREE-STORY BRICK AND STEEL BUILDING WITH CONCRETE ADDITION AT SOUTH FACE. NOTE OPENINGS INTO BUILDING ARE BOARDED OR BRICKED UP WITH WOODEN BOARDS OR CONCRETE BLOCK. (Duplicate color view of HAER MI-352-1) - National Can Company, 2566 East Grand Boulevard, Detroit, MI

  9. NORTH BASEMENT WALL. IBEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH BASEMENT WALL. I-BEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. STEEL BEAMS LAY ACROSS FIRST FLOOR AWAITING CONCRETE POUR. CAMERA LOOKS SOUTHWEST. INL NEGATIVE NO. 735. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Functional characterization of two concrete biofilms using pyrosequencing data

    EPA Science Inventory

    Phylogenetic studies of concrete biofilms using 16SrRNA-based approaches have demonstrated that concrete surfaces harbor a diverse microbial community. These approaches can provide information on the general taxonomical groups present in a sample but cannot shed light on the func...

  11. 4. PORTAL VIEW OF THE CONCRETE ARCH (ONEWAY BRIDGE) THAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PORTAL VIEW OF THE CONCRETE ARCH (ONE-WAY BRIDGE) THAT EXITS THE MIDDLE CHANNEL ISLAND AND POST FALLS POWER PLANT, LOOKING EAST. - Washington Water Power Company Post Falls Power Plant, Concrete Arch Bridge, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  12. 1. CONTEXTUAL VIEW, LOOKING DOWNSTREAM (NORTHERLY) OF THE CONCRETE ARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW, LOOKING DOWNSTREAM (NORTHERLY) OF THE CONCRETE ARCH ('ONE-WAY BRIDGE') THAT PROVIDES PRIVATE (WWP) ACCESS TO THE MIDDLE CHANNEL OF THE POST FALLS POWER PLANT. - Washington Water Power Company Post Falls Power Plant, Concrete Arch Bridge, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  13. 3. PORTAL VIEW OF THE CONCRETE ARCH (ONEWAY BRIDGE) THAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. PORTAL VIEW OF THE CONCRETE ARCH (ONE-WAY BRIDGE) THAT PROVIDES ACCESS TO THE MIDDLE CHANNEL DAM AND POWER PLANT, LOOKING WEST. - Washington Water Power Company Post Falls Power Plant, Concrete Arch Bridge, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  14. View of Flume Tunnel #5 showing an example of concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Flume Tunnel #5 showing an example of concrete flume covered with concrete slabs as it enters a tunnel under the road (FS 502). Looking southwest - Childs-Irving Hydroelectric Project, Childs System, Flume Tunnel No. 5, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  15. The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities.

    PubMed

    Azarmi, Farhad; Kumar, Prashant; Mulheron, Mike

    2014-08-30

    Building activities generate coarse (PM10≤10μm), fine (PM2.5≤2.5μm) and ultrafine particles (<100nm) making it necessary to understand both the exposure levels of operatives on site and the dispersion of ultrafine particles into the surrounding environment. This study investigates the release of particulate matter, including ultrafine particles, during the mixing of fresh concrete (incorporating Portland cement with Ground Granulated Blastfurnace Slag, GGBS or Pulverised Fuel Ash, PFA) and the subsequent drilling and cutting of hardened concrete. Particles were measured in the 5-10,000nm size range using a GRIMM particle spectrometer and a fast response differential mobility spectrometer (DMS50). The mass concentrations of PM2.5-10 fraction contributed ∼52-64% of total mass released. The ultrafine particles dominated the total particle number concentrations (PNCs); being 74, 82, 95 and 97% for mixing with GGBS, mixing with PFA, drilling and cutting, respectively. Peak values measured during the drilling and cutting activities were 4 and 14 times the background. Equivalent emission factors were calculated and the total respiratory deposition dose rates for PNCs for drilling and cutting were 32.97±9.41×10(8)min(-1) and 88.25±58.82×10(8)min(-1). These are a step towards establishing number and mass emission inventories for particle exposure during construction activities.

