Sample records for salicylic acid carboxyl

  1. The effect of carboxylic acids on the oxidation of coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lengyel, Attila; Tolnai, Gyula; Klencsár, Zoltán; Garg, Vijayendra Kumar; de Oliveira, Aderbal Carlos; Herojit Singh, L.; Homonnay, Zoltán; Szalay, Roland; Németh, Péter; Szabolcs, Bálint; Ristic, Mira; Music, Svetozar; Kuzmann, Ernő

    2018-05-01

    57Fe Mössbauer spectroscopy, XRD, and TEM were used to investigate the effect of mandelic- and salicylic acid coatings on the iron oxide nanoparticles. These two carboxylic acids have similar molecules size and stoichiometry, but different structure and acidity. Significant differences were observed between the Mössbauer spectra of samples coated with mandelic acid and salicylic acid. These results indicate that the occurrence of iron microenvironments in the mandelic- and salicylic acid-coated iron oxide nanoparticles is different. The results can be interpreted in terms of the influence of the acidity of carboxylic acids on the formation, core/shell structure, and oxidation of coated iron oxide nanocomposites.

  2. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    NASA Astrophysics Data System (ADS)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  3. Safety assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12-15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate.

    PubMed

    2003-01-01

    Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent--miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents--miscellaneous (Capryloyl, 0.1% to 1%; C12-15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents--miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD(50) in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to

  4. Salicylic Acid Topical

    MedlinePlus

    ... stinging in the area where you applied topical salicylic acid Some side effects can be serious. If you experience any of ... of the eyes, face, lips, or tongue Topical salicylic acid may cause other side effects. Call your doctor if you have any unusual ...

  5. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS

    PubMed Central

    Huang, Zhi-hong; Wang, Zhi-li; Shi, Bao-lin; Wei, Dong; Chen, Jian-xin; Wang, Su-li; Gao, Bao-jia

    2015-01-01

    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite. PMID:26457083

  6. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS.

    PubMed

    Huang, Zhi-Hong; Wang, Zhi-Li; Shi, Bao-Lin; Wei, Dong; Chen, Jian-Xin; Wang, Su-Li; Gao, Bao-Jia

    2015-01-01

    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  7. Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan P. Dain; Gary Gresham; Gary S. Groenewold

    2011-07-01

    Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cationmore » is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.« less

  8. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  9. Infrared multiple-photon dissociation spectroscopy of group II metal complexes with salicylate.

    PubMed

    Dain, Ryan P; Gresham, Gary; Groenewold, Gary S; Steill, Jeffrey D; Oomens, Jos; van Stipdonk, Michael J

    2011-07-15

    Ion trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations, were used to characterize singly charged, 1:1 complexes of Ca(2+), Sr(2+) and Ba(2+) with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO(2) and (b) formation of [MOH](+) where M = Ca(2+), Sr(2+) or Ba(2+). DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 and 1650 cm(-1), and the best correlation between theoretical and experimental spectra is found for the structure that features coordination of the metal ion by phenoxide and the carbonyl O of the carboxylic acid group, consistent with the calculated energies for the respective species. Copyright © 2011 John Wiley & Sons, Ltd.

  10. A review of toxicity from topical salicylic acid preparations.

    PubMed

    Madan, Raman K; Levitt, Jacob

    2014-04-01

    Topical salicylic acid is often used in dermatologic conditions because of its keratolytic, bacteriostatic, fungicidal, and photoprotective properties. The bioavailability of salicylic acid differs depending on the vehicle used and pH of transcellular fluids. Although rare, salicylic acid toxicity (salicylism) can occur from topical application. Physicians should be mindful of the potential for salicylism or even death from topically applied salicylic acid. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  11. 21 CFR 556.590 - Salicylic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salicylic acid. 556.590 Section 556.590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... salicylic acid in milk from dairy animals. ...

  12. Salicylic acid as a peeling agent: a comprehensive review

    PubMed Central

    Arif, Tasleem

    2015-01-01

    Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I–III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included. PMID:26347269

  13. Salicylic acid as a peeling agent: a comprehensive review.

    PubMed

    Arif, Tasleem

    2015-01-01

    Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I-III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included.

  14. Delayed ripening of banana fruit by salicylic acid.

    PubMed

    Srivastava; Dwivedi

    2000-09-08

    Salicylic acid treatment has been found to delay the ripening of banana fruits (Musa acuminata). Fruit softening, pulp:peel ratio, reducing sugar content, invertase and respiration rate have been found to decrease in salicylic acid treated fruits as compared with control ones. The activities of major cell wall degrading enzymes, viz. cellulase, polygalacturonase and xylanase were found to be decreased in presence of salicylic acid. The major enzymatic antioxidants namely, catalase and peroxidase, were also found to be decreased in presence of salicylic acid during banana fruit ripening.

  15. Transcriptional Profiling of Sorghum Induced by Methyl Jasmonate, Salicylic Acid, and Aminocyclopropane Carboxylic Acid Reveals Cooperative Regulation and Novel Gene Responses1[w

    PubMed Central

    Salzman, Ron A.; Brady, Jeff A.; Finlayson, Scott A.; Buchanan, Christina D.; Summer, Elizabeth J.; Sun, Feng; Klein, Patricia E.; Klein, Robert R.; Pratt, Lee H.; Cordonnier-Pratt, Marie-Michèle; Mullet, John E.

    2005-01-01

    We have conducted a large-scale study of gene expression in the C4 monocot sorghum (Sorghum bicolor) L. Moench cv BTx623 in response to the signaling compounds salicylic acid (SA), methyl jasmonate (MeJA), and the ethylene precursor aminocyclopropane carboxylic acid. Expression profiles were generated from seedling root and shoot tissue at 3 and 27 h, using a microarray containing 12,982 nonredundant elements. Data from 102 slides and quantitative reverse transcription-PCR data on mRNA abundance from 171 genes were collected and analyzed and are here made publicly available. Numerous gene clusters were identified in which expression was correlated with particular signaling compound and tissue combinations. Many genes previously implicated in defense responded to the treatments, including numerous pathogenesis-related genes and most members of the phenylpropanoid pathway, and several other genes that may represent novel activities or pathways. Genes of the octadecanoic acid pathway of jasmonic acid (JA) synthesis were induced by SA as well as by MeJA. The resulting hypothesis that increased SA could lead to increased endogenous JA production was confirmed by measurement of JA content. Comparison of responses to SA, MeJA, and combined SA+MeJA revealed patterns of one-way and mutual antagonisms, as well as synergistic effects on regulation of some genes. These experiments thus help further define the transcriptional results of cross talk between the SA and JA pathways and suggest that a subset of genes coregulated by SA and JA may comprise a uniquely evolved sector of plant signaling responsive cascades. PMID:15863699

  16. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    PubMed

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  17. Effect of antacid and ascorbic acid on serum salicylate concentration.

    PubMed

    Hansten, P D; Hayton, W L

    1980-01-01

    To determine the effect of antacid or ascorbic acid administration on plateau serum salicylate concentrations, nine healthy subjects were given each of the following treatments by balanced block design: choline salicylate (equivalent to 3.76 or 5.62 Gm/day of aspirin); choline salicylate plus magnesium-aluminum hydroxide (120 ml/day); or choline salicylate plus ascorbic acid (3 Gm/day). In subjects developing a control serum salicylate level above 10 mg/dl, antacid administration produced a decrease in serum salicylate level (mean 19.8 mg/dl vs. 15.8 mg/dl) (P less than 0.01). Ascorbic acid administration was not associated with a significant change in serum salicylate. The reduction in serum salicylate following antacid appears to be due to antacid-induced alkalinization of the urine with resultant increase in renal salicylate clearance. Antacid administration should be considered a potential cause of altered serum salicylate concentration in patients receiving large doses of salicylate.

  18. Salicylic acid derivatives: synthesis, features and usage as therapeutic tools.

    PubMed

    Ekinci, Deniz; Sentürk, Murat; Küfrevioğlu, Ömer İrfan

    2011-12-01

    In the field of medicinal chemistry, there is a growing interest in the use of small molecules. Although acetyl salicylic acid is well known for medical applications, little is known about other salicylic acid derivatives, and there is serious lack of data and information on the effects and biological evaluation that connect them. This review covers the synthesis and drug potencies of salicylic acid derivatives. After a brief overview of the information on salicylic acid and its features, a detailed review of salicylic acids as drugs and prodrugs, usage as cyclooxygenase inhibitors, properties in plants, synthesis and recent patents, is developed. Salicylic acid research is still an important area and innovations continue to arise, which offer hope for new therapeutics in related fields. It is anticipated that this review will guide the direction of long-term drug/nutraceutical safety trials and stimulate ideas for future research.

  19. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  20. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  1. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  2. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  3. Trichloroacetic Acid Versus Salicylic Acid in the Treatment of Acne Vulgaris in Dark-Skinned Patients.

    PubMed

    Abdel Meguid, Azza Mahfouz; Elaziz Ahmed Attallah, Dalia Abd; Omar, Howida

    2015-12-01

    Treatment options for acne include chemical peeling. Trichloroacetic acid (TCA) has been used for treating acne. The ability of TCA to diminish corneocyte cohesion and keratinocyte plugging addresses this mode of treatment. Salicylic acid is an excellent keratolytic agent. It is believed to function through solubilization of intercellular cement, thereby reducing corneocyte adhesion. Comparing the therapeutic efficacy of TCA 25% peels with those of salicylic acid 30% in patients with acne vulgaris. Twenty patients, Fitzpatrick skin Types III to V with facial acne, were enrolled. Twenty-five percent of TCA was applied to the right half of the face and 30% salicylic acid to the left half at 2-week interval for 2 months. Total improvement was more frequent with salicylic acid peeling (95%) versus (85%) with TCA. Total comedones improvement was more frequent with TCA peeling (80%) versus (70%) with salicylic acid. Improvement of inflammatory lesions was more frequent among the side treated with salicylic acid (85%) versus (80%) with TCA peeling. However, the results did not reach the statistical significance level. Trichloroacetic acid is more superior in treating comedonal lesions, whereas salicylic is more superior in treating inflammatory lesions, without significant different between their results.

  4. Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function

    PubMed Central

    Effmert, Uta; Saschenbrecker, Sandra; Ross, Jeannine; Negre, Florence; Fraser, Chris M.; Noel, Joseph P.; Dudareva, Natalia; Piechulla, Birgit

    2010-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT’s three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in planta depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  5. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  6. The protective effect of salicylic acid on lysozyme against riboflavin-mediated photooxidation

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Hongbao; Cheng, Lingli; Zhu, Hui; Wang, Mei; Wang, Shi-Long

    2011-06-01

    As a metabolite of aspirin in vivo, salicylic acid was proved to protect lysozyme from riboflavin-mediated photooxidation in this study. The antioxidative properties of salicylic acid were further studied by using time-resolved laser flash photolysis of 355 nm. It can quench the triplet state of riboflavin via electron transfer from salicylic acid to the triplet state of riboflavin with a reaction constant of 2.25 × 10 9 M -1 s -1. Mechanism of antioxidant activities of salicylic acid on lysozyme oxidation was discussed. Salicylic acid can serve as a potential antioxidant to quench the triplet state of riboflavin and reduce oxidative pressure.

  7. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grownmore » under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic

  8. pH at the micellar interface: synthesis of pH probes derived from salicylic acid, acid-base dissociation in sodium dodecyl sulfate micelles, and Poisson-Boltzmann simulation.

    PubMed

    Souza, T P; Zanette, D; Kawanami, A E; de Rezende, L; Ishiki, H M; do Amaral, A T; Chaimovich, H; Agostinho-Neto, A; Cuccovia, I M

    2006-05-01

    The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumundecanoyl)benzoate; 2-hydroxy-5-acetylbenzoic acid; and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pK(ap). The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pK(ap)'s of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis.

  9. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-11-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

  10. Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis1

    PubMed Central

    Traw, M. Brian; Bergelson, Joy

    2003-01-01

    Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds. PMID:14551332

  11. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less

  12. Randomized trial comparing a chemical peel containing a lipophilic hydroxy acid derivative of salicylic acid with a salicylic acid peel in subjects with comedonal acne.

    PubMed

    Levesque, Annie; Hamzavi, Iltefat; Seite, Sophie; Rougier, André; Bissonnette, Robert

    2011-09-01

    Lipohydroxyacid is a lipophilic derivative of salicylic acid with comedolytic properties. To compare lipohydroxyacid and salicylic acid peels in subjects with comedonal acne. In this split face, randomized study, 20 subjects with comedonal acne received lipohydroxyacid peels on one side of the face, while the other side was treated with salicylic acid peels. A total of six peels at 2-week intervals were performed. Efficacy was evaluated by counting noninflammatory and inflammatory lesions and by performing a global change in acne assessment. Safety was assessed by evaluating adverse events, global tolerance, and the presence of erythema, scaling, and dryness. There was a statistically significant decrease of 55.6% and 48.5% from baseline to Day 98 in the mean number of noninflammatory lesions for the sides treated with lipohydroxyacid and salicylic acid peels, respectively (P < 0.001). There was no significant difference in the degree of reduction in noninflammatory lesions between the two peels. There was no significant reduction in the number of inflammatory lesions. Both peels were generally very well tolerated. This study suggests that lipohydroxyacid peels can be beneficial to subjects with comedonal acne. © 2011 Wiley Periodicals, Inc.

  13. Preparation and investigation of acetyl salicylic acid-caffeine complex for rectal administration.

    PubMed

    Fouad, Ehab A; El-Badry, Mahmoud; Alanazi, Fars K; Arafah, Maha M; Al-Ashban, Riyadh; Alsarra, Ibrahim A

    2010-06-01

    An acetyl salicylic acid-caffeine complex was prepared and evaluated for the potential use in rectal administration. The results revealed the formation of a complex between acetyl salicylic acid and caffeine in a 1:1 molar ratio by a charge transfer mechanism. The effects of acetyl salicylic acid and complex on the rectal tissues showed destruction in the mucosal epithelium in case of acetyl salicylic acid; however, no change in the rectal tissues was noticed upon the administration of the complex. The effect of suppository bases on the release of the complex was studied using Witepsol H15 as fatty base and polyethylene glycols (PEG) 1000 and 4000 as a water soluble suppository base. The release profiles of acetyl salicylic acid and the complex were faster from PEG than from that of Witepsol H15. The percent release for the complex and acetyl salicylic acid from PEG base were 45.8, and 34.9%, respectively. However, it was 8.7 and 7.8%, respectively, from Witepsol H15 fatty base. The release kinetic was found to follow the non-Fickian diffusion model for complex from the suppository bases. It was concluded that acetyl salicylic acid caffeine complex can be used safely for rectal administration.

  14. Preparation and investigation of acetyl salicylic acid-caffeine complex for rectal administration.

    PubMed

    Fouad, Ehab A; El-Badry, Mahmoud; Alanazi, Fars K; Arafah, Maha M; Al-Ashban, Riyadh; Alsarra, Ibrahim A

    2009-07-30

    An acetyl salicylic acid-caffeine complex was prepared and evaluated for the potential use in rectal administration. The results revealed the formation of a complex between acetyl salicylic acid and caffeine in a 1:1 molar ratio by a charge transfer mechanism. The effects of acetyl salicylic acid and complex on the rectal tissues showed destruction in the mucosal epithelium in case of acetyl salicylic acid; however, no change in the rectal tissues was noticed upon the administration of the complex. The effect of suppository bases on the release of the complex was studied using Witepsol H15 as fatty base and polyethylene glycols (PEG) 1000 and 4000 as a water soluble suppository base. The release profiles of acetyl salicylic acid and the complex were faster from PEG than from that of Witepsol H15. The percent release for the complex and acetyl salicylic acid from PEG base were 45.8, and 34.9%, respectively. However, it was 8.7 and 7.8%, respectively, from Witepsol H15 fatty base. The release kinetic was found to follow the non-Fickian diffusion model for complex from the suppository bases. It was concluded that acetyl salicylic acid caffeine complex can be used safely for rectal administration.

  15. Salicylic acid peels versus Jessner's solution for acne vulgaris: a comparative study.

    PubMed

    Bae, Byung Gi; Park, Chang Ook; Shin, Hyoseung; Lee, Soo Hyun; Lee, Yun Sun; Lee, Sang Ju; Chung, Kee Yang; Lee, Kwang Hoon; Lee, Ju Hee

    2013-02-01

    Salicylic acid was recently formulated in a hydroethanolic vehicle at a concentration of 20% to 30%. Salicylic acid has strong comedolytic effects because of its lipophilic nature. To compare the therapeutic efficacy and tolerability of salicylic acid peels with those of Jessner's solution peels in patients with acne vulgaris. Thirteen patients (13 men; mean age 22.6, range 20-28) with facial acne were enrolled. Jessner's solution was applied to one side of each patient's face and 30% salicylic acid to the other in three sessions at 2-week intervals. A blinded investigator counted noninflammatory and inflammatory lesions before treatment and 2 weeks after each treatment. Inflammatory and noninflammatory acne lesion counts decreased in proportion to the duration of treatment. Inflammatory acne lesion counts did not differ significantly between salicylic acid and Jessner's solution peels, although in terms of noninflammatory acne lesion counts, sites treated with salicylic acid showed significant improvement (p = .04), whereas those treated with Jessner's solution did not. We found that 30% salicylic acid peels were effective for inflammatory acne and more effective than Jessner's solution peels for treating noninflammatory acne. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  16. New formulation of chemical peeling agent: 30% salicylic acid in polyethylene glycol. Absorption and distribution of 14C-salicylic acid in polyethylene glycol applied topically to skin of hairless mice.

    PubMed

    Ueda, Setsuko; Mitsugi, Koichi; Ichige, Kazumi; Yoshida, Kenji; Sakuma, Tomoko; Ninomiya, Shin-ichi; Sudou, Tetsuji

    2002-04-01

    Salicylic acid is used in chemical peeling procedures. However, they have caused many side effects, even salicylism. To achieve a salicylic acid peeling that would be safer for topical use, we recently developed a new formulation consisting of 30% salicylic acid in polyethylene glycol (PEG) vehicle. In an extension of our previous research, we studied the absorption of 30% salicylic acid labeled with 14C in PEG vehicle applied topically to the intact and damaged skin of male hairless mice. An ointment containing 3 mg salicylic acid in 10 mg vehicle was applied to both groups. In animals with intact skin, 1 h after application the plasma concentration of radioactivity was 1665.1 ng eq/ml, significantly lower than the 21437.6 ng eq/ml observed in mice with damaged skin. Microautoradiograms of intact skin showed that the level of radioactivity in the cornified cell layer was similar at 6 h after application. However, in damaged skin, the overall level of radioactivity showed a decrease by 3 h after application. In the carcasses remaining after the treated intact and damaged skin had been removed, 0.09 and 11.38% of the applied radioactivity remained, respectively. These findings confirm that 30% salicylic acid in PEG vehicle is little absorbed through the intact skin of hairless mice, and suggest that salicylism related to absorption through the skin of quantities of topically applied salicylic acid is not likely to occur in humans with intact skin during chemical peeling with this preparation. This new preparation of 30% salicylic acid in PEG vehicle is believed to be safe for application as a chemical peeling agent.

  17. Structure Property Relationships of Carboxylic Acid Isosteres.

    PubMed

    Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo

    2016-04-14

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.

  18. Influencing of resorption and side-effects of salicylic acid by complexing with beta-cyclodextrin.

    PubMed

    Szejtli, J; Gerlóczy, A; Sebestyén, G; Fónagy, A

    1981-04-01

    After oral administration of 14C-labelled salicylic acid and its beta-cyclodextrin complex to rats, the blood radioactivity-level increases in the first 2 h than decreases. The blood level obtained with the inclusion complex is somewhat but not significantly lower than with free acid. Since the resorption of cyclodextrin is a considerably slower process, it is very likely that the resorption of salicylic acid take place in the form of free acid after dissociation of the complex. The urinary excretion cumulative curves show that the free salicylic acid is completely excreted, while about 10% of the salicylic acid administered in the form of complex is lost. The cyclodextrin complex formation increases the pK value of all hydroxy-benzoic acids. Direct observations reveals that complex formation decreases the stomach-irritating effect of salicylic acid. The ratio of radioactivity was nearly the same in the organs of animals treated by both free salicylic and cyclodextrin complex.

  19. Aromatic Hydroxylation of Salicylic Acid and Aspirin by Human Cytochromes P450

    PubMed Central

    Bojić, Mirza; Sedgeman, Carl A.; Nagy, Leslie D.; Guengerich, F. Peter

    2015-01-01

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids—salicyluric acid and gentisuric acid—and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1. PMID:25840124

  20. Topical zinc oxide vs. salicylic acid-lactic acid combination in the treatment of warts.

    PubMed

    Khattar, Joe A; Musharrafieh, Umayya M; Tamim, Hala; Hamadeh, Ghassan N

    2007-04-01

    Warts are a common dermatologic problem. Treatment is painful, prolonged, and can cause scarring. To evaluate topical zinc oxide for the treatment of warts. This was a randomized, double-blind controlled trial of 44 patients. Twenty-two patients were given topical zinc oxide 20% ointment, and the other 22 received salicylic acid 15% + lactic acid 15% ointment twice daily. All patients were followed up for 3 months or until cure, whichever occurred first. All patients were observed for side-effects. Sixteen patients in the zinc group and 19 in the salicylic acid-lactic acid group completed the study. In the zinc oxide-treated group, 50% of the patients showed complete cure and 18.7% failed to respond, compared with 42% and 26%, respectively, in the salicylic acid-lactic acid-treated group. No patients developed serious side-effects. Topical zinc oxide is an efficacious, painless, and safe therapeutic option for wart treatment.

  1. Whitening effect of salicylic acid peels in Asian patients.

    PubMed

    Ahn, Hyo Hyun; Kim, Il-hwan

    2006-03-01

    Patients with skin of color demand treatment modality suitable for their skin. Salicylic acid peel has effectiveness for both of acne and postinflammatory hyperpigmentation that are common in patients with skin of color. To assess the whitening effect of salicylic acid peels in Asian patients with acne objectively by the colorimetric method. Twenty-four healthy adult patients with acne participated voluntarily in the study. Any other systemic and topical acne treatments were prohibited. They had undergone full-face peels with 30% salicylic acid in absolute ethanol bi-weekly for 3 months. Colorimetric changes of the face were recorded with reflectance spectrophotometer. Paired comparisons with pretreatment CIE L*a*b* showed abrupt descent of L* value after first peel (p=.0286). Then there was continued increase of mean L* value, even though the final L* value did not reach a statistically significant level. The mean a* value decreased continually, and the a* values recorded after the second, third, fourth, fifth, and final peel showed significantly lowered levels (p=.0027, .0005, <.0001, <.0001, <.0001). Salicylic acid peels are beneficial in whitening the face of Asian patients with acne. The whitening effect would be an important factor in choosing the superficial peeling agent for them.

  2. Gas chromatographic determination of carboxylic acid chlorides and residual carboxylic acid precursors used in the production of some penicillins.

    PubMed

    Lauback, R G; Balitz, D F; Mays, D L

    1976-05-01

    An improved gas chromatographic method is described for the simultaneous determination of carboxylic acid chlorides and related carboxylic acids used in the production of some commercial semisynthetic penicillins. The acid chloride reacts with diethylamine to form the corresponding diethylamide. Carboxylic acid impurities are converted to trimethylsilyl esters. The two derivatives are separated and quantitated in the same chromatographic run. This method, an extension of the earlier procedure of Hishta and Bomstein (1), has been applied to the acid chlorides used to make oxacillin, cloxacillin, dicloxacillin, and methicillin (Figure 1); it shows promise of application to other acid chlorides. The determination is more selective than the usual titration methods, which do not differentiate among acids with similar pK's. Relative standard deviations of the acid chloride determination are 1.0-2.5%. Residual carboxylic acid can be repetitively determined within a range of 0.6% absolute.

  3. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl ester...

  4. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    PubMed

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  5. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  6. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  7. Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid.

    PubMed

    Peña, M A; Escalera, B; Reíllo, A; Sánchez, A B; Bustamante, P

    2009-03-01

    The solubility of phenacetin, salicylic acid, and probenecid in ethanol-water and ethanol-ethyl acetate mixtures at several temperatures (15-40 degrees C) was measured. The solubility profiles are related to medium polarity changes. The apparent thermodynamic magnitudes and enthalpy-entropy relationships are related to the cosolvent action. Salicylic acid and probenecid show a single peak against the solubility parameter delta(1) of both solvent mixtures, at 40% (delta(1) = 21.70 MPa(1/2)) and 30% (delta(1) = 20.91 MPa(1/2)) ethanol in ethyl acetate, respectively. Phenacetin displays two peaks at 60% ethanol in ethyl acetate (23.30 MPa(1/2)) and 90% ethanol in water (delta(1) = 28.64 MPa(1/2)). The apparent enthalpies of solution display a maximum at 30% (phenacetin and salicylic acid) and 40% (probenecid) ethanol in water, respectively. Two different mechanisms, entropy at low ethanol ratios, and enthalpy at high ethanol ratios control the solubility enhancement in the aqueous mixture. In the nonaqueous mixture (ethanol-ethyl acetate) enthalpy is the driving force throughout the whole solvent composition for salicylic acid and phenacetin. For probenecid, the dominant mechanism shifts from entropy to enthalpy as the ethanol in ethyl acetate concentration increases. The enthalpy-entropy compensation plots corroborate the different mechanisms involved in the solubility enhancement by cosolvents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  8. Effects of salicylic acid on post-ischaemic ventricular function and purine efflux in isolated mouse hearts.

    PubMed

    Farthing, Don; Gehr, Lynne; Karnes, H Thomas; Sica, Domenic; Gehr, Todd; Larus, Terri; Farthing, Christine; Xi, Lei

    2007-01-01

    Acetyl salicylic acid (aspirin) is one of the most widely used drugs in the world. Various plasma concentrations of aspirin and its predominant metabolite, salicylic acid, are required for its antiarthritic (1.5-2.5 mM), anti-inflammatory (0.5-5.0 mM) or antiplatelet (0.18-0.36 mM) actions. A recent study demonstrated the inhibitory effects of both aspirin and salicylic acid on oxidative phosphorylation and ATP synthesis in isolated rat cardiac mitochondria in a dose-dependent manner (0-10 mM concentration range). In this context, the present study was conducted to determine the effects of salicylic acid on inosine efflux (a potential biomarker of acute cardiac ischaemia) as well as cardiac contractile function in the isolated mouse heart following 20 min of zero-flow global ischaemia. Inosine efflux was found at significantly higher concentrations in ischaemic hearts perfused with Krebs buffer fortified with 1.0 mM salicylic acid compared with those without salicylic acid (12575+/-3319 vs. 1437+/-348 ng ml(-1) min(-1), mean+/-SEM, n=6 per group, p<0.01). These results indicate that 1.0 mM salicylic acid potentiates 8.8-fold ATP nucleotide purine catabolism into its metabolites (e.g. inosine, hypoxanthine). Salicylic acid (0.1 or 1.0 mM) did not appreciably inhibit purine nucleoside phosphorylase (the enzyme converts inosine to hypoxanthine) suggesting the augmented inosine efflux was due to the salicylic acid effect on upstream elements of cellular respiration. Whereas post-ischaemic cardiac function was further depressed by 1.0 mM salicylic acid, perfusion with 0.1 mM salicylic acid led to a remarkable functional improvement despite moderately increased inosine efflux (2.7-fold). We conclude that inosine is a sensitive biomarker for detecting cardiac ischaemia and salicylic acid-induced effects on cellular respiration. However, the inosine efflux level appears to be a poor predictor of the individual post-ischaemic cardiac functional recovery in this ex vivo

  9. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  10. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles; Dickson, Todd Jay

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  11. Dermal morphological changes following salicylic acid peeling and microdermabrasion.

    PubMed

    Abdel-Motaleb, Amira A; Abu-Dief, Eman E; Hussein, Mahmoud Ra

    2017-12-01

    Microdermabrasion and chemical peeling are popular, inexpensive, and safe methods for treatment of some skin disorders and to rejuvenate skin. To study the alterations of the dermal connective tissue following salicylic acid peeling and microdermabrasion. Twenty patients were participated in our study. All participants underwent facial salicylic acid 30% peel or microdermabrasion (10 cases in each group) weekly for 6 weeks. Punch biopsies were obtained from the clinically normal skin of the right postauricular region 1 week before treatment (control group). Other punch skin biopsies were obtained 1 week after the end of the treatments from the left postauricular area. This region was treated in a similar way to the adjacent lesional skin (treated group). We used routine histological techniques (H&E stain), special stains (Masson trichrome and orcein stains), and image analyzer to study the alterations of the dermal connective tissues. Our study demonstrates variations in the morphological changes between the control and the treated groups, and between chemical peels and microdermabrasion. Both salicylic acid 30% and microdermabrasion were associated with thickened epidermal layer, shallow dermal papillae, dense collagen, and elastic fibers. There was a significant increase among those treated sites vs control regarding epidermal thickness and collagen thickness. Also, there was a highly statistically significant increase among those treated with salicylic acid vs microdermabrasion regarding the epidermal, collagen, and elastin thickness. Both methods stimulate the repair process. The mechanisms underlying these variations are open for further investigations. © 2017 Wiley Periodicals, Inc.

  12. A comparison of salicylic acid levels in normal subjects after rectal versus oral dosing.

    PubMed

    Maalouf, Roger; Mosley, Mark; James Kallail, K; Kramer, Karen M; Kumar, Gaurav

    2009-02-01

    The common practice is to use 162 mg of aspirin orally in the emergency department (ED) for patients presenting with myocardial infarction. If the patient cannot take aspirin orally in the authors' facility, then 600 mg of aspirin is given rectally. However, no strong evidence exists as to whether the oral and rectal doses provide equivalent risk protection. The authors hypothesized that the salicylic acid levels for orally and rectally administered aspirin will not be similar, because of the different dosages used and the different routes of administration. The study sample consisted of healthy, nonpregnant, adult volunteers without active illness, who did not take any medication regularly. Each subject served as his or her own control to account for any confounding factors. The study was conducted on 2 days, separated by a 1-week washout period. On the first day, 162 mg of oral aspirin was chewed and swallowed. Salicylic acid levels were obtained at baseline (i.e., before taking the aspirin) and then 30, 60, and 90 minutes after dosing. The 600-mg aspirin suppository was self-administered 1 week later with a sample for laboratory measures again drawn at baseline and then 30, 60, and 90 minutes after dosing. Twenty-four subjects completed the study. The rectal suppository provided significantly more salicylic acid into the blood than the oral tablets over 90 minutes (p < 0.001). No statistical difference was noted between oral and rectal administration from baseline to 30 minutes (p > 0.05). However, mean salicylic acid levels from the rectal suppository were statistically higher than from the oral tablets from 30 to 60 minutes (p < 0.001) and from 60 to 90 minutes (p = 0.002). More than 60% of the subjects had an increasing salicylic acid level response over time to the rectal suppository. The salicylic acid level response to the oral administration was more evenly divided between those subjects whose salicylic acid levels peaked quickly and then fell or held

  13. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    PubMed

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  14. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  15. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  16. Salicylic acid peels for the treatment of acne vulgaris in Asian patients.

    PubMed

    Lee, Ho-Sup; Kim, Il-Hwan

    2003-12-01

    Salicylic acid peels have been introduced as a useful modality in acne treatment. Few studies have examined its efficacy and safety, especially in darker skin. To assess the efficacy and safety of salicylic acid peels as a treatment for acne vulgaris in Asian patients. Thirty-five Korean patients with facial acne were treated with 30% salicylic acid peels biweekly for 12 weeks. Lesion counts and Dr. Cunliffe's score were assessed by a blinded evaluator. Safety assessments and patient's evaluations were also recorded. Both inflammatory and noninflammatory acne lesion counts were decreased in proportion to the duration of treatment. Dr. Cunliffe's acne grade was statistically significantly decreased after treatment. The side effects were tolerable in most cases, and all patients were pleased with their peel results. Stratum corneum hydration, skin surface lipid, skin pH, and transepidermal water loss were unchanged from baseline levels. Salicylic acid peels are an effective and safe therapy for acne vulgaris in Asian patients.

  17. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  18. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.

    PubMed

    Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui

    2014-06-01

    Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.

  19. Effect of foliar-applied salicylic acid on cotton flowering, boll retention, and yield

    Treesearch

    J.J. Heitholt; J.H. Schmidt; Joseph E. Mulrooney

    2001-01-01

    Salicylic acid (2-hydroxybenzoic acid) may help regulate several plant functions, including systemic acquired resistance to pathogens and the formation of flowers. The objective of this study was to characterize the effects of foliar-applied salicylic acid on cotton (Gossypium hirsutum L.) flowering, boll retention, and yield. Field experiments were...

  20. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    PubMed

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Comparison between the impacts of two different modes of salicylic acid application on tomato (Solanum lycopersicum) responses to salinity.

    PubMed

    Gharbi, E; Lutts, S; Dailly, H; Quinet, M

    2018-06-26

    Exogenous application of salicylic acid may improve tolerance to salinity. To investigate whether exogenous salicylic acid application had similar protective effects when applied as a priming agent or concomitantly with NaCl, tomato seedlings primed or not with 10 µM salicylic acid were further treated with 125 mM NaCl, 10 µM salicylic acid or combined treatments. Both priming and concomitant application of salicylic acid increased plant growth of salt-stressed plants but their positive impact was not additive. The endogenous salicylic acid concentration increased in the leaves after concomitant application but not in response to priming, suggesting that salicylic acid accumulated during priming was metabolized subsequently. Priming increased Na + and K + accumulation in leaves of salt-treated plants while concomitant application had no impact on shoot Na + and K + accumulation. Both priming and concomitant salicylic acid decreased osmotic potential values in salt-treated plants. Carbon isotope discrimination showed that combination of both salicylic acid application methods were required to maintain a good water use efficiency in salt-treated plants. Our work demonstrated that both procedures of salicylic acid application have positive impact on salt resistance but that the underlying properties sustaining these adaptations differ according to application methods.

  2. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  3. [Anti-platelet actions of salicylates: in vivo, ex vivo and in vitro effects of choline salicylate].

    PubMed

    Irino, O; Saitoh, K; Ohkubo, K

    1985-07-01

    Effects of choline salicylate, sodium salicylate, choline chloride and acetylsalicylic acid on platelet aggregation in vivo, ex vivo and in vitro in mice were studied. These drugs all inhibited adenosine diphosphate (ADP)-induced respiratory depression, which is closely related to platelet aggregation in vivo, with choline salicylate showing the strongest inhibitory effect. Choline salicylate had a tendency to reduce the mortality of animals injected intravenously with endotoxin, but the other drugs had no such effect. The inhibitory effects of these drugs on ADP-induced platelet aggregation ex vivo were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate greater than choline chloride congruent to no effect, and plasma concentrations of protein-unbound salicylic acid at 1 hr after oral administration of drugs were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate. The in vitro effects of these drugs were in the order of choline salicylate congruent to sodium salicylate greater than choline chloride congruent to acetylsalicylic acid congruent to no effect. Therefore, it was considered that salicylic acid played an important role on the in vivo, ex vivo and in vitro effects of choline salicylate and that choline increased plasma concentrations of salicylic acid and consequently enhanced the in vivo and ex vivo effects of salicylic acid. Furthermore, the ex vivo effects of choline salicylate were found when ADP-induced platelet aggregation was measured with platelet-rich plasma prepared from blood collected with heparin as anti-coagulant, but not when blood was collected with citrate.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids.

    PubMed

    Kautzky, Jacob A; Wang, Tao; Evans, Ryan W; MacMillan, David W C

    2018-05-14

    Herein we disclose an efficient method for the conversion of carboxylic acids to trifluoromethyl groups via the combination of photoredox and copper catalysis. This transformation tolerates a wide range of functionality including heterocycles, olefins, alcohols, and strained ring systems. To demonstrate the broad potential of this new methodology for late-stage functionalization, we successfully converted a diverse array of carboxylic acid-bearing natural products and medicinal agents to the corresponding trifluoromethyl analogues.

  5. Determination of salicylic acid by HPLC in plasma and saliva from children with juvenile chronic arthritis.

    PubMed

    Legaz, M E; Acitores, E; Valverde, F

    1992-12-01

    A high performance liquid chromatography (HPLC) method has been developed for measuring salicylic acid in the plasma and saliva of children with juvenile chronic arthritis (JCA). Samples were extracted with diethyl ether and, after drying, redissolved in methanol to be chromatographed. Quantitation of salicylic acid was performed by reverse phase HPLC on a spherisorb ODS-2 column, using methanol: water: acetic acid as mobile phase. Phenolic was monitored by absorbance at 237 nm. Linearity between the amount of mass injected and the response in the detector was determined. This method was applied to compare concentrations of salivary and plasma salicylic acid. The method also permitted the quantitation of salivary salicylate as a non-invasive, indirect method for monitoring the concentration of plasma salicylate in patients with JCA.

  6. Superficial chemical peeling with salicylic Acid in facial dermatoses.

    PubMed

    Bari, Arfan Ul; Iqbal, Zafar; Rahman, Simeen Ber

    2007-04-01

    To determine the effectiveness of salicylic acid chemical peeling in common dermatological conditions affecting face in people with predominant Fitzpatrick skin type IV and V. An interventional, quasi-experimental study. Military Hospital, Rawalpindi and PAF Hospital, Sargodha, from July 2002 to June 2003. A total of 167 patients of either gender, aged between 13 to 60 years, having some facial dermatoses (melasma, acne vulgaris, postinflammatory hyperpigmentations, freckles, fine lines and wrinkles, post-inflammatory scars, actinic keratoses, and plane facial warts) were included. A series of eight weekly hospital based peeling sessions was conducted in all patients under standardized conditions with 30% salicylic acid. Clinical improvement in different disorders was evaluated by change in MASI score, decrease in the size of affected area and % reduction in lesions count. McNemar test was applied for data analysis. Majority of the patients showed moderate to excellent response. There was 35% to 63% improvement (p<0.05) in all dermatoses. Significant side effects, as feared in Asian skins were not observed. Chemical peeling with salicylic acid is an effective and safe treatment modality in many superficial facial dermatoses.

  7. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  8. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2

    PubMed Central

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation. PMID:25813520

  9. Paper-based electroanalytical devices for in situ determination of salicylic acid in living tomato leaves.

    PubMed

    Sun, Li-Jun; Feng, Qiu-Mei; Yan, Yong-Feng; Pan, Zhong-Qin; Li, Xiao-Hui; Song, Feng-Ming; Yang, Haibing; Xu, Jing-Juan; Bao, Ning; Gu, Hai-Ying

    2014-10-15

    Detection of phytohormones in situ has gained significant attention due to their critical roles in regulating developmental processes and signaling for defenses in plants at low concentration. As one type of plant hormones, salicylic acid has recently been found to be one of pivotal signal molecules for physiological behaviors of plants. Here we report the application of paper-based electroanalytical devices for sensitively in situ detection of salicylic acid in tomato leaves with the sample volume of several microliters. Specifically, disposable working electrodes were fabricated by coating carbon tape with the mixture of multiwall carbon nanotubes and nafion. We observed that the treatment of the modified carbon tape electrodes with oxygen plasma could significantly improve electrochemical responses of salicylic acid. The tomato leaves had a punched hole of 1.5mm diameter to release salicylic acid with minor influence on continuous growth of tomatoes. By incorporating the tomato leaf with the paper-based analytical device, we were able to perform in situ determination of salicylic acid based on its electrocatalytic oxidation. Our experimental results demonstrated that the amounts of salicylic acid differed statistically in normal, phytoene desaturase (PDS) gene silent and diseased (infected by Botrytis cinerea) tomato leaves. By quantifying salicylic acid at the level of several nanograms in situ, the simple paper-based electroanalytical devices could potentially facilitate the study of defense mechanism of plants under biotic and abiotic stresses. This study might also provide a sensitive method with spatiotemporal resolution for mapping of chemicals released from living organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effects Sprayed Solution of Salicylic Acid to Prevent of Wilt Disease Caused by Fussarium oxysporium

    NASA Astrophysics Data System (ADS)

    Yousif, Dina. Y. M.

    2018-05-01

    The current search aimed to detective the effect of sprayed solution of salicylic acid on plant and leaves of sweet green pepper (Capsicum annuum) for control the pathogen Fussarium oxysporium compering with control plant and leaves. Results indicated that, the spray of salicylic acid at concentration 0.5 g/L is effecting the fungal infection through prevent transport fungus F. oxysporum to the neighboring green pepper plant. The number of dead green pepper plant after sprayed with solution of salicylic acid and only water they were (4, 6, and 3) (8, 9, and 10) respectively. While the experimental infection of green pepper leaves after inoculated the fungus as local spot by scorching small spots of these leaves with the aid of hot nail. These spots were then exposed to the 0.5 g/L aqueous solution salicylic acid before and after the inoculation of the fungus. The spray of salicylic acid before 24 and 48 hour prevent the development of disease and make a good protection of the mention leaves from infection with this fungus, the diameter of leaves lesion (1,1.5 cm) respectively. while the ability of fungus to grow after 24 and 48 hour from salicylic acid treatment was markedly reduce as compared with control, such treatment show slow growth of pathogen infect.

  11. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    USDA-ARS?s Scientific Manuscript database

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  12. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne.

    PubMed

    Jaffary, Fariba; Faghihi, Gita; Saraeian, Sara; Hosseini, Sayed Mohsen

    2016-01-01

    Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen) were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI) was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant ( P < 0.001) in the course of treatment. However, it was not significant regarding the number of pustules ( P = 0.09). None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients ( P = 0.015). Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  13. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    PubMed

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Short Carboxylic Acid-Carboxylate Hydrogen Bonds Can Have Fully Localized Protons.

    PubMed

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15-0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor-acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [⟨d O-O ⟩ = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O-O distance with increasing H-bond donor pK a . This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid-carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  15. Changes in actin dynamics are involved in salicylic acid signaling pathway.

    PubMed

    Matoušková, Jindřiška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Jiřina; Martinec, Jan; Valentová, Olga

    2014-06-01

    Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid (SA) is an important signalling molecule in plant defenses against biotrophic pathogens. It is also involved in several other processes such as heat production, flowering, and germination. SA exists in the plant as free SA and as an inert glucose conjugate (salicylic acid 2-O-ß-D-...

  17. Supramolecular architectures in two 1:1 cocrystals of 5-fluorouracil with 5-bromothiophene-2-carboxylic acid and thiophene-2-carboxylic acid.

    PubMed

    Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D

    2017-06-01

    In solid-state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5-fluorouracil (5FU; systematic name: 5-fluoro-1,3-dihydropyrimidine-2,4-dione), namely 5-fluorouracil-5-bromothiophene-2-carboxylic acid (1/1), C 5 H 3 BrO 2 S·C 4 H 3 FN 2 O 2 , (I), and 5-fluorouracil-thiophene-2-carboxylic acid (1/1), C 4 H 3 FN 2 O 2 ·C 5 H 4 O 2 S, (II), have been synthesized and characterized by single-crystal X-ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid-acid R 2 2 (8) homosynthon (O-H...O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 2 2 (8) motif] via a pair of N-H...O hydrogen bonds. The crystal structures are further stabilized by C-H...O interactions in (II) and C-Br...O interactions in (I). In both crystal structures, π-π stacking and C-F...π interactions are also observed.

  18. Mutational Analysis of a Role for Salicylic Acid in Iron Metabolism of Mycobacterium smegmatis

    PubMed Central

    Adilakshmi, Tadepalli; Ayling, Peter D.; Ratledge, Colin

    2000-01-01

    The role of salicylic acid in iron metabolism was examined in two wild-type strains (mc2155 and NCIMB 8548) and three mutant strains (mc21292 [lacking exochelin], SM3 [lacking iron-dependent repressor protein IdeR] and S99 [a salicylate-requiring auxotroph derived in this study]) of Mycobacterium smegmatis. Synthesis of salicylate in SM3 was derepressed even in the presence of iron, as was synthesis of the siderophores exochelin, mycobactin, and carboxymycobactin. S99 was dependent on salicylate for growth and failed to grow with the three ferrisiderophores, suggesting that salicylate fulfills an additional function(s) other than being a precursor of mycobactin and carboxymycobactin. Salicylic acid at 100 μg/ml repressed the formation of a 29-kDa cell envelope protein (putative exochelin receptor protein) in S99 grown both iron deficiently and iron sufficiently. In contrast, synthesis of this protein was affected only under iron-limited conditions in the parent strain, mc2155, and remained unaltered in SM3, suggesting an interaction between the IdeR protein and salicylate. Thus, salicylate may also function as a signal molecule for recognition of cellular iron status. Growth of all strains and mutants with p-aminosalicylate (PAS) at 100 μg/ml increased salicylate accumulation between three- and eightfold under both iron-limited and iron-sufficient growth conditions and decreased mycobactin accumulation by 40 to 80% but increased carboxymycobactin accumulation by 50 to 55%. Thus, although PAS inhibited salicylate conversion to mycobactin, presumptively by blocking salicylate AMP kinase, PAS also interferes with the additional functions of salicylate, as its effect was heightened in S99 when the salicylate concentration was minimal. PMID:10629169

  19. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis

    PubMed Central

    Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.

    2016-01-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  20. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.

    PubMed

    Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C

    2015-05-06

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.

  1. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).

    PubMed

    Rhoads, D. M.; McIntosh, L.

    1993-11-01

    In suspension cultures of NT1 tobacco (Nicotiana tabacum L. cv Bright Yellow) cells the cytochrome pathway capacity increased between d 3 and d 4 following subculturing and reached the highest level observed on d 7. The capacity decreased significantly by d 10 and was at the same level on d 14. Both alternative pathway capacity and the amount of the 35-kD alternative oxidase protein increased significantly between d 5 and d 6, reached the highest point observed on d 7, remained constant until d 10, and decreased by d 14. The highest capacities of the alternative and cytochrome pathways and the highest amount of the 35-kD protein were attained on the day that cell cultures reached a stationary phase of growth. Addition of salicylic acid to cell cultures on d 4 caused a significant increase in alternative pathway capacity and a dramatic accumulation of the 35-kD protein by 12 h. The alternative pathway capacity and the protein level reached the highest level observed by 16 h after salicylic acid addition, and the cytochrome pathway capacity was at about the same level at each time point. The accumulation of the 35-kD alternative oxidase protein was significantly decreased by addition of actinomycin D 1 h before salicylic acid and was blocked by addition of cycloheximide. These results indicate that de novo transcription and translation were necessary for salicylic acid to cause the maximum accumulation of the 35-kD protein.

  2. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne

    PubMed Central

    Jaffary, Fariba; Faghihi, Gita; Saraeian, Sara; Hosseini, Sayed Mohsen

    2016-01-01

    Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. Materials and Methods: In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen) were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI) was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. Results: In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant (P < 0.001) in the course of treatment. However, it was not significant regarding the number of pustules (P = 0.09). None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid – treated patients (P = 0.015). Conclusion: Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects. PMID:27904577

  3. [Effects of exogenous salicylic acid on seed germination and physiological characteristics of Coronilla varia under drought stress.

    PubMed

    Ma, Le Yuan; Chen, Nian Lai; Han, Guo Jun; Li, Liang

    2017-10-01

    This research investigated the effects of different concentrations (0, 0.5, 1.0, 2.0 mmol·L -1 ) of salicylic acid on the seed germination and physiological characteristics of legume forage Coronilla varia (cultivar 'Lvbaoshi') under PEG-6000 (concentration 8% and 12%) simulated drought stress. The results showed that under drought stress, 0.5-1.0 mmol·L -1 salicylic acid significantly increased germination percentage, germination vigour, germination index, vitality index and bud length of C. varia. Under the stress of 12% PEG, the dry mass of C. varia seedlings processed by 1.0 mmol·L -1 salicylic acid was significantly higher than that under drought stress. 0.5-1.0 mmol·L -1 salicylic acid processing significantly increased proline, soluble protein content, the activities of catalase, peroxidase and superoxide dismutase of C. varia seedlings under drought stress, but cell electrolyte permeability, H2O2 content and O2 - · production rate of seedlings were significantly decreased. 1.0 mmol·L -1 salicylic acid produced the best results. When the concentration of salicylic acid was beyond 2.0 mmol·L -1 , no mitigation effect was observed on the seed germination and growth of seedlings under drought stress. It was concluded that salicylic acid at appropriate concentrations could effectively improve osmotic regulation, antioxidation and mitigate the damage of drought stress so as to promote the growth of C. varia seedlings.

