Sample records for salina chlorophyta cultivated

  1. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    PubMed Central

    Safafar, Hamed; Hass, Michael Z.; Møller, Per; Holdt, Susan L.; Jacobsen, Charlotte

    2016-01-01

    Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids), tocopherols and carotenoids for potential use in aquaculture feed industry. PMID:27483291

  2. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium.

    PubMed

    Safafar, Hamed; Hass, Michael Z; Møller, Per; Holdt, Susan L; Jacobsen, Charlotte

    2016-07-29

    Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids), tocopherols and carotenoids for potential use in aquaculture feed industry.

  3. Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency.

    PubMed

    Kim, Ga-Yeong; Heo, Jina; Kim, Hee-Sik; Han, Jong-In

    2017-08-01

    In this study, bicarbonate was proposed as an alternative carbon source to overcome exceedingly low CO 2 fixation efficiency of conventional microalgae cultivation system. 5gL -1 of sodium bicarbonate was found to well support the growth of Dunaliella salina, showing 2.84-fold higher specific growth rate than a bicarbonate-free control. This bicarbonate-fed cultivation also could yield biomass productivity similar to that of CO 2 -based system as long as pH was controlled. While the supplied CO 2 , because of its being a gas, was mostly lost and only 3.59% of it was used for biomass synthesis, bicarbonate was effectively incorporated into the biomass with 91.40% of carbon utilization efficiency. This study showed that the bicarbonate-based microalgae cultivation is indeed possible, and can even become a truly environment-friendly and workable approach, provided that a CO 2 mineralization technology is concomitantly established. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Phenotypic and genetic characterization of Dunaliella (Chlorophyta) from Indian salinas and their diversity

    PubMed Central

    2012-01-01

    Background The genus Dunaliella (Class – Chlorophyceae) is widely studied for its tolerance to extreme habitat conditions, physiological aspects and many biotechnological applications, such as a source of carotenoids and many other bioactive compounds. Biochemical and molecular characterization is very much essential to fully explore the properties and possibilities of the new isolates of Dunaliella. In India, hyper saline lakes and salt pans were reported to bloom with Dunaliella spp. However, except for the economically important D. salina, other species are rarely characterized taxonomically from India. Present study was conducted to describe Dunaliella strains from Indian salinas using a combined morphological, physiological and molecular approach with an aim to have a better understanding on the taxonomy and diversity of this genus from India. Results Comparative phenotypic and genetic studies revealed high level of diversity within the Indian Dunaliella isolates. Species level identification using morphological characteristics clearly delineated two strains of D. salina with considerable β-carotene content (>20 pg/cell). The variation in 18S rRNA gene size, amplified with MA1-MA2 primers, ranged between ~1800 and ~2650 base pairs, and together with the phylogeny based on ITS gene sequence provided a pattern, forming five different groups within Indian Dunaliella isolates. Superficial congruency was observed between ITS and rbcL gene phylogenetic trees with consistent formation of major clades separating Indian isolates into two distinct clusters, one with D. salina and allied strains, and another one with D. viridis and allied strains. Further in both the trees, few isolates showed high level of genetic divergence than reported previously for Dunaliella spp. This indicates the scope of more numbers of clearly defined/unidentified species/sub-species within Indian Dunaliella isolates. Conclusion Present work illustrates Indian Dunaliella strains

  5. Effects of elevated pCO2 on physiological performance of marine microalgae Dunaliella salina (Chlorophyta, Chlorophyceae

    NASA Astrophysics Data System (ADS)

    Hu, Shunxin; Wang, You; Wang, Ying; Zhao, Yan; Zhang, Xinxin; Zhang, Yongsheng; Jiang, Ming; Tang, Xuexi

    2018-03-01

    The present study was conducted to determine the effects of elevated pCO2 on growth, photosynthesis, dark respiration and inorganic carbon acquisition in the marine microalga Dunaliella salina. To accomplish this, D. salina was incubated in semi-continuous cultures under present-day CO2 levels (390 μatm, pHNBS: 8.10), predicted year 2100 CO2 levels (1 000 μatm, pHNBS: 7.78) and predicted year 2300 CO2 levels (2 000 μatm, pHNBS: 7.49). Elevated pCO2 significantly enhanced photosynthesis (in terms of gross photosynthetic O2 evolution, effective quantum yield (Δ F/ F' m ), photosynthetic efficiency ( α), maximum relative electron transport rate (rETRmax) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity) and dark respiration of D. salina, but had insignificant effects on growth. The photosynthetic O2 evolution of D. salina was significantly inhibited by the inhibitors acetazolamide (AZ), ethoxyzolamide (EZ) and 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), indicating that D. salina is capable of acquiring HCOˉ 3 via extracellular carbonic anhydrase and anion-exchange proteins. Furthermore, the lower inhibition of the photosynthetic O2 evolution at high pCO2 levels by AZ, EZ and DIDS and the decreased carbonic anhydrase showed that carbon concentrating mechanisms were down-regulated at high pCO2. In conclusion, our results show that photosynthesis, dark respiration and CCMs will be affected by the increased pCO2/low pH conditions predicted for the future, but that the responses of D. salina to high pCO2/low pH might be modulated by other environmental factors such as light, nutrients and temperature. Therefore, further studies are needed to determine the interactive effects of pCO2, temperature, light and nutrients on marine microalgae.

  6. Effects of elevated pCO2 on physiological performance of marine microalgae Dunaliella salina (Chlorophyta, Chlorophyceae)

    NASA Astrophysics Data System (ADS)

    Hu, Shunxin; Wang, You; Wang, Ying; Zhao, Yan; Zhang, Xinxin; Zhang, Yongsheng; Jiang, Ming; Tang, Xuexi

    2017-06-01

    The present study was conducted to determine the effects of elevated pCO2 on growth, photosynthesis, dark respiration and inorganic carbon acquisition in the marine microalga Dunaliella salina. To accomplish this, D. salina was incubated in semi-continuous cultures under present-day CO2 levels (390 μatm, pHNBS: 8.10), predicted year 2100 CO2 levels (1 000 μatm, pHNBS: 7.78) and predicted year 2300 CO2 levels (2 000 μatm, pHNBS: 7.49). Elevated pCO2 significantly enhanced photosynthesis (in terms of gross photosynthetic O2 evolution, effective quantum yield (ΔF/F' m ), photosynthetic efficiency (α), maximum relative electron transport rate (rETRmax) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity) and dark respiration of D. salina, but had insignificant effects on growth. The photosynthetic O2 evolution of D. salina was significantly inhibited by the inhibitors acetazolamide (AZ), ethoxyzolamide (EZ) and 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), indicating that D. salina is capable of acquiring HCO3 - via extracellular carbonic anhydrase and anion-exchange proteins. Furthermore, the lower inhibition of the photosynthetic O2 evolution at high pCO2 levels by AZ, EZ and DIDS and the decreased carbonic anhydrase showed that carbon concentrating mechanisms were down-regulated at high pCO2. In conclusion, our results show that photosynthesis, dark respiration and CCMs will be affected by the increased pCO2/low pH conditions predicted for the future, but that the responses of D. salina to high pCO2/low pH might be modulated by other environmental factors such as light, nutrients and temperature. Therefore, further studies are needed to determine the interactive effects of pCO2, temperature, light and nutrients on marine microalgae.

  7. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    NASA Astrophysics Data System (ADS)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  8. Longitudinal analysis of microbiota in microalga Nannochloropsis salina cultures

    DOE PAGES

    Geng, Haifeng; Sale, Kenneth L.; Tran-Gyamfi, Mary Bao; ...

    2016-03-08

    Here, large-scale open microalgae cultivation has tremendous potential to make a significant contribution to replacing petroleum-based fuels with biofuels. Open algal cultures are unavoidably inhabited with a diversity of microbes that live on, influence, and shape the fate of these ecosystems. However, there is little understanding of the resilience and stability of the microbial communities in engineered semicontinuous algal systems. To evaluate the dynamics and resilience of the microbial communities in microalgae biofuel cultures, we conducted a longitudinal study on open systems to compare the temporal profiles of the microbiota from two multigenerational algal cohorts, which include one seeded withmore » the microbiota from an in-house culture and the other exogenously seeded with a natural-occurring consortia of bacterial species harvested from the Pacific Ocean. From these month-long, semicontinuous open microalga Nannochloropsis salina cultures, we sequenced a time-series of 46 samples, yielding 8804 operational taxonomic units derived from 9,160,076 high-quality partial 16S rRNA sequences. We provide quantitative evidence that clearly illustrates the development of microbial community is associated with microbiota ancestry. In addition, N. salina growth phases were linked with distinct changes in microbial phylotypes. Alteromonadeles dominated the community in the N. salina exponential phase whereas Alphaproteobacteria and Flavobacteriia were more prevalent in the stationary phase. We also demonstrate that the N. salina-associated microbial community in open cultures is diverse, resilient, and dynamic in response to environmental perturbations. This knowledge has general implications for developing and testing design principles of cultivated algal systems.« less

  9. Outdoor cultivation of Dunaliella salina KU 11 using brine and saline lake water with raceway ponds in northeastern Thailand.

    PubMed

    Wu, Zhe; Dejtisakdi, Wipawee; Kermanee, Prasart; Ma, Chunhong; Arirob, Wallop; Sathasivam, Ramaraj; Juntawong, Niran

    2017-11-01

    To evaluate the potential of algal biotechnology to replace traditional agriculture in northeastern Thailand, an open raceway cultivation system was developed to produce biomass and beta-carotene. Dunaliella salina KU 11 isolated from local saline soil was cultured in open raceway tanks using brine and saline lake water. Grown in modified Johnson's medium (with 2-3.5 M NaCl), the algae reached a maximum cell density on the fourth day (1.8 × 10 6 cells mL -1 ). Increasing KNO 3 and NaHCO 3 from 0.5 and 0.043 g L -1 to 1 and 2.1 g L -1 , respectively, significantly improved the yields of biomass (0.33 g L -1 ) and beta-carotene (19 mg L -1 ). Expected profits for algal production were evaluated, and it was found that this strain was suitable for outdoor cultivation and the developing algal industry in northeastern Thailand could produce high economic benefits (at least $64,120 per year per 0.16 ha). © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  10. Diversity and Abundance of Chlorophyta in Krakal Beach, Gunung Kidul, Yogyakarta

    NASA Astrophysics Data System (ADS)

    Putri, A. C.; Nugroho, I. C.; Firdaus, N. U. N.; Puspita, N. O. J.; Fajrin, S. A. R.; Hamzah, S. D. A.

    2017-10-01

    Chlorophyta plays an important role in energy flow as the main producer in marine food chain, material circulation, bioaccumulation, and bio-indicator in the intertidal zone. Several genera of Chlorophyta have been used by local society around coastal area of Gunung Kidul, Yogyakarta as local product, but the research about diversity and abundance information of Chlorophyta in Krakal beach was not yet understood. The aim of this study is to gain the information about diversity and abundancy of Chlorophyta in Krakal Beach, Gunung Kidul,Yogyakarta. This research was conducted in March 11th 2017. This research utilizes Line Transect and Stratified Random Sampling method which is used 1x1 m plot. There are six genera of Chlorophyta have been identified in this research, such as Chaetomorpha sp.; Boergesenia sp; Ulva sp.; Cladophora sp.; Enteromorpha sp.; and Halicystis sp. From 6 genera of Chlorophyta, the highest genera coverage is Enteromorpha sp. (9.88%). This research is expected to record data of macroalgae abundance especially Chlorophyta, in Krakal Beach. By this research, monitoring of macroalgae could be done and supported by government and local people to maintain the sustainability of Chlorophyta.

  11. Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium.

    PubMed

    Racharaks, Ratanachat; Ge, Xumeng; Li, Yebo

    2015-09-01

    The potential of shale gas flowback water and anaerobic digestion (AD) effluent to reduce the water and nutrient requirements for marine microalgae cultivation was evaluated with the following strains: Nannochloropsis salina, Dunaliella tertiolecta, and Dunaliella salina. N. salina and D. tertiolecta achieved the highest biomass productivity in the medium composed of flowback water and AD effluent (6% v/v). Growth in the above unsterilized medium was found to be comparable to that in sterilized commercial media with similar initial inorganic nitrogen concentrations, salinity, and pH levels. Specific growth rates of 0.293 and 0.349 day(-1) and average biomass productivities of 225 and 275 mg L(-1)day(-1) were obtained for N. salina and D. tertiolecta, respectively. The lipid content and fatty acid profile of both strains in the medium were also comparable to those obtained with commercial nutrients and salts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production.

    PubMed

    Gonçalves, Ana L; Pires, José C M; Simões, Manuel

    2016-01-01

    Cultivation of microalgae and cyanobacteria has been the focus of several research studies worldwide, due to the huge biotechnological potential of these photosynthetic microorganisms. However, production of these microorganisms is still not economically viable. One possible alternative to improve the economic feasibility of the process is the use of consortia between microalgae and/or cyanobacteria. In this study, Chlorella vulgaris, Pseudokirchneriella subcapitata and Microcystis aeruginosa were co-cultivated with Synechocystis salina to evaluate how dual-species cultures can influence biomass and lipid production and nutrients removal. Results have shown that the three studied consortia achieved higher biomass productivities than the individual cultures. Additionally, nitrogen and phosphorus consumption rates by the consortia provided final concentrations below the values established by European Union legislation for these nutrients. In the case of lipid productivities, higher values were determined when S. salina was co-cultivated with P. subcapitata and M. aeruginosa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of hydrologic conditions and nitrate concentrations in the Rio Nigua de Salinas alluvial fan aquifer, Salinas, Puerto Rico, 2002-03

    USGS Publications Warehouse

    Rodriguez, Jose M.

    2006-01-01

    A ground-water quality study to define the potential sources and concentration of nitrate in the Rio Nigua de Salinas alluvial fan aquifer was conducted between January 2002 and March 2003. The study area covers about 3,600 hectares of the coastal plain within the municipality of Salinas in southern Puerto Rico, extending from the foothills to the Caribbean Sea. Agriculture is the principal land use and includes cultivation of diverse crops, turf grass, bioengineered crops for seed production, and commercial poultry farms. Ground-water withdrawal in the alluvial fan was estimated to be about 43,500 cubic meters per day, of which 49 percent was withdrawn for agriculture, 42 percent for public supply, and 9 percent for industrial use. Ground-water flow in the study area was primarily to the south and toward a cone of depression within the south-central part of the alluvial fan. The presence of that cone of depression and a smaller one located in the northeastern quadrant of the study area may contribute to the increase in nitrate concentration within a total area of about 545 hectares by 'recycling' ground water used for irrigation of cultivated lands. In an area that covers about 405 hectares near the center of the Salinas alluvial fan, nitrate concentrations increased from 0.9 to 6.7 milligrams per liter as nitrogen in 1986 to 8 to 12 milligrams per liter as nitrogen in 2002. Principal sources of nitrate in the study area are fertilizers (used in the cultivated farmlands) and poultry farm wastes. The highest nitrogen concentrations were found at poultry farms in the foothills area. In the area of disposed poultry farm wastes, nitrate concentrations in ground water ranged from 25 to 77 milligrams per liter as nitrogen. Analyses for the stable isotope ratios of nitrogen-15/nitrogen-14 in nitrate were used to distinguish the source of nitrate in the coastal plain alluvial fan aquifer. Potential nitrate loads from areas under cultivation were estimated for the

  14. Fungal Pathogen of Cladophora glomerata (Chlorophyta)

    PubMed Central

    Bott, Thomas L.; Rogenmuser, Kurt

    1980-01-01

    A strain of Acremonium kiliense (Fungi Imperfecti) produced a water-soluble, dialyzable, heat-stable agent that rendered Cladophora glomerata (Chlorophyta) chlorotic and inhibited its growth. PMID:16345663

  15. Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates.

    PubMed

    Pavón-Suriano, Salim Gabriel; Ortega-Clemente, Luis Alfredo; Curiel-Ramírez, Sergio; Jiménez-García, María Isabel; Pérez-Legaspi, Ignacio Alejandro; Robledo-Narváez, Paula Natalia

    2017-07-25

    The production of biofuels from microalgae is a promising and sustainable alternative. Its production is determined by the content of lipids and carbohydrates, which is different for each microalgae species and is affected by environmental factors, being lighting one of the principal determining their biochemical composition. The colour temperature (electromagnetic radiation and light spectrum) is a determining factor for the production of lipids and carbohydrates in microalgae. The aim of this assay was to evaluate the effect of three colour temperatures (6500, 10,000 and 20,000 °K) on the biomass (cel mL -1 ), biomass production and productivity (g L -1 and g L -1  day -1 ), lipid and carbohydrate content (%), lipid and carbohydrate production and productivity (mg L -1 and mg L -1  day -1 ), composition and content of fatty acids (%) in two microalgae species: Dunaliella salina and Nannochloropsis oculata. The highest cell density was observed for N. oculata in stationary phase in the control (83.93 × 106 cel mL -1 ). However, higher lipid content was obtained in D. salina in stationary phase at 10,000 °K (80%), while N. oculata showed 67% at 6500 °K. The highest carbohydrate content was 25% in stationary phase for D. salina at 20,000 °K. Regarding the production of lipids, D. salina reached a maximum of 523 mg L -1 in exponential phase at 6500 and 10,000 °K. The highest carbohydrate production was 38 mg L -1 for D. salina in exponential phase at 20,000 °K. In both microalgae, 15 different fatty acids were identified; the most abundant was palmitic acid with 35.8% for N. oculata in stationary phase at 10,000 °K, while D. salina showed 67% of polyunsaturated fatty acids in exponential phase at 6500 °K. In conclusion, the ideal colour temperature for microalgae culture to obtain biofuels should be based on the biomolecule of interest, being necessary to individually evaluate for each species.

  16. Chlamydomonas sajao nov. sp. (Chlorophyta, Volvocales)

    NASA Astrophysics Data System (ADS)

    Lewin, Ralph A.

    1984-06-01

    A new species of Chlamydomonas, namely, C. sajao nov. sp. of the Volvocales, Chlorophyta was isolated from a duckweed growing near a ricefield in the vicinity of Guangzhou, China. This interesting unicellular green alga, similar to C. mexicana from Mexico, secretes quantities of extracellular mucilaginous polysaccharides, and may be employed in improving soil quality. The new species resembles C. waldenburgensis Moewus in most characteristics but differs in three important features.

  17. Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina * #

    PubMed Central

    Hong, Ling; Liu, Jun-li; Midoun, Samira Z.; Miller, Philip C.

    2017-01-01

    The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds (including β-carotene and vitamins) with potential commercial value. A large transcriptome database of D. salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform. We characterized the metabolic processes in D. salina with a focus on valuable metabolites, with the aim of manipulating D. salina to achieve greater economic value in large-scale production through a bioengineering strategy. Gene expression profiles under salt stress verified using quantitative polymerase chain reaction (qPCR) implied that salt can regulate the expression of key genes. This study generated a substantial fraction of D. salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes. This first full-scale transcriptome study of D. salina establishes a foundation for further comparative genomic studies. PMID:28990374

  18. Historical Ground-Water Development in the Salinas Alluvial Fan Area, Salinas, Puerto Rico, 1900-2005

    USGS Publications Warehouse

    Rodriguez, Jose M.; Gómez-Gómez, Fernando

    2008-01-01

    The Salinas alluvial fan area has historically been one of the most intensively used agricultural areas in the South Coastal Plain of Puerto Rico. Changes in agricultural practices and land use in the Salinas alluvial fan have also caused changes in the geographic distribution of ground-water withdrawals from the alluvial aquifer. As a result, the ground-water balance and ground-water flow pattern have changed throughout the years and may explain the presence of saline ground water along parts of the coast at present. By providing a reconstruction of historical ground-water development in the Salinas alluvial fan area, from the initial years of aquifer development at about 1900 to the most recent conditions existing in 2005, water resources managers and planners can use the results of the analysis for a more complete understanding of aquifer conditions especially pertaining to water quality. This study effort was conducted by the U.S. Geological Survey in cooperation with the Puerto Rico Department of Natural and Environmental Resources as a contribution in the management of the Jobos Bay National Estuarine Research Reserve. The study area encompasses about 20 mi2 (square miles) of the extensive South Coastal Plain alluvial aquifer system (fig. 1). The study area is bounded to the north by foothills of the Cordillera Central mountain chain, to the south by the Caribbean Sea, and to the east and west by the Rio Nigua de Salinas and the Quebrada Aguas Verdes, respectively. Fan-delta and alluvial deposits contain the principal aquifers in the study area.

  19. Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA.

    PubMed

    Anderson, Brian S; Hunt, John W; Phillips, Bryn M; Nicely, Patricia A; Gilbert, Kristine D; de Vlaming, Victor; Connor, Valerie; Richard, Nancy; Tjeerdema, Ronald S

    2003-10-01

    The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non-metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the

  20. Processing recommendations for using low-solids digestate as nutrient solution for poly-ß-hydroxybutyrate production with Synechocystis salina.

    PubMed

    Meixner, K; Fritz, I; Daffert, C; Markl, K; Fuchs, W; Drosg, B

    2016-12-20

    Within the last decades, environmental pollution with persistent plastics steadily increased; therefore the production of biodegradable materials like poly-ß-hydroxybutyrate (PHB) is essential. Currently, PHB is produced with heterotrophic bacteria from crops. This leads to competition with food and feed production, which can be avoided by using photoautotrophic cyanobacteria, as Synechocystis salina, synthesizing PHB from CO 2 at nutrient limitation. This study aims to increase the economic efficiency of PHB production with cyanobacteria by using nutrients from anaerobic digestate. First, growth and PHB production of S. salina in digestate fractions (supernatant and permeate, with/without precipitating agents) and dilutions thereof and then the scale-up (photobioreactor, 200 L working volume) were evaluated. With precipitated and centrifuged digestate diluted 1/3 the highest biomass (1.55gL -1 ) and PHB concentrations (95.4mgL -1 ), being 78% of those in mineral media, were achieved. In the photobioreactor-experiments biomass (1.63gL -1 ) and PHB concentrations (88.7mgL -1 ), being 79% and 72% of those in mineral medium, were reached, but in a cultivation time 10days longer than in mineral medium. The possibility to use digestate as sustainable and low cost nutrient solution for microalgae cultivation and photoautotrophic PHB production, instead of applying it on fields or processing it to achieve discharge limits, makes this application a highly valid option. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Increasing β-carotene content of phytoplankton Dunaliella salina using different salinity media

    NASA Astrophysics Data System (ADS)

    Hermawan, J.; Masithah, E. D.; Tjahjaningsih, W.; Abdillah, A. A.

    2018-04-01

    Dunaliella salina have got great attention in the nutritional, pharmaceutical and cosmetic companies because contain β-carotene. β-carotene functions as antioxidants and precursors of vitamin A and can treat tumors and cancer in humans. The content of β-carotene in D. salina can be increased by increasing salinity levels in the culture medium. The aim of this study was to determine whether increasing salinity may increas β-carotene content of phytoplankton D. salina. The research use data collection method with direct observation and then analyzed the result with descriptive method. The results showed that different salinity of media can influenced β-carotene content of D. salina. The highest β-carotene content of D. salina was at treatment B (30 ppt) which equal to 2.312 mg/L on 10th day. The production of β-carotene in D. salina can be increased was other environmental stress treatments in the form of stress-temperature, light and nutrients using.

  2. 19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, IN CENTRAL PORTION OF SAN LUIS OBISPO, CALIFORNIA. Leeds Hill Barnard & Jewett - Consulting Engineers, February 1942. - Salinas River Project, Cuesta Tunnel, Southeast of U.S. 101, San Luis Obispo, San Luis Obispo County, CA

  3. Groundwater recharge on east side soils of the Salinas Valley

    USDA-ARS?s Scientific Manuscript database

    After four years of drought, groundwater levels in the Salinas Valley are at historically low levels which threaten to adversely affect farming in the Salinas Valley. Given the prospect of a strong El Niño this coming winter, it seems prudent to plan to capture as much of the rainfall as possible to...

  4. Dunaliella salina exhibits an antileukemic immunity in a mouse model of WEHI-3 leukemia cells.

    PubMed

    Chuang, Wen-Chen; Ho, Yung-Chyuan; Liao, Jiunn-Wang; Lu, Fung-Jou

    2014-11-26

    Dunaliella salina has been shown to have antioxidant property and induce apoptotic cell death of human cancer cells in vitro. However, there is no information available on D. salina showing an antileukemia effect or immunomodulatory activity in vivo. This study applied D. salina to syngeneic leukemia-implanted mice (BALB/c and WEHI-3) to investigate its immunological and antileukemia properties. Oral administration of D. salina (184.5, 369, and 922.5 mg/kg) inhibited spleen metastasis and prolonged the survival in BALB/c mice that had received an intravenous injection of WEHI-3 cells. The results revealed that D. salina had reduced spleen enlargement in murine leukemia. It had also increased the population and proliferation of T-cells (CD3) and B-cells (CD19) following Con A/LPS treatment on flow cytometry and MTT assay, respectively. Furthermore, D. salina increased the phagocytosis of macrophages and enhanced the cytotoxicity of natural killer cells on flow cytometry and LDH assay. Moreover, D. salina enhanced the levels of interferon-γ and interleukin 2 (IL-2) but reduced the levels of IL-4 and IL-10 in leukemic mice. In conclusion, these results demonstrated that the application of D. salina had beneficial effects on WEHI-3 leukemic mice by prolonging survival via modulating the immune responses.

  5. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    NASA Astrophysics Data System (ADS)

    Chai, Yurong; Lu, Yumin; Wang, Tianyun; Hou, Weihong; Xue, Lexun

    2006-12-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase ( CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  6. Potential of New Isolates of Dunaliella Salina for Natural β-Carotene Production.

    PubMed

    Xu, Yanan; Ibrahim, Iskander M; Wosu, Chiziezi I; Ben-Amotz, Ami; Harvey, Patricia J

    2018-02-01

    The halotolerant microalga Dunaliella salina has been widely studied for natural β-carotene production. This work shows biochemical characterization of three newly isolated Dunaliella salina strains, DF15, DF17, and DF40, compared with D. salina CCAP 19/30 and D. salina UTEX 2538 (also known as D. bardawil ). Although all three new strains have been genetically characterized as Dunaliella salina strains, their ability to accumulate carotenoids and their capacity for photoprotection against high light stress are different. DF15 and UTEX 2538 reveal great potential for producing a large amount of β-carotene and maintained a high rate of photosynthesis under light of high intensity; however, DF17, DF40, and CCAP 19/30 showed increasing photoinhibition with increasing light intensity, and reduced contents of carotenoids, in particular β-carotene, suggesting that the capacity of photoprotection is dependent on the cellular content of carotenoids, in particular β-carotene. Strong positive correlations were found between the cellular content of all-trans β-carotene, 9- cis β-carotene, all-trans α-carotene and zeaxanthin but not lutein in the D. salina strains. Lutein was strongly correlated with respiration in photosynthetic cells and strongly related to photosynthesis, chlorophyll and respiration, suggesting an important and not hitherto identified role for lutein in coordinated control of the cellular functions of photosynthesis and respiration in response to changes in light conditions, which is broadly conserved in Dunaliella strains. Statistical analysis based on biochemical data revealed a different grouping strategy from the genetic classification of the strains. The significance of these data for strain selection for commercial carotenoid production is discussed.