  16. Geopolymer concrete for structural use: Recent findings and limitations

    NASA Astrophysics Data System (ADS)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.

  17. Modelling of molten fuel/concrete interactions. [PWR; BWR

    SciTech Connect

    Muir, J. F.; Benjamin, A. S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data.

  18. Biodeterioration of concrete piling in the Arabian Gulf

    SciTech Connect

    Jadkowski, T.K.; Wiltsie, E.A.

    1985-03-01

    Concrete is one of the most widely used materials in marine construction because of its characteristic durability in sea environments. Recent inspection of concrete piles installed in the Arabian Gulf has revealed that concrete with high content of calcareous aggregate is susceptible to biodeterioration. Marine rock borers and sponges, which are common in areas where the seabed is composed of limestone rock, have been identified as the marine species responsible for the biodeterioration. Boring organisms pose a significant threat to concrete pile structural integrity. Boreholes deteriorate concrete and expose outer pile reinforcement to seawater. This paper describes the causes and magnitude of biodeterioration of piles installed in the Arabian Gulf and presents design parameters and material specifications for the selected preventive repair system.

  19. Fracture characteristics of concrete subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Liu, Haifeng; Liu, Haiyan; Song, Weidong

    2010-02-01

    This paper takes concrete as a four-phase composite made of the intact matrix and three mutually perpendicular groups of penny-shaped micro-cracks. The intact matrix is assumed to be elastic, homogeneous and isotropic, and the micro-cracks are penny-shaped. Combined with the failure mechanism of concrete subjected to impact loading, a dynamic constitutive model for concrete is developed based on Mori-Tanaka’s average stress concept and Eshelby’s equivalent inclusion theory. Experimental results show that concrete is rate-dependent. The model predictions are in good agreement with the experimental results. The model may be used to simulate the mechanical behavior of concrete under impact loadings.

  20. Economics and risks of recycling radioactively contaminated concrete

    SciTech Connect

    Parker, F.L.; Ayers, K.W.

    1997-12-31

    As Decontamination and Decommissioning activities proceed within the DOE complex, tremendous volumes of both radioactively contaminated and non-contaminated concrete will be processed for disposal. Current practice is to decontaminate the concrete, dispose of the contamination at LLW facilities and ship the concrete rubble to C & D landfills for disposal. This study evaluates the economic, health and safety, legal, and social aspects of recycling radioactively contaminated concrete. Probabilistic models were used to estimate costs and risks. The model indicates that the radioactively contaminated concrete can be recycled at the same or lower cost than current or alternative practices. The risks associated with recycling were consistently less than or equal to the other alternatives considered.

  1. Application of Composite Mechanics to Composites Enhanced Concrete Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Gotsis, Pascal K.

    2006-01-01

    A new and effective method is described to design composites to repair damage or enhance the overload strength of concrete infrastructures. The method is based on composite mechanics which is available in computer codes. It is used to simulate structural sections made from reinforced concrete which are typical in infrastructure as well as select reinforced concrete structures. The structural sections are represented by a number of layers through the thickness where different layers are used in concrete, and for the composite. The reinforced concrete structures are represented with finite elements where the element stiffness parameters are from the structural sections which are represented by composite mechanics. The load carrying capability of the structure is determined by progressive structural fracture. Results show up to 40 percent improvements for damage and for overload enhancement with relatively small laminate thickness for the structural sections and up to three times for the composite enhanced select structures (arches and domes).

  2. Analysis of concrete containment structures under severe accident loading conditions

    SciTech Connect

    Porter, V.L.