  4. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer

    PubMed Central

    Dachineni, Rakesh; Kumar, D. Ramesh; Callegari, Eduardo; Kesharwani, Siddharth S.; Sankaranarayanan, Ranjini; Seefeldt, Teresa; Tummala, Hemachand; Bhat, G. Jayarama

    2017-01-01

    Aspirin's potential as a drug continues to be evaluated for the prevention of colorectal cancer (CRC). Although multiple targets for aspirin and its metabolite, salicylic acid, have been identified, no unifying mechanism has been proposed to clearly explain its chemopreventive effects. Our goal here was to investigate the ability of salicylic acid metabolites, known to be generated through cytochrome P450 (CYP450) enzymes, and its derivatives as cyclin dependent kinase (CDK) inhibitors to gain new insights into aspirin's chemopreventive actions. Using in vitro kinase assays, for the first time, we demonstrate that salicylic acid metabolites, 2,3-dihydroxy-benzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), as well as derivatives 2,4-dihydroxybenzoic acid (2,4-DHBA), 2,6-dihydroxybenzoic acid (2,6-DHBA), inhibited CDK1 enzyme activity. 2,3-DHBA and 2,6-DHBA did not inhibit CDK2 and 4; however, both inhibited CDK-6 activity. Interestingly, another derivative, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) was highly effective in inhibiting CDK1, 2, 4 and 6 activity. Molecular docking studies showed that these compounds potentially interact with CDK1. Immunoblotting experiments showed that aspirin acetylated CDK1, and pre-incubation with salicylic acid and its derivatives prevented aspirin-mediated CDK1 acetylation, which supported the data obtained from molecular docking studies. We suggest that intracellularly generated salicylic acid metabolites through CYP450 enzymes within the colonic epithelial cells, or the salicylic acid metabolites generated by gut microflora may significantly contribute to the preferential chemopreventive effect of aspirin against CRC through inhibition of CDKs. This novel hypothesis and mechanism of action in aspirin's chemopreventive effects opens a new area for future research. In addition, structural modification to salicylic acid derivatives may prove useful in the development of novel CDK inhibitors in cancer prevention and

  5. Pharmacokinetic investigations in adult humans after parenteral administration of the lysine salt of acetyl-salicylic acid.

    PubMed

    von Voss, H; Göbel, U; Petrich, C; Pütter, J

    1978-11-15

    The lysine salt of acetylsalicylic acid was administered intravenously to four volunteers and intramuscularly to three of them. The drug was tolerated without any observed side effects. Immediately after intravenous application most of the plasma salicylate was acetylsalicylic acid. The highest concentration of acetylsalicylic acid was found after 2 minutes, highest levels of salicylic acid after 60 minutes. Elimination of acetylsalicylic acid was relatively quick within the first period after intravenous administration according to a half-life of 8 minutes. Half-life of salicylic acid was determined to be 3 hours. Intramuscular application results in a constant blood level for a longer period. Bioavailability of acetylsalicylic acid was slightly lower after intramuscular application than after intravenous administration.

  6. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana

    PubMed Central

    Abreu, Maria Elizabeth; Munné-Bosch, Sergi

    2009-01-01

    Salicylic acid-deficient NahG transgenic lines and sid2 mutants were used to evaluate the role of this compound in the development of the short-lived, annual plant Arabidopsis thaliana, with a particular focus on the interplay between salicylic acid and other phytohormones. Low salicylic acid levels led to increased growth, as well as to smaller abscisic acid levels and reduced damage to PSII (as indicated by Fv/Fm ratios) during the reproductive stages in rosette leaves of NahG transgenic lines and sid2 mutants, compared with wild-type plants. Furthermore, salicylic acid deficiency highly influenced seed yield and composition. Seed production increased by 4.4-fold and 3.5-fold in NahG transgenic lines and sid2 mutants, respectively, compared to the wild type. Salicylic acid deficiency also improved seed composition in terms of antioxidant vitamin concentrations, seeds of salicylic acid-deficient plants showing higher levels of α- and γ-tocopherol (vitamin E) and β-carotene (pro-vitamin A) than seeds of wild-type plants. Seeds of salicylic acid-deficient plants also showed higher nitrogen concentrations than seeds of wild-type plants. It is concluded that (i) the sid2 gene, which encodes for isochorismate synthase, plays a central role in salicylic acid biosynthesis during plant development in A. thaliana, (ii) salicylic acid plays a role in the regulation of growth, senescence, and seed production, (iii) there is a cross-talk between salicylic acid and other phytohormones during plant development, and (iv) the concentrations of antioxidant vitamins in seeds may be influenced by the endogenous levels of salicylic acid in plants. PMID:19188277

  7. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    PubMed

    Król, P; Igielski, R; Pollmann, S; Kępczyńska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici

  8. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.

    PubMed

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-09-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  9. The safety and efficacy of salicylic acid chemical peels in darker racial-ethnic groups.

    PubMed

    Grimes, P E

    1999-01-01

    There is a dearth of published data regarding chemical peels in darker racial-ethnic groups. The purpose of the present investigation was to assess the clinical efficacy and safety of a new superficial salicylic acid peel in individuals of skin types V and VI. Twenty-five patients were included in this pilot investigation. Nine had acne vulgaris, 5 had post-inflammatory hyperpigmentation, 6 had melasma, and 5 had rough, oily skin with enlarged pores. The patients were pre-treated for 2 weeks with hydroquinone 4% prior to undergoing a series of five salicylic acid chemical peels. The concentrations of salicylic acid were 20% and 30%. The peels were performed at 2 week intervals. RESULTS. Moderate to significant improvement was observed in 88% of the patients. Minimal to mild side effects occurred in 16%. The results of this study suggest that superficial salicylic acid peels are both safe and efficacious for treatment of acne vulgaris, oily skin, textural changes, melasma, and post-inflammatory hyperpigmentation in patients with skin types V and VI.

  10. Alkali-catalyzed low temperature wet crosslinking of plant proteins using carboxylic acids.

    PubMed

    Reddy, Narendra; Li, Ying; Yang, Yiqi

    2009-01-01

    We report the development of a new method of alkali-catalyzed low temperature wet crosslinking of plant proteins to improve their breaking tenacity without using high temperatures or phosphorus-containing catalysts used in conventional poly(carboxylic acid) crosslinking of cellulose and proteins. Carboxylic acids are preferred over aldehyde-containing crosslinkers for crosslinking proteins and cellulose because of their low toxicity and cost and ability to improve the desired properties of the materials. However, current knowledge in carboxylic acid crosslinking of proteins and cellulose requires the use of carboxylic acids with at least three carboxylic groups, toxic phosphorous-containing catalysts and curing at high temperatures (150-185 degrees C). The use of high temperatures and low pH in conventional carboxylic acid crosslinking has been reported to cause substantial strength loss and/or undesired changes in the properties of the crosslinked materials. In this research, gliadin, soy protein, and zein fibers have been crosslinked with malic acid, citric acid, and butanetetracarboxylic acid to improve the tenacity of the fibers without using high temperatures and phosphorus-containing catalysts. The new method of wet crosslinking using carboxylic acids containing two or more carboxylic groups will be useful to crosslink proteins for various industrial applications.

  11. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  12. Preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, Makarand Ratnakar; Spivey, James Jerry; Zoeller, Joseph Robert

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  13. Preparation of {alpha},{beta}-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1998-09-15

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  14. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, H.L.; Sopher, D.W.

    1983-05-09

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100/sup 0/C and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  15. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, Helena L.; Sopher, David W.

    1984-01-01

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  16. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).

    PubMed Central

    Rhoads, D. M.; McIntosh, L.

    1993-01-01

    In suspension cultures of NT1 tobacco (Nicotiana tabacum L. cv Bright Yellow) cells the cytochrome pathway capacity increased between d 3 and d 4 following subculturing and reached the highest level observed on d 7. The capacity decreased significantly by d 10 and was at the same level on d 14. Both alternative pathway capacity and the amount of the 35-kD alternative oxidase protein increased significantly between d 5 and d 6, reached the highest point observed on d 7, remained constant until d 10, and decreased by d 14. The highest capacities of the alternative and cytochrome pathways and the highest amount of the 35-kD protein were attained on the day that cell cultures reached a stationary phase of growth. Addition of salicylic acid to cell cultures on d 4 caused a significant increase in alternative pathway capacity and a dramatic accumulation of the 35-kD protein by 12 h. The alternative pathway capacity and the protein level reached the highest level observed by 16 h after salicylic acid addition, and the cytochrome pathway capacity was at about the same level at each time point. The accumulation of the 35-kD alternative oxidase protein was significantly decreased by addition of actinomycin D 1 h before salicylic acid and was blocked by addition of cycloheximide. These results indicate that de novo transcription and translation were necessary for salicylic acid to cause the maximum accumulation of the 35-kD protein. PMID:12231986

  17. [Determination of aspirin and free salicylic acid in lysinipirine injection by high performance liquid chromatography].

    PubMed

    Dong, Yu; Zhao, Yuan-zheng; Zhang, Yi-na

    2002-05-01

    The contents of aspirin and free salicylic acid in lysinipirine injection were determined by high performance liquid chromatography (HPLC). A Hypersil BDS C18 column was used with the mobile phase of methanol-water-acetic acid (35:65:3, volume ratio) and the detection wavelength of 280 nm. The average recoveries of aspirin and salicylic acid added were 99.27% (RSD = 0.8%) and 99.61%(RSD = 1.3%), respectively. The calibration curves had good linearity in the range of 0.028 g/L -0.141 mg/L and 0.77 mg/L -3.85 mg/L, and the correlation coefficients were 0.9999 and 0.9998 for aspirin and salicylic acid respectively.

  18. Evaluation of salicylic acid fatty ester prodrugs for UV protection.

    PubMed

    Im, Jong Seob; Balakrishnan, Prabagar; Oh, Dong Hoon; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Yong, Chul Soon; Choi, Han-Gon

    2011-07-01

    The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin. Their k' values were proportional to the degree of carbon-carbon saturation in the side chain. All these fatty esters were highly stable in 2-propanol, acetonitrile and glycerin, but unstable in methanol and ethanol. They were relatively unstable in liver and skin homogenates. In particular, C16SA was mostly hydrolyzed to its parent compound in hairless mouse liver and skin homogenates, suggesting that it might be converted to salicylic acid after its topical administration. In the skin permeation and accumulation study, C16SA showed the poorest permeation in all skins, suggesting that it could not be permeated in the skin. Furthermore, C14SA and C16SA were less accumulated in delipidized skin compared with normal skin or stripped skin, suggesting that these esters had relatively strong affinities for lipids compared with the other prodrugs in the skin. C16SA showed significantly higher dermal accumulation in all skins compared with its parent salicylic acid. Thus, the palmitoyl oxysalicylate (C16SA) might be a potential candidate for UV protection due to its absence of skin permeation, smaller uptake in the lipid phase and relatively lower skin accumulation.

  19. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters)

    PubMed Central

    Johnson, Michelle L.; Uhrich, Kathryn E.

    2008-01-01

    A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (Tg) and the antimicrobials' melting points (Tm) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627

  20. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.

    PubMed

    Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas

    2015-10-16

    The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000. Copyright © 2015, American Association for the Advancement of Science.

  1. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    PubMed

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  2. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome

    PubMed Central

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2. PMID:26466097

  3. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    PubMed

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  4. Microbial Transformation of Esters of Chlorinated Carboxylic Acids

    PubMed Central

    Paris, D. F.; Wolfe, N. L.; Steen, W. C.

    1984-01-01

    Two groups of compounds were selected for microbial transformation studies. In the first group were carboxylic acid esters having a fixed aromatic moiety and an increasing length of the alkyl component. Ethyl esters of chlorine-substituted carboxylic acids were in the second group. Microorganisms from environmental waters and a pure culture of Pseudomonas putida U were used. The bacterial populations were monitored by plate counts, and disappearance of the parent compound was followed by gas-liquid chromatography as a function of time. The products of microbial hydrolysis were the respective carboxylic acids. Octanol-water partition coefficients (Kow) for the compounds were measured. These values spanned three orders of magnitude, whereas microbial transformation rate constants (kb) varied only 50-fold. The microbial rate constants of the carboxylic acid esters with a fixed aromatic moiety increased with an increasing length of alkyl substituents. The regression coefficient for the linear relationships between log kb and log Kow was high for group 1 compounds, indicating that these parameters correlated well. The regression coefficient for the linear relationships for group 2 compounds, however, was low, indicating that these parameters correlated poorly. PMID:16346459

  5. Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding

    PubMed Central

    2015-01-01

    Three different types of drug delivery platforms based on imidazolium ionic liquids (ILs) were synthesized in high preparative yields, namely, the models involving (i) ionic binding of drug and IL; (ii) covalent binding of drug and IL; and (iii) dual binding using both ionic and covalent approaches. Seven ionic liquids containing salicylic acid (SA-ILs) in the cation or/and in the anion were prepared, and their cytotoxicity toward the human cell lines CaCo-2 (colorectal adenocarcinoma) and 3215 LS (normal fibroblasts) was evaluated. Cytotoxicity of SA-ILs was significantly higher than that of conventional imidazolium-based ILs and was comparable to the pure salicylic acid. It is important to note that the obtained SA-ILs dissolved in water more readily than salicylic acid, suggesting benefits of possible usage of traditional nonsoluble active pharmaceutical ingredients in an ionic liquid form. PMID:26617961

  6. EVALUATION OF PUVASOL AND PUVASOL WITH TOPICAL BETAMETHASONE DIPROPIONATE PLUS SALICYLIC ACID LOTION IN THE TREATMENT OF SCALP PSORIASIS.

    PubMed

    Kar, P K; Ramasastry, C V; Dhaka, R S

    1999-04-01

    The efficacy and safety of betamethsone dipropionate 0.05% with salicylic acid 2% scalp lotion was evaluated in 60 patients with moderate to severe scalp psoriasis. Out of 120 patients with scalp psoriasis 60 patients received PUVASOL alone and 60 patients received PUVASOL alongwith lotion 0.05% betamethasone dipropionate with 2% salicylic acid scalp application for 3 weeks. The erythema, induration, scales and pruritus steadily improved in patients throughout the 3 weeks treatment course with betamethasone dipropionate with salicylic acid scalp application. At the end of therapy 84.3% of those patients receiving PUVASOL and betamethasone dipropionate-salicylic acid combination had 75% improvement of their scalp psoriasis versus 34.9% of those patients using PUVASOL alone. Complete clearing of the scalp was seen in 35% patients receiving therapy with topical betamethasone-salicylic acid and 11.6% with PUVASOL alone. Local side effects were primarily burning and stinging in 5 (83%) cases treated with topical betamethasone salicylic acid scalp application and 1 (1.6%) receiving PUVASOL alone. Combined therapy with PUVASOL and topical betamethasone dispropionate 0.05% with salicyclic acid 2% application appears to be safe and an effective treatment for scalp psoriasis.

  7. Boron-containing amino carboxylic acid compounds and uses thereof

    DOEpatents

    Kabalka, George W.; Srivastava, Rajiv R.

    2000-03-14

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

  8. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    ERIC Educational Resources Information Center

    Nicholson, John W.; Wilson, Alan D.

    2004-01-01

    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  9. Elevated carbon dioxide increases salicylic acid in Glycine max.

    PubMed

    Casteel, Clare L; Segal, Lauren M; Niziolek, Olivia K; Berenbaum, May R; DeLucia, Evan H

    2012-12-01

    Concentrations of carbon dioxide (CO(2)) are increasing in the atmosphere, affecting soybean (Glycine max L.) phytohormone signaling and herbivore resistance. Whether the impact of elevated CO(2) on phytohormones and induced defenses is a generalized response within this species is an open question. We examined jasmonic acid (JA) and salicylic acid (SA) under ambient and elevated CO(2) concentrations with and without Japanese beetle (Popillia japonica Newman) damage and artificial damage across six soybean cultivars (HS93-4118, Pana, IA 3010, Loda, LN97-15076, and Dwight). Elevated CO(2) reduced constitutive levels of JA and related transcripts in some but not all soybean cultivars. In contrast to the variation in JA, constitutive levels of salicylic were increased universally among soybean cultivars grown under elevated CO(2). Variation in hormonal signaling may underpin observed variation in the response of insect herbivores and pathogens to plants grown under elevated CO(2).

  10. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    USDA-ARS?s Scientific Manuscript database

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  11. Thermodynamics of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use in fruits postharvest.

    PubMed

    Cid, A; Morales, J; Mejuto, J C; Briz-Cid, N; Rial-Otero, R; Simal-Gándara, J

    2014-05-15

    Micellar systems have excellent food applications due to their capability to solubilise a large range of hydrophilic and hydrophobic substances. In this work, the mixed micelle formation between the ionic surfactant sodium dodecyl sulphate (SDS) and the phenolic acid salicylic acid have been studied at several temperatures in aqueous solution. The critical micelle concentration and the micellization degree were determined by conductometric techniques and the experimental data used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Salicylic acid helps the micellization of SDS, both by increasing the additive concentration at a constant temperature and by increasing temperature at a constant concentration of additive. The formation of micelles of SDS in the presence of salicylic acid was a thermodynamically spontaneous process, and is also entropically controlled. Salicylic acid plays the role of a stabilizer, and gives a pathway to control the three-dimensional water matrix structure. The driving force of the micellization process is provided by the hydrophobic interactions. The isostructural temperature was found to be 307.5 K for the mixed micellar system. This article explores the use of SDS-salicylic acid based micellar systems for their potential use in fruits postharvest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. 40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section for...

  13. 40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section for...

  14. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...

  15. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

    PubMed Central

    2011-01-01

    Background In soils with a low phosphorus (P) supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-charge ratio (m/z) from 100 to 1000. Eight mass spectrometric signals were enhanced at least 5-fold by low P availability at all harvest times. Among these signals, negative ions with an m/z of 137 and 147 were shown to originate from salicylic acid and citramalic acid. The ability of both compounds to mobilize soil P was demonstrated by incubation of pure substances with Oxisol soil fertilized with calcium phosphate. Conclusions Root exudates of sugar beet contain salicylic acid and citramalic acid, the latter of which has rarely been detected in plants so far. Both metabolites solubilize soil P and their exudation by roots is stimulated by P deficiency. These results provide the first assignment of a biological function to citramalic acid of plant origin. PMID:21871058

  16. Adsorption of phthalic acid and salicylic acid and their effect on exchangeable Al capacity of variable-charge soils.

    PubMed

    Li, Jiuyu; Xu, Renkou

    2007-02-01

    Low-molecular-weight (LMW) organic acids may be adsorbed by soils and the adsorption could affect their biodegradation and efficiency in many soil processes. In the present study, the adsorption of phthalic acid and salicylic acid and their effect on the exchangeable Al capacity of variable-charge soils were investigated. The results indicated that phthalic acid and salicylic acid were adsorbed by four variable-charge soils to some extent, oxisols showed a greater adsorption capacity for organic acids than ultisols, and the ability of the four variable-charge soils to adsorb the organic acids at different pH generally followed the order Kunming oxisol > Xuwen oxisol > Jinxian ultisol > Lechang ultisol, which was closely related to their content of free iron oxides and amorphous iron and aluminum oxides. The adsorption of organic acids induced a decrease in the zeta potentials of soils and oxides. Goethite has greater adsorption capacity for organic acid than Xuwen oxisol and the adsorption of organic acids resulted in a bigger decrease in the zeta potential of goethite suspensions. After free iron oxides were removed, less organic acid was adsorbed by Xuwen oxisol and no change was observed in zeta potential for the soil suspension after organic acid was added. The presence of phthalic acid increased the capacity of exchangeable Al and the increment in the four variable-charge soils also followed the order Kunming oxisol > Xuwen oxisol > Lechang ultisol and Jinxian ultisol. The presence of salicylic acid increased the capacity of exchangeable Al in Kunming oxisol, Xuwen oxisol, and Jinxian ultisol, but decreased it in Lechang ultisol due to less adsorption of the acid and formation of soluble Al-salicylate complexes in solution. After free iron oxides were removed, less effect of organic acid on exchangeable Al was observed for Xuwen oxisol, which further confirmed that the iron oxides played a significant role in organic acid adsorption and had a consequent effect

  17. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it.

  18. Effects of salicylic acid on Aspergillus flavus infection and aflatoxin B₁ accumulation in pistachio (Pistacia vera L.) fruit.

    PubMed

    Panahirad, Sima; Zaare-Nahandi, Fariborz; Mohammadi, Nilufar; Alizadeh-Salteh, Saeedeh; Safaie, Naser

    2014-07-01

    One of the most important saprophytic infections in fresh pistachio fruits after harvesting is Aspergillus flavus colonization, which significantly reduces fruit quality. Salicylic acid plays a crucial role in plant tissues and has a suppression effect on some fungi. The inhibitory effect of salicylic acid on the growth of A. flavus was assessed in vitro and in vivo. For this purpose, seven concentrations (0, 1, 3, 5, 7, 9 and 11 mmol L(-1)) of salicylic acid were used in both experiments. Also, aflatoxin B1 contents of the samples were analysed using immunoaffinity chromatography. The results obtained from in vitro experiments showed that salicylic acid significantly reduced Aspergillus growth at all concentrations, and at 9 mmol L(-1) growth was completely suppressed. In vivo evaluation showed relatively high levels of inhibition, though the intact treated fruits as compared with the injured treated fruits demonstrated higher inhibitory effects. Regarding the inhibitory effects of salicylic acid on the control of A. flavus contamination, its application on pistachio fruits after harvesting could be a promising approach to control the fungus infection and reduce aflatoxin production in treated fruits. © 2013 Society of Chemical Industry.

  19. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  20. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  1. Novel Three-Component Phenazine-1-Carboxylic Acid 1,2-Dioxygenase in Sphingomonas wittichii DP58

    PubMed Central

    Zhao, Qiang; Wang, Wei; Huang, Xian-Qing; Zhang, Xue-Hong

    2017-01-01

    ABSTRACT Phenazine-1-carboxylic acid, the main component of shenqinmycin, is widely used in southern China for the prevention of rice sheath blight. However, the fate of phenazine-1-carboxylic acid in soil remains uncertain. Sphingomonas wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources for growth. In this study, dioxygenase-encoding genes, pcaA1A2, were found using transcriptome analysis to be highly upregulated upon phenazine-1-carboxylic acid biodegradation. PcaA1 shares 68% amino acid sequence identity with the large oxygenase subunit of anthranilate 1,2-dioxygenase from Rhodococcus maanshanensis DSM 44675. The dioxygenase was coexpressed in Escherichia coli with its adjacent reductase-encoding gene, pcaA3, and ferredoxin-encoding gene, pcaA4, and showed phenazine-1-carboxylic acid consumption. The dioxygenase-, ferredoxin-, and reductase-encoding genes were expressed in Pseudomonas putida KT2440 or E. coli BL21, and the three recombinant proteins were purified. A phenazine-1-carboxylic acid conversion capability occurred in vitro only when all three components were present. However, P. putida KT2440 transformed with pcaA1A2 obtained phenazine-1-carboxylic acid degradation ability, suggesting that phenazine-1-carboxylic acid 1,2-dioxygenase has low specificities for its ferredoxin and reductase. This was verified by replacing PcaA3 with RedA2 in the in vitro enzyme assay. High-performance liquid chromatography–mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis showed that phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation, indicating that PcaA1A2A3A4 constitutes the initial phenazine-1-carboxylic acid 1,2-dioxygenase. This study fills a gap in our understanding of the biodegradation of phenazine-1-carboxylic acid and illustrates a new dioxygenase for decarboxylation. IMPORTANCE Phenazine-1-carboxylic acid is widely used in southern China

  2. Cyclin A2 and CDK2 as Novel Targets of Aspirin and Salicylic acid: a Potential Role in Cancer Prevention

    PubMed Central

    Dachineni, Rakesh; Ai, Guoqiang; Kumar, D. Ramesh; Sadhu, Satya S.; Tummala, Hemachand; Bhat, G. Jayarama

    2015-01-01

    Data emerging from the past 10 years have consolidated the rationale for investigating the use of aspirin as a chemopreventive agent; however, the mechanisms leading to its anti-cancer effects are still being elucidated. We hypothesized that aspirin’s chemopreventive actions may involve cell cycle regulation through modulation of the levels or activity of cyclin A2/cyclin dependent kinase-2 (CDK2). In this study, HT-29 and other diverse panel of cancer cells were used to demonstrate that both aspirin and its primary metabolite, salicylic acid, decreased cyclin A2 (CCNA2) and CDK2 protein and mRNA levels. The down regulatory effect of either drugs on cyclin A2 levels was prevented by pretreatment with lactacystin, an inhibitor of proteasomes, suggesting the involvement of 26S proteasomes. In-vitro kinase assays showed that lysates from cells treated with salicylic acid had lower levels of CDK2 activity. Importantly, three independent experiments revealed that salicylic acid directly binds to CDK2. Firstly, inclusion of salicylic acid in naïve cell lysates, or in recombinant CDK2 preparations, increased the ability of the anti-CDK2 antibody to immunoprecipitate CDK2, suggesting that salicylic acid may directly bind and alter its conformation. Secondly, in 8-anilino-1-naphthalene-sulfonate (ANS)-CDK2 fluorescence assays, pre-incubation of CDK2 with salicylic acid, dose-dependently quenched the fluorescence due to ANS. Thirdly, computational analysis using molecular docking studies identified Asp145 and Lys33 as the potential sites of salicylic acid interactions with CDK2. These results demonstrate that aspirin and salicylic acid down-regulate cyclin A2/CDK2 proteins in multiple cancer cell lines, suggesting a novel target and mechanism of action in chemoprevention. Implications Biochemical and structural studies indicate that the anti-proliferative actions of aspirin are mediated through cyclin A2/CDK2. PMID:26685215

  3. A NAD(P) reductase like protein is the salicylic acid receptor in the appendix of the Sauromatum guttatum inflorescence

    PubMed Central

    Skubatz, Hanna; Orellana, Mónica V; Howald, William N

    2013-01-01

    The mode of action of the thermogenic inducers (salicylic acid, aspirin, and 2,6-dihydroxybenzoic acid) in the appendix of the Sauromatum guttatum inflorescence is poorly understood. Using ESI-MS and light scattering analysis, we have demonstrated that NAD(P) reductase like protein (RL) is the salicylic acid receptor in the Sauromatum appendix. RL was self-assembled in water into a large unit with a hydrodynamic diameter of 800 nm. In the presence of 1 pM salicylic acid, RL exhibited discontinuous and reversible volume phase transitions. The volume phase changed from 800 to 300 nm diameter and vice versa. RL stayed at each volume phase for ~4–5 min with a fast relaxation time between the 2 phases. ESI-MS analysis of RL extracted from appendices treated with salicylic acid, aspirin, and 2,6-DHBA at a micromolar range demonstrated that these compounds are capable of inducing graded conformational changes that are concentration-dependent. A strong correlation between RL conformations and heat-production induced by salicylic acid was also observed. These preliminary findings reveal structural and conformational roles for RL by which plants regulate their temperature and synchronize their time keeping mechanisms. PMID:28516022

  4. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-02-01

    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora

  5. Comparative Evaluation of Efficacy and Tolerability of Glycolic Acid, Salicylic Mandelic Acid, and Phytic Acid Combination Peels in Melasma.

    PubMed

    Sarkar, Rashmi; Garg, Vijay; Bansal, Shivani; Sethi, Sumit; Gupta, Chitra

    2016-03-01

    Melasma is acquired symmetric hypermelanosis characterized by light-to-deep brown pigmentation over cheeks, forehead, upper lip, and nose. Treatment of this condition is difficult and associated with high recurrence rates. Chemical peels have become a popular modality in the treatment of melasma. To compare the therapeutic efficacy and tolerability of glycolic acid (35%) versus salicylic-mandelic (SM) acid (20% salicylic/10% mandelic acid) versus phytic combination peels in Indian patients with melasma. Ninety patients diagnosed with melasma were randomly assigned into 3 groups of 30 patients each. Group A received glycolic acid (GA-35%) peel, Group B received SM acid, and Group C received phytic combination peels. Each group was primed with 4% hydroquinone and 0.05% tretinoin cream for 4 weeks before treatment. Chemical peeling was done after every 14 days in all groups until 12 weeks. Clinical evaluation using melasma area and severity index (MASI) score and photography was recorded at every visit and follow-up was done until 20 weeks. There was a decrease in MASI score in all 3 groups but it was statistically significantly lower in Group A than Group C (p = .00), and it was also statistically significantly lower in Group B than Group C (p = .00) but there was no statistically significant difference between Groups A and B (p = .876). Objective response to treatment evaluated by reduction in MASI scoring after 12 weeks was 62.36% reduction in GA group, 60.98% reduction in SM group, and 44.71% in phytic acid group. It is concluded that GA (35%) and SM acid peels are both equally efficacious and a safe treatment modality for melasma in Indian skin, and are more effective than phytic acid peels. Salicylic-mandelic peels are better tolerated and more suitable for Indian skin.

  6. Fermentation Products of Solvent Tolerant Marine Bacterium Moraxella spp. MB1 and Its Biotechnological Applications in Salicylic Acid Bioconversion

    PubMed Central

    Wahidullah, Solimabi; Naik, Deepak N.; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3–8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9–12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  7. [Quantitative determination of the main metabolites of acetylsalicylic acid/2nd communication: the concentrations of salicylic acid and its metabolites in patients with renal insufficiency (author's transl)].

    PubMed

    Daneels, R; Loew, D; Pütter, J

    1975-07-01

    Quantitative Determination of the Main Metabolites of Acetylsalicylic Acid / 2nd Communication: The concentrations of salicylic acid and its metabolies in patients with renal insufficiency 9 patients suffering from renal insufficiencies of varing degrees and treated regularly by hemodialysis were given 1.5 g Colfarit (microcapsulated acetyl salicylic acid) as a single dose. The concentrations of salicylic acid (SA), salicyluric acid (SU), further salicylic acid conjugates (SAC) and salicyluric acid conjugates (SUC) were determined in the blood plasma. Likewise urea and creatinine were determined. SA concentration decreased continually and, at the end of the trial (72 h after application), had vanished almost completely from the plasma of most patients. SU increased at first and decreased afterwards. With the exception of the dailysis time SAC and SUC increased during the trial. After 3 days the SUC level was more than 50% of total salicylate (SSS) in most patients. SSS (the sum of SA + SU + SAC + SUC) did not change very much before dialysis, but showed a rather high decrease during the first hours of dialysis. tafter dialysis the SSS levels rose again, apparently as a consequence of a redistribution and of the synthesis of conjugates with decreased tissue affinity. It could be shown that SSS in the blood plasma does not parallel SSS in the whole body. The interindividual variation of SA metabolism as well as the variation of the biological blank values was rather high. The results are discussed with regard to salicylate pharmacokinetics in renal insufficiency and to normal salicylate metabolism.

  8. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects.

    PubMed

    Swain, Swadhin; Roy, Shweta; Shah, Jyoti; Van Wees, Saskia; Pieterse, Corné M; Nandi, Ashis K

    2011-12-01

    Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  9. Neonicotinoid insecticides induce salicylate-associated plant defense responses

    PubMed Central

    Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

    2010-01-01

    Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

  10. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway

    PubMed Central

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-01-01

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway. PMID:27189192

  11. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway.

    PubMed

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-05-18

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway.

  12. Effects of mixing procedure itself on the structure, viscosity, and spreadability of white petrolatum and salicylic acid ointment and the skin permeation of salicylic acid.

    PubMed

    Kitagawa, Shuji; Fujiwara, Megumi; Okinaka, Yuta; Yutani, Reiko; Teraoka, Reiko

    2015-01-01

    White petrolatum is a mixture of solid and liquid hydrocarbons and its structure can be affected by shear stress. Thus, it might also induce changes in its rheological properties. In this study, we used polarization microscopy to investigate how different mixing methods affect the structure of white petrolatum. We used two different mixing methods, mixing using a rotation/revolution mixer and mixing using an ointment slab and an ointment spatula. The extent of the fragmentation and dispersal of the solid portion of white petrolatum depended on the mixing conditions. Next, we examined the changes in the structure of a salicylic acid ointment, in which white petrolatum was used as a base, induced by mixing and found that the salicylic acid solids within the ointment were also dispersed. In addition to these structural changes, the viscosity and thixotropic behavior of both test substances also decreased in a mixing condition-dependent manner. The reductions in these parameters were most marked after mixing with a rotation/revolution mixer, and similar results were obtained for spreadability. We also investigated the effects of mixing procedure on the skin accumulation and permeation of salicylic acid. They were increased by approximately three-fold after mixing. Little difference in skin accumulation or permeation was detected between the two mixing methods. These findings indicate that mixing procedures themselves affect the utility and physiological effects of white petrolatum-based ointments. Therefore, these effects should be considered when mixing is required for the clinical use of petrolatum-based ointments.

  13. Comparative plasma salicylate and urine salicylurate levels following administration of aspirin, magnesium salicylate, and choline magnesium trisalicylate.

    PubMed

    Mason, W D

    1980-11-01

    Eighteen healthy volunteers were administered single doses of commercially available solid dosage forms of aspirin, magnesium salicylate (I), and choline magnesium trisalicylate (II), equivalent to approximately 500 mg of salicylic acid, in a randomized, complete crossover design. Plasma salicylate and urine salicylurate levels were measured by high-pressure liquid chromatography at frequent intervals following dosing; the resultant profiles, areas under the curve (AUC), and percentages of dose excreted as salicylurate were statistically analyzed by an analysis of variance. The plasma salicylate levels following the two dosage forms containing I and II were virtually identical when corrected for small differences in the dose. The plasma salicylic acid level following aspirin was approximately 10% lower during the 1.5--3.0-hr interval due to a portion of unhydrolyzed aspirin, but the dose-corrected AUC for the products tested did not differ significantly (p < 0.05). During the 24 hr following dosing, 66.5 +/- 12.1 68.4 +/- 7.1, and 60.9 +/- 14.1% of the salicylic acid were excreted as urine salicylurate for aspirin, I, and II, respectively, with no significant difference (p < 0.05). Based on this study, there are no significant differences in the rate and extent of absorption of salicylate following the three dosage forms tested, and the elimination kinetics of salicylic acid are not altered by these dosage forms.

  14. The catalytic activity for ginkgolic acid biodegradation, homology modeling and molecular dynamic simulation of salicylic acid decarboxylase.

    PubMed

    Hu, Yanying; Hua, Qingyuan; Sun, Guojuan; Shi, Kunpeng; Zhang, Huitu; Zhao, Kai; Jia, Shiru; Dai, Yujie; Wu, Qingli

    2018-05-02

    The toxic ginkgolic acids are the main safety concern for the application of Ginkgo biloba. In this study, the degradation ability of salicylic acid decarboxylase (SDC) for ginkgolic acids was examined using ginkgolic acid C15:1 as a substrate. The results indicated that the content of ginkgolic acid C15:1 in Ginkgo biloba seeds was significantly decreased after 5 h treatment with SDC at 40 °Cand pH 5.5. In order to explore the structure of SDC and the interaction between SDC and substrates, homology modeling, molecular docking and molecular dynamics were performed. The results showed that SDC might also have a catalytic active center containing a Zn 2+ . Compared with the template structure of 2,6-dihydroxybenzoate decarboxylase, the residues surrounding the binding pocket, His10, Phe23 and Phe290, were replaced by Ala10, Tyr27 and Tyr301 in the homology constructed structure of SDC, respectively. These differences may significantly affect the substrates adaptability of SDC for salicylic acid derivatives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. MicroRNA396a-5p and -3p induce tomato disease susceptibility by suppressing target genes and upregulating salicylic acid.

    PubMed

    Chen, Lei; Meng, Jun; Zhai, Junmiao; Xu, Pinsan; Luan, Yushi

    2017-12-01

    Plants have evolved a variety of mechanisms to perceive and resist the assault of pathogens. The biotrophs, necrotrophs and hemibiotrophs are types of plant pathogens that activate diverse salicylic acid (SA) and jasmonic acid (JA) signaling pathways. In this study we showed that the expressions of miR396a-5p and -3p in Solanum lycopersicum (S. lycopersicum) were both down-regulated after infection by hemibiotroph Phytophthora infestans (P. infestans) and necrotroph Botrytis cinerea (B. cinerea) infection. Overexpression of miR396a-5p and -3p in transgenic tomato enhanced the susceptibility of S. lycopersicum to P. infestans and B. cinerea infection and the tendency to produce reactive oxygen species (ROS) under pathogen-related biotic stress. Additionally, miR396a regulated growth-regulating factor1 (GRF1), salicylic acid carboxyl methyltransferase (SAMT), glycosyl hydrolases (GH) and nucleotide-binding site-leucine-rich repeat (NBS-LRR) and down-regulated their levels. This ultimately led to inhibition of the expression of pathogenesis-related 1 (PR1), TGA transcription factors1 and 2 (TGA1 and TGA2) and JA-dependent proteinase inhibitors I and II (PI I and II), but enhanced the endogenous SA content and nonexpressor of pathogenesis-related genes 1 (NPR1) expression. Taken together, our results showed that negative regulation of target genes and their downstream genes expressions by miR396a-5p and -3p are critical for tomato abiotic stresses via affecting SA or JA signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Identification of New Cocrystal Systems with Stoichiometric Diversity of Salicylic Acid Using Thermal Methods.

    PubMed

    Zhou, Zhengzheng; Chan, Hok Man; Sung, Herman H-Y; Tong, Henry H Y; Zheng, Ying

    2016-04-01

    The purpose of this work was to develop thermal methods to identify cocrystal systems with stoichiometric diversity. Differential scanning calorimetry (DSC) and hot stage microscopy (HSM) have been applied to study the stoichiometric diversity phenomenon on cocrystal systems of the model compound salicylic acid (SA) with different coformers (CCFs). The DSC method was particularly useful in the identification of cocrystal re-crystallization, especially to improve the temperature resolution using a slower heating rate. HSM was implemented as a complementary protocol to confirm the DSC results. The crystal structures were elucidated by single-crystal X-ray diffraction (SXRD). Two new cocrystal systems consisting of salicylic acid-benzamide (SA-BZD, 1:1, 1:2) and salicylic acid-isonicotinamide (SA-ISN, 1:1, 2:1) have been identified in the present work. The chemical structures of the newly discovered cocrystals SA-BZD (1:2) and SA-ISN (2:1) have been elucidated using X-ray single crystal and powder diffraction methods. The developed thermal methods could rapidly identify cocrystal systems with stoichiometric diversity, with the potential to discover new pharmaceutical cocrystals in the future.

  17. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.

    PubMed

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian

    2014-03-01

    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  18. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The

  19. Carboxylic acid reductase enzymes (CARs).

    PubMed

    Winkler, Margit

    2018-04-01

    Carboxylate reductases (CARs) are emerging as valuable catalysts for the selective one-step reduction of carboxylic acids to their corresponding aldehydes. The substrate scope of CARs is exceptionally broad and offers potential for their application in diverse synthetic processes. Two major fields of application are the preparation of aldehydes as end products for the flavor and fragrance sector and the integration of CARs in cascade reactions with aldehydes as the key intermediates. The latest applications of CARs are dominated by in vivo cascades and chemo-enzymatic reaction sequences. The challenge to fully exploit product selectivity is discussed. Recent developments in the characterization of CARs are summarized, with a focus on aspects related to the domain architecture and protein sequences of CAR enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties

    NASA Astrophysics Data System (ADS)

    Hasanah, Y.; Sembiring, M.

    2018-02-01

    Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.

  1. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  2. Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  3. Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.

    1998-01-20

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  4. Development of an ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous determination of salicylic acid, jasmonic acid, and abscisic acid in rose leaves.

    PubMed

    Bosco, Renato; Daeseleire, Els; Van Pamel, Els; Scariot, Valentina; Leus, Leen

    2014-07-09

    This paper describes a method to detect and quantitate the endogenous plant hormones (±)-2-cis-4-trans-abscisic acid, (-)-jasmonic acid, and salicylic acid by means of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in hybrid rose leaf matrices. Deuterium-labeled [(2)H6] (+)-2-cis-4-trans-abscisic acid, [(2)H6] (±)-jasmonic acid, and [(2)H4]-salicylic acid were used as internal standards. Rose samples (10 mg) were extracted with methanol/water/acetic acid (10:89:1) and subsequently purified on an Oasis MCX 1 cm(3) Vac SPE cartridge. Performance characteristics were validated according to Commission Decision 2002/657/EC. Recovery, repeatability, and within-laboratory reproducibility were acceptable for all phytohormones tested at three different concentrations. The decision limit and detection capability for (±)-2-cis-4-trans-abscisic acid, (-)-jasmonic acid, and salicylic acid were 0.0075 and 0.015 μg/g, 0.00015 and 0.00030 μg/g, and 0.0089 and 0.018 μg/g, respectively. Matrix effects (signal suppression or enhancement) appeared to be high for all substances considered, implying the need for quantitation based on matrix-matched calibration curves.

  5. Efficient synthesis of anacardic acid analogues and their antibacterial activities.

    PubMed

    Mamidyala, Sreeman K; Ramu, Soumya; Huang, Johnny X; Robertson, Avril A B; Cooper, Matthew A

    2013-03-15

    Anacardic acid derivatives exhibit a broad range of biological activities. In this report, an efficient method for the synthesis of anacardic acid derivatives was explored, and a small set of salicylic acid variants synthesised retaining a constant hydrophobic element (a naphthyl tail). The naphthyl side chain was introduced via Wittig reaction and the aldehyde installed using directed ortho-metalation reaction of the substituted o-anisic acids. The failure of ortho-metalation using unprotected carboxylic acid group compelled us to use directed ortho-metalation in which a tertiary amide was used as a strong ortho-directing group. In the initial route, tertiary amide cleavage during final step was challenging, but cleaving the tertiary amide before Wittig reaction was beneficial. The Wittig reaction with protected carboxylic group (methyl ester) resulted in side-products whereas using sodium salt resulted in higher yields. The novel compounds were screened for antibacterial activity and cytotoxicity. Although substitution on the salicylic head group enhanced antibacterial activities they also enhanced cytotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Cryotherapy versus salicylic acid for the treatment of plantar warts (verrucae): a randomised controlled trial

    PubMed Central

    Hewitt, Catherine; Hicks, Kate; Jayakody, Shalmini; Kang’ombe, Arthur Ricky; Stamuli, Eugena; Turner, Gwen; Thomas, Kim; Curran, Mike; Denby, Gary; Hashmi, Farina; McIntosh, Caroline; McLarnon, Nichola; Torgerson, David; Watt, Ian

    2011-01-01

    Objective To compare the clinical effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts. Design A multicentre, open, two arm randomised controlled trial. Setting University podiatry school clinics, NHS podiatry clinics, and primary care in England, Scotland, and Ireland. Participants 240 patients aged 12 years and over, with a plantar wart that in the opinion of the healthcare professional was suitable for treatment with both cryotherapy and salicylic acid. Interventions Cryotherapy with liquid nitrogen delivered by a healthcare professional, up to four treatments two to three weeks apart. Patient self treatment with 50% salicylic acid (Verrugon) daily up to a maximum of eight weeks. Main outcome measures Complete clearance of all plantar warts at 12 weeks. Secondary outcomes were (a) complete clearance of all plantar warts at 12 weeks controlling for age, whether the wart had been treated previously, and type of wart, (b) patient self reported clearance of plantar warts at six months, (c) time to clearance of plantar wart, (d) number of plantar warts at 12 weeks, and (e) patient satisfaction with the treatment. Results There was no evidence of a difference between the salicylic acid and cryotherapy groups in the proportions of participants with complete clearance of all plantar warts at 12 weeks (17/119 (14%) v 15/110 (14%), difference 0.65% (95% CI –8.33 to 9.63), P=0.89). The results did not change when the analysis was repeated but with adjustment for age, whether the wart had been treated previously, and type of plantar wart or for patients’ preferences at baseline. There was no evidence of a difference between the salicylic acid and cryotherapy groups in self reported clearance of plantar warts at six months (29/95 (31%) v 33/98 (34%), difference –3.15% (–16.31 to 10.02), P=0.64) or in time to clearance (hazard ratio 0.80 (95% CI 0.51 to 1.25), P=0.33). There was also no evidence of a difference in the number of plantar

  7. Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice

    PubMed Central

    Can Güven, Selçuk; Laska, Matthias

    2012-01-01

    Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C2 to C4) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C5 to C8). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific. PMID:22479594

  8. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus

    USDA-ARS?s Scientific Manuscript database

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  9. Salicylic acid plasma levels following multiple doses of Norgesic Forte and aspirin.

    PubMed

    Harrison, L I; Kehe, C R; Goldlust, M B; Kvam, D C; Bianchine, J R

    1983-01-01

    Plasma salicyclic acid levels from the recommended multiple dose regimen of Norgesic Forte (orphenadrine citrate, aspirin, and caffeine) were compared to those from an equivalent multiple dose regimen of aspirin alone in 24 volunteers. The drugs were administered double-blind so that side effects could also be compared. No statistically significant differences were found between Norgesic Forte and aspirin in peak or trough levels, time to peak level, area under the curve, or mean steady-state level of salicylic acid. Mean steady-state levels averaged 154 +/- 46 (+/- SD) and 152 +/- 49 micrograms/ml on days 5 and 10 following Norgesic Forte versus 161 +/- 49 and 154 +/- 47 micrograms/ml following aspirin. Thus, the aspirin in Norgesic Forte provides an anti-inflammatory amount of salicylic acid equivalent to that of plain aspirin. There was no evidence that the combination of orphenadrine citrate, caffeine, and aspirin in Norgesic Forte caused increased or unusual side effects compared with aspirin alone.

  10. The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin.

    PubMed

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z; Miller, Sharon A; Hearing, Vincent J

    2009-07-01

    alpha-Hydroxy acids (alphaHAs) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that alphaHA can increase the sensitivity of skin to ultraviolet radiation. More recently, beta-hydroxy acids (betaHAs), or combinations of alphaHA and betaHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing beta-HA. To determine whether topical treatment with glycolic acid, a representative alphaHA, or with salicylic acid, a betaHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday-Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all four sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not.

  11. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  12. Detection of Salicylic Acid in Willow Bark: An Addition to a Classic Series of Experiments in the Introductory Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clay, Matthew D.; McLeod, Eric J.

    2012-01-01

    Salicylic acid and its derivative, acetylsalicylic acid, are often encountered in introductory organic chemistry experiments, and mention is often made that salicylic acid was originally isolated from the bark of the willow tree. This biological connection, however, is typically not further pursued, leaving students with an impression that biology…

  13. Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process.

    PubMed

    Arrojo, S; Nerín, C; Benito, Y

    2007-03-01

    The generation of OH* radicals inside hydrodynamic cavitation bubbles was monitored using a salicylic acid dosimeter. The reaction of this scavenger with OH* produces 2,5-dihydroxybenzoic acid (2,5-DHB) and, to a lesser degree, 2,3-DHB. The former, is a specific reaction product that can be determined with a very high sensitivity using HPLC-IF. This method has been applied to study the influence of the flow-rate and the solution pH for a given cavitation chamber geometry. The salicylic dosimetry has proven especially suitable for the characteristic time scales of hydrodynamic cavitation (higher than those of ultrasonic cavitation), which usually gives rise to recombination of radicals before they can reach the liquid-phase. Working at low pH the hydrophobic salicylic acid migrates to the gas-liquid interface and reacts with the OH* radicals, increasing the trapping efficiency of the dosimeter. Hydrodynamic cavitation works as a very low frequency sonochemical reactor, and therefore its potential as an Advanced Oxidation Process might be limited to reactions at the gas-liquid interface and inner bubble (i.e. with volatiles and/or hydrophobic substances).

  14. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyls play an important role in the chemistry of natural organic molecules (NOM) in the environment, and their behavior is dependent on local structural environment within the macromolecule. We studied the structural environments of carboxyl groups in dissolved NOM from the Pine Barrens (New Jersey, USA), and IHSS NOM isolates from soils and river waters using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. It is well established that the energies of the asymmetric stretching vibrations of the carboxylate anion (COO -) are sensitive to the structural environment of the carboxyl group. These energies were compiled from previous infrared studies on small organic acids for a wide variety of carboxyl structural environments and compared with the carboxyl spectral features of the NOM samples. We found that the asymmetric stretching peaks for all NOM samples occur within a narrow range centered at 1578 cm -1, suggesting that all NOM samples examined primarily contain very similar carboxyl structures, independent of sample source and isolation techniques employed. The small aliphatic acids containing hydroxyl (e.g., D-lactate, gluconate), ether/ester (methoxyacetate, acetoxyacetate), and carboxylate (malonate) substitutions on the α-carbon, and the aromatic acids salicylate ( ortho-OH) and furancarboxylate ( O-heterocycle), exhibit strong overlap with the NOM range, indicating that similar structures may be common in NOM. The width of the asymmetric peak suggests that the structural heterogeneity among the predominant carboxyl configurations in NOM is small. Changes in peak area with pH at energies distant from the peak at 1578 cm -1, however, may be indicative of a small fraction of other aromatic carboxyls and aliphatic structures lacking α-substitution. This information is important in understanding NOM-metal and mineral-surface complexation, and in building appropriate structural and mechanistic models of humic materials.