  7. Potential of New Isolates of Dunaliella Salina for Natural β-Carotene Production

    PubMed Central

    Xu, Yanan; Wosu, Chiziezi I.; Ben-Amotz, Ami

    2018-01-01

    The halotolerant microalga Dunaliella salina has been widely studied for natural β-carotene production. This work shows biochemical characterization of three newly isolated Dunaliella salina strains, DF15, DF17, and DF40, compared with D. salina CCAP 19/30 and D. salina UTEX 2538 (also known as D. bardawil). Although all three new strains have been genetically characterized as Dunaliella salina strains, their ability to accumulate carotenoids and their capacity for photoprotection against high light stress are different. DF15 and UTEX 2538 reveal great potential for producing a large amount of β-carotene and maintained a high rate of photosynthesis under light of high intensity; however, DF17, DF40, and CCAP 19/30 showed increasing photoinhibition with increasing light intensity, and reduced contents of carotenoids, in particular β-carotene, suggesting that the capacity of photoprotection is dependent on the cellular content of carotenoids, in particular β-carotene. Strong positive correlations were found between the cellular content of all-trans β-carotene, 9-cis β-carotene, all-trans α-carotene and zeaxanthin but not lutein in the D. salina strains. Lutein was strongly correlated with respiration in photosynthetic cells and strongly related to photosynthesis, chlorophyll and respiration, suggesting an important and not hitherto identified role for lutein in coordinated control of the cellular functions of photosynthesis and respiration in response to changes in light conditions, which is broadly conserved in Dunaliella strains. Statistical analysis based on biochemical data revealed a different grouping strategy from the genetic classification of the strains. The significance of these data for strain selection for commercial carotenoid production is discussed. PMID:29389891

  8. Biodiesel synthesis via transesterification of lipid Chlorophyta cultivated in walne rich carbon medium using KOH/Zeolite catalyst

    NASA Astrophysics Data System (ADS)

    Dianursanti, Hayati, Siti Zahrotul; Putri, Dwini Normayulisa

    2017-11-01

    Microalgae from the Chlorophyta division such as Nannochloropsis oculata and Chlorella vulgaris are highly potential to be developed as biodiesel feedstocks because they have a high oil content up to 58%. Biodiesel is produced by transesterification of triglycerides and alcohols with the aid of homogeneous catalysts such as KOH. However, the use of KOH catalysts produces soaps in the biodiesel synthesis. Heterogeneous catalysts are known to solve this problem. One of them is natural zeolite. Zeolite can be used as a catalyst and as a support catalyst. Loading KOH on the zeolite surface is expected to increase alkalinity in KOH/Zeolite catalysts so as to increase the activity of KOH/Zeolite catalyst in transesterification of triglyceride with methanol. In this experimental lipid of microalgae will be used for produced biodiesel via transesterification reaction with methanol and KOH/Zeolite as a catalyst heterogeneous at 60 °C for 3h and utilized catalyst modificated KOH/Zeolite with variation 0.5 M, 1 M and 1.5 M KOH. The modified zeolite was then analyzed by XRF, XRD and BET. The result showed that the yield of biodiesel from lipid N.oculata was 81,09% by 0.5KOH/Zeolite catalyst, 86,53% by 1KOH/Zeolite catalyst, 1,5KOH/Zeolite and 88,13% by 1.5KOH/Zeolit, while the biodiesel produced from lipid C.vulgaris was 59.29% by 0.5KOH/Zeolite, 82.27% by 1KOH/Zeolite and 83.72% by 1.5KOH/Zeolite.

  9. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan W.; Siccardi, Anthony J.; Huysman, Nathan D.

    In this paper, the suitability of crude and purified struvite (MgNH 4PO 4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media weremore » found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ~20 ± 4 g AFDW/m 2/day). Finally, analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.« less

  10. Interspecific competition and allelopathic interaction between Karenia mikimotoi and Dunaliella salina in laboratory culture

    NASA Astrophysics Data System (ADS)

    He, Dong; Liu, Jiao; Hao, Qiang; Ran, Lihua; Zhou, Bin; Tang, Xuexi

    2016-03-01

    Algal allelopathy is a manifold ecological/physiological phenomenon that is focused on chemical interactions and autotoxicity. We investigated the allelopathic interactions between Karenia mikimotoi and Dunaliella salina in laboratory cultures based on diff erent temperature (15°C, 20°C, and 25°C) and lighting (40, 80, and 160 μmol/(m2·s)) conditions. The growth of D. salina in bi-algae culture (1:1 size/density) was significantly restrained. The results of cell-free filtrate culture indicate that direct cell-tocell contact was not necessary in interspecific competition. Further experimental results demonstrated that allelochemicals released from K. mikimotoi were markedly influenced by both temperature ( P =0.013) and irradiance ( P =0.003), resulting in diff erent growth characteristics of D. salina in filtrate mediums. Compared with the plateau period, K. mikimotoi exudates in the exponential phase had a stronger short-term inhibition effect on D. salina in normal conditions. A clear concentration-dependent relationship was observed in the effect of allelochemicals released from K. mikimotoi with low-promoting and high-repressing effects on D. Salina in a short time-scale. In addition, allelopathic substances remain stable and effective under high temperature and pressure stress. Many flocculent sediments adhering with D. salina cells were observed in all filtrate mediums, while the quantity and color depended on the original culture conditions.

  11. Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor.

    PubMed

    Bellou, Stamatia; Aggelis, George

    2012-12-15

    Chlorella sp. and Nannochloropsis salina cultivated in a lab-scale open pond simulating reactor grew well and produced 350-500mgL(-1) of biomass containing approximately 40% and 16% of lipids, respectively, while different trends in storage material (lipid and sugar) synthesis were identified for the two strains. In continuous culture the highest biomass and lipid productivity was respectively 0.7 and 0.06mgL(-1)h(-1) at D=0.0096h(-1), for Chlorella sp. and 0.8 and 0.09mgL(-1)h(-1) at D=0.007h(-1) for N. salina. The major polyunsaturated fatty acid (PUFA) in the lipid of Chlorella sp. was α-linolenic acid, found at a percentage of 23.0%, w/w, while N. salina synthesized eicosapentaenoic acid at a percentage of 27.0%, w/w. Glycolipids plus sphingolipids were predominant and richer in PUFA, compared to neutral lipids and phospholipids. Activities of some key enzymes, such as pyruvate dehydrogenase (PDC), ATP-citrate lyase (ATP:CL), malic enzyme (ME) and NAD-isocitrate dehydrogenase (ICDH), which are implicated in acetyl-CoA and NADPH biosynthesis, were studied in cells grown in batch and continuous modes. PDC involved in the conversion of pyruvate to acetyl-CoA presented a constant activity in all growth phases. The high ATP:CL activity observed in algal cells, combined with low or zero ICDH activity, indicated the algae ability to generate acetyl-CoA from sugar via citrate. However, the lipogenic capacity of the strains under investigation seemed to be restricted by the low ME activity resulting to limited NADPH synthesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Toxicity and trophic transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina: Effect of dietary and waterborne exposure.

    PubMed

    Bhuvaneshwari, M; Thiagarajan, Vignesh; Nemade, Prateek; Chandrasekaran, N; Mukherjee, Amitava

    2018-01-01

    The recent increase in nanoparticle (P25 TiO 2 NPs) usage has led to concerns regarding their potential implications on environment and human health. The food chain is the central pathway for nanoparticle transfer from lower to high trophic level organisms. The current study relies on the investigation of toxicity and trophic transfer potential of TiO 2 NPs from marine algae Dunaliella salina to marine crustacean Artemia salina. Toxicity was measured in two different modes of exposure such as waterborne (exposure of TiO 2 NPs to Artemia) and dietary exposure (NP-accumulated algal cells are used to feed the Artemia). The toxicity and accumulation of TiO 2 NPs in marine algae D. salina were also studied. Artemia was found to be more sensitive to TiO 2 NPs (48h LC 50 of 4.21mgL -1 ) as compared to marine algae, D. salina (48h LC 50 of 11.35mgL -1 ). The toxicity, uptake, and accumulation of TiO 2 NPs were observed to be more in waterborne exposure as compared to dietary exposure. Waterborne exposure seemed to cause higher ROS production and antioxidant enzyme (SOD and CAT) activity as compared to dietary exposure of TiO 2 NPs in Artemia. There were no observed biomagnification (BMF) and trophic transfer from algae to Artemia through dietary exposure. Histopathological studies confirmed the morphological and internal damages in Artemia. This study reiterates the possible effects of the different modes of exposure on trophic transfer potential of TiO 2 NPs and eventually the consequences on aquatic environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Toxicity of benthic dinoflagellates on grazing, behavior and survival of the brine shrimp Artemia salina

    PubMed Central

    Neves, Raquel A. F.; Fernandes, Tainá; dos Santos, Luciano Neves; Nascimento, Silvia M.

    2017-01-01

    Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs. PMID:28388672

  14. Toxicity of benthic dinoflagellates on grazing, behavior and survival of the brine shrimp Artemia salina.

    PubMed

    Neves, Raquel A F; Fernandes, Tainá; Santos, Luciano Neves Dos; Nascimento, Silvia M

    2017-01-01

    Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs.

  15. Can the halophilic ciliate Fabrea salina be used as a bio-control of microalgae blooms in solar salterns?

    NASA Astrophysics Data System (ADS)

    Hong, Hyun Pyo; Choi, Joong Ki

    2015-09-01

    The microlage Dunaliella salina, a major producer in salterns, is a serious problem for salt production. In this study we tried to assess if Fabrea salina can control D. salina. By parameterising numerical and functional response (growth and grazing vs prey abundance, respectively) at 90 psu and 30°C, where the ciliate is abundant and grows well, we developed a predator-prey model. The model is used to explore how change in microalga growth rate affect the dynamics, and the functional response is used in combination with field data to assess the potential impact of F. salina on D. salina. Over the 20 d simulation the ciliate controlled the prey population under all prey growth rates; although once D. salina were exhausted below the threshold level, F. salina died due to starvation, allowing the alga to increase in abundance, resulting in one or two predatorprey cycle, depending on prey growth rate. In general, the model predicted trends observed by others in the field, suggesting that it provided a good prediction of what may occur under the conditions we examined. Likewise we show that the ciliate can have a high impact on microalgal populations in the field. Finally, a literature review indicated that F. salina could be a good competitor with other protozoa and metazoan in salterns, depending on salinity and temperature, which requires further study and attention. In summary, we encourage continued studies on this unique ciliate on solar salterns and suggest that it may be useful in the bio-control of micoalgae.

  16. Groundwater quality in the Monterey Bay and Salinas Valley groundwater basins, California

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    The Monterey-Salinas study unit is nearly 1,000 square miles and consists of the Santa Cruz Purisima Formation Highlands, Felton Area, Scotts Valley, Soquel Valley, West Santa Cruz Terrace, Salinas Valley, Pajaro Valley, and Carmel Valley groundwater basins (California Department of Water Resources, 2003; Kulongski and Belitz, 2011). These basins were grouped into four study areas based primarily on geography. Groundwater basins in the north were grouped into the Santa Cruz study area, and those to the south were grouped into the Monterey Bay, the Salinas Valley, and the Paso Robles study areas (Kulongoski and others, 2007). The study unit has warm, dry summers and cool, moist winters. Average annual rainfall ranges from 31 inches in Santa Cruz in the north to 13 inches in Paso Robles in the south. The study areas are drained by several rivers and their principal tributaries: the Salinas, Pajaro, and Carmel Rivers, and San Lorenzo Creek. The Salinas Valley is a large intermontane valley that extends southeastward from Monterey Bay to Paso Robles. It has been filled, up to a thickness of 2,000 feet, with Tertiary and Quaternary marine and terrestrial sediments that overlie granitic basement. The Miocene-age Monterey Formation and Pliocene- to Pleistocene-age Paso Robles Formation, and Pleistocene to Holocene-age alluvium contain freshwater used for supply. The primary aquifers in the study unit are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 650 feet, consist of solid casing from the land surface to depths of about 175 to 500 feet, and are perforated below the solid casing. Water quality in the primary aquifers may differ from that in the shallower and deeper parts of the aquifer system. Groundwater movement is generally from the southern part of the Salinas Valley north towards the Monterey Bay

  17. Recycling produced water for algal cultivation for biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, Justin N.; Sullivan, Enid J.; Dean, Cynthia A.

    2012-08-09

    Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal,more » New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.« less

  18. Antifouling potential of the marine microalga Dunaliella salina.

    PubMed

    Gao, Min; Li, Fengchao; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2014-11-01

    Marine organisms have usually been viewed as sources of environmentally friendly compounds with antifouling activity. We performed a series of operations to investigate the antifouling potential of the marine microalga Dunaliella salina. For the ethyl acetate crude extract, the antialgal activity was significant, and the EC50 value against Skeletonema costatum was 58.9 μg ml(-1). The isolated purified extract was tested for antifouling activity, the EC 50 value against S. costatum was 21.2 μg ml(-1), and the LC50 against Balanus amphitrite larvae was 18.8 μg ml(-1). Subsequently, both UHR-TOF-MS and GC-MS were used for the structural elucidation of the compounds, and a series of unsaturated and saturated 16- and 18-carbon fatty acids were detected. The data suggested that the fatty acid extracts from D. salina possess high antifouling activity, and could be used as substitutes for potent, toxic antifouling compounds.

  19. Antioxidant activity of three microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana clone Tahiti

    NASA Astrophysics Data System (ADS)

    Widowati, Ita; Zainuri, Muhammad; Pancasakti Kusumaningrum, Hermien; Susilowati, Ragil; Hardivillier, Yann; Leignel, Vincent; Bourgougnon, Nathalie; Mouget, Jean-Luc

    2017-02-01

    Natural alternatives antioxidant source has become a trending topic in the past decades to replace synthetic antioxidant. Microalgae have been mentioned to show interesting bioactive properties and one of them is its antioxidant activity. This study aims to evaluate the potential of three microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbanaas new source of natural antioxidant. Proximate analysis and total phenolic content of D. salina, T. chuii and I. galbanas were determined. Antioxidant activity of methanolic extracts of these three species prepared in different concentration (50, 100, 250, 500, and 1000 ppm) was performed through DPPH assay. I. galbana clone Tahiti demonstrated a highest antioxidant potential with 61.64 of inhibition at 50 ppm followed by D. salina with 58.45 % of inhibition and T. chuii with 52.58 % of inhibition. I. galbana clone Tahiti was the best antioxidant with total phenol content of 17.798 mg GAE g-1 extract at 50 ppm; followed by T. chuii 16.868 mg GAE g-1 extract and the lowest was D. salina with 4.672 mg GAE g-1 extract. Results suggest that these microalgae posses antioxidant potential which could be considered for future applications in medicine, dietary supplements, cosmetics or food industries.

  20. Toxic effects of chemical pesticides (trichlorfon and dimehypo) on Dunaliella salina.

    PubMed

    Chen, Hui; Jiang, Jian-Guo

    2011-07-01

    Dunaliella salina, a unicellular green alga of environmental tolerance, was employed as test organism to investigate the toxicity effects of trichlorfon and dimehypo widely used in agriculture and veterinary as pesticides. The influences of trichlorfon and dimehypo on cell growth, β-carotene level, cell morphology changes, and activities of superoxide dismutase (Sod) and catalase (Cat) were investigated. At the concentrations less than 0.050 g L(-1) trichlorfon or 0.0005 g L(-1) dimehypo, cell responses were similar to control. When treated with 0.075-0.100 g L(-1) trichlorfon or 0.001-0.004 g L(-1) dimehypo, cell growth and β-carotene levels declined at first and then revived. When concentrations were higher than 0.125 g L(-1) trichlorfon or 0.005 g L(-1) dimehypo, both cell growth and β-carotene levels decreased until they were undetectable. The 10-d IC50 of trichlorfon and dimehypo on D. salina were 0.179 g L(-1) and 0.032 g L(-1). Both pollutants could stimulate the increase of Cat activity at a low concentration. Tolerance of D. salina to trichlorfon was obviously higher than that of dimehypo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Hepatoprotective and Antioxidant Activity of Dunaliella salina in Paracetamol-induced Acute Toxicity in Rats

    PubMed Central

    Madkour, Fedekar F.; Abdel-Daim, M. M.

    2013-01-01

    Paracetamol has a reasonable safety profile when taken in therapeutic doses. However, it could induce hepatotoxicity and even more severe fatal acute hepatic damage when taken in an overdose. The green alga, Dunaliella salina was investigated for hepatoprotective and antioxidant activity against paracetamol-induced liver damage in rats. Male albino Wistar rats overdosed with paracetamol showed liver damage and oxidative stress as indicated by significantly (P<0.05) increased serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide. At the same time, there were decreased activities of serum superoxide dismutase and total antioxidant capacity compared with the control group. Treatment with D. salina methanol extract at doses of 500 and 1000 mg/kg body weight or silymarin could significantly (P<0.05) decrease the liver damage marker enzymes, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide levels and increase the activities of superoxide dismutase and total antioxidant capacity in serum when compared with paracetamol intoxicated group. Liver histopathology also showed that D. salina reduced the centrilobular necrosis, congestion and inflammatory cell infiltration evoked by paracetamol overdose. These results suggest that D. salina exhibits a potent hepatoprotective effect on paracetamol-induced liver damage in rats, which may be due to both the increase of antioxidant enzymes activity and inhibition of lipid peroxidation. PMID:24591738

  2. Cloning and expression studies of the Dunaliella salina UDP-glucose dehydrogenase cDNA.

    PubMed

    Qinghua, He; Dairong, Qiao; Qinglian, Zhang; Shunji, He; Yin, Li; Linhan, Bai; Zhirong, Yang; Yi, Cao

    2005-06-01

    The enzyme UDP-glucose dehydrogenase (EC 1.1.1.22) converts UDP-glucose to UDP-glucuronate. Plant UDP-glucose dehydrogenase (UGDH) is an important enzyme in the formation of hemicellulose and pectin, the components of primary cell walls. A cDNA, named DsUGDH, (GeneBank accession number: AY795899) corresponding to UGDH was cloned by RT-PCR approach from Dunaliella salina. The cDNA is 1941-bp long and has an open reading frame encoded a protein of 483 amino acids with a calculated molecular weight of 53 kDa. The derived amino acids sequence shows high homology with reported plants UGDHs, and has highly conserved amino acids motifs believed to be NAD binding site and catalytic site. Although UDP-glucose dehydrogenase is a comparatively well characterized enzyme, the cloning and characterization of the green alga Dunaliella salina UDP-glucose dehydrogenase gene is very important to understand the salt tolerance mechanism of Dunaliella salina. Northern analyses indicate that NaCl can induce the expression the DsUGDH.

  3. Monterey-Salinas Transit ITS Augmentation Project : Phase III Evaluation Report

    DOT National Transportation Integrated Search

    2009-12-01

    The purpose of this document is to present the findings from Phase II and Phase III of the Evaluation of the Intelligent Transportation Systems (ITS) Augmentation Project that was implemented at the Monterey-Salinas Transit (MST) in Monterey, Califor...

  4. The Carotenogenesis Pathway via the Isoprenoid-β-carotene Interference Approach in a New Strain of Dunaliella salina Isolated from Baja California Mexico

    PubMed Central

    Paniagua-Michel, J.; Capa-Robles, Willian; Olmos-Soto, Jorge; Gutierrez-Millan, Luis Enrique

    2009-01-01

    D. salina is one of the recognized natural sources to produce β-carotene, and an useful model for studying the role of inhibitors and enhancers of carotenogenesis. However there is little information in D. salina regarding whether the isoprenoid substrate can be influenced by stress factors (carotenogenic) or selective inhibitors which in turn may further contribute to elucidate the early steps of carotenogenesis and biosynthesis of β-carotene. In this study, Dunaliella salina (BC02) isolated from La Salina BC Mexico, was subjected to the method of isoprenoids-β-carotene interference in order to promote the interruption or accumulation of the programmed biosynthesis of carotenoids. When Carotenogenic and non-carotenogenic cells of D. salina BC02 were grown under photoautotrophic growth conditions in the presence of 200 µM fosmidomycin, carotenogenesis and the synthesis of β-carotene were interrupted after two days in cultured D. salina cells. This result is an indirect consequence of the inhibition of the synthesis of isoprenoids and activity of the recombinant DXR enzyme thereby preventing the conversion of 1-deoxy-D-xylulose 5-phosphate (DXP) to 2-C-methyl-D-erythritol (MEP) and consequently interrupts the early steps of carotenogenesis in D. salina. The effect at the level of proteins and RNA was not evident. Mevinolin treated D. salina cells exhibited carotenogenesis and β-carotene levels very similar to those of control cell cultures indicating that mevinolin not pursued any indirect action in the biosynthesis of isoprenoids and had no effect at the level of the HMG-CoA reductase, the key enzyme of the Ac/MVA pathway. PMID:19370170

  5. Oxaloacetate and malate production in engineered Escherichia coli by expression of codon-optimized phosphoenolpyruvate carboxylase2 gene from Dunaliella salina.

    PubMed

    Park, Soohyun; Chang, Kwang Suk; Jin, Eonseon; Pack, Seung Pil; Lee, Jinwon

    2013-01-01

    A new phosphoenolpyruvate carboxylase (PEPC) gene of Dunaliella salina is identified using homology analysis was conducted using PEPC gene of Chlamydomonas reinhardtii and Arabidopsis thaliana. Recombinant E. coli SGJS115 with increased production of malate and oxaloacetate was developed by introducing codon-optimized phosphoenolpyruvate carboxylase2 (OPDSPEPC2) gene of Dunaliella salina. E. coli SGJS115 yielded a 9.9 % increase in malate production. In addition, E. coli SGJS115 exhibited two times increase in the yield of oxaloacetate over the E. coli SGJS114 having identified PEPC2 gene obtained from Dunaliella salina.

  6. Taylor Farms Retail Inc., Salinas, CA; Consent Agreement and Final Order

    EPA Pesticide Factsheets

    Consent Agreement and Final Order (Proposed CA/FO), between the U.S. Environmental Protection Agency, Region IX (EPA or Complainant), and Taylor Farms Retail Inc. (Respondent), 150 Main Street Salinas, CA 93901. Docket Number CWA-09-2018-0010

  7. 78 FR 37790 - In the Matter of: Mario Salinas-Lucio, Inmate Number #61687-279, FCI La Tuna, Federal Corrections...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security In the Matter of: Mario Salinas-Lucio, Inmate Number 61687-279, FCI La Tuna, Federal Corrections Institution, Federal Satellite Low, P.O. Box... Salinas-Lucio, with a last known address at: Inmate Number 61687-279, FCI La Tuna, Federal Corrections...

  8. Map showing springs in the Salina quadrangle, Utah

    USGS Publications Warehouse

    Covington, Harry R.

    1972-01-01

    A spring is “a place where, without the agency of man, water flows from a rock or soil upon the land or into a body of surface water” (Meinzer, 1923, p. 48).About 450 springs are located on this map. Locations and names are from the U.S. Forest Service maps (1963, 1964) and from topographic maps of the U.S. Geological Survey, both published and in preparation. There is considerable variation in geological occurrence of the springs and in quantity and chemical quality of the water that issues from them. Springs in the Salina quadrangle are more abundant where annual precipitation is 16 inches or more, although there are many springs in arid parts of the quadrangle as well.In the Salina quadrangle, springs are used most commonly for watering livestock. They are used also for irrigation and for domestic and municipal water supply. Several communities in Rabbit Valley, Grass Valley, and Sevier Valley depend on springs for all or part of their water supply.Quantity and quality of water are shown for those few springs for which data are available (Mundorff, 1971). Caution must be used in drinking from springs, especially in arid areas; the water commonly tastes bad and may cause illness.

  9. CAH1 and CAH2 as key enzymes required for high bicarbonate tolerance of a novel microalga Dunaliella salina HTBS.

    PubMed

    Hou, Yuyong; Liu, Zhiyong; Zhao, Yue; Chen, Shulin; Zheng, Yubin; Chen, Fangjian

    2016-06-01

    Outdoor microalgal cultivation with high concentration bicarbonate has been considered as a strategy for reducing contamination and improving carbon supply efficiency. The mechanism responsible for algae's strong tolerance to high bicarbonate however, remains not clear. In this study, we isolated and characterized a strain and revealed its high bicarbonate tolerant mechanism by analyzing carbonic anhydrase (CA). The strain was identified as Dunaliella salina HTBS with broad temperature adaptability (7-30°C). The strain grew well under 30% CO2 or 70gL(-1) NaHCO3. In comparison, two periplasm CAs (CAH1 and CAH2) were detected with immunoblotting analysis in HTBS but not in a non-HCO3(-)-tolerant strain. The finding was also verified by an enzyme inhibition assay in which only HTBS showed significant inhibition by extracellular CA inhibitor. Thus, we inferred that the extracellular CAH1 and CAH2 played a multifunctional role in the toleration of high bicarbonate by HTBS. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation.

    PubMed

    Tian, Jiyuan; Yu, Juan

    2009-12-02

    Because of depletion of the stratospheric ozone layer, levels of solar ultraviolet-B (UV-B) radiation (280-315 nm), which penetrates the water column to an ecologically-significant depth, are increasing. In order to assess changes in ultrastructure and responses of antioxidant systems of algae during acclimation to enhanced ultraviolet-B radiation, Dunaliella salina was treated with higher dose of UV-B radiation (13.2 kJm(-2) d(-1) dose) in this study. As compared to the control panel (8.8 kJm(-2) d(-1)), the treatment D. salina had many changes in ultrastructures: (1) thylakoids became swelled, and some of them penetrated into the pyrenoid; (2) lipid globules accumulated; (3) the amounts of starch grains increased; (4) cristae of mitochondria disintegrated; (5) inclusions in vacuoles reduced; and (6) cisternae of Golgi dictyosomes became loose and swollen. Enhanced UV-B irradiation also induced different responses of the antioxidant systems in D. salina: (1) contents of TBARS (thiobarbituric acid reacting substance) and H(2)O(2) increased significantly (p<0.05); (2) levels of MAAs (mycosporine-like amino acids) increased at the beginning and subsequently decreased, and finally they leveled off at lower values; (3) there were not apparent variations for carotenoid contents, and contents of chlorophyll a presented a trend of initial increase and ultimate decrease; (4) both ascorbate and glutathione contents increased significantly (p<0.05); and (5) for the enzyme activities, POD activities increased remarkably (p<0.05), and SOD activities declined apparently (p<0.05), and CAT activity in D. salina had slight variations (p>0.05). In addition, growth curve displayed that enhanced UV-B radiation prominently inhibited increase of cell concentration when compared with control panel (p<0.05). Our results indicated that enhanced UV-B radiation caused ultrastructural changes of D. salina and induced different responses of antioxidant systems in D. salina.

  11. Smart SfM: Salinas Archaeological Museum

    NASA Astrophysics Data System (ADS)

    Inzerillo, L.

    2017-08-01

    In these last years, there has been an increasing use of the Structure from Motion (SfM) techniques applied to Cultural Heritage. The accessibility of SfM software can be especially advantageous to users in non-technical fields or to those with limited resources. Thanks to SfM using, everyone can make with a digital camera a 3D model applied to an object of both Cultural Heritage, and physically Environment, and work arts, etc. One very interesting and useful application can be envisioned into museum collection digitalization. In the last years, a social experiment has been conducted involving young generation to live a social museum using their own camera to take pictures and videos. Students of university of Catania and Palermo were involved into a national event #digitalinvasion (2015-2016 editions) offering their personal contribution: they realized 3D models of the museums collection through the SfM techniques. In particular at the National Archaeological Museum Salinas in Palermo, it has been conducted an organized survey to recognize the most important part of the archaeological collection. It was a success: in both #digitalinvasion National Event 2015 and 2016 the young students of Engineering classes carried out, with Photoscan Agisoft, more than one hundred 3D models some of which realized by phone camera and some other by reflex camera and some other with compact camera too. The director of the museum has been very impressed from these results and now we are going to collaborate at a National project to use the young generation crowdsourcing to realize a semi-automated monitoring system at Salinas Archaeological Museum.

  12. Metabolic engineering of Dunaliella salina for production of ketocarotenoids.

    PubMed

    Anila, N; Simon, Daris P; Chandrashekar, Arun; Ravishankar, G A; Sarada, R

    2016-03-01

    Dunaliella is a commercially important marine alga producing high amount of β-carotene. The use of Dunaliella as a potential transgenic system for the production of recombinant proteins has been recently recognized. The present study reports for the first time the metabolic engineering of carotenoid biosynthesis in Dunaliella salina for ketocarotenoid production. The pathway modification included the introduction of a bkt gene from H. pluvialis encoding β-carotene ketolase (4,4'β-oxygenase) along with chloroplast targeting for the production of ketocarotenoids. The bkt under the control of Dunaliella Rubisco smaller subunit promoter along with its transit peptide sequence was introduced into the alga through standardized Agrobacterium-mediated transformation procedure. The selected transformants were confirmed using GFP and GUS expression, PCR and southern blot analysis. A notable upregulation of the endogenous hydroxylase level of transformants was observed where the BKT expression was higher in nutrient-limiting conditions. Carotenoid analysis of the transformants through HPLC and MS analysis showed the presence of astaxanthin and canthaxanthin with maximum content of 3.5 and 1.9 µg/g DW, respectively. The present study reports the feasibility of using D. salina for the production of ketocarotenoids including astaxanthin.