    1993-12-31

    One of the areas of current interest in the nuclear power industry is the response of containment buildings to internal pressures that may exceed design pressure levels. Evaluating the response of structures under these conditions requires computing beyond design load to the ultimate load of the containment. For concrete containments, this requirement means computing through severe concrete cracking and into the regime of wide-spread plastic rebar and/or tendon response. In this regime of material response, an implicit code can have trouble converging. This paper describes some of the author`s experiences with Version 5.2 of ABAQUS Standard and the ABAQUS concrete model in computing the axisymmetric response of a prestressed concrete containment to ultimate global structural failure under high internal pressures. The effects of varying the tension stiffening parameter in the concrete material model and variations of the parameters for the CONTROLS option are discussed.

  3. Testing and evaluation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Ally, M.R.

    1996-10-01

    The goals and objectives of the technical task plan (TTP) are to (1) describe the nature and extent of concrete contamination within the Department of Energy (DOE) complex and emerging and commercial technologies applicable to these problems; (2) to match technologies to the concrete problems and recommend up to four demonstrations; (3) to initiate recommended demonstrations; and (4) to continue investigation and evaluation of the application of electrokinetic decontamination processes to concrete. This document presents findings of experimental and theoretical studies of the electrokinetic decontamination (EK) process and their implications for field demonstrations. This effort is an extension of the work performed under TTP 142005, ``Electroosmotic Concrete Decontamination. The goals of this task were to determine the applicability of EK for treating contaminated concrete and, if warranted, to evaluate EK as a potential technology for demonstration. 62 refs.

  4. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  5. Friction evaluation of concrete paver blocks for airport pavement applications

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1992-01-01

    The development and use of concrete paver blocks is reviewed and some general specifications for application of this type of pavement surface at airport facilities are given. Two different shapes of interlocking concrete paver blocks installed in the track surface at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are described. Preliminary cornering performance results from testing of 40 x 14 radial-belted and bias-ply aircraft tires are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving several different tire sizes. Both dry and wet surface conditions were evaluated on the two concrete paver block test surfaces and a conventional, nongrooved Portland cement concrete surface. Future test plans involving evaluation of other concrete paver block designs at the ALDF are indicated.

  6. Application of active and passive neutron non destructive assay methods to concrete radioactive waste drums

    NASA Astrophysics Data System (ADS)

    Jallu, F.; Passard, C.; Brackx, E.

    2011-09-01

    This paper deals with the application of non-destructive neutron measurement methods to control and characterize 200 l radioactive waste drums filled with a concrete matrix. Due to its composition, and particularly to hydrogen, concrete penalizes the use of such methods to quantify uranium (U) and plutonium (Pu) components, which are mainly responsible of the α-activity of the waste. The determination of the alpha activity is the main objective of neutron measurements, in view to verify acceptance criteria in surface storage. Calibration experiments of the Active Neutron Interrogation (ANI) method lead to Detection Limit Masses (DLM) of about 1 mg of 239Pu eff in the total counting mode, and of about 10 mg of 239Pu eff in the coincidence counting mode, in case of a homogeneous Pu source and measurement times between one and two hours. Monte Carlo calculation results show a very satisfactory agreement between experimental values and calculated ones. Results of the application of passive and active neutron methods to control two real drums are presented in the last part of the paper. They show a good agreement between measured data and values declared by the waste producers. The main difficulties that had to be overcome are the low neutron signal in passive and active coincidence counting modes due to concrete, the analysis of the passive neutron signal in presence of 244Cm in the drum, which is a strong spontaneous fission neutron emitter, the variation of the active background with the concrete composition, and the analysis of the active prompt neutron signal due to the simultaneous presence of U and Pu in the drums.

  7. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  8. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  9. Earthquake safety assessment of concrete arch and gravity dams

    NASA Astrophysics Data System (ADS)

    Lin, Gao; Hu, Zhiqiang

    2005-12-01

    Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessment of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrete subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range. Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.

  10. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    SciTech Connect

    Turick, C; Berry, C.

    2012-10-15

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  11. Interferences in Prompt γ Analysis of corrosive contaminants in concrete

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Nagadi, M. M.; Al-Amoudi, O. S. B.