  15. Characterisation of SalRAB a Salicylic Acid Inducible Positively Regulated Efflux System of Rhizobium leguminosarum bv viciae 3841

    PubMed Central

    Tett, Adrian J.; Karunakaran, Ramakrishnan; Poole, Philip S.

    2014-01-01

    Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants. PMID:25133394

  16. Glycolic acid 15% plus salicylic acid 2%: a new therapeutic pearl for facial flat warts.

    PubMed

    Rodríguez-Cerdeira, Carmen; Sánchez-Blanco, Elena

    2011-09-01

    Facial flat warts are a contagious viral disease that can cause disturbing cosmetic problems. Topical glycolic acid has been reported to be effective in dermatological treatment depending on the exfoliant capacity, but has not often been reported to be effective in the treatment of facial flat warts. The aim of this paper was to evaluate the efficacy and safety of glycolic acid 15% topical gel plus salicylic acid 2% in the treatment of recalcitrant facial flat warts. A total of 20 consecutive patients 7 to 16 years of age with recalcitrant facial flat warts were enrolled in this study. Patients having warts by the eye and lip regions were excluded from the study. A fine layer of face gel was applied to the treatment area once daily. Most of the participants had tried different treatments with no success. Assessments for the response and the occurrence of side effects were performed every two weeks at Weeks 2, 4, 6, and 8. All the patients were clinically cured within eight weeks. Seven patients cleared in four weeks, and 13 patients cleared in eight weeks. No noticeable adverse events were related to the skin. Topical gel of glycolic acid 15% plus salicylic acid 2% is safe and effective when applied to facial flat warts once daily until clearance and may be considered as first-line treatment.

  17. Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    DOEpatents

    King, C. Judson; Husson, Scott M.

    1999-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

  18. Jasmonic acid and salicylic acid activate a common defense system in rice.

    PubMed

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-06-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.

  19. Accumulation of n-alkanes and carboxylic acids in peat mounds

    NASA Astrophysics Data System (ADS)

    Gabov, D. N.; Beznosikov, V. A.; Gruzdev, I. V.; Yakovleva, E. V.

    2017-10-01

    The quantitative and qualitative compositions of n-alkanes and carboxylic acids have been identified, and the features of their vertical stratification in peat mound profiles of the forest-tundra zone of Komi Republic have been revealed. The composition of n-alkanes (structures with C23, C25, C27, C29, and C31) and carboxylic acids (C24, C26, and C28) and their proportions make it possible to determine changes in plant communities of peat mounds with time and can be used as markers for the degree of decomposition of organic matter. In cryogenic horizons, the contents of n-alkanes (mainly C23, C25, and C27) and carboxylic acids (C24, C26, and C28) significantly decrease because of the different botanic composition of cryogenic horizons (grass-woody residues) and seasonally thawing horizons (moss-subshrub residues) and the almost complete stopping of the equilibrium accumulation and transformation of organic compounds in permafrost.

  20. The Effects of Topically Applied Glycolic Acid and Salicylic Acid on Ultraviolet Radiation-Induced Erythema, DNA Damage and Sunburn Cell Formation in Human Skin

    PubMed Central

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G.; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z.; Miller, Sharon A.; Hearing, Vincent J.

    2009-01-01

    Background α-Hydroxy acids (αHA) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that αHA can increase the sensitivity of skin to ultraviolet radiation. More recently, β-hydroxy acids (βHA), or combinations of αHA and βHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing β-HA. Objective To determine whether topical treatment with glycolic acid, a representative αHA, or with salicylic acid, a βHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Methods Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday - Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all 4 sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Results Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Conclusions Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not. PMID:19411163

  1. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea

    PubMed Central

    Dieryckx, Cindy; Gaudin, Vanessa; Dupuy, Jean-William; Bonneu, Marc; Girard, Vincent; Job, Dominique

    2015-01-01

    Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873. PMID:26528317

  2. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    NASA Astrophysics Data System (ADS)

    Nicholson, John W.; Wilson, Alan

    2004-09-01

    This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries. The best known version of the process is the Dakin West reaction (1928), which applies to α-amino acids and also involves the simultaneous conversion of the amine group to amido functionality. Unlike other examples, this particular reaction has attracted a reasonable amount of attention and it appears to be better known than the conversion of simple carboxylic acids to ketones. However, this reaction was described as long ago as 1612, when Beguin published an account of it in his book, Tyrocinium Chymicum . Since then, many chemists have rediscovered the reaction, apparently independently. One of the earliest modern accounts was by W. H. Perkin, Sr., in 1886, who made various simple ketones by refluxing the appropriate carboxylic acids with base. However, this work has been largely ignored, including by his son, W. H. Perkin, Jr., who used a more complicated base-catalyzed ketonization to prepare small ring compounds in the early years of the 20th century. Other articles detailing the application of ketonization to organic acids are discussed, including our own work, which employed the process to crosslink carboxylated polymers for possible technical application in coatings. Despite its relative obscurity, the reaction was used by Woodward et al. in the total synthesis of strychnine, reported in 1963, and this is discussed in detail at the end of the article. See Featured Molecules .

  3. Evaluation of salicylic acid peeling in comparison with topical tretinoin in the treatment of postinflammatory hyperpigmentation.

    PubMed

    Mohamed Ali, Basma Morad; Gheida, Shereen Farouk; El Mahdy, Nageh Ahmed; Sadek, Shery Nashaat

    2017-03-01

    Postinflammatory hyperpigmentation (PIH) is an acquired hyperpigmentation that involves areas of prior cutaneous inflammation. In addition to prevention, there are a variety of medications and procedures used to treat PIH. The aim of this work was to evaluate the efficacy, tolerability, and safety of salicylic acid peeling in comparison with topical tretinoin in the treatment of PIH. This study included forty-five patients with PIH lesions. The patients were divided into three groups, group I was treated with salicylic acid peeling 20-30%, group II was treated with topical tretinoin 0.1%, and group III was treated with combination of salicylic acid peel and topical tretinoin. The patients were assessed clinically to evaluate the efficacy, tolerability, and safety of the treatment. Dermoscopy was carried out to the recurrent or nonimproved cases only. Combination of salicylic acid peel and topical tretinoin treatment showed significant clinical improvement of PIH than each treatment alone with no complications. There was no significant difference in the recurrence rate between the three groups. There was nonsignificant difference between the efficacy of the treatment and the PIH type in the studied groups. There was nonsignificant difference between the efficacy of the treatment and the duration of the PIH except for group III. Combination treatment modality is believed to be preferred in the treatment of PIH due to its higher efficacy than single treatment alone, with well tolerability, less side effects, and low recurrence rate. © 2016 Wiley Periodicals, Inc.

  4. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    PubMed

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  5. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism

    PubMed Central

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-01-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence. PMID:23959884

  6. Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses.

    PubMed

    Ruel, Jérôme; Chabbert, Christian; Nouvian, Régis; Bendris, Rim; Eybalin, Michel; Leger, Claude Louis; Bourien, Jérôme; Mersel, Marcel; Puel, Jean-Luc

    2008-07-16

    Currently, many millions of people treated for various ailments receive high doses of salicylate. Consequently, understanding the mechanisms by which salicylate induces tinnitus is an important issue for the research community. Behavioral testing in rats have shown that tinnitus induced by salicylate or mefenamate (both cyclooxygenase blockers) are mediated by cochlear NMDA receptors. Here we report that the synapses between the sensory inner hair cells and the dendrites of the cochlear spiral ganglion neurons express NMDA receptors. Patch-clamp recordings and two-photon calcium imaging demonstrated that salicylate and arachidonate (a substrate of cyclooxygenase) enabled the calcium flux and the neural excitatory effects of NMDA on cochlear spiral ganglion neurons. Salicylate also increased the arachidonate content of the whole cochlea in vivo. Single-unit recordings of auditory nerve fibers in adult guinea pig confirmed the neural excitatory effect of salicylate and the blockade of this effect by NMDA antagonist. These results suggest that salicylate inhibits cochlear cyclooxygenase, which increased levels of arachidonate. The increased levels of arachidonate then act on NMDA receptors to enable NMDA responses to glutamate that inner hair cells spontaneously release. This new pharmacological profile of salicylate provides a molecular mechanism for the generation of tinnitus at the periphery of the auditory system.

  7. Pharmacokinetics and metabolic rates of acetyl salicylic acid and its metabolites in an Otomi ethnic group of Mexico.

    PubMed

    Lares-Asseff, Ismael; Juárez-Olguín, Hugo; Flores-Pérez, Janett; Guillé-Pérez, Adrian; Vargas, Arturo

    2004-05-01

    The objective of this study was to determine pharmacokinetic differences of acetyl salicylic acid (ASA) and its metabolites: gentisic acid (GA), salicylic acid (SA) and salicyluric acid (SUA) between Otomies and Mesticians healthy subjects. Design. Ten Otomies and 10 Mesticians were included. After a single dose of aspirin given orally (15 mg/kg), blood and urine samples were collected at different times. Results. Pharmacokinetic parameters of salicylates showed significant differences, except distribution volume of SA, and elimination half-life of SUA. Metabolic rates of ASA showed significant differences for all rates between both groups. On the other hand, percentages of dose excreted were more reduced for SA and SUA for the Otomies than for the Mesticians. Conclusion. Results reflect differences in the hydrolysis way i.e. from ASA to SA and aromatic hydroxylation i.e. from SA to GA, which were slower in Otomies subjects, showing a possible pharmacokinetic differences about the capabilities of ASA biotransformation as a consequence of ethnic differences.

  8. Paracetamol and salicylic acid removal from contaminated water by microalgae.

    PubMed

    Escapa, C; Coimbra, R N; Paniagua, S; García, A I; Otero, M

    2017-12-01

    The biomass growth, pharmaceutical removal and light conversion efficiency of Chlorella sorokiniana under the presence of paracetamol (PC) and salicylic acid (SaC) were assessed and compared at two different concentrations of these pharmaceuticals (I: 25 mg l -1 , II: 250 mg l -1 ). Microalgae were resistant to these concentrations and, moreover, their growth was significantly stimulated (p ≤ 0.05) under these drugs (biomass concentration increased above 33% PCI, 35% SaCI, 13% PCII and 45% SaCII, as compared with the respective positive controls). At the steady state of the semicontinuous culture, C. sorokiniana showed removal efficiencies above 41% and 69% for PCI and PCII, respectively; and above 93% and 98% for SaCI and SaCII, respectively. Under an irradiance of 370 μE m -2  s -1 , higher quantum yields were reached by microalgae under the presence of drugs, either at dose I or II, than by the respective positive controls. These results point to C. sorokiniana as a robust strain for the bioremediation of paracetamol and salicylic acid concentrated wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Methyl Jasmonate and Salicylic Acid Enhanced the Production of Ursolic and Oleanolic Acid in Callus Cultures of Lepechinia Caulescens

    PubMed Central

    Vergara Martínez, Víctor M.; Estrada-Soto, Samuel E.; Arellano-García, José de Jesús; Rivera-Leyva, Julio C.; Castillo-España, Patricia; Flores, Angélica Flores; Cardoso-Taketa, Alexandre T.; Perea-Arango, Irene

    2017-01-01

    Background: The production of triterpenes from plants for pharmacological purposes varies in concentration, due to genetic and environmental factors. In vitro culture enables the control and increase of these bioactive molecules. Objective: To evaluate the effect of plant growth regulators and elicitors in the induction of calli and the production of ursolic acid (UA) and oleanolic acid (OA) in Lepechinia caulescens. Materials and Methods: Leaf explants were exposed for the induction of calli at different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). Methyl jasmonate (MJ) and salicylic acid were used as elicitors. High-performance liquid chromatography method was used to quantify UA and OA content in each treatment. Results: Treatment with 3.0 mg/L of 2,4-D and 0.1 mg/L of BAP produced the best results for calli induction and production of UA (1.57 mg/g dry weight [DW]) and OA (1.13 mg/g DW). Both elicitors facilitated the accumulation of triterpenes. Conclusion: The combination of auxins and cytokinins showed favorable results for the induction of calli. Variation concerning the accumulation of UA and OA was observed between treatments. MJ increased the production of triterpenes five times after 8 h of exposure, compared to control treatment. There is a greater accumulation of UA (16.58 mg/g DW) and OA (1.94 mg/g DW) in leaves of wild plants. SUMMARY Callus cultures of Lepechinia caulescens were obtained from leaf explants treated with 2,4-dichlorophenoxyacetic acid and 6-bencylaminopurineResulting cultures were elicited with methyl jasmonate (MJ) and salicylic acid to increase the production of the triterpenes, ursolic acid (UA), and oleanolic acid (OA)The cultures elicited with MJ increased the production of UA and OA five times, as compared to the control. Abbreviations used: 2,4-D: 2,4-dichlorophenoxyacetic acid, BAP: 6-benzylaminopurine, DW: Dry weight, MJ: Methyl jasmonate, OA: Oleanolic acid, PGRs

  10. Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?

    ERIC Educational Resources Information Center

    Leung, Sam H.

    2000-01-01

    Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)

  11. Electron mobility enhancement in ZnO thin films via surface modification by carboxylic acids

    NASA Astrophysics Data System (ADS)

    Spalenka, Josef W.; Gopalan, Padma; Katz, Howard E.; Evans, Paul G.

    2013-01-01

    Modifying the surface of polycrystalline ZnO films using a monolayer of organic molecules with carboxylic acid attachment groups increases the field-effect electron mobility and zero-bias conductivity, resulting in improved transistors and transparent conductors. The improvement is consistent with the passivation of defects via covalent bonding of the carboxylic acid and is reversible by exposure to a UV-ozone lamp. The properties of the solvent used for the attachment are crucial because solvents with high acid dissociation constants (Ka) for carboxylic acids lead to high proton activities and etching of the nanometers-thick ZnO films, masking the electronic effect.

  12. Untargeted metabolomics analysis reveals dynamic changes in azelaic acid- and salicylic acid derivatives in LPS-treated Nicotiana tabacum cells.

    PubMed

    Mhlongo, M I; Tugizimana, F; Piater, L A; Steenkamp, P A; Madala, N E; Dubery, I A

    2017-01-22

    To counteract biotic stress factors, plants employ multilayered defense mechanisms responsive to pathogen-derived elicitor molecules, and regulated by different phytohormones and signaling molecules. Here, lipopolysaccharide (LPS), a microbe-associated molecular pattern (MAMP) molecule, was used to induce defense responses in Nicotiana tabacum cell suspensions. Intracellular metabolites were extracted with methanol and analyzed using a liquid chromatography-mass spectrometry (UHPLC-qTOF-MS/MS) platform. The generated data were processed and examined with multivariate and univariate statistical tools. The results show time-dependent dynamic changes and accumulation of glycosylated signaling molecules, specifically those of azelaic acid, salicylic acid and methyl-salicylate as contributors to the altered metabolomic state in LPS-treated cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Analysis of Chiral Carboxylic Acids in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Elsila, J. E.; Hein, J. E.; Aponte, J. C.; Parker, E. T.; Glavin, D. P.; Dworkin, J. P.

    2015-01-01

    Homochirality of amino acids in proteins and sugars in DNA and RNA is a critical feature of life on Earth. In the absence of a chiral driving force, however, reactions leading to the synthesis of amino acids and sugars result in racemic mixtures. It is currently unknown whether homochirality was necessary for the origins of life or if it was a product of early life. The observation of enantiomeric excesses of certain amino acids of extraterrestrial origins in meteorites provides evidence to support the hypothesis that there was a mechanism for the preferential synthesis or destruction of a particular amino acid enantiomer [e.g., 1-3]. The cause of the observed chiral excesses is un-clear, although at least in the case of the amino acid isovaline, the degree of aqueous alteration that occurred on the meteorite parent body is correlated to the isovaline L-enantiomeric excess [3, 4]. This suggests that chiral symmetry is broken and/or amplified within the meteorite parent bodies. Besides amino acids, there have been only a few reports of other meteoritic compounds found in enantiomeric excess: sugars and sugar acids [5, 6] and the hydroxy acid lactic acid [7]. Determining whether or not additional types of molecules in meteorites are also present in enantiomeric excesses of extraterrestrial information will provide insights into mechanisms for breaking chiral symmetry. Though the previous measurements (e.g., enantiomeric composition of lactic acid [7], and chiral carboxylic acids [8]) were made by gas chromatography-mass spectrometry, the potential for increased sensitivity of liquid chromatography-mass spectrometry (LC-MS) analyses is important because for many meteorite samples, only small sample masses are available for study. Furthermore, at least in the case of amino acids, many of the largest amino acid enantiomeric excesses were observed in samples that contained lower abundances (tens of ppb) of a given amino acid enantiomer. In the present work, we describe

  14. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.

  15. Measuring the concentration of carboxylic acid groups in torrefied spruce wood.

    PubMed

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko

    2012-11-01

    Torrefaction is moderate thermal treatment (∼200-300°C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300°C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Transcriptomic Analysis of Carboxylic Acid Challenge in Escherichia coli: Beyond Membrane Damage

    PubMed Central

    Royce, Liam A.; Boggess, Erin; Fu, Yao; Liu, Ping; Shanks, Jacqueline V.; Dickerson, Julie; Jarboe, Laura R.

    2014-01-01

    Carboxylic acids are an attractive biorenewable chemical. Enormous progress has been made in engineering microbes for production of these compounds though titers remain lower than desired. Here we used transcriptome analysis of Escherichia coli during exogenous challenge with octanoic acid (C8) at pH 7.0 to probe mechanisms of toxicity. This analysis highlights the intracellular acidification and membrane damage caused by C8 challenge. Network component analysis identified transcription factors with altered activity including GadE, the activator of the glutamate-dependent acid resistance system (AR2) and Lrp, the amino acid biosynthesis regulator. The intracellular acidification was quantified during exogenous challenge, but was not observed in a carboxylic acid producing strain, though this may be due to lower titers than those used in our exogenous challenge studies. We developed a framework for predicting the proton motive force during adaptation to strong inorganic acids and carboxylic acids. This model predicts that inorganic acid challenge is mitigated by cation accumulation, but that carboxylic acid challenge inverts the proton motive force and requires anion accumulation. Utilization of native acid resistance systems was not useful in terms of supporting growth or alleviating intracellular acidification. AR2 was found to be non-functional, possibly due to membrane damage. We proposed that interaction of Lrp and C8 resulted in repression of amino acid biosynthesis. However, this hypothesis was not supported by perturbation of lrp expression or amino acid supplementation. E. coli strains were also engineered for altered cyclopropane fatty acid content in the membrane, which had a dramatic effect on membrane properties, though C8 tolerance was not increased. We conclude that achieving higher production titers requires circumventing the membrane damage. As higher titers are achieved, acidification may become problematic. PMID:24586888

  17. Direct esterification of ammonium salts of carboxylic acids

    DOEpatents

    Halpern, Yuval [Skokie, IL

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  18. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  19. Rh(III)-Catalyzed Decarboxylative Coupling of Acrylic Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators

    PubMed Central

    2015-01-01

    α,β-Unsaturated carboxylic acids undergo Rh(III)-catalyzed decarboxylative coupling with α,β-unsaturated O-pivaloyl oximes to provide substituted pyridines in good yield. The carboxylic acid, which is removed by decarboxylation, serves as a traceless activating group, giving 5-substituted pyridines with very high levels of regioselectivity. Mechanistic studies rule out a picolinic acid intermediate, and an isolable rhodium complex sheds further light on the reaction mechanism. PMID:24512241

  20. Carboxylic Acids as Indicators of Parent Body Conditions

    NASA Technical Reports Server (NTRS)

    Lerner N. R.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched. It is postulated that they arose from a common interstellar scurce: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alpha-hydroxy nitriles, RR'CO + HCN right and left arrow RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibrium with the alpha-amino nitriles, RR'C(OH)CN + NH3 right and left arrow - RRCNH2CN + H2O. Both nitrites are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O yields RR'C(OH)CO2H and RR'C(NH2)CN + H2O yields RR'C(NH2)CO2H.

  1. Cryotherapy with liquid nitrogen versus topical salicylic acid application for cutaneous warts in primary care: randomized controlled trial.

    PubMed

    Bruggink, Sjoerd C; Gussekloo, Jacobijn; Berger, Marjolein Y; Zaaijer, Krista; Assendelft, Willem J J; de Waal, Margot W M; Bavinck, Jan Nico Bouwes; Koes, Bart W; Eekhof, Just A H

    2010-10-19

    Cryotherapy is widely used for the treatment of cutaneous warts in primary care. However, evidence favours salicylic acid application. We compared the effectiveness of these treatments as well as a wait-and-see approach. Consecutive patients with new cutaneous warts were recruited in 30 primary care practices in the Netherlands between May 1, 2006, and Jan. 26, 2007. We randomly allocated eligible patients to one of three groups: cryotherapy with liquid nitrogen every two weeks, self-application of salicylic acid daily or a wait-and-see approach. The primary outcome was the proportion of participants whose warts were all cured at 13 weeks. Analysis was on an intention-to-treat basis. Secondary outcomes included treatment adherence, side effects and treatment satisfaction. Research nurses assessed outcomes during home visits at 4, 13 and 26 weeks. Of the 250 participants (age 4 to 79 years), 240 were included in the analysis at 13 weeks (loss to follow-up 4%). Cure rates were 39% (95% confidence interval [CI] 29%-51%) in the cryotherapy group, 24% (95% CI 16%-35%) in the salicylic acid group and 16% (95% CI 9.5%-25%) in the wait-and-see group. Differences in effectiveness were most pronounced among participants with common warts (n = 116): cure rates were 49% (95% CI 34%-64%) in the cryotherapy group, 15% (95% CI 7%-30%) in the salicylic acid group and 8% (95% CI 3%-21%) in the wait-and-see group. Cure rates among the participants with plantar warts (n = 124) did not differ significantly between treatment groups. For common warts, cryotherapy was the most effective therapy in primary care. For plantar warts, we found no clinically relevant difference in effectiveness between cryotherapy, topical application of salicylic acid or a wait-and-see approach after 13 weeks. (ClinicalTrial.gov registration no. ISRCTN42730629).

  2. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  3. Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis.

    PubMed

    Zhang, Muliang; Li, Nan; Tao, Xingyu; Ruzi, Rehanguli; Yu, Shouyun; Zhu, Chengjian

    2017-09-12

    The direct reduction of carboxylic acids to aldehydes with hydrosilane was achieved through visible light photoredox catalysis. The combination of both single electron transfer and hydrogen atom transfer steps offers a novel and convenient approach to selective reduction of carboxylic acids to aldehydes. The method also features mild conditions, high yields, broad substrate scope, and good functional group tolerance, such as alkyne, ester, ketone, amide and amine groups.

  4. Effect of Salicylic Acid on Somatic Embryogenesis and Plant Regeneration in Hedychium bousigonianum

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to induce somatic embryogenesis in Hedychium bousigonianum Pierre ex Gagnepain and assess the influence of salicylic acid (S) on somatic embryogenesis. Somatic embryos and subsequently regenerated plants were successfully obtained 30 days after transfer of embryogenic...

  5. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  6. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  7. Modulation of mitomycin C-induced genotoxicity by acetyl- and thio- analogues of salicylic acid.

    PubMed

    Pawar, Amol Ashok; Vikram, Ajit; Tripathi, Durga Nand; Padmanabhan, Shweta; Ramarao, Poduri; Jena, Gopabandhu

    2009-01-01

    Recent reports regarding acetylsalicylic acid (ASA) and its metabolites suggest suppressive effects against mitomycin C (MMC)-induced genotoxicity in a mice chromosomal aberration assay. Keeping this in mind, the potential anti-genotoxic effect of the thio-analogue of salicylic acid namely thio-salicylic acid (TSA) was speculated upon. The present study investigated and compared the anti-genotoxic potential of ASA and TSA. The study was performed in male swiss mice (20+/-2 g) using single-cell gel electrophoresis and a peripheral blood micronucleus assay. ASA and TSA (5, 10 or 20 mg/kg) were administered 15 minutes after MMC (1 mg/kg) once daily for 3 or 7 days. Both ASA and TSA significantly decreased the DNA damage induced by MMC as indicated by a decrease in the comet parameters in bone marrow cells and decreased frequencies of micronucleated reticulocytes in peripheral blood. The results clearly demonstrate the anti-genotoxic potential of ASA and TSA.

  8. Year-round records of gas and particulate carboxylic acids (formate and acetate) in the boundary layer at Dumont d'Urville (coastal Antarctica): Production of carboxylic acids from biogenic NMHC emissions from the Antarctic ocean

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Preunkert, S.; Jourdain, B.

    2003-04-01

    Multiple year-round concentrations of acetic and formic acids were measured both in gas and aerosol phases at Dumont d'Urville (DDU, a coastal Antarctic site: 66^o40'S, 140^o01'E) by using mist chamber and aerosol filter sampling. Aerosol levels of the 2 carboxylates range from less than one ng m-3 in winter to 5--10 ng m-3 in summer. Comparison with gas phase concentrations shows that almost 99% of the 2 carboxylic acids are present in the gas phase. Concentrations of formic acid in the gas phase are minima in June--July (70 ng m-3) and increase regularly towards summer months when levels reach ˜400 ng m-3. Concentrations of acetic acid in the gas phase exhibit a more well-marked seasonal cycle with values remaining close to 50 ng m-3 from April to October and strongly increase during summer months (mean value of 800 ng m-3). Such a strong seasonal cycle of carboxylic acids in the high southern latitude marine boundary layer displays with observations made at numerous continental sites where a more weak seasonality is generally observed. It is suggested that carboxylic acids present at DDU mainly originate from biogenic emissions from the Antarctic ocean which are expected to closely follow annual cycle of the sea ice extent and solar radiation, affecting in particular photochemical production of alkenes from dissolved organic carbon released from phytoplancton. Summer levels of carboxylic acids are discussed in terms of air-sea fluxes of NMHCs and photochemical production of carboxylic acids from ozone-alkene reactions and HO_2 reaction with peroxyacetal radical in these poor NOx environments.

  9. Cost-effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts: economic evaluation alongside a randomised controlled trial (EVerT trial)

    PubMed Central

    2012-01-01

    Abstract Background Plantar warts (verrucae) are extremely common. Although many will spontaneously disappear without treatment, treatment may be sought for a variety of reasons such as discomfort. There are a number of different treatments for cutaneous warts, with salicylic acid and cryotherapy using liquid nitrogen being two of the most common forms of treatment. To date, no full economic evaluation of either salicylic acid or cryotherapy has been conducted based on the use of primary data in a pragmatic setting. This paper describes the cost-effectiveness analysis which was conducted alongside a pragmatic multicentre, randomised trial evaluating the clinical effectiveness of cryotherapy versus 50% salicylic acid of the treatment of plantar warts. Methods A cost-effectiveness analysis was undertaken alongside a pragmatic multicentre, randomised controlled trial assessing the clinical effectiveness of 50% salicylic acid and cryotherapy using liquid nitrogen at 12 weeks after randomisation of patients. Cost-effectiveness outcomes were expressed as the additional cost required to completely cure the plantar warts of one additional patient. A NHS perspective was taken for the analysis. Results Cryotherapy costs on average £101.17 (bias corrected and accelerated (BCA) 95% CI: 85.09-117.26) more per participant over the 12 week time-frame, while there is no additional benefit, in terms of proportion of patients healed compared with salicylic acid. Conclusions Cryotherapy is more costly and no more effective than salicylic acid. Trial registration Current Controlled Trials ISRCTN18994246 [controlled-trials.com] and National Research Register N0484189151. PMID:22369511

  10. Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis.

    PubMed

    Takeda, Shuso; Misawa, Koichiro; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-09-01

    In the present study it was revealed that cannabidiolic acid (CBDA) selectively inhibited cyclooxygenase (COX)-2 activity with an IC(50) value (50% inhibition concentration) around 2 microM, having 9-fold higher selectivity than COX-1 inhibition. In contrast, Delta(9)-tetrahydrocannabinolic acid (Delta(9)-THCA) was a much less potent inhibitor of COX-2 (IC(50) > 100 microM). Nonsteroidal anti-inflammatory drugs containing a carboxyl group in their chemical structures such as salicylic acid are known to inhibit nonselectively both COX-1 and COX-2. CBDA and Delta(9)-THCA have a salicylic acid moiety in their structures. Thus, the structural requirements for the CBDA-mediated COX-2 inhibition were next studied. There is a structural difference between CBDA and Delta(9)-THCA; phenolic hydroxyl groups of CBDA are freed from the ring formation with the terpene moiety, although Delta(9)-THCA has dibenzopyran ring structure. It was assumed that the whole structure of CBDA is important for COX-2 selective inhibition because beta-resorcylic acid itself did not inhibit COX-2 activity. Methylation of the carboxylic acid moiety of CBDA led to disappearance of COX-2 selectivity. Thus, it was suggested that the carboxylic acid moiety in CBDA is a key determinant for the inhibition. Furthermore, the crude extract of cannabis containing mainly CBDA was shown to have a selective inhibitory effect on COX-2. Taken together, these lines of evidence in this study suggest that naturally occurring CBDA in cannabis is a selective inhibitor for COX-2.

  11. Nanocarrier-based hydrogel of betamethasone dipropionate and salicylic acid for treatment of psoriasis

    PubMed Central

    Baboota, Sanjula; Alam, Md Sarfaraz; Sharma, Shrestha; Sahni, Jasjeet K; Kumar, Anil; Ali, Javed

    2011-01-01

    Introduction: Betamethasone dipropionate (BD) has anti-inflammatory, immunomodulatory, and antiproliferative activity. The aim of the current work was to test the hypothesis that the addition of corticosteroid such as BD and a keratolytic agent such as salicylic acid in nanocarrier based microemulsions formulation would result in enhancement and sustaining of corticosteroid delivery rate leading to better anti-psoriatic activity. Clinical use of BD is restricted to some extent due to its poor permeability across the skin. So to increase its permeation across the skin, microemulsion-based gel formulations were prepared and characterised. Materials and Methods: Microemulsions were prepared by aqueous phase titration method, using oleic acid:sefsol (1.5:1), Tween 20, isopropyl alcohol, and distilled water as the oil phase, surfactant, cosurfactant and aqueous phase, respectively. Selected formulations were subjected to physical stability studies and consequently in vitro skin permeation studies. Surface studies of optimized formulation were done by transmission electron microscopy. In vivo anti-inflammatory activity was done by carageenan-induced raw paw edema method. Results: The droplet size of microemulsions ranged from 60 to 190 nm. The optimized formulation exhibited viscosity 28.55 ± 2.03 mP, refractive index 1.409, pH 6.4, and conductivity 10-4 scm-1. The optimized microemulsion was converted into hydrogel using carbopol 934, and salicylic acid was incorporated into it. Drug deposition in skin was found to be 29.73 μg/mg. Assessment of skin permeation was done by histopathology studies which indicated changes in the structure of epidermal membrane of skin. In vivo anti-inflammatory activity indicated 72.11% and 43.96% inhibition of inflammation in case of developed microemulsion gel and marketed gel, respectively. Conclusions: The developed microemulsion gel containing BD and salicylic acid provided sustained and good anti-inflammatory activity for the

  12. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium.

    PubMed

    Majdi, Mohammad; Abdollahi, Mohammad Reza; Maroufi, Asad

    2015-11-01

    Up-regulation of germacrene A synthase and down-regulation of parthenolide hydroxylase genes play key role in parthenolide accumulation of feverfew plants treated with methyl jasmonate and salicylic acid. Parthenolide is an important sesquiterpene lactone due to its anti-migraine and anti-cancer properties. Parthenolide amount was quantified by high-performance liquid chromatography after foliar application of methyl jasmonate (100 µM) or salicylic acid (1.0 mM) on feverfew leaves in time course experiment (3-96 h). Results indicate that exogenous application of methyl jasmonate or salicylic acid activated parthenolide biosynthesis. Parthenolide content reached its highest amount at 24 h after methyl jasmonate or salicylic acid treatments, which were 3.1- and 1.96-fold higher than control plants, respectively. Parthenolide transiently increased due to methyl jasmonate or salicylic acid treatments until 24 h, but did not show significant difference compared with control plants at 48 and 96 h time points in both treatments. Also, the transcript levels of early pathway (upstream) genes of terpene biosynthesis including 3-hydroxy-3-methylglutaryl-coenzyme A reductase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase and hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and the biosynthetic genes of parthenolide including germacrene A synthase, germacrene A oxidase, costunolide synthase and parthenolide synthase were increased by methyl jasmonate and salicylic acid treatments, but with different intensity. The transcriptional levels of these genes were higher in methyl jasmonate-treated plants than salicylic acid-treated plants. Parthenolide content measurements along with expression pattern analysis of the aforementioned genes and parthenolide hydroxylase as side branch gene of parthenolide suggest that the expression patterns of early pathway genes were not directly consistent with parthenolide accumulation pattern; hence, parthenolide accumulation is

  13. Improvement of ruthenium based decarboxylation of carboxylic acids

    USDA-ARS?s Scientific Manuscript database

    The removal of oxygen atoms from biobased carboxylic acids is an attractive route to provide the drop in replacement feedstocks that industry needs to continue to provide high performance products. Through the use of ruthenium catalysis, an efficient method where this process can be accomplished on ...

  14. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    PubMed

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.

  15. Cryotherapy with liquid nitrogen versus topical salicylic acid application for cutaneous warts in primary care: randomized controlled trial

    PubMed Central

    Bruggink, Sjoerd C.; Gussekloo, Jacobijn; Berger, Marjolein Y.; Zaaijer, Krista; Assendelft, Willem J.J.; de Waal, Margot W.M.; Bavinck, Jan Nico Bouwes; Koes, Bart W.; Eekhof, Just A.H.

    2010-01-01

    Background Cryotherapy is widely used for the treatment of cutaneous warts in primary care. However, evidence favours salicylic acid application. We compared the effectiveness of these treatments as well as a wait-and-see approach. Methods Consecutive patients with new cutaneous warts were recruited in 30 primary care practices in the Netherlands between May 1, 2006, and Jan. 26, 2007. We randomly allocated eligible patients to one of three groups: cryotherapy with liquid nitrogen every two weeks, self-application of salicylic acid daily or a wait-and-see approach. The primary outcome was the proportion of participants whose warts were all cured at 13 weeks. Analysis was on an intention-to-treat basis. Secondary outcomes included treatment adherence, side effects and treatment satisfaction. Research nurses assessed outcomes during home visits at 4, 13 and 26 weeks. Results Of the 250 participants (age 4 to 79 years), 240 were included in the analysis at 13 weeks (loss to follow-up 4%). Cure rates were 39% (95% confidence interval [CI] 29%–51%) in the cryotherapy group, 24% (95% CI 16%–35%) in the salicylic acid group and 16% (95% CI 9.5%–25%) in the wait-and-see group. Differences in effectiveness were most pronounced among participants with common warts (n = 116): cure rates were 49% (95% CI 34%–64%) in the cryotherapy group, 15% (95% CI 7%–30%) in the salicylic acid group and 8% (95% CI 3%–21%) in the wait-and-see group. Cure rates among the participants with plantar warts (n = 124) did not differ significantly between treatment groups. Interpretation For common warts, cryotherapy was the most effective therapy in primary care. For plantar warts, we found no clinically relevant difference in effectiveness between cryotherapy, topical application of salicylic acid or a wait-and-see approach after 13 weeks. (ClinicalTrial.gov registration no. ISRCTN42730629) PMID:20837684

  16. Release of salicylic acid, diclofenac acid and diclofenac acid salts from isotropic and anisotropic nonionic surfactant systems across rat skin.

    PubMed

    Gabboun, N H; Najib, N M; Ibrahim, H G; Assaf, S

    2001-01-05

    Release of salicylic acid, diclofenac acid, diclofenac diethylamine and diclofenac sodium, from lyotropic structured systems, namely; neat and middle liquid crystalline phases, across mid-dorsal hairless rat skin into aqueous buffer were studied. Release results were compared with those from the isotropic systems. The donor systems composed of the surfactant polyoxyethylene (20) isohexadecyl ether, HCl buffer of pH 1 or distilled water and the specific drug. High performance liquid chromatography (HPLC) methods were used to monitor the transfer of the drugs across the skin barrier. Results indicated that the rate-determining step in the transport process was the release of the drug from the specified donor system. Further, apparent zero order release was demonstrated with all systems. Except for diclofenac sodium, drug fluxes decreased as the donor medium changed from isotropic to anisotropic. The decrease in fluxes was probably due to the added constrains on the movement of drug molecules. By changing the anisotropic donor medium from neat to middle phase, drug flux decreased in case of salicylic acid and diclofenac sodium. In the mean time, flux increased in case of the diethylamine salt and appeared nearly similar in case of diclofenac acid. Rates of drug transfer across the skin from the anisotropic donors seemed to be largely controlled by the entropy contribution to the transport process. The type and extent of drug-liquid crystal interactions probably influenced the latter.

  17. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

    PubMed Central

    Matthessen, Roman; Fransaer, Jan; Binnemans, Koen

    2014-01-01

    Summary The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process. PMID:25383120

  18. Two Dimensional Polyamides Prepared From Unsaturated Carboxylic Acids And Amines.

    DOEpatents

    McDonald, William F.; Huang, Zhi Heng; Wright, Stacy C.; Danzig, Morris; Taylor, Andrew C.

    2002-07-17

    A polyamide and a process for preparing the polyamide are disclosed. The process comprises reacting in a reaction mixture a monomer selected from unsaturated carboxylic acids, esters of unsaturated carboxylic acids, anhydrides of unsaturated carboxylic acids, and mixtures thereof, and a first amine to form an intermediate reaction product in the reaction mixture, wherein the first amine is selected from RR.sub.1 NH, RNH.sub.2, RR.sub.1 NH.sub.2.sup.+, RNH.sub.3.sup.+ and mixtures thereof, wherein R and R.sub.1 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, and reacting the intermediate reaction product and a second amine to form a polyamide, wherein the second amine is selected from R.sub.2 R.sub.3 NH, R.sub.2 NH.sub.2, R.sub.2 R.sub.3 NH.sub.2.sup.+, R.sub.2 NH.sub.3.sup.+ and mixtures thereof wherein R.sub.2 and R.sub.3 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, wherein multiple of the R, R.sub.1, R.sub.2, and R.sub.3 are in vertically aligned spaced relationship along a backbone formed by the polyamide. In one version of the invention, the monomer is selected from maleic anhydride, maleic acid esters, and mixtures thereof. In another version of the invention, the first amine is an alkylamine, such as tetradecylamine, and the second amine is a polyalkylene polyamine, such as pentaethylenehexamine. In yet another version of the invention, the first amine and the second amine are olefinic or acetylenic amines, such as the reaction products of an alkyldiamine and an acetylenic carboxylic acid. The first amine and the second amine may be the same or different depending on the desired polyamide polymer structure.

  19. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: carboxylic acids.

    PubMed

    Stockton, Amanda M; Tjin, Caroline Chandra; Chiesl, Thomas N; Mathies, Richard A

    2011-01-01

    The oxidizing surface chemistry on Mars argues that any comprehensive search for organic compounds indicative of life requires methods to analyze higher oxidation states of carbon with very low limits of detection. To address this goal, microchip capillary electrophoresis (μCE) methods were developed for analysis of carboxylic acids with the Mars Organic Analyzer (MOA). Fluorescent derivatization was achieved by activation with the water soluble 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) followed by reaction with Cascade Blue hydrazide in 30 mM borate, pH 3. A standard containing 12 carboxylic acids found in terrestrial life was successfully labeled and separated in 30 mM borate at pH 9.5, 20 °C by using the MOA CE system. Limits of detection were 5-10 nM for aliphatic monoacids, 20 nM for malic acid (diacid), and 230 nM for citric acid (triacid). Polyacid benzene derivatives containing 2, 3, 4, and 6 carboxyl groups were also analyzed. In particular, mellitic acid was successfully labeled and analyzed with a limit of detection of 300 nM (5 ppb). Analyses of carboxylic acids sampled from a lava tube cave and a hydrothermal area demonstrated the versatility and robustness of our method. This work establishes that the MOA can be used for sensitive analyses of a wide range of carboxylic acids in the search for extraterrestrial organic molecules. © Mary Ann Liebert, Inc.

  20. Dissolving Carboxylic Acids and Primary Amines on the Overhead Projector

    ERIC Educational Resources Information Center

    Solomon, Sally D.; Rutkowsky, Susan A.

    2010-01-01

    Liquid carboxylic acids (or primary amines) with limited solubility in water are dissolved by addition of aqueous sodium hydroxide (or hydrochloric acid) on the stage of an overhead projector using simple glassware and very small quantities of chemicals. This effective and colorful demonstration can be used to accompany discussions of the…

  1. Photoelectron spectra of some antibiotic building blocks: 2-azetidinone and thiazolidine-carboxylic acid.

    PubMed

    Ahmed, Marawan; Ganesan, Aravindhan; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C

    2012-08-23

    X-ray photoelectron spectra of the core and valence levels of the fundamental building blocks of β-lactam antibiotics have been investigated and compared with theoretical calculations. The spectra of the compounds 2-azetidinone and the 2- and 4-isomers of thiazolidine-carboxylic acid are interpreted in the light of theoretical calculations. The spectra of the two isomers of thiazolidine-carboxylic acid are rather similar, as expected, but show clear effects due to isomerization. Both isomers are analogues of proline, which is well-known to populate several low energy conformers in the gas phase. We have investigated the low energy conformers of thiazolidine-4-carboxylic acid theoretically in more detail and find some spectroscopic evidence that multiple conformers may be present. The measured valence levels are assigned for all three compounds, and the character of the frontier orbitals is identified and analyzed.

  2. Preparation of Salicylic Acid Loaded Nanostructured Lipid Carriers Using Box-Behnken Design: Optimization, Characterization and Physicochemical Stability.

    PubMed

    Pantub, Ketrawee; Wongtrakul, Paveena; Janwitayanuchit, Wicharn

    2017-01-01

    Nanostructured lipid carriers loaded salicylic acid (NLCs-SA) were developed and optimized by using the design of experiment (DOE). Box-Behnken experimental design of 3-factor, 3-level was applied for optimization of nanostructured lipid carriers prepared by emulsification method. The independent variables were total lipid concentration (X 1 ), stearic acid to Lexol ® GT-865 ratio (X 2 ) and Tween ® 80 concentration (X 3 ) while the particle size was a dependent variable (Y). Box-Behnken design could create 15 runs by setting response optimizer as minimum particle size. The optimized formulation consists of 10% of total lipid, a mixture of stearic acid and capric/caprylic triglyceride at a 4:1 ratio, and 25% of Tween ® 80 which the formulation was applied in order to prepare in both loaded and unloaded salicylic acid. After preparation for 24 hours, the particle size of loaded and unloaded salicylic acid was 189.62±1.82 nm and 369.00±3.37 nm, respectively. Response surface analysis revealed that the amount of total lipid is a main factor which could affect the particle size of lipid carriers. In addition, the stability studies showed a significant change in particle size by time. Compared to unloaded nanoparticles, the addition of salicylic acid into the particles resulted in physically stable dispersion. After 30 days, sedimentation of unloaded lipid carriers was clearly observed. Absolute values of zeta potential of both systems were in the range of 3 to 18 mV since non-ionic surfactant, Tween ® 80, providing steric barrier was used. Differential thermograms indicated a shift of endothermic peak from 55°C for α-crystal form in freshly prepared samples to 60°C for β´-crystal form in storage samples. It was found that the presence of capric/caprylic triglyceride oil could enhance encapsulation efficiency up to 80% and facilitate stability of the particles.

  3. Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation.

    PubMed

    Chan, Wen Ning; Holtzapple, Mark T

    2003-11-01

    The purpose of this research is to generate carboxylic acids from the biodegradable fraction of municipal solid wastes (MSW) and municipal sewage sludge (MSS) by using a thermophilic (55 degrees C), anaerobic, high-solid fermentation. With terrestrial inocula, the highest total carboxylic acid concentration achieved was 20.5 g/L, the highest conversion obtained was 69%, and the highest acetic acid selectivity was 86.4%. Marine inocula were also used to compare against terrestrial sources. Continuum particle distribution modeling (CPDM) was used to predict the final acid product concentrations and substrate conversions at a wide range of liquid residence times (LRT) and volatile solid loading rates (VSLR). "Maps" showing the product concentration and conversion for various LRT and VSLR were generated from CPDM. The predictions were compared to the experimental results. On average, the difference between the predicted and experimental values were 13% for acid concentration and 10% for conversion. CPDM "maps" show that marine inocula produce higher concentrations than terrestrial inocula.

  4. Role of salicylic acid in resistance to cadmium stress in plants.

    PubMed

    Liu, Zhouping; Ding, Yanfei; Wang, Feijuan; Ye, Yaoyao; Zhu, Cheng

    2016-04-01

    We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity. Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.

  5. Effectiveness, safety, and effect on quality of life of topical salicylic acid peels for treatment of postinflammatory hyperpigmentation in dark skin.

    PubMed

    Joshi, Smita S; Boone, Susan L; Alam, Murad; Yoo, Simon; White, Lucile; Rademaker, Alfred; Helenowski, Irene; West, Dennis P; Kundu, Roopal V

    2009-04-01

    There are no randomized split-face model studies investigating treatments for postinflammatory hyperpigmentation (PIH) in dark skin. To assess the efficacy, safety, and effect on quality of life of salicylic acid peels for PIH in dark skin. Ten subjects with Fitzpatrick skin phototypes IV to VI were randomized to receive two 20% salicylic acid peels followed by three 30% salicylic acid peels to half of the face. The contralateral half remained untreated. Response was evaluated by photography reviewed by three blinded dermatologists. The Visual Analog Scale, Dermatology Life Quality Index (DLQI), and treatment quality questionnaire were administered. Improvement of PIH on the treatment side according to each rater (p=.81, p=.81, p=.42) and according to the raters combined (p=.11) approached but did not reach statistical significance. Subjects' Visual Analog Scale scores indicated significantly greater improvement of PIH on the treatment side than in the control (p=.004). Quality of life measured according to the DLQI improved after treatment but not statistically significantly so (p=.13). Treatment had no significant adverse effects. Salicylic acid peels are safe in this population. Although patients rated them as clinically effective, blinded raters found a brief series of peels to have less efficacy. Measured quality of life improved nominally.

  6. Comparison of salicylic acid 30% peel and pneumatic broadband light in the treatment of mild to moderately severe facial acne vulgaris.

    PubMed

    Thuangtong, Rattapon; Tangjaturonrusamee, Chinmanat; Rattanaumpawan, Pinyo; Ditre, Chérie M

    2017-07-01

    Acne patients experience not only a medical disease but also an aesthetic condition, and this latter complication greatly motivates patients to seek out the best treatment regimen to hasten improvement in their appearance. The available clinical procedures for acne treatment include salicylic acid 30% peel and pneumatic broadband light (PBBL). The objective of this study was to compare the efficacy of salicylic acid 30% peel and PBBL treatments in patients with mild to moderately severe facial acne vulgaris. Twelve patients were recruited for a 12-week prospective, single-blind, randomized, split-face study. Patients were treated with a salicylic acid 30% peel on one side of the face and PBBL treatment was administered on the opposite side of the face for 6 consecutive weeks without other acne treatments. At every visit, treatment evaluations were performed using a modified Global Acne Grading Score (mGAGS), acne quality of life (QOL) questionnaire, Wong-Baker FACES Pain Rating Scale (WBPRS) assessments, and clinical photography. Improvement in acne symptoms was observed for both treatment procedures without significant differences and with minimal side effects. Salicylic acid 30% peel and PBBL were well tolerated in our study, and both clinical procedures were efficacious and well-tolerated by the patients.

  7. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by isocratic high-pressure liquid chromatography with post-column hydrolysis and fluorescence detection.