  13. Understanding Environmental Factors that Affect Violence in Salinas, California

    DTIC Science & Technology

    2009-12-01

    Table 3. 85 Gijs Weijters, Peer Scheepers, and Jan Gerris, “City and/or Neighbourhood Determinants? Studying Contextual Effects on Youth...Gijs, Peer Scheepers, and Jan Gerris. “City and/or Neighbourhood Determinants? Studying Contextual Effects on Youth Delinquency.” European Journal...Retail sales data from the Salinas Department of Finance annual reports. 72 Steven Raphael and Rudolph Winter-Ebmer, “Identifying the Effect of

  14. La columna, el circulo y sus variantes en la poesia primera de Pedro Salinas (The Vertical Line, the Circle, and other Geometric Varieties in the Early Poetry of Pedro Salinas)

    ERIC Educational Resources Information Center

    De Armas, Jose R.

    1970-01-01

    Interprets Salinas' use of geometric figures for depicting concepts of time and infinity, and for portraying idealism and realism (the vertical line is idealism, perfection; the circle stands for reality and imperfection). (DS)

  15. Effect of Fe2+ and Mn2+ addition on growth and β-carotene production of Dunaliella salina

    NASA Astrophysics Data System (ADS)

    Mayasari, E.; Raya, I.; Natsir, H.

    2018-03-01

    Dunaliella salina is a unicellular chlorophyte, which could grow in a wide range of harsh environmental condition. Under growth-limitation conditions, D.salina was known as famous for a high β-carotene producer with up to 10% of its dry cell weights, therefore it could be a β-carotene supplement. The research aimed to find out the effect of Iron (Fe2+) and Manganese (Mn2+) towards β-carotene productivity as result of oxidative stress from the second photosystem (PS II). The analysis method was carried out by the ultrasonic extraction for short and cheap lyses of phytoplankton biomasses; infra-red (IR) to find out the interaction metal ion, and UV/VIS spectrophotometer to determine the β-carotene concentration from phytoplankton the crude extract. The result showed that the interaction occurred between metal ions and M-N, -O-M and M←OH-C groups in the amino acid of phytoplankton. The highest impact was indicated on 0.3 ppm Fe2+ to D. Salina. The highest β-carotene concentration was 13.08 μg/g DW for 0.3 ppm Fe2+ and 8.08 μg/g DW for 0.8 ppm Mn2+. The dry weight concentrations of β-carotene indicated that D. salina with 0.6 ppm Fe2+ addition had more potential as a β-carotene supplement.

  16. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, California

    USGS Publications Warehouse

    Burton, Carmen

    2018-05-30

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the groundwater basins around Monterey Bay, the Salinas Valley, and the highlands adjacent to the Salinas Valley constitute one of the study units.

  17. View of the Salinas River Valley area south of Monterey Bay, California

    NASA Image and Video Library

    1973-08-15

    SL3-88-004 (July-September 1973) --- A vertical view of the Salinas River Valley area south of Monterey Bay, California area is seen in this Skylab 3 Earth Resources Experiments Package S190-B (five-inch Earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The valley is an irrigated agricultural area, and is indicated by the dark-green and light-gray rectangular patterns in the centre of the picture. The city of Salinas is barely visible under the cloud cover at the top (north) end of the valley. The dark mass on the left (west) side of the valley is the Santa Lucia mountain range. The Big Sur area is on the left and partly covered by clouds. The Diablo Range forms the dark mass in the lower right (southeast) corner of the photograph. The town of Hollister is the gray area in the dark-green rectangular farm tracts which occupy the floor of the San Benito Valley in the upper right (northeast) corner of the photograph. The Salinas River flows northwestward toward Monterey Bay. The towns of Soledad, Greenfield and King City appear as gray areas along U.S. 101 in the Salinas Valley. The geology of the area is complex, and has been racked by several earthquakes resulting from movement along the San Andreas and subsidiary faults. Here, the surface expression of the San Andreas Fault can be traced from a point just west of Hollister at the contrast of dark brown and tan to a point about one inch left of the lower right (southeast) corner of the picture. Subsidiary faults are indicated by the curving trend of the rocks along the right side. The photograph will provide detailed information on land use patterns (Dr. R. Colwell, University of California, Berkeley) and fault tectonics (Dr. P. Merifield, Earth Science Res., Inc. and Dr. M. Abdel-Gawad, Rockwell International). Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of

  18. Abscisic Acid Metabolism in Salt-Stressed Cells of Dunaliella salina

    PubMed Central

    Cowan, A. Keith; Rose, Peter D.

    1991-01-01

    The interrelationship between abscisic acid (ABA) production and β-carotene accumulation was investigated in salt-stressed cells of the halotolerant green alga Dunaliella salina var bardawil. Cells were supplied with either R-[2-14C]mevalonolactone or [14C] sodium bicarbonate for 20 hours and then exposed to increased salinity (1.5 to 3.0 molar NaCl) for various lengths of time. Incorporation of label into abscisic acid and phaseic acid and the distribution of [14C]ABA between the cells and incubation media were monitored. [14C]ABA and [14C]phaseic acid were identified as products of both R-[2-14C]mevalonolactone and [14C]sodium bicarbonate metabolism. ABA metabolism was enhanced by hypersalinity stress. Actinomycin D, chloramphenicol, and cycloheximide abolished the stress-induced production of ABA, suggesting a role for gene activation in the process. Kinetic analysis of both ABA and β-carotene production demonstrated two stages of accelerated β-carotene production. In addition, ABA levels increased rapidly, and this increase occurred coincident with the early period of accelerated β-carotene production. A possible role for ABA as a regulator of carotenogenesis in cells of D. salina is therefore discussed. PMID:16668469

  19. Culturing Selenastrum capricornutum (Chlorophyta) in a synthetic algal nutrient medium with defined mineral particulates

    USGS Publications Warehouse

    Kuwabara, J.S.; Davis, J.A.; Chang, Cecily C.Y.

    1985-01-01

    Algal nutrient studies in chemically-defined media typically employ a synthetic chelator to prevent iron hydroxide precipitation. Micronutrient-particulate interactions may, however, significantly affect chemical speciation and hence biovailability of these nutrients in natural waters. A technique is described by which Selenastrum capricornutum Printz (Chlorophyta) may be cultured in a medium where trace metal speciation (except iron) is controlled, not by organic chelation, but by sorption onto titanium dioxide. Application of this culturing protocol in conjunction with results from sorption studies of nutrient ions on mineral particles provides a means of studying biological impacts of sorptive processes in aquatic environments. ?? 1985 Dr W. Junk Publishers.

  20. Map of the Rinconada and Reliz Fault Zones, Salinas River Valley, California

    USGS Publications Warehouse

    Rosenberg, Lewis I.; Clark, Joseph C.

    2009-01-01

    The Rinconada Fault and its related faults constitute a major structural element of the Salinas River valley, which is known regionally, and referred to herein, as the 'Salinas Valley'. The Rinconada Fault extends 230 km from King City in the north to the Big Pine Fault in the south. At the south end of the map area near Santa Margarita, the Rinconada Fault separates granitic and metamorphic crystalline rocks of the Salinian Block to the northeast from the subduction-zone assemblage of the Franciscan Complex to the southwest. Northwestward, the Rinconada Fault lies entirely within the Salinian Block and generally divides this region into two physiographically and structurally distinct areas, the Santa Lucia Range to the west and the Salinas Valley to the east. The Reliz Fault, which continues as a right stepover from the Rinconada Fault, trends northwestward along the northeastern base of the Sierra de Salinas of the Santa Lucia Range and beyond for 60 km to the vicinity of Spreckels, where it is largely concealed. Aeromagnetic data suggest that the Reliz Fault continues northwestward another 25 km into Monterey Bay, where it aligns with a high-definition magnetic boundary. Geomorphic evidence of late Quaternary movement along the Rinconada and Reliz Fault Zones has been documented by Tinsley (1975), Dibblee (1976, 1979), Hart (1976, 1985), and Klaus (1999). Although definitive geologic evidence of Holocene surface rupture has not been found on these faults, they were regarded as an earthquake source for the California Geological Survey [formerly, California Division of Mines and Geology]/U.S. Geological Survey (CGS/USGS) Probabilistic Seismic Hazards Assessment because of their postulated slip rate of 1+-1 mm/yr and their calculated maximum magnitude of 7.3. Except for published reports by Durham (1965, 1974), Dibblee (1976), and Hart (1976), most information on these faults is unpublished or is contained in theses, field trip guides, and other types of reports

  1. Phototactic orientation mechanism in the ciliate Fabrea salina, as inferred from numerical simulations.

    PubMed

    Marangoni, R; Preosti, G; Colombetti, G

    2000-02-01

    The marine ciliate Fabrea salina shows a clear positive phototaxis, but the mechanism by which a single cell is able to detect the direction of light and orient its swimming accordingly is still unknown. A simple model of phototaxis is that of a biased random walk, where the bias due to light can affect one or more of the parameters that characterize a random walk, i.e., the mean speed, the frequency distribution of the angles of directional changes and the frequency of directional changes. Since experimental evidence has shown no effect of light on the mean speed of Fabrea salina, we have excluded models depending on this parameter. We have, therefore, investigated the phototactic orientation of Fabrea salina by computer simulation of two simple models, the first where light affects the frequency distribution of the angles of directional changes (model M1) and the second where the light bias modifies the frequency of directional changes (model M2). Simulated M1 cells directly orient their swimming towards the direction of light, regardless of their current swimming orientation; simulated M2 cells, on the contrary, are unable to actively orient their motion, but remain locked along the light direction once they find it by chance. The simulations show that these two orientation models lead to different macroscopic behaviours of the simulated cell populations. By comparing the results of the simulations with the experimental ones, we have found that the phototactic behaviour of real cells is more similar to that of the M2 model.

  2. Crime Trend Prediction Using Regression Models for Salinas, California

    DTIC Science & Technology

    2012-06-01

    rise to the nickname “The Salad Bowl of the World ” to Salinas, fueling a “$2 billion agriculture industry which supplies 80% of the country’s lettuce...Sworn Police -0.552 -0.705 -0.373 CDCR Capacity 0.791 0.729 0.655 CDCR Population 0.776 0.712 0.644 CDCR Overpopulation Percentage 0.834 0.804...Variables and Violence Examining the correlation led to the use of population, SPD Budget, sworn police with a one year shift, CDCR Overpopulation

  3. Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) in halophilic microalgae, Dunaliella salina.

    PubMed

    Johari, Seyed Ali; Sarkheil, Mehrdad; Behzadi Tayemeh, Mohammad; Veisi, Shakila

    2018-06-13

    This study aim to evaluate the potential toxic effects of citrate coated silver nanoparticles (AgNPs) and ionic silver (AgNO 3 ) on marine microalgae Dunaliella salina under three different salinities (35, 70, and 140 g/L). The toxicity was investigated according to modified OECD guideline (No. 201) by 72 h exposure of microalgae to various concentrations of each of the chemicals in Walne's saline media. According to the results, the growth inhibitory effects of AgNPs and AgNO 3 increased significantly coincidence with increasing time and concentration compared to control (P < 0.05). The values of median inhibitory concentrations (IC 50 ) of AgNPs and AgNO 3 based on average specific growth rate and yield for D. salina increased significantly with elevation of water salinity from 35 to 140 g/L (P < 0.05). Toxicity of AgNO 3 based on IC 50 to D. salina was significantly higher than AgNPs at all salinities (P < 0.05). In conclusion, both AgNPs and AgNO 3 inhibited the growth of D. salina at different saltwater medium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. [Rhodomonas salina (Cryptophyta) pastes as feed for Brachionus plicatilis (Rotifera)].

    PubMed

    Guevara, Miguel; Bastardo, Leandro; Cortez, Roraysi; Arredondo-Vega, Bertha; Romero, Lolymar; Gómez, Patricia

    2011-12-01

    Rotifers are an important live feed for first feeding larvae of many fish species. The use of concentrated algae cells in the mass culture of the rotifer Brachionus plicatilis (Brachionidae) has opened new horizons for research on this organism. Pastes of Rhodomonas salina (Pyrenomonadaceae) obtained either by centrifugation or flocculation with chitosan were preserved, with or without vitamin C, at -20 degrees C for four weeks and were evaluated biochemically (proteins, lipids, pigments and fatty acids contents) and subsequently, were used to feed the rotifer Brachionus plicatilis at a ratio of 25 mg/L/day. Four different microalgae pastes were prepared: (1) centrifuged and preserved with vitamin C (CV), (2) centrifuged and preserved without vitamin C (C), (3) flocculated and with vitamin C (FV) and (4) flocculated without vitamin C (F). All treatments showed similar contents of proteins and total lipids with respect to control culture (a fresh culture of R. salina), with mean values of 40.0 +/- 2.32% and 12.0 +/- 1.45%, respectively. The pheophytin a/chlorophyll a ratio, a general indicator of the chemical status of microalgal concentrates, was similar (0.09-0.11) between centrifuged pastes and control culture, but was found to be higher in flocculated pastes (1.28-1.48). The fatty acid profile varied with respect to the control culture, mainly in the proportion of the essential polyunsaturated fatty acids (PUFAs): eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Total PUFAs, EPA and DHA contents were statistically similar between centrifuged pastes and control culture (PUFAs: 47%, EPA: 4% and DHA: 4.7%), whereas values obtained for flocculated pastes were significantly lower. The rotifers grew equally well when fed with centrifuged pastes or control culture (maximum density: 320 rotifers/mL; instantaneous growth rate: 0.23 rotifers/day, fecundity: 1.49 eggs/female and productivity: 43 x 10(3) rotifers/L/day. No significant effect of vitamin C was

  5. Water-quality investigation, Salinas River, California

    USGS Publications Warehouse

    Irwin, G.A.

    1976-01-01

    Concentrations of dissolved solids in the Salinas River, California, are variable and range from 164 to 494 milligrams per liter near Bradley and from 170 to 1,090 milligrams per liter near Spreckels. Higher concentrations near Spreckels are caused mainly by sewage inflow about 150 feet (50 meters) upstream. Concentrations of nitrogen, phosphorus, total organic carbon, selected trace elements, and pesticides also generally increase downstream from Pozo to Spreckels and are related to sewage effluent; however, high concentrations occur elsewhere in the river. Specific conductance and water discharge regression results indicate that relations were all significant at the 1-percent probability level at Paso Robles, Bradley, and Spreckels with the explained variance ranging from 66 to 74 percent. Concentations of nitrogen, phosphorus, total organic carbon, and trace elements are only infrequently related to water discharge. (Woodard-USGS)

  6. The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp.

    DOE PAGES

    Edmundson, Scott J.; Huesemann, Michael H.

    2015-10-28

    Night biomass loss in photosynthetic algae is an essential parameter that is often overlooked when modeling or optimizing biomass productivities. Night respiration acts as a tax on daily biomass gains and has not been well characterized in the context of biofuel production. We examined the night biomass loss in three algae strains that may have potential for commercial biomass production ( Nannochloropsis salina-CCMP1776, Chlorella sorokiniana-DOE1412, and Picochlorum sp. LANL-WT). Biomass losses were monitored by ash free dry weight (AFDW mg/L -1) and optical density (OD 750) on a thermal-gradient incubator. Night biomass loss rates were highly variable (ranging from -0.006more » to -0.59 day -1), species-specific, and dependent on both culture growth phase prior to the dark period and night pond temperature. In general, the fraction of biomass lost over a 10 hour dark period, which ranged from ca. 1 to 22% in our experiments, was positively correlated with temperature and declined as the culture transitioned from exponential to linear to stationary phase. Furthermore, the dynamics of biomass loss should be taken into consideration in algae strain selection, are critical in predictive modeling of biomass production based on geographic location and can influence the net productivity of photosynthetic cultures used for bio-based fuels or products.« less

  7. The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmundson, Scott J.; Huesemann, Michael H.

    Night biomass loss in photosynthetic algae is an essential parameter that is often overlooked when modeling or optimizing biomass productivities. Night respiration acts as a tax on daily biomass gains and has not been well characterized in the context of biofuel production. We examined the night biomass loss in three algae strains that may have potential for commercial biomass production ( Nannochloropsis salina-CCMP1776, Chlorella sorokiniana-DOE1412, and Picochlorum sp. LANL-WT). Biomass losses were monitored by ash free dry weight (AFDW mg/L -1) and optical density (OD 750) on a thermal-gradient incubator. Night biomass loss rates were highly variable (ranging from -0.006more » to -0.59 day -1), species-specific, and dependent on both culture growth phase prior to the dark period and night pond temperature. In general, the fraction of biomass lost over a 10 hour dark period, which ranged from ca. 1 to 22% in our experiments, was positively correlated with temperature and declined as the culture transitioned from exponential to linear to stationary phase. Furthermore, the dynamics of biomass loss should be taken into consideration in algae strain selection, are critical in predictive modeling of biomass production based on geographic location and can influence the net productivity of photosynthetic cultures used for bio-based fuels or products.« less

  8. Podosphaera xanthii but not Golovinomyces cichoracearum infects Cucurbits in a Greenhouse at Salinas, California

    USDA-ARS?s Scientific Manuscript database

    Two fungal species are the primary causes of cucurbit powdery mildew (CPM): Podosphaera xanthii and Golovinomyces cichoracearum. CPM on melon (Cucumis melo L.), cucumber (C. sativus L.) and summer squash (Cucurbita pepo L.) in a greenhouse at Salinas, California in winter 2011 was confirmed to be in...

  9. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, Southern Coast Ranges, California

    USGS Publications Warehouse

    Burton, Carmen

    2018-05-30

    The Monterey-Salinas Shallow Aquifer study unit covers approximately 7,820 square kilometers (km2) in Santa Cruz, Monterey, and San Luis Obispo Counties in the Central Coast Hydrologic Region of California. The study unit was divided into four study areas—Santa Cruz, Pajaro Valley, Salinas Valley, and Highlands. More than 75 percent of the water used for drinking-water supply in the Central Coast Hydrologic Region of California is groundwater, and there are more than 8,000 well driller’s logs for domestic wells (California Department of Water Resources, 2013).

  10. Groundwater Quality in the Shallow Aquifers of the Monterey Bay, Salinas Valley, and Adjacent Highland Areas, Southern Coast Ranges, California

    USGS Publications Warehouse

    Burton, Carmen

    2018-05-30

    The Monterey-Salinas Shallow Aquifer study unit covers approximately 7,820 square kilometers (km2) in Santa Cruz, Monterey, and San Luis Obispo Counties in the Central Coast Hydrologic Region of California. The study unit was divided into four study areas—Santa Cruz, Pajaro Valley, Salinas Valley, and Highlands. More than 75 percent of the water used for drinking-water supply in the Central Coast Hydrologic Region of California is groundwater, and there are more than 8,000 well driller’s logs for domestic wells (California Department of Water Resources, 2013).

  11. Energy-producing electro-flocculation for harvest of Dunaliella salina.

    PubMed

    Liu, Qing; Zhang, Meng; Lv, Tao; Chen, Hongjun; Chika, Anthony Okonkwo; Xiang, Changli; Guo, Minxue; Wu, Minghui; Li, Jianjun; Jia, Lishan

    2017-10-01

    In this study, an efficient electro-flocculation process for Dunaliella salina with energy production by aluminum-air battery has been successfully applied. The formed aluminum hydroxide hydrates during discharging of battery were positively charged, which have a great potential for microalgae flocculation. The precipitation of aluminum hydroxide hydrates by algae also could improve the performance of aluminum-air battery. The harvesting efficiency could reach 97% in 20mins with energy production of 0.11kWh/kg. This discharging electro-flocculation (DEF) technology provides a new energy producing process to effectively harvest microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pesticide Risk Communication, Risk Perception, and Self-Protective Behaviors among Farmworkers in California's Salinas Valley

    ERIC Educational Resources Information Center

    Cabrera, Nolan L.; Leckie, James O.

    2009-01-01

    Agricultural pesticide use is the highest of any industry, yet there is little research evaluating farmworkers' understandings of the health risks chemical exposure poses. This study examines pesticide education, risk perception, and self-protective behaviors among farmworkers in California's Salinas Valley. Fifty current and former farmworkers…

  13. Toxicity of clove essential oil and its ester eugenyl acetate against Artemia salina.

    PubMed

    Cansian, R L; Vanin, A B; Orlando, T; Piazza, S P; Puton, B M S; Cardoso, R I; Gonçalves, I L; Honaiser, T C; Paroul, N; Oliveira, D

    2017-03-01

    The production of compounds via enzymatic esterification has great scientific and technological interest due to the several inconveniences related to acid catalysis, mainly by these systems do not fit to the concept of "green chemistry". Besides, natural products as clove oil present compounds with excellent biological potential. Bioactives compounds are often toxic at high doses. The evaluation of lethality in a less complex animal organism can be used to a monitoring simple and rapid, helping the identification of compounds with potential insecticide activity against larvae of insect vector of diseases. In this sense, the toxicity against Artemia salina of clove essential oil and its derivative eugenyl acetate obtained by enzymatic esterification using Novozym 435 as biocatalyst was evaluated. The conversion of eugenyl acetate synthesis was 95.6%. The results about the evaluation of toxicity against the microcrustacean Artemia salina demonstrated that both oil (LC50= 0.5993 µg.mL-1) and ester (LC50= 0.1178 µg.mL-1) presented high toxic potential, being the eugenyl acetate almost 5 times more toxic than clove essential oil. The results reported here shows the potential of employing clove oil and eugenyl acetate in insecticide formulations.

  14. Cytotoxicity evaluation of gold nanoparticles on microalga Dunaliella salina in microplate test system

    NASA Astrophysics Data System (ADS)

    Chumakov, Daniil; Prilepskii, Artur; Dykman, Lev; Khlebtsov, Boris; Khlebtsov, Nikolai; Bogatyrev, Vladimir

    2018-04-01

    Gold nanoparticles are intensively studied in biomedicine. Assessment of their biocompatibility is highly important. Currently there is lack of evidence, concerning nanotoxicity of ultrasmall gold nanoparticles < 5 nm. Existing data are rather contradictory. The aim of that study was to evaluate the toxicity of 2 nm colloidal gold, using microalga Dunaliella salina. Cellular barriers of that microalga are very similar to animal cells so it might be considered as a valuable model for nanotoxicity testing. Chlorophyll content as a test-function was used. Spectrophotometric method for chlorophyll determination in vivo in suspensions of D.salina cultures was applied. Calculated EC50 48h value of ionic gold was 25.8 +/- 0.3 mg Au/L. EC50 value of phosphine-stabilized gold nanoclusters was 32.2 +/-1.1 mg Au/L. It was not possible to calculate EC50 for 15 nm citrate gold nanoparticles, as they were non-toxic at all concentrations tested. These results are confirmed by fluorescent -microscopic monitoring of the same probes. It was shown that 10-fold growth of phosphine-stabilized gold nanoparticles (from 2.3 +/- 0.9 nm to 21.1 +/- 7.5 nm) led to 7-fold decrease of their toxicity.

  15. Comparative study on toxicity of ZnO and TiO2 nanoparticles on Artemia salina: effect of pre-UV-A and visible light irradiation.

    PubMed

    Bhuvaneshwari, M; Sagar, Bhawana; Doshi, Siddharth; Chandrasekaran, N; Mukherjee, Amitava

    2017-02-01

    This study evaluated the toxicity potential of ZnO and TiO 2 nanoparticles under pre-UV-A irradiation and visible light condition on Artemia salina. The nanoparticle suspension was prepared in seawater medium and exposed under pre-UV-A (0.23 mW/cm 2 ) and visible light (0.18 mW/cm 2 ) conditions. The aggregation profiles of both nanoparticles (NPs) and dissolution of ZnO NPs under both irradiation conditions at various kinetic intervals (1, 24, 48 h) were studied. The 48-h LC 50 values were found to be 27.62 and 71.63 mg/L for ZnO NPs and 117 and 120.9 mg/L for TiO 2 NPs under pre-UV-A and visible light conditions. ZnO NPs were found to be more toxic to A. salina as compared to TiO 2 NPs. The enhanced toxicity was observed under pre-UV-A-irradiated ZnO NPs, signifying its phototoxicity. Accumulation of ZnO and TiO 2 NPs into A. salina depends on the concentration of particles and type irradiations. Elimination of accumulated nanoparticles was also evident under both irradiation conditions. Other than ZnO NPs, the dissolved Zn 2+ also had a significant effect on toxicity and accumulation in A. salina. Increased catalase (CAT) activity in A. salina indicates the generation of oxidative stress due to NP interaction. Thus, this study provides an understanding of the toxicity of photoreactive ZnO and TiO 2 NPs as related to the effects of pre-UV-A and visible light irradiation.

  16. The influence of pre-existing basement structures on salt tectonics in the Upper Silurian Salina Group, Appalachian Basin, NE Pennsylvania: results from 3D seismic analysis and analogue modelling

    NASA Astrophysics Data System (ADS)

    Harding, M. R.; Rowan, C. J.

    2013-12-01

    The Upper Silurian Salina Group in Pennsylvania's Appalachian basin consists of several hundred feet of highly deformable and mobile salt that was a significant influence on the tectonic and structural development of the Appalachian Mountains during the late Paleozoic. Understanding how halokinesis and décollement thrusting of the Salina Group has contributed to the present-day structure of the Appalachian Basin is of intense current interest due to the energy resource potential of the overlying Marcellus Shale and underlying Utica Shale. Seismic data suggest that halokinesis of the Salina Group in the Appalachian Basin might be strongly influenced by the presence of preexisting faults in the underlying Neoproterozoic basement, which suggests that these structures may have interacted with the Salina Group or its interior during deformation. We examine these apparent interactions in more detail using high-resolution 3D seismic data from the Appalachian Basin of NE Pennsylvania to identify and characterize salt tectonic-related structures developed above and within the Salina Group during orogenesis, verify their geographic association with major basement faults, and document how reactivation of these preexisting faults might have influenced later deformation within and above the salt units. We also present the results of sandbox modelling of thin-skinned thrusting in a salt-analogue décollement. Multiple runs in the presence and absence of preexisting basement structures provide insight into how the modern structures observed in the seismic data initiated and evolved during progressively more intense orogenesis, and better constrain the physical processes that control the structural linkage through the Salina décollement.

  17. Molecular taxonomy of Dunaliella (Chlorophyceae), with a special focus on D. salina: ITS2 sequences revisited with an extensive geographical sampling

    PubMed Central

    2012-01-01

    We used an ITS2 primary and secondary structure and Compensatory Base Changes (CBCs) analyses on new French and Spanish Dunallela salina strains to investigate their phylogenetic position and taxonomic status within the genus Dunaliella. Our analyses show a great diversity within D. salina (with only some clades not statistically supported) and reveal considerable genetic diversity and structure within Dunaliella, although the CBC analysis did not bolster the existence of different biological groups within this taxon. The ITS2 sequences of the new Spanish and French D. salina strains were very similar except for two of them: ITC5105 "Janubio" from Spain and ITC5119 from France. Although the Spanish one had a unique ITS2 sequence profile and the phylogenetic tree indicates that this strain can represent a new species, this hypothesis was not confirmed by CBCs, and clarification of its taxonomic status requires further investigation with new data. Overall, the use of CBCs to define species boundaries within Dunaliella was not conclusive in some cases, and the ITS2 region does not contain a geographical signal overall. PMID:22520929

  18. Comparison of plastid 16S rRNA (rrn16) genes from Helicosporidium spp.: evidence supporting the reclassification of Helicosporidia as green algae (Chlorophyta).