    2006-12-01

    An accelerator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup has been developed to measure the concentration of corrosive chloride and sulfate contaminants in concrete. The Minimum Detectable Concentration (MDC) limit of chlorine and sulfur in the concrete depends upon the γ-ray used for elemental analysis. For more interfering γ-rays, the MDC limit is higher than that for less interfering γ-rays. The MDC limit of sulfur in concrete measured for the KFUPM PGNAA setup was calculated to be 0.60±0.19 wt%. The MDC limit is equal to the upper limit of sulfur concentration in concrete set by the British Standards. The MDC limit of chlorine in concrete for the KFUPM PGNAA setup, which was calculated for less interfering 1.165 MeV γ-rays, was found to be 0.075±0.025 wt%. The lower limits of the MDC of chlorine in concrete was 73% higher than the limit set by American Concrete Institute. The limit of the MDC can be improved to the desired standard by increasing the intensity of neutron source. For moreinterfering 5.715 and 6.110 MeV chlorine γ-rays the MDC limit was found to be 2-3 times larger than that of 1.165 MeV γ-rays. When normalized to the same intensity of the neutron source, the MDC limits of chlorine and sulfur in concrete from the KFUPM PGNAA setup are better than MDC limits of chlorine in concrete obtained with the 241Am-Be source-based PGNAA setup. This study has shown that an accelerator-based PGNAA setup can be used in chlorine and sulfur analysis of concrete samples.

  12. Radon emanation fractions from concretes containing fly ash and metakaolin.

    PubMed

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling.

  13. Carbonate concretions as a significant component of ancient marine carbon cycles: Insights from paired organic and inorganic carbon isotope analyses of a Cretaceous shale

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.

    2014-12-01

    Carbonate concretions often occur within fine-grained, organic-rich sedimentary rocks. This association reflects the common production of diagenetic minerals through biologic cycling of organic matter. Chemical analysis of carbonate concretions provides the rare opportunity to explore ancient shallow diagenetic environments, which are inherently transient due to progressive burial but are an integral component of the marine carbon cycle. The late Cretaceous Holz Shale (~80 Ma) contains abundant calcite concretions that exhibit textural and geochemical characteristics indicative of relatively shallow formation (i.e., near the sediment-water interface). Sampled concretions contain between 5.4 and 9.8 wt.% total inorganic carbon (TIC), or ~45 and 82 wt.% CaCO3, compared to host shale values which average ~1.5 wt.% TIC. Organic carbon isotope compositions (δ13Corg) are relatively constant in host and concretion samples ranging from ­-26.3 to -24.0‰ (VPDB). Carbonate carbon isotope compositions (δ13Ccarb) range from -22.5 to -3.4‰, indicating a significant but not entirely organic source of carbon. Concretions of the lower Holz Shale exhibit considerably elevated δ13Ccarb values averaging -4.8‰, whereas upper Holz Shale concretions express an average δ13Ccarb value of -17.0‰. If the remaining carbonate for lower Holz Shale concretions is sourced from marine fluids and/or dissolved marine carbonate minerals (e.g., shells), a simple mass balance indicates that ~28% of concretion carbon was sourced from organic matter and ~72% from late Cretaceous marine inorganic carbon (with δ13C ~ +2.5‰). Upper Holz Shale calculations indicate a ~73% contribution from organic matter and a ~27% contribution from inorganic carbon. When normalized for carbonate, organic contents within the concretions are ~2-13 wt.% enriched compared to host contents. This potentially reflects the protective nature of cementation that acts to limit permeability and chemical destruction of

  14. Mass extinctions vs. uniformitarianism in biological evolution

    SciTech Connect

    Bak, P.; Paczuski, M.