    PubMed

    Hobl, Eva-Luise; Jilma, Bernd; Ebner, Josef; Schmid, Rainer W

    2013-06-01

    A selective, sensitive and rapid high-performance liquid chromatography method with post-column hydrolysis and fluorescence detection was developed for the simultaneous quantification of acetylsalicylic acid and its metabolite salicylic acid in human plasma. Following the addition of 2-hydroxy-3-methoxybenzoic acid as internal standard and simple protein precipitation with acetonitrile, the analytes were separated on a ProntoSIL 120 C18 ace-EPS column (150 × 2 mm, 3 µm) protected by a C8 guard column (5 µm). The mobile phase, 10 mm formic acid in water (pH 2.9) and acetonitrile (70:30, v/v), was used at a flow rate of 0.35 mL/min. After on-line post-column hydrolysis of acetylsalicylic acid (ASA) to salicylic acid (SA) by addition of alkaline solution, the analytes were measured at 290 nm (λex ) and 400 nm (λem ). The method was linear in the concentration ranges between 0.05 and 20 ng/μL for both ASA and SA with a lower limit of quantification of 25 pg/μL for SA and 50 pg/μL for ASA. The limit of detection was 15 pg/μL for SA and 32.5 pg/μL for ASA. The analysis of ASA and SA can be carried out within 8 min; therefore this method is suitable for measuring plasma concentrations of salicylates in clinical routine. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Clinical tolerance and efficacy of capryloyl salicylic acid peel compared to a glycolic acid peel in subjects with fine lines/wrinkles and hyperpigmented skin.

    PubMed

    Oresajo, Christian; Yatskayer, Margarita; Hansenne, Isabelle

    2008-12-01

    Several chemical agents are currently used to perform superficial peels of the face to reduce facial hyperpigmentation and fine lines/wrinkles. Some of the most commonly used agents are alpha hydroxyl acids, such as glycolic acid (GA), or beta hydroxy acid, such as salicylic acid. This study aims to compare the efficacy of GA to that of a novel derivative of salicylic acid, capryloyl salicylic acid (LHA). In a split-face study, 50 female volunteers between the ages of 35 and 60 years with mild to moderate facial hyperpigmentation and fine lines/wrinkles were randomized and LHA or GA peel was applied to one side of the face. Increasing peel concentrations were applied (5-10% LHA or 20-50% GA) based on the tolerance level of the subjects and clinical observations of an expert dermatologist for 12 weeks at biweekly intervals. Of the 44 volunteers who completed the study, at 12 weeks 41% of LHA-treated and 30% of GA-treated subjects demonstrated significant reduction of fine lines/wrinkles compared to baseline. Forty-six percent of LHA-treated subjects and 34% of GA-treated subjects showed significant reduction of hyperpigmentation compared to baseline. LHA treatment was better than GA peels, although there were no statistically significant differences between the two groups. Five percent to 10% of LHA peel is generally safe and as effective as 20-50% GA peel in reducing facial hyperpigmentation and fine lines/wrinkles.

  9. Optimization and validation of liquid chromatography and headspace-gas chromatography based methods for the quantitative determination of capsaicinoids, salicylic acid, glycol monosalicylate, methyl salicylate, ethyl salicylate, camphor and l-menthol in a topical formulation.

    PubMed

    Pauwels, Jochen; D'Autry, Ward; Van den Bossche, Larissa; Dewever, Cédric; Forier, Michel; Vandenwaeyenberg, Stephanie; Wolfs, Kris; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2012-02-23

    Capsaicinoids, salicylic acid, methyl and ethyl salicylate, glycol monosalicylate, camphor and l-menthol are widely used in topical formulations to relieve local pain. For each separate compound or simple mixtures, quantitative analysis methods are reported. However, for a mixture containing all above mentioned active compounds, no assay methods were found. Due to the differing physicochemical characteristics, two methods were developed and optimized simultaneously. The non-volatile capsaicinoids, salicylic acid and glycol monosalicylate were analyzed with liquid chromatography following liquid-liquid extraction, whereas the volatile compounds were analyzed with static headspace-gas chromatography. For the latter method, liquid paraffin was selected as compatible dilution solvent. The optimized methods were validated in terms of specificity, linearity, accuracy and precision in a range of 80% to 120% of the expected concentrations. For both methods, peaks were well separated without interference of other compounds. Linear relationships were demonstrated with R² values higher than 0.996 for all compounds. Accuracy was assessed by performing replicate recovery experiments with spiked blank samples. Mean recovery values were all between 98% and 102%. Precision was checked at three levels: system repeatability, method precision and intermediate precision. Both methods were found to be acceptably precise at all three levels. Finally, the method was successfully applied to the analysis of some real samples (cutaneous sticks). Copyright © 2011 Elsevier B.V. All rights reserved.

  10. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, A

    With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, wasmore » proposed utilizing the kinetic fitting of the coupled differential equations.« less

  11. High-level production of C-11-carboxyl-labeled amino acids. [For use in tumor and pancreatic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washburn, L. C.; Sun, T. T.; Byrd, B. L.

    Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two othersmore » for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period.« less

  12. Functionalised carboxylic acids in atmospheric particles: An annual cycle revealing seasonal trends and possible sources

    NASA Astrophysics Data System (ADS)

    Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

    2013-04-01

    Carboxylic acids represent a major fraction of the water soluble organic carbon (WSOC) in atmospheric particles. Among the particle phase carboxylic acids, straight-chain monocarboxylic acids (MCA) and dicarboxylic acids (DCA) with 2-10 carbon atoms have extensively been studied in the past. However, only a few studies exist dealing with functionalised carboxylic acids, i.e. having additional hydroxyl-, oxo- or nitro-groups. Regarding atmospheric chemistry, these functionalised carboxylic acids are of particular interest as they are supposed to be formed during atmospheric oxidation processes, e.g. through radical reactions. Therefore they can provide insights into the tropospheric multiphase chemistry. During this work 28 carboxylic acids (4 functionalised aliphatic MCAs, 5 aromatic MCAs, 3 nitroaromatic MCAs, 6 aliphatic DCAs, 6 functionalised aliphatic DCAs, 4 aromatic DCAs) were quantitatively determined in 256 filter samples taken at the rural research station Melpitz (Saxony, Germany) with a PM10 Digitel DHA-80 filter sampler. All samples were taken in 2010 covering a whole annual cycle. The resulting dataset was examined for a possible seasonal dependency of the acid concentrations. Furthermore the influence of the air mass origin on the acid concentrations was studied based on a simple two-sector classification (western or eastern sector) using a back trajectory analysis. Regarding the annual average, adipic acid was found to be the most abundant compound with a mean concentration of 7.8 ng m-3 followed by 4-oxopimelic acid with 6.1 ng m-3. The sum of all acid concentrations showed two maxima during the seasonal cycle; one in summer and one in winter, whereas the highest overall acid concentrations were found in summer. In general the target acids could be divided into two different groups, where one group has its maximum concentration in summer and the other group during winter. The first group contains all investigated aliphatic mono- and dicarboxylic

  13. Nup82 functions redundantly with Nup136 in a salicylic acid-dependent defense response of Arabidopsis thaliana.

    PubMed

    Tamura, Kentaro; Fukao, Yoichiro; Hatsugai, Noriyuki; Katagiri, Fumiaki; Hara-Nishimura, Ikuko

    2017-05-04

    The nuclear pore complex (NPC) comprises more than 30 nucleoporins (Nups). NPC mediates macromolecular trafficking between the nucleoplasm and the cytoplasm, but specific roles of individual Nups are poorly understood in higher plants. Here, we show that the novel nucleoporin unique to angiosperm plants (designated as Nup82) functions in a salicylic acid-dependent defense in a redundant manner with Nup136, which is a component of the nuclear basket in the NPC. Arabidopsis thaliana Nup82 had a similar amino acid sequence to the N-terminal half of Nup136 and a Nup82-GFP fusion was localized on the nuclear envelope. Immunoprecipitation and bimolecular fluorescence complementation analyses revealed that Nup82 interacts with the NPC components Nup136 and RAE1. The double knockout mutant nup82 nup136 showed severe growth defects, while the single knockout mutant nup82 did not, suggesting that Nup82 functions redundantly with Nup136. nup82 nup136 impaired benzothiadiazole (an analog of salicylic acid)-induced resistance to the virulent bacteria Pseudomonas syringae pv. tomato DC3000. Furthermore, transcriptome analysis of nup82 nup136 indicates that deficiency of Nup82 and Nup136 causes noticeable downregulation of immune-related genes. These results suggest that Nup82 and Nup136 are redundantly involved in transcriptional regulation of salicylic acid-responsive genes through nuclear transport of signaling molecules.

  14. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  15. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases.

    PubMed

    Yamashita, Shugo; Katsumi, Hidemasa; Hibino, Nozomi; Isobe, Yugo; Yagi, Yumiko; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira

    2017-09-28

    In this study, we aimed to develop a polyethylene glycol (PEG)-conjugated third generation polyamidoamine (PAMAM) dendrimer with multiple carboxylic acids as a bone-targeting carrier for the treatment of bone diseases. We conjugated PAMAM backbones to various carboxylic acids [aspartic acid (Asp), glutamic acid (Glu), succinic acid (Suc), or aconitic acid (Aco)] to obtain four different types of carboxylic acid-modified PAMAMs. PEG was covalently bound to carboxylic acid-modified PAMAMs to obtain PEGylated carboxylic acid-modified PAMAMs. In a tissue distribution study, the amount of 111 In-labeled unmodified PAMAM taken up by the bone after intravenous injection in mice was 11.3%. In contrast, the dose of 111 In-labeled PEG(5)-Asp-PAMAM, PEG(5)-Glu-PAMAM, PEG(5)-Suc-PAMAM, or PEG(5)-Aco-PAMAM that accumulated in the bone after injection was approximately 46.0, 15.6, 22.6, and 24.5%, respectively. The bone clearance rates of 111 In-labeled PEGylated carboxylic acid-modified PAMAMs were proportional to their affinities to hydroxyapatite and Ca 2+ . An intra-bone distribution study showed that fluorescein isothiocyanate-labeled PEG(5)-Asp-PAMAM predominantly accumulated on eroded and quiescent surfaces, a pattern associated with the pathogenesis of bone diseases, such as rheumatoid arthritis and osteoporosis. Our findings indicate that PEG(5)-Asp-PAMAM is a promising drug carrier for efficient drug targeting to the bones. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Penetration of salicylic acid and salicylate into the multilayer membrane system and into the human horny layer.

    PubMed

    Neubert, R; Partyka, D; Wohlrab, W; Dettlaff, B; Fürst, W; Taube, K M

    1990-01-01

    Using a multilayer membrane system and human horny layer the difference in the penetration of salicylic acid (SA) and its sodium (Na-S) and choline (Ch-S) salts from topical formulations was studied. It was found Na-S and Ch-S were markedly accumulated in the first membrane of the three layer membrane system used. In contrast, a rapid penetration into all three membranes was observed when SA was used. Similar penetration profiles were obtained in human horny layer. Hence, the use of the salts of SA appears to be more suitable for the application as keratolytic.

  17. Combination photodynamic therapy of human breast cancer using salicylic acid and methylene blue

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Reza; Khorsandi, Khatereh; Jahanshiri, Maryam

    2017-09-01

    The objective of this study was to evaluate the effects of combination therapy with methylene blue (MB) assisted photodynamic therapy (PDT) and salicylic acid (SA) as chemo-therapy anticancer agent. The binding of salicylic acid to methylene blue was studied using spectrophotometric method. The results show the 1:2 complex formation between SA and MB. The binding constants and related Gibbs free energies o are obtained (Kb1 = 183.74, Kb2 = 38.13 and ∆ Gb1° = 12.92 kJ·mol- 1, ∆ Gb2° =9.02 kJ·mol- 1). The spectrophotometric results show the improvement in solubilization and reduction prevention for SA and MB in the complex form. These results are in agreements with cellular experiments. The dark toxicity measurements represent the improve efficacy of chemotherapy using combination of SA and MB. The photodynamic therapy results (using red LED as light source (630 nm; power density: 30 mW cm- 2)) show that the cancer cell killing efficiency of MB increases in the combination with SA due to reduction prevention and stabilization of monomeric form of MB.

  18. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.

    PubMed

    Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D

    2017-09-01

    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3.  19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.

  19. Abscisic Acid Determines Basal Susceptibility of Tomato to Botrytis cinerea and Suppresses Salicylic Acid-Dependent Signaling Mechanisms1

    PubMed Central

    Audenaert, Kris; De Meyer, Geert B.; Höfte, Monica M.

    2002-01-01

    Abscisic acid (ABA) is one of the plant hormones involved in the interaction between plants and pathogens. In this work, we show that tomato (Lycopersicon esculentum Mill. cv Moneymaker) mutants with reduced ABA levels (sitiens plants) are much more resistant to the necrotrophic fungus Botrytis cinerea than wild-type (WT) plants. Exogenous application of ABA restored susceptibility to B. cinerea in sitiens plants and increased susceptibility in WT plants. These results indicate that ABA plays a major role in the susceptibility of tomato to B. cinerea. ABA appeared to interact with a functional plant defense response against B. cinerea. Experiments with transgenic NahG tomato plants and benzo(1,2,3)thiadiazole-7-carbothioic acid demonstrated the importance of salicylic acid in the tomato-B. cinerea interaction. In addition, upon infection with B. cinerea, sitiens plants showed a clear increase in phenylalanine ammonia lyase activity, which was not observed in infected WT plants, indicating that the ABA levels in healthy WT tomato plants partly repress phenylalanine ammonia lyase activity. In addition, sitiens plants became more sensitive to benzo(1,2,3)thiadiazole-7-carbothioic acid root treatment. The threshold values for PR1a gene expression declined with a factor 10 to 100 in sitiens compared with WT plants. Thus, ABA appears to negatively modulate the salicylic acid-dependent defense pathway in tomato, which may be one of the mechanisms by which ABA levels determine susceptibility to B. cinerea. PMID:11842153

  20. Increase of Chamazulene and α-Bisabolol Contents of the Essential Oil of German Chamomile (Matricaria chamomilla L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions.

    PubMed

    Ghasemi, Mojtaba; Babaeian Jelodar, Nadali; Modarresi, Mohammad; Bagheri, Nadali; Jamali, Abbas

    2016-08-27

    The chamazulene and α-(-)-bisabolol contents and quality of the chamomile oil are affected by genetic background and environmental conditions. Salicylic acid (SA), as a signaling molecule, plays a significant role in the plant physiological processes. The aim of this study was to evaluate the chemical profile, quantity, and improve the essential oil quality as a consequence of the increase of chamazulene and α-(-)-bisabol using salicylic acid under normal and heat stress conditions by the gas chromatography-mass spectrometry (GC-MS) technique. The factorial experiments were carried out during the 2011-2012 hot season using a randomized complete block design with three replications. The factors include four salicylic acid concentrations (0 (control), 10, 25 and 100 mg·L -1 ), and three chamomile cultivars (Bushehr, Bona, Bodegold) were sown on two different planting dates under field conditions. Fourteen compounds were identified from the extracted oil of the samples treated with salicylic acid under normal and heat stress conditions. The major identified oil compositions from chamomile cultivars treated with salicylic acid were chamazulene, α-(-)-bisabolol, bisabolone oxide, β-farnesene, en-yn-dicycloether, and bisabolol oxide A and B. Analysis of variance showed that the simple effects (environmental conditions, cultivar and salicylic acid) and their interaction were significant on all identified compounds, but the environmental conditions had no significant effect on bisabolol oxide A. The greatest amount of chamazulene obtained was 6.66% at the concentration of 10 mg·L -1 SA for the Bona cultivar under heat stress conditions, whereas the highest α-(-)-bisabolol amount attained was 3.41% at the concentration of 100 mg·L -1 SA for the Bona cultivar under normal conditions. The results demonstrated that the application of exogenous salicylic acid increases the quantity and essential oil quality as a consequence of the increase of chamazulene and

  1. Carboxylator: incorporating solvent-accessible surface area for identifying protein carboxylation sites

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Tsung; Chen, Shu-An; Bretaña, Neil Arvin; Cheng, Tzu-Hsiu; Lee, Tzong-Yi

    2011-10-01

    In proteins, glutamate (Glu) residues are transformed into γ-carboxyglutamate (Gla) residues in a process called carboxylation. The process of protein carboxylation catalyzed by γ-glutamyl carboxylase is deemed to be important due to its involvement in biological processes such as blood clotting cascade and bone growth. There is an increasing interest within the scientific community to identify protein carboxylation sites. However, experimental identification of carboxylation sites via mass spectrometry-based methods is observed to be expensive, time-consuming, and labor-intensive. Thus, we were motivated to design a computational method for identifying protein carboxylation sites. This work aims to investigate the protein carboxylation by considering the composition of amino acids that surround modification sites. With the implication of a modified residue prefers to be accessible on the surface of a protein, the solvent-accessible surface area (ASA) around carboxylation sites is also investigated. Radial basis function network is then employed to build a predictive model using various features for identifying carboxylation sites. Based on a five-fold cross-validation evaluation, a predictive model trained using the combined features of amino acid sequence (AA20D), amino acid composition, and ASA, yields the highest accuracy at 0.874. Furthermore, an independent test done involving data not included in the cross-validation process indicates that in silico identification is a feasible means of preliminary analysis. Additionally, the predictive method presented in this work is implemented as Carboxylator (http://csb.cse.yzu.edu.tw/Carboxylator/), a web-based tool for identifying carboxylated proteins with modification sites in order to help users in investigating γ-glutamyl carboxylation.

  2. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  3. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  4. Alleviation of salt stress in lemongrass by salicylic acid.

    PubMed

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions.

  5. ENHANCED DISEASE SUSCEPTIBILITY 1 and SALICYLIC ACID act redundantly to regulate resistance gene-mediated signaling

    USDA-ARS?s Scientific Manuscript database

    Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), ...

  6. Use of ferric chloride to identify salicylate-containing poisons.

    PubMed

    Hoffman, Robert J; Nelson, Lewis S; Hoffman, Robert S

    2002-01-01

    Ferric chloride (FeCl3) is used to qualitatively test the urine of patients with presumed salicylate exposure. FeCl3 testing of an unidentified poison might provide evidence of salicylate exposure in situations where FeCl3 urine testing cannot be used. Such situations include the absence of a urine sample, immediately after ingestion before urine contains a detectable quantity of salicylate, or for patients chronically using salicylatesfor which FeCl3 testing is unhelpful. This study seeks to determine if FeCl3 can be used to identify salicylate-containing products. We assessed the reactivity of FeCl3 with commercially available salicylate-containing products. We applied 0.1 mL of 10% FeCl3 solution to each of 15 various salicylate-containing products including: regular and buffered acetylsalicylic acid, bismuth subsalicylate, methylsalicylate, physostigmine salicylate, salicylic acid, trolamine salicylate, and herbal tablets with salicin-containing white willow bark (Salix sp.). These products tested were: regular and enteric-coatedpills (n = 4), powder (n = 1), topical creams (n = 5), topical liquids (n = 4), and intravenous solution (n = 1). FeCl3 was applied to crushed tablets and added directly to liquids and creams. Fifteen salicylate-free controls including liquids, pills, and creams similar in appearance to experimental samples were also tested. Three blinded physiciansfamiliar with FeCl3 testing independently observed the addition of FeCl3 to each sample and rated a positive or negative result. All salicylate-containing products were interpreted to be clearly FeCl3 positive and all control samples were interpreted to be clearly FeCl3 negative. Salicylate-containing products may be identified using FeCl33. When using FeCl3

  7. Salicylic acid regulates basal resistance to Fusarium head blight in wheat.

    PubMed

    Makandar, Ragiba; Nalam, Vamsi J; Lee, Hyeonju; Trick, Harold N; Dong, Yanhong; Shah, Jyoti

    2012-03-01

    Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.

  8. Vapor Pressure of Methyl Salicylate and n-Hexadecane

    DTIC Science & Technology

    2014-01-01

    VAPOR PRESSURE OF METHYL SALICYLATE AND N-HEXADECANE ECBC-TR-1184 David E. Tevault Leonard C. Buettner...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2000-Dec 2001 4. TITLE AND SUBTITLE Vapor Pressure of Methyl Salicylate and n-Hexadecane 5a...ABSTRACT Vapor pressure data are reported for O-hydroxybenzoic acid, methyl ester, more commonly known as methyl salicylate (MeS), and n-hexadecane in

  9. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    PubMed

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  10. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid–base pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baylon, Rebecca A. L.; Sun, Junming; Martin, Kevin J.

    Dwindling petroleum reserves combined with increased energy demand and political factors encouraging an increase in energy independence have led to a large amount of research on sustainable alternatives. To this end, biomass conversion has been recognized as themost readily viable technology to produce biofuel concerning our reliance on liquid fuels for transportation and has the advantage of being easily integrated into our heavy use of combustion engines. The interest in biomass conversion has also resulted in reduced costs and a greater abundance of bio-oil, a mixture of hundreds of oxygenates including alcohols, aldehydes, carboxylic acids, and ketones. However, the presencemore » of carboxylic acids in bio-oil derived from lignocellulose pyrolysis leads to low pH, instability, and corrosiveness. In addition, carboxylic acids (i.e. acetic acid) can also be produced via fermentation of sugars. This can be accomplished by a variety of homoacetogenic microorganisms that can produce acetic acid with 100% carbon yield.« less

  11. Glycolic acid peels versus salicylic-mandelic acid peels in active acne vulgaris and post-acne scarring and hyperpigmentation: a comparative study.

    PubMed

    Garg, Vijay Kumar; Sinha, Surabhi; Sarkar, Rashmi

    2009-01-01

    Many clinicians have used glycolic acid (GA) peels for facial acne, scarring, and hyperpigmentation, mainly in lighter skin types. Salicylic-mandelic acid combination peels (SMPs) are a newer modality, and there have been no well-controlled studies comparing them with other conventional agents. To compare the therapeutic efficacy and tolerability of 35% GA peels and 20% salicylic-10% mandelic acid peels in active acne and post-acne scarring and hyperpigmentation. Forty-four patients with facial acne and post-acne scarring and hyperpigmentation were divided into two groups, with one receiving GA peels and the other SMPs at fortnightly intervals for six sessions. The treating physician performed objective evaluation of treatment outcomes. The patients, the treating physician, and an independent observer made subjective assessments. Side effects of both agents were also noted. Both the agents were effective, but SMPs had a higher efficacy for most active acne lesions (p<.001) and hyperpigmentation (p<.001). Side effects were also lesser with SMPs. Both the agents were effective and safe in Indian patients, with SMPs being better for active acne and post-acne hyperpigmentation.

  12. Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions

    PubMed Central

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-01-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (wrk) in both positive and negative mode. Woodward’s reagent K, N-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide. PMID:26122523

  13. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    PubMed Central

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  14. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  15. Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions.

    PubMed

    Gutjahr, Caroline; Paszkowski, Uta

    2009-07-01

    Work on the interaction of aerial plant parts with pathogens has identified the signaling molecules jasmonic acid (JA) and salicylic acid (SA) as important players in induced defense of the plant against invading organisms. Much less is known about the role of JA and SA signaling in root infection. Recent progress has been made in research on plant interactions with biotrophic mutualists and parasites that exclusively associate with roots, namely arbuscular mycorrhizal and rhizobial symbioses on one hand and nematode and parasitic plant interactions on the other hand. Here, we review these recent advances relating JA and SA signaling to specific stages of root colonization and discuss how both signaling molecules contribute to a balance between compatibility and defense in mutualistic as well as parasitic biotroph-root interactions.

  16. Enhanced detection of amino acids in hydrophilic interaction chromatography electrospray tandem mass spectrometry with carboxylic acids as mobile phase additives.

    PubMed

    Yin, Dengyang; Hu, Xunxiu; Liu, Dantong; Du, Wencheng; Wang, Haibo; Guo, Mengzhe; Tang, Daoquan

    2017-06-01

    Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.

  17. Development of Inhibitors of Salicylic Acid Signaling.

    PubMed

    Jiang, Kai; Kurimoto, Tetsuya; Seo, Eun-kyung; Miyazaki, Sho; Nakajima, Masatoshi; Nakamura, Hidemitsu; Asami, Tadao

    2015-08-19

    Salicylic acid (SA) plays important roles in the induction of systemic acquired resistance (SAR) in plants. Determining the mechanism of SAR will extend our understanding of plant defenses against pathogens. We recently reported that PAMD is an inhibitor of SA signaling, which suppresses the expression of the pathogenesis-related PR genes and is expected to facilitate the understanding of SA signaling. However, PAMD strongly inhibits plant growth. To minimize the side effects of PAMD, we synthesized a number of PAMD derivatives, and identified compound 4 that strongly suppresses the expression of the PR genes with fewer adverse effects on plant growth than PAMD. We further showed that the adverse effects on plant growth were partially caused the stabilization of DELLA, which is also related to the pathogen responses. These results indicate that compound 4 would facilitate our understanding of SA signaling and its cross talk with other plant hormones.

  18. Postharvest salicylic acid treatment reduces storage rots in water-stressed but no unstressed sugarbeet roots

    USDA-ARS?s Scientific Manuscript database

    Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA’s ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common...

  19. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Myneni, Satish C. B.

    2004-09-01

    Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).

  20. Whey protein/polysaccharide-stabilized emulsions: Effect of polymer type and pH on release and topical delivery of salicylic acid.

    PubMed

    Combrinck, Johann; Otto, Anja; du Plessis, Jeanetta

    2014-06-01

    Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.

  1. Transcriptional profile of sweet orange in response to chitosan and salicylic acid.

    PubMed

    Coqueiro, Danila Souza Oliveira; de Souza, Alessandra Alves; Takita, Marco Aurélio; Rodrigues, Carolina Munari; Kishi, Luciano Takeshi; Machado, Marcos Antonio

    2015-04-12

    Resistance inducers have been used in annual crops as an alternative for disease control. Wood perennial fruit trees, such as those of the citrus species, are candidates for treatment with resistance inducers, such as salicylic acid (SA) and chitosan (CHI). However, the involved mechanisms in resistance induced by elicitors in citrus are currently few known. In the present manuscript, we report information regarding the transcriptional changes observed in sweet orange in response to exogenous applications of SA and CHI using RNA-seq technology. More genes were induced by SA treatment than by CHI treatment. In total, 1,425 differentially expressed genes (DEGs) were identified following treatment with SA, including the important genes WRKY50, PR2, and PR9, which are known to participate in the salicylic acid signaling pathway, and genes involved in ethylene/Jasmonic acid biosynthesis (ACS12, AP2 domain-containing transcription factor, and OPR3). In addition, SA treatment promoted the induction of a subset of genes involved in several metabolic processes, such as redox states and secondary metabolism, which are associated with biotic stress. For CHI treatment, there were 640 DEGs, many of them involved in secondary metabolism. For both SA and CHI treatments, the auxin pathway genes were repressed, but SA treatment promoted induction in the ethylene and jasmonate acid pathway genes, in addition to repressing the abscisic acid pathway genes. Chitosan treatment altered some hormone metabolism pathways. The DEGs were validated by quantitative Real-Time PCR (qRT-PCR), and the results were consistent with the RNA-seq data, with a high correlation between the two analyses. We expanded the available information regarding induced defense by elicitors in a species of Citrus that is susceptible to various diseases and identified the molecular mechanisms by which this defense might be mediated.

  2. Tolerance and safety of superficial chemical peeling with salicylic acid in various facial dermatoses.

    PubMed

    Bari, Arfan Ul; Iqbal, Zafar; Rahman, Simeen Ber

    2005-01-01

    Chemical peeling is a skin-wounding procedure that may have some potentially undesirable side-effects. The present study is directed towards safety concerns associated with superficial chemical peeling with salicylic acid in various facial dermatoses. The study was a non-comparative and a prospective one. Two hundred and sixty-eight patients of either sex, aged between 10 to 60 years, undergoing superficial chemical peeling for various facial dermatoses (melasma, acne vulgaris, freckles, post-inflammatory scars/pigmentation, actinic keratoses, plane facial warts, etc.) were included in the study. Eight weekly peeling sessions were carried out in each patient. Tolerance to the procedure and any undesirable effects noted during these sessions were recorded. Almost all the patients tolerated the procedure well. Mild discomfort, burning, irritation and erythema were quite common but the incidence of major side-effects was very low and these too, were easily manageable. There was no significant difference in the incidence of side-effects between facial dermatoses (melasma, acne and other pigmentary disorders). Chemical peeling with salicylic acid is a well tolerated and safe treatment modality in many superficial facial dermatoses.

  3. Production of alpha-hydroxy carboxylic acids and esters from higher sugars using tandem catalyst systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orazov, Marat; Davis, Mark E.

    The present disclosure is directed to methods and composition used in the preparation of alpha-hydroxy carboxylic acids and esters from higher sugars using a tandem catalyst system comprising retro-aldol catalysts and Lewis acid catalysts. In some embodiments, these alpha-hydroxy carboxylic acids may be prepared from pentoses and hexoses. The retro-aldol and Lewis catalysts may be characterized by their respective ability to catalyze a 1,2-carbon shift reaction and a 1,2-hydride shift reaction on an aldose or ketose substrate.

  4. Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants.

    PubMed

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2014-03-15

    The occurrence of 35 aliphatic and aromatic carboxylic acids within two full scale drinking-water treatment plants was evaluated for the first time in this research. At the intake of each plant (raw water), the occurrence of carboxylic acids varied according to the quality of the water source although in both cases 13 acids were detected at average concentrations of 6.9 and 4.7 μg/L (in winter). In the following steps in each treatment plant, the concentration patterns of these compounds differed depending on the type of disinfectant applied. Thus, after disinfection by chloramination, the levels of the acids remained almost constant (average concentration, 6.3 μg/L) and four new acids were formed (butyric, 2-methylbutyric, 3-hydroxybenzoic and 2-nitrobenzoic) at low levels (1.1-5 μg/L). When ozonation/chlorination was used, the total concentration of the carboxylic acids in the raw water sample (4.7 μg/L) increased up to 6 times (average concentration, 26.3 μg/L) after disinfection and 6 new acids (mainly aromatic) were produced at high levels (3.5-100 μg/L). Seasonal variations of the carboxylic acids under study showed that in both plants, maximum levels of all the analytes were reached in the coldest months (autumn and winter), aromatic acids only being found in those seasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Increase of Chamazulene and α-Bisabolol Contents of the Essential Oil of German Chamomile (Matricaria chamomila L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions

    PubMed Central

    Ghasemi, Mojtaba; Babaeian Jelodar, Nadali; Modarresi, Mohammad; Bagheri, Nadali; Jamali, Abbas

    2016-01-01

    The chamazulene and α-(−)-bisabolol contents and quality of the chamomile oil are affected by genetic background and environmental conditions. Salicylic acid (SA), as a signaling molecule, plays a significant role in the plant physiological processes. The aim of this study was to evaluate the chemical profile, quantity, and improve the essential oil quality as a consequence of the increase of chamazulene and α-(−)-bisabol using salicylic acid under normal and heat stress conditions by the gas chromatography-mass spectrometry (GC-MS) technique. The factorial experiments were carried out during the 2011–2012 hot season using a randomized complete block design with three replications. The factors include four salicylic acid concentrations (0 (control), 10, 25 and 100 mg·L−1), and three chamomile cultivars (Bushehr, Bona, Bodegold) were sown on two different planting dates under field conditions. Fourteen compounds were identified from the extracted oil of the samples treated with salicylic acid under normal and heat stress conditions. The major identified oil compositions from chamomile cultivars treated with salicylic acid were chamazulene, α-(−)-bisabolol, bisabolone oxide, β-farnesene, en-yn-dicycloether, and bisabolol oxide A and B. Analysis of variance showed that the simple effects (environmental conditions, cultivar and salicylic acid) and their interaction were significant on all identified compounds, but the environmental conditions had no significant effect on bisabolol oxide A. The greatest amount of chamazulene obtained was 6.66% at the concentration of 10 mg·L−1 SA for the Bona cultivar under heat stress conditions, whereas the highest α-(−)-bisabolol amount attained was 3.41% at the concentration of 100 mg·L−1 SA for the Bona cultivar under normal conditions. The results demonstrated that the application of exogenous salicylic acid increases the quantity and essential oil quality as a consequence of the increase of chamazulene and

  6. Wind tunnel investigations on the retention of carboxylic acids during riming

    NASA Astrophysics Data System (ADS)

    Jost, Alexander; Szakáll, Miklós; Diehl, Karoline; Mitra, Subir K.; Borrmann, Stephan

    2015-04-01

    In mid-latitudes, precipitation is mainly initiated via the ice phase in mixed phase clouds. In such clouds the ice particles grow to precipitation sizes at the expense of liquid drops through riming which means that supercooled droplets collide with ice particles and subsequently freeze. Water-soluble trace substances present in the liquid phase might remain only fractionally in the ice phase after freezing. This fractionation is called retention and is an important ratio which quantifies the partitioning of atmospheric trace substances between the phases. Laboratory experiments were carried out at the Mainz vertical wind tunnel to determine the retention of lower mono- and di-carboxylic acids during riming. Due to their low molecular weight and their polarity these acids are water-soluble. In the atmosphere formic acid and acetic acid are the most abundant mono-carboxylic acids in the gas and aqueous phase, thus, they represent the major fraction of carboxylic acids in cloud water. Oxalic and malonic acid are common coatings on aerosol particles because of their relatively low saturation vapor pressure. These di-carboxylic acids might therefore promote the aerosol particles to act as cloud condensation nuclei and additionally contribute to the aqueous phase chemistry in cloud droplets. The conditions during the riming experiments in the wind tunnel were similar to those in atmospheric mixed phase clouds, i.e. temperatures from -18°C to -6 °C, liquid water contents between 0.5 and 1.5 g/m3, and liquid drop radii between 10 and 20 μm. The liquid phase concentrations ranged from 3 to 5 mg/l (4.1 < pH < 4.5). As rime collectors captively floating ice particles and quasi-floating snowflakes with diameters between 0.6 and 1.5 cm were used. The wind speed in the vertical wind tunnel was very close to the terminal velocities of the rime collectors, thus, the ventilation during riming was in the same order of magnitude as under atmospheric riming conditions. After

  7. ANALYSIS OF PERFLUORINATED CARBOXYLIC ACIDS IN SOILS II: OPTIMIZATION OF CHROMATOGRAPHY AND EXTRACTION

    EPA Science Inventory

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorinated octanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary p...

  8. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups.

    PubMed

    Zheng, Yan-Song; Hu, Yu-Jian; Li, Dong-Mi; Chen, Yi-Chang

    2010-01-15

    Pure enantiomers of carboxylic acids are a class of important biomolecules, chiral drugs, chiral reagents, etc. Analysis of the enantiomers usually needs expensive instrument or complex chiral receptors. However, to develop simple and reliable methods for the enantiomer analysis of acids is difficult. In this paper, chiral recognition of 2,3-dibenzoyltartaric acid and mandelic acid was first carried out by aggregation-induced emission molecules bearing optically pure aminol group, which was easily synthesized. The chiral recognition is not only seen by naked eyes but also measured by fluorophotometer. The difference of fluorescence intensity between the two enantiomers of the acids aroused by the aggregation-induced emission molecules was up to 598. The chiral recognition could be applied to quantitative analysis of enantiomer content of chiral acids. More chiral AIE amines need to be developed for enantiomer analysis of more carboxylic acids.

  9. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry.

    PubMed

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF3/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L(-1). Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  10. Effect of methyl jasmonate, salicylic acid, Headline and Stadium on sucrose yield and storage properties

    USDA-ARS?s Scientific Manuscript database

    Methyl jasmonate (MeJA) and salicylic acid (SA) have been reported to enhance yield and protect crop plants and products against abiotic stresses and diseases. The effect of these compounds on sugarbeets, however, is unknown. Research was conducted in 2015 and 2016 to investigate the effects of an e...

  11. Effect of methyl jasmonate, salicylic acid, Headline and Stadium on sucrose yield and storage properties

    USDA-ARS?s Scientific Manuscript database

    Methyl jasmonate (MeJA) and salicylic acid (SA) have been reported to enhance yield and protect crop plants and products against abiotic stresses and diseases. The effect of these compounds on sugarbeets, however, is unknown. Research was initiated in 2014 to investigate the effects of an early seas...

  12. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-04-01

    Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. Carboxylic acid buffers were rank ordered based on their propensity to crystallize in frozen solutions. From the aqueous solubility values of these carboxylic acids, which have been reported over a range of temperatures, it was also possible to estimate the degree of supersaturation at the subambient temperature of interest. This enabled us to predict their crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. Copyright © 2010 Wiley-Liss, Inc.

  13. Simultaneous determination of shikimic acid, salicylic acid and jasmonic acid in wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses.

    PubMed

    Scalabrin, Elisa; Radaelli, Marta; Capodaglio, Gabriele

    2016-06-01

    The presence and relative concentration of phytohormones may be regarded as a good indicator of an organism's physiological state. The integration of the rolC gene from Agrobacterium rhizogenes and of the rat glucocorticoid receptor (gr) in Nicotiana langsdorffii Weinmann plants has shown to determine various physiological and metabolic effects. The analysis of wild and transgenic N. langsdorffii plants, exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations) was conducted, in order to investigate the metabolic effects of the inserted genes in response to the applied stresses. The development of a new analytical procedure was necessary, in order to assure the simultaneous determination of analytes and to obtain an adequately low limit of quantification. For the first time, a sensitive HPLC-HRMS quantitative method for the simultaneous determination of salicylic acid, jasmonic acid and shikimic acid was developed and validated. The method was applied to 80 plant samples, permitting the evaluation of plant stress responses and highlighting some metabolic mechanisms. Salicylic, jasmonic and shikimic acids proved to be suitable for the comprehension of plant stress responses. Chemical and heat stresses showed to induce the highest changes in plant hormonal status, differently affecting plant response. The potential of each genetic modification toward the applied stresses was marked and particularly the resistance of the gr modified plants was evidenced. This work provides new information in the study of N. langsdorffii and transgenic organisms, which could be useful for the further application of these transgenes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  15. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe

    NASA Astrophysics Data System (ADS)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H.

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp = 200…600 μm, porosity ε = 0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol) = 0 after t = 6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest.

  16. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    PubMed

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights

  17. The effects of surface-applied jasmonic and salicylic acids on caterpillar growth and damage to tomato plants

    Treesearch

    Aaron L. Iverson; Louis R. Iverson; Steve Eshita

    2001-01-01

    We tested the role of salicylic acid (SA) and jasmonic acid (JA) in altering the tomato plant's defense against herbivory by tobacco hornworm. Treatments of SA or JA were topically applied to tomato plants, hornworm consumption was allowed to proceed for 12 days, and harvest analyses were performed Measurements taken included a subjective plant rating (1-10 score...

  18. Prebiotic synthesis of carboxylic acids, amino acids and nucleic acid bases from formamide under photochemical conditions⋆

    NASA Astrophysics Data System (ADS)

    Botta, Lorenzo; Mattia Bizzarri, Bruno; Piccinino, Davide; Fornaro, Teresa; Robert Brucato, John; Saladino, Raffaele

    2017-07-01

    The photochemical transformation of formamide in the presence of a mixture of TiO2 and ZnO metal oxides as catalysts afforded a large panel of molecules of biological relevance, including carboxylic acids, amino acids and nucleic acid bases. The reaction was less effective when performed in the presence of only one mineral, highlighting the role of synergic effects between the photoactive catalysts. Taken together, these results suggest that the synthesis of chemical precursors for both the genetic and the metabolic apparatuses might have occurred in a simple environment, consisting of formamide, photoactive metal oxides and UV-radiation.

  19. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots

    USDA-ARS?s Scientific Manuscript database

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  20. Safety in use of cryotherapy and topical salicylic acid with lactic acid combination in treating verruca vulgaris.

    PubMed

    Sultana, R; Alam, M; Khondker, L; Ahamed, R S

    2012-10-01

    An interventional study in the treatment of verruca vulgaris was conducted in sixty patients. This study conducted in the out-patient Department of Dermatology and Venereology, Chittagong Medical College Hospital, Chittagong, Bangladesh for duration of eight months (From January 2009 to September 2009). Thirty patients treated with cryotherapy, belonged to Group C and rest thirty patients treated with topical salicylic acid with lactic acid, belonged to Group D. The result showed that the highest side effects immediately after therapy for Group C was burning 30(100%), then irritation 29(96.7%), erythema 28(93.7%), blister formation 28(93.7%) and pain 23(76.7%). On the other hand, highest side effect for Group D is irritation 29(96.7%), then burning 22(73.3%), pain 11(36.7%), pruritus 06(20%), blister formation 04(13%) and erythema 01(3.3%). Statistical significant difference was observed between Group C & Group D patients other than irritation. At 2nd visit, erythema 26(86.7%) was evidenced for Group C, whereas in Group D, there was irritation 16(53.3%). After 3rd visit in 4th week for Group C patients, there was burning 13(43.3%) but in Group D patients, hypo-pigmentation 13(43.3%) was evidenced. On 4th visit in 6th week, hypo-pigmentation 09(30%) was seen in Group C, while in Group D, pruritus and irritation were found. Statistical significant difference was observed between Group C & Group D respondents. Both treatments were associated with side-effects but these were higher with cryotherapy. The study recommends the combination of topical salicylic acid with lactic acid is safer than cryotherapy.

  1. Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast

    USDA-ARS?s Scientific Manuscript database

    In a screening exercise for ethanol-selective extraction solvents, partitioning of ethanol and water from a 5 wt% aqueous solution into several C8 – C18 carboxylic acids was studied. Results for the acids are compared with those from alcohols of similar structure. In all cases studied, the acids exh...

  2. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    PubMed

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

  3. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  4. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.

  5. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

  6. DETERMINATION OF CARBOXYLIC ACIDS BY ION-EXCLUSION CHROMATOGRAPHY WITH NON-SUPPRESSED CONDUCTIVITY AND OPTICAL DETECTORS

    EPA Science Inventory

    Determination of carboxylic acids using non-suppressed conductivity and UV detections is described. The background conductance of 1-octanesulfonic acid, hexane sulfonic acid and sulfuric acid at varying concentrations was determined. Using 0.2 mM 1-octanesulfonic acid as a mobile...

  7. Acetylsalicylic acid (aspirin) and salicylic acid interaction with the human erythrocyte membrane bilayer induce in vitro changes in the morphology of erythrocytes.

    PubMed

    Suwalsky, Mario; Belmar, Jessica; Villena, Fernando; Gallardo, María José; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2013-11-01

    Despite the well-documented information, there are insufficient reports concerning the effects of salicylate compounds on the structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of acetylsalicylic acid (ASA) and salicylic acid (SA) with cell membranes, human erythrocyte membranes and molecular models were utilized. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ASA and SA to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction while DMPC unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. Moreover, we took advantage of the capability of differential scanning calorimetry (DSC) to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from ASA and SA interaction with PC and PE molecules. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy, while isolated unsealed human erythrocyte membranes (IUM) were studied by fluorescence spectroscopy. Results indicated that both salicylates interact with human erythrocytes and their molecular models in a concentration-dependent manner perturbing their bilayer structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.

    PubMed

    Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2014-05-01

    cis,cis-Muconic acid (MA) and salicylic acid (SA) are naturally-occurring organic acids having great commercial value. MA is a potential platform chemical for the manufacture of several widely-used consumer plastics; while SA is mainly used for producing pharmaceuticals (for example, aspirin and lamivudine) and skincare and haircare products. At present, MA and SA are commercially produced by organic chemical synthesis using petro-derived aromatic chemicals, such as benzene, as starting materials, which is not environmentally friendly. Here, we report a novel approach for efficient microbial production of MA via extending shikimate pathway by introducing the hybrid of an SA biosynthetic pathway with its partial degradation pathway. First, we engineered a well-developed phenylalanine producing Escherichia coli strain into an SA overproducer by introducing isochorismate synthase and isochorismate pyruvate lyase. The engineered strain is able to produce 1.2g/L of SA from simple carbon sources, which is the highest titer reported so far. Further, the partial SA degradation pathway involving salicylate 1-monoxygenase and catechol 1,2-dioxygenase is established to achieve the conversion of SA to MA. Finally, a de novo MA biosynthetic pathway is assembled by integrating the established SA biosynthesis and degradation modules. Modular optimization enables the production of up to 1.5g/L MA within 48h in shake flasks. This study not only establishes an efficient microbial platform for the production of SA and MA, but also demonstrates a generalizable pathway design strategy for the de novo biosynthesis of valuable degradation metabolites. Copyright © 2014. Published by Elsevier Inc.

  9. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4663...

  10. Combination Superficial Peels With Salicylic Acid and Post-Peel Retinoids.

    PubMed

    Kligman, Douglas E; Draelos, Zoe D

    2016-04-01

    Salicylic acid (SA) and retinoids, tretinoin (all-trans retinoic acid [ATRA]), and retinol (all-trans retinol) are widely used as topical agents for the improvement of photodamage and acne vulgaris. They can be used in daily take-home products or as part of an in-office procedure, combining the benefits of a keratolytic (SA) and a retinoid. The objective of this research was to compare the efficacy for ameliorating photodamage of topical tretinoin (0.25%) and retinol (0.25%) to baseline and with each other when applied after a 30% salicylic acid peel on human facial skin. Twenty female subjects received a full face 30% SA peel followed by the overnight application of tretinoin to a 1 randomized half-face and retinol to the opposite side (split-face study). The identical procedure was repeated at week 2. Double-blinded subject and investigator assessments of the results were captured at weeks 2 and 4. By investigator evaluation, both peeling regimens were effective in improving photodamage parameters compared to baseline. (ATRA P-values at week 4 were: P=.00008 texture, P=.00013 roughness, P=.00221 pores, P=.00098 dryness, P=.02770 erythema, and P=.00008 overall appearance. Retinol P-values at week 4 were: P=.00019 texture, P=.00053 roughness, P=.00221 pores, P=.00147 dryness, P=.02770 erythema, and P=.0043 overall appearance.) By subject self-assessment compared with baseline, both tretinoin and retinol were effective in improving overall appearance (ATRA P=.0229 and retinol P=.0190). By investigator evaluation comparing tretinoin with retinol, tretinoin was slightly better than retinol at week 4 in improving texture P=.00506, roughness P=.01171, and overall appearance P=.00506. By subject self-assessment comparing tretinoin with retinol, there was no difference in overall appearance (ATRA P=.2367 and retinol P=.3613). Either topical tretinoin (0.25%) or retinol (0.25%) can be used safely and effectively when applied in office immediately after SA peeling to

  11. Enhanced production of longer side-chain polyhydroxyalkanoic acid with omega-aromatic group substitution in phaZ-disrupted Pseudomonas fluorescens BM07 mutant through unrelated carbon source cometabolism and salicylic acid beta-oxidation inhibition.

    PubMed

    Choi, Mun Hwan; Xu, Ju; Rho, Jong Kook; Zhao, Xu Ping; Yoon, Sung Chul

    2010-06-01

    The deletion of the intracellular polyhydroxyalkanoate (PHA) depolymerase gene (phaZ) in Pseudomonas fluorescens BM07 was found to increase more efficiently the levels of longer medium-chain-length (MCL) omega-aromatic monomer-units than in the wild-type strain when the cells were grown with a mixture of fructose and MCL omega-aromatic fatty acid in the presence of salicylic acid that is known as a beta-oxidation inhibitor in BM07 strain. When 11-phenoxyundecanoic acid was used as co-carbon source, the longest monomer-unit 3-hydroxy-11-phenoxyundecanoate, not reported in literature yet, was incorporated into the polymer chain up to approximately 10 mol%. An advantage of salicylic acid inhibition technique is that salicylic acid is not metabolized in BM07 strain, thus, the effective concentration of the inhibitor remaining constant throughout the cultivation. In conclusion, this new technique could be exploited for the enhanced production of side-chain modulated functional MCL-PHA with improved physicochemical properties in P. fluorescens BM07. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Partial Hydrothermal Oxidation of High Molecular Weight Unsaturated Carboxylic Acids for Upgrading of Biodiesel Fuel

    NASA Astrophysics Data System (ADS)

    Kawasaki, K.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.

    2007-03-01

    With increasing environmental awareness and crude oil price, biodiesel fuel (BDF) is gaining recognition as a renewable fuel which may be used as an alternative diesel fuel without any modification to the engine. The cold flow and viscosity of BDF, however, is a major drawback that limited its use in cold area. In this study, therefore, we investigated that partial oxidation of high molecular weight unsaturated carboxylic acids in subcritical water, which major compositions in BDF, to upgrade biodiesel fuel. Oleic acid, (HOOC(CH2)7CH=CH(CH2)7CH3), was selected as a model compound of high molecular weight unsaturated carboxylic acids. All experiments were performed with a batch reactor made of SUS 316 with an internal volume of 5.7 cm3. Oleic acid was oxidized at 300 °C with oxygen supply varying from 1-10 %. Results showed that a large amount of carboxylic acids and aldehydes having 8-9 carbon atoms were formed. These experimental results suggest that the hydrothermal oxidative cleavage may mainly occur at double bonds and the cleavage of double bonds could improve the cold flow and viscosity of BDF.