    PubMed

    Tartar, Aurélien; Boucias, Drion G; Becnel, James J; Adams, Byron J

    2003-11-01

    The Helicosporidia are invertebrate pathogens that have recently been identified as non-photosynthetic green algae (Chlorophyta). In order to confirm the algal nature of the genus Helicosporidium, the presence of a retained chloroplast genome in Helicosporidia cells was investigated. Fragments homologous to plastid 16S rRNA (rrn16) genes were amplified successfully from cellular DNA extracted from two different Helicosporidium isolates. The fragment sequences are 1269 and 1266 bp long, are very AT-rich (60.7 %) and are similar to homologous genes sequenced from non-photosynthetic green algae. Maximum-parsimony, maximum-likelihood and neighbour-joining methods were used to infer phylogenetic trees from an rrn16 sequence alignment. All trees depicted the Helicosporidia as sister taxa to the non-photosynthetic, pathogenic alga Prototheca zopfii. Moreover, the trees identified Helicosporidium spp. as members of a clade that included the heterotrophic species Prototheca spp. and the mesotrophic species Chlorella protothecoides. The clade is always strongly supported by bootstrap values, suggesting that all these organisms share a most recent common ancestor. Phylogenetic analyses inferred from plastid 16S rRNA genes confirmed that the Helicosporidia are non-photosynthetic green algae, close relatives of the genus Prototheca (Chlorophyta, Trebouxiophyceae). Such phylogenetic affinities suggest that Helicosporidium spp. are likely to possess Prototheca-like organelles and organelle genomes.

  19. Thermal maturation and petroleum source rocks in Forest City and Salina basins, mid-continent, U. S. A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, K.D.; Watney, W.L.; Hatch, J.R.

    1986-05-01

    Shales in the Middle Ordovician Simpson Group are probably the source rocks for a geochemically distinct group of lower pristane and low phytane oils produced along the axis of the Forest City basin, a shallow cratonic Paleozoic basin. These oils, termed Ordovician-type oils, occur in some fields in the southern portion of the adjacent Salina basin. Maturation modeling by time-temperature index (TTI) calculations indicate that maturation of both basins was minimal during the early Paleozoic. The rate of maturation significantly increased during the Pennsylvanian because of rapid regional subsidence in response to the downwarping of the nearby Anadarko basin. Whenmore » estimated thicknesses of eroded Pennsylvanian, Permian, and Cretaceous strata are considered, both basins remain relatively shallow, with maximum basement burial probably not exceeding 2 km. According to maturation modeling and regional structure mapping, the axes of both basins should contain Simpson rocks in the early stages of oil generation. The probability of finding commercial accumulations of Ordovician-type oil along the northwest-southeast trending axis of the Salina basin will decrease in a northwestward direction because of (1) westward thinning of the Simpson Group, and (2) lesser maturation due to lower geothermal gradients and shallower paleoburial depths. The optimum localities for finding fields of Ordovician-type oil in the southern Salina basin will be in down-plunge closures on anticlines that have drainage areas near the basin axis.« less

  20. Multicriteria analysis as a tool to investigate compatibility between conservation and development on Salina Island, Aeolian Archipelago, Italy

    NASA Astrophysics Data System (ADS)

    Bodini, Antonio; Giavelli, Giovanni

    1992-09-01

    Several multicriteria evaluation techniques have been developed since the 1970s. The need to compare different territorial policies has justified their introduction into environmental research. These methods are based on the numerical manipulation of heterogeneous information, which varies in terms of reference scale and type of measure (continuous, ordinal, qualitative, binary, etc.). During recent years, diverse investigations have focused on general conditions on Salina, the “green island” of the Aeolian archipelago. Such studies, within an interdisciplinary project, aimed to explore the possibility of implementing conservation strategies that are compatible with human needs, landscape preservation, and sustainable economic development. Three different evaluation techniques are applied, namely multicriteria weighted concordance and discordance analysis and a qualitative procedure. They are used to compare four alternative plans for the socioeconomic development of Salina Island. These plans lie between extreme alternatives: total protection of natural resources and maximizing economic development based on tourism. The plans are compared to each other on the basis of 14 criteria that reflect the socioenvironmental perception of Salina's inhabitants. The approach used in this research seems particularly fruitful because of its flexibility: it offers decision makers the chance to manage heterogeneous data and information that is not easily quantifiable. Such “soft” information helps to evaluate environmental conditions more precisely, and to make a less damaging choice among alternative development plans.

  1. Salina-margin tepees, pisoliths, and aragonite cements, Lake MacLeod, Western Australia: Their significance in interpreting ancient analogs

    NASA Astrophysics Data System (ADS)

    Robertson Handford, C.; Kendall, Alan C.; Prezbindowski, Dennis R.; Dunham, John B.; Logan, Brian W.

    1984-09-01

    Tepee structures, banded aragonite cements, and pisoliths are currently forming in Lake MacLeod, a carbonate-evaporite salina in Western Australia. Although Lake MacLeod is separated from the Indian Ocean by a barrier, it lies 3 4 m below sea level, which promotes the seepage of seawater through the barrier and its discharge from vents and seepage mounds around the margin of the salina. Discharging waters have precipitated and diagenetically altered carbonate sediments within these seepage mounds to form tepee structures of lithified protodolomite overlying cavities that are lined with banded aragonite cement and floored by both cement and pisoliths. Significant variations in δ18O (5.1‰ PDB) and δ13C (5.5‰ PDB) of the aragonite cements were documented and are thought to record shifts in the isotopic composition of the water brought about by the effects of evaporation, influx of meteoric water, and oxidation of organic water. Carbon-14 dating of cements indicates that cementation began about 3400 B.P. and has proceeded at a rate of about 0.2 to 0.4 mm/100 yr, the highest rate occurring during evaporative episodes. By analogy with Lake MacLeod and other Australian salinas, peritidal tepee structures and associated diagenetic carbonates in the Permian Capitan Reef complex may owe their origin to speleanlike diagenesis operative in a marine groundwater discharge zone.

  2. Stratigraphy, Structure, and Geologic and Coastal Hazards in the Peñuelas to Salinas Area, Southern Puerto Rico: A Compendium of Published Literature

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús

    2007-01-01

    The Puerto Rico Electrical Power Authority has proposed construction of a pipeline to convey natural gas from the municipio of Pe?uelas to the Aguirre thermoelectric power plant in the municipio of Salinas in southern Puerto Rico. To ensure that the geologic conditions along the possible routes do not represent a threat to the physical integrity of the natural gas pipeline, and thus comply with State and Federal regulations, the Puerto Rico Electrical Power Authority requested the U.S. Geological Survey to provide a synthesis of published literature of the geology of the coastal plain in the Pe?uelas to Salinas area. The study area is located in part of the Southern Coastal Plain of Puerto Rico. In the area that extends from the municipio of Pe?uelas eastward to the Laguna de las Salinas at Ponce, a distance of about 5 miles, the study area is underlain by middle Tertiary carbonate units. Eastward from the Laguna de las Salinas to the pipeline terminus at the Aguirre power plant in Salinas, a distance of about 30 miles, the terrain is underlain by fan-delta deposits of Quaternary age. The carbonate units and the fan-delta deposits are underlain by early Tertiary and older-age volcaniclastics with subordinate sedimentary rocks and lavas. The Great Southern Puerto Rico Fault Zone is the principal geologic structural feature in southern Puerto Rico. At present, the Great Southern Puerto Rico Fault Zone is considered largely quiescent, although it apparently is associated with minor earthquakes. There is no evidence of terrestrial, late Quaternary faulting within the Pe?uelas to Salinas area. Seismic activity in this area mostly originates from extension zones of more distal shallow sources such as Mona Canyon to the northwest and the Anegada Trough northeast of the island of Puerto Rico. The magnitude of completeness of earthquakes in the study area ranges from 2.0 to 2.5. The seismic density for the southern coast including the study area is about 0.128 earthquakes

  3. SALT EFFECTS ON EGGS AND NAUPLII OF ARTEMIA SALINA L

    PubMed Central

    Boone, Eleanor; Baas-Becking, L. G. M.

    1931-01-01

    Eggs of Artemia salina L., the brine shrimp, are easily obtainable in large quantities. Ecdysis takes place in two stages: (a) extrusion of the inner membrane, and (b) ecdysis of the nauplius from that membrane. The conditions which allow for the former are much more varied than those for the latter. Nauplii form in only solutions of a few sodium salts; and, in Mg, Ca, and Sr salts, potassium is very toxic. The possible environment for the nauplii (1 M total molarity) has been ascertained for chlorides of Na, K, Mg, and Ca. The facts observed account for the peculiar distribution of the organism. PMID:19872620

  4. Biochemical and physiological responses of halophilic nanophytoplankton (Dunaliella salina) from exposure to xeno-estrogen 17α-ethinylestradiol.

    PubMed

    Belhaj, Dalel; Athmouni, Khaled; Frikha, Doniez; Kallel, Monem; El Feki, Abdelfattah; Maalej, Sami; Zhou, John L; Ayadi, Habib

    2017-03-01

    The environmental impacts of various pollutants on the entire levels of organisms are under investigation. Among these pollutants, endocrine-disrupting compounds (EDCs) present a serious hazard, even though the environmental significance of these compounds remains basically unknown. To drop some light on this field, we assessed the effects of a 11-day exposure of 17α-ethinylestradiol (EE2) on the growth, metabolic content, antioxidant response, oxidative stress, and genetic damage of Dunaliella salina, isolated from Tunisian biotopes. The results showed that at 10 ng L -1 , EE2 could stimulate the growth of D. salina and increase its cellular content of photosynthetic pigments and metabolites; however, it did not significantly increase the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) or the level of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ). In contrast, exposure to high levels of EE2 concentrations significantly inhibited the growth of D. salina (P < 0.05), decreased the cellular content of photosynthetic pigments, increased the cellular content of all of the metabolites and the SOD activity, and inhibited CAT and GPx activities. Nevertheless, the balance between oxidant and antioxidant enzymes was disrupted because H 2 O 2 content along with MDA content simultaneously increased. Contrary to expected results, DNA damage (strand breaks) decreased after the exposure of algae to EE2. The results of this study suggest that EE2 toxicity could result in environmental impacts with consequences on the whole aquatic community. Graphical abstract.

  5. Biological screening of selected Pacific Northwest forest plants using the brine shrimp (Artemia salina) toxicity bioassay

    Treesearch

    Yvette M. Karchesy; Rick G. Kelsey; George Constantine; Joseph J. Karchesy

    2016-01-01

    The brine shrimp (Artemia salina) bioassay was used to screen 211 methanol extracts from 128 species of Pacific Northwest plants in search of general cytotoxic activity. Strong toxicity (LC50 < 100 μg/ml) was found for 17 extracts from 13 species, with highest activity observed for Angelica arguta...

  6. CHARACTERIZATION OF CELL WALL POLYSACCHARIDES OF THE COENCOCYTIC GREEN SEAWEED BRYOPSIS PLUMOSA (BRYOPSIDACEAE, CHLOROPHYTA) FROM THE ARGENTINE COAST(1).

    PubMed

    Ciancia, Marina; Alberghina, Josefina; Arata, Paula Ximena; Benavides, Hugo; Leliaert, Frederik; Verbruggen, Heroen; Estevez, Jose Manuel

    2012-04-01

    Bryopsis sp. from a restricted area of the rocky shore of Mar del Plata (Argentina) on the Atlantic coast was identified as Bryopsis plumosa (Hudson) C. Agardh (Bryopsidales, Chlorophyta) based on morphological characters and rbcL and tufA DNA barcodes. To analyze the cell wall polysaccharides of this seaweed, the major room temperature (B1) and 90°C (X1) water extracts were studied. By linkage analysis and NMR spectroscopy, the structure of a sulfated galactan was determined, and putative sulfated rhamnan structures and furanosidic nonsulfated arabinan structures were also found. By anion exchange chromatography of X1, a fraction (F4), comprising a sulfated galactan as major structure was isolated. Structural analysis showed a linear backbone constituted of 3-linked β-d-galactose units, partially sulfated on C-6 and partially substituted with pyruvic acid forming an acetal linked to O-4 and O-6. This galactan has common structural features with those of green seaweeds of the genus Codium (Bryopsidales, Chlorophyta), but some important differences were also found. This is the first report about the structure of the water-soluble polysaccharides biosynthesized by seaweeds of the genus Bryopsis. These sulfated galactans and rhamnans were in situ localized mostly in two layers, one close to the plasma membrane and the other close to the apoplast, leaving a middle amorphous, unstained cell wall zone. In addition, fibrillar polysaccharides, comprising (1→3)-β-d-xylans and cellulose, were obtained by treatment of the residue from the water extractions with an LiCl/DMSO solution at high temperature. These polymers were also localized in a bilayer arrangement. © 2012 Phycological Society of America.

  7. FIRST RESULTS ON X-RAY-INDUCED GENETIC DAMAGE IN ARTEMIA SALINA LEACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metalli, P.; Ballardin, E.

    1962-01-01

    Prophase oocytes of diploid and tetraploid pantenogenetic Antemia salina were x irradiated with 1000 r and damage was scored as oocyte or embryo lethal mutations at the first (X/sub 1/) and at the second (X/sub 2/) generations after irradiation. Dominant lethality shown at X/sub 1/ was much greater for the diploid strain than for the tetraploid; lethality observed at X/sub 2/ was increased with respect to X/sub 1/ in the diploid strain, while in the tetraploid it remained unmodified. (auth)

  8. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  9. The laboratory environmental algae pond simulator (LEAPS) photobioreactor: Validation using outdoor pond cultures of Chlorella sorokiniana and Nannochloropsis salina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, M.; Williams, P.; Edmundson, S.

    A bench-scale photobioreactor system, termed Laboratory Environmental Algae Pond Simulator (LEAPS), was designed and constructed to simulate outdoor pond cultivation for a wide range of geographical locations and seasons. The LEAPS consists of six well-mixed glass column photobioreactors sparged with CO2-enriched air to maintain a set-point pH, illuminated from above by a programmable multicolor LED lighting (0 to 2,500 µmol/m2-sec), and submerged in a temperature controlled water-bath (-2 °C to >60 °C). Measured incident light intensities and water temperatures deviated from the respective light and temperature set-points on average only 2.3% and 0.9%, demonstrating accurate simulation of light and temperaturemore » conditions measured in outdoor ponds. In order to determine whether microalgae strains cultured in the LEAPS exhibit the same linear phase biomass productivity as in outdoor ponds, Chlorella sorokiniana and Nannochloropsis salina were cultured in the LEAPS bioreactors using light and temperature scripts measured previously in the respective outdoor pond studies. For Chlorella sorokiniana, the summer season biomass productivity in the LEAPS was 6.6% and 11.3% lower than in the respective outdoor ponds in Rimrock, Arizona, and Delhi, California; however, these differences were not statistically significant. For Nannochloropsis salina, the winter season biomass productivity in the LEAPS was statistically significantly higher (15.2%) during the 27 day experimental period than in the respective outdoor ponds in Tucson, Arizona. However, when considering only the first 14 days, the LEAPS biomass productivity was only 9.2% higher than in the outdoor ponds, a difference shown to be not statistically significant. Potential reasons for the positive or negative divergence in LEAPS performance, relative to outdoor ponds, are discussed. To demonstrate the utility of the LEAPS in predicting productivity, two other strains – Scenedesmus obliquus and

  10. PESTICIDES AND THEIR METABOLITES IN THE HOMES AND URINE OF FARMWORKER CHILDREN LIVING IN THE SALINAS VALLEY, CA

    EPA Science Inventory

    This paper describes a study to test field methods for characterizing pesticide exposures to 20 farmworker children aged 5-27 months old living in the Salinas Valley of Monterey County, California. Methods for collecting house dust, indoor and outdoor air, dislodgeable residues ...

  11. 78 FR 1210 - Grand River Dam Authority; Notice of Telephone Meeting To Discuss the Salina Pumped Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Authority; Notice of Telephone Meeting To Discuss the Salina Pumped Storage Project Water Quality Study... technical meeting to discuss the results of the Water Quality Study as they stand at the conclusion of...): Water quality study results at the conclusion of fieldwork (3) GRDA, OWRB, and other participants...

  12. Developmental toxicity of oxidized multi-walled carbon nanotubes on Artemia salina cysts and larvae: Uptake, accumulation, excretion and toxic responses.

    PubMed

    Zhu, Song; Luo, Fei; Tu, Xiao; Chen, Wei-Chao; Zhu, Bin; Wang, Gao-Xue

    2017-10-01

    Using Artemia salina (A. salina) cysts (capsulated and decapsulated) and larvae [instar I (0-24 h), II (24-48 h) and III (48-72 h)] as experimental models, developmental toxicity of oxidized multi-walled carbon nanotubes (O-MWCNTs) was evaluated. Results revealed that hatchability of capsulated and decapsulated cysts was significantly decreased (p < 0.01) following exposure to 600 mg/L for 36 h. Mortality rates were 33.8, 55.7 and 40.7% for instar I, II and III larvae in 600 mg/L. The EC 50 values for swimming inhibition of instar I, II and III were 535, 385 and 472 mg/L, respectively. Instar II showed the greatest sensitivity to O-MWCNTs, and followed by instar III, instar I, decapsulated cysts and capsulated cysts. Effects on hatchability, mortality and swimming were accounted for O-MWCNTs rather than metal catalyst impurities. Body length was decreased with the concentrations increased from 0 to 600 mg/L. O-MWCNTs attached onto the cysts, gill and body surface, resulting in irreversible damages. Reactive oxygen species, malondialdehyde content, total antioxidant capacity and antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) activities were increased following exposure, indicating that the effects were related to oxidative stress. O-MWCNTs were ingested and distributed in phagocyte, lipid vesicle and intestine. Most of the accumulated O-MWCNTs were excreted by A. salina at 72 h, but some still remained in the organism. Data of uptake kinetics showed that O-MWCNTs contents in A. salina were gradually increased from 1 to 48 h and followed by rapidly decreased from 48 to 72 h with a range from 5.5 to 28.1 mg/g. These results so far indicate that O-MWCNTs have the potential to affect aquatic organisms when released into the marine ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Molecular Clone and Expression of a NAD+-Dependent Glycerol-3-Phosphate Dehydrogenase Isozyme Gene from the Halotolerant alga Dunaliella salina

    PubMed Central

    Cai, Ma; He, Li-Hong; Yu, Tu-Yuan

    2013-01-01

    Glycerol is an important osmotically compatible solute in Dunaliella. Glycerol-3-phosphate dehydrogenase (G3PDH) is a key enzyme in the pathway of glycerol synthesis, which converts dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate. Generally, the glycerol-DHAP cycle pathway, which is driven by G3PDH, is considered as the rate-limiting enzyme to regulate the glycerol level under osmotic shocks. Considering the peculiarity in osmoregulation, the cDNA of a NAD+-dependent G3PDH was isolated from D. salina using RACE and RT-PCR approaches in this study. Results indicated that the length of the cDNA sequence of G3PDH was 2,100 bp encoding a 699 amino acid deduced polypeptide whose computational molecular weight was 76.6 kDa. Conserved domain analysis revealed that the G3PDH protein has two independent functional domains, SerB and G3PDH domains. It was predicted that the G3PDH was a nonsecretory protein and may be located in the chloroplast of D. salina. Phylogenetic analysis demonstrated that the D. salina G3PDH had a closer relationship with the G3PDHs from the Dunaliella genus than with those from other species. In addition, the cDNA was subsequently subcloned in the pET-32a(+) vector and was transformed into E. coli strain BL21 (DE3), a expression protein with 100 kDa was identified, which was consistent with the theoretical value. PMID:23626797

  14. Design of a ground-water-quality monitoring network for the Salinas River basin, California

    USGS Publications Warehouse

    Showalter, P.K.; Akers, J.P.; Swain, L.A.

    1984-01-01

    A regional ground-water quality monitoring network for the entire Salinas River drainage basin was designed to meet the needs of the California State Water Resources Control Board. The project included phase 1--identifying monitoring networks that exist in the region; phase 2--collecting information about the wells in each network; and phase 3--studying the factors--such as geology, land use, hydrology, and geohydrology--that influence the ground-water quality, and designing a regional network. This report is the major product of phase 3. Based on the authors ' understanding of the ground-water-quality monitoring system and input from local offices, an ideal network was designed. The proposed network includes 317 wells and 8 stream-gaging stations. Because limited funds are available to implement the monitoring network, the proposed network is designed to correspond to the ideal network insofar as practicable, and is composed mainly of 214 wells that are already being monitored by a local agency. In areas where network wells are not available, arrangements will be made to add wells to local networks. The data collected by this network will be used to assess the ground-water quality of the entire Salinas River drainage basin. After 2 years of data are collected, the network will be evaluated to test whether it is meeting the network objectives. Subsequent network evaluations will be done very 5 years. (USGS)

  15. Macroalgal-bacterial interactions: Role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta).

    PubMed

    Kessler, Ralf W; Weiss, Anne; Kuegler, Stefan; Hermes, Cornelia; Wichard, Thomas

    2018-04-01

    The marine macroalga Ulva mutabilis (Chlorophyta) develops into callus-like colonies consisting of undifferentiated cells and abnormal cell walls under axenic conditions. Ulva mutabilis is routinely cultured with two bacteria, the Roseovarius sp. MS2 strain and the Maribacter sp. MS6 strain, which release morphogenetic compounds and ensure proper algal morphogenesis. Using this tripartite community as an emerging model system, we tested the hypothesis that the bacterial-algal interactions evolved as a result of mutually taking advantage of signals in the environment. Our study aimed to determine whether cross-kingdom crosstalk is mediated by the attraction of bacteria through algal chemotactic signals. Roseovarius sp. MS2 senses the known osmolyte dimethylsulfoniopropionate (DMSP) released by Ulva into the growth medium. Roseovarius sp. is attracted by DMSP and takes it up rapidly such that DMSP can only be determined in axenic growth media. As DMSP did not promote bacterial growth under the tested conditions, Roseovarius benefited solely from glycerol as the carbon source provided by Ulva. Roseovarius quickly catabolized DMSP into methanethiol (MeSH) and dimethylsulphide (DMS). We conclude that many bacteria can use DMSP as a reliable signal indicating a food source and promote the subsequent development and morphogenesis in Ulva. © 2017 John Wiley & Sons Ltd.

  16. Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae

    PubMed Central

    Kaňa, Radek; Kotabová, Eva; Sobotka, Roman; Prášil, Ondřej

    2012-01-01

    Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates – e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching. PMID:22235327

  17. Cultivation of parasites.

    PubMed

    Ahmed, Nishat Hussain

    2014-07-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites.

  18. Cultivation of parasites

    PubMed Central

    Ahmed, Nishat Hussain

    2014-01-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites. PMID

  19. Assembly of the Lactuca sativa, L. cv. Tizian draft genome sequence reveals differences within major resistance complex 1 as compared to the cv. Salinas reference genome.

    PubMed

    Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2018-02-10

    Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Differential effects of changes in spectral irradiance on photoacclimation, primary productivity and growth in Rhodomonas salina (Cryptophyceae) and Skeletonema costatum (Bacillariophyceae) in simulated blackwater environments.

    PubMed

    Lawrenz, Evelyn; Richardson, Tammi L

    2017-12-01

    The underwater light field in blackwater environments is strongly skewed toward the red end of the electromagnetic spectrum due to blue light absorption by colored dissolved organic matter (CDOM). Exposure of phytoplankton to full spectrum irradiance occurs only when cells are mixed up to the surface. We studied the potential effects of mixing-induced changes in spectral irradiance on photoacclimation, primary productivity and growth in cultures of the cryptophyte Rhodomonas salina and the diatom Skeletonema costatum. We found that these taxa have very different photoacclimation strategies. While S. costatum showed classical complementary chromatic adaption, R. salina showed inverse chromatic adaptation, a strategy previously unknown in the cryptophytes. Transfer of R. salina to periodic full spectrum light (PFSL) significantly enhanced growth rate (μ) by 1.8 times and primary productivity from 0.88 to 1.35 mg C · (mg Chl -1 ) · h -1 . Overall, R. salina was less dependent on PFSL than was S. costatum, showing higher μ and net primary productivity rates. In the high-CDOM simulation, carbon metabolism of the diatom was impaired, leading to suppression of growth rate, short-term 14 C uptake and net primary production. Upon transfer to PFSL, μ of the diatom increased by up to 3-fold and carbon fixation from 2.4 to 6.0 mg C · (mg Chl -1 ) · h -1 . Thus, a lack of PFSL differentially impairs primarily CO 2 -fixation and/or carbon metabolism, which, in turn, may determine which phytoplankton dominate the community in blackwater habitats and may therefore influence the structure and function of these ecosystems. © 2017 Phycological Society of America.

  1. Evaluation of toxicity of polluted marine sediments from Bahia Salina Cruz, Mexico.

    PubMed

    Gonzalez-Lozano, Maria Cristina; Mendez-Rodriguez, Lia C; Maeda-Martinez, Alejandro M; Murugan, Gopal; Vazquez-Botello, Alfonso

    2010-01-01

    Bahia Salina Cruz, Oaxaca, Mexico is a major center of oil and refined product distribution on the Mexican Pacific coast. From the start of oil industry operations in 1979, negative effects from discharges of treated effluents in the bay have been a constant concern for local communities. We analyzed 28 surface sediment samples obtained in June, 2002 to evaluate the level of toxicity in the littoral zone, port-harbor, and La Ventosa estuary in Bahia Salina Cruz. The extractable organic matter concentration was high (1,213 to 7,505 micro g g(-1)) in 5 of 7 stations from the port and harbor, whereas it was low in 12 of 16 stations in the littoral zone (36 to 98 micro g g(-1)). The total aromatic hydrocarbon concentration was highest (57 to 142 micro g g(-1)) in the port and harbor compared to the La Ventosa estuary and the littoral zone. Among the heavy metals analyzed, cadmium exceeded the effects range-low values associated with adverse biological effects. The geo-accumulation index of sediments was moderate to strong contamination at 5 stations in the nonlittoral and 6 stations in the littoral zone. The enrichment of lead, zinc, and cadmium at 5 stations from the littoral, port, and harbor suggest that these metals are of anthropogenic origin. Bioassay tests of elutriates of sediments on nauplii of Artemia franciscana and Artemia sp. showed that the port and harbor were more toxic than the La Ventosa estuary and the coastal zone. The Microtox test (Vibrio fischeri) did not show a similar response with the solid phase of the sediments. The results of this study indicate that the high levels of organic content and metals in the sediments of port-harbor and the La Ventosa estuary are mainly caused by anthropogenic activities.

  2. Map showing scenic features and recreation facilities of the Salina quadrangle, Utah

    USGS Publications Warehouse

    Williams, Paul L.; Covington, Harry R.

    1973-01-01

    This map is intended as a guide for those who enjoy outdoor recreation in magnificent scenic settings.The Salina quadrangle lies in the heart of the Colorado Plateau, a sparsely populated land of unique and outstanding scenic beauty. The eastern half of the quadrangle is a great desert, partly blanketed by sand dunes, but  mostly an area of badlands multicolored cliffs and benches of virtually barren rock, and deeply incised canyons. In the west half of the quadrangle, rugged tree-covered foothills flank high forested plateaus rimmed by cliffs. On these High Plateaus, dense coniferous forest is interspersed with wide grassy parks, grazed in summer by sheep and cattle. Valleys between the plateaus contain irrigated crop lands.

  3. [Dendrobium officinale stereoscopic cultivation method].

    PubMed

    Si, Jin-Ping; Dong, Hong-Xiu; Liao, Xin-Yan; Zhu, Yu-Qiu; Li, Hui

    2014-12-01

    The study is aimed to make the most of available space of Dendrobium officinale cultivation facility, reveal the yield and functional components variation of stereoscopic cultivated D. officinale, and improve quality, yield and efficiency. The agronomic traits and yield variation of stereoscopic cultivated D. officinale were studied by operating field experiment. The content of polysaccharide and extractum were determined by using phenol-sulfuric acid method and 2010 edition of "Chinese Pharmacopoeia" Appendix X A. The results showed that the land utilization of stereoscopic cultivated D. officinale increased 2.74 times, the stems, leaves and their total fresh or dry weight in unit area of stereoscopic cultivated D. officinale were all heavier than those of the ground cultivated ones. There was no significant difference in polysaccharide content between stereoscopic cultivation and ground cultivation. But the extractum content and total content of polysaccharide and extractum were significantly higher than those of the ground cultivated ones. In additional, the polysaccharide content and total content of polysaccharide and extractum from the top two levels of stereoscopic culture matrix were significantly higher than that of the ones from the other levels and ground cultivation. Steroscopic cultivation can effectively improves the utilization of space and yield, while the total content of polysaccharides and extractum were significantly higher than that of the ground cultivated ones. The significant difference in Dendrobium polysaccharides among the plants from different height of stereo- scopic culture matrix may be associated with light factor.