    1995-12-31

    It is usually believed that Darwin`s theory leads to a smooth gradual evolution, so that mass extinctions must be caused by external shocks. However, it has recently been argued that mass extinctions arise from the intrinsic dynamics of Darwinian evolution. Species become extinct when swept by intermittent avalanches propagating through the global ecology. These ideas are made concrete through studies of simple mathematical models of co-evolving species. The models exhibit self-organized criticality and describe some general features of the extinction pattern in the fossil record.

  15. Diamond Shaving of Contaminated Concrete Surfaces

    SciTech Connect

    Mullen, Lisa K.

    2008-01-15

    Decommissioning and decontamination of existing facilities presents technological challenges. One major challenge is the removal of surface contamination from concrete floors and walls while eliminating the spread of contamination and volumetric reduction of the waste stream. Numerous methods have been tried with a varying degree of success. Recent technology has made this goal achievable and has been used successfully. This new technology is the Diamond Floor Shaver and Diamond Wall shaver. The Diamond Floor Shaver is a self-propelled, walk behind machine that literally shaves the contaminated concrete surface to specified depths. This is accomplished by using a patented system of 100 dry cutting diamond blades with offset diamond segments that interlock to provide complete shaving of the concrete surface. Grooves are eliminated which allows for a direct frisk reading to analyze results. When attached to an appropriate size vacuum, the dust produced is 100% contained. Dust is collected in drums ready for disposition and disposal. The waste produced in shaving 7,500 square feet at 1/8 inch thickness would fill a single 55 gallon drum. Production is dependent on depth of shaving but averages 100 square feet per hour. The wall shaver uses the same patented diamond drum and blades but is hydraulically driven and is deployed using a robotic arm allowing its operation to be to totally remote. It can reach ceilings as high as 20 feet. Numerous small projects were successfully completed using this technology. Large scale deployment came in 2003. Bluegrass, in conjunction with Bartlett Services, deployed this technology to support decontamination activities for closing of the Rocky Flats nuclear weapons site. Up to six floor shavers and one wall shaver were deployed in buildings B371 and B374. These buildings had up to one half-inch, fixed plutonium and beryllium contamination. Hundred-thousands of square feet of floors and walls were shaved successfully to depths of up to

  16. Performance of concrete pavements containing recycled concrete aggregate. Interim report, October 1993-October 1996

    SciTech Connect

    Wade, M.J.; Cuttell, G.D.; Vandenbossche, J.M.; Yu, H.T.; Smith, K.D.

    1997-03-01

    This interim report documents the field performance of nine concrete pavement projects that incorporate recycled concrete aggregate (RCA) in the construction of the pavement. Multiple sections were evaluated on many of the nine projects, due to perceived differences in performance levels or variations in pavement design (such as the use of virgin aggregate or the inclusion of dowel bars). All told, a total of 17 sections (of which 12 contain RCA) were subjected to an extensive field testing program, consisting of pavement condition surveys, drainage surveys, falling weight deflectometer (FWD) testing, coring, and serviceability assessments. A minimum of eight cores were retrieved from each section for laboratory evaluation of compressive strength, split tensile strength, dynamic elastic modulus, static elastic modulus, and thermal coefficient of expansion, as well as for volumetric surface testing and petrographic analyses.