  13. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures

    PubMed Central

    Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

    2013-01-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  14. Ototoxicity of salicylate, nonsteroidal antiinflammatory drugs, and quinine.

    PubMed

    Jung, T T; Rhee, C K; Lee, C S; Park, Y S; Choi, D C

    1993-10-01

    Salicylates and most NSAIDS in high doses cause mild to moderate temporary hearing loss, either flat or greater in the high frequencies. Hearing loss is accompanied by tinnitus and suprathreshold changes. Salicylates may or may not exacerbate hearing loss and cochlear damage induced by noise. The mechanism of salicylate ototoxicity seems to be multifactorial. Morphologic studies suggest that no permanent cochlear damage occurs with salicylate ototoxicity. Electrophysiologic, morphologic, and in vitro data conclusively demonstrate that salicylate affects outer hair cells. In addition, salicylates appear to decrease cochlear blood flow. Salicylates and NSAIDs inhibit PG-forming cyclooxygenase, and recent studies suggest that abnormal levels of arachidonic acid metabolites consisting of decreased PGs and increased LTs may mediate salicylate ototoxicity. As with salicylate, quinine ototoxicity appears to be multifactorial in origin. The mechanism includes vasoconstriction and decreases in cochlear blood flow, as measured by laser Doppler flowmetry, motion photographic studies, and histologic studies. Reversible alterations of outer hair cells also appear to play an important role, as demonstrated by histology, electron microscopy, isolated hair cell studies, and cochlear potential evaluations. Unlike with salicylate, however, the role of prostaglandins in quinine ototoxicity has not been clearly demonstrated. Also, one of quinine's principal actions, antagonism of calcium-dependent potassium channels, has yet to be investigated for its potential role in ototoxicity.

  15. Discovery of a Novel Series of CRTH2 (DP2) Receptor Antagonists Devoid of Carboxylic Acids

    PubMed Central

    2011-01-01

    Antagonism of the CRTH2 receptor represents a very attractive target for a variety of allergic diseases. Most CRTH2 antagonists known to date possess a carboxylic acid moiety, which is essential for binding. However, potential acid metabolites O-acyl glucuronides might be linked to idiosynchratic toxicity in humans. In this communication, we describe a new series of compounds that lack the carboxylic acid moiety. Compounds with high affinity (Ki < 10 nM) for the receptor have been identified. Subsequent optimization succeeded in reducing the high metabolic clearance of the first compounds in human and rat liver microsomes. At the same time, inhibition of the CYP isoforms was optimized, giving rise to stable compounds with an acceptable CYP inhibition profile (IC50 CYP2C9 and 2C19 > 1 μM). Taken together, these data show that compounds devoid of carboxylic acid groups could represent an interesting alternative to current CRTH2 antagonists in development. PMID:24900284

  16. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    NASA Astrophysics Data System (ADS)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.

    2016-06-01

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  17. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    PubMed

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  18. Structural characterization of 1,3-propanedithiols that feature carboxylic acids: Homologues of mercury chelating agents ✩

    PubMed Central

    Sattler, Wesley; Palmer, Joshua H.; Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.; Parkin, Gerard

    2013-01-01

    The molecular structures of a series of 1,3-propanedithiols that contain carboxylic acid groups, namely rac- and meso-2,4-dimercaptoglutaric acid (H4DMGA) and 2-carboxy-1,3-propanedithiol (H3DMCP), have been determined by X-ray diffraction. Each compound exhibits two centrosymmetric intermolecular hydrogen bonding interactions between pairs of carboxylic acid groups, which result in a dimeric structure for H3DMCP and a polymeric tape-like structure for rac- and meso-H4DMGA. Significantly, the hydrogen bonding motifs observed for rac- and meso-H4DMGA are very different to those observed for the 1,2-dithiol, rac-2,3-dimercaptosuccinic acid (rac-H4DMSA), in which the two oxygen atoms of each carboxylic acid group hydrogen bond to two different carboxylic acid groups, thereby resulting in a hydrogen bonded sheet-like structure rather than a tape. Density functional theory calculations indicate that 1,3-dithiolate coordination to mercury results in larger S–Hg–S bond angles than does 1,2-dithiolate coordination, but these angles are far from linear. As such, κ2-S2 coordination of these dithiolate ligands is expected to be associated with mercury coordination numbers of greater than two. In vivo studies demonstrate that both rac-H4DMGA and H3DMCP reduce the renal burden of mercury in rats, although the compounds are not as effective as either 2,3-dimercaptopropane-1-sulfonic acid (H3DMPS) or meso-H4DMSA. PMID:24187425

  19. S5H/DMR6 Encodes a Salicylic Acid 5-Hydroxylase That Fine-Tunes Salicylic Acid Homeostasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanjun; Zhao, Li; Zhao, Jiangzhe

    The phytohormone salicylic acid (SA) plays essential roles in biotic and abiotic responses, plant development, and leaf senescence. 2,5-Dihydroxybenzoic acid (2,5-DHBA or gentisic acid) is one of the most commonly occurring aromatic acids in green plants and is assumed to be generated from SA, but the enzymes involved in its production remain obscure. DMR6 (Downy Mildew Resistant 6, At5g24530) has been proven essential in plant immunity of Arabidopsis, but its biochemical properties are not well understood. Here in this paper, we report the discovery and functional characterization of DMR6 as a SA 5-hydroxylase (S5H) that catalyzes the formation of 2,5-DHBAmore » by hydroxylating SA at the C5 position of its phenyl ring in Arabidopsis. S5H/DMR6 specifically converts SA to 2,5-DHBA in vitro and displays higher catalytic efficiency (K cat/K m=4.96×10 4 M -1s -1) than the previously reported SA 3-hydroxylase (S3H, K cat/K m=6.09 × 10 3 M -1s -1) for SA. Interestingly, S5H/DMR6 displays a substrate inhibition property that may enable automatic control of its enzyme activities. The s5h mutant and s5hs3h double mutant over accumulate SA and display phenotypes such as a smaller growth size, early senescence and a loss of susceptibility to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). S5H/DMR6 is sensitively induced by SA/pathogen treatment and is widely expressed from young seedlings to senescing plants, whereas S3H is more specifically expressed at the mature and senescing stages. Collectively, our results disclose the identity of the enzyme required for 2,5-DHBA formation and reveal a mechanism by which plants fine-tune SA homeostasis by mediating SA 5-hydroxylation.« less

  20. S5H/DMR6 Encodes a Salicylic Acid 5-Hydroxylase That Fine-Tunes Salicylic Acid Homeostasis

    DOE PAGES

    Zhang, Yanjun; Zhao, Li; Zhao, Jiangzhe; ...

    2017-09-12

    The phytohormone salicylic acid (SA) plays essential roles in biotic and abiotic responses, plant development, and leaf senescence. 2,5-Dihydroxybenzoic acid (2,5-DHBA or gentisic acid) is one of the most commonly occurring aromatic acids in green plants and is assumed to be generated from SA, but the enzymes involved in its production remain obscure. DMR6 (Downy Mildew Resistant 6, At5g24530) has been proven essential in plant immunity of Arabidopsis, but its biochemical properties are not well understood. Here in this paper, we report the discovery and functional characterization of DMR6 as a SA 5-hydroxylase (S5H) that catalyzes the formation of 2,5-DHBAmore » by hydroxylating SA at the C5 position of its phenyl ring in Arabidopsis. S5H/DMR6 specifically converts SA to 2,5-DHBA in vitro and displays higher catalytic efficiency (K cat/K m=4.96×10 4 M -1s -1) than the previously reported SA 3-hydroxylase (S3H, K cat/K m=6.09 × 10 3 M -1s -1) for SA. Interestingly, S5H/DMR6 displays a substrate inhibition property that may enable automatic control of its enzyme activities. The s5h mutant and s5hs3h double mutant over accumulate SA and display phenotypes such as a smaller growth size, early senescence and a loss of susceptibility to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). S5H/DMR6 is sensitively induced by SA/pathogen treatment and is widely expressed from young seedlings to senescing plants, whereas S3H is more specifically expressed at the mature and senescing stages. Collectively, our results disclose the identity of the enzyme required for 2,5-DHBA formation and reveal a mechanism by which plants fine-tune SA homeostasis by mediating SA 5-hydroxylation.« less

  1. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    PubMed Central

    Rajabi, Fatemeh; Abdollahi, Mohammad; Luque, Rafael

    2016-01-01

    Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15) have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs. PMID:28773685

  2. Synthesis of aminocarbonyl N-acylhydrazones by a three-component reaction of isocyanides, hydrazonoyl chlorides, and carboxylic acids.

    PubMed

    Giustiniano, Mariateresa; Meneghetti, Fiorella; Mercalli, Valentina; Varese, Monica; Giustiniano, Francesco; Novellino, Ettore; Tron, Gian Cesare

    2014-10-17

    A novel one-pot multicomponent synthesis of α-aminocarbonyl N-acylhydrazones starting from readily available hydrazonoyl chlorides, isocyanides, and carboxylic acids is reported. The strategy exploits the ability of the carboxylic acid as a third component to suppress all competing reactions between nitrile imines and isocyanides, channeling the course of the reaction toward the formation of this novel class of compounds.

  3. Surface Patterning of Benzene Carboxylic Acids on Graphite: Influence of structure, solvent, and concentration on molecular self-assembly

    NASA Astrophysics Data System (ADS)

    Florio, Gina; Stiso, Kimberly; Campanelli, Joseph; Dessources, Kimberly; Folkes, Trudi

    2012-02-01

    Scanning tunneling microscopy (STM) was used to investigate the molecular self-assembly of four different benzene carboxylic acid derivatives at the liquid/graphite interface: pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid), trimellitic acid (1,2,4-benzenetricarboxylic acid), trimesic acid (1,3,5-benzenetricarboxylic acid), and 1,3,5-benzenetriacetic acid. A range of two dimensional networks are observed that depend sensitively on the number of carboxylic acids present, the nature of the solvent, and the solution concentration. We will describe our recent efforts to determine (a) the preferential two-dimensional structure(s) for each benzene carboxylic acid at the liquid/graphite interface, (b) the thermodynamic and kinetic factors influencing self-assembly (or lack thereof), (c) the role solvent plays in the assembly, (e) the effect of in situ versus ex situ dilution on surface packing density, and (f) the temporal evolution of the self-assembled monolayer. Results of computational analysis of analog molecules and model monolayer films will also be presented to aid assignment of network structures and to provide a qualitative picture of surface adsorption and network formation.

  4. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    PubMed

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  5. Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques.

    PubMed

    Pastor, Victoria; Vicent, Cristian; Cerezo, Miguel; Mauch-Mani, Brigitte; Dean, John; Flors, Victor

    2012-04-01

    An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. A Novel Nitronyl Nitroxide with Salicylic Acid Framework Attenuates Pain Hypersensitivity and Ectopic Neuronal Discharges in Radicular Low Back Pain.

    PubMed

    Han, Wen-Juan; Chen, Lei; Wang, Hai-Bo; Liu, Xiang-Zeng; Hu, San-Jue; Sun, Xiao-Li; Luo, Ceng

    2015-01-01

    Evidence has accumulated that reactive oxygen species and inflammation play crucial roles in the development of chronic pain, including radicular low back pain. Nonsteroid anti-inflammatory drugs (NSAIDs), for example, salicylic acid, aspirin, provided analgesic effects in various types of pain. However, long-term use of these drugs causes unwanted side effects, which limits their implication. Stable nitronyl (NIT) nitroxide radicals have been extensively studied as a unique and interesting class of new antioxidants for protection against oxidative damage. The present study synthesized a novel NIT nitroxide radical with salicylic acid framework (SANR) to provide synergistic effect of both antioxidation and antiinflammation. We demonstrated for the first time that both acute and repeated SANR treatment exerted dramatic analgesic effect in radicular low back pain mimicked by chronic compression of dorsal root ganglion in rats. This analgesic potency was more potent than that produced by classical NSAIDs aspirin and traditional nitroxide radical Tempol alone. Furthermore, SANR-induced behavioral analgesia is found to be mediated, at least in partial, by a reduction of ectopic spontaneous discharges in injured DRG neurons. Therefore, the synthesized NIT nitroxide radical coupling with salicylic acid framework may represent a novel potential therapeutic candidate for treatment of chronic pain, including radicular low back pain.

  7. Investigating the photostability of carboxylic acids exposed to Mars surface ultraviolet radiation conditions.

    PubMed

    Stalport, F; Coll, P; Szopa, C; Cottin, H; Raulin, F

    2009-01-01

    The detection and identification of organic molecules on Mars are of primary importance to establish the existence of a possible ancient prebiotic chemistry or even biological activity. The harsh environmental conditions at the surface of Mars could explain why the Viking probes-the only efforts, to date, to search for organics on Mars-detected no organic matter. To investigate the nature, abundance, and stability of organic molecules that could survive such environmental conditions, we developed a series of experiments that simulate martian surface environmental conditions. Here, we present results with regard to the impact of solar UV radiation on various carboxylic acids, such as mellitic acid, which are of astrobiological interest to the study of Mars. Our results show that at least one carboxylic acid, mellitic acid, could produce a resistant compound-benzenehexacarboxylic acid-trianhydride (C(12)O(9))-when exposed to martian surface radiation conditions. The formation of such products could contribute to the presence of organic matter in the martian regolith, which should be considered a primary target for in situ molecular analyses during future surface missions.

  8. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry.

    PubMed

    Finnigan, William; Thomas, Adam; Cromar, Holly; Gough, Ben; Snajdrova, Radka; Adams, Joseph P; Littlechild, Jennifer A; Harmer, Nicholas J

    2017-03-20

    Carboxylic acid reductase enzymes (CARs) meet the demand in synthetic chemistry for a green and regiospecific route to aldehydes from their respective carboxylic acids. However, relatively few of these enzymes have been characterized. A sequence alignment with members of the ANL (Acyl-CoA synthetase/ NRPS adenylation domain/Luciferase) superfamily of enzymes shed light on CAR functional dynamics. Four unstudied enzymes were selected by using a phylogenetic analysis of known and hypothetical CARs, and for the first time, a thorough biochemical characterization was performed. Kinetic analysis of these enzymes with various substrates shows that they have a broad but similar substrate specificity. Electron-rich acids are favored, which suggests that the first step in the proposed reaction mechanism, attack by the carboxylate on the α-phosphate of adenosine triphosphate (ATP), is the step that determines the substrate specificity and reaction kinetics. The effects of pH and temperature provide a clear operational window for the use of these CARs, whereas an investigation of product inhibition by NADP + , adenosine monophosphate, and pyrophosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first. This study consolidates CARs as important and exciting enzymes in the toolbox for sustainable chemistry and provides specifications for their use as a biocatalyst.

  9. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1981-01-01

    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  10. Application of 1-aminocyclohexane carboxylic acid to protein nanostructure computer design

    PubMed Central

    Rodríguez-Ropero, Francisco; Zanuy, David; Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    Conformationally restricted amino acids are promising candidates to serve as basic pieces in redesigned protein motifs which constitute the basic modules in synthetic nanoconstructs. Here we study the ability of constrained cyclic amino acid 1-aminocyclohexane-1-carboxylic acid (Ac6c) to stabilize highly regular β-helical motifs excised from naturally occurring proteins. Calculations indicate that the conformational flexibility observed in both the ring and the main chain is significantly higher than that detected for other 1-aminocycloalkane-1-carboxylic acid (Acnc, where n refers to the size of the ring) with smaller cycles. Incorporation of Ac6c into the flexible loops of β-helical motifs indicates that the stability of such excised building blocks as well as the nano-assemblies derived from them is significantly enhanced. Thus, the intrinsic Ac6c tendency to adopt folded conformations combined with the low structural strain of the cyclohexane ring confers the ability to both self-adapt to the β-helix motif and to stabilize the overall structure by absorbing part of its conformational fluctuations. Comparison with other Acnc residues indicates that the ability to adapt to the targeted position improves considerably with the ring size, i.e. when the rigidity introduced by the strain of the ring decreases. PMID:18201062

  11. Catabolism of Naphthalenesulfonic Acids by Pseudomonas sp. A3 and Pseudomonas sp. C22

    PubMed Central

    Brilon, C.; Beckmann, W.; Knackmuss, H.-J.

    1981-01-01

    Naphthalene and two naphthalenesulfonic acids were degraded by Pseudomonas sp. A3 and Pseudomonas sp. C22 by the same enzymes. Gentisate is a major metabolite. Catabolic activities for naphthalene, 1-naphthalenesulfonic acid, and 2-naphthalenesulfonic acid are induced by growth with naphthalene, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, methylnaphthalene, or salicylate. Gentisate is also an inducer in strain A3. Inhibition kinetics show that naphthalene and substituted naphthalenes are hydroxylated by the same naphthalene dioxygenase. Substrates with nondissociable substituents such as CH3, OCH3, Cl, or NO2 are hydroxylated in the 7,8-position, and 4-substituted salicylates are accumulated. If CO2H, CH2CO2H, or SO3H are substituents, hydroxylation occurs with high regioselectivity in the 1,2-position. Thus, 1,2-dihydroxy-1,2-dihydronaphthalene-2-carboxylic acids are formed quantitatively from the corresponding naphthalenecarboxylic acids. Utilization of naphthalenesulfonic acids proceeds by the same regioselective 1,2-dioxygenation which labilizes the C—SO3− bond and eliminates sulfite. PMID:16345814

  12. Odor detection of mixtures of homologous carboxylic acids and coffee aroma compounds by humans.

    PubMed

    Miyazawa, Toshio; Gallagher, Michele; Preti, George; Wise, Paul M

    2009-11-11

    Mixture summation among homologous carboxylic acids, that is, the relationship between detection probabilities for mixtures and detection probabilities for their unmixed components, varies with similarity in carbon-chain length. The current study examined detection of acetic, butyric, hexanoic, and octanoic acids mixed with three other model odorants that differ greatly from the acids in both structure and odor character, namely, 2-hydroxy-3-methylcyclopent-2-en-1-one, furan-2-ylmethanethiol, and (3-methyl-3-sulfanylbutyl) acetate. Psychometric functions were measured for both single compounds and binary mixtures (2 of 5, forced-choice method). An air dilution olfactometer delivered stimuli, with vapor-phase calibration using gas chromatography-mass spectrometry. Across the three odorants that differed from the acids, acetic and butyric acid showed approximately additive (or perhaps even supra-additive) summation at low perithreshold concentrations, but subadditive interactions at high perithreshold concentrations. In contrast, the medium-chain acids showed subadditive interactions across a wide range of concentrations. Thus, carbon-chain length appears to influence not only summation with other carboxylic acids but also summation with at least some unrelated compounds.

  13. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    PubMed

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.

  14. Cooperative functioning between phenylalanine ammonia lyase and isochorishmate synthase activities contributes to salicylic acid biosynthesis in soybean

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL), or the isochorishmate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We...

  15. Signal enhancement of carboxylic acids by inclusion with β-cyclodextrin in negative high-voltage-assisted laser desorption ionization mass spectrometry.

    PubMed

    Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Sun, Jiamu; Luo, Hai

    2014-01-15

    It is difficult to directly analyze carboxylic acids in complex mixtures by ambient high-voltage-assisted laser desorption ionization mass spectrometry (HALDI-MS) in negative ion mode due to the low ionization efficiency of carboxylic acids. A method for the rapid detection of carboxylic acids in negative HALDI-MS has been developed based on their inclusion with β-cyclodextrin (β-CD). The negative HALDI-MS signal-to-noise ratios (S/Ns) of aliphatic, aromatic and hetero atom-containing carboxylic acids can all be significantly improved by forming 1:1 complexes with β-CD. These complexes are mainly formed by specific inclusion interactions which are verified by their collision-induced dissociation behaviors in comparison with that of their corresponding maltoheptaose complexes. A HALDI-MS/MS method has been successfully developed for the detection of α-lipoic acid in complex cosmetics and ibuprofen in a viscous drug suspension. The negative HALDI-MS S/Ns of carboxylic acids can be improved up to 30 times via forming non-covalent complexes with β-CD. The developed method shows the advantages of being rapid and simple, and is promising for rapid detection of active ingredients in complex samples or fast screening of drugs and cosmetics. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Carboxylic acid isosteres improve the activity of ring-fused 2-pyridones that inhibit pilus biogenesis in E. coli

    PubMed Central

    Åberg, Veronica; Das, Pralay; Chorell, Erik; Hedenström, Mattias; Pinkner, Jerome S.; Hultgren, Scott J.; Almqvist, Fredrik

    2009-01-01

    Ring-fused 2-pyridones, termed pilicides, are small synthetic compounds that inhibit pilus assembly in uropathogenic E. coli. Their biological activity is clearly dependent upon a carboxylic acid functionality. Here we present the synthesis and biological evaluation of carboxylic acid isosteres, including e.g. tetrazoles, acyl sulfonamides and hydroxamic acids, of two lead 2-pyridones. Two independent biological evaluations show that acyl sulfonamides and tetrazoles significantly improve pilicide activity against uropathogenic E. coli. PMID:18499455

  17. Molecular cloning and expression analysis of jasmonic acid dependent but salicylic acid independent LeWRKY1.

    PubMed

    Lu, M; Wang, L F; Du, X H; Yu, Y K; Pan, J B; Nan, Z J; Han, J; Wang, W X; Zhang, Q Z; Sun, Q P

    2015-11-30

    Various plant genes can be activated or inhibited by phytohormones under conditions of biotic and abiotic stress, especially in response to jasmonic acid (JA) and salicylic acid (SA). Interactions between JA and SA may be synergistic or antagonistic, depending on the stress condition. In this study, we cloned a full-length cDNA (LeWRKY1, GenBank accession No. FJ654265) from Lycopersicon esculentum by rapid amplification of cDNA ends. Sequence analysis showed that this gene is a group II WRKY transcription factor. Analysis of LeWRKY1 mRNA expression in various tissues by qRT-PCR showed that the highest and lowest expression occurred in the leaves and stems, respectively. In addition, LeWRKY1 expression was induced by JA and Botrytis cinerea Pers., but not by SA.

  18. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.

    PubMed

    Hackmann, Christian; Korneli, Christin; Kutyniok, Magdalene; Köster, Tino; Wiedenlübbert, Matthias; Müller, Caroline; Staiger, Dorothee

    2014-03-01

    Plants overexpressing the RNA-binding protein AtGRP7 (AtGRP7-ox plants) constitutively express the PR-1 (PATHOGENESIS-RELATED-1), PR-2 and PR-5 transcripts associated with salicylic acid (SA)-mediated immunity and show enhanced resistance against Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we investigated whether the function of AtGRP7 in plant immunity depends on SA. Endogenous SA was elevated fivefold in AtGRP7-ox plants. The elevated PR-1, PR-2 and PR-5 levels were eliminated upon expression of the salicylate hydroxylase nahG in AtGRP7-ox plants and elevated PR-1 levels were suppressed by sid (salicylic acid deficient) 2-1 that is impaired in SA biosynthesis. RNA immunoprecipitation showed that AtGRP7 does not bind the PR-1 transcript in vivo, whereas it binds PDF1.2. Constitutive or inducible AtGRP7 overexpression increases PR-1 promoter activity, indicating that AtGRP7 affects PR-1 transcription. In line with this, the effect of AtGRP7 on PR-1 is suppressed by npr (non-expressor of PR genes) 1. Whereas AtGRP7-ox plants restricted growth of Pto DC3000 compared with wild type (wt), sid2-1 AtGRP7-ox plants allowed more growth than AtGRP7-ox plants. Furthermore, we show an enhanced hypersensitive response triggered by avirulent Pto DC3000 (AvrRpt2) in AtGRP7-ox compared with wt. In sid2-1 AtGRP7-ox, an intermediate phenotype was observed. Thus, AtGRP7 has both SA-dependent and SA-independent effects on plant immunity. © 2013 John Wiley & Sons Ltd.

  19. Physicochemical properties of betaine monohydrate-carboxylic acid mixtures

    NASA Astrophysics Data System (ADS)

    Zahrina, I.; Nasikin, M.; Mulia, K.

    2018-05-01

    Green solvents are widely used to minimize environmental problems associated with the use of volatile organic solvents in many industries. DES are new green solvents in recent. The physicochemical properties of DES can be varied by properly combining of salts with different hydrogen bond donors. The objective of this work is to investigate the effect of varying molar ratios on the physicochemical properties of betaine monohydrate-carboxylic acid (i.e,. propionic or acetic acid) mixtures. Properties of mixtures were measured at 40°C. The viscosity, polarity scale (ENR), density, pH, and water content tend to decrease with the decrease in a molar ratio of betaine monohydrate to acid. Conversely, the ionic conductivity was increased. The physicochemical properties of these mixtures depend on the hydrogen bonding interactions between betaine, water and acid molecules. Betaine monohydratecarboxylic acid mixtures have wide range of polarity, low viscosity, high ionic conductivity, and density higher than 1 g·cm-3 that make them fit for numerous various applications. Additionally, due to these mixtures have acidic pH, it should be properly selected of metal type to minimize corrosion problems in industrial application.

  20. Bacterial conversion of phenylalanine and aromatic carboxylic acids into dihydrodiols.

    PubMed Central

    Wegst, W; Tittmann, U; Eberspächer, J; Lingens, F

    1981-01-01

    Strain E of chloridazon-degrading bacteria, when grown on L-phenylalanine accumulates cis-2,3-dihydro-2,3-dihydroxyphenylalanine. In experiments with resting cells and during growth the bacterium converts the aromatic carboxylic acids phenylacetate, phenylpropionate, phenylbutyrate and phenyl-lactate into the corresponding cis-2,3-dihydrodiol compounds. The amino acids L-phenylalanine, N-acetyl-L-phenylalanine and t-butyloxycarbonyl-L-phenylalanine were also transformed into dihydrodiols. All seven dihydrodiols, thus obtained, were characterized both by conventional analytical techniques and by the ability to serve as substrates for a cis-dihydrodiol dehydrogenase. PMID:7306016

  1. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-08-01

    The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10-10-10-11 M s-1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10-12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10-14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.

  2. Cu-catalyzed formal methylative and hydrogenative carboxylation of alkynes with carbon dioxide: efficient synthesis of α,β-unsaturated carboxylic acids.

    PubMed

    Takimoto, Masanori; Hou, Zhaomin

    2013-08-19

    The sequential hydroalumination or methylalumination of various alkynes catalyzed by different catalyst systems, such those based on Sc, Zr, and Ni complexes, and the subsequent carboxylation of the resulting alkenylaluminum species with CO2 catalyzed by an N-heterocyclic carbene (NHC)-copper catalyst have been examined in detail. The regio- and stereoselectivity of the overall reaction relied largely on the hydroalumination or methylalumination reactions, which significantly depended on the catalyst and alkyne substrates. The subsequent Cu-catalyzed carboxylation proceeded with retention of the stereoconfiguration of the alkenylaluminum species. All the reactions could be carried out in one-pot to afford efficiently a variety of α,β-unsaturated carboxylic acids with well-controlled configurations, which are difficult to construct by previously reported methods. This protocol could be practically useful and attractive because of its high regio- and stereoselectivity, simple one-pot reaction operation, and the use of CO2 as a starting material. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of methyl jasmonate, salicylic acid, Headline and Stadium on root yield, sucrose yield, and storage properties

    USDA-ARS?s Scientific Manuscript database

    Methyl jasmonate (MeJA) and salicylic acid (SA) have been reported to enhance yield and protect crop plants and products against abiotic stresses and diseases. The effect of these compounds on sugarbeets, however, is unknown. Research was conducted in 2016 and 2017 to investigate the effects of an e...

  4. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry.

    PubMed

    Valero, Daniel; Díaz-Mula, Huertas M; Zapata, Pedro Javier; Castillo, Salvador; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María

    2011-05-25

    Sweet cherry cultivars ('Cristalina' and 'Prime Giant') harvested at commercial ripening stage were treated with salicylic acid (SA), acetylsalicylic acid (ASA) or oxalic acid (OA) at 1 mM and then stored for 20 days under cold temperature. Results showed that all treatments delayed the postharvest ripening process, manifested by lower acidity, color changes and firmness losses, and maintained quality attributes for longer periods than controls. In addition, total phenolics, anthocyanins and antioxidant activity increased in untreated fruit during the first 10 days of storage and then decreased, while in fruits of all treatments, these parameters increased continuously during storage without significant differences among treatments. Thus, postharvest treatments with natural compounds, such as SA, ASA or OA, could be innovative tools to extend the storability of sweet cherry with higher content of bioactive compounds and antioxidant activity as compared with control fruits.

  5. [Experiences in half-side treatment with tar additive to cignolin-salicylic-acid-white-vaseline therapy of psoriasis vulgaris].

    PubMed

    Schulze, H J; Steigleder, G K

    1984-05-15

    As shown in bilateral comparison studies addition of crude coal tar (T) to standard antipsoriatic therapy with dithranol and salicylic acid in white petrolatum (CVS) diminished the dithranol-irritation; consequently, accelerated application of increasing dithranol-concentrations shortened the duration of TCSV -therapy.

  6. Macromolecular metal carboxylates

    NASA Astrophysics Data System (ADS)

    Dzhardimalieva, G. I.; Pomogailo, A. D.

    2008-03-01

    Data on the synthesis and physicochemical studies of salts of mono- or dibasic unsaturated carboxylic acids and unsaturated metal oxo-carboxylates are generalised and described systematically. The structures and properties of the COO group in various compounds and characteristic features of the structures of carboxylate complexes are analysed. The main routes and kinetics of polymerisation transformations of unsaturated metal carboxylates are considered. The attention is focused on the effect of the metal ion on the monomer reactivity and the polymer morphology and structure. The possibility of stereochemical control of radical polymerisation of unsaturated metal carboxylates is demonstrated. The electronic, magnetic, optical, absorption and thermal properties of metal (co)polymers and nanocomposites and their main applications are considered.

  7. Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors.

    PubMed

    Offermanns, Stefan

    2014-01-01

    Saturated and unsaturated free fatty acids (FFAs), as well as hydroxy carboxylic acids (HCAs) such as lactate and ketone bodies, are carriers of metabolic energy, precursors of biological mediators, and components of biological structures. However, they are also able to exert cellular effects through G protein-coupled receptors named FFA1-FFA4 and HCA1-HCA3. Work during the past decade has shown that these receptors are widely expressed in the human body and regulate the metabolic, endocrine, immune and other systems to maintain homeostasis under changing dietary conditions. The development of genetic mouse models and the generation of synthetic ligands of individual FFA and HCA receptors have been instrumental in identifying cellular and biological functions of these receptors. These studies have produced strong evidence that several FFA and HCA receptors can be targets for the prevention and treatment of various diseases, including type 2 diabetes mellitus, obesity, and inflammation.

  8. Comparative pharmacokinetics of acetyl salicylic acid and its metabolites in children suffering from autoimmune diseases.

    PubMed

    Juárez Olguín, Hugo; Flores Pérez, Janett; Lares Asseff, Ismael; Loredo Abdalá, Arturo; Carbajal Rodríguez, Luis

    2004-01-01

    The aim of the present study was to compare the effect produced by juvenile rheumatoid arthritis (JRA) or rheumatic fever (RF) on the pharmacokinetics of acetyl salicylic acid (ASA) and its metabolites in children with autoimmune diseases (AD). A prospective, open labelled study was performed in 17 children with JRA and 17 with RF who received a single dose of 25 mg ASA/kg orally. The pharmacokinetics of ASA and its metabolites were determined. The blood and urine levels of each salicylate collected during 24 h were measured by HPLC. A group of 15 healthy teenage volunteers was included as a control group. The maximum plasma concentration, half-life time, area under the curve and the amount of salicylates excreted were statistically different between the JRA and the RF groups, as well as between the RF group and the controls, however, there were no significant differences between the JRA group and the controls. Dosage schemes must be adjusted for JRA patients, since the half life in these patients is longer than in RF patients. However, due to ample variability of pharmacokinetic parameters it is recommended that dose schemes are individualized on the type of autoimmune disease considered. Copyright 2004 John Wiley & Sons, Ltd.

  9. Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid.

    PubMed

    Bhardwaj, Pardeep Kumar; Kaur, Jagdeep; Sobti, Ranbir Chander; Ahuja, Paramvir Singh; Kumar, Sanjay

    2011-09-01

    Lipoxygenase (LOX) catalyses oxygenation of free polyunsaturated fatty acids into oxylipins, and is a critical enzyme of the jasmonate signaling pathway. LOX has been shown to be associated with biotic and abiotic stress responses in diverse plant species, though limited data is available with respect to low temperature and the associated cues. Using rapid amplification of cDNA ends, a full-length cDNA (CjLOX) encoding lipoxygenase was cloned from apical buds of Caragana jubata, a temperate plant species that grows under extreme cold. The cDNA obtained was 2952bp long consisting of an open reading frame of 2610bp encoding 869 amino acids protein. Multiple alignment of the deduced amino acid sequence with those of other plants demonstrated putative LH2/ PLAT domain, lipoxygenase iron binding catalytic domain and lipoxygenase_2 signature sequences. CjLOX exhibited up- and down-regulation of gene expression pattern in response to low temperature (LT), abscisic acid (ABA), methyl jasmonate (MJ) and salicylic acid (SA). Among all the treatments, a strong up-regulation was observed in response to MJ. Data suggests an important role of jasmonate signaling pathway in response to LT in C. jubata. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Improvement in wettability of porous Si by carboxylate termination

    NASA Astrophysics Data System (ADS)

    Sakakibara, Masanori; Matsumoto, Kimihisa; Kamiya, Kazuhide; Kawabata, Shigeki; Inada, Mitsuru; Suzuki, Shinya

    2018-02-01

    The effects of the surface terminations of carboxylic acid and carboxylate on the hydrophilicity of porous Si were studied to observe the changes in the photoluminescence (PL) intensity of water-dispersed porous Si powder over time. Porous Si terminated by carboxylate was produced from carboxylic acid-terminated porous Si by a neutralization reaction with an alkali metal. After the neutralization of porous Si terminated by carboxylic acid, the formation of carboxylate-terminated porous Si was confirmed by observing the absorption peaks corresponding to Si-C and COO- from Fourier transform infrared (FT-IR) spectra. On the basis of changes in the PL intensity of porous Si over time, the hydrophilicity of porous Si terminated by carboxylate was determined to be higher than that of porous Si terminated by carboxylic acid. On the other hand, nonradiative recombination centers on the surface of carboxylate-terminated porous Si were formed during the neutralization process, which reduced the PL intensity. The PL from porous Si terminated by carboxylic acid and carboxylate was caused by the quantum size effect regardless of the termination molecules, which was confirmed by the wavelength dependence of the PL lifetime. Porous Si terminated by undecylenate is an effective material for applications such as bio-labels owing to its hydrophilicity and high PL stability.

  11. [Chloroquine analogues from benzofuro- and benzothieno[3,2-b]-4-pyridone-2-carboxylic acid esters].

    PubMed

    Gölitzer, K; Meyer, H; Jomaa, H; Wiesner, J

    2004-08-01

    The amides 7 were synthesized from the annulated methyl 4-pyridone-2-carboxylates 4 via the carboxylic acids 5 and their acid chlorides by reacting with the novaldiamine base 6. The alcohol 8b, obtained from DIBAH reduction of the ester 4b, was transformed to the chloromethyl derivative 9 which reacted with 6 and 18-crown-6 leading to the 2-novaldiaminomethyl-4-pyridone 10. Compound 10 was obtained with higher yield from DIBAH reduction of the amide 7b. The substances 7 and 10 were inactive when tested against the chloroquine resistant Plasmodium falciparum strain Dd2.

  12. Exogenous salicylic acid enhances the resistance of wheat seedlings to hessian fly (Diptera: Cecidomyiidae) infestation under heat stress

    USDA-ARS?s Scientific Manuscript database

    Heat stress exerts significant impact on plant-parasite interactions. Phytohormones, such as salicylic acid (SA) play important roles in plant defense against parasite attacks. Here we studied the impact of a combination of heat stress and exogenous SA on wheat (Triticum aestivum L.) plant resistanc...

  13. Organocatalyzed, Visible-Light Photoredox-Mediated, One-Pot Minisci Reaction Using Carboxylic Acids via N-(Acyloxy)phthalimides.

    PubMed

    Sherwood, Trevor C; Li, Ning; Yazdani, Aliza N; Dhar, T G Murali

    2018-03-02

    An improved, one-pot Minisci reaction has been developed using visible light, an organic photocatalyst, and carboxylic acids as radical precursors via the intermediacy of in situ-generated N-(acyloxy)phthalimides. The conditions employed are mild, demonstrate a high degree of functional group tolerance, and do not require a large excess of the carboxylic acid reactant. As a result, this reaction can be applied to drug-like scaffolds and molecules with sensitive functional groups, enabling late-stage functionalization, which is of high interest to medicinal chemistry.

  14. Intramolecular Tsuji-Trost-type Allylation of Carboxylic Acids: Asymmetric Synthesis of Highly π-Allyl Donative Lactones.

    PubMed

    Suzuki, Yusuke; Seki, Tomoaki; Tanaka, Shinji; Kitamura, Masato

    2015-08-05

    Tsuji-Trost-type asymmetric allylation of carboxylic acids has been realized by using a cationic CpRu complex with an axially chiral picolinic acid-type ligand (Cl-Naph-PyCOOH: naph = naphthyl, py = pyridine). The carboxylic acid and allylic alcohol intramolecularly condense by the liberation of water without stoichiometric activation of either nucleophile or electrophile part, thereby attaining high atom- and step-economy, and low E factor. This success can be ascribed to the higher reactivity of allylic alcohols as compared with the allyl ester products in soft Ru/hard Brønstead acid combined catalysis, which can function under slightly acidic conditions unlike the traditional Pd-catalyzed system. Detailed analysis of the stereochemical outcome of the reaction using an enantiomerically enriched D-labeled substrate provides an intriguing view of enantioselection.

  15. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    PubMed

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. 40 CFR 180.426 - 2-[4,5-Dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid; tolerance for residues. 180.426 Section 180...-Dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid; tolerance for...)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid, in or on the raw agricultural commodity soybean...

  17. From molecular salt to pseudo CAB cocrystal: Expanding solid-state landscape of carboxylic acids based on charge-assisted COOH⋯COO- hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Lou, Benyong; Perumalla, Sathyanarayana Reddy; Sun, Changquan Calvin

    2015-11-01

    Using three carboxylic acids, we show that the COOH⋯COO- synthon is robust for directing the cocrystallization between a carboxylic acid and a carboxylate of either the same or a chemically different molecule to form a CAB or pseudo CAB cocrystal, respectively. For a given carboxylic acid and a counterion, only one salt could be prepared. However, additional one CAB cocrystals and two pseudo CAB cocrystals could be prepared based on the COOH⋯COO- synthon. The same synthon has the potential to enable the preparation of additional molecular pseudo CAB cocrystals using other chemically distinct carboxylic acids. This significantly increased number of solid forms highlights the values of charge-assisted synthons, such as COOH⋯COO-, in crystal engineering for expanding the range of material properties of a given molecule for optimum performance in product design.

  18. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  19. Salicylic Acid Interferes with Tobacco Mosaic Virus Replication via a Novel Salicylhydroxamic Acid-Sensitive Mechanism.

    PubMed Central

    Chivasa, S.; Murphy, A. M.; Naylor, M.; Carr, J. P.

    1997-01-01

    Salicylic acid (SA) induces resistance to all plant pathogens, including bacteria, fungi, and viruses, but the mechanism by which SA engenders resistance to viruses is not known. Pretreatment of tobacco mosaic virus (TMV)-susceptible (nn genotype) tobacco tissue with SA reduced the levels of viral RNAs and viral coat protein accumulating after inoculation with TMV. Viral RNAs were not affected equally, suggesting that SA treatment interferes with TMV replication. Salicylhydroxamic acid (SHAM), an inhibitor of the mitochondrial alternative oxidase, antagonized both SA-induced resistance to TMV in nn genotype plants and SA-induced acquired resistance in resistant (NN genotype) tobacco. SHAM did not inhibit induction of the PR-1 pathogenesis-related protein or induction of resistance to Erwinia carotovora or Botrytis cinerea by SA. This indicates that SA induces resistance to TMV via a novel SHAM-sensitive signal transduction pathway (potentially involving alternative oxidase), which is distinct from that leading to resistance to bacteria and fungi. PMID:12237364

  20. Report on cascade energy relaxation from PVP to Tb3+:Bi2SiO5 nanophosphor through salicylic acid in composite polymeric film

    NASA Astrophysics Data System (ADS)

    Kumari, Pushpa; Dwivedi, Y.

    2018-05-01

    The present article reports structural and spectroscopic properties of Tb:Bi2SiO5 nanophosphors dispersed in Polyvinylpyrrolidone polymer film, in presence of Salicylic acid (SA) molecule, which acts as a sensitizer. Detailed structural and spectroscopic characterizations were carried out using X-ray diffraction patterns, Scanning Electron Microscope, Fourier Transform Infrared and Excitation and photoluminescence techniques. The mean crystallite size of Tb3+:Bi2SiO5 nanophosphor and Tb3+:Bi2SiO5 in Polyvinylpyrrolidone polymer composite was estimated ∼22 nm and ∼28 nm, respectively. We have report atleast two times enhancement in Tb3+ ions emission intensity due to the efficient energy transfer from salicylic acid molecule to Tb ions. In addition to energy transfer from salicylic acid, the Polyvinylpyrrolidone polymeric host was also reported to serve as a sensitizer for SA molecule and Tb3+ ions through a cascade energy relaxation process while exciting with 248 nm photons. On 248 nm photon excitation, atleast five improvements in Tb3+ ion emission intensity are reported. Presence of SA molecule facilitates precise colour tuning as obvious from the CIE coordinates.

  1. Theoretical Study of the Thermal Decomposition of Carboxylic Acids at Pyrolysis Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J. M.; Robichaud, D. J.; Nimlos, M. R.

    2013-01-01

    Carboxylic acids are important in the processing of biomass into renewable fuels and chemicals. They are formed from the pretreatment and pyrolysis of hemicellulose biopolymers and are released from the decomposition of sugars. They result from the deconstruction of polyhydroxyalkanoates (bacterial carbon storage polymers) from fatty acids derived from algae, bacteria, and oil crops. The thermal deoxygenation of carboxylic acids is an important step in the conversion of biomass into aliphatic hydrocarbons suitable for use in renewable biofuels and as petrochemical replacements. Decarboxylation, a primary decomposition pathway under pyrolysis conditions, represents an ideal conversion process, because it eliminates two atomsmore » of oxygen for every carbon atom removed. Problematically, additional deoxygenation processes exist (e.g. dehydration) that are in direct competition with decarboxylation and result in the formation of reactive and more fragmented end products. To better understand the competition between decarboxylation and other deoxygenation processes and to gain insight into possible catalysts that would favor decarboxylation, we have investigated the mechanisms and thermochemistry of the various unimolecular and bimolecular deoxygenation pathways for a family of C1-C4 organic acids using electronic structure calculations at the M06-2X/6-311++G(2df,p) level of theory.« less

  2. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOEpatents

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  3. Transition-metal-free visible-light photoredox catalysis at room-temperature for decarboxylative fluorination of aliphatic carboxylic acids by organic dyes.

    PubMed

    Wu, Xinxin; Meng, Chunna; Yuan, Xiaoqian; Jia, Xiaotong; Qian, Xuhong; Ye, Jinxing

    2015-07-28

    We report herein an efficient, general and green method for decarboxylative fluorination of aliphatic carboxylic acids. By using a transition-metal-free, organocatalytic photoredox system, the reaction of various aliphatic carboxylic acids with the Selectfluor reagent afforded the corresponding alkyl fluorides in satisfactory yields under visible light irradiation at room temperature.

  4. Treatment of palmoplantar warts with a diphencyprone and salicylic acid ointment.

    PubMed

    Armour, Katherine; Orchard, David

    2006-08-01

    We report on 50 consecutive suitable patients with one or more palmoplantar warts who were treated with a patient-applied ointment comprising 0.1% diphencyprone and 15% salicylic acid in white soft paraffin. All patients sensitized to diphencyprone were followed up clinically and assessed by patient questionnaire. The intention to treat success rate in this series was 88%. The time to wart clearance ranged from less than 4 weeks to 4 months. In our patient group, 90% rated their treatment as 'excellent' or 'good', whereas 10% stated that the reaction induced by diphencyprone was 'too severe'. Our results are compared with those previously published using diphencyprone in the treatment of palmoplantar warts.

  5. Salicylate and catechol levels are maintained in nahG transgenic poplar

    Treesearch

    Alison M. Morse; Timothy J. Tschaplinski; Christopher Dervinis; Paula M. Pijut; Eric A. Schmelz; Wendy Day; John M. Davis

    2007-01-01

    Metabolic profiling was used to investigate the molecular phenotypes of a transgenic Populus tremula × P. alba hybrid expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reduce...

  6. Characterization of Withania somnifera Leaf Transcriptome and Expression Analysis of Pathogenesis – Related Genes during Salicylic Acid Signaling

    PubMed Central

    Ghosh Dasgupta, Modhumita; George, Blessan Santhosh; Bhatia, Anil; Sidhu, Om Prakash

    2014-01-01

    Withania somnifera (L.) Dunal is a valued medicinal plant with pharmaceutical applications. The present study was undertaken to analyze the salicylic acid induced leaf transcriptome of W. somnifera. A total of 45.6 million reads were generated and the de novo assembly yielded 73,523 transcript contig with average transcript contig length of 1620 bp. A total of 71,062 transcripts were annotated and 53,424 of them were assigned GO terms. Mapping of transcript contigs to biological pathways revealed presence of 182 pathways. Seventeen genes representing 12 pathogenesis-related (PR) families were mined from the transcriptome data and their pattern of expression post 17 and 36 hours of salicylic acid treatment was documented. The analysis revealed significant up-regulation of all families of PR genes by 36 hours post treatment except WsPR10. The relative fold expression of transcripts ranged from 1 fold to 6,532 fold. The two families of peroxidases including the lignin-forming anionic peroxidase (WsL-PRX) and suberization-associated anionic peroxidase (WsS-PRX) recorded maximum expression of 377 fold and 6532 fold respectively, while the expression of WsPR10 was down-regulated by 14 fold. Additionally, the most stable reference gene for normalization of qRT-PCR data was also identified. The effect of SA on the accumulation of major secondary metabolites of W. somnifera including withanoside V, withaferin A and withanolide A was also analyzed and an increase in content of all the three metabolites were detected. This is the first report on expression patterns of PR genes during salicylic acid signaling in W. somnifera. PMID:24739900

  7. Effect of ca2+ to salicylic acid release in pectin based controlled drug delivery system

    NASA Astrophysics Data System (ADS)

    Kistriyani, L.; Wirawan, S. K.; Sediawan, W. B.

    2016-01-01

    Wastes from orange peel are potentially be utilized to produce pectin, which are currently an import commodity. Pectin can be used in making edible film. Edible films are potentially used as a drug delivery system membrane after a tooth extraction. Drug which is used in the drug delivery system is salicylic acid. It is an antiseptic. In order to control the drug release rate, crosslinking process is added in the manufacturing of membrane with CaCl2.2H2O as crosslinker. Pectin was diluted in water and mixed with a plasticizer and CaCl2.2H2O solution at 66°C to make edible film. Then the mixture was dried in an oven at 50 °C. After edible film was formed, it was coated using plasticizer and CaCl2.2H2O solution with various concentration 0, 0.015, 0.03 and 0.05g/mL. This study showed that the more concentration of crosslinker added, the slower release of salicylic acid would be. This was indicated by the value of diffusivites were getting smaller respectively. The addition of crosslinker also caused smaller gels swelling value,which made the membrane is mechanically stronger

  8. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides.

    PubMed

    Noble, Adam; McCarver, Stefan J; MacMillan, David W C

    2015-01-21

    Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of α-oxy and α-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions.