  4. Analysis of the Physiological and Molecular Responses of Dunaliella salina to Macronutrient Deprivation

    PubMed Central

    Lv, Hexin; Cui, Xianggan; Wahid, Fazli; Xia, Feng; Zhong, Cheng; Jia, Shiru

    2016-01-01

    The halotolerant chlorophyte Dunaliella salina can accumulate up to 10% of its dry weight as β-carotene in chloroplasts when subjected to adverse conditions, including nutrient deprivation. However, the mechanisms of carotenoid biosynthesis are poorly understood. Here, the physiological and molecular responses to the deprivation of nitrogen (-N), sulfur (-S), phosphorus (-P) and different combinations of those nutrients (-N-P, -N-S, -P-S and -N-P-S) were compared to gain insights into the underlying regulatory mechanisms of carotenoid biosynthesis. The results showed that both the growth and photosynthetic rates of cells were decreased during nutrient deprivation, accompanied by lipid globule accumulation and reduced chlorophyll levels. The SOD and CAT activities of the cells were altered during nutrient deprivation, but their responses were different. The total carotenoid contents of cells subjected to multiple nutrient deprivation were higher than those of cells subjected to single nutrient deprivation and non-stressed cells. The β-carotene contents of cells subjected to -N-P, -N-S and -N-P-S were higher than those of cells subjected to single nutrient deprivation. Cells subjected to sulfur deprivation accumulated more lutein than cells subjected to nitrogen and phosphorous deprivation. In contrast, no cumulative effects of nutrient deprivation on the transcription of genes in the carotenogenic pathway were observed because MEP and carotenogenic pathway genes were up-regulated during single nutrient deprivation but were downregulated during multiple nutrient deprivation. Therefore, we proposed that the carotenoid biosynthesis pathway of D. salina is regulated at both the transcriptional and posttranscriptional levels and that a complex crosstalk occurs at the physiological and molecular levels in response to the deprivation of different nutrients. PMID:27023397

  5. Gyrodactylus salinae n. sp. (Platyhelminthes: Monogenea) infecting the south European toothcarp Aphanius fasciatus (Valenciennes) (Teleostei, Cyprinodontidae) from a hypersaline environment in Italy.

    PubMed

    Paladini, Giuseppe; Huyse, Tine; Shinn, Andrew P

    2011-06-09

    Historically, non-native species of Gambusia (Poeciliidae) have been used to control larval stages of the Asian tiger mosquito, Stegomyia albopicta Reinert, Harbach et Kitching, 2004 throughout Italy. The potential utility of indigenous populations of Aphanius fasciatus (Valenciennes) (Teleostei: Cyprinodontidae) as an appropriate alternative biological control is currently being explored. A sub-sample of ten fish collected from Cervia Saline, Italy (salinity 65 ppt; 30°C) to assess their reproductive capability in captivity, harboured a moderate infection of Gyrodactylus von Nordmann, 1832 (Platyhelminthes, Monogenea). A subsequent morphological and molecular study identified this as being a new species. Gyrodactylus salinae n. sp. is described from the skin, fins and gills of A. fasciatus. Light and scanning electron microscopical (SEM) examination of the opisthaptoral armature and their comparison with all other recorded species suggested morphological similarities to Gyrodactylus rugiensoides Huyse et Volckaert, 2002 from Pomatoschistus minutus (Pallas). Features of the ventral bar, however, permit its discrimination from G. rugiensoides. Sequencing of the nuclear ribosomal DNA internal transcribed spacers 1 and 2 and the 5.8S rRNA gene and a comparison with all species listed in GenBank confirmed they are unique and represent a new species (most similar to Gyrodactylus anguillae Ergens, 1960, 8.3% pair-wise distance based on 5.8S+ITS2). This represents the first species of Gyrodactylus to be described from Aphanius and, to date, has the longest ITS1 (774 bp) sequenced from any Gyrodactylus. Additional sampling of Cervia Saline throughout the year, found G. salinae n. sp. to persist in conditions ranging from 35 ppt and 5°C in December to 65 ppt and 30°C in July, while in captivity a low level of infection was present, even in freshwater conditions (0 ppt). The ability of G. salinae n. sp. to tolerate a wide range of salinities and temperatures shows its

  6. Draft Genome Sequence of the Extremely Halophilic Bacterium Halomonas salina Strain CIFRI1, Isolated from the East Coast of India

    PubMed Central

    Das, Priyanka; Maharana, Jitendra; Paria, Prasenjit; Mandal, Shambhu Nath; Meena, Dharmendra Kumar; Sharma, Anil Prakash; Jayarajan, Rijith; Dixit, Vishal; Verma, Ankit; Vellarikkal, Shamsudheen Karuthedath; Scaria, Vinod; Sivasubbu, Sridhar; Rao, Atmakuri Ramakrishna; Mohapatra, Trilochan

    2015-01-01

    Halomonas salina strain CIFRI1 is an extremely salt-stress-tolerant bacterium isolated from the salt crystals of the east coast of India. Here we report the annotated 3.45-Mb draft genome sequence of strain CIFRI1 having 86 contigs with 3,139 protein coding loci, including 62 RNA genes. PMID:25573926

  7. Microbe observation and cultivation array (MOCA) for cultivating and analyzing environmental microbiota.

    PubMed

    Gao, Weimin; Navarroli, Dena; Naimark, Jared; Zhang, Weiwen; Chao, Shih-Hui; Meldrum, Deirdre R

    2013-01-09

    The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches. Although recent new technologies such as metagenomics and metatranscriptomics can provide more functionality information about the microbial communities, it is still important to develop the capacity to isolate and cultivate individual microbial species or strains in order to gain a better understanding of microbial physiology and to apply isolates for various biotechnological applications. We have developed a new system to cultivate bacteria in an array of droplets. The key component of the system is the microbe observation and cultivation array (MOCA), which consists of a Petri dish that contains an array of droplets as cultivation chambers. MOCA exploits the dominance of surface tension in small amounts of liquid to spontaneously trap cells in well-defined droplets on hydrophilic patterns. During cultivation, the growth of the bacterial cells across the droplet array can be monitored using an automated microscope, which can produce a real-time record of the growth. When bacterial cells grow to a visible microcolony level in the system, they can be transferred using a micropipette for further cultivation or analysis. MOCA is a flexible system that is easy to set up, and provides the sensitivity to monitor growth of single bacterial cells. It is a cost-efficient technical platform for bioassay screening and for cultivation and isolation of bacteria from natural environments.

  8. [Benthic flora and reproduction of Batophora spp. algae (Chlorophyta: Dasycladaceae) in a polluted coastal lagoon (Chetumal Bay, Mexico)].

    PubMed

    Quan-Young, L I; Jiménez-Flores, S G; Espinoza-Avalos, J

    2006-06-01

    The benthic flora, and the vegetative and reproductive characters of the algae Batophora oerstedii and B. occidentalis (Chlorophyta) were recorded from five sites of Chetumal Bay, Quintana Roo, Mexico. A sewage gradient has been reported along those sites. Plants were sampled in May and October 1999, which corresponded to dry and rainy seasons, respectively. Forty taxa were found, 11 are new records for the Chetumal Bay, and 6 are new records for the Mexican Caribbean. Enteromorpha species were present in sites known as rich in organic matter (both from anthropogenic and natural sources). Batophora spp. is the dominant algae in all Chetumal Bay. However, it was absent next to sewage outfalls. The morphological characters of B. oerstedii and B. occidentalis did not change significantly along the sites reported as polluted. The length and width of gametophores, as well as the diameter of the gametangia were clearly different for both species. Different reproductive strategies may help B. oerstedii and B. occidentalis to closely coexist in the Chetumal Bay.

  9. Effect of Bisphenol A on the extremophilic microalgal strain Picocystis sp. (Chlorophyta) and its high BPA removal ability.

    PubMed

    Ben Ouada, Sabrine; Ben Ali, Rihab; Leboulanger, Christophe; Ben Ouada, Hatem; Sayadi, Sami

    2018-08-30

    Bisphenol A (BPA) effects and removal by an alkaliphilic chlorophyta, Picocystis, were assessed. BPA at low concentrations (0-25 mg L -1 ) did not inhibit the Picocystis growth and photosynthesis during 5 days of exposure. At higher BPA concentrations (50 and 75 mg L -1 ), the growth inhibition did not exceed 43%. The net photosynthetic activity was dramatically reduced at high BPA concentrations while, the PSII activity was less affected. The exposure to increasing BPA concentrations induced an oxidative stress in Picocystis cells, as evidenced by increased malondialdehyde content and the over-expression of antioxidant activities (ascorbate peroxydase, gluthation-S-transferase and catalase). Picocystis exhibited high BPA removal efficiency, reaching 72% and 40% at 25 and 75 mg L -1 BPA. BPA removal was ensured mainly by biodegradation/biotransformation processes. Based on these results, the extended tolerance and the high removal ability of Picocystis make her a promising specie for use in BPA bioremediation. Copyright © 2018. Published by Elsevier Inc.

  10. Monitoring of Water Quality and Microalgae Species Composition of Penaeus monodon Ponds in Pulau Pinang, Malaysia

    PubMed Central

    Shaari, Asma Liyana; Surif, Misni; Latiff, Faazaz Abd.; Omar, Wan Maznah Wan; Ahmad, Mohd Noor

    2011-01-01

    Many reports have revealed that the abundance of microalgae in shrimp ponds vary with changes in environmental factors such as light, temperature, pH, salinity and nutrient level throughout a shrimp culture period. In this study, shrimp cultivation period was divided into three stages (initial = week 0–5, mid = week 6–10 and final = week 11–15). Physical and chemical parameters throughout the cultivation period were studied and species composition of microalgae was monitored. Physical parameters were found to fluctuate widely with light intensity ranging between 182.23–1278 μmol photon m−2s−1, temperature between 29.56°C −31.59°C, dissolved oxygen (DO) between 4.56–8.21 mg/l, pH between 7.65–8.49 and salinity between 20‰–30‰. Ammonium (NH4+-N), nitrite (NO2−-N), nitrate (NO3−-N), and orthophosphate (PO43−-P) concentrations in the pond at all cultivation stages ranged from 0.017 to 0.38 mg/l, 0.24 to 2.12 mg/l, 0.06 to 0.98 mg/l and 0.16 to 1.93 mg/l respectively. Statistical test (ANOVA) showed that there were no significant difference (p<0.05) in nutrients concentrations among the cultivation stages. All nutrients concentrations however were still in the tolerable level and safe for shrimp culture. The chlorophyll a contents were found to range from 5.03±2.17 to 32.61±0.35 μg/l throughout the cultivation period. A total of 19 microalgae species were found in the shrimp pond, with diatoms contributing up to 72% of the species followed by Chlorophyta (11%) and Cyanophyta (11%). However, weekly species abundance varied through the study period. At the initial stage, when there were no shrimps in the pond, Anabaena spp. and Oscillatoria spp. (Cyanophyta) were the dominant species, followed by Chlorella sp. and Dunaliella sp. (Chlorophyta). When shrimps were introduced into the pond, Amphora sp., Navicula sp. Gyrosigma sp. and Nitzschia sp. (diatoms) started to exist. At the middle and towards the final stage of the shrimp culture

  11. Depositional environment, sand provenance, and diagenesis of the Basal Salina Formation (lower Eocene), northwestern Peru

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Carozzi, A. V.

    The Basal Salina Formation is a lower Eocene transgressive sequence consisting of interbedded shales, siltstones, and conglomeratic sandstones. This formation occurs in the Talara basin of northwestern Peru and is one of a series of complexly faulted hydrocarbon-producing formations within this extensional forearc basin. These sediments were probably deposited in a fan-delta complex that developed along the ancestral Amotape Mountains during the early Eocene. Most of the sediment was derived from the low-grade metamorphic and plutonic rocks that comprise the Amotape Mountains, and their sedimentary cover. Detrital modes of these sandstones reflect the complex tectonic history of the area, rather than the overall forearc setting. Unlike most forearc sediments, these are highly quartzose, with only minor percentages of volcanic detritus. This sand is variably indurated and cemented by chlorite, quartz, calcite, and kaolinite. Clay-mineral matrix assemblages show gradational changes with depth, from primarily detrital kaolinite to diagenetic chlorite and mixed-layered illite/smectite. Basal Salina sandstones exhibit a paragenetic sequence that may be tied to early meteoric influx or late-stage influx of thermally driven brines associated with hydrocarbon migration. Much of the porosity is secondary, resulting from a first-stage dissolution of silicic constituents (volcanic lithic fragments, feldspar, and fibrous quartz) and a later dissolution of surrounding carbonate cement. Types of pores include skeletal grains, grain molds, elongate pores, and fracture porosity. Measured porosity values range up to 24% and coarser samples tend to be more porous. Permeability is enhanced by fractures and deterred by clay-mineral cements and alteration residues.

  12. The efficiency of a new hydrodynamic cavitation pilot system on Artemia salina cysts and natural population of copepods and bacteria under controlled mesocosm conditions.

    PubMed

    Cvetković, Martina; Grego, Mateja; Turk, Valentina

    2016-04-15

    A study of the efficiency of hydrodynamic cavitation and separation was carried out to evaluate an innovative, environmentally safe and acceptable system for ballast water treatment for reducing the risk of introducing non-native species worldwide. Mesocosm experiments were performed to assess the morphological changes and viability of zooplankton (copepods), Artemia salina cysts, and the growth potential of marine bacteria after the hydrodynamic cavitation treatment with a different number of cycles. Our preliminary results confirmed the significant efficiency of the treatment since more than 98% of the copepods and A. salina cysts were damaged, in comparison with the initial population. The efficiency increased with the number of the hydrodynamic cavitation cycles, or in combination with a separation technique for cysts. There was also a significant decrease in bacterial abundance and growth rate, compared to the initial number and growth potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    PubMed

    Castilla Casadiego, D A; Albis Arrieta, A R; Angulo Mercado, E R; Cervera Cahuana, S J; Baquero Noriega, K S; Suárez Escobar, A F; Morales Avendaño, E D

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained "Nutrifoliar," a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using "Nutrifoliar" as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids.

  14. Quorum sensing molecules in activated sludge could trigger microalgae lipid synthesis.

    PubMed

    Zhang, Chaofan; Li, Qingcheng; Fu, Liang; Zhou, Dandan; Crittenden, John C

    2018-05-18

    Cultivating microalgae using wastewater is an economical strategy to produce biofuel; however, microbial contamination has to be controlled strictly. Microalgae lipid accumulation can be triggered by environmental pressures, and here, we studied whether microbial contamination is the pressure for microalgae. We hypothesized this pressure was forced via cell-to-cell communication with quorum sensing molecules (QSMs). In this work, we verified the impacts of QSMs produced by activated sludge (wastewater-born microbial consortiums) on both lipid content and biomass production of the microalgae Chlorophyta sp., since in combination, they determined lipid productivity. With QSMs stress, the lipid content of Chlorophyta sp. increased by ∼84%, while biomass production decreased only slightly. Consistently, enzymes on the fatty acid synthesis pathways were generally up-regulated, while they were slightly down-regulated for DNA replication. In summary, the total lipid production improved by 86%. These results revealed the positive effects of microbial contamination on microalgae biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Preliminary results of the Artemia salina experiments in biostack on LDEF

    NASA Technical Reports Server (NTRS)

    Graul, E. H.; Ruether, W.; Hiendl, C. O.

    1992-01-01

    The mosaic egg of the brine shrimp, Artemia salina, resting in blastula or gastrula state represents a system that during further development, proceeds without any further development to the larval stage, the free swimming nauplius. Therefore, injury to a single cell of the egg will be manifest in the larvae. In several experiments, it was shown that the passage of a single heavy ion through the shrimp egg damaged a cellular area large enough to disturb either embryogenesis or further development of the larvae, or the integrity of the adult individual. Emergence from the egg shell was heavily disturbed by the heavy ions as was hatching. Additional late effects, due to a hit by a heavy ion, are delayed of growth and of sexual maturity, and reduced fertility. Anomalies in the body and the extremities could be observed more frequently for the nauplii which had developed from eggs hit by heavy ions.

  16. Investigation of environmental factors on the prevalence of free bacteriophages against Shiga toxin-producing Escherichia coli strains in produce pre-harvest environment in Salinas, California

    USDA-ARS?s Scientific Manuscript database

    Investigation of environmental factors on the prevalence of free bacteriophages against Shiga toxin-producing Escherichia coli strains in produce pre-harvest environment in Salinas, California Yen-Te Liaoa, Irwin Quintelab, Kimberly Nguyena, Alexandra Salvadora, Michael Cooleya, and Vivian C.H. Wu*a...

  17. Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation.

    PubMed

    Bonnefond, Hubert; Moelants, Nina; Talec, Amélie; Mayzaud, Patrick; Bernard, Olivier; Sciandra, Antoine

    2017-01-01

    Nitrogen starvation and limitation are known to induce important physiological changes especially in lipid metabolism of microalgae (triglycerides, membrane lipids, beta-carotene, etc.). Although little information is available for Dunaliella salina , it is a promising microalga for biofuel production and biotechnological applications due to its ability to accumulate lipid together with beta-carotene. Batch and chemostat experiments with various degrees of nitrogen limitation, ranging from starvation to nitrogen-replete conditions, were carried out to study carbon storage dynamics (total carbon, lipids, and beta-carotene) in steady state cultures of D. salina . A new protocol was developed in order to manage the very high beta-carotene concentrations and to more accurately separate and quantify beta-carotene and triglycerides by chromatography. Biomass evolution was appropriately described by the Droop model on the basis of the nitrogen quota dynamics. Triglycerides and beta-carotene were both strongly anti-correlated with nitrogen quota highlighting their carbon sink function in nitrogen depletion conditions. Moreover, these two valuable molecules were correlated each other for nitrogen replete conditions or moderated nitrogen limitations (N:C ratio higher than 0.04). Under nitrogen starvation, i.e., for very low N:C ratio, the dynamic revealed, for the first time, uncoupled part (higher triglyceride accumulation than beta-carotene), possibly because of shortage in key proteins involved in the stabilization of lipid droplets. This study motivates the accurate control of the microalgal nitrogen quota in order to optimize lipid productivity.

  18. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.

    PubMed

    Wu, Donghai; You, Hong; Du, Jiaxuan; Chen, Chuan; Jin, Darui

    2011-01-01

    The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of effluent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation efficiency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation efficiency and ch1-a removal efficiency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of effluent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.

  19. Cytotoxic activity of carotenoid rich fractions from Haematococcus pluvialis and Dunaliella salina microalgae and the identification of the phytoconstituents using LC-DAD/ESI-MS.

    PubMed

    El-Baz, Farouk K; Hussein, Rehab A; Mahmoud, Khaled; Abdo, Sayeda M

    2018-02-01

    Microalgae represent a rich source that satisfies the growing need for novel ingredients of nutriceuticals, pharmaceuticals, and food supplements. Haematococcus pluvialis and Dunaliella salina microalgae are isolated from the Egyptian hydro-flora and are reported for their potent antioxidant activities. The cytotoxic activity of different fractions of both microalgae was investigated on 4 cell lines HePG2, MCF7, HCT116, and A549. The carotenoid rich fraction of H. pluvialis showed potent cytotoxic activity against colon cancer cell line and moderate activity against both liver and breast cancer cell lines. On the other hand, the carotenoid rich fraction of D. salina showed mild cytotoxic activity on breast and liver cancer cell lines. The carotenoid rich fraction of H. pluvialis was analysed using LC-DAD/ESI-MS and the major carotenoids were identified either free as well as bounded to fatty acids. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Environmental assessment of aromatic hydrocarbons-contaminated sediments of the Mexican Salina Cuz Bay.

    PubMed

    González-Macías, C; Schifter, I; Lluch-Cota, D B; Méndez-Rodríguez, L; Hernández-Vázquez, S

    2007-10-01

    Concentrations of total aromatic hydrocarbons and extractable organic matter in the water column and sediment were determined in samples collected in the course of the last 20 years from the Salina Cruz Harbor, México, to assess the degree of organic contamination. In sediments, organic compounds accumulate in shallow areas mostly associated with extractable organic matter and fine fractions. Calculated geocumulation index and enrichment factors suggest that contamination could be derived from anthropogenic activities attributed to harbor and ship scrapping activities, as well as transboundary source. Concentration of total aromatic hydrocarbons (as chrysene equivalents) ranged from 0.01 to 534 microg l(-1) in water, and from 0.10 to 2,160 microg g(-1) in sediments. Total aromatic concentration of 5 microg g(-1) is proposed as background concentration.

  1. Seaweed cultivation: Traditional way and its reformation

    NASA Astrophysics Data System (ADS)

    Fei, Xiu-Geng; Bao, Ying; Lu, Shan

    1999-09-01

    Seaweed cultivation or phycoculture has been developed rather fast in recent years. The total production of cultivated seaweed at present is about 6250×103 tons fresh weight. The total cultivation area is estimated as 200×103 hectare. The annual total value of cultivated seaweeds has been estimated to be more than 3 billion US dollars. Phycoculture provides many job opportunities for the coastal region people, has the potential to improve marine environments and thus even induce global change. All traditional cultivation methods and techniques are based on or start from the individual plant or the cultivated seaweed population. Modern biological science and biotechnology achievements have benefited agriculture a lot, but traditional seaweed cultivation has not changed much since its founding. This is because seaweed cultivation has been quite conservative for quite a long period and has accumulated many problems requiring solution. Four main problems might be the most universal ones holding back further development of the industry. New ways of seaweed cultivation must be developed, new techniques must be perfected, and new problems solved. This paper mainly discusses the main problems of traditional seaweed cultivation at present and its possible further development and reformation in the future.

  2. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    PubMed Central

    Castilla Casadiego, D. A.; Albis Arrieta, A. R.; Angulo Mercado, E. R.; Cervera Cahuana, S. J.; Baquero Noriega, K. S.; Suárez Escobar, A. F.; Morales Avendaño, E. D.

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained “Nutrifoliar,” a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using “Nutrifoliar” as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids. PMID:27376085

  3. The medicinal Agaricus mushroom cultivated in Brazil: biology, cultivation and non-medicinal valorisation.

    PubMed

    Largeteau, Michèle L; Llarena-Hernández, Régulo Carlos; Regnault-Roger, Catherine; Savoie, Jean-Michel

    2011-12-01

    Sun mushroom is a cultivated mushroom extensively studied for its medicinal properties for several years and literature abounds on the topic. Besides, agronomical aspects were investigated in Brazil, the country the mushroom comes from, and some studies focus on the biology of the fungus. This review aimed to present an overview of the non-medicinal knowledge on the mushroom. Areas of commercial production and marketing trends are presented. Its specific fragrance, taste, nutritional value and potential use of extracts as food additives are compared to those of the most cultivated fungi and laboratory models. The interest of the mushroom for lignocellulosic enzyme production and source of biomolecules for the control of plant pathogens are shown. Investigation of genetic variability among cultivars is reported. Growing and storage of mycelium, as well as cultivation conditions (substrate and casing generally based on local products; indoor and outdoor cultivation; diseases and disorders) are described and compared to knowledge on Agaricus bisporus.

  4. Phylogeography of the wild and cultivated stimulant plant qat (Catha edulis, Celastraceae) in areas of historical cultivation.

    PubMed

    Tembrock, Luke R; Simmons, Mark P; Richards, Christopher M; Reeves, Patrick A; Reilley, Ann; Curto, Manuel A; Meimberg, Harald; Ngugi, Grace; Demissew, Sebsebe; Al Khulaidi, Abdul Wali; Al-Thobhani, Mansoor; Simpson, Sheron; Varisco, Daniel M

    2017-04-01

    Qat ( Catha edulis , Celastraceae) is a woody plant species cultivated for its stimulant alkaloids. Qat is important to the economy and culture in large regions of Ethiopia, Kenya, and Yemen. Despite the importance of this species, the wild origins and dispersal of cultivars have only been described in often contradictory historical documents. We examined the wild origins, human-mediated dispersal, and genetic divergence of cultivated qat compared to wild qat. We sampled 17 SSR markers and 1561 wild and cultivated individuals across the historical areas of qat cultivation. On the basis of genetic structure inferred using Bayesian and nonparametric methods, two centers of origin in Kenya and one in Ethiopia were found for cultivated qat. The centers of origin in Ethiopia and northeast of Mt. Kenya are the primary sources of cultivated qat genotypes. Qat cultivated in Yemen is derived from Ethiopian genotypes rather than Yemeni wild populations. Cultivated qat with a wild Kenyan origin has not spread to Ethiopia or Yemen, whereas a small minority of qat cultivated in Kenya originated in Ethiopia. Hybrid genotypes with both Ethiopian and Kenyan parentage are present in northern Kenya. Ethiopian cultivars have diverged from their wild relatives, whereas Kenyan qat has diverged less. This pattern of divergence could be caused by the extinction of the wild-source qat populations in Ethiopia due to deforestation, undersampling, and/or artificial selection for agronomically important traits. © 2017 Tembrock et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).

  5. [Concentrations of alkaloids, cyanogenic glycosides, polyphenols and saponins in selected medicinal plants from Ecuador and their relationship with acute toxicity against Artemia salina].

    PubMed

    Jaramillo Jaramillo, Carmita; Jaramillo Espinoza, Anyi; D'Armas, Haydelba; Troccoli, Luis; Rojas de Astudillo, Luisa

    2016-09-01

    Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 μg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (p<0.001) acute toxicity against A. salina, while at a higher

  6. [Effects of cultivation environments on Dendrobium catenatum].

    PubMed

    Lin, Yi-Kai; Zhu, Yu-Qiu; Si, Jin-Ping; Qin, Lang; Zhu, Yan; Wu, Ling-Shang; Liu, Jing-Jing

    2017-08-01

    The study was aimed to clarify the effect of three cultivation environments on the growth and metabolism of Dendrobium catenatum C13 group. There were three different cultivation conditions including rock epiphytic cultivation, pear epiphytic cultivation and pot cultivation. Morphological characteristics and agronomic characters of D. catenatum were observed and measured. Microstructure, contents of polysaccharide and alcohol-soluble extracts were measured by paraffin section method, phenol-sulfuric acid method and hot-dip method, respectively. The result showed that the cultivation environment significantly affected the growth of D. catenatum, the leaves of D. catenatum that cultivated on the rock and pear were sparse and small, the stems were short and purple and the root system was developed. Compare with potted cultivation, D. catenatum from rock epiphytic cultivation and pear epiphytic cultivation showed the following characteristics in the microstructure: the upper epidermis became thicker, the epidermal hair in the epidermis became denser, stomatal showed smaller and denser, the cell wall of exodermis, endoderm and medulla became thicker, the cell of velamen, exodermis, endoderm and medulla were smaller and arranged more closely, but the cultivation environment did not produce specific tissue structure, mainly changed in the structural parameters of size and quantity. The growth environments also influenced contents of polysaccharides and alcohol-soluble extracts. The dontents of polysaccharides and alcohol-soluble extracts in D. catenatum from rock epiphytic were the highest, reached 37.34% and 11.66%, the second was pear epiphytic, both higher than pot cultivation, alcohol-soluble extracts contents in D. catenatum from rock epiphytic are more complex, which shows that rock epiphytic is conducive to the accumulation of secondary metabolites in D. catenatum. Copyright© by the Chinese Pharmaceutical Association.