  17. Increasing exfiltration from pervious concrete and temperature monitoring.

    PubMed

    Tyner, J S; Wright, W C; Dobbs, P A

    2009-06-01

    Pervious concrete typically has an infiltration rate far exceeding any expectation of precipitation rate. The limiting factor of a retention based pervious concrete system is often defined by how quickly the underlying soil subgrade will infiltrate the water temporarily stored within the concrete and/or aggregate base. This issue is of particular importance when placing a pervious concrete system on compacted fine textured soils. This research describes the exfiltration from twelve pervious concrete plots constructed on a compacted clay soil in eastern Tennessee, USA. Several types of treatments were applied to the clay soil prior to placement of the stone aggregate base and pervious concrete in an attempt to increase the exfiltration rate, including: 1) control--no treatment; 2) trenched--soil trenched and backfilled with stone aggregate; 3) ripped--soil ripped with a subsoiler; and 4) boreholes--placement of shallow boreholes backfilled with sand. The average exfiltration rates were 0.8 cm d(-1) (control), 4.6 cm d(-1) (borehole), 10.0 cm d(-1) (ripped), and 25.8 cm d(-1) (trenched). The trenched treatment exfiltrated fastest, followed by the ripped and then the borehole treatments, although the ripped and borehole treatments were not different from one another at the 5% level of significance. The internal temperature of the pervious concrete and aggregate base was monitored throughout the winter of 2006-2007. Although the temperature of the pervious concrete dropped below freezing 24 times, freezing concrete temperatures never coincided with free water being present in the large pervious concrete pores. The coldest recorded air temperature was -9.9 degrees C, and the corresponding coldest recorded pervious concrete temperature was -7.1 degrees C. The temperature of the pervious concrete lagged diurnal air temperature changes and was generally buffered in amplitude, particularly when free water was present since the addition of water increases the thermal

  18. Water-Rock Interaction Simulations of Iron Oxide Mobilization and Precipitation: Implications of Cross-diffusion Reactions for Terrestrial and Mars 'Blueberry' Hematite Concretions

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Chan, M. A.; Parry, W. T.

    2005-12-01

    Modeling of how terrestrial concretions form can provide valuable insights into understanding water-rock interactions that led to the formation of hematite concretions at Meridiani Planum, Mars. Numerical simulations of iron oxide concretions in the Jurassic Navajo Sandstone of southern Utah provide physical and chemical input parameters for emulating conditions that may have prevailed on Mars. In the terrestrial example, iron oxide coatings on eolian sand grains are reduced and mobilized by methane or petroleum. Precipitation of goethite or hematite occurs as Fe interacts with oxygen. Conditions that produced Navajo Sandstone concretions can range from a regional scale that is strongly affected by advection of large pore volumes of water, to small sub-meter scale features that are dominantly controlled by diffusive processes. Hematite concretions are results of a small-scale cross-diffusional process, where Fe and oxygen are supplied from two opposite sides from the 'middle' zone of mixing where concretions precipitate. This is an ideal natural system where Liesegang banding and other self-organized patterns can evolve. A complicating variable here is the sedimentologic (both mineralogic and textural) heterogeneity that, in reality, may be the key factor controlling the nucleation and precipitation habits (including possible competitive growth) of hematite concretions. Sym.8 water-rock interaction simulator program was used for the Navajo Sandstone concretions. Sym.8 is a water-rock simulator that accounts for advective and diffusive mass-transfer, and equilibrium and kinetic reactions. The program uses a dynamic composite media texture model to address changing sediment composition and texture to be consistent with the reaction progress. Initial one-dimensional simulation results indicate precipitation heterogeneity in the range of sub-meters, e.g., possible banding and distribution of iron oxide nodules may be centimeters apart for published diffusivities and

  19. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.

    PubMed

    Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pH<8. According to PHREEQC equilibrium modeling, the leaching of major ions and trace metals was mainly controlled by the dissolution/precipitation and surface complexation reactions, respectively. A 1-D reactive transport experiment was undertaken to better understand how pervious concrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization.

  20. Evaluation of Concrete Consolidation: DSS-35 Antenna Reinforced Concrete Pedestal, Canberra Deep Space Communications Complex, Australia

    NASA Astrophysics Data System (ADS)

    Saldua, B. P.; Dodge, E. C.; Kolf, P. R.; Olson, C. A.

    2016-02-01

    Antenna structures for the Deep Space Network track spacecraft that are millions of miles away. Therefore, these structures have tight specifications for translation, rotation, and differential settlement. This article presents several nondestructive test methods that were used to evaluate, locate, and repair imperfections in the reinforced concrete pedestal that supports the DSS-35 antenna structure. These methods include: (1) impulse response (IR), (2) ultrasonic shear-wave tomography (MIRA), and (3) ground-penetrating radar (GPR).