  9. Merging Photoredox and Nickel Catalysis: Decarboxylative Cross-Coupling of Carboxylic Acids with Vinyl Halides

    PubMed Central

    2015-01-01

    Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of α-oxy and α-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions. PMID:25521443

  10. Peptide and protein quantitation by acid-catalyzed 18O-labeling of carboxyl groups.

    PubMed

    Haaf, Erik; Schlosser, Andreas

    2012-01-03

    We have developed a new method that applies acidic catalysis with hydrochloric acid for (18)O-labeling of peptides at their carboxyl groups. With this method, peptides get labeled at their C-terminus, at Asp and Glu residues, and at carboxymethylated cysteine residues. Oxygen atoms at phosphate groups of phosphopeptide are not exchanged. Our elaborated labeling protocol is easy to perform, fast (5 h and 30 min), and results in 95-97 atom % incorporation of (18)O at carboxyl groups. Undesired side reactions, such as deamidation or peptide hydrolysis, occur only at a very low level under the conditions applied. In addition, data analysis can be performed automatically using common software tools, such as Mascot Distiller. We have demonstrated the capability of this method for the quantitation of peptides as well as for phosphopeptides. © 2011 American Chemical Society

  11. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    PubMed

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Molecular cloning of two novel peroxidases and their response to salt stress and salicylic acid in the living fossil Ginkgo biloba.

    PubMed

    Novo-Uzal, Esther; Gutiérrez, Jorge; Martínez-Cortés, Teresa; Pomar, Federico

    2014-10-01

    Peroxidase isoenzymes play diverse roles in plant physiology, such as lignification and defence against pathogens. The actions and regulation of many peroxidases are not known with much accuracy. A number of studies have reported direct involvement of peroxidase isoenzymes in the oxidation of monolignols, which constitutes the last step in the lignin biosynthesis pathway. However, most of the available data concern only peroxidases and lignins from angiosperms. This study describes the molecular cloning of two novel peroxidases from the 'living fossil' Ginkgo biloba and their regulation by salt stress and salicylic acid. Suspension cell cultures were used to purify peroxidases and to obtain the cDNAs. Treatments with salicylic acid and sodium chloride were performed and peroxidase activity and gene expression were monitored. A novel peroxidase was purified, which preferentially used p-hydroxycinnamyl alcohols as substrates and was able to form dehydrogenation polymers in vitro from coniferyl and sinapyl alcohols. Two peroxidase full-length cDNAs, GbPrx09 and GbPrx10, were cloned. Both peroxidases showed high similarity to other basic peroxidases with a putative role in cell wall lignification. Both GbPrx09 and GbPrx10 were expressed in leaves and stems of the plant. Sodium chloride enhanced the gene expression of GbPrx09 but repressed GbPrx10, whereas salicylic acid strongly repressed both GbPrx09 and GbPrx10. Taken together, the data suggest the participation of GbPrx09 and GbPrx10 in the developmental lignification programme of the cell wall. Both peroxidases possess the structural characteristics necessary for sinapyl alcohol oxidation. Moreover, GbPrx09 is also involved in lignification induced by salt stress, while salicylic acid-mediated lignification is not a result of GbPrx09 and GbPrx10 enzymatic activity. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email

  13. GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement

    PubMed Central

    Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei

    2011-01-01

    Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433

  14. Perception of the plant immune signal salicylic acid

    PubMed Central

    Yan, Shunping; Dong, Xinnian

    2014-01-01

    Salicylic acid (SA) plays a central role in plant innate immunity. The diverse functions of this simple phenolic compound suggest that plants may have multiple SA receptors. Several SA-binding proteins have been identified using biochemical approaches. However, genetic evidence supporting that they are the bona fide SA receptors has not been forthcoming. Mutant screens revealed that NPR1 is a master regulator of SA-mediated responses. Although NPR1 cannot bind SA in a conventional ligand-binding assay, its homologs NPR3 and NPR4 bind SA and function as SA receptors. During pathogen challenge, the SA gradient generated at the infection site is sensed by NPR3 and NPR4, which serve as the adaptors for the Cullin 3-based E3 ubiquitin ligase to regulate NPR1 degradation. Consequently, NPR1 is degraded at the infection site to remove its inhibition on effector-triggered cell death and defense, whereas NPR1 accumulates in neighboring cells to promote cell survival and SA-mediated resistance. PMID:24840293

  15. Salicylic acid peel incorporating triethyl citrate and ethyl linoleate in the treatment of moderate acne: a new therapeutic approach.

    PubMed

    Raone, Beatrice; Veraldi, Stefano; Raboni, Roberta; Ardigò, Marco; Patrizi, Annalisa; Micali, Giuseppe

    2013-08-01

    Acne affects many adolescents. Conventional therapy often results in side effects and poor adherence, and the treatment does not consider the psychological effect of acne on patients, which is comparable with that of disabling diseases. To evaluate the efficacy and tolerability of a peel (30% salicylic acid, triethyl citrate and ethyl linoleate) combined with a home therapy with three topical agents (triethyl citrate, ethyl linoleate and salicylic acid 0.5% cream, lotion) in moderate acne of the face. Prospective, observational, multicenter, open-label, postmarketing, phase IV study. Patients were assessed by comparing Global Acne Grading System (GAGS) score and total lesion count from 15 days before the first peel (T-15 ), after four salicylic peels (every 10 ± 2 days (T0 , T10 , T20 , T30 ), and 20 days after of the end of the study (T50 ). This treatment was associated to a home therapy. Fifty-three patients completed the study. The average GAGS score fell 49% between T-15 and T50 (p < .001). No patient withdrew for adverse events. This therapy was effective and well-tolerated in all cases. Chemo-exfoliation sessions ensured the continuous monitoring of clinical results and improved patient quality of life. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  16. Interaction between valproic acid and aspirin in epileptic children: serum protein binding and metabolic effects.

    PubMed

    Orr, J M; Abbott, F S; Farrell, K; Ferguson, S; Sheppard, I; Godolphin, W

    1982-05-01

    In five of six epileptic children who were taking 18 to 49 mg/kg/day valproic acid (VPA), the steady-state serum free fractions of VPA rose from 12% to 43% when antipyretic doses of aspirin were also taken. Mean total VPA half-life (t1/2) rose from 10.4 +/- 2.7 to 12.9 +/- 1.8 hr and mean free VPA t1/2 rose from 6.7 +/- to 2.1 to 8.9 +2- 3.0 hr when salicylate was present in the serum. The in vitro albumin binding association constant (ka) for VPA was decreased by salicylate, but the in vivo ka value was not affected. The 12-hr (trough) concentrations of both free and total VPA were higher in the presence of serum salicylate in five of six patients. Renal excretion of unchanged VPA decreased in five of six patients, but the VPA carboxyl conjugate metabolite-excretion patterns were not consistently affected. Salicylate appeared to displace VPA from serum albumin in vivo, but the increased VPA t1/2 and changes in VPA elimination patterns suggest that serum salicylate also altered VPA metabolism.

  17. Norfloxacin salts of carboxylic acids curtail planktonic and biofilm mode of growth in ESKAPE pathogens.

    PubMed

    Lowrence, R C; Ramakrishnan, A; Sundaramoorthy, N S; Shyam, A; Mohan, V; Subbarao, H M V; Ulaganathan, V; Raman, T; Solomon, A; Nagarajan, S

    2018-02-01

    To enhance the antimicrobial and antibiofilm activity of norfloxacin against the planktonic and biofilm mode of growth in ESKAPE pathogens using chemically modified norfloxacin salts. Antimicrobial testing, synergy testing and time-kill curve analysis were performed to evaluate antibacterial effect of norfloxacin carboxylic acid salts against ESKAPE pathogens. In vivo efficacy to reduce bacterial bioburden was evaluated in zebrafish infection model. Crystal violet assay and live-dead staining were performed to discern antibiofilm effect. Membrane permeability, integrity and molecular docking studies were carried out to ascertain the mechanism of action. The carboxylic acid salts, relative to parent molecule norfloxacin, displayed two- to fourfold reduction in minimum inhibitory concentration against Staphylococcus aureus and Pseudomonas aeruginosa, in addition to displaying potent bacteriostatic effect against certain members of ESKAPE pathogens. In vivo treatments revealed that norfloxacin tartrate (SRIN2) reduced MRSA bioburden by greater than 1 log fold relative to parent molecule in the muscle tissue. In silico docking with gyrA of S. aureus showed increased affinity of SRIN2 towards DNA gyrase. The enhanced antibacterial effect of norfloxacin salts could be partially accounted by altered membrane permeability in S. aureus and perturbed membrane integrity in P. aeruginosa. Antibiofilm studies revealed that SRIN2 (norfloxacin tartrate) and SRIN3 (norfloxacin benzoate) exerted potent antibiofilm effect particularly against Gram-negative ESKAPE pathogens. The impaired colonization of both S. aureus and P. aeruginosa due to improved norfloxacin salts was further supported by live-dead imaging. Norfloxacin carboxylic acid salts can act as potential alternatives in terms of drug resensitization and reuse. Our study shows that carboxylic acid salts of norfloxacin could be effectively employed to treat both planktonic- and biofilm-based infections caused by select

  18. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids.

    PubMed

    Ho, Ya-Yeh; Huang, Yen-Hua; Huang, Cheng-Yang

    2013-04-01

    Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal

  19. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  20. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE PAGES

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew; ...

    2014-12-12

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  1. An enantioselective route to alpha-methyl carboxylic acids via metal and enzyme catalysis.

    PubMed

    Norinder, Jakob; Bogár, Krisztián; Kanupp, Lisa; Bäckvall, Jan-E

    2007-11-22

    Dynamic kinetic resolution of allylic alcohols to allylic acetates followed by copper-catalyzed allylic substitution gave alkenes in high yields and high optical purity. Subsequent oxidative C-C double bond cleavage afforded pharmaceutically important alpha-methyl substituted carboxylic acids in high ee.

  2. QM/MM Free Energy Simulations of Salicylic Acid Methyltransferase: Effects of Stabilization of TS-like Structures on Substrate Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jianzhuang; Xu, Qin; Chen, Feng

    2010-01-01

    Salicylic acid methyltransferases (SAMTs) synthesize methyl salicylate (MeSA) using salicylate as the substrate. MeSA synthesized in plants may function as an airborne signal to activate the expression of defense-related genes and could also be a critical mobile signaling molecule that travels from the site of plant infection to establish systemic immunity in the induction of disease resistance. Here the results of QM/MM free energy simulations for the methyl transfer process in Clarkia breweri SAMT (CbSAMT) are reported to determine the origin of the substrate specificity of SAMTs. The free energy barrier for the methyl transfer from S-adenosyl-l-methionine (AdoMet) to 4-hydroxybenzoatemore » in CbSAMT is found to be about 5 kcal/mol higher than that from AdoMet to salicylate, consistent with the experimental observations. It is suggested that the relatively high efficiency for the methylation of salicylate compared to 4-hydroxybenzoate is due, at least in part, to the reason that a part of the stabilization of the transition state (TS) configuration is already reflected in the reactant complex, presumably, through the binding. The results seem to indicate that the creation of the substrate complex (e.g., through mutagenesis and substrate modifications) with its structure closely resembling TS might be fruitful for improving the catalytic efficiency for some enzymes. The results show that the computer simulations may provide important insights into the origin of the substrate specificity for the SABATH family and could be used to help experimental efforts in generating engineered enzymes with altered substrate specificity.« less

  3. Discovery of novel BTK inhibitors with carboxylic acids.

    PubMed

    Gao, Xiaolei; Wang, James; Liu, Jian; Guiadeen, Deodial; Krikorian, Arto; Boga, Sobhana Babu; Alhassan, Abdul-Basit; Selyutin, Oleg; Yu, Wensheng; Yu, Younong; Anand, Rajan; Liu, Shilan; Yang, Chundao; Wu, Hao; Cai, Jiaqiang; Cooper, Alan; Zhu, Hugh; Maloney, Kevin; Gao, Ying-Duo; Fischmann, Thierry O; Presland, Jeremy; Mansueto, My; Xu, Zangwei; Leccese, Erica; Zhang-Hoover, Jie; Knemeyer, Ian; Garlisi, Charles G; Bays, Nathan; Stivers, Peter; Brandish, Philip E; Hicks, Alexandra; Kim, Ronald; Kozlowski, Joeseph A

    2017-03-15

    We report the design and synthesis of a series of novel Bruton's Tyrosine Kinase (BTK) inhibitors with a carboxylic acid moiety in the ribose pocket. This series of compounds has demonstrated much improved off-target selectivities including adenosine uptake (AdU) inhibition compared to the piperidine amide series. Optimization of the initial lead compound 4 based on BTK enzyme inhibition, and human peripheral blood mononuclear cell (hPBMC) and human whole blood (hWB) activity led to the discovery of compound 40, with potent BTK inhibition, reduced off target activities, as well as favorable pharmacokinetic profile in both rat and dog. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.

    PubMed

    Zarate, Sonia I; Kempema, Louisa A; Walling, Linda L

    2007-02-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF.

  5. Ionizing radiation induced degradation of salicylic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Mendoza, Edith

    2018-06-01

    The radiation-induced degradation of salicylic acid (SA-) in aqueous solutions (1.0 and 0.1 mmol dm-3) saturated with N2O or air or without oxygen were studied. Irradiation was carried out using a cobalt-60 source. With a 1 mmol dm-3 solution saturated with N2O a seemingly total degradation occurred at about 18 kGy, although small quantities of 2,3-dihydroxybenzoic acid, catechol and 2,5-dihydroxybenzoic acid were present at that dose at concentrations of 67, 22 and 6 μmol dm-3 respectively. Under air and when free oxygen, the three radiolytic products were present at 18.54 kGy while SA- was destroyed only to 90% and 62%, respectively. In the case of 0.1 mmol dm-3 SA- solutions, the acid was degraded at 3.5 kGy if the solution contained N2O, at 5.8 kGy in air and at 7 kGy without oxygen. The concentration of the radiolytic products increased with increasing dose and after a maximum they decreased. The oxidation was followed by measuring the chemical oxygen demand; the slopes were 0.48 and 0.11, 0.21 and 0.07, 0.15 and 0.03 mmol dm-3 kGy-1 for 1.0 and 0.10 mmol dm-3 solutions saturated with N2O or air or without oxygen, respectively.

  6. Interaction of Salicylate and a Terpenoid Plant Extract with Model Membranes: Reconciling Experiments and Simulations

    PubMed Central

    Khandelia, Himanshu; Witzke, Sarah; Mouritsen, Ole G.

    2010-01-01

    We investigate the effects of two structurally similar small cyclic molecules: salicylic acid and perillic acid on a zwitterionic model lipid bilayer, and show that both molecules might have biological activity related to membrane thinning. Salicylic acid is a nonsteroidal antiinflammatory drug, some of the pharmacological properties of which arise from its interaction with the lipid bilayer component of the plasma membrane. Prior simulations show that salicylate orders zwitterionic lipid membranes. However, this is in conflict with Raman scattering and vesicle fluctuation analysis data, which suggest the opposite. We show using extensive molecular dynamics simulations, cumulatively >2.5 μs, that salicylic acid indeed disorders membranes with concomitant membrane thinning and that the conflict arose because prior simulations suffered from artifacts related to the sodium-ion induced condensation of zwitterionic lipids modeled by the Berger force field. Perillic acid is a terpenoid plant extract that has antiinfective and anticancer properties, and is extensively used in eastern medicine. We found that perillic acid causes large-scale membrane thinning and could therefore exert its antimicrobial properties via a membrane-lytic mechanism reminiscent of antimicrobial peptides. Being more amphipathic, perillic acid is more potent in disrupting lipid headgroup packing, and significantly modifies headgroup dipole orientation. Like salicylate, the membrane thinning effect of perillic acid is masked by the presence of sodium ions. As an alternative to sodium cations, we advocate the straightforward solution of using larger countercations like potassium or tetra-methyl-ammonium that will maintain electroneutrality but not interact strongly with, and thus not condense, the lipid bilayer. PMID:21156130

  7. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester, a polymeric colon-specific prodrug releasing 5-aminosalicylic acid and benzocaine, ameliorates TNBS-induced rat colitis.

    PubMed

    Nam, Joon; Kim, Wooseong; Lee, Sunyoung; Jeong, Seongkeun; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin

    2016-01-01

    Local anesthetics have beneficial effects on colitis. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester (Dex-5-ESA), designed as a polymeric colon-specific prodrug liberating 5-ASA and benzocaine in the large intestine, was prepared and its therapeutic activity against colitis was evaluated using a TNBS-induced rat colitis model. Dex-5-ESA liberated 5-ASA and benzocaine in the cecal contents while (bio)chemically stable in the small intestinal contents and mucosa. Oral administration of Dex-5-ESA (equivalent to 10 mg 5-ASA/kg, twice a day) alleviated colonic injury and reduced MPO activity in the inflamed colon. In parallel, pro-inflammatory mediators, COX-2, iNOS and CINC-3, elevated by TNBS-induced colitis, were substantially diminished in the inflamed colon. Dex-5-ESA was much more effective for the treatment of colitis than 5-(4-ethoxycarbonylphenylazo)salicylic acid (5-ESA) that may not deliver benzocaine to the large intestine. Our data suggest that Dex-5-ESA is a polymeric colon-specific prodrug, liberating 5-ASA and benzocaine in the target site (large intestine), probably exerting anti-colitic effects by combined action of 5-ASA and benzocaine.

  8. Ethylene Production and 1-Aminocyclopropane-1-Carboxylic Acid Conjugation in Thermoinhibited Cicer arietinum L. Seeds 1

    PubMed Central

    Gallardo, Mercedes; Delgado, María del Mar; Sánchez-Calle, Isabel María; Matilla, Angel Jesús

    1991-01-01

    The effect of supraoptimal temperatures (30°C, 35°C) on germination and ethylene production of Cicer arietinum (chick-pea) seeds was measured. Compared with a 25°C control, these temperatures inhibited both germination and ethylene production. The effect of supraoptimal temperatures could be alleviated by treating the seeds with ethylene. It was concluded that one effect of high temperature on germination was due to its negative effect on ethylene production. This inhibitory effect of high temperature was due to increased conjugation of 1-aminocyclopropane-1-carboxylic acid to 1-(malonylamino)cyclopropane-1-carboxylic acid and to an inhibition of ethylene-forming enzyme activity. PMID:16668358

  9. Determination of the asphaltene and carboxylic acid content of a heavy oil using a microfluidic device.

    PubMed

    Bowden, Stephen A; Wilson, Rab; Parnell, John; Cooper, Jonathan M

    2009-03-21

    Heavy oil utilisation is set to increase over the coming decades as reserves of conventional oil decline. Heavy oil differs from conventional oil in containing relatively large quantities of asphaltene and carboxylic acids. The proportions of these compounds greatly influence how oil behaves during production and its utilisation as a fuel or feedstock. We report the development of a microfluidic technique, based on a H-cell, that can extract the carboxylic acid components of an oil and assess its asphaltene content. Ultimately this technology could yield a field-deployable device capable of performing measurements that facilitate improved resource management at the point of resource-extraction.

  10. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco

    PubMed Central

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Jürgen

    2013-01-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance. PMID:24025239

  11. Determination of carboxyl groups in wood fibers by headspace gas chromatography

    Treesearch

    X.-S. Chai; Q.X. Hou; J.Y. Zhu; S.-L. Chen; S.F. Wang; L. Lucia

    2003-01-01

    The phase reaction conversion (PRC) headspace gas chromatographic (HSGC) technique was employed to develop a method for the determination of the content of carboxyl groups in wood fibers. Acid treatment of the wood fibers using hydrochloric was applied to convert carboxyl groups to carboxyl acids. Bicarbonate solution is then used to react with carboxyl acids on the...

  12. Transition metal modified and partially calcined inorganic-organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water.

    PubMed

    Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2012-11-15

    Pharmaceutical and Personal Care Products (PPCPs) are considered emerging contaminants, and their efficient removal from water is going to be a challenging endeavor. Microporous adsorbent materials, including pillared clays, could offer a potential solution if tailored properly. Although pillared clays have been employed previously for the removal of organics, the effective removal of PPCPs will only be possible if their surface and textural properties are manipulated from the bottom-up. This work presents the use of modified inorganic-organic pillared clays (IOCs) for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine. The IOCs have been modified with Co(2+), Cu(2+), or Ni(2+) to induce complexation-like adsorbate-adsorbent interactions at ambient conditions, in an attempt to provide an efficient and yet reversible driving force in the sub-ppm concentration range. Furthermore, the IOCs were partially calcined to increase effective surface area by an order of magnitude while preserving some hydrophobicity. In general, the Ni(2+) IOCs exhibited the greatest interaction with salicylic and clofibric acids, respectively, while the Co(2+) adsorbents excelled at adsorbing caffeine at low concentrations. All of the metal-modified IOCs showed comparable adsorption capacities for the case of carbamazepine, probably due to the lack of availability of particular functional groups in this adsorbate. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.

    PubMed

    Bassan, Arianna; Borowski, Tomasz; Schofield, Christopher J; Siegbahn, Per E M

    2006-11-24

    The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.

  14. Comparison of Three Solid Phase Materials for the Extraction of Carboxylic Acids from River Water Followed by 2D GC × GC-TOFMS Determination

    PubMed Central

    Bosire, G. O.; Ngila, J. C.; Parshotam, H.

    2016-01-01

    The extraction and determination of aliphatic and aromatic carboxylic acids as well as their influence on the aromaticity and molecularity relationship of natural organic matter (NOM) in water are reported in this study. Three solid phase extraction (SPE) sorbents were used and their extraction efficiencies evaluated after chromatographic determinations (using gas chromatography with a time of flight mass spectrometer (GC × GC-TOFMS) and liquid chromatography with organic carbon detector (LC-OCD)). More than 42 carboxylic acids were identified in raw water from the Vaal River, which feeds the Lethabo Power Generation Station, South Africa, with cooling water. The aromatic carboxylic acid efficiency (28%) was achieved by using Strata™ X SPE while the highest aliphatic carboxylic acid efficiency (92.08%) was achieved by silica SPE. The hydrophobic nature of NOM in water depends on the nature of organic compounds in water, whether aromatic or aliphatic. The LC-OCD was used to assess the hydrophobicity levels of NOM as a function of these carboxylic acids in cooling water. The LC-OCD results showed that the aromatic nature of NOM in SPE filtered water followed the order Silica>Strata X>C-18. From the results, the hydrophobicity degree of the samples depended on the type and number of carboxylic acids that were removed by the SPE cartridges. PMID:27274730

  15. Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii.

    PubMed

    Gao, Yazhi; Liu, Wei; Wang, Xiaoxiong; Yang, Lihua; Han, Su; Chen, Shiguo; Strasser, Reto Jörg; Valverde, Bernal E; Qiang, Sheng

    2018-07-01

    The effects of four phytotoxins usnic acid (UA), salicylic acid (SA), cinnamic acid (CA) and benzoic acid (BA) on photosynthesis of Chlamydomonas reinhardtii were studied in vivo to identify and localise their initial action sites on two photosystems. Our experimental evidence shows that the four phytotoxins have multiple targets in chloroplasts, which mainly lie in photosystem II (PSII), not photosystem I (PSI). They share an original action site by blocking electron transport beyond Q A (primary plastoquinone acceptor) at PSII acceptor side since a fast increase of the J-step level is the greatest change in chlorophyll a fluorescence induction kinetics OJIP in C. reinhardtii cells treated with the phytotoxins. UA decreases photosynthetic activity by reducing O 2 evolution rate, interrupting PSII electron transport at both the donor and acceptor sides, inactivating the PSII reaction centers (RCs), reducing the content of chlorophylls and carotenoids, destroying the conformation of antenna pigment assemblies, and casuing the degradation of D1/D2 proteins. SA damage to photosynthetic machinery is mainly attributed to inhibition of PSII electron transport beyond Q A at the acceptor side, inactivation of the PSII RCs, reduction of chlorophyll content, digestion of thylakoid ploypeptides and destabilization of thylakoid membranes. Both CA and BA affect the photosynthetic process by decreasing PSII electron transport efficiency at the acceptor side and the amount of active PSII RCs. Besides, the initial cause of BA-inhibiting photosynthesis is also assocaited with the O 2 evolution rate and the disconnection of some antenna molecules from PSII RCs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. New trends and applications in carboxylation for isotope chemistry.

    PubMed

    Bragg, Ryan A; Sardana, Malvika; Artelsmair, Markus; Elmore, Charles S

    2018-05-08

    Carboxylations are an important method for the incorporation of isotopically labeled 14 CO 2 into molecules. This manuscript will review labeled carboxylations since 2010 and will present a perspective on the potential of recent unlabeled methodology for labeled carboxylations. The perspective portion of the manuscript is broken into 3 major sections based on product type, arylcarboxylic acids, benzylcarboxylic acids, and alkyl carboxylic acids, and each of those sections is further subdivided by substrate. © 2018 AstraZeneca. Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons, Ltd.

  17. Analysis of defense signals in Arabidopsis thaliana leaves by ultra-performance liquid chromatography/tandem mass spectrometry: jasmonates, salicylic acid, abscisic acid.

    PubMed

    Stingl, Nadja; Krischke, Markus; Fekete, Agnes; Mueller, Martin J

    2013-01-01

    Defense signaling compounds and phytohormones play an essential role in the regulation of plant responses to various environmental abiotic and biotic stresses. Among the most severe stresses are herbivory, pathogen infection, and drought stress. The major hormones involved in the regulation of these responses are 12-oxo-phytodienoic acid (OPDA), the pro-hormone jasmonic acid (JA) and its biologically active isoleucine conjugate (JA-Ile), salicylic acid (SA), and abscisic acid (ABA). These signaling compounds are present and biologically active at very low concentrations from ng/g to μg/g dry weight. Accurate and sensitive quantification of these signals has made a significant contribution to the understanding of plant stress responses. Ultra-performance liquid chromatography (UPLC) coupled with a tandem quadrupole mass spectrometer (MS/MS) has become an essential technique for the analysis and quantification of these compounds.

  18. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis

    PubMed Central

    Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.

    2016-01-01

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A. thaliana. This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants. PMID:27849615

  19. Design of co-crystals/salts of some Nitrogenous bases and some derivatives of thiophene carboxylic acids through a combination of hydrogen and halogen bonds.

    PubMed

    Jennifer, Samson Jegan; Muthiah, Packianathan Thomas

    2014-01-01

    The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C-H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. In all the compounds (1a-14b) either neutral O-H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The

  20. Bevacizumab-associated Sudden Onset of Multiple Monomorphic Comedones on the Scalp Successfully Treated with 30% Salicylic Acid Peels.

    PubMed

    Platsidaki, Eftychia; Balamoti, Evgenia; Kouris, Anargyros; Katsarou, Alexandra; Mylonakis, Nikolaos; Vavouli, Charitomeni; Kontochristopoulos, Georgios

    2017-10-01

    Bevacizumab is a humanized monoclonal antibody against vascular endothelial factor (VEGF) that targets tumor cell angiogenesis and proliferation. Although it is usually well tolerated, many side-effects have been reported. These include hypertension, bleeding, and thromboembolic events among others. Drug-associated cutaneous adverse effects are less common and include itching, exfoliative dermatitis, and acneiform eruptions. A man with bevacizumab-associated monomorphic skin eruption successfully was treated with 30% salicylic acid peels. To the author's knowledge, this is the first report of open comedones with no further inflammatory acne lesions that developed in a patient treated with bevacizumab. Complete remission of the rash was achieved after performing 30% salicylic peels, and the patient continued the chemotherapy as planned with no need of either dose reduction or discontinuation of bevacizumab.

  1. The molecular assembly of the ionic liquid/aliphatic carboxylic acid/aliphatic amine as effective and safety transdermal permeation enhancers.

    PubMed

    Kubota, Koji; Shibata, Akira; Yamaguchi, Toshikazu

    2016-04-30

    In spite of numerous advantages, transdermal drug delivery systems are unfeasible for most drugs because of the barrier effect of the stratum corneum. Ionic liquids were recently used to enhance transdermal drug delivery by improving drug solubility. In the present study, safe and effective ionic liquids for transdermal absorption were obtained as salts generated by a neutralization reaction between highly biocompatible aliphatic carboxylic acids (octanoic acid or isostearic acid) and aliphatic amines (diisopropanolamine or triisopropanolamine) (Medrx Co., Ltd., 2009). The mechanism of skin permeability enhancement by ionic liquids was investigated by hydrophilic phenol red and hydrophobic tulobuterol. Further, the skin permeation enhancing effect was remarkably superior in the acid excess state rather than the neutralization state. Infrared absorption spectrum analysis confirmed that ionic liquids/aliphatic carboxylic acid/aliphatic amine are coexisting at all mixing states. In the acid excess state, ionic liquids interact with aliphatic carboxylic acids via hydrogen bonds. Thus, the skin permeation enhancing effect is not caused by the ionic liquid alone. The "liquid salt mixture," referred to as a complex of ingredients coexisting with ionic liquids, forms a molecular assembly incorporating hydrophilic drug. This molecular assembly was considered an effective and safety enhancer of transdermal drug permeation. Copyright © 2016. Published by Elsevier B.V.

  2. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Efficacy of Myrtus communis L. and Descurainia sophia L. Versus Salicylic Acid for Wart Treatment.

    PubMed

    Ghadami Yazdi, Elham; Minaei, Mohamad Bagher; Hashem Dabaghian, Fataneh; Ebrahim Zadeh Ardakani, Mohamad; Ranjbar, Ali Mohammad; Rastegari, Mohamad; Ghadami Yazdi, Ali

    2014-10-01

    Wart is a skin disease with circular appendages, which is called "suloul" in Iranian traditional medicine (ITM). According to ITM literature, warts have different types and causes. The most important mechanism is excretion of materials (Khelt) from body to skin and mucus; its causative material is often phlegm, black bile or a combination of them. To treat warts, it is necessary to consider the patient's life style, modify his dietary intake and moisturize his temperament. This study aimed to compare Myrtus communis L. and Descurainia sophia L. as a method of ITM, versus salicylic acid in treatment of wart. In this study, conducted in Yazd, Iran, 100 patients were selected and randomly divided into four groups. Group 1) salicylic acid, group 2) salicylic acid and D. sophia L. group 3) M. communis L. group 4) M. communis L. and D. sophia L. Numbers, sizes of lesions and symptoms, on days 0, 20, 40 and 90 were examined and analyzed. The relapse rate was investigated three months after. Changes of sizes and numbers of warts in each period of time in each group, compared to baseline, were assessed by Wilcoxon Signed Rank test. To compare these changes between the groups, Kruskal Wallis test was used. In this study 100 patients participated, 69% of which were female. Compared to baseline, mean ± SD of changes for the number of warts in day 40 were 1.12 ± 4.2, 0.96 ± 2.5, 1.32 ± 5.1 and 0.04 ± 0.2 respectively in the four groups (P = 0.02). Mean ± SD of changes for the number of warts in day 90 were 1.84 ± 4.5, 1.56 ± 2.8, 1.24 ± 5.1 and 0.04 ± 0.6 respectively in the four groups (P = 0.03). In addition mean ± SD of changes for the size of warts in day 40 were 0.96 ± 1.8, 1.03 ± 2.4, 2.47 ± 3.0 and 0.45 ± 1.7 respectively in the four groups (P < 0.001). Mean ± SD of changes for the size of warts in day 90 were 1.24 ± 2.1, 1.3 ± 2.3, 2.45 ± 3.1 and 0.45 ± 1.7 respectively in the four groups (P < 0.001). Relapse was not seen in any groups after three

  4. After-Ripening Induced Transcriptional Changes of Hormonal Genes in Wheat Seeds: The Cases of Brassinosteroids, Ethylene, Cytokinin and Salicylic Acid

    PubMed Central

    Yao, Zhen; Jordan, Mark C.; Park, Seokhoon; Ayele, Belay T.

    2014-01-01

    Maintenance and release of seed dormancy is regulated by plant hormones; their levels and seed sensitivity being the critical factors. This study reports transcriptional regulation of brassinosteroids (BR), ethylene (ET), cytokinin (CK) and salicylic acid (SA) related wheat genes by after-ripening, a period of dry storage that decays dormancy. Changes in the expression of hormonal genes due to seed after-ripening did not occur in the anhydrobiotic state but rather in the hydrated state. After-ripening induced dormancy decay appears to be associated with imbibition mediated increase in the synthesis and signalling of BR, via transcriptional activation of de-etiolated2, dwarf4 and brassinosteroid signaling kinase, and repression of brassinosteroid insensitive 2. Our analysis is also suggestive of the significance of increased ET production, as reflected by enhanced transcription of 1-aminocyclopropane-1-carboxylic acid oxidase in after-ripened seeds, and tight regulation of seed response to ET in regulating dormancy decay. Differential transcriptions of lonely guy, zeatin O-glucosyltransferases and cytokinin oxidases, and pseudo-response regulator between dormant and after-ripened seeds implicate CK in the regulation of seed dormancy in wheat. Our analysis also reflects the association of dormancy decay in wheat with seed SA level and NPR independent SA signaling that appear to be regulated transcriptionally by phenylalanine ammonia lyase, and whirly and suppressor of npr1 inducible1 genes, respectively. Co-expression clustering of the hormonal genes implies the significance of synergistic and antagonistic interaction between the different plant hormones in regulating wheat seed dormancy. These results contribute to further our understanding of the molecular features controlling seed dormancy in wheat. PMID:24498132

  5. Salicylic Acid Attenuates Gentamicin-Induced Nephrotoxicity in Rats

    PubMed Central

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats. PMID:22666115

  6. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    PubMed

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  7. MgAl- Layered Double Hydroxide Nanoparticles for controlled release of Salicylate.

    PubMed

    Mondal, Soumini; Dasgupta, Sudip; Maji, Kanchan

    2016-11-01

    Layered double hydroxides (LDHs), have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, and additives for polymers. Recently, their successful synthesis on the nanometer scale opened up a whole new field for their application in nanomedicine. Here we report the efficacy of Mg1-xAlx (NO3)x (OH)2 LDH nanoparticles as a carrier and for controlled release of one of the non-steroidal anti-inflammatory drugs (NSAID), sodium salicylate. Mg1-xAlx (NO3)x (OH)2.nH2O nanoparticles were synthesized using co-precipitation method from an aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Salicylate was intercalated in the interlayer space of Mg-Al LDH after suspending nanoparticles in 0.0025(M) HNO3 and 0.75 (M) NaNO3 solution and using anion exchange method under N2 atmosphere. The shift in the basal planes like (003) and (006) to lower 2θ value in the XRD plot of intercalated sample confirmed the increase in basal spacing in LDH because of intercalation of salicylate into the interlayer space of LDH. FTIR spectroscopy of SA-LDH nano hybrid revealed a red shift in the frequency band of carboxylate group in salicylate indicating an electrostatic interaction between cationic LDH sheet and anionic drug. Differential thermal analysis of LDH-SA nanohybrid indicated higher thermal stability of salicylate in the intercalated form into LDH as compared to its free state. DLS studies showed a particle size distribution between 30-60 nm for pristine LDH whereas salicylate intercalated LDH exhibited a particle size distribution between 40-80nm which is ideal for its efficacy as a superior carrier for drugs and biomolecules. The cumulative release kinetic of salicylate from MgAl-LDH-SA hybrids in phosphate buffer saline (PBS) at pH7.4 showed a sustained release of salicylate up to 72h that closely resembled first order release kinetics through a combination of drug diffusion and dissolution of LDH under physiological conditions. Also the

  8. Salicylic Acid and 4-Nitroaniline Removal from Water Using Magnetic Biochar: An Environmental and Analytical Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Karunanayake, Akila G.; Dewage, Narada Bombuwala; Todd, Olivia Adele; Essandoh, Matthew; Anderson, Renel; Mlsna, Todd; Mlsna, Deb

    2016-01-01

    Adsorption studies of salicylic acid (SA) and 4-nitroaniline (4NA) from aqueous solutions were performed with magnetic biochar (MBC) in order to train students in analytical techniques such as standard calibration curves, UV-vis spectrophotometry, and chemical separations within the context of wastewater purification. Analysis of samples purified…

  9. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    PubMed

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  10. Expression of the patatin-related phospholipase A gene AtPLA IIA in Arabidopsis thaliana is up-regulated by salicylic acid, wounding, ethylene, and iron and phosphate deficiency.

    PubMed

    Rietz, Steffen; Holk, André; Scherer, Günther F E

    2004-09-01

    In Arabidopsis thaliana (L.) Heynh., the cytosolic, patatin-related phospholipase A enzymes comprise a family of ten genes designated AtPLAs thought to be involved in auxin and pathogen signalling [A. Holk et al. (2002) Plant Physiol 130:90-101]. One of these, AtPLA IIA, is investigated here by studying its transcriptional regulation through transgenic Arabidopsis plants containing the AtPLA IIA promoter (PIIA) fused to the beta-glucuronidase (GUS) gene. GUS activity appeared in leaves at 10-12 days and became increasingly stronger with age in all leaves. From the same age on, strong GUS activity was visible in the basal stipules of the rosette leaves. PIIA-dependent GUS activity was found in the older parts of the primary root (from 10 days on) and, later in development, in older parts of side roots, and the root cap. No GUS activity was detected in flower organs. PIIA-dependent GUS expression in 12-day-old plants was up-regulated after treatment by salicylic acid, Bion, wounding, 1-aminocyclopropane-1-carboxylic acid (ACC) and jasmonic acid. When transgenic PIIA:: uidA plants were grown devoid of iron, 9-day-old plants exhibited increased GUS activity in the leaves and, when devoid of phosphate, 11-day-old plants had increased GUS activity in the roots. In conclusion, this member of the patatin-related phospholipase A gene family showed properties of a defence and iron-stress and phosphate-stress gene, being transcriptionally up-regulated within hours or days.

  11. A Quick and Simple Conversion of Carboxylic Acids into Their Anilides of Heating with Phenyl Isothiocyanate.

    ERIC Educational Resources Information Center

    Ram, Ram N.; And Others

    1983-01-01

    Converting carboxylic acids into their anilides, which usually involves preparation of acid chloride or mixed anhydride followed by treatment with aniline, is tedious and/or time-consuming. A quick and easier procedure, using phenyl isothiocyanate, is provided. Reactions involved and a summary table of results are included. (JN)

  12. Application of L-proline derivatives as chiral shift reagents for enantiomeric recognition of carboxylic acids.

    PubMed

    Naziroglu, Hayriye Nevin; Durmaz, Mustafa; Bozkurt, Selahattin; Sirit, Abdulkadir

    2011-07-01

    Four proline-derived chiral receptors 5-8 were readily synthesized starting from L-proline. The enantiomeric recognition ability of chiral receptors was examined with a series of carboxylic acids by (1) H NMR spectroscopy. The molar ratio and the association constants of the chiral compounds with each of the enantiomers of guest molecules were determined by using Job plots and a nonlinear least-squares fitting method, respectively. The Job plots indicate that the hosts form 1:1 instantaneous complexes with all guests. The receptors exhibited different chiral recognition abilities toward the enantiomers of racemic guests. Among the chiral receptors used in this study, prolinamide 6 was found to be the best chiral shift reagent and is effective for the determination of the enantiomeric excess of chiral carboxylic acids. Copyright © 2011 Wiley-Liss, Inc.

  13. Interaction of plant cell signaling molecules, salicylic acid and jasmonic acid, with the mitochondria of Helicoverpa armigera.

    PubMed

    Akbar, S M D; Sharma, H C; Jayalakshmi, S K; Sreeramulu, K

    2012-02-01

    The cotton bollworm, Helicoverpa armigera is a polyphagous pest in Asia, Africa, and the Mediterranean Europe. Salicylic acid (SA) and jasmonic acid (JA) are the cell signaling molecules produced in response to insect attack in plants. The effect of these signaling molecules was investigated on the oxidative phosphorylation and oxidative stress of H. armigera. SA significantly inhibited the state III and state IV respiration, respiratory control index (RCI), respiratory complexes I and II, induced mitochondrial swelling, and cytochrome c release in vitro. Under in vivo conditions, SA induced state IV respiration as well as oxidative stress in time- and dose-dependent manner, and also inhibited the larval growth. In contrast, JA did not affect the mitochondrial respiration and oxidative stress. SA affected the growth and development of H. armigera, in addition to its function as signaling molecules involved in both local defense reactions at feeding sites and the induction of systemic acquired resistance in plants.

  14. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78.

    PubMed

    Martínez-Medina, Ainhoa; Appels, Freek V W; van Wees, Saskia C M

    2017-08-03

    We recently found that the beneficial fungus Trichoderma harzianum T-78 primes tomato plants for salicylic acid (SA)- and jasmonic acid (JA)-regulated defenses, resulting in enhanced resistance against the root knot nematode Meloidogyne incognita. By using SA- and JA-impaired mutant lines and exogenous hormonal application, here we investigated whether the SA- and JA-pathways also have a role in T-78 root colonization of Arabidopsis thaliana. Endophytic colonization by T-78 was faster in the SA-impaired mutant sid2 than in the wild type. Moreover, elicitation of SA-dependent defenses by SA application reduced T-78 colonization, indicating that the SA-pathway affects T-78 endophytism. In contrast, elicitation of the JA-pathway, which antagonized SA-dependent defenses, resulted in enhanced endophytic colonization by T-78. These findings are in line with our previous observation that SA-dependent defenses are repressed by T-78, which likely aids colonization by the endophytic fungus.

  15. Personalized monitoring of therapeutic salicylic acid in dried blood spots using a three-layer setup and desorption electrospray ionization mass spectrometry.

    PubMed

    Siebenhaar, Markus; Küllmer, Kai; Fernandes, Nuno Miguel de Barros; Hüllen, Volker; Hopf, Carsten

    2015-09-01

    Desorption electrospray ionization (DESI) mass spectrometry is an emerging technology for direct therapeutic drug monitoring in dried blood spots (DBS). Current DBS methods require manual application of small molecules as internal standards for absolute drug quantification. With industrial standardization in mind, we superseded the manual addition of standard and built a three-layer setup for robust quantification of salicylic acid directly from DBS. We combined a dioctyl sodium sulfosuccinate weave facilitating sample spreading with a cellulose layer for addition of isotope-labeled salicylic acid as internal standard and a filter paper for analysis of the standard-containing sample by DESI-MS. Using this setup, we developed a quantification method for salicylic acid from whole blood with a validated linear curve range from 10 to 2000 mg/L, a relative standard deviation (RSD%) ≤14%, and determination coefficients of 0.997. The limit of detection (LOD) was 8 mg/L and the lower limit of quantification (LLOQ) was 10 mg/L. Recovery rates in method verification by LC-MS/MS were 97 to 101% for blinded samples. Most importantly, a study in healthy volunteers after administration of a single dose of Aspirin provides evidence to suggest that the three-layer setup may enable individual pharmacokinetic and endpoint testing following blood collection by finger pricking by patients at home. Taken together, our data suggests that DBS-based quantification of drugs by DESI-MS on pre-manufactured three-layer cartridges may be a promising approach for future near-patient therapeutic drug monitoring.

  16. Salicylic acid for the treatment of melasma: new acquisitions for monitoring the clinical improvement.

    PubMed

    Fabbrocini, Gabriella; De Vita, Valerio; Marasca, Claudio; Palmisano, Franco; Monfrecola, Giuseppe

    2013-11-01

    The Melasma Area and Severity Index (MASI) and the Melasma Severity Score (MSS) are calculated on the basis of only a subjective clinical assessment. This raises the need to have an objective score, uniform in the evaluation by different clinicians. The purpose of this study was to establish if the images by Canfield Reveal Imager can be correlated to MASI score to better evaluate the clinical efficacy of salicylic acid 33% peeling in the treatment of melasma respect to the clinical observation. The study was a voluntary observational study. Twenty female patients affected with melasma, aged between 30 and 60 years, were included in the study. Treatment with salicylic acid 33% was performed once a month, for a total of four times. The dermatologist (Doc A) examined each patient's melasma areas using MASI score, at the face-to-face observation and at Reveal images evaluation during the first (T0) and the end point time (T4). Digital photographs were also evaluated by another experienced dermatologist (Doc B), who has never seen clinically the patients before and who evaluated MASI score by Reveal images at time T0 and T4. Student's t-test and linear regression test were performed, showing statistically significant values comparing MASI score obtained by digital photo and MASI score obtained clinically. The monitoring of the improvement by Reveal images can optimize the treatment approach and the efficacy of same dermocosmetics procedures can be revised following standard criteria. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid.

    PubMed

    Halim, Vincentius A; Altmann, Simone; Ellinger, Dorothea; Eschen-Lippold, Lennart; Miersch, Otto; Scheel, Dierk; Rosahl, Sabine

    2009-01-01

    To elucidate the molecular mechanisms underlying pathogen-associated molecular pattern (PAMP)-induced defense responses in potato (Solanum tuberosum), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep-13, a PAMP from Phytophthora, induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive-like cell death. We have previously shown that SA is required for Pep-13-induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12-oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F-box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep-13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep-13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA-deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans.

  18. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    NASA Astrophysics Data System (ADS)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  19. Peptide Conjugates of Benzene Carboxylic Acids as Agonists and Antagonists of Amylin Aggregation.

    PubMed

    Profit, Adam A; Vedad, Jayson; Desamero, Ruel Z B

    2017-02-15

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells. Recent findings suggest that soluble hIAPP oligomers are the cytotoxic species responsible for β-cell loss whereas amyloid fibrils themselves may indeed be innocuous. Potential avenues of therapeutic intervention include the development of compounds that prevent hIAPP self-assembly as well as those that reduce or eliminate lag time and rapidly accelerate the formation of amyloid fibrils. Both of these approaches minimize temporal exposure to soluble cytotoxic hIAPP oligomers. Toward this end our laboratory has pursued an electrostatic repulsion approach to the development of potential inhibitors and modulators of hIAPP self-assembly. Peptide conjugates were constructed in which benzene carboxylic acids of varying charge were employed as electrostatic disrupting elements and appended to the N-terminal of the hIAPP 22-29 (NFGAILSS) self-recognition sequence. The self-assembly kinetics of conjugates were characterized by turbidity measurements and the structure of aggregates probed by Raman and CD spectroscopy while the morphology was assessed using transmission electron microscopy. Several benzene carboxylic acid peptide conjugates failed to self-assemble and some were found to inhibit the aggregation of full-length amylin while others served to enhance the rate of amyloid formation and/or increase the yield of amyloid produced. Studies reveal that the geometric display of free carboxylates on the benzene ring of the conjugates plays an important role in the activity of conjugates. In addition, a number of free benzene carboxylic acids were found to modulate amylin

  20. Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids

    PubMed Central

    Danhof, Heather A.; Vylkova, Slavena; Vesely, Elisa M.; Ford, Amy E.; Gonzalez-Garay, Manuel

    2016-01-01

    ABSTRACT The opportunistic fungal pathogen Candida albicans thrives within diverse niches in the mammalian host. Among the adaptations that underlie this fitness is an ability to utilize a wide array of nutrients, especially sources of carbon that are disfavored by many other fungi; this contributes to its ability to survive interactions with the phagocytes that serve as key barriers against disseminated infections. We have reported that C. albicans generates ammonia as a byproduct of amino acid catabolism to neutralize the acidic phagolysosome and promote hyphal morphogenesis in a manner dependent on the Stp2 transcription factor. Here, we report that this species rapidly neutralizes acidic environments when utilizing carboxylic acids like pyruvate, α-ketoglutarate (αKG), or lactate as the primary carbon source. Unlike in cells growing in amino acid-rich medium, this does not result in ammonia release, does not induce hyphal differentiation, and is genetically distinct. While transcript profiling revealed significant similarities in gene expression in cells grown on either carboxylic or amino acids, genetic screens for mutants that fail to neutralize αKG medium identified a nonoverlapping set of genes, including CWT1, encoding a transcription factor responsive to cell wall and nitrosative stresses. Strains lacking CWT1 exhibit retarded αKG-mediated neutralization in vitro, exist in a more acidic phagolysosome, and are more susceptible to macrophage killing, while double cwt1Δ stp2Δ mutants are more impaired than either single mutant. Together, our observations indicate that C. albicans has evolved multiple ways to modulate the pH of host-relevant environments to promote its fitness as a pathogen. PMID:27935835

  1. Alkenyl Carboxylic Acid: Engineering the Nanomorphology in Polymer-Polymer Solar Cells as Solvent Additive.

    PubMed

    Zhang, Yannan; Yuan, Jianyu; Sun, Jianxia; Ding, Guanqun; Han, Lu; Ling, Xufeng; Ma, Wanli

    2017-04-19

    We have investigated a series of commercially available alkenyl carboxylic acids with different alkenyl chain lengths (trans-2-hexenoic acid (CA-6), trans-2-decenoic acid (CA-10), 9-tetradecenoic acid (CA-14)) for use as solvent additives in polymer-polymer non-fullerene solar cells. We systematically investigated their effect on the film absorption, morphology, carrier generation, transport, and recombination in all-polymer solar cells. We revealed that these additives have a significant impact on the aggregation of polymer acceptor, leading to improved phase segregation in the blend film. This in-depth understanding of the additives effect on the nanomorphology in all-polymer solar cell can help further boost the device performance. By using CA-10 with the optimal alkenyl chain length, we achieved fine phase separation, balanced charge transport, and suppressed recombination in all-polymer solar cells. As a result, an optimal power conversion efficiency (PCE) of 5.71% was demonstrated which is over 50% higher than that of the as-cast device (PCE = 3.71%) and slightly higher than that of devices with DIO treatment (PCE = 5.68%). Compared with widely used DIO, these halogen-free alkenyl carboxylic acids have a more sustainable processing as well as better performance, which may make them more promising candidates for use as processing additives in organic non-fullerene solar cells.