  7. Isolation, expression and characterization of rbcL gene from Ulva prolifera J. Agardh (Ulvophyceae, Chlorophyta)

    NASA Astrophysics Data System (ADS)

    Shao, Zhanru; Li, Wei; Guo, Hui; Duan, Delin

    2015-12-01

    Ulva prolifera is a typical green alga in subtidal areas and can grow tremendously fast. A highly efficient Rubisco enzyme which is encoded by UpRbcL gene may contribute to the rapid growth. In this study, the full-length UpRbcL open reading frame (ORF) was identified, which encoded a protein of 474 amino acids. Phylogenetic analysis of UpRbcL sequences revealed that Chlorophyta had a closer genetic relationship with higher plants than with Rhodophyta and Phaeophyta. The two distinct residues (aa11 and aa91) were presumed to be unique for Rubisco catalytic activity. The predicted three-dimensional structure showed that one α/β-barrel existed in the C-terminal region, and the sites for Mg2+ coordination and CO2 fixation were also located in this region. Gene expression profile indicated that UpRbcL was expressed at a higher level under light exposure than in darkness. When the culture temperature reached 35°C, the expression level of UpRbcL was 2.5-fold lower than at 15°C, and the carboxylase activity exhibited 13.8-fold decrease. UpRbcL was heterologously expressed in E. coli and was purified by Ni2+ affinity chromatography. The physiological and biochemical characterization of recombinant Rubisco will be explored in the future.

  8. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae.

    PubMed

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-06-01

    We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration-dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5mg/mL carbon black and 0.1mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Metabolic studies with NMR spectroscopy of the alga Dunaliella salina trapped within agarose beads.

    PubMed

    Bental, M; Pick, U; Avron, M; Degani, H

    1990-02-22

    A technique for the entrapment of the unicellular algae Dunaliella salina in agarose beads and their perfusion during NMR measurements is presented. The trapped cells maintained their ability to proliferate under normal growth conditions, and remained viable and stable under steady-state conditions for long periods during NMR measurements. Following osmotic shock in the dark, prominent changes were observed in the intracellular level of ATP and polyphosphates, but little to no changes in the intracellular pH or orthoposphate content. When cells were subjected to hyperosmotic shock, the ATP level decreased. The content of NMR-visible polyphosphates decreased as well, presumably due to the production of longer, NMR-invisible structures. Following hypoosmotic shock, the ATP content increased and longer polyphosphates were broken down to shorter, more mobile polymers.

  10. Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater.

    PubMed

    Yuan, W J; Zhao, X Q; Ge, X M; Bai, F W

    2008-12-01

    To study fuel ethanol fermentation with Kluyveromyces marxianus ATCC8554 from Jerusalem artichoke (Helianthus tuberosus) grown in salina and irrigated with a mixture of seawater and freshwater. The growth and ethanol fermentation of K. marxianus ATCC8554 were studied using inulin as substrate. The activity of inulinase, which attributes to the hydrolysis of inulin, the main carbohydrate in Jerusalem artichoke, was monitored. The optimum temperatures were 38 degrees C for growth and inulinase production, and 35 degrees C for ethanol fermentation. Aeration was not necessary for ethanol fermentation with the K. marxianus from inulin. Then, the fresh Jerusalem artichoke tubers grown in salina and irrigated with 25% and 50% seawater were further examined for ethanol fermentation with the K. marxianus, and a higher ethanol yield was achieved for the Jerusalem artichoke tuber irrigated with 25% seawater. Furthermore, the dry meal of the Jerusalem artichoke tubers irrigated with 25% seawater was examined for ethanol fermentation at three solid concentrations of 200, 225 and 250 g l(-1), and the highest ethanol yield of 0.467, or 91.5% of the theoretical value of 0.511, was achieved for the slurry with a solid concentration of 200 g l(-1). Halophilic Jerusalem artichoke can be used for fuel ethanol production. Halophilic Jerusalem artichoke, not competing with grain crops for arable land, is a sustainable feedstock for fuel ethanol production.

  11. Effect of salinity on metal mobility in Sečovlje salina sediment (northern Adriatic, Slovenia)

    NASA Astrophysics Data System (ADS)

    Kovač, N.; Ramšak, T.; Glavaš, N.; Dolenec, M.; Rogan Šmuc, N.

    2016-12-01

    Saline sediment (saline healing mud or "fango") from the Sečovlje Salina (northern Adriatic, Slovenia) is traditionally used in the coastal health resorts as a virgin material for medical treatment, wellness and relax purposes. Therapeutic qualities of the healing mud depend on its mineralogical composition and physical, mineralogical, geochemical and biological properties. Their microbial and potentially toxic elements contamination are the most important features affecting user safety. However, the degree of metal toxicity (and its regulation) for natural healing mud is still under discussion. Therefore, the influence of the overlying water salinity on the mobility of heavy metals (and some other geochemical characteristic) was studied for saline sediments of the Sečovlje Salina. Experiments takes place in tanks under defined conditions i.e. at day (21 °C): night (16 °C) cycle for three months. Sediment was covered with water of different salinities (36, 155, 323 g NaCl L-1 and distillate water) and mixed/stirred every week during the experimental period. At the same time, the evaporated water was replaced with distilled water. The mud samples were analyzed, at the beginning and at the end of experiment, for mineral (XRD), elemental composition (ICP-MS) and organic content (% TOC, % TN). Geochemical analysis of the aqueous phase (content of cations and anions) have also been carried out in an accredited Canadian laboratory Actlabs (Activation Laboratories, Canada). Salinity and maturation of sediment does not significantly affect its mineral composition. The samples taken at the end of the experiment have higher percent of water but lower organic carbon concentration. Concentrations of investigated elements are comparable to that in surface sediments from Central Adriatic Sea. In the water phase, concentrations of most elements (As, Ba, Cu, Mo, Mn, Ni, Sr, Sb) rise from the beginning to the end of the experiment, whereas the metal (potentially toxic elements

  12. Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1.

    PubMed

    Wen, Xiaobin; Du, Kui; Wang, Zhongjie; Peng, Xinan; Luo, Liming; Tao, Huanping; Xu, Yan; Zhang, Dan; Geng, Yahong; Li, Yeguang

    2016-01-01

    Commercial production of microalgal biodiesel is not yet economically viable, largely because of low storage lipid yield in microalgae mass cultivation. Selection of lipid-rich microalgae, thus, becomes one of the key research topics for microalgal biodiesel production. However, the laboratory screening protocols alone cannot predict the ability of the strains to dominate and perform in outdoor ponds. Comprehensive assessment of microalgae species should be performed not only under the laboratory conditions, but also in the fields. Laboratory investigations using a bubbled column photobioreactor indicated the microalga Graesiella sp. WBG-1 to be the most productive species among the 63 Chlorophyta strains. In a 10 L reactor, mimicking the industrial circular pond, Graesiella sp. WBG-1 produced 12.03 g biomass m(-2) day(-1) and 5.44 g lipids (45.23 % DW) m(-2) day(-1) under 15 mol m(-2) day(-1) artificial light irradiations. The lipid content decreased to ~34 % DW when the microalga was cultured in 30 L tank PBR under natural solar irradiations, but the decline of lipid content with scaling up was the minimum among the tested strains. Based on these results, the microalga was further tested for its lipid production and culture competitiveness using a pilot-scale raceway pond (200 m(2) illuminated area, culture volume 40,000 L). Consequently, Graesiella sp. WBG-1 maintained a high lipid content (33.4 % DW), of which ~90 % was storage TAGs. Results from the outdoor experiments indicated the nice adaptability of the Graesiella sp. WBG-1 to strong and fluctuating natural solar irradiance and temperature, and also demonstrated several other features, such as large cell size (easy for harvest and resistant to swallow by protozoa) and tolerance to high culture pH (helpful to CO2 fixation). Graesiella sp. WBG-1 was a promising strain capable of accumulating large amount of storage lipid under nature solar irradiance and temperature. The high lipid content

  13. Map showing relative ease of excavation in the Salina quadrangle, Utah

    USGS Publications Warehouse

    Williams, Paul L.

    1972-01-01

    This map shows the relative ease (or difficulty) with which rocks and surficial deposits can be excavated. Because of rapidly changing technology of excavation and considerable local variability of many rock units, it is not practical to specifically categorize rock units according to type of equipment needed for their excavations. However, it may be stated in general that rock units classed as very easy and easy can in most places be excavated by hand tools and by light machinery such as backhoes and small bulldozers; units included in easy to difficult require blasting and (or) heavy machinery such as rippers and large bulldozers for resistant rocks, and hand tools or light power equipment for soft rocks; and units classes as difficult and very difficult probably require blasting and heavy machinery.The excavation units shown here are based on map units of the geologic map of the Salina quadrangle. Where bedrock is mantled with thin unmapped surficial deposits, ease of excavation shown is that of the bedrock, not that of the thin surficial mantle; where surficial deposits are mapped, ease of excavation shown is that of surficial deposits.

  14. Analyses on Regional Cultivated Land Changebased on Quantitative Method

    NASA Astrophysics Data System (ADS)

    Cao, Yingui; Yuan, Chun; Zhou, Wei; Wang, Jing

    Three Gorges Project is the great project in the world, which accelerates economic development in the reservoir area of Three Gorges Project. In the process of development in the reservoir area of Three Gorges Project, cultivated land has become the important resources, a lot of cultivated land has been occupied and become the constructing land. In the same time, a lot of cultivated land has been flooded because of the rising of the water level. This paper uses the cultivated land areas and social economic indicators of reservoir area of Three Gorges in 1990-2004, takes the statistic analyses and example research in order to analyze the process of cultivated land, get the driving forces of cultivated land change, find the new methods to stimulate and forecast the cultivated land areas in the future, and serve for the cultivated land protection and successive development in reservoir area of Three Gorges. The results indicate as follow, firstly, in the past 15 years, the cultivated land areas has decreased 200142 hm2, the decreasing quantity per year is 13343 hm2. The whole reservoir area is divided into three different areas, they are upper reaches area, belly area and lower reaches area. The trends of cultivated land change in different reservoir areas are similar to the whole reservoir area. Secondly, the curve of cultivated land areas and per capita GDP takes on the reverse U, and the steps between the change rate of cultivated land and the change rate of GDP are different in some years, which indicates that change of cultivated land and change of GDP are decoupling, besides that, change of cultivated land is connection with the development of urbanization and the policy of returning forestry greatly. Lastly, the precision of multi-regression is lower than the BP neural network in the stimulation of cultivated land, then takes use of the BP neural network to forecast the cultivated land areas in 2005, 2010 and 2015, and the forecasting results are reasonable.

  15. Map showing length of freeze-free season in the Salina quadrangle, Utah

    USGS Publications Warehouse

    Covington, Harry R.

    1972-01-01

    In general, long freeze-free periods occur at low elevations, and short freeze-free periods occur at high elevations. But some valley floors have shorter freeze-free seasons than the glancing foothills because air cooled at high elevations flows downward and is trapped in the valleys. This temperature pattern occurs in the western part of the quadrangle in Rabbit Valley, Grass Valley, and the Sevier River Valley near Salina.Because year-round weather stations are sparse in Utah, a special technique for estimating length of freeze-free season was developed by Dr. Gaylen L. Ashcroft, Assistant Professor of Climatology, Utah State University, and E. Arlo Richardson, State Climatologist, U.S. Weather Bureau, based on average annual temperature, average annual temperature range, average daily temperature range, and average july maximum temperature. This technique was used in preparation of the map showing “Length of 32°F freeze-free season for Utah,” figure 23 in Hydrologic Atlas of Utah (Utah State University and Utah Division of Water Resources, 1968), from which the data for this map were taken.

  16. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.

    PubMed

    Wang, Jinghan; Yang, Haizhen; Wang, Feng

    2014-04-01

    Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

  17. Cultivation in Cottonwood Plantations - Practices and Equipment

    Treesearch

    Harvey E. Kennedy; Wilbur H. Henderson

    1976-01-01

    Thorough first-year cultivation in cottonwood plantations is mandatory to ensure optimum survival and growth. Poor cultivation can reduce growth and may kill trees. Some plantation managers feel that only first-year cultivation is necessary, while others routinely disk for 2, 3, or even 4 years. Chemical weed control shows promise but has not been adequately researched...

  18. [Status of termite-mushroom artificial domestication cultivation--a review].

    PubMed

    Zhang, Yujin; Guo, Huachun; Li, Rongchun

    2010-10-01

    Two models of domestication and cultivation of termite-mushroom were discussed: the cultivation of termitomyces model, which method of woodrotting fungi cultivation was emphasized and the original ecological model, which multiplication of symbiotic termites was focused. The problems and possible solutions during termite-mushroom cultivation were also discussed.

  19. Enhanced Cultivation Of Stimulated Murine B Cells

    NASA Technical Reports Server (NTRS)

    Sammons, David W.

    1994-01-01

    Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.

  20. Production of microbial biosurfactants by solid-state cultivation.

    PubMed

    Krieger, Nadia; Camilios Neto, Doumit; Mitchell, David Alexander

    2010-01-01

    In recent years biosurfactants have attracted attention because of their low toxicity, biodegradability and ecological acceptability. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Solid-state cultivation represents an alternative technology for biosurfactant production that can bring two important advantages: firstly, it allows the use of inexpensive substrates and, secondly, it avoids the problem of foaming that complicates submerged cultivation processes for biosurfactant production. In this chapter we show that, despite its potential, to date relatively little attention has been given to solid-state cultivation for biosurfactant production. We also note that this cultivation technique brings its own challenges, such as the selection of a bioreactor type that will allow adequate heat removal, of substrates with appropriate physico-chemical properties and of methods for monitoring of the cultivation process and recovering the biosurfactants from the fermented solid. With suitable efforts in research, solid-state cultivation can be used for large-scale production of biosurfactants.

  1. Assessment of benthic changes during 20 years of monitoring the Mexican Salina Cruz Bay.

    PubMed

    González-Macías, C; Schifter, I; Lluch-Cota, D B; Méndez-Rodríguez, L; Hernández-Vázquez, S

    2009-02-01

    In this work a non-parametric multivariate analysis was used to assess the impact of metals and organic compounds in the macro infaunal component of the mollusks benthic community using surface sediment data from several monitoring programs collected over 20 years in Salina Cruz Bay, Mexico. The data for benthic mollusks community characteristics (richness, abundance and diversity) were linked to multivariate environmental patterns, using the Alternating Conditional Expectations method to correlate the biological measurements of the mollusk community with the physicochemical properties of water and sediments. Mollusks community variation is related to environmental characteristics as well as lead content. Surface deposit feeders are increasing their relative density, while subsurface deposit feeders are decreasing with respect to time, these last are expected to be more related with sediment and more affected then by its quality. However gastropods with predatory carnivore as well as chemosymbiotic deposit feeder bivalves have maintained their relative densities along time.

  2. Assessing the harms of cannabis cultivation in Belgium.

    PubMed

    Paoli, Letizia; Decorte, Tom; Kersten, Loes

    2015-03-01

    Since the 1990s, a shift from the importation of foreign cannabis to domestic cultivation has taken place in Belgium, as it has in many other countries. This shift has prompted Belgian policy-making bodies to prioritize the repression of cannabis cultivation. Against this background, the article aims to systematically map and assess for the first time ever the harms associated with cannabis cultivation, covering the whole spectrum of growers. This study is based on a web survey primarily targeting small-scale growers (N=1293) and on three interconnected sets of qualitative data on large-scale growers and traffickers (34 closed criminal proceedings, interviews with 32 criminal justice experts, and with 17 large-scale cannabis growers and three traffickers). The study relied on Greenfield and Paoli's (2013) harm assessment framework to identify the harms associated with cannabis cultivation and to assess the incidence, severity and causes of such harms. Cannabis cultivation has become endemic in Belgium. Despite that, it generates, for Belgium, limited harms of medium-low or medium priority. Large-scale growers tend to produce more harms than the small-scale ones. Virtually all the harms associated with cannabis cultivation are the result of the current criminalizing policies. Given the spread of cannabis cultivation and Belgium's position in Europe, reducing the supply of cannabis does not appear to be a realistic policy objective. Given the limited harms generated, there is scarce scientific justification to prioritize cannabis cultivation in Belgian law enforcement strategies. As most harms are generated by large-scale growers, it is this category of cultivator, if any, which should be the focus of law enforcement repression. Given the policy origin of most harms, policy-makers should seek to develop policies likely to reduce such harms. At the same time, further research is needed to comparatively assess the harms associated with cannabis cultivation (and

  3. Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea.

    PubMed

    Miller, Allison; Schaal, Barbara

    2005-09-06

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG-trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG-trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea.

  4. Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea

    PubMed Central

    Miller, Allison; Schaal, Barbara

    2005-01-01

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG–trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG–trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea. PMID:16126899

  5. The appearance of Ulva laetevirens (Ulvophyceae, Chlorophyta) in the northeast coast of the United States of America

    NASA Astrophysics Data System (ADS)

    Mao, Yunxiang; Kim, Jang Kyun; Wilson, Roderick; Yarish, Charles

    2014-10-01

    Introduced species may outcompete or hybridize with native species, resulting in the loss of native biodiversity or even alteration of ecosystem processes. In this study, we reported an alien distromatic Ulva species, which was found in an embayment (Holly Pond) connected with Long Island Sound, USA. The morphological and anatomical observations in combination with molecular data were used for its identification to species. Anatomy of collected specimens showed that the cell shape in rhizoidal and basal regions was round and the marginal teeth along the basal and median region were not found. These characteristics were primarily identical to the diagnostic characteristics of Ulva laetevirens Areschoug (Chlorophyta). The plastid-encoding tufA and nucleusencoding ITS1 were used for its molecular identification. Phylogenetic analysis for the tufA gene placed the specimens from Holly Pond in a well-supported clade along with published sequences of U. laetevirens identified early without any sequence divergence. In ITS tree, the sample also formed well-supported clades with the sequences of U. laetevirens with an estimated sequence divergence among the taxa in these clades as low as 1%. These findings confirmed the morpho-anatomical conclusion. Native to Australia, this species was reported in several countries along the Mediterranean coast after the late of 1990s. This is the first time that U. laetevirens is found in the northeast coast of United States and the second record for Atlantic North America.

  6. Purification and photobiochemical profile of photosystem 1 from a high-salt tolerant, oleaginous Chlorella (Trebouxiophycaea, Chlorophyta).

    PubMed

    McConnell, Michael D; Lowry, David; Rowan, Troy N; van Dijk, Karin; Redding, Kevin E

    2015-06-01

    The eukaryotic green alga Chlamydomonas reinhardtii has been studied extensively within the biofuel industry as a model organism, as researchers look towards algae to provide chemical feedstocks (i.e., lipids) for the production of liquid transportation fuels. C. reinhardtii, however, is unsuitable for high-level production of such precursors due to its relatively poor lipid accumulation and fresh-water demand. In this study we offer insight into the primary light harvesting and electron transfer reactions that occur during phototropic growth in a high-salt tolerant strain of Chlorella (a novel strain introduced here as NE1401), a single-celled eukaryotic algae also in the phylum Chlorophyta. Under nutrient starvation many eukaryotic algae increase dramatically the amount of lipids stored in lipid bodies within their cell interiors. Microscopy and lipid analyses indicate that Chlorella sp. NE1401 may become a superior candidate for algal biofuels production. We have purified highly active Photosystem 1 (PS1) complexes to study in vitro, so that we may understand further the photobiochemisty of this promising biofuel producer and how its characteristics compare and contrast with that of the better understood C. reinhardtii. Our findings suggest that the PS1 complex from Chlorella sp. NE1401 demonstrates similar characteristics to that of C. reinhardtii with respect to light-harvesting and electron transfer reactions. We also illustrate that the relative extent of the light state transition performed by Chlorella sp. NE1401 is smaller compared to C. reinhardtii, although they are triggered by the same dynamic light stresses.

  7. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    DOE PAGES

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.; ...

    2016-07-26

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. Here we subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-termmore » treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Lastly, taken together, these results provide valuable insights into the structure

  8. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    PubMed Central

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.; Sale, Kenneth L.; Yu, Eizadora T.

    2016-01-01

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. We subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-term treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Taken together, these results provide valuable insights into the structure of the microbiota

  9. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. Here we subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-termmore » treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Lastly, taken together, these results provide valuable insights into the structure

  10. Evaluation of toxic, cytotoxic, mutagenic, and antimutagenic activities of natural and technical cashew nut shell liquids using the Allium cepa and Artemia salina bioassays.

    PubMed

    Leite, Aracelli de Sousa; Dantas, Alisson Ferreira; Oliveira, George Laylson da Silva; Gomes Júnior, Antonio L; de Lima, Sidney Gonçalo; Citó, Antônia Maria das Graças Lopes; de Freitas, Rivelilson M; Melo-Cavalcante, Ana Amélia de C; Dantas Lopes, José Arimateia

    2015-01-01

    The cashew nut releases a substance that is known as cashew nut shell liquid (CNSL). There are both natural (iCNSL) and technical (tCNSL) cashew nut shell liquids. This study used an Artemia salina bioassay to evaluate the toxic effects of iCNSL and tCNSL cashew nut shell liquids. It also evaluated the toxicity, cytotoxicity, and mutagenicity of CNSL and its effects on the damage induced by copper sulfate (CuSO4·5H2O) on the meristems' root of Allium cepa. Effects of the damage induced by CuSO4·5H2O were evaluated before (pre-), during (co-), and after (post-) treatments. The iCNSL contained 94.5% anacardic acid, and the tCNSL contained 91.3% cardanol. The liquids were toxic to A. salina. Toxicity, cytotoxicity, and mutagenicity were observed with iCNSL compared with the negative control. Similarly, iCNSL failed to inhibit the toxicity and cytotoxicity of CuSO4·5H2O. The tCNSL was not toxic, cytotoxic, or mutagenic in any of the concentrations. However, the lowest iCNSL concentrations and all of the tCNSL concentrations had preventive, antimutagenic, and reparative effects on micronuclei and on chromosomal aberrations in the A. cepa. Therefore, protective, modulating, and reparative effects may be observed in the A. cepa, depending on the concentration and type of CNSL used.

  11. Characterization of product capture resin during microbial cultivations.

    PubMed

    Frykman, Scott; Tsuruta, Hiroko; Galazzo, Jorge; Licari, Peter

    2006-06-01

    Various bioactive small molecules produced by microbial cultivation are degraded in the culture broth or may repress the formation of additional product. The inclusion of hydrophobic adsorber resin beads to capture these products in situ and remove them from the culture broth can reduce or prevent this degradation and repression. These product capture beads are often subjected to a dynamic and stressful microenvironment for a long cultivation time, affecting their physical structure and performance. Impact and collision forces can result in the fracturing of these beads into smaller pieces, which are difficult to recover at the end of a cultivation run. Various contaminating compounds may also bind in a non-specific manner to these beads, reducing the binding capacity of the resin for the product of interest (fouling). This study characterizes resin bead binding capacity (to monitor bead fouling), and resin bead volume distributions (to monitor bead fracture) for an XAD-16 adsorber resin used to capture epothilone produced during myxobacterial cultivations. Resin fouling was found to reduce the product binding capacity of the adsorber resin by 25-50%. Additionally, the degree of resin bead fracture was found to be dependent on the cultivation length and the impeller rotation rate. Microbial cultivations and harvesting processes should be designed in such a way to minimize bead fragmentation and fouling during cultivation to maximize the amount of resin and associated product harvested at the end of a run.

  12. Hydrothermal-acid treatment for effectual extraction of eicosapentaenoic acid (EPA)-abundant lipids from Nannochloropsis salina.

    PubMed

    Lee, Ilgyu; Han, Jong-In

    2015-09-01

    Hydrothermal acid treatment, was adopted to extract eicosapentaenoic acid (EPA) from wet biomass of Nannochloropsis salina. It was found that sulfuric acid-based treatment increased EPA yield from 11.8 to 58.1 mg/g cell in a way that was nearly proportional to its concentration. Nitric acid exhibited the same pattern at low concentrations, but unlike sulfuric acid its effectiveness unexpectedly dropped from 0.5% to 2.0%. The optimal and minimal conditions for hydrothermal acid pretreatment were determined using a statistical approach; its maximum EPA yield (predicted: 43.69 mg/g cell; experimental: 43.93 mg/g cell) was established at a condition of 1.27% of sulfuric acid, 113.34 °C of temperature, and 36.71 min of reaction time. Our work demonstrated that the acid-catalyzed cell disruption, accompanied by heat, can be one potentially promising option for ω-3 fatty acids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cultivation of Marine Sponges.

    PubMed

    Osinga; Tramper; Wijffels

    1999-11-01

    There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly influence culture success are evaluated. In situ sponge aquacultures, based on old methods for producing commercial bath sponges, are still the easiest and least expensive way to obtain sponge biomass in bulk. However, success of cultivation with this method strongly depends on the unpredictable and often suboptimal natural environment. Hence, a better-defined production system would be desirable. Some progress has been made with culturing sponges in semicontrolled systems, but these still use unfiltered natural seawater. Cultivation of sponges under completely controlled conditions has remained a problem. When designing an in vitro cultivation method, it is important to determine both qualitatively and quantitatively the nutritional demands of the species that is to be cultured. An adequate supply of food seems to be the key to successful sponge culture. Recently, some progress has been made with sponge cell cultures. The advantage of cell cultures is that they are completely controlled and can easily be manipulated for optimal production of the target metabolites. However, this technique is still in its infancy: a continuous cell line has yet to be established. Axenic cultures of sponge aggregates (primmorphs) may provide an alternative to cell culture. Some sponge metabolites are, in fact, produced by endosymbiotic bacteria or algae that live in the sponge tissue. Only a few of these endosymbionts have been cultivated so far. The biotechnology for the production of sponge metabolites needs further development. Research efforts should be continued to enable commercial exploitation of this valuable natural resource in the near future.

  14. Comparative analyses of viable bacterial counts in foods and seawater under microplate based liquid- and conventional agar plate cultivation: increased culturability of marine bacteria under liquid cultivation.

    PubMed

    Shigematsu, Toru; Ueno, Shigeaki; Tsuchida, Yasuharu; Hayashi, Mayumi; Okonogi, Hiroko; Masaki, Haruhiko; Fujii, Tomoyuki

    2007-12-01

    Bacterial counts under liquid cultivation using 96-well microplates were performed. The counts under liquid and under solid cultivation were equivalent in foods, although the counts under liquid cultivation exceeded those under solid cultivation in seawater, suggesting that some bacteria in seawater were viable but did not form detectable colonies. Phylogenetic analysis of bacteria obtained under liquid cultivation was also performed.

  15. Mineral Composition of Wild and Cultivated Blueberries.

    PubMed

    Dróżdż, Paulina; Šėžienė, Vaida; Pyrzynska, Krystyna

    2018-01-01

    The concentrations of 13 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) were determined in several samples of native (wild) naturally growing and cultivated blueberry fruits. The total metal contents after mineralization were analyzed by inductively coupled plasma optical emission spectrometry. Reliability of the procedure was checked by the analysis of the certified reference materials Mixed Polish Herbs (INGT-MPH-2) and Leaves of Poplar (NCS DC 73350). In the fruits collected in the forest (wild blueberries), higher contents of Ca, Na, and Mg as well as Mn and Zn were observed. Similar levels of Cu, Cr, Fe, and Ni were detected in both wild-growing and cultivated plants. The significantly higher content of Fe and Cd in cultivated blueberries was connected with the content of these metals in soil samples collected from the same places. The metal extraction efficiency by hot water varied widely for the different blueberries (wild or cultivated) as well as their form (fresh or dried).

  16. Influences of Urban Expansion on Cultivated Lands in China Since 1970S

    NASA Astrophysics Data System (ADS)

    Liu, F.; Zhang, Z.; Zhao, X.; Yu, S.; Wang, X.; Zuo, L.

    2018-04-01

    Urban expansion has far-reaching influences on cultivated lands, and has a serious effect on grain output and safety. However, relatively little attention has been paid to monitor cultivated land losses through urban expansion over a long timeframe and multi-frequency, especially its differences on national scale systematically. In this work, the characteristics of Chinese cultivated land dynamics were described using annual occupied area per city, contribution rate of cultivated lands to urban expansion and the classification method of basic trend of cultivated land losses. Results indicate that: (1) in the past four decades, large amount of cultivated lands have been occupied during the urban expansion process, and have become the first land source for Chinese urban expansion. (2) Cultivated land loss among municipalities, provincial capitals and other cities was obviously different. The higher of cities' administrative level was, the more obvious of cultivated land loss in these cities appeared, and the earlier of acceleration loss stage of cultivated lands occurred. (3) Cultivated land loss in five population-size cities was unbalanced, representing obviously different loss process and contribution on urban expansion. The bigger of cities' population size was, the more obvious of cultivated land loss in these cities appeared, and the earlier of acceleration loss stage of cultivated lands occurred. (4) Cultivated land losses during urban expansion process were imbalanced in China, and were classified into seven trends. (5) Chinese cultivated land protection has been carried out from the awakening stage to the deep implementation stage.