  2. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Sr., Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.

    Here, converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and themore » method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less

  3. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.

    Converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and the methodmore » is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less

  4. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    DOE PAGES

    Lewis, Sr., Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.; ...

    2017-11-22

    Here, converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and themore » method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less

  5. Structure and thermotropic phase behavior of sodium and potassium carboxylate ionomers

    NASA Astrophysics Data System (ADS)

    Mantsch, H. H.; Weng, S. F.; Yang, P. W.; Eysel, H. H.

    1994-07-01

    A molecular complex is formed between long-chain carboxylic acids and their alkali salts in a 1 : 1 mixture. These so-called "acid soaps" or carboxylate ionomers have multilamellar bilayer-type structures in solid state, which are retained in the presence of excess water, resembling the dispersions (gels) formed by typical two-chain amphiphiles, e.g. lipids. The special arrangement of hydrogen-bonded pairs of carboxylic acid and carboxylate groups into a unique "head-group" is supported by frequency shifts and partial or total disappearance of the characteristic vibrations of carboxylic acid dimers and of carboxylate groups. The existence of well-ordered hydrocarbon chains is demonstrated by the existence and polarization properties of the methylene rocking and wagging propagation modes. The gel to liquid-crystal phase transition of the hydrated acid soaps shows practically no cation dependence, unlike the corresponding phase transition in neutral soaps which varies considerably with the nature of the counterion. There is spectroscopic evidence to suggest a cooperative process that involves "melting" of the alkyl chains and disintegration of the hydrogen-bonded carboxylate—carboxylic acid complex, followed by a cation-dependent equilibrium that favors the formation of acid dimers at elevated temperatures and some form of hydrogen-bonded ion pair aggregates at intermediate temperatures.

  6. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA).

    PubMed

    Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis.

  7. Preliminary crystallographic analysis of salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matera, I.; Ferraroni, M.; Bürger, S.

    2006-06-01

    Salicylate 1,2-dioxygenase, a new ring-fission dioxygenase from the naphthalenesulfonate-degrading strain P. salicylatoxidans, which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring-fission mechanism, has been crystallized. The crystals obtained give diffraction data to 2.9 Å resolution which could assist in the elucidation of the catalytic mechanism of this peculiar dioxygenase. Salicylate 1,2-dioxygenase, a new ring-fission dioxygenase from the naphthalenesulfonate-degrading strain Pseudaminobacter salicylatoxidans which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring-fission mechanism, has been crystallized. Diffraction-quality crystals of salicylate 1,2-dioxygenase were obtained using the sitting-drop vapour-diffusion method at 277 K from a solution containing 10%(w/v) ethanol, 6%(w/v) PEG 400,more » 0.1 M sodium acetate pH 4.6. Crystals belong to the primitive tetragonal space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = 133.3, c = 191.51 Å. A complete data set at 100 K extending to a maximum resolution of 2.9 Å was collected at a wavelength of 0.8423 Å. Molecular replacement using the coordinates of known extradiol dioxygenases structures as a model has so far failed to provide a solution for salicylate 1,2-dioxygenase. Attempts are currently being made to solve the structure of the enzyme by MAD experiments using the anomalous signal of the catalytic Fe{sup II} ions. The salicylate 1,2-dioxygenase structural model will assist in the elucidation of the catalytic mechanism of this ring-fission dioxygenase from P. salicylatoxidans, which differs markedly from the known gentisate 1,2-dioxygenases or 1-hydroxy-2-naphthoate dioxygenases because of its unique ability to oxidatively cleave salicylate, gentisate and 1-hydroxy-2-naphthoate with high catalytic efficiency.« less

  8. Single and multi-component adsorption of salicylic acid, clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic-organic pillared clay fixed beds.

    PubMed

    Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2015-01-23

    Fixed-beds of transition metal (Co(2+), Ni(2+) or Cu(2+)) inorganic-organic pillared clays (IOCs) were prepared to study single- and multi-component non-equilibrium adsorption of a set of pharmaceutical and personal care products (PPCPs: salicylic acid, clofibric acid, carbamazepine and caffeine) from water. Adsorption capacities for single components revealed that the copper(II) IOCs have better affinity toward salicylic and clofibric acid. However, multi-component adsorption tests showed a considerable decrease in adsorption capacity for the acids and an unusual selectivity toward carbamazepine depending on the transition metal. This was attributed to a combination of competition between PPCPs for adsorption sites, adsorbate-adsorbate interactions, and plausible pore blocking caused by carbamazepine. The cobalt(II) IOC bed that was partially calcined to fractionate the surfactant moiety showcased the best selectivity toward caffeine, even during multi-component adsorption. This was due to a combination of a mildly hydrophobic surface and interaction between the PPCP and cobalt(II). In general, the tests suggest that these IOCs may be a potential solution for the removal of PPCPs if employed in a layered-bed configuration, to take care of families of adsorbates in a sequence that would produce sharpened concentration wavefronts. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    NASA Astrophysics Data System (ADS)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  10. Attenuation of salicylate-induced tinnitus by Ginkgo biloba extract in rats.

    PubMed

    Jastreboff, P J; Zhou, S; Jastreboff, M M; Kwapisz, U; Gryczynska, U

    1997-01-01

    The effects of an extract from Ginkgo biloba, EGb 761, on tinnitus were tested using an animal model of tinnitus. Daily oral administration of EGb 761 in doses from 10 to 100 mg/ kg/day began 2 weeks before behavioral procedures and continued until the end of the experiment. Tinnitus was induced by daily administration of 321 mg/kg sodium salicylate s.c. (corresponding to 275 mg/kg/day of salicylate acid) in fourteen groups of pigmented rats, 6 animals/group. The results from salicylate- and EGb-761-treated animals were compared to control groups receiving either salicylate, saline, or EGb 761 only in doses of 100 mg/kg. Administration of EGb 761 resulted in a statistically significant decrease of the behavioral manifestation of tinnitus for doses of 25, 50 and 100 mg/kg/ day.

  11. Methyl salicylate 2-O-β-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes

    PubMed Central

    2011-01-01

    Background Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD). Activation of microglia and astrocytes is a characteristic of brain inflammation. Epidemiological studies have shown that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) delays the onset of AD and suppresses its progression. Methyl salicylate-2-O-β-D-lactoside (DL0309) is a new molecule chemically related to salicylic acid. The present study aimed to evaluate the anti-inflammatory effects of DL0309. Findings Our studies show that DL0309 significantly inhibits lipopolysaccharide (LPS)-induced release of the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α; and the expression of the inflammation-related proteins iNOS, COX-1, and COX-2 by microglia and astrocytes. At a concentration of 10 μM, DL0309 prominently inhibited LPS-induced activation of NF-κB in glial cells by blocking phosphorylation of IKK and p65, and by blocking IκB degradation. Conclusions We demonstrate here for the first time that DL0309 exerts anti-inflammatory effects in glial cells by suppressing different pro-inflammatory cytokines and iNOS/NO. Furthermore, it also regulates the NF-κB signaling pathway by blocking IKK and p65 activation and IκB degradation. DL0309 also acts as a non-selective COX inhibitor in glial cells. These studies suggest that DL0309 may be effective in the treatment of neuroinflammatory disorders, including AD. PMID:21831328

  12. 6-Substituted 3,4-dihydro-naphthalene-2-carboxylic acids: synthesis and structure-activity studies in a novel class of human 5alpha reductase inhibitors.

    PubMed

    Baston, Eckhard; Salem, Ola I A; Hartmann, Rolf W

    2002-10-01

    Novel 3,4-dihydro-naphthalene-2-carboxylic acids were synthesized and evaluated for 5alpha reductase inhibitory activity. This enzyme exists in two isoforms and is a pharmacological target for the treatment of benign prostatic hyperplasia, male pattern baldness and acne. In the present study non-steroidal compounds capable of mimicking the transition state of the steroidal substrates were prepared. The synthetic strategy for the preparation of compounds 1-6 consisted of triflation followed by subsequent Heck-type carboxylation or methoxy carbonylation for 6-phenyl-3,4-dihydronaphthalen-2(1H)-one 1c. A Negishi-type coupling reaction between 6-(trifluoro-methanesulfonyloxy)-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester 7b and various aryl bromides led, after further transformations, to 6-substituted 3,4-dihydro-naphthalene-2-carboxylic acids 7-15. In a similar way the corresponding naphthalene-2-carboxylic acids 16 and 17 were obtained. The DU 145 cell line and prostate homogenates served as enzyme sources for the human type 1 and type 2 isozymes, whereas ventral prostate was employed to evaluate rat isozyme inhibitory potency. The most active inhibitors identified in this study were 6-[4-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (3) (IC50 = 0.09 microM, rat type 1), 6-[3-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (13) (IC50 = 0.75 microM, human type 2; IC50 = 0.81 microM, human type 1) and 6-[4-(N,N-diisopropylamino-carbonyl)phenyl]naphthalene-2-carboxylic acid (16) (IC50 = 0.2 microM, human type 2). The latter compound was shown to deactivate the enzyme in an uncompetitive manner (Ki = 90 nM; Km, Testosterone = 0.8-1.0 microM) similar to the steroidal inhibitor Epristeride. Select inhibitors (13 and 16) were tested in vivo using testosterone propionate-treated, juvenile, orchiectomized SD-rats. None of the compounds was active at a dose of 25 mg/kg. This result might in part be

  13. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  14. The kinetics of photocatalytic degradation of aliphatic carboxylic acids in an UV/TiO2 suspension system.

    PubMed

    Chen, Q; Song, J M; Pan, F; Xia, F L; Yuan, J Y

    2009-10-01

    Kinetic studies on the photocatalytic degradation of aliphatic carboxylic acids were carried out in a slurry photoreactor with in-situ monitoring, employing artificial UV light as the source of energy and nano-TiO2 powder as the catalyst. The influences on the photocatalytic degradation such as the initial concentration of reactant (C0), catalyst dosage (CTiO2), UV intensity (Ia) and pH value have been investigated. Good agreement has been obtained between the value calculated by Langmuir-Freundlich-Hinshelwood (L-F-H) model and experimental data, with coefficient of multiple determination (R2) varying from 0.880 to 0.999. The L-F-H model has been proven to be feasible in describing the kinetic characteristic of the photocatalytic degradation of aliphatic carboxylic acids. Moreover, the apparent reaction rate constant (k) of the photocatalytic degradation of dicarboxylic acids is higher than that of monocarboxylic acids with the same carbon atoms. This shows that the photocatalytic degradation rate is favoured by different chemical structure.

  15. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    PubMed Central

    2009-01-01

    Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA)) and small polar molecules (e.g., jasmonic acid (JA), salicylic acid (SA)) containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the molecules must contain at

  16. Approaches to α-amino acids via rearrangement to electron-deficient nitrogen: Beckmann and Hofmann rearrangements of appropriate carboxyl-protected substrates

    PubMed Central

    Rao, V Mohana

    2012-01-01

    Summary The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann) and 2-substituted malonamic acids 9 (Hofmann), their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate). The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl) products are α-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis. PMID:23019476

  17. Cellulase applied to the leaves of sweet pepper (Capsicum annuum L. var. grossum) upregulates the production of salicylic and azelaic acids.

    PubMed

    Sato, Chizuru; Oka, Norikuni; Nabeta, Kensuke; Matsuura, Hideyuki

    2011-01-01

    Treating the leaves of sweet pepper (Capsicum annuum L. var. grossum) with an aqueous solution of cellulase resulted in a four-fold increase in the salicylic acid level compared to a control plant. The level of endogenous azelaic acid was also elevated by the cellulase treatment. Azelaic acid has recently been reported to act as a mobile "priming" agent to arm plants against pathogenic attack. Our results are consistent with this and that the cellulase treatment enhanced the ability of sweet pepper to withstand viral attack.

  18. Jasmonic Acid Is a Key Regulator of Spider Mite-Induced Volatile Terpenoid and Methyl Salicylate Emission in Tomato1[w

    PubMed Central

    Ament, Kai; Kant, Merijn R.; Sabelis, Maurice W.; Haring, Michel A.; Schuurink, Robert C.

    2004-01-01

    The tomato (Lycopersicon esculentum) mutant def-1, which is deficient in induced jasmonic acid (JA) accumulation upon wounding or herbivory, was used to study the role of JA in the direct and indirect defense responses to phytophagous mites (Tetranychus urticae). In contrast to earlier reports, spider mites laid as many eggs and caused as much damage on def-1 as on wild-type plants, even though def-1 lacked induction of proteinase inhibitor activity. However, the hatching-rate of eggs on def-1 was significantly higher, suggesting that JA-dependent direct defenses enhanced egg mortality or increased the time needed for embryonic development. As to gene expression, def-1 had lower levels of JA-related transcripts but higher levels of salicylic acid (SA) related transcripts after 1 d of spider mite infestation. Furthermore, the indirect defense response was absent in def-1, since the five typical spider mite-induced tomato-volatiles (methyl salicylate [MeSA], 4,8,12-trimethyltrideca-1,3,7,11-tetraene [TMTT], linalool, trans-nerolidol, and trans-β-ocimene) were not induced and the predatory mite Phytoseiulus persimilis did not discriminate between infested and uninfested def-1 tomatoes as it did with wild-type tomatoes. Similarly, the expression of the MeSA biosynthetic gene salicylic acid methyltransferase (SAMT) was induced by spider mites in wild type but not in def-1. Exogenous application of JA to def-1 induced the accumulation of SAMT and putative geranylgeranyl diphosphate synthase transcripts and restored MeSA- and TMTT-emission upon herbivory. JA is therefore necessary to induce the enzymatic conversion of SA into MeSA. We conclude that JA is essential for establishing the spider mite-induced indirect defense response in tomato. PMID:15310835

  19. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.

    PubMed

    Xu, Enjun; Brosché, Mikael

    2014-06-04

    Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

  20. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  1. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    PubMed

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  2. Microfabrication of individual 200 microm diameter transdermal microconduits using high voltage pulsing in salicylic acid and benzoic acid.

    PubMed

    Ilic, L; Gowrishankar, T R; Vaughan, T E; Herndon, T O; Weaver, J C

    2001-01-01

    We describe an extension of semiconductor fabrication methods that creates individual approximately 200 microm diameter aqueous pathways through human stratum corneum at predetermined sites. Our hypothesis is that spatially localized electroporation of the multilamellar lipid bilayer membranes provides rapid delivery of salicylic acid to the keratin within corneocytes, leading to localized keratin disruption and then to a microconduit. A microconduit penetrating the isolated stratum corneum supports a volumetric flow of order 0.01 ml per s with a pressure difference of only 0.01 atm (about 10(2) Pa). This study provides a method for rapidly microengineering a pathway in the skin to interface future devices for transdermal drug delivery and sampling of biologically relevant fluids.

  3. Effect of Amine Modification on the Properties of Zirconium-Carboxylic Acid Based Materials and Their Applications as NO2 Adsorbents at Ambient Conditions

    DTIC Science & Technology

    2014-01-06

    as a source of –SH [23]. Nitrogen dioxide (NO2) is an acidic , corrosive , and toxic gas present in the atmosphere. The main sources of NO2 pollution is...occurring are the Lewis acid –base reactions. These reactions are facilitated by the formation of nitric Schematic reaction between the urea incorporated in...of zirconium– carboxylic acid based materials and their applications as NO2 adsorbents at ambient conditions Zirconium–carboxylic ligand-based porous

  4. Novel salicylic acid-oriented thiourea-type receptors as colorimetric chemosensor: Synthesis, characterizations and selective naked-eye recognition properties

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; Cao, Xiufang; Chen, Changshui; Ke, Shaoyong

    2012-10-01

    Based on the salicylic acid backbone, three highly sensitive and selective colorimetric chemosensors with an acylthiourea binding unit have been designed, synthesized and characterized. These chemosensors have been utilized for selective recognition of fluoride anions in dry DMSO solution by typical spectroscopic titration techniques. Furthermore, the obtained chemosensors AR1-3 have shown naked-eye sensitivity for detection of biologically important fluoride ion over other anions in solution.

  5. Hepatic structure-pharmacokinetic relationships: the hepatic disposition and metabolite kinetics of a homologous series of O-acyl derivatives of salicylic acid.

    PubMed

    Hung, D Y; Mellick, G D; Anissimov, Y G; Weiss, M; Roberts, M S

    1998-08-01

    1. The hepatic disposition and metabolite kinetics of a homologous series of O-acyl (acetyl, propionyl, butanoyl, pentanoyl, hexanoyl and octanoyl) esters of salicylic acid (C2SA, C3SA, C4SA, C5SA, C6SA and C8SA, respectively) was determined using a single-pass, in-situ rat liver preparation. 2. The hepatic venous outflow profiles for the parent esters and the generated metabolite, salicylic acid (SA) were analysed by HPLC. Non-parametric moments analysis was used to determine the area under the curve (AUC'), mean transit time (MTT) and normalized variance (CV2) for the parent esters and generated SA. 3. Pregenerated SA ([14C]-salicylic acid) was injected into each liver with the parent ester to determine its distribution characteristics. 4. The overall recovery of ester plus metabolite was 89% of the ester dose injected and independent of the ester carbon number, suggesting that ester extraction was due to hepatic metabolism to salicylic acid. 5. The metabolite AUC' value increased directly with the lipophilicity of the parent ester (from 0.12 for C2SA to 0.95 for C8SA). By contrast, the parent AUC' decreased with the lipophilicity (from 0.85 for C2SA to zero for C8SA). The metabolite MTT value also showed a trend to increase with the lipophilicity of the parent ester (from 15.72 s for C3SA to 61.97 s for C8SA). However, the parent MTT value shows no significant change across the series. 6. The two-compartment dispersion model was used to derive the kinetic parameters for parent ester, pregenerated SA and generated SA. Consequently, these parameters were used to estimate the values of AUC', MTT and CV2 for the parent ester and metabolite. The moments values obtained using the two-compartment dispersion model show similar trends to the corresponding moments values obtained from the outflow profiles using a non-parametric approach. 7. The more lipophilic aspirin analogues are more confined to the portal circulation after oral administration than aspirin due to their

  6. A Precise Method for Processing Data to Determine the Dissociation Constants of Polyhydroxy Carboxylic Acids via Potentiometric Titration.

    PubMed

    Huang, Kaixuan; Xu, Yong; Lu, Wen; Yu, Shiyuan

    2017-12-01

    The thermodynamic dissociation constants of xylonic acid and gluconic acid were studied via potentiometric methods, and the results were verified using lactic acid, which has a known pKa value, as a model compound. Solutions of xylonic acid and gluconic acid were titrated with a standard solution of sodium hydroxide. The determined pKa data were processed via the method of derivative plots using computer software, and the accuracy was validated using the Gran method. The dissociation constants associated with the carboxylic acid group of xylonic and gluconic acids were determined to be pKa 1  = 3.56 ± 0.07 and pKa 1  = 3.74 ± 0.06, respectively. Further, the experimental data showed that the second deprotonation constants associated with a hydroxyl group of each of the two acids were pKa 2  = 8.58 ± 0.12 and pKa 2  = 7.06 ± 0.08, respectively. The deprotonation behavior of polyhydroxy carboxylic acids was altered using various ratios with Cu(II) to form complexes in solution, and this led to proposing a hypothesis for further study.

  7. Effects of salicylate on 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.

    PubMed

    Yeh, S Y

    1997-11-01

    The drug 3,4-methylenedioxymethamphetamine (MDMA) is a serotonergic neurotoxicant that causes hyperthermia and depletion of serotonin (5-HT) and 5-hydroxy-indole-3-acetic acid (5-HIAA) in the central nervous system. Formation of neurotoxic metabolites of MDMA, e.g., 2,4,5-trihydroxy-methamphetamine and 2,4,5-trihydroxyamphetamine, involves hydroxyl and/or superoxide free radicals. The present study was designed to determine whether the hydroxyl free-radical-trapping agent salicylate could provide protection against MDMA neurotoxicity in rats. In the acute studies, sodium salicylate (12.5-400 mg/kg, calculated as free acid) was injected interperitoneally (i.p.) 1 h before subcutaneous (s.c.) injections of MDMA (20 mg/kg as base). In the chronic studies, sodium salicylate (3.1-100 mg/kg) was injected i.p. 1 h before repeated s.c. injections of MDMA (10 mg/kg as base, twice daily, at 0830 and 1730 h for 4 consecutive days). Repeated MDMA administration depleted contents of 5-HT and 5-HIAA in the frontal cortex, hippocampus and striatum. Coadministration of salicylate plus MDMA did not significantly alter MDMA-induced depletion of 5-HT and 5-HIAA in these tissues. Thus, salicylate, a hydroxyl free-radical-trapping agent, does not protect against MDMA-induced hyperthermia and depletion of 5-HT and 5-HIAA. These observations suggest that MDMA-induced neurotoxicity may occur mainly through the production of superoxide or other radicals rather than hydroxyl free radicals. Salicylate actually potentiated MDMA-induced hyperthermia and lethality, findings that might be of clinical relevance.

  8. Amino group of salicylic acid exhibits enhanced inhibitory potential against insulin amyloid fibrillation with protective aptitude toward amyloid induced cytotoxicity.

    PubMed

    Zaman, Masihuz; Khan, Mohsin Vahid; Zakariya, Syed Mohammad; Nusrat, Saima; Meeran, Syed Mustapha; Alam, Parvez; Ajmal, Mohammad Rehan; Wahiduzzaman, Wahiduzzaman; Shahein, Yasser E; Abouelella, Amira M; Khan, Rizwan Hasan

    2018-05-01

    Protein misfolding and aggregation lead to amyloid generation that in turn may induce cell membrane disruption and leads to cell apoptosis. In an effort to prevent or treat amyloidogenesis, large number of studies has been paying attention on breakthrough of amyloid inhibitors. In the present work, we aim to access the effect of two drugs, that is, acetylsalicylic acid and 5-amino salicylic acid on insulin amyloids by using various biophysical, imaging, cell viability assay, and computational approaches. We established that both drugs reduce the turbidity, light scattering and fluorescence intensity of amyloid indicator dye thioflavin T. Premixing of drugs with insulin inhibited the nucleation phase and inhibitory potential was boosted by increasing the concentration of the drug. Moreover, addition of drugs at the studied concentrations attenuated the insulin fibril induced cytotoxicity in breast cancer cell line MDA-MB-231. Our results highlight the amino group of salicylic acid exhibited enhanced inhibitory effects on insulin fibrillation in comparison to acetyl group. It may be due to presence of amino group that helps it to prolong the nucleation phase with strong binding as well as disruption of aromatic and hydrophobic stacking that plays a key role in amyloid progression. © 2017 Wiley Periodicals, Inc.

  9. Research Advances. Image Pinpoints All 5 Million Atoms in Viral Coat; Bilirubin, "Animals-Only" Pigment, Found in Plants; New Evidence Shows Humans Make Salicylic Acid

    NASA Astrophysics Data System (ADS)

    King, Angela G.

    2009-08-01

    Recent "firsts" in chemical research: image of a viral capsid pinpointing 5 million atoms; isolation and identification of an "animal" pigment, bilirubin, from a plant source; evidence that humans make salicylic acid.

  10. Establishment of auditory discrimination and detection of tinnitus induced by salicylic acid and intense tone exposure in the rat.

    PubMed

    Sederholm, Fredrik; Swedberg, Michael D B

    2013-05-13

    Rats were trained in a two lever food reinforced operant procedure to discriminate a 8000 Hz pure tone stimulus from its absence. Responding on one lever was reinforced in the presence of the tone and responding on the other lever was reinforced when the tone was absent. Frequency generalization testing yielded an inverted U-shaped function, whereas sound pressure level generalization testing yielded a continuous decrease in responding on the tone associated lever with decreasing sound pressure levels. The administration of sodium salicylic acid (150-450 mg/kg) generated responding on the tone associated lever suggesting that salicylic acid induced an experience that had commonalities with the percept of the training tone stimulus. After exposure to intense sound, responding consistent with the presence of tinnitus was achieved and Lidocaine failed to reduce tinnitus behavior. The use of a two choice design helped avoid confounding factors induced by drug induced side effects. Further, since no auditory cues were employed in the test situation the model achieves resistance to potential bias due to hearing impairment and hyperacusis. We propose that this model may be useful in detecting tinnitus. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids

    PubMed Central

    Palade, PT; Barchi, RL

    1977-01-01

    25 aromatic carboxylic acids which are analogs of benzoic acid were tested in the rat diaphragm preparation for effects on chloride conductance (G(Cl)). Of the 25, 19 were shown to reduce membrane G(Cl) with little effect on other membrane parameters, although their apparent K(i) varied widely. This inhibition was reversible if exposure times were not prolonged. The most effective analog studied was anthracene-9-COOH (9-AC; K(i) = 1.1 x 10(-5) M). Active analogs produced concentration-dependent inhibition of a type consistent with interaction at a single site or group of sites having similar binding affinities, although a correlation could also be shown between lipophilicity and K(i). Structure-activity analysis indicated that hydrophobic ring substitution usually increased inhibitory activity while para polar substitutions reduced effectiveness. These compounds do not appear to inhibit G(Cl) by altering membrane surface charge and the inhibition produced is not voltage dependent. Qualitative characteristics of the I-V relationship for Cl(-) current are not altered. Conductance to all anions is not uniformly altered by these acids as would be expected from steric occlusion of a common channel. Concentrations of 9-AC reducing G(Cl) by more than 90 percent resulted in slight augmentation of G(I). The complete conductance sequence obtained at high levels of 9-AC was the reverse of that obtained under control conditions. Permeability sequences underwent progressive changes with increasing 9-AC concentration and ultimately inverted at high levels of the analog. Aromatic carboxylic acids appear to inhibit G(Cl) by binding to a specific intramembrane site and altering the selectivity sequence of the membrane anion channel. PMID:894246

  12. Structure-Activity Relationship Study of Ionotropic Glutamate Receptor Antagonist (2S,3R)-3-(3-Carboxyphenyl)pyrrolidine-2-carboxylic Acid.

    PubMed

    Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte; Demmer, Charles S; Hansen, Jeanette; Han, Liwei; Monrad, Rune N; Nielsen, Birgitte; Tapken, Daniel; Pickering, Darryl S; Kastrup, Jette S; Frydenvang, Karla; Bunch, Lennart

    2015-08-13

    Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate. The 3-carboxyphenyl ring of 2e and 2f forms contacts comparable to those of the distal carboxylate in kainate.

  13. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    PubMed

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  14. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  15. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    DOE PAGES

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; ...

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m -3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m -3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m -3 (T = 333.15 K,more » p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m -3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  16. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.).

    PubMed

    Belkadhi, Aïcha; De Haro, Antonio; Obregon, Sara; Chaïbi, Wided; Djebali, Wahbi

    2015-10-01

    Salicylic acid (SA) promotes plant defense responses against toxic metal stresses. The present study addressed the hypothesis that 8-h SA pretreatment, would alter membrane lipids in a way that would protect against Cd toxicity. Flax seeds were pre-soaked for 8h in SA (0, 250 and 1000µM) and then subjected, at seedling stage, to cadmium (Cd) stress. At 100µM CdCl2, significant decreases in the percentages of phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and monogalactosyldiacylglycerol (MGDG) and changes in their relative fatty acid composition were observed in Cd-treated roots in comparison with controls. However, in roots of 8-h SA pretreated plantlets, results showed that the amounts of PC and PE were significantly higher as compared to non-pretreated plantlets. Additionally, in both lipid classes, the proportion of linolenic acid (18:3) increased upon the pretreatment with SA. This resulted in a significant increase in the fatty acid unsaturation ratio of the root PC and PE classes. As the exogenous application of SA was found to be protective of flax lipid metabolism, the possible mechanisms of protection against Cd stress in flax roots were discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity.

    PubMed

    Liu, Lijing; Sonbol, Fathi-Mohamed; Huot, Bethany; Gu, Yangnan; Withers, John; Mwimba, Musoki; Yao, Jian; He, Sheng Yang; Dong, Xinnian

    2016-10-11

    It is an apparent conundrum how plants evolved effector-triggered immunity (ETI), involving programmed cell death (PCD), as a major defence mechanism against biotrophic pathogens, because ETI-associated PCD could leave them vulnerable to necrotrophic pathogens that thrive on dead host cells. Interestingly, during ETI, the normally antagonistic defence hormones, salicylic acid (SA) and jasmonic acid (JA) associated with defence against biotrophs and necrotrophs respectively, both accumulate to high levels. In this study, we made the surprising finding that JA is a positive regulator of RPS2-mediated ETI. Early induction of JA-responsive genes and de novo JA synthesis following SA accumulation is activated through the SA receptors NPR3 and NPR4, instead of the JA receptor COI1. We provide evidence that NPR3 and NPR4 may mediate this effect by promoting degradation of the JA transcriptional repressor JAZs. This unique interplay between SA and JA offers a possible explanation of how plants can mount defence against a biotrophic pathogen without becoming vulnerable to necrotrophic pathogens.

  18. Clinical evidence for use of acetyl salicylic acid in control of flushing related to nicotinic acid treatment.

    PubMed

    Oberwittler, H; Baccara-Dinet, M

    2006-06-01

    Nicotinic acid (NA) is highly effective and widely used in the management of dyslipidaemia. For many patients, the side effect of flushing of the face and upper body leads to discontinuation. Flushing with NA is mediated by prostaglandins, and as acetyl salicylic acid (ASA, 'aspirin') is a highly effective inhibitor of prostaglandin synthesis, there is a rationale for its use to prevent or reduce the severity of NA-related flushing. This literature survey identified four studies specifically exploring the utility of ASA in preventing NA-related flushing in healthy volunteers. Twenty-three NA studies, where ASA was mandatory or optional within the protocol, and four studies, where background ASA therapy was reported in most participants, were also identified. Although the incidence of flushing in studies using ASA was often high, discontinuation rates due to flushing were low (mean 7.7%). This figure compares favourably with discontinuation rates with NA commonly reported in the literature (up to approximately 40%). There is good supportive evidence for the use of ASA in reducing the severity of NA-related flushing.

  19. Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback

    PubMed Central

    Moon, Hyung-Geun; Kang, Chil Sung; Choi, Jun-Pyo; Choi, Dong Sic; Choi, Hyun Il; Choi, Yong Wook; Jeon, Seong Gyu; Yoo, Joo-Yeon; Jang, Myoung Ho; Gho, Yong Song; Kim, Yoon-Keun

    2013-01-01

    T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback. PMID:23306703

  20. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for amore » LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pK a. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.« less

  1. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis

    Treesearch

    Ruibin Wang; Liheng Chen; J.Y. Zhu; Rendang Yang

    2017-01-01

    This study demonstrates the feasibility of tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) from bleached pulp fibers through hydrolysis using a recyclable dicarboxylic acid. Hydrolysis experiments were conducted using ranges of 15–75 wt% maleic acid concentrations, 60–120°C temperatures, and 5–300 min reaction...

  2. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  3. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  4. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    PubMed

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  5. The effect of high-dose sodium salicylate on chronically elevated plasma nonesterified fatty acid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

    PubMed

    Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2009-11-01

    Prolonged elevation of plasma nonesterified fatty acids (NEFA) induces insulin resistance and impairs pancreatic β-cell adaptation to insulin resistance. Studies in rodents suggest that inflammation may play a role in this "lipotoxicity." We studied the effects of sodium salicylate, an anti-inflammatory agent, on lipid-induced alterations in β-cell function and insulin sensitivity in six overweight and obese nondiabetic men. Each subject underwent four separate studies, 4-6 wk apart, in random order: 1) SAL, 1-wk placebo followed by intravenous (iv) infusion of saline for 48 h; 2) IH, 1-wk placebo followed by iv infusion of intralipid plus heparin for 48 h to raise plasma NEFA approximately twofold; 3) IH + SS, 1-wk sodium salicylate (4.5 g/day) followed by 48-h IH infusion; and 4) SS, 1-wk oral sodium salicylate followed by 48-h saline infusion. After 48-h saline or lipid infusion, insulin secretion and sensitivity were assessed by hyperglycemic clamp and euglycemic hyperinsulinemic clamp, respectively, in sequential order. Insulin sensitivity was reduced by lipid infusion (IH = 67% of SAL) and was not improved by salicylate (IH + SS = 56% of SAL). Lipid infusion also reduced the disposition index (P < 0.05), which was not prevented by sodium salicylate. Salicylate reduced insulin clearance. These data suggest that oral sodium salicylate at this dose impairs insulin clearance but does not ameliorate lipid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

  6. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect.

    PubMed

    Gernigon, Nicolas; Al-Zoubi, Raed M; Hall, Dennis G

    2012-10-05

    The importance of amides as a component of biomolecules and synthetic products motivates the development of catalytic, direct amidation methods employing free carboxylic acids and amines that circumvent the need for stoichiometric activation or coupling reagents. ortho-Iodophenylboronic acid 4a has recently been shown to catalyze direct amidation reactions at room temperature in the presence of 4A molecular sieves as dehydrating agent. Herein, the arene core of ortho-iodoarylboronic acid catalysts has been optimized with regards to the electronic effects of ring substitution. Contrary to the expectation, it was found that electron-donating substituents are preferable, in particular, an alkoxy substituent positioned para to the iodide. The optimal new catalyst, 5-methoxy-2-iodophenylboronic acid (MIBA, 4f), was demonstrated to be kinetically more active than the parent des-methoxy catalyst 4a, providing higher yields of amide products in shorter reaction times under mild conditions at ambient temperature. Catalyst 4f is recyclable and promotes the formation of amides from aliphatic carboxylic acids and amines, and from heteroaromatic carboxylic acids and other functionalized substrates containing moieties like a free phenol, indole and pyridine. Mechanistic studies demonstrated the essential role of molecular sieves in this complex amidation process. The effect of substrate stoichiometry, concentration, and measurement of the catalyst order led to a possible catalytic cycle based on the presumed formation of an acylborate intermediate. The need for an electronically enriched ortho-iodo substituent in catalyst 4f supports a recent theoretical study (Marcelli, T. Angew. Chem. Int. Ed.2010, 49, 6840-6843) with a purported role for the iodide as a hydrogen-bond acceptor in the orthoaminal transition state.

  7. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid

    Treesearch

    Huiyang Bian; Liheng Chen; Hongqi Dai; J.Y. Zhu

    2017-01-01

    Here we demonstrate di-carboxylic acid hydrolysis for the integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using two unbleached hardwood chemical pulps of lignin contents of 3.9 and 17.2%. Acid hydrolysis experiments used maleic acid solution of 60 wt% concentration at 120°C for 120 min under ambient pressure. Yields of...

  8. Simultaneous determination of C1-C4 carboxylic acids and aldehydes using 2,4-dinitrophenylhydrazine-impregnated silica gel and high-performance liquid chromatography.

    PubMed

    Uchiyama, Shigehisa; Matsushima, Erika; Aoyagi, Shohei; Ando, Masanori

    2004-10-01

    A new method for the simultaneous determination of aliphatic carboxylic acids and aldehydes in air is described. In this work, carboxylic acids were allowed to react with 2,4-dinitrophenylhydrazine (DNPH) to form the corresponding carboxylic 2,4-dinitrophenylhydrazides. These derivatives have excellent thermal stability, with melting points higher than those of the corresponding hydrazones by 32-50 degrees C. C1-C4 carboxylic acid 2,4-dinitrophenylhydrazides exhibited maximum absorption wavelengths of 331-334 nm and molar absorption coefficients of 1.4 x 10(4) L/mol/cm. They were completely separated by high-performance liquid chromatography (HPLC) with an RP-Amide C16 column. Cartridges packed with DNPH-coated silica particles (DNPH cartridge) were used for sampling formic acid and aldehydes. Formic acid was physically adsorbed on the silica particles as the first step of the sampling mechanism. Gradual reaction with DNPH followed. Formic acid reacted very slowly with DNPH at room temperature (20 degrees C), but reacted completely at 80 degrees C over 4 h. In field measurements, the sample air was drawn through a DNPH cartridge. After sampling, the cartridges were heated at 80 degrees C for 5 h and extracted with acetonitrile for HPLC analysis. Under these optimized conditions, the LOD is 0.4 ug/m(3) for an air sample collected for 24 h at 100 mL/min (144 L).

  9. ANALYSIS OF AIRBORNE CARBOXYLIC ACIDS AND PHENOLS AS THEIR PENTAFLUOROBENZYL DERIVATIVES: GAS CHROMATOGRAPHY/ION TRAP MASS SPECTROMETRY WITH A NOVEL CHEMICAL IONIZATION REAGENT, PFBOH. (R826247)

    EPA Science Inventory

    The complex photochemical transformations of biogenic
    hydrocarbons such as isoprene and of anthropogenic
    hydrocarbons such as aromatics are an important source
    of carboxylic acids in the troposphere. The
    identification
    of unknown carboxylic acids can be difficul...

  10. Salicylic acid peeling combined with vitamin C mesotherapy versus salicylic acid peeling alone in the treatment of mixed type melasma: A comparative study.

    PubMed

    Balevi, Ali; Ustuner, Pelin; Özdemir, Mustafa

    2017-10-01

    Melasma is a distressing condition for both dermatologists and patients. We evaluated the effectiveness of salicylic acid (SA) peel and vitamin C mesotherapy in the treatment of melasma. Fifty female patients were divided into two groups. All patients were treated with 30% SA peel every two weeks for two months. In addition, after SA peeling Group A was intradermally administered 10 vitamin C on the melasma lesion at 1-cm intervals. All patients were followed up for 6 months, during which the recurrence rates were evaluated. Digital photographs of the melasma site were taken and patients' Melasma Area and Severity Index (MASI) scores were assessed. After the treatment, the patients were asked to complete the melasma quality of life questionnaire (MelasQoL) to evaluate their satisfaction with the treatment. All the adverse effects were noted. The MelasQoL and MASI scores of patients in both groups significantly decreased after the treatment. Apart from a burning sensation, no adverse event was observed and all patients tolerated the treatment well. SA peel combined with vitamin C mesotherapy is a safe and effective alternative for the treatment of melasma with no significant side effects and minimal downtime.

  11. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.

    PubMed

    Martins, Andréa Bercini; Santana, Ruth Marlene Campomanes

    2016-01-01

    In this work, polypropylene/thermoplastic starch (PP/TPS) blends were prepared as an alternative material to use in disposable packaging, reducing the negative polymeric environmental impact. Unfortunately, this material displays morphological characteristics typical of immiscible polymer blends and a compatibilizer agent is needed. Three different carboxyl acids: myristic (C14), palmitic (C16) and stearic acids (C18) were used as natural compatibilizer agent (NCA). The effects of NCA on the mechanical, physical, thermal and morphological properties of PP/TPS blends were investigated and compared against PP/TPS with and without PP-grafted maleic anhydride (PPgMA). When compared to PP/TPS, blends with C18, PPgMA and C14 presented an improvement of 25, 22 and 17% in tensile strength at break and of 180, 194 and 259% in elongation at break, respectively. The highest increase, 54%, in the impact strength was achieved with C14 incorporation. Improvements could be seen, through scanning electron microscopy (SEM) images, in the compatibility between the immiscible components by acids incorporation. These results showed that carboxylic acids, specifically C14, could be used as compatibilizer agent and could substitute PPgMA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Conformational characterization of the 1-aminocyclobutane-1-carboxylic acid residue in model peptides.

    PubMed

    Gatos, M; Formaggio, F; Crisma, M; Toniolo, C; Bonora, G M; Benedetti, Z; Di Blasio, B; Iacovino, R; Santini, A; Saviano, M; Kamphuis, J

    1997-01-01

    A series of N- and C-protected, monodispersed homo-oligopeptides (to the dodecamer level) from the small-ring alicyclic C alpha, alpha-dialkylated glycine 1-aminocyclobutane-1-carboxylic acid (Ac4c) and two Ala/Ac4c tripeptides were synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives Z-Ac4c-OH and Z2-Ac4c-OH, the tripeptides Z-(Ac4c)3-OtBu, Z-Ac4c-(L-Ala)2-OMe and Z-L-Ala-Ac4c-L-Ala-OMe, and the tetrapeptide Z-(Ac4c)4-OtBu were determined in the crystal state by X-ray diffraction. The average geometry of the cyclobutyl moiety of the Ac4c residue was assessed and the tau(N-C alpha-C') bond angle was found to be significantly expanded from the regular tetrahedral value. The conformational data are strongly in favour of the conclusion that the Ac4c residue is an effective beta-turn and helix former. A comparison with the structural propensities of alpha-aminoisobutyric acid, the prototype of C alpha, alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3, 5-8) is made and the implications for the use of the Ac4c residue in conformationally constrained peptide analogues are briefly examined.

  13. Use of reflectance confocal microscopy to evaluate 5-fluorouracil 0.5%/salicylic acid 10% in the field-directed treatment of subclinical lesions of actinic keratosis: subanalysis of a Phase III, randomized, double-blind, vehicle-controlled trial.

    PubMed

    Ulrich, M; Reinhold, U; Falqués, M; Rodriguez Azeredo, R; Stockfleth, E

    2018-03-01

    Actinic keratosis (AK) is a common skin disorder that can progress to invasive squamous-cell carcinoma. AK can present as clinical (visible) or subclinical (invisible) lesions within areas of chronic sun damage. The importance of treating subclinical AK is gaining support. We present a subanalysis of a previously published Phase III, double-blind, vehicle-controlled study (NCT02289768), to assess 5-fluorouracil (5-FU) 0.5%/salicylic acid 10% treatment of subclinical AK lesions, based on reflectance confocal microscopy (RCM). To determine the efficacy of 5-FU 0.5%/salicylic acid 10% as field-directed treatment for subclinical AK lesions using RCM. For inclusion in this subanalysis, patients had to have at least three subclinical AK lesions within a 25 cm 2 area of skin. Subclinical AK lesions were diagnosed according to the presence of three key RCM criteria: architectural disarray; keratinocyte atypia and pleomorphism at the basal, spinous and granular layer. Subclinical AK lesions were evaluated by RCM at baseline, after 4, 6 and 12 weeks of 5-FU 0.5%/salicylic acid 10% treatment or vehicle, and 8 weeks following the end of treatment. Twenty-seven patients were included: 17 [mean age = 72.2 years, standard deviation (SD) = 6.3] received 5-FU 0.5%/salicylic acid 10% treatment and 10 (mean age = 76.4 years, SD = 3.9) received vehicle. Eight weeks following the end of treatment, the mean number of subclinical lesions declined (from 3.0 at baseline) to 0.3 (95% confidence interval [CI] 0.06-0.57) for the 5-FU 0.5%/salicylic acid 10% group and 1.6 (95% CI 0.52-2.68) in the vehicle group (reductions of 90% [95% CI 72.1-107.1] vs. 47% [95% CI 24.8-69.5], respectively; P = 0.005). The proportion of patients receiving 5-FU 0.5%/salicylic acid 10% showing complete clearance of three preselected subclinical AK lesions was numerically greater than in the vehicle group (69% vs. 40%, respectively; P = 0.183). To the best of our knowledge, this is the first randomized, vehicle

  14. Stereospecific synthesis of syn-α-oximinoamides by a three-component reaction of isocyanides, syn-chlorooximes, and carboxylic acids.

    PubMed

    Pirali, Tracey; Mossetti, Riccardo; Galli, Simona; Tron, Gian Cesare

    2011-07-15

    A stereospecific multicomponent reaction among isocyanides, syn-chlorooximes, and carboxylic acids provides an efficient synthesis of biologically relevant syn-α-oximinoamides. © 2011 American Chemical Society

  15. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    PubMed

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Copper coordination polymers constructed from thiazole-5-carboxylic acid: Synthesis, crystal structures, and structural transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meundaeng, Natthaya; Rujiwatra, Apinpus; Prior, Timothy J., E-mail: t.prior@hull.ac.uk

    2017-01-15

    We have successfully prepared crystals of thiazole-5-carboxylic acid (5-Htza) (L) and three new thiazole-5-carboxylate-based Cu{sup 2+} coordination polymers with different dimensionality, namely, 1D [Cu{sub 2}(5-tza){sub 2}(1,10-phenanthroline){sub 2}(NO{sub 3}){sub 2}] (1), 2D [Cu(5-tza){sub 2}(MeOH){sub 2}] (2), and 3D [Cu(5-tza){sub 2}]·H{sub 2}O (3). These have been characterized by single crystal X-ray diffraction and thermogravimetry. Interestingly, the 2D network structure of 2 can directly transform into the 3D framework of 3 upon removal of methanol molecules at room temperature. 2 can also undergo structural transformation to produce the same 2D network present in the known [Cu(5-tza){sub 2}]·1.5H{sub 2}O upon heat treatment for 2more » h. This 2D network can adsorb water and convert to 3 upon exposure to air. - Highlights: • Rare examples of coordination polymers of thiazole-5-carboxylic acid were prepared. • Non-covalent interactions play a key role on the assembly of the complexes in solid state. • Structural transformation of a 2D framework to a 3D upon removal of methanol is observed.« less

  17. Amino- and carboxyl-terminal amino acid sequences of proteins coded by gag gene of murine leukemia virus

    PubMed Central

    Oroszlan, Stephen; Henderson, Louis E.; Stephenson, John R.; Copeland, Terry D.; Long, Cedric W.; Ihle, James N.; Gilden, Raymond V.

    1978-01-01

    The amino- and carboxyl-terminal amino acid sequences of proteins (p10, p12, p15, and p30) coded by the gag gene of Rauscher and AKR murine leukemia viruses were determined. Among these proteins, p15 from both viruses appears to have a blocked amino end. Proline was found to be the common NH2 terminus of both p30s and both p12s, and alanine of both p10s. The amino-terminal sequences of p30s are identical, as are those of p10s, while the p12 sequences are clearly distinctive but also show substantial homology. The carboxyl-terminal amino acids of both viral p30s and p12s are leucine and phenylalanine, respectively. Rauscher leukemia virus p15 has tyrosine as the carboxyl terminus while AKR virus p15 has phenylalanine in this position. The compositional and sequence data provide definite chemical criteria for the identification of analogous gag gene products and for the comparison of viral proteins isolated in different laboratories. On the basis of amino acid sequences and the previously proposed H-p15-p12-p30-p10-COOH peptide sequence in the precursor polyprotein, a model for cleavage sites involved in the post-translational processing of the precursor coded for by the gag gene is proposed. PMID:206897

  18. The Effects of Benzofuran-2-Carboxylic Acid Derivatives as Countermeasures in Immune Modulation and Cancer Cell Inhibition

    NASA Astrophysics Data System (ADS)

    Sundaresan, A.; Marriott, K.; Mao, J.; Bhuiyan, S.; Denkins, P.

    2015-06-01

    Microgravity and radiation exposure experienced during space flights result in immune system suppression. In long-term spaceflight, the crew is exposed to space radiation, microgravity, infectious agents from other crew members, and microbial contamination, all of which have a significant impact on the body's immune system and may contribute to the development of autoimmune diseases, allergic reactions, and/or cancer initiation. Many studies have revealed strong effects of microgravity on immune cell function, and microgravity is now considered as one of the major causes of immune dysfunction during space flight (Sundaresan, Int. J. Transp. Phenom. 12(1-2), 93-100, 2011; Martinelli et al., IEEE Eng. Biol. Med. 28(4), 85-90, 2009). We screened two newly synthetized derivatives of benzofuran 2-carboxylic acid, KMEG and KM12. The former KMEG was assessed for lymphoproliferative activities while the latter, KM12, was used in an array of cancer cell lines for testing its cancer inhibiting effects. For ground-based studies, synthetic benzofuran-2-carboxylic acid derivatives were assessed for biological effects in several scenarios, which involved exposure to modeled microgravity and radiation, as well as their immune enhancement and anti-cancer effects. Initial findings indicate that the benzofuran-2-carboxylic acid derivatives possibly have immune enhancing and anti-tumor properties in human lymphocytes and cancer cells exposed to analog spaceflight conditions modeled microgravity and γ-radiation).

  19. Facile regio- and stereoselective hydrometalation of alkynes with a combination of carboxylic acids and group 10 transition metal complexes: selective hydrogenation of alkynes with formic acid.

    PubMed

    Shen, Ruwei; Chen, Tieqiao; Zhao, Yalei; Qiu, Renhua; Zhou, Yongbo; Yin, Shuangfeng; Wang, Xiangbo; Goto, Midori; Han, Li-Biao

    2011-10-26

    A facile, highly stereo- and regioselective hydrometalation of alkynes generating alkenylmetal complex is disclosed for the first time from a reaction of alkyne, carboxylic acid, and a zerovalent group 10 transition metal complex M(PEt(3))(4) (M = Ni, Pd, Pt). A mechanistic study showed that the hydrometalation does not proceed via the reaction of alkyne with a hydridometal generated by the protonation of a carboxylic acid with Pt(PEt(3))(4), but proceeds via a reaction of an alkyne coordinate metal complex with the acid. This finding clarifies the long proposed reaction mechanism that operates via the generation of an alkenylpalladium intermediate and subsequent transformation of this complex in a variety of reactions catalyzed by a combination of Brϕnsted acid and Pd(0) complex. This finding also leads to the disclosure of an unprecedented reduction of alkynes with formic acid that can selectively produce cis-, trans-alkenes and alkanes by slightly tuning the conditions.

  20. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    NASA Technical Reports Server (NTRS)

    Butcher, Ray J.; Brewer, Greg; Burton, Aaron S.; Dworkin, Jason

    2014-01-01

    In the title compound, C5H9NO2H2O, the amino acid is in the usual zwitterionic form involving the carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7) and0.118 (7). In the crystal, NH O and OH O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+) and donor (through a single carboxylate O from two different aminocyclobutane carboxylatemoities)], resulting in a two-dimensional layered structure lying parallel to (100).

  1. Mechanism of heterogeneous catalytic oxidation of organic compounds to carboxylic acids

    NASA Astrophysics Data System (ADS)

    Andrushkevich, T. V.; Chesalov, Yu A.

    2018-06-01

    The results of studies on the mechanism of heterogeneous catalytic oxidation of organic compounds of different chemical structure to carboxylic acids are analyzed and generalized. The concept developed by Academician G.K.Boreskov, according to which the direction of the reaction is governed by the structure and bond energy of surface intermediates, was confirmed taking the title processes as examples. Quantitative criteria of the bond energies of surface compounds of oxidizable reactants, reaction products and oxygen that determine the selective course of the reaction are presented. The bibliography includes 195 references.

  2. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    PubMed

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  3. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    PubMed

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid*

    PubMed Central

    Kang, Guo-zhang; Wang, Zheng-xun; Xia, Kuai-fei; Sun, Gu-chou

    2007-01-01

    Objective: Chilling tolerance of salicylic acid (SA) in banana seedlings (Musa acuminata cv., Williams 8818) was investigated by changes in ultrastructure in this study. Methods: Light and electron microscope observation. Results: Pretreatment with 0.5 mmol/L SA under normal growth conditions (30/22 °C) by foliar spray and root irrigation resulted in many changes in ultrastructure of banana cells, such as cells separation from palisade parenchymas, the appearance of crevices in cell walls, the swelling of grana and stromal thylakoids, and a reduction in the number of starch granules. These results implied that SA treatment at 30/22 °C could be a type of stress. During 3 d of exposure to 7 °C chilling stress under low light, however, cell ultrastructure of SA-pretreated banana seedlings showed less deterioration than those of control seedlings (distilled water-pretreated). Conclusion: SA could provide some protection for cell structure of chilling-stressed banana seedling. PMID:17444604

  5. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  6. Increasing leaf longevity and disease resistance by altering salicylic acid catabolism

    DOEpatents

    Gan, Susheng; Zhang, Kewei

    2018-01-23

    The present invention relates to a transgenic plant having an altered level of salicylic acid 3-hydroxylase ("S3H") protein, compared to that of a non-transgenic plant, where the transgenic plant displays an altered leaf senescence phenotype, relative to a non-transgenic plant. The present invention relates to a mutant plant comprising an inactivated gene encoding S3H protein, where the mutant plant displays a premature or precocious leaf senescence phenotype, relative to a non-mutant plant. The present invention also relates to methods for promoting premature or precocious leaf senescence in a plant, delaying leaf senescence in a plant, and making a mutant plant having a decreased level of S3H protein compared to that of a non-mutant plant, where the mutant plant displays a premature or precocious leaf senescence phenotype relative to a non-mutant plant. The present invention also relates to inducing or promoting pathogen resistance in plants.

  7. Salicylic acid interferes with GFP fluorescence in vivo

    PubMed Central

    de Jonge, Jennifer; Hofius, Daniel

    2017-01-01

    Abstract Fluorescent proteins have become essential tools for cell biologists. They are routinely used by plant biologists for protein and promoter fusions to infer protein localization, tissue‐specific expression and protein abundance. When studying the effects of biotic stress on chromatin, we unexpectedly observed a decrease in GFP signal intensity upon salicylic acid (SA) treatment in Arabidopsis lines expressing histone H1-GFP fusions. This GFP signal decrease was dependent on SA concentration. The effect was not specific to the linker histone H1-GFP fusion but was also observed for the nucleosomal histone H2A-GFP fusion. This result prompted us to investigate a collection of fusion proteins, which included different promoters, subcellular localizations and fluorophores. In all cases, fluorescence signals declined strongly or disappeared after SA application. No changes were detected in GFP‐fusion protein abundance when fluorescence signals were lost indicating that SA does not interfere with protein stability but GFP fluorescence. In vitro experiments showed that SA caused GFP fluorescence reduction only in vivo but not in vitro, suggesting that SA requires cellular components to cause fluorescence reduction. Together, we conclude that SA can interfere with the fluorescence of various GFP‐derived reporter constructs in vivo. Assays that measure relocation or turnover of GFP‐tagged proteins upon SA treatment should therefore be evaluated with caution. PMID:28369601

  8. Methyl salicylate overdose

    MedlinePlus

    Methyl salicylate (oil of wintergreen) is a chemical that smells like wintergreen. It is used in many over- ... muscle ache creams. It is related to aspirin. Methyl salicylate overdose occurs when someone swallows a dangerous amount ...

  9. Expression profiling of marker genes responsive to the defence-associated phytohormones salicylic acid, jasmonic acid and ethylene in Brachypodium distachyon.

    PubMed

    Kouzai, Yusuke; Kimura, Mamiko; Yamanaka, Yurie; Watanabe, Megumi; Matsui, Hidenori; Yamamoto, Mikihiro; Ichinose, Yuki; Toyoda, Kazuhiro; Onda, Yoshihiko; Mochida, Keiichi; Noutoshi, Yoshiteru

    2016-03-02

    Brachypodium distachyon is a promising model plants for grasses. Infections of Brachypodium by various pathogens that severely impair crop production have been reported, and the species accordingly provides an alternative platform for investigating molecular mechanisms of pathogen virulence and plant disease resistance. To date, we have a broad picture of plant immunity only in Arabidopsis and rice; therefore, Brachypodium may constitute a counterpart that displays the commonality and uniqueness of defence systems among plant species. Phytohormones play key roles in plant biotic stress responses, and hormone-responsive genes are used to qualitatively and quantitatively evaluate disease resistance responses during pathogen infection. For these purposes, defence-related phytohormone marker genes expressed at time points suitable for defence-response monitoring are needed. Information about their expression profiles over time as well as their response specificity is also helpful. However, useful marker genes are still rare in Brachypodium. We selected 34 candidates for Brachypodium marker genes on the basis of protein-sequence similarity to known marker genes used in Arabidopsis and rice. Brachypodium plants were treated with the defence-related phytohormones salicylic acid, jasmonic acid and ethylene, and their transcription levels were measured 24 and 48 h after treatment. Two genes for salicylic acid, 7 for jasmonic acid and 2 for ethylene were significantly induced at either or both time points. We then focused on 11 genes encoding pathogenesis-related (PR) 1 protein and compared their expression patterns with those of Arabidopsis and rice. Phylogenetic analysis suggested that Brachypodium contains several PR1-family genes similar to rice genes. Our expression profiling revealed that regulation patterns of some PR1 genes as well as of markers identified for defence-related phytohormones are closely related to those in rice. We propose that the Brachypodium immune

  10. Polyacetal Carboxylic Acids: a New Group of Antiviral Polyanions

    PubMed Central

    Claes, P.; Billiau, A.; De Clercq, E.; Desmyter, J.; Schonne, E.; Vanderhaeghe, H.; De Somer, P.

    1970-01-01

    Chlorite-oxidized oxypolysaccharides are polyacetal carboxylic acids. They inhibited the cytopathic effect of vesicular stomatitis virus in mouse embryo cell cultures challenged at low input multiplicity. After intraperitoneal injection of these compounds in mice, interferon appeared in the circulation. The compounds also protected mice against lethal mengovirus infection and against the development of experimental pox lesions on the tail. Chlorite-oxidized oxyamylose was antiviral only when at least 64% of the glucopyranose units were oxidized, an observation which suggested a correlation between charge density and antiviral effect. The antiviral activity was also influenced by the molecular weight, as demonstrated by the fact that chlorite-oxidized dextrans which had a high intrinsic viscosity were more active than those with low intrinsic viscosity. PMID:4314553

  11. Simultaneous determination of trace concentrations of aldehydes and carboxylic acids in particulate matter.

    PubMed

    Rousová, Jana; Chintapalli, Manikyala R; Lindahl, Anastasia; Casey, Jana; Kubátová, Alena

    2018-04-06

    Carboxylic acids and aldehydes are present in ambient air particulate matter (PM) originating from both primary emission and secondary production in air and may, due to their polarity have, an impact on formation of cloud condensation nuclei. Their simultaneous determination may provide improved understanding of atmospheric processes. We developed a new analytical method allowing for a single step determination of majority of carboxylic acids and aldehydes (+95 compounds). This sample preparation employed O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA·HCl) in methanol to yield oximes (for aldehydes) and methyl esters (for majority of acids); with the limits of detection of 0.02-1 ng per injection, corresponding to approximately 0.4-20 μg/g PM . Subsequent trimethylsilylation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was employed only for aromatic acids, which were not completely esterified, and for hydroxyl groups. Our method, in contrast to previous primarily qualitative studies, based on derivatization with an aqueous PFBHA followed by BSTFA derivatization, is less labor-intesive and reduces sample losses caused by an evaporation. The method was tested with a broad range of functionalized compounds (95), including monocarboxylic, dicarboxylic and aromatic acids, ketoacids, hydroxyacids and aldehydes. The developed protocol was applied to wood smoke (WS) and urban air standard reference material 1648b (UA) PM. The observed concentrations of aldehydes were 10-3000 μg/g PM in WS PM and 10-900 μg/g PM in UA PM, while those of acids were 20-1800 μg/g PM in WS PM and 15-1200 μg/g PM in UA PM. The most prominent aldehydes were syringaldehyde and vanillin in WS PM and glyoxal in UA PM. The most abundant acids in both PM samples were short-chain dicarboxylic acids (≤C 10 ). WS PM had a high abundance of hydroxyacids (vanillic and malic acids) as well as ketoacids (glutaric and oxalacetic) while UA PM also featured a high abundance of

  12. Validation of a method for quantitation of the clopidogrel active metabolite, clopidogrel, clopidogrel carboxylic acid, and 2-oxo-clopidogrel in feline plasma.

    PubMed

    Lyngby, Janne G; Court, Michael H; Lee, Pamela M

    2017-08-01

    The clopidogrel active metabolite (CAM) is unstable and challenging to quantitate. The objective was to validate a new method for stabilization and quantitation of CAM, clopidogrel, and the inactive metabolites clopidogrel carboxylic acid and 2-oxo-clopiodgrel in feline plasma. Two healthy cats administered clopidogrel to demonstrate assay in vivo utility. Stabilization of CAM was achieved by adding 2-bromo-3'methoxyacetophenone to blood tubes to form a derivatized CAM (CAM-D). Method validation included evaluation of calibration curve linearity, accuracy, and precision; within and between assay precision and accuracy; and compound stability using spiked blank feline plasma. Analytes were measured by high performance liquid chromatography with tandem mass spectrometry. In vivo utility was demonstrated by a pharmacokinetic study of cats given a single oral dose of 18.75mg clopidogrel. The 2-oxo-clopidogrel metabolite was unstable. Clopidogrel, CAM-D, and clopidogrel carboxylic acid appear stable for 1 week at room temperature and 9 months at -80°C. Standard curves showed linearity for CAM-D, clopidogrel, and clopidogrel carboxylic acid (r > 0.99). Between assay accuracy and precision was ≤2.6% and ≤7.1% for CAM-D and ≤17.9% and ≤11.3% for clopidogrel and clopidogrel carboxylic acid. Within assay precision for all three compounds was ≤7%. All three compounds were detected in plasma from healthy cats receiving clopidogrel. This methodology is accurate and precise for simultaneous quantitation of CAM-D, clopidogrel, and clopidogrel carboxylic acid in feline plasma but not 2-oxo-clopidogrel. Validation of this assay is the first step to more fully understanding the use of clopidogrel in cats. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.

    PubMed

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-05-31

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

  14. Construction of a recombinant strain of Pseudomonas fluorescens producing both phenazine-1-carboxylic acid and cyclic lipopeptide for the biocontrol of take-all disease of wheat.

    USDA-ARS?s Scientific Manuscript database

    The primary mechanism of biocontrol by Pseudomonas fluorescens strains HC1-07 and HC9-07 is production of a cyclic lipopeptide (CLP) and phenazine-1-carboxylic acid, respectively. We introduced the seven-gene operon for the synthesis of phenazine-1-carboxylic acid (PCA) from P. synxantha 2-79 into P...

  15. Separation of the isomers of benzene poly(carboxylic acid)s by quaternary ammonium salt via formation of deep eutectic solvents.

    PubMed

    Hou, Yucui; Li, Jian; Ren, Shuhang; Niu, Muge; Wu, Weize

    2014-11-26

    Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency.

  16. ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid.

    PubMed

    Noutoshi, Yoshiteru; Jikumaru, Yusuke; Kamiya, Yuji; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that protect crops from pathogens. They confer durable resistance to a broad range of diseases by activating intrinsic immune mechanisms in plants. To obtain leads regarding useful compounds, we have screened a chemical library using an established method that allows selective identification of immune-priming compounds. Here, we report the characterisation of one of the isolated chemicals, imprimatinC1, and its structural derivative imprimatinC2. ImprimatinC1 functions as a weak analogue of salicylic acid (SA) and activates the expression of defence-related genes. However, it lacks antagonistic activity toward jasmonic acid. Structure-activity relationship analysis suggests that imprimatinC1 and C2 can be metabolised to 4-chlorobenzoic acid and 3,4-chlorobenzoic acid, respectively, to function in Arabidopsis. We also found that imprimatinC1 and C2 and their potential functional metabolites acted as partial agonists of SA. Thus, imprimatinC compounds could be useful tools for dissecting SA-dependent signal transduction pathways.

  17. ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid

    PubMed Central

    Noutoshi, Yoshiteru; Jikumaru, Yusuke; Kamiya, Yuji; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that protect crops from pathogens. They confer durable resistance to a broad range of diseases by activating intrinsic immune mechanisms in plants. To obtain leads regarding useful compounds, we have screened a chemical library using an established method that allows selective identification of immune-priming compounds. Here, we report the characterisation of one of the isolated chemicals, imprimatinC1, and its structural derivative imprimatinC2. ImprimatinC1 functions as a weak analogue of salicylic acid (SA) and activates the expression of defence-related genes. However, it lacks antagonistic activity toward jasmonic acid. Structure-activity relationship analysis suggests that imprimatinC1 and C2 can be metabolised to 4-chlorobenzoic acid and 3,4-chlorobenzoic acid, respectively, to function in Arabidopsis. We also found that imprimatinC1 and C2 and their potential functional metabolites acted as partial agonists of SA. Thus, imprimatinC compounds could be useful tools for dissecting SA-dependent signal transduction pathways. PMID:23050089

  18. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jie-Cen; Wan, Fang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybridmore » lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)« less

  19. Topical acetylsalicylic, salicylic acid and indomethacin suppress pain from experimental tissue acidosis in human skin.

    PubMed

    Steen, K H; Reeh, P W; Kreysel, H W

    1995-09-01

    Topically applied acetylsalicylic acid (ASA), salicylic acid (SA) and indomethacin were tested in an experimental pain model that provides direct nociceptor excitation through cutaneous tissue acidosis. In 30 volunteers, sustained burning pain was produced in the palmar forearm through a continuous intradermal pressure infusion of a phosphate-buffered isotonic solution (pH 5.2). In 5 different, double-blind, randomized cross-over studies with 6 volunteers each, the flow rate of the syringe pump was individually adjusted to result in constant pain ratings of around 20% (50% in study 4) on a visual analog scale (VAS). The painful skin area was then covered with either placebo or the drugs which had been dissolved in diethylether. In the first study on 6 volunteers, ASA (60 mg/ml) or lactose (placebo) in diethylether (10 ml) was applied, using both arms at 3-day intervals. Both treatments resulted in sudden and profound pain relief due to the cooling effect of the evaporating ether. With lactose, however, the mean pain rating was restored close to the baseline within 6-8 min while, with ASA, it remained significantly depressed for the rest of the observation period (another 20 min). This deep analgesia was not accompanied by a loss of tactile sensation. The further studies served to show that indomethacin (4.5 mg/ml) and SA (60 mg/ml) were equally effective as ASA (each 92-96% pain reduction) and that the antinociceptive effects were due to local but not systemic actions, since ASA and SA dis not reach measurable plasma levels up to 3 h after topical applications. With a higher flow rate of acid buffer producing more intense pain (VAS 50%). ASA and SA were still able to significantly reduce the ratings by 90% or 84%, respectively. On the other hand, by increasing the flow rate by a factor of 2 on average, during the period of fully developed drug effect it was possible to overcome the pain suppression, which suggests a competitive mechanism of (acetyl-) salicylic

  20. Methyl Salicylate Level Increase in Flax after Fusarium oxysporum Infection Is Associated with Phenylpropanoid Pathway Activation

    PubMed Central

    Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2017-01-01

    Flax (Linum usitatissimum) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in regulating plants' response to stress conditions. Upon treatment of flax plants with the fungus we found that methyl salicylate content increased (4.8-fold of the control) and the expression profiles of the analyzed genes suggest that it is produced most likely from cinnamic acid, through the β-oxidative route. At the same time activation of some genes involved in lignin and flavonoid biosynthesis was observed. We suggest that increased methyl salicylate biosynthesis during flax response to F. oxysporum infection may be associated with phenylpropanoid pathway activation. PMID:28163709

  1. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    PubMed

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  2. Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore

    PubMed Central

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T.; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding. PMID:24466122

  3. Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses1[W][OA

    PubMed Central

    Zarate, Sonia I.; Kempema, Louisa A.; Walling, Linda L.

    2007-01-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. PMID:17189328

  4. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling

    PubMed Central

    Kloth, Karen J.; Wiegers, Gerrie L.; Busscher-Lange, Jacqueline; van Haarst, Jan C.; Kruijer, Willem; Bouwmeester, Harro J.; Dicke, Marcel; Jongsma, Maarten A.

    2016-01-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae. The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA–SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. PMID:27107291

  5. Early membrane events induced by salicylic acid in motor cells of the Mimosa pudica pulvinus.

    PubMed

    Saeedi, Saed; Rocher, Françoise; Bonmort, Janine; Fleurat-Lessard, Pierrette; Roblin, Gabriel

    2013-04-01

    Salicylic acid (o-hydroxy benzoic acid) (SA) induced a rapid dose-dependent membrane hyperpolarization (within seconds) and a modification of the proton secretion (within minutes) of Mimosa pudica pulvinar cells at concentrations higher than 0.1mM. Observations on plasma membrane vesicles isolated from pulvinar tissues showed that SA acted directly at the membrane level through a protonophore action as suggested by the inhibition of the proton gradient and the lack of effect on H(+)-ATPase catalytic activity. Comparative data obtained with protonophores (carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol) and inhibitors of ATPases (vanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol) corroborated this conclusion. Consequently, the collapse of the proton motive force led to an impairment in membrane functioning. This impairment is illustrated by the inhibition of the ion-driven turgor-mediated seismonastic reaction of the pulvinus following SA treatment. SA acted in a specific manner as its biosynthetic precursor benzoic acid induced much milder effects and the m- and p-OH benzoic acid derivatives did not trigger similar characteristic effects. Therefore, SA may be considered both a membrane signal molecule and a metabolic effector following its uptake in the cells.

  6. Topical treatment of actinic keratoses with low-dose 5-fluorouracil in combination with salicylic acid--pilot study.

    PubMed

    Schlaak, Max; Simon, Jan C

    2010-03-01

    Actinic keratoses (AK) are carcinomas in situ and can progress to invasive squamous cell carcinomas. Treatment of actinic keratoses can be achieved by physical ablation, chemotherapeutic agents, immunomodulators or photodynamic therapy. We conducted a proof of concept study with 15 patients. Overall 66 actinic keratoses were treated with 5-FU (0.5%) and salicylic acid (10%) for 4 weeks (3 times per week). After 12 weeks complete response of 47 AK (77%), partial response of 13 AK (21%) and non-response of 1 AK (2%) were achieved. Treatment was well tolerated and efficient.

  7. Sulfur-containing constituents and one 1H-pyrrole-2-carboxylic acid derivative from pineapple [Ananas comosus (L.) Merr.] fruit.

    PubMed

    Zheng, Zong-Ping; Ma, Jinyu; Cheng, Ka-Wing; Chao, Jianfei; Zhu, Qin; Chang, Raymond Chuen-Chung; Zhao, Ming; Lin, Zhi-Xiu; Wang, Mingfu

    2010-12-01

    Two sulfur-containing compounds, (S)-2-amino-5-((R)-1-carboxy-2-((E)-3-(4-hydroxy-3-methoxyphenyl)allylthio)ethyl-amino)-5-oxopentanoic acid (1) and (S)-2-amino-5-((R)-1-(carboxymethylamino)-3-((E)-3-(4-hydroxyphenyl)allylthio)-1-oxopropan-2-ylamino)-5-oxopentanoic acid (2), and one 1H-pyrrole-2-carboxylic acid derivative, 6-(3-(1H-pyrrole-2-carbonyloxy)-2-hydroxypropoxy)-3,4,5-trihydroxy-tetrahydro-2H-pyran-2-carboxylic acid (3), together with eighteen known phenolic compounds, were isolated from the fruits of pineapple. Their structures were elucidated by a combination of spectroscopic analyses. Some of these compounds showed inhibitory activities against tyrosinase. The half maximal inhibitory concentration values of compounds 1, 4, 5, 6, 7 are lower than 1 mM. These compounds may contribute to the well-known anti-browning effect of pineapple juice and be potential skin whitening agents in cosmetic applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    PubMed

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  9. Synthesis, Properties, and Two-Dimensional Adsorption Characteristics of [6]Hexahelicene-7-carboxylic acid.

    PubMed

    van der Meijden, Maarten W; Balandina, Tatyana; Ivasenko, Oleksandr; De Feyter, Steven; Wurst, Klaus; Kellogg, Richard M

    2016-10-04

    A convergent synthesis of racemic [6]hexahelicene-7-carboxylic acid by cross-coupling of a bicyclic and a tricyclic component is described. A metal-catalyzed ring-closure is also a fundamental component of the synthetic approach. Scanning tunneling microscopy (STM) measurements of the racemate self-assembled on Au(111) at liquid-solid interface revealed the formation of ordered racemic 2D crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory-antimicrobial agents.

    PubMed

    Khloya, Poonam; Kumar, Satish; Kaushik, Pawan; Surain, Parveen; Kaushik, Dhirender; Sharma, Pawan K

    2015-03-15

    Current Letter presents design, synthesis and biological evaluation of a novel series of pyrazolylthiazole carboxylates 1a-1p and corresponding acid derivatives 2a-2p. All 32 novel compounds were tested for their in vivo anti-inflammatory activity by carrageenan-induced rat paw edema method as well as for in vitro antimicrobial activity. All the tested compounds exhibited excellent AI activity profile. Three compounds 1p (R=Cl, R(1)=Cl), 2c (R=H, R(1)=F) and 2n (R=Cl, R(1)=OCH3) were identified as potent anti-inflammatory agents exhibiting edema inhibition of 93.06-89.59% which is comparable to the reference drug indomethacin (91.32%) after 3h of carrageenan injection while most of the other compounds displayed inhibition ⩾80%. In addition, pyrazolylthiazole carboxylic acids (2a-2p) also showed good antimicrobial profile. Compound 2h (R=OCH3, R(1)=Cl) showed excellent antimicrobial activity (MIC 6.25μg/mL) against both Gram positive bacteria comparable with the reference drug ciprofloxacin (MIC 6.25μg/mL). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    PubMed Central

    Suzuki, Hiromu; Takashima, Yuya; Ishiguri, Futoshi; Yoshizawa, Nobuo; Yokota, Shinso

    2014-01-01

    The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR) establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1) infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA)-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8. PMID:28250384

  12. Regioselective Ni-Catalyzed Carboxylation of Allylic and Propargylic Alcohols with Carbon Dioxide.

    PubMed

    Chen, Yue-Gang; Shuai, Bin; Ma, Cong; Zhang, Xiu-Jie; Fang, Ping; Mei, Tian-Sheng

    2017-06-02

    An efficient Ni-catalyzed reductive carboxylation of allylic alcohols with CO 2 has been successfully developed, providing linear β,γ-unsaturated carboxylic acids as the sole regioisomer with generally high E/Z stereoselectivity. In addition, the carboxylic acids can be generated from propargylic alcohols via hydrogenation to give allylic alcohol intermediates, followed by carboxylation. A preliminary mechanistic investigation suggests that the hydrogenation step is made possible by a Ni hydride intermediate produced by a hydrogen atom transfer from water.

  13. Fluoroquinolone resistance of Serratia marcescens: sucrose, salicylate, temperature, and pH induction of phenotypic resistance.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2007-11-01

    Serratia marcescens is a nosocomial agent with a natural resistance to a broad spectrum of antibiotics, making the treatment of its infections very challenging. This study examines the influence of salicylate, sucrose, temperature, and pH variability on membrane permeability and susceptibility of S. marcescens to norfloxacin (hydrophilic fluoroquinolone) and nalidixic acid (hydrophobic quinolone). Resistance of wild-type S. marcescens UOC-67 (ATCC 13880) to norfloxacin and nalidixic acid was assessed by minimal inhibitory concentration (MIC) assays after growth in the presence of various concentrations of sucrose and salicylate and different temperatures and pH values. Norfloxacin and nalidixic acid accumulation was determined in the absence and presence of (i) carbonyl cyanide m-chlorophenylhydrazone (CCCP), a proton-motive-force collapser, and (ii) Phe-Arg beta-naphthylamide (PAbetaN), an efflux pump inhibitor. Accumulation of norfloxacin decreased when S. marcescens was grown in high concentrations of salicylate (8 mmol/L) and sucrose (10% m/v), at high temperature (42 degrees C), and at pH 6, and it was restored in the presence of CCCP because of the collapse of proton-gradient-dependent efflux in S. marcescens. Although nalidixic acid accumulation was observed, it was not affected by salicylate, sucrose, pH, or temperature changes. In the absence of PAbetaN, and either in the presence or absence of CCCP, a plateau was reached in the nalidixic acid accumulation for all environmental conditions. With the addition of 20 mg/L PAbetaN nalidixic acid accumulation is restored for all environmental conditions, suggesting that this quinolone is recognized by a yet to be identified S. marcescens pump that does not use proton motive force as its energy source.

  14. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid.

    PubMed

    Lu, Qianqian; Zhang, Tingting; Zhang, Wei; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong

    2018-01-01

    Cadmium (Cd) is a significant environmental pollutant in the aquatic environment. Salicylic acid (SA) is a ubiquitous phenolic compound. The goal of this study was to assess the morphological, physiological and biochemical changes in duckweed (L. minor) upon exposure to 10μM CdCl 2 , 10μM CdCl 2 plus 50μM SA, or 50μM SA for 7 days. Reversing the effects of Cd, SA decreased Cd accumulation in plants, improved accumulation of minerals (Ca, Mg, Fe, B, Mo) absorption, increased endogenous SA concentration, and phenylalanine ammonialyase (PAL) activity. Chlorosis-associated symptoms, the reduction in chlorophyll content, and the overproduction of reactive oxygen species induced by Cd exposure were largely reversed by SA. SA significantly decreased the toxic effects of Cd on the activities of the superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione reductase in the fronds of L. minor. Furthermore, SA reversed the detrimental effects of Cd on total ascorbate, glutathione, the ascorbic acid/oxidized dehydroascorbate and glutathione/glutathione disulphide ratios, lipid peroxidation, malondialdehyde concentration, lipoxygenase activity, and the accumulation of proline. SA induced the up-regulation of heat shock proteins (Hsp70) and attenuated the adverse effects of Cd on cell viability. These results suggest that SA confers tolerance to Cd stress in L. minor through different mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal.

    PubMed

    Yu, Yang; Murthy, Bandaru N; Shapter, Joseph G; Constantopoulos, Kristina T; Voelcker, Nicolas H; Ellis, Amanda V

    2013-09-15

    Graphene oxide (GO) nanosheets were grafted to acid-treated natural clinoptilolite-rich zeolite powders followed by a coupling reaction with a diazonium salt (4-carboxybenzenediazoniumtetrafluoroborate) to the GO surface. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) revealed successful grafting of GO nanosheets onto the zeolite surface. The application of the adsorbents for the adsorption of rhodamine B from aqueous solutions was then demonstrated. After reaching adsorption equilibrium the maximum adsorption capacities were shown to be 50.25, 55.56 and 67.56 mg g(-1) for pristine natural zeolite, GO grafted zeolite (GO-zeolite) and benzene carboxylic acid derivatized GO-zeolite powders, respectively. The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. Further, a relationship between surface functional groups, pH and adsorption efficiency was established. Results indicate that benzene carboxylic acid derivatized GO-zeolite powders are environmentally favorable adsorbents for the removal of cationic dyes from aqueous solutions. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Salicylic acid interferes with GFP fluorescence in vivo.

    PubMed

    de Jonge, Jennifer; Hofius, Daniel; Hennig, Lars

    2017-03-01

    Fluorescent proteins have become essential tools for cell biologists. They are routinely used by plant biologists for protein and promoter fusions to infer protein localization, tissue-specific expression and protein abundance. When studying the effects of biotic stress on chromatin, we unexpectedly observed a decrease in GFP signal intensity upon salicylic acid (SA) treatment in Arabidopsis lines expressing histone H1-GFP fusions. This GFP signal decrease was dependent on SA concentration. The effect was not specific to the linker histone H1-GFP fusion but was also observed for the nucleosomal histone H2A-GFP fusion. This result prompted us to investigate a collection of fusion proteins, which included different promoters, subcellular localizations and fluorophores. In all cases, fluorescence signals declined strongly or disappeared after SA application. No changes were detected in GFP-fusion protein abundance when fluorescence signals were lost indicating that SA does not interfere with protein stability but GFP fluorescence. In vitro experiments showed that SA caused GFP fluorescence reduction only in vivo but not in vitro, suggesting that SA requires cellular components to cause fluorescence reduction. Together, we conclude that SA can interfere with the fluorescence of various GFP-derived reporter constructs in vivo. Assays that measure relocation or turnover of GFP-tagged proteins upon SA treatment should therefore be evaluated with caution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Salicylic acid and calcium-induced protection of wheat against salinity.

    PubMed

    Al-Whaibi, Mohamed H; Siddiqui, Manzer H; Basalah, Mohammed O

    2012-07-01

    Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes.

  18. Green and low-cost production of thermally stable and carboxylated cellulose Nanocrystals and nanofibrils using highly recyclable dicarboxylic acids

    Treesearch

    Huiyang Bian; Liheng Chen; Ruibin Wang; Junyong Zhu

    2016-01-01

    Here we demonstrate potentially low cost and green productions of high thermally stable and carboxylated cellulose nanocrystals (CNCs) and nanofibrils (CNF) from bleached eucalyptus pulp (BEP) and unbleached mixed hardwood kraft pulp (UMHP) fibers using highly recyclable dicarboxylic solid acids. Typical operating conditions were acid concentrations of 50 - 70 wt% at...

  19. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry.

    PubMed

    Makoś, Patrycja; Fernandes, Andre; Boczkaj, Grzegorz

    2017-09-29

    The paper presents a new method for the determination of 15 carboxylic acids in samples of postoxidative effluents from the production of petroleum bitumens using ion-pair dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry with injection port derivatization. Several parameters related to the extraction and derivatization efficiency were optimized. Under optimized experimental conditions, the obtained limit of detection and quantification ranged from 0.0069 to 1.12μg/mL and 0.014 to 2.24μg/mL, respectively. The precision (RSD ranged 1.29-6.42%) and recovery (69.43-125.79%) were satisfactory. Nine carboxylic acids at concentrations ranging from 0.10μg/mL to 15.06μg/mL were determined in the raw wastewater and in samples of effluents treated by various oxidation methods. The studies revealed a substantial increase of concentration of benzoic acids, in samples of wastewater after treatment, which confirms the need of carboxylic acids monitoring during industrial effluent treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Exogenous application of methyl jasmonate and salicylic acid on citrus foliage: Effecs on foliar volatiles and aggregation behavior of Asian citrus psyllid (Diaphorina citri)

    USDA-ARS?s Scientific Manuscript database

    Methyl jasmonate (MeJA) and salicylic acid (SA) are well-known activators of chemical defenses in plants. The SA pathway is involved in citrus response to infection by Candidatus Liberibacter asiaticus (CLas); less is known about the role of jasmonates in citrus defense response. We examined the eff...

  1. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  2. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity

    PubMed Central

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-01-01

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. DOI: http://dx.doi.org/10.7554/eLife.11156.001 PMID:27244239

  3. Comparative in vitro toxicity assessment of perfluorinated carboxylic acids.

    PubMed

    Mahapatra, Cecon T; Damayanti, Nur P; Guffey, Samuel C; Serafin, Jennifer S; Irudayaraj, Joseph; Sepúlveda, Maria S

    2017-06-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic fluorinated compounds that are highly bioaccumulative and persistent organic pollutants. Perfluorooctanoic acid (PFOA), an eight-carbon chain perfluorinated carboxylic acid, was used heavily for the production of fluoropolymers, but concerns have led to its replacement by shorter carbon chain homologues such as perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA). However, limited toxicity data exist for these substitutes. We evaluated the toxicity of PFOA, PFHxA and PFBA on a zebrafish liver cell line and investigated the effects of exposure on cell metabolism. Gross toxicity after 96 h of exposure was highest for PFOA and PFO - , while PFHxA and PFBA exhibited lower toxicity. Although the structural similarity of these compounds to fatty acids suggests the possibility of interference with the transport and metabolism of lipids, we could not detect any differential expression of peroxisome proliferator-activated receptor (ppar-α, -β and -γ), fabp3 and crot genes after 96 h exposure to up to 10 ppm of the test compounds. However, we observed localized lipid droplet accumulation only in PFBA-exposed cells. To study the effects of these compounds on cell metabolism, we conducted fluorescence lifetime imaging microscopy using naturally fluorescent biomarkers, NADH and FAD. The fluorescence lifetimes of NADH and FAD and the bound/free ratio of each of these coenzymes decreased in a dose- and carbon length-dependent manner, suggesting disruption of cell metabolism. In sum, our study revealed that PFASs with shorter carbon chains are less toxic than PFOA, and that exposure to sublethal dosage of PFOA, PFHxA or PFBA affects cell metabolism. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 2. Application for the analysis of Loy Yang coal oxidation products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.V.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.

  5. EFFECTS OF CARBOXYLIC ACIDS ON LIQUID-PHASE ADSORPTION OF ETHANOL AND WATER BY HIGH-SILICA ZSM-5

    EPA Science Inventory

    Adsorption isotherms were measured for each compound adsorbed on commercially available ZSM-5 (Si/Al = 140) powder from binary and ternary liquid mixtures of ethanol, carboxylic acids, and water at room temperature. The amounts adsorbed were measured using a recently developed t...

  6. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, X. T.; Showkat, A. M.; Wang, Z.

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrenemore » grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.« less

  7. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces.

    PubMed

    Feugmo, Conrard Giresse Tetsassi; Champagne, Benoît; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J; Liégeois, Vincent

    2012-03-28

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement. © 2012 IOP Publishing Ltd

  8. Supramolecular architectures in the salt trimethoprimium ferrocene-1-carboxylate and the cocrystal 4-amino-5-chloro-2,6-dimethylpyrimidine-ferrocene-1-carboxylic acid (1/1).

    PubMed

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2017-09-01

    In the salt trimethoprimium ferrocenecarboxylate [systematic name: 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidin-1-ium ferrocene-1-carboxylate], (C 14 H 19 N 4 O 3 )[Fe(C 5 H 5 )(C 6 H 4 O 2 )], (I), of the antibacterial compound trimethoprim, the carboxylate group interacts with the protonated aminopyrimidine group of trimethoprim via two N-H...O hydrogen bonds, generating a robust R 2 2 (8) ring motif (heterosynthon). However, in the cocrystal 4-amino-5-chloro-2,6-dimethylpyrimidine-ferrocene-1-carboxylic acid (1/1), [Fe(C 5 H 5 )(C 6 H 5 O 2 )]·C 6 H 8 ClN 3 , (II), the carboxyl-aminopyrimidine interaction [R 2 2 (8) motif] is absent. The carboxyl group interacts with the pyrimidine ring via a single O-H...N hydrogen bond. The pyrimidine rings, however, form base pairs via a pair of N-H...N hydrogen bonds, generating an R 2 2 (8) supramolecular homosynthon. In salt (I), the unsubstituted cyclopentadienyl ring is disordered over two positions, with a refined site-occupation ratio of 0.573 (10):0.427 (10). In this study, the two five-membered cyclopentadienyl (Cp) rings of ferrocene are in a staggered conformation, as is evident from the C...Cg...Cg...C pseudo-torsion angles, which are in the range 36.13-37.53° for (I) and 22.58-23.46° for (II). Regarding the Cp ring of the minor component in salt (I), the geometry of the ferrocene ring is in an eclipsed conformation, as is evident from the C...Cg...Cg...C pseudo-torsion angles, which are in the range 79.26-80.94°. Both crystal structures are further stabilized by weak π-π interactions.

  9. Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, E.; Alleman, T. L.; McCormick, R. L.

    Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products duemore » to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.« less

  10. Crystallization and X-ray diffraction analysis of salicylate synthase, a chorismate-utilizing enyme involved in siderophore biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, James F., E-mail: parsonsj@umbi.umd.edu; Shi, Katherine; Calabrese, Kelly

    2006-03-01

    Salicylate synthase, which catalyzes the first step in the synthesis of the siderophore yersiniabactin, has been crystallized. Diffraction data have been collected to 2.5 Å. Bacteria have evolved elaborate schemes that help them thrive in environments where free iron is severely limited. Siderophores such as yersiniabactin are small iron-scavenging molecules that are deployed by bacteria during iron starvation. Several studies have linked siderophore production and virulence. Yersiniabactin, produced by several Enterobacteriaceae, is derived from the key metabolic intermediate chorismic acid via its conversion to salicylate by salicylate synthase. Crystals of salicylate synthase from the uropathogen Escherichia coli CFT073 have beenmore » grown by vapour diffusion using polyethylene glycol as the precipitant. The monoclinic (P2{sub 1}) crystals diffract to 2.5 Å. The unit-cell parameters are a = 57.27, b = 164.07, c = 59.04 Å, β = 108.8°. The solvent content of the crystals is 54% and there are two molecules of the 434-amino-acid protein in the asymmetric unit. It is anticipated that the structure will reveal key details about the reaction mechanism and the evolution of salicylate synthase.« less

  11. Determination of proteins induced in response to jasmonic acid and salicylic acid in resistant and susceptible cultivars of tomato.

    PubMed

    Afroz, Amber; Khan, Muhammad Rashid; Komatsu, Setsuko

    2010-07-01

    Jasmonic acid (JA) and salicylic acid (SA) are signaling molecules that play key roles in the regulation of metabolic processes, reproduction, and defense against pathogens. The proteomics approach was used to identify proteins that are induced by JA and SA in the tomato cultivars Roma and Pant Bahr, which are susceptible and resistant to bacterial wilt, respectively. Threonine deaminase and leucine amino peptidase were upregulated, and ribulose-1,5-bisphosphate carboxylase/oxygenase small chain was downregulated by time-course application of JA. Translationally controlled tumor protein was upregulated by time-course application of SA. Protein disulfide isomerase was upregulated by application of either JA or SA. Proteins related to defense, energy, and protein destination/storage are suspected to be responsible for the susceptibility or resistance of the cultivars. Furthermore, in Roma, iron ABC transporter was upregulated by JA and down-regulated by SA. Iron ABC transporter plays a part in the signal transduction of both JA and SA in cultivars of tomato that are resistant to bacterial wilt.

  12. Salicylic acid beyond defence: its role in plant growth and development.

    PubMed

    Rivas-San Vicente, Mariana; Plasencia, Javier

    2011-06-01

    In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.

  13. Protection by free oxygen radical scavenging enzymes against salicylate-induced embryonic malformations in vitro.

    PubMed

    Karabulut, A K; Ulger, H; Pratten, M K

    2000-08-01

    Salicylates are among the oldest and most widely used drugs and are known to lead to foetal death, growth retardation and congenital abnormalities in experimental animals. In this study, the effects of acetyl salicylic acid (ASA), salicylic acid (SAL) and sodium salicylate (NaSAL) on early organogenesis and the interaction of these molecules with free radicals has been investigated. Postimplantation rat embryos were cultured in vitro from day 9.5 of gestation for 48 hr. ASA, SAL and NaSAL were added to whole rat serum at concentrations between 0.1 and 0.6 mg/ml. Also, the lowest effective concentration of ASA for all parameters (0.3 mg/ml) and the same concentration of NaSAL and SAL was added to the culture media in the presence of superoxide dismutase (SOD) (30 U/ml) or glutathione (0.5 micromol/ml). The growth and development of embryos was compared and each embryo was evaluated for the presence of any malformations. When compared to growth of control embryos, the salicylates decreased all growth and developmental parameters in a concentration-responsive manner. There was also a concentration-related increase in overall dysmorphology, including the incidence of haematoma in the yolk sac and neural system, open neural tube, abnormal tail torsion and the absence of fore limb bud. When SOD was added in the presence of ASA, growth and developmental parameters were improved and there was a significant decrease in the incidence of malformations. Addition of SOD also decreased the incidence of malformations in the presence of SAL, but did not effect the growth and developmental parameters of SAL and NaSAL. There was no significant difference between the embryos grown in the presence of these three molecules on the addition of glutathione. The effects of salicylates might involve free oxygen radicals by the non-enzymatic production of the highly teratogenic metabolites 2,3- and 2,5-dihydroxybenzoic acid. An enhanced production of these metabolites in embryonic tissues

  14. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    PubMed

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  15. [Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].

    PubMed

    Xu, Ai-hua; Yang, Min; Du, Hong-zhang; Peng, Fu-yong; Sun, Cheng-lin

    2007-07-01

    Oxalic, formic and acetic acid are main intermediate products in catalytic wet air oxidation process (CWAO). The catalytic activity and stability in CWAO of the three short-chain organic acids over ZnFe0.25Al1.75O4 catalyst were studied. Oxalic acid is the only oxidizable intermediate and the largest amount of Fe leaching is 9.5 mg L(-1) at 160 degrees C during CWAO process. Formic and acetic acid have little influence on Fe leaching. Due to the strong reducible ability of oxalic acid, the amount of Fe leaching is larger in nitrogen atmosphere than that in oxygen atmosphere. Salicylic acid can be also degraded by ZnFe0.25Al1.75O4 catalyst with a high catalytic activity and stability.

  16. Synthesis, characterization and crystal structure of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata

    2018-03-01

    The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.

  17. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    PubMed

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  18. Intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions

    PubMed Central

    Wilson, Daniel C; Carella, Philip; Cameron, Robin K

    2014-01-01

    The phytohormone salicylic acid (SA) plays an important role in several disease resistance responses. During the Age-Related Resistance (ARR) response that occurs in mature Arabidopsis responding to Pseudomonas syringae pv tomato (Pst), SA accumulates in the intercellular space where it may act as an antimicrobial agent. Recently we measured intracellular and intercellular SA levels in young, ARR-incompetent plants responding to virulent and avirulent strains of Pst to determine if intercellular SA accumulation is a component of additional defense responses to Pst. In young plants virulent Pst suppressed both intra- and intercellular SA accumulation in a coronatine-dependent manner. In contrast, high levels of intra- and intercellular SA accumulated in response to avirulent Pst. Our results support the idea that SA accumulation in the intercellular space is an important component of multiple defense responses. Future research will include understanding how mature plants counteract the effects of coronatine during the ARR response. PMID:25763618

  19. Effect of preparation methods on the activity of titanium dioxide-carbon nitride composites for photocatalytic degradation of salicylic acid

    NASA Astrophysics Data System (ADS)

    Yuliati, L.; Salleh, A. M.; Hatta, M. H. M.; Lintang, H. O.

    2018-04-01

    In this study, titanium dioxide-carbon nitride (TiO2-CN) composites were prepared by three methods, which were one pot oxidation, impregnation, and physical mixing. Each series of the photocatalysts was prepared with different ratios of titanium to carbon (Ti/C), i.e., 1, 5, 10, 20, and 50 mol%. All samples were characterized by X-ray diffraction (XRD) and diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopies. The characterization results confirmed the successful preparation of TiO2, CN, and the TiO2-CN composites. Photocatalytic activity tests were carried out for degradation of salicylic acid at room temperature for 6 h under UV and visible light irradiations. It was confirmed that all the prepared TiO2-CN composites showed better photocatalytic activities than the bare TiO2 and the bare CN. Under UV light irradiation, 90.6% of salicylic acid degradation was achieved on the best composite prepared by one pot oxidation with 5 mol% of titanium to carbon (Ti/C) ratio. On the other hand, the highest degradation under visible light irradiation was 94.3%, observed on the composite that was prepared also by one pot oxidation method with the Ti/C ratio of 10 mol%. Therefore, among the investigated methods, the best method to prepare the titanium dioxide-carbon nitride composites with high photocatalytic activity was one pot oxidation method.

  20. Trace Amounts of Furan-2-Carboxylic Acids Determine the Quality of Solid Agar Plates for Bacterial Culture

    PubMed Central

    Hara, Shintaro; Isoda, Reika; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2012-01-01

    Background Many investigators have recognised that a significant proportion of environmental bacteria exist in a viable but non-culturable state on agar plates, and some researchers have also noticed that some of such bacteria clearly recover their growth on matrices other than agar. However, the reason why agar is unsuitable for the growth of some bacteria has not been addressed. Methodology/Principal Findings According to the guide of a bioassay for swarming inhibition, we identified 5-hydroxymethylfuran-2-carboxylic acid (5-HMFA) and furan-2-carboxylic acid (FA) as factors that inhibit bacterial swarming and likely inhibit extracellular polysaccharide production on agar. The furan-2-carboxylic acids 5-HMFA and FA effectively inhibited the swarming and swimming of several environmental bacteria at concentrations of 1.8 and 2.3 µg L−1 (13 and 21 nmol L−1), respectively, which are equivalent to the concentrations of these compounds in 0.3% agar. On Luria-Bertani (LB) plates containing 1.0% agar that had been previously washed with MeOH, a mixture of 5-HMFA and FA in amounts equivalent to their original concentrations in the unwashed agar repressed the swarming of Escherichia coli K12 strain W3110, a representative swarming bacterium. Conclusions/Significance Agar that contains trace amounts of 5-HMFA and FA inhibits the proliferation of some slow-growing or difficult-to-culture bacteria on the plates, but it is useful for single colony isolation due to the ease of identification of swarmable bacteria as the non-swarmed colonies. PMID:22848437