  17. Time Course Exo-Metabolomic Profiling in the Green Marine Macroalga Ulva (Chlorophyta) for Identification of Growth Phase-Dependent Biomarkers

    PubMed Central

    Alsufyani, Taghreed; Weiss, Anne; Wichard, Thomas

    2017-01-01

    The marine green macroalga Ulva (Chlorophyta) lives in a mutualistic symbiosis with bacteria that influence growth, development, and morphogenesis. We surveyed changes in Ulva’s chemosphere, which was defined as a space where organisms interact with each other via compounds, such as infochemicals, nutrients, morphogens, and defense compounds. Thereby, Ulva mutabilis cooperates with bacteria, in particular, Roseovarius sp. strain MS2 and Maribacter sp. strain MS6 (formerly identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6). Without this accompanying microbial flora, U. mutabilis forms only callus-like colonies. However, upon addition of the two bacteria species, in effect forming a tripartite community, morphogenesis can be completely restored. Under this strictly standardized condition, bioactive and eco-physiologically-relevant marine natural products can be discovered. Solid phase extracted waterborne metabolites were analyzed using a metabolomics platform, facilitating gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) analysis, combined with the necessary acquisition of biological metadata. Multivariate statistics of the GC-MS and LC-MS data revealed strong differences between Ulva’s growth phases, as well as between the axenic Ulva cultures and the tripartite community. Waterborne biomarkers, including glycerol, were identified as potential indicators for algal carbon source and bacterial-algal interactions. Furthermore, it was demonstrated that U. mutabilis releases glycerol that can be utilized for growth by Roseovarius sp. MS2. PMID:28075408

  18. The Cultivated Classroom.

    ERIC Educational Resources Information Center

    Schilder, Rosalind

    1983-01-01

    Teachers who follow this monthly schedule for starting and cultivating plants in their classrooms can look forward to blooms and greenery throughout the year. Advice on choosing plants, making cuttings, forcing bulbs, rooting sweet potatoes and pineapples, and holding a Mother's Day plant sale is included. (PP)

  19. Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems.

    PubMed

    Jonczyk, Patrick; Takenberg, Meike; Hartwig, Steffen; Beutel, Sascha; Berger, Ralf G; Scheper, Thomas

    2013-09-20

    Technical scale (≥5l) cultivations of shear stress sensitive microorganisms are often difficult to perform, as common bioreactors are usually designed to maximize the oxygen input into the culture medium. This is achieved by mechanical stirrers, causing high shear stress. Examples for shear stress sensitive microorganisms, for which no specific cultivation systems exist, are many anaerobic bacteria and fungi, such as basidiomycetes. In this work a disposable bag bioreactor developed for cultivation of mammalian cells was investigated to evaluate its potential to cultivate shear stress sensitive anaerobic Eubacterium ramulus and shear stress sensitive basidiomycetes Flammulina velutipes and Pleurotus sapidus. All cultivations were compared with conventional stainless steel stirred tank reactors (STR) cultivations. Good growth of all investigated microorganisms cultivated in the bag reactor was found. E. ramulus showed growth rates of μ=0.56 h⁻¹ (bag) and μ=0.53 h⁻¹ (STR). Differences concerning morphology, enzymatic activities and growth in fungal cultivations were observed. In the bag reactor growth in form of small, independent pellets was observed while STR cultivations showed intense aggregation. F. velutipes reached higher biomass concentrations (21.2 g l⁻¹ DCW vs. 16.8 g l⁻¹ DCW) and up to 2-fold higher peptidolytic activities in comparison to cell cultivation in stirred tank reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effects of indoor and outdoor cultivation conditions on 137 Cs concentrations in cultivated mushrooms produced after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tagami, Keiko; Uchida, Shigeo; Ishii, Nobuyoshi

    2017-01-01

    Radiocesium ( 134 Cs and 137 Cs) in mushrooms has been a matter of public concern after the accident at Fukushima Daiichi Nuclear Power Plant. To minimize the internal dose by ingestion of cultivated mushrooms, the Japanese government set a guideline level with respect to the radiocesium concentration in bed-logs and mushroom beds; however, the effects of indoor and outdoor cultivation methods on radiocesium concentrations in cultivated mushrooms were not clear. The effects of indoor and outdoor cultivation on the radiocesium concentrations in mushroom were examined using published food monitoring data. 137 Cs concentration data in Lentinula edodes from the Aizu area in Fukushima Prefecture and seven prefectures outside Fukushima were used for the analysis. No statistically significant 137 Cs concentration differences were found between these two cultivation methods. Using detected 137 Cs data in shiitake, the geometric means from each prefecture were less than one-quarter of the standard limit (100 Bq kg -1 ) for total radiocesium under both cultivation conditions. It was suspected that re-suspended radiocesium might have been taken up by mushrooms or that radiocesium might have been absorbed into the mushrooms from the soil in the outdoor cultures. However, neither effect was significant for cultivated mushrooms in the areas examined. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Evaluation of Toxic, Cytotoxic, Mutagenic, and Antimutagenic Activities of Natural and Technical Cashew Nut Shell Liquids Using the Allium cepa and Artemia salina Bioassays

    PubMed Central

    Leite, Aracelli de Sousa; Oliveira, George Laylson da Silva; Gomes Júnior, Antonio L.; de Lima, Sidney Gonçalo; Citó, Antônia Maria das Graças Lopes; de Freitas, Rivelilson M.; Melo-Cavalcante, Ana Amélia de C.; Dantas Lopes, José Arimateia

    2015-01-01

    The cashew nut releases a substance that is known as cashew nut shell liquid (CNSL). There are both natural (iCNSL) and technical (tCNSL) cashew nut shell liquids. This study used an Artemia salina bioassay to evaluate the toxic effects of iCNSL and tCNSL cashew nut shell liquids. It also evaluated the toxicity, cytotoxicity, and mutagenicity of CNSL and its effects on the damage induced by copper sulfate (CuSO4·5H2O) on the meristems' root of Allium cepa. Effects of the damage induced by CuSO4·5H2O were evaluated before (pre-), during (co-), and after (post-) treatments. The iCNSL contained 94.5% anacardic acid, and the tCNSL contained 91.3% cardanol. The liquids were toxic to A. salina. Toxicity, cytotoxicity, and mutagenicity were observed with iCNSL compared with the negative control. Similarly, iCNSL failed to inhibit the toxicity and cytotoxicity of CuSO4·5H2O. The tCNSL was not toxic, cytotoxic, or mutagenic in any of the concentrations. However, the lowest iCNSL concentrations and all of the tCNSL concentrations had preventive, antimutagenic, and reparative effects on micronuclei and on chromosomal aberrations in the A. cepa. Therefore, protective, modulating, and reparative effects may be observed in the A. cepa, depending on the concentration and type of CNSL used. PMID:25861638

  2. Changes in Soil Carbon Storage After Cultivation

    DOE Data Explorer

    Mann, L. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2004-01-01

    Previously published data from 625 paired soil samples were used to predict carbon in cultivated soil as a function of initial carbon content. A 30-cm sampling depth provided a less variable estimate (r2 = 0.9) of changes in carbon than a 15-cm sampling depth (r2 = 0.6). Regression analyses of changes in carbon storage in relation to years of cultivation confirmed that the greatest rates of change occurred in the first 20 y. An initial carbon effect was present in all analyses: soils very low in carbon tended to gain slight amounts of carbon after cultivation, but soils high in carbon lost at least 20% during cultivation. Carbon losses from most agricultural soils are estimated to average less than 20% of initial values or less than 1.5 kg/m2 within the top 30 cm. These estimates should not be applied to depths greater than 30 cm and would be improved with more bulk density information and equivalent sample volumes.

  3. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Cultivated wild rice crop insurance provisions. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.170 Cultivated wild rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and...

  4. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Cultivated wild rice crop insurance provisions. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.170 Cultivated wild rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and...

  5. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Cultivated wild rice crop insurance provisions. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.170 Cultivated wild rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and...

  6. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Cultivated wild rice crop insurance provisions. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.170 Cultivated wild rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and...

  7. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Cultivated wild rice crop insurance provisions. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.170 Cultivated wild rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and...

  8. Cannabis cultivation in Quebec: between space-time hotspots and coldspots.

    PubMed

    Chadillon-Farinacci, Véronique; Apparicio, Philippe; Morselli, Carlo

    2015-03-01

    Cannabis cultivation has become increasingly localized, whether soil-based or hydroponic growing methods are used. Characteristics of a given location, such as its climate and the equipment it requires may influence general accessibility or attract different types of offenders based on potential profits. The location of crops, especially hydroponic crops, suggests a certain proximity to the consumer market via semi-urban and urban environments, while making it possible to avoid detection. This article examines the cannabis market through its cultivation. The stability of temporal and spatial clusters of cannabis cultivation, hotspots, and coldspots between 2001 and 2009 in the province of Quebec, Canada, are addressed. Studying the geography of crime is not a new endeavor, but coldspots are rarely documented in drug market research. Using arrests and general population data, as well as Kulldorff's scan statistics, results show that the temporal distribution of cannabis cultivation is highly seasonal for soil-based methods. Hydroponic production shows adaptation to its soil-based counterpart. Stable patterns are found for both spatial distributions. Hotspots for soil-based cultivation are found near several urban centers and the Ontario border. For hydroponic cannabis cultivation, a new hotspot suggests the emergence of an American demand for Quebec-grown cannabis between 2007 and 2009. Curiously, the region surrounding Montreal, the largest urban center in Quebec, is a recurrent and stable coldspot for both methods of cultivation. For all periods, spatial clusters are stronger for soil-based methods than in the hydroponic context. Temporal differences and spatial similarities between soil-based cultivation and hydroponic cultivation are discussed. The role of the metropolis is also addressed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Cultivating the Deep Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Casar, C. P.; Osburn, M. R.; Flynn, T. M.; Masterson, A.; Kruger, B.

    2017-12-01

    Subterranean ecosystems are poorly understood because many microbes detected in metagenomic surveys are only distantly related to characterized isolates. Cultivating microorganisms from the deep subsurface is challenging due to its inaccessibility and potential for contamination. The Deep Mine Microbial Observatory (DeMMO) in Lead, SD however, offers access to deep microbial life via pristine fracture fluids in bedrock to a depth of 1478 m. The metabolic landscape of DeMMO was previously characterized via thermodynamic modeling coupled with genomic data, illustrating the potential for microbial inhabitants of DeMMO to utilize mineral substrates as energy sources. Here, we employ field and lab based cultivation approaches with pure minerals to link phylogeny to metabolism at DeMMO. Fracture fluids were directed through reactors filled with Fe3O4, Fe2O3, FeS2, MnO2, and FeCO3 at two sites (610 m and 1478 m) for 2 months prior to harvesting for subsequent analyses. We examined mineralogical, geochemical, and microbiological composition of the reactors via DNA sequencing, microscopy, lipid biomarker characterization, and bulk C and N isotope ratios to determine the influence of mineralogy on biofilm community development. Pre-characterized mineral chips were imaged via SEM to assay microbial growth; preliminary results suggest MnO2, Fe3O4, and Fe2O3 were most conducive to colonization. Solid materials from reactors were used as inoculum for batch cultivation experiments. Media designed to mimic fracture fluid chemistry was supplemented with mineral substrates targeting metal reducers. DNA sequences and microscopy of iron oxide-rich biofilms and fracture fluids suggest iron oxidation is a major energy source at redox transition zones where anaerobic fluids meet more oxidizing conditions. We utilized these biofilms and fluids as inoculum in gradient cultivation experiments targeting microaerophilic iron oxidizers. Cultivation of microbes endemic to DeMMO, a system

  10. Cultivating Discontinuity: Pentecostal Pedagogies of Yielding and Control

    ERIC Educational Resources Information Center

    Brahinsky, Josh

    2013-01-01

    Exploring missionary study at an Assemblies of God Bible college through ethnography and training manuals demonstrates systematic pedagogies that cultivate sensory capabilities encouraging yielding, opening to rupture, and constraint. Ritual theory and the Anthropology of Christianity shift analytic scales to include "cultivation," a…

  11. Taxonomy of cultivated potatoes (solanum section petota: solanaceae)

    USDA-ARS?s Scientific Manuscript database

    Solanum tuberosum, the cultivated potato of world commerce, is a primary food crop worldwide. Wild and cultivated potatoes form the germplasm base for international breeding efforts to improve potato in the face of variety of disease, environmental, and agronomic constraints. A series of national an...

  12. Taxonomy of Cultivated Potatoes (Solanum section Petota: Solanaceae)

    USDA-ARS?s Scientific Manuscript database

    Solanum tuberosum, the cultivated potato of world commerce, is a primary food crop worldwide. Wild and cultivated potatoes form the germplasm base for international breeding efforts to improve potato in the face of variety of disease, environmental, and agronomic constraints. A series of national an...

  13. Heterotrophic cultivation of microalgae for production of biodiesel.

    PubMed

    Mohamed, Mohd Shamzi; Wei, Lai Zee; Ariff, Arbakariya B

    2011-08-01

    High cell density cultivation of microalgae via heterotrophic growth mechanism could effectively address the issues of low productivity and operational constraints presently affecting the solar driven biodiesel production. This paper reviews the progress made so far in the development of commercial-scale heterotrophic microalgae cultivation processes. The review also discusses on patentable concepts and innovations disclosed in the past four years with regards to new approaches to microalgal cultivation technique, improvisation on the process flow designs to economically produced biodiesel and genetic manipulation to confer desirable traits leading to much valued high lipid-bearing microalgae strains.

  14. [Effects of stereoscopic cultivation on photosynthetic characteristics and growth of Tulipa edulis].

    PubMed

    Sun, Yuan; Guo, Qiao-Sheng; Zhu, Zai-Biao; Lin, Jian-Luo; Zhou, Bo-Ya; Zhao, Min-Jie

    2016-06-01

    The effect of stereoscopic cultivation on the growth, photosynthetic characteristics and yield of Tulipa edulis was studied to explore the feasibility of stereoscopic cultivation on efficient cultivation of T.edulis. Total leaf area and photosynthetic parameters of T.edulis under stereoscopic cultivation (the upper, middle and the lower layers ) and the control were measured using LI-3100 leaf area meter and LI-6400XT photosynthesis system in the growing peak period of T.edulis.Plant biomass and biomass allocation were also determined.In addition, the bulb regeneration and yield of T.edulis were measured in the harvesting time.The results indicated that in the middle layer of stereoscopic cultivation, leaf biomass proportion was the highest, but total bulb fresh and dry weight and output growth (fresh weight) were the lowest among the treatments.And total bulb fresh weight in the middle of stereoscopic cultivation reduced significantly, by 22.84%, compared with the control.Light intensity in the lower layer of stereoscopic cultivation was moderate, in which T.edulis net photosynthetic rate and water use efficiency were higher than those of the other layers of stereoscopic cultivation, and bulb biomass proportion was the highest in all the treatments.No significant difference was detected in the total bulb fresh weight, dry weight and output growth (fresh weight) between the middle layer of stereoscopic cultivation and the control.In general, there was no significant difference in the growth status of T.edulis between stereoscopic cultivation and the control.Stereoscopic cultivation increased the yield of T.edulis by 161.66% in fresh weight and 141.35% in dry weight compared with the control in the condition of the same land area, respectively.In conclusion, stereoscopic cultivation can improve space utilization, increase the production, and achieve the high density cultivation of T.edulis. Copyright© by the Chinese Pharmaceutical Association.

  15. Economic benefit analysis of cultivating Pleurotus ostreatus with rape straw

    NASA Astrophysics Data System (ADS)

    Guan, Qinlan; Gong, Mingfu; Tang, Mei

    2018-04-01

    The cultivation of Pleurotus ostreatus with rape straw not only can save the cultivation cost of P. ostreatus, but also can reuse the resources and protect the environment. By adding different proportion of rape straw to the cultivation material of P. ostreatus, the reasonable amount of rape straw was selected and the economic benefit of P. ostreatus cultivated with the optimum amount of rape straw was analyzed. The results showed that adding 10% to 40% rape straw to the cultivation material of P. ostreatus did not affect the yield and biological conversion rate of P. ostreatus, and the ratio of production and investment of the amount of rape straw in the range of 10% to 50% was higher than of cottonseed husk alone as the main material of the formula.

  16. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  17. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Arone, Gregorio J.

    2018-01-01

    The bacterial endophytic communities residing within roots of maize (Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities. PMID:29662471

  18. Attached cultivation for improving the biomass productivity of Spirulina platensis.

    PubMed

    Zhang, Lanlan; Chen, Lin; Wang, Junfeng; Chen, Yu; Gao, Xin; Zhang, Zhaohui; Liu, Tianzhong

    2015-04-01

    To improve cultivation efficiency for microalgae Spirulina platensis is related to increase its potential use as food source and as an effective alternative for CO2 fixation. The present work attempted to establish a technique, namely attached cultivation, for S. platensis. Laboratory experiments were made firstly to investigate optimal conditions on attached cultivation. The optimal conditions were found: 25 g m(-2) for initial inoculum density using electrostatic flocking cloth as substrata, light intensity lower than 200 μmol m(-2) s(-1), CO2 enriched air flow (0.5%) at a superficial aeration rate of 0.0056 m s(-1) in a NaHCO3-free Zarrouk medium. An outdoor attached cultivation bench-scale bioreactor was built and a 10d culture of S. platensis was carried out with daily harvesting. A high footprint areal biomass productivity of 60 g m(-2) d(-1) was obtained. The nutrition of S. platensis with attached cultivation is identical to that with conventional liquid cultivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Immunocytochemical studies on the phase of differentiation of hatching gland cells in brine shrimp, Artemia salina].

    PubMed

    Li, Ling; Fan, Ting Jun; Wang, Xiao Feng; Cong, Ri Shan; Yu, Qiu Tao; Zhong, Qi Wang

    2004-04-01

    Hatching enzyme (HE), synthesized in hatching gland cells (HGCs), plays vital roles in animal hatching. Immunocytochemical techniques employing anti-GST-UVS.2 antiserum, prepared from Xenopus HE and with specificity to brine shrimp HE, were first used to investigate the differentiation and variability of hatching gland cells (HGCs) in the hatching process of embryos of brine shrimp, Artemia salina, in this study. HGCs with immunoreactivity to anti-GST-UVS.2 antiserum were identified, for the first time, in brine shrimp embryos during hatching process. Immunocytochemical staining results showed that, (1) HE-positive immunoreactivity is really specific to Artemia HE, and its appearance and disappearance are closely correlated with the hatching process of Artemia salina. (2) Artemia HGCs, first appeared in embryos 5 hours before hatching and disappeared 4 hours after hatching, were also a transient type of cells, with an existence period of 9 hours. (3) The head portion of Artemia embryo is probably the initial position of HE secretion, and likely to be the main position of HE secretion as well. The detailed process and mechanism need to be studied. (4) The appearance of HGCs is in a synchronous mode from places all over the embryos, and their disappearance is also in a synchronous mode. (5) The number of HGCs increased gradually along with embryo development process and reached a maximum number at hatching. Contrarily, the number of HGCs decreased gradually after hatching, and HGCs disappeared 5 hours after hatching. However, the intensity of HE-positive reaction was almost at the same level at the period of HGCs'presence. (6) Artemia HGCs were distributed throughout the body of embryos at all time during their presence. Therefore, it can concluded that Artemia HGCs, as a transient type of cells, first appeared in embryos 4 hours before hatching and disappeared in embryos 5 hours after hatching, and with distinguished patterns of appearance, disappearance and

  20. Microalgal cultivation with biogas slurry for biofuel production.

    PubMed

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cultivation of Pleurotus ostreatus and other edible mushrooms.

    PubMed

    Sánchez, Carmen

    2010-02-01

    Pleurotus ostreatus is the second most cultivated edible mushroom worldwide after Agaricus bisporus. It has economic and ecological values and medicinal properties. Mushroom culture has moved toward diversification with the production of other mushrooms. Edible mushrooms are able to colonize and degrade a large variety of lignocellulosic substrates and other wastes which are produced primarily through the activities of the agricultural, forest, and food-processing industries. Particularly, P. ostreatus requires a shorter growth time in comparison to other edible mushrooms. The substrate used for their cultivation does not require sterilization, only pasteurization, which is less expensive. Growing oyster mushrooms convert a high percentage of the substrate to fruiting bodies, increasing profitability. P. ostreatus demands few environmental controls, and their fruiting bodies are not often attacked by diseases and pests, and they can be cultivated in a simple and cheap way. All this makes P. ostreatus cultivation an excellent alternative for production of mushrooms when compared to other mushrooms.

  2. [Effects of different cultivation patterns on soil aggregates and organic carbon fractions].

    PubMed

    Qiu, Xiao-Lei; Zong, Liang-Gang; Liu, Yi-Fan; Du, Xia-Fei; Luo, Min; Wang, Run-Chi

    2015-03-01

    Combined with the research in an organic farm in the past 10 years, differences of soil aggregates composition, distribution and organic carbon fractions between organic and conventional cultivation were studied by simultaneous sampling analysis. The results showed that the percentages of aggregates (> 1 mm, 1-0.5 mm, 0.5-0.25 mm and < 0.25 mm) in the conventional cultivation were 23.75%, 15.15%, 19.98% and 38.09%, while those in organic cultivation were 9.73%, 18.41%, 24.46% and 43.90%, respectively. The percentage of < 0.25 mm micro-aggregates was significantly higher in organic cultivation than that in conventional cultivation. Organic cultivation increased soil organic carbon (average of 17.95 g x kg(-1)) and total nitrogen contents (average of 1.51 g x kg(-1)). Among the same aggregates in organic cultivation, the average content of heavy organic carbon fraction was significantly higher than that in conventional cultivation. This fraction accumulated in < 0. 25 mm micro-aggregates, which were main storage sites of stable organic carbon. In organic cultivation, the content of labile organic carbon in > 1 mm macro-aggregates was significantly higher than that in conventional cultivation, while no significant difference was found among the other aggregates, indicating that the labile organic carbon was enriched in > 1 mm macro-aggregates. Organic cultivation increased the amounts of organic carbon and its fractions, reduced tillage damage to aggregates, and enhanced the stability of organic carbon. Organic cultivation was therefore beneficial for soil carbon sequestration. The findings of this research may provide theoretical basis for further acceleration of the organic agriculture development.

  3. Modern Methods for Isolation, Purification, and Cultivation of Soil Cyanobacteria.

    PubMed

    Temraleeva, A D; Dronova, S A; Moskalenko, S V; Didovich, S V

    2016-07-01

    Up-to-date methods for isolation of cyanobacteria from soil samples, removal of accompanying microflora, obtaining axenic strains, and -conditions and media for subsequnt cultivation are reviewed. Char acterization of soil as a specific habitat for cyanobacteria is provided. Comparative analysis of pH and ele- mental composition of the liquid phase of most soil types with the media for cultivating cyanobacteria is car- ried out. The functional role of the major components required for the cultivation of cyanobacteria is de- scribed. The problems associated with isolation, purification, and cultivation of soil cyanobacteria, as well as the relevant solutions, are discussed.

  4. Exploring the Cultivable Ectocarpus Microbiome

    PubMed Central

    KleinJan, Hetty; Jeanthon, Christian; Boyen, Catherine; Dittami, Simon M.

    2017-01-01

    Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Ectocarpus-associated bacteria is the first step toward the development of a model system for in vitro functional studies of brown macroalgal–bacterial interactions during abiotic stress. The main aim of the present study is thus to provide an extensive collection of cultivable E. subulatus-associated bacteria. To meet the variety of metabolic demands of Ectocarpus-associated bacteria, several isolation techniques were applied, i.e., direct plating and dilution-to-extinction cultivation techniques, each with chemically defined and undefined bacterial growth media. Algal tissue and algal growth media were directly used as inoculum, or they were pretreated with antibiotics, by filtration, or by digestion of algal cell walls. In total, 388 isolates were identified falling into 33 genera (46 distinct strains), of which Halomonas (Gammaproteobacteria), Bosea (Alphaproteobacteria), and Limnobacter (Betaproteobacteria) were the most abundant. Comparisons with 16S rRNA gene metabarcoding data showed that culturability in this study was remarkably high (∼50%), although several cultivable strains were not detected or only present in extremely low abundance in the libraries. These undetected bacteria could be considered as part of the

  5. Exploring the Cultivable Ectocarpus Microbiome.

    PubMed

    KleinJan, Hetty; Jeanthon, Christian; Boyen, Catherine; Dittami, Simon M

    2017-01-01

    Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Ectocarpus -associated bacteria is the first step toward the development of a model system for in vitro functional studies of brown macroalgal-bacterial interactions during abiotic stress. The main aim of the present study is thus to provide an extensive collection of cultivable E . subulatus -associated bacteria. To meet the variety of metabolic demands of Ectocarpus -associated bacteria, several isolation techniques were applied, i.e., direct plating and dilution-to-extinction cultivation techniques, each with chemically defined and undefined bacterial growth media. Algal tissue and algal growth media were directly used as inoculum, or they were pretreated with antibiotics, by filtration, or by digestion of algal cell walls. In total, 388 isolates were identified falling into 33 genera (46 distinct strains), of which Halomonas ( Gammaproteobacteria ), Bosea ( Alphaproteobacteria ), and Limnobacter ( Betaproteobacteria ) were the most abundant. Comparisons with 16S rRNA gene metabarcoding data showed that culturability in this study was remarkably high (∼50%), although several cultivable strains were not detected or only present in extremely low abundance in the libraries. These undetected bacteria could be considered as part

  6. Aeration strategy for biofilm cultivation of the microalga Scenedesmus dimorphus.

    PubMed

    Ji, Chunli; Wang, Junfeng; Liu, Tianzhong

    2015-10-01

    Biofilm cultivation of microalgae may be useful for biofuel production. However, many aspects for this cultivation method have not been well assessed. Accordingly, aeration strategy for biofilm cultivation of Scenedesmus dimorphus has been explored. Biomass, lipid and triacylglycerol (TAG) productivity in increased S. dimorphus as the CO2 concentration increased within 0.038-0.5% and kept constant with further increases. The biomass, lipid and TAG productivity increased with the speed increasing and an obvious threshold point was observed at 6.6 ml(-2) min(-1). The lipid and TAG content was unaffected by the aeration rate. Both the CO2 concentration as well as aeration speed affected the growth of S. dimorphus in biofilm cultivation. The optimized aeration strategy for biofilm cultivation was continuous air flow enriched with 1% CO2 (v/v) at 6.6 ml(-2) min(-1).

  7. High-throughput cultivation and screening platform for unicellular phototrophs.

    PubMed

    Tillich, Ulrich M; Wolter, Nick; Schulze, Katja; Kramer, Dan; Brödel, Oliver; Frohme, Marcus

    2014-09-16

    High-throughput cultivation and screening methods allow a parallel, miniaturized and cost efficient processing of many samples. These methods however, have not been generally established for phototrophic organisms such as microalgae or cyanobacteria. In this work we describe and test high-throughput methods with the model organism Synechocystis sp. PCC6803. The required technical automation for these processes was achieved with a Tecan Freedom Evo 200 pipetting robot. The cultivation was performed in 2.2 ml deepwell microtiter plates within a cultivation chamber outfitted with programmable shaking conditions, variable illumination, variable temperature, and an adjustable CO2 atmosphere. Each microtiter-well within the chamber functions as a separate cultivation vessel with reproducible conditions. The automated measurement of various parameters such as growth, full absorption spectrum, chlorophyll concentration, MALDI-TOF-MS, as well as a novel vitality measurement protocol, have already been established and can be monitored during cultivation. Measurement of growth parameters can be used as inputs for the system to allow for periodic automatic dilutions and therefore a semi-continuous cultivation of hundreds of cultures in parallel. The system also allows the automatic generation of mid and long term backups of cultures to repeat experiments or to retrieve strains of interest. The presented platform allows for high-throughput cultivation and screening of Synechocystis sp. PCC6803. The platform should be usable for many phototrophic microorganisms as is, and be adaptable for even more. A variety of analyses are already established and the platform is easily expandable both in quality, i.e. with further parameters to screen for additional targets and in quantity, i.e. size or number of processed samples.

  8. Microgravity cultivation of cells and tissues

    NASA Technical Reports Server (NTRS)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  9. Moral Self-Cultivation East and West: A Critique

    ERIC Educational Resources Information Center

    Slote, Michael

    2016-01-01

    Moral Self-Cultivation plays an important, even a central role, in the Confucian philosophical tradition, but philosophers in the West, most notably Aristotle and Kant, also hold that moral self-cultivation or self-shaping is possible and morally imperative. This paper argues that these traditions are psychologically unrealistic in what they say…

  10. Cultivating interpretive thinking through enacting narrative pedagogy.

    PubMed

    Scheckel, Martha M; Ironside, Pamela M

    2006-01-01

    Teachers and educational researchers in nursing have persisted in their attempts to teach students critical thinking and to evaluate the effectiveness of these efforts. Yet, despite the plethora of studies investigating critical thinking, there is a paucity of research providing evidence that teachers' efforts improve students' thinking. The purpose of this interpretive phenomenological study is to explicate how students' thinking can be extended when teachers use Narrative Pedagogy. Specifically, the theme Cultivating Interpretive Thinking refers to how teachers' use of Narrative Pedagogy moves beyond the critical thinking movement's emphasis on analytical thinking (i.e., problem solving). Cultivating Interpretive Thinking offers an innovative approach for teaching and learning thinking that attends to students' embodied, reflective, and pluralistic thinking experiences. Teachers who cultivate interpretive thinking add complexity to students' thinking to better prepare them for challenging, complex, and unpredictable clinical environments.

  11. In Vitro Cultivation of Microsporidia of Clinical Importance

    PubMed Central

    Visvesvara, Govinda S.

    2002-01-01

    Although attempts to develop methods for the in vitro cultivation of microsporidia began as early as 1937, the interest in the culture of these organisms was confined mostly to microsporidia that infect insects. The successful cultivation in 1969 of Encephalitozoon cuniculi, a microsporidium of mammalian origin, and the subsequent identification of these organisms as agents of human disease heightened interest in the cultivation of microsporidia. I describe the methodology as well as the cell lines, the culture media, and culture conditions used in the in vitro culture of microsporidia such as Brachiola (Nosema) algerae, Encephalitozoon cuniculi, E. hellem, E. intestinalis, Enterocytozoon bieneusi, Trachipleistophora hominis, and Vittaforma corneae that cause human disease. PMID:12097248

  12. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.

    2012-03-12

    Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase inmore » TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.« less

  13. A global view of shifting cultivation: Recent, current, and future extent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinimann, Andreas; Mertz, Ole; Frolking, Steve

    Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing-based land cover and land use classifications, as these are unable to adequately capture such landscapes' dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation atmore » a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21 st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation$-$the majority in the Americas (41%) and Africa (37%)$-$this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and

  14. A global view of shifting cultivation: Recent, current, and future extent

    DOE PAGES

    Heinimann, Andreas; Mertz, Ole; Frolking, Steve; ...

    2017-09-08

    Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing-based land cover and land use classifications, as these are unable to adequately capture such landscapes' dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation atmore » a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21 st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation$-$the majority in the Americas (41%) and Africa (37%)$-$this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and

  15. Deforestation and cultivation mobilize mercury from topsoil.

    PubMed

    Gamby, Rebecca L; Hammerschmidt, Chad R; Costello, David M; Lamborg, Carl H; Runkle, James R

    2015-11-01

    Terrestrial biomass and soils are a primary global reservoir of mercury (Hg) derived from natural and anthropogenic sources; however, relatively little is known about the fate and stability of Hg in the surface soil reservoir and its susceptibility to change as a result of deforestation and cultivation. In southwest Ohio, we measured Hg concentrations in soils of deciduous old- and new-growth forests, as well as fallow grassland and agricultural soils that had once been forested to examine how, over decadal to century time scales, man-made deforestation and cultivation influence Hg mobility from temperate surface soils. Mercury concentrations in surficial soils were significantly greater in the old-growth than new-growth forest, and both forest soils had greater Hg concentrations than cultivated and fallow fields. Differences in Hg:lead ratios between old-growth forest and agricultural topsoils suggest that about half of the Hg lost from deforested and cultivated Ohio soils may have been volatilized and the other half eroded. The estimated mobilization potential of Hg as a result of deforestation was 4.1 mg m(-2), which was proportional to mobilization potentials measured at multiple locations in the Amazon relative to concentrations in forested surface soils. Based on this relationship and an estimate of the global average of Hg concentrations in forested soils, we approximate that about 550 M mol of Hg has been mobilized globally from soil as a result of deforestation during the past two centuries. This estimate is comparable to, if not greater than, the amount of anthropogenic Hg hypothesized by others to have been sequestered by the soil reservoir since Industrialization. Our results suggest that deforestation and soil cultivation are significant anthropogenic processes that exacerbate Hg mobilization from soil and its cycling in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Gene flow and genetic diversity in cultivated and wild cacao (Theobroma cacao) in Bolivia.

    PubMed

    Chumacero de Schawe, Claudia; Durka, Walter; Tscharntke, Teja; Hensen, Isabell; Kessler, Michael

    2013-11-01

    The role of pollen flow within and between cultivated and wild tropical crop species is little known. To study the pollen flow of cacao, we estimated the degree of self-pollination and pollen dispersal distances as well as gene flow between wild and cultivated cacao (Theobroma cacao L.). We studied pollen flow and genetic diversity of cultivated and wild cacao populations by genotyping 143 wild and 86 cultivated mature plants and 374 seedlings raised from 19 wild and 25 cultivated trees at nine microsatellite loci. A principal component analysis distinguished wild and cultivated cacao trees, supporting the notion that Bolivia harbors truly wild cacao populations. Cultivated cacao had a higher level of genetic diversity than wild cacao, presumably reflecting the varied origin of cultivated plants. Both cacao types had high outcrossing rates, but the paternity analysis revealed 7-14% self-pollination in wild and cultivated cacao. Despite the tiny size of the pollinators, pollen was transported distances up to 3 km; wild cacao showed longer distances (mean = 922 m) than cultivated cacao (826 m). Our data revealed that 16-20% of pollination events occurred between cultivated and wild populations. We found evidence of self-pollination in both wild and cultivated cacao. Pollination distances are larger than those typically reported in tropical understory tree species. The relatively high pollen exchange from cultivated to wild cacao compromises genetic identity of wild populations, calling for the protection of extensive natural forest tracts to protect wild cacao in Bolivia.

  17. [Dynamics of recent cultivated land in Zhejiang Province and relevant driving factors].

    PubMed

    Zhang, Hai-dong; Yu, Dong-sheng; Shi, Xue-zheng; Liu, Ying-an; Wang, Shi-hang; Zhang, Guang-xing; Liu, Yang

    2010-12-01

    Through the human-computer interactive interpretation of the 2000, 2005, and 2008 remote sensing images of Zhejiang Province with the help of RS and GIS techniques, the dynamic database of cultivated land change in the province in, 2000-2008 was established, and the driving factors of the cultivated land change were analyzed by ridge regression analysis. There was a notable cultivated land change in the province in 2000-2008. In 2000-2005 and 2005-2008, the annual cultivated land change in the province arrived -1.42% and -1.46%, respectively, and most of the cultivated land was changed into residential and industrial land. Non-agricultural population rate, real estate investment, urban green area, and orchard area were thought to be the main driving factors of the cultivated land change in Zhejiang Province, and even, in the developed areas of east China.

  18. Proper Cultivation Needed for Good Survival and Growth of Planted Cottonwood

    Treesearch

    H. E. Kennedy

    1975-01-01

    Survival and growth were significantly better when cuttings were not covered or broken during early cultivation. Survival with good cultivation was 90 percent; with poor cultivation, survival ranged from 20 to 60 percent. Undisturbed cuttings grew 30 to 35 percent better than those covered before sprouting and almost 100 percent better than covered cuttings with broken...

  19. Sowing Seeds to Cultivate Future Army Leaders

    DTIC Science & Technology

    2010-11-01

    and can operate successfully in Sowing Seeds to Cultivate Future Army Leaders Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting...TITLE AND SUBTITLE Sowing Seeds to Cultivate Future Army Leaders 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...month will not de- velop the next Army Chief of Staff, it is imperative to plant the seeds of new ideas and concepts early into our ju- nior leaders

  20. Cultivation Of Deep Subsurface Microbial Communities

    NASA Astrophysics Data System (ADS)

    Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.

    2018-01-01

    The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.

  1. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

    PubMed

    Fernandes, Bruno D; Mota, Andre; Teixeira, Jose A; Vicente, Antonio A

    2015-11-01

    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    PubMed

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    Shifting cultivation (jhum) is a major land use practice in Mizoram. It was considered as an eco-friendly and efficient method when the cycle duration was long (15-30 years), but it poses the problem of land degradation and threat to ecology when shortened (4-5 years) due to increased intensification of farming systems. Studying beetle community structure is very helpful in understanding how shifting cultivation affects the biodiversity features compared to natural forest system. The present study examines the beetle species diversity and estimates the effects of shifting cultivation practices on the beetle assemblages in relation to change in tree species composition and soil nutrients. Scarabaeidae and Carabidae were observed to be the dominant families in the land use systems studied. Shifting cultivation practice significantly (P < 0.05) affected the beetle and tree species diversity as well as the soil nutrients as shown by univariate (one-way analysis of variance (ANOVA), correlation and regression, diversity indices) and multivariate (cluster analysis, principal component analysis (PCA), detrended correspondence analysis (DCA), canonical variate analysis (CVA), permutational multivariate analysis of variance (PERMANOVA), permutational multivariate analysis of dispersion (PERMDISP)) statistical analyses. Besides changing the tree species composition and affecting the soil fertility, shifting cultivation provides less suitable habitat conditions for the beetle species. Bioindicator analysis categorized the beetle species into forest specialists, anthropogenic specialists (shifting cultivation habitat specialist), and habitat generalists. Molecular analysis of bioindicator beetle species was done using mitochondrial cytochrome oxidase subunit I (COI) marker to validate the beetle species and describe genetic variation among them in relation to heterogeneity, transition/transversion bias, codon usage bias, evolutionary distance, and substitution pattern

  3. Cultivating Spontaneous Self-Discipline.

    ERIC Educational Resources Information Center

    O'Shaughnessy, Molly

    1998-01-01

    Draws on contemporary sources to provide strategies for cultivating self-discipline. Advocates self-healing for the adult to be free from destructive attitudes and personal history that can keep adults from being mindful of the child's needs, perspective, and potential. Concludes with ways to facilitate a truly Montessori approach to discipline.…

  4. Cultivating Leaders from Within

    ERIC Educational Resources Information Center

    Burdette, Maggie; Schertzer, Kristen

    2005-01-01

    A major problem faced by school districts in the US is the paucity of applicants for the posts of school principals. A solution adopted by The Capistrano Unified School District (CUSD) in Orange County California was the cultivation of good leaders from within the district through the Teaching Assistant Principal (TAP) program.

  5. Design of an SolidWorks-based household substrate cultivation device

    NASA Astrophysics Data System (ADS)

    Yi, Guo; Yueying, Wang

    2018-03-01

    Rapid urbanization has caused increasingly severe environmental problems and smaller tillable land area. Even worse, negative reports on vegetable production are repeatedly found. In this case, home gardening has become an inexorable trend. To meet demand for vegetable cultivation in the home environment, an SolidWorks-based household substrate cultivation device has been designed. This device is composed of the cultivation tank, upright post, base, irrigation system, supplemental lighting system and control system. The household substrate cultivation device manufactured based on the design results has shown in practice that this device features an esthetic appearance, low cost, automatic irrigation and lighting supplementation, good vegetable growing conditions, full of ornamental value and practicability and thus is suitable for vegetable growing in the home environment. Hence it has a higher promotion value in the home gardening field.

  6. Cultivability of Streptococcus thermophilus in Grana Padano cheese whey starters.

    PubMed

    Fornasari, Maria Emanuela; Rossetti, Lia; Carminati, Domenico; Giraffa, Giorgio

    2006-04-01

    The application of a culture-independent approach, that of reverse transcriptase-length heterogeneity-PCR coupled with epifluorescence microscopy, allowed us to observe that Streptococcus thermophilus is metabolically active, but only partially cultivable in Grana Padano cheese whey starters. A short preincubation of the starters in sterile skimmed whey was followed by cultivation in sterile skimmed whey-enriched M17. This procedure restored the cultivability of S. thermophilus and enabled us to detect S. thermophilus at ranges (10(7)-10(8) CFU mL(-1)) which have rarely been reported in these cultures. The use of cheese whey as a cultivation-revitalization substrate can be useful to obtain an unbiased picture of the microbial composition of whey starters for Grana Padano cheese, thus avoiding an underestimation of S. thermophilus in these cultures.

  7. Mangrove Cultivation For Dealing With Coastal Abrasion Case Study Of Karangsong

    NASA Astrophysics Data System (ADS)

    Fatimatuzzahroh, Feti; Hadi, Sudharto P.; Purnaweni, Hartuti

    2018-02-01

    Coastal abrasion is consequence from destructive waves and sea current. One of cause is human intervention. The effort to solve of abrasion is by mangrove cultivation. Mangroves are halophyte plant that can restrain the sea wave. Mangrove cultivation required participation community that give awareness the importance of mangrove in coastal sustainability. Mangroves in coastal Karangsong, Indramayu west java, in 2007 was through abrasion approximately 127.30 ha. Mangrove cultivation in Karangsong has been replanting since 1998 to 2003, but there was no maintenance and management. In 2007 until 2015 Karangsong replanting mangroves and has been succeed. Karangsong became the center of mangrove study for west java area in 2015. This achievement is result of cooperation between community, NGO, and local government. In addition, this effort made not only overcome the abrasion problem but also give community awareness about the importance of mangrove cultivation in preventing coastal abrasion throughout community development. This paper reviews abrasion in Karangsong and the impact for local community and empowerment in mangrove cultivation. To achieve the success mangrove cultivation required community development approach from planning process, planting, maintenance and management.

  8. Cultivating cohort studies for observational translational research.

    PubMed

    Ransohoff, David F

    2013-04-01

    "Discovery" research about molecular markers for diagnosis, prognosis, or prediction of response to therapy has frequently produced results that were not reproducible in subsequent studies. What are the reasons, and can observational cohorts be cultivated to provide strong and reliable answers to those questions? Experimental Selected examples are used to illustrate: (i) what features of research design provide strength and reliability in observational studies about markers of diagnosis, prognosis, and response to therapy? (ii) How can those design features be cultivated in existing observational cohorts, for example, within randomized controlled clinical trial (RCT), other existing observational research studies, or practice settings like health maintenance organization (HMOs)? Examples include a study of RNA expression profiles of tumor tissue to predict prognosis of breast cancer, a study of serum proteomics profiles to diagnose ovarian cancer, and a study of stool-based DNA assays to screen for colon cancer. Strengths and weaknesses of observational study design features are discussed, along with lessons about how features that help assure strength might be "cultivated" in the future. By considering these examples and others, it may be possible to develop a process of "cultivating cohorts" in ongoing RCTs, observational cohort studies, and practice settings like HMOs that have strong features of study design. Such an effort could produce sources of data and specimens to reliably answer questions about the use of molecular markers in diagnosis, prognosis, and response to therapy.

  9. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation.

    PubMed

    Zhang, Xinxin; Tang, Xuexi; Wang, Ming; Zhang, Wei; Zhou, Bin; Wang, You

    2017-08-01

    UV-B ray has been addressed to trigger common metabolic responses on marine microalgae, however, the upstream events responsible for these changes in marine microalgae are poorly understood. In the present study, a species of marine green microalgae Dunaliella salina was exposed to a series of enhanced UV-B radiation ranging from 0.25 to 1.00 KJ·m -2 per day. The role of ROS and calcium signaling in the D. salina responses to UV-B was discussed. Results showed that enhanced UV-B radiation markedly decreased the cell density in a dose-dependent manner, but the contents of protein and glycerol that were essential for cell growth increased. It suggested that it was cell division instead of cell growth that UV-B exerted negative effects on. The subcellular damages on nuclei and plasmalemma further evidenced the hypothesis. The nutrient absorption was affected with UV-B exposure, and the inhibition on PO 4 3- uptake was more serious compared to NO 3 - uptake. UV-B radiation promoted reactive oxygen species (ROS) formation and thiobarbituric acid reactive substances (TBARS) contents, decreased the redox status and altered the antioxidant enzyme activities. The addition of the ROS scavenger and the glutathione biosynthesis precursor N-acetyl-l-cysteine (NAC) alleviated the stress degree, implying ROS-mediated pathway was involved in the stress response to UV-B radiation. Transient increase in Ca 2+ -ATPase was triggered simultaneously with UV-B exposure. Meanwhile, the addition of an intracellular free calcium chelator aggravated the damage of cell division, but exogenous calcium and ion channel blocker applications did not, inferring that endogenously initiated calcium signaling played roles in response to UV-B. Cross-talk analysis showed a relatively clear relationship between ROS inhibition and Ca 2+ -ATPase suppression, and a relation between Ca 2+ inhibition and GPx activity change was also observed. It was thus presumed that ROS-coupled calcium signaling via the

  10. A global view of shifting cultivation: Recent, current, and future extent

    PubMed Central

    Mertz, Ole; Frolking, Steve; Egelund Christensen, Andreas; Hurni, Kaspar; Sedano, Fernando; Parsons Chini, Louise; Sahajpal, Ritvik; Hansen, Matthew; Hurtt, George

    2017-01-01

    Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing–based land cover and land use classifications, as these are unable to adequately capture such landscapes’ dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation at a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation—the majority in the Americas (41%) and Africa (37%)—this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and

  11. Agronomic performance of five banana cultivars under protected cultivation

    USDA-ARS?s Scientific Manuscript database

    Banana has been grown both in open-field and protected cultivation in Turkey. So far protected cultivation is very popular due to the high yield and quality. The objective of the study was to evaluate agronomic performance of five new banana cultivars under plastic greenhouse. ‘MA 13’, ‘Williams’, ‘...

  12. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley.

    PubMed

    Dai, Fei; Chen, Zhong-Hua; Wang, Xiaolei; Li, Zefeng; Jin, Gulei; Wu, Dezhi; Cai, Shengguan; Wang, Ning; Wu, Feibo; Nevo, Eviatar; Zhang, Guoping

    2014-09-16

    The domestication of cultivated barley has been used as a model system for studying the origins and early spread of agrarian culture. Our previous results indicated that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. Here we reveal multiple origins of domesticated barley using transcriptome profiling of cultivated and wild-barley genotypes. Approximately 48-Gb of clean transcript sequences in 12 Hordeum spontaneum and 9 Hordeum vulgare accessions were generated. We reported 12,530 de novo assembled transcripts in all of the 21 samples. Population structure analysis showed that Tibetan hulless barley (qingke) might have existed in the early stage of domestication. Based on the large number of unique genomic regions showing the similarity between cultivated and wild-barley groups, we propose that the genomic origin of modern cultivated barley is derived from wild-barley genotypes in the Fertile Crescent (mainly in chromosomes 1H, 2H, and 3H) and Tibet (mainly in chromosomes 4H, 5H, 6H, and 7H). This study indicates that the domestication of barley may have occurred over time in geographically distinct regions.

  13. Motivation of farmers to cultivate organic rice in Central Java

    NASA Astrophysics Data System (ADS)

    Dalmiyatun, T.; Eddy, B. T.; Sumekar, W.; Mardiningsih, D.

    2018-01-01

    The consumer’s need for organic agricultural products increases sharply along with awareness of health, lifestyle and environmental concern. This research was intended to determine the relationship between social factors and the motivation of farmers for cultivating organic rice in Central Java. The research has been done by survey to farmers groups at three regions i.e. Semarang, Sragen and Demak. The determination of the location was carried out by means of purposive i.e. farmer groups that conduct organic rice cultivation (not semi organic). The determination of the sample was conducted purposively for a number of 50 people each regencies. Data were analyzed descriptive analysis and rank Spearman correlation analysis. The results showed that social factors include age, cultivated area, education, farming experience have correlation with motivation. education and cultivated area of land has a fairly close relation with correlation value 0,463% and 0,242%. Based on the motivation level, 33% of farmers have high motivation, motivation of farmers varied but most of them, 54% of total farmers stated that the motivation to cultivate organic rice is the quality of organic rice products and high income.

  14. Exploiting combinatorial cultivation conditions to infer transcriptional regulation.

    PubMed

    Knijnenburg, Theo A; de Winde, Johannes H; Daran, Jean-Marc; Daran-Lapujade, Pascale; Pronk, Jack T; Reinders, Marcel J T; Wessels, Lodewyk F A

    2007-01-22

    Regulatory networks often employ the model that attributes changes in gene expression levels, as observed across different cellular conditions, to changes in the activity of transcription factors (TFs). Although the actual conditions that trigger a change in TF activity should form an integral part of the generated regulatory network, they are usually lacking. This is due to the fact that the large heterogeneity in the employed conditions and the continuous changes in environmental parameters in the often used shake-flask cultures, prevent the unambiguous modeling of the cultivation conditions within the computational framework. We designed an experimental setup that allows us to explicitly model the cultivation conditions and use these to infer the activity of TFs. The yeast Saccharomyces cerevisiae was cultivated under four different nutrient limitations in both aerobic and anaerobic chemostat cultures. In the chemostats, environmental and growth parameters are accurately controlled. Consequently, the measured transcriptional response can be directly correlated with changes in the limited nutrient or oxygen concentration. We devised a tailor-made computational approach that exploits the systematic setup of the cultivation conditions in order to identify the individual and combined effects of nutrient limitations and oxygen availability on expression behavior and TF activity. Incorporating the actual growth conditions when inferring regulatory relationships provides detailed insight in the functionality of the TFs that are triggered by changes in the employed cultivation conditions. For example, our results confirm the established role of TF Hap4 in both aerobic regulation and glucose derepression. Among the numerous inferred condition-specific regulatory associations between gene sets and TFs, also many novel putative regulatory mechanisms, such as the possible role of Tye7 in sulfur metabolism, were identified.

  15. Enhanced polyhydroxyalkanoate production by mixed microbial culture with extended cultivation strategy.

    PubMed

    Huang, Long; Chen, Zhiqiang; Wen, Qinxue; Lee, Duu-Jong

    2017-10-01

    Low biomass output is a crucial reason for low polyhydroxyalkanoate (PHA) production in mixed microbial cultures (MMCs) PHA process. In this research, an extended cultivation strategy was proposed to rapidly expand the biomass yield of PHA accumulating MMCs and conserve the PHA accumulating ability simultaneously. High PHA content of the cultivated MMCs of 71.4% and 66.7% (higher than 62.1% of the seed biomass) in batch assays and biomass magnification of 43 and 52 were obtained after 10days of extended cultivation with and without sludge discharge, respectively. By embedding the extended cultivation process into the production process, a highly competitive PHA production performance in terms of overall PHA storage yield (0.49g CODPHA/gCODVFA) and volumetric productivity (1.21gPHA/L/d with final cell density of 17.22g/L) was achieved. The proposed PHA production process based on the extended cultivation can be a promising choice in industrial scale practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Integrating cultivation history into EBIPM

    USDA-ARS?s Scientific Manuscript database

    Ecologically based invasive plant management (EBIPM) is a systematic thinking and planning process to assist with applying the appropriate combination of tools and strategies to addrress the underlying cause of invasion rather than simply controlling invasive annual grass abundance. Cultivation his...

  17. Origins and Domestication of Cultivated Banana Inferred from Chloroplast and Nuclear Genes

    PubMed Central

    Zhang, Cui; Wang, Xin-Feng; Shi, Feng-Xue; Chen, Wen-Na; Ge, Xue-Jun

    2013-01-01

    Background Cultivated bananas are large, vegetatively-propagated members of the genus Musa. More than 1,000 cultivars are grown worldwide and they are major economic and food resources in numerous developing countries. It has been suggested that cultivated bananas originated from the islands of Southeast Asia (ISEA) and have been developed through complex geodomestication pathways. However, the maternal and parental donors of most cultivars are unknown, and the pattern of nucleotide diversity in domesticated banana has not been fully resolved. Methodology/Principal Findings We studied the genetics of 16 cultivated and 18 wild Musa accessions using two single-copy nuclear (granule-bound starch synthase I, GBSS I, also known as Waxy, and alcohol dehydrogenase 1, Adh1) and two chloroplast (maturase K, matK, and the trnL-F gene cluster) genes. The results of phylogenetic analyses showed that all A-genome haplotypes of cultivated bananas were grouped together with those of ISEA subspecies of M. acuminata (A-genome). Similarly, the B- and S-genome haplotypes of cultivated bananas clustered with the wild species M. balbisiana (B-genome) and M. schizocarpa (S-genome), respectively. Notably, it has been shown that distinct haplotypes of each cultivar (A-genome group) were nested together to different ISEA subspecies M. acuminata. Analyses of nucleotide polymorphism in the Waxy and Adh1 genes revealed that, in comparison to the wild relatives, cultivated banana exhibited slightly lower nucleotide diversity both across all sites and specifically at silent sites. However, dramatically reduced nucleotide diversity was found at nonsynonymous sites for cultivated bananas. Conclusions/Significance Our study not only confirmed the origin of cultivated banana as arising from multiple intra- and inter-specific hybridization events, but also showed that cultivated banana may have not suffered a severe genetic bottleneck during the domestication process. Importantly, our findings

  18. Rice cultivation and methane emission: Documentation of distributed geographic data sets

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; John, Jasmin; Fung, Inez

    1994-01-01

    High-resolution global data bases on the geographic and seasonal distribution of rice cultivation and associated methane emission, compiled by Matthews et al., were archived for public use. In addition to the primary data sets identifying location, seasonality, and methane emission from rice cultivation, a series of supporting data sets is included, allowing users not only to replicate the work of Matthews et al. but to investigate alternative cultivation and emission scenarios. The suite of databases provided, at 1 latitude by 1 longitude resolution for the globe, includes (1) locations of rice cultivation, (2) monthly arrays of actively growing rice areas, (3) countries and political subdivisions, and (4) monthly arrays of methane emission from rice cultivation. Ancillary data include (1) a listing, by country, of harvested rice areas and seasonal distribution of crop cycles and (2) country names and codes. Summary tables of zonal/monthly distributions of actively growing rice areas and of methane emissions are presented. Users should consult original publications for complete discussion of the data bases. This short paper is designed only to document formats of the distributed information and briefly describe the contents of the data sets and their initial application to evaluating the role of rice cultivation in the methane budget.

  19. Traditional pattern of cashew cultivation : A lesson from Sumenep-Madura, Indonesia

    NASA Astrophysics Data System (ADS)

    Jadid, Nurul; Sutikno, Dewi, Dyah Santhi; Nurhidayati, Tutik; Abdulgani, Nurlita; Muzaki, Farid Kamal; Arraniry, Byan Arasyi; Mardika, Rizal Kharisma; Rakhman, R. Yuvita

    2017-11-01

    Belonging to the Anacardiaceae family, the cashew tree (Anacardium Occidentale, Linn.) is one of the important tropical plants that possess high economic value. This plant is commonly grown in Indonesian regions including Sumenep, Madura, where the red sandy loam type of soil is commonly present. This study aims to obtain rough data on the pattern of cashew cultivation and identify the cashew cultivation knowledge of local communities. Data were taken in Bringin village, Sumenep-Madura. Our field survey showed that the cashew's cultivation pattern in this village applies the so-called traditional organic farming. Cashew trees are planted along the boundaries of the owner's farm field, functioning as a fence of their farm. Nevertheless, our survey also indicated that this pattern of cultivation is still below standard of cultivation. The planting distance between the cashew trees with one another is relatively close (< 5 meters), causing the cashew branches to overlap with each other. Moreover, we observed that there was no rejuvenation of old cashew trees. Finally, knowledge of the community about post-harvest processing is limited. Therefore, we suggest that educating the community about good standard cashew cultivation is required to improve productivity as well as the quality of cashew nuts.

  20. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.

    PubMed

    Waghmode, Tatoba R; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2015-01-01

    2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001) decreased by BES application possibly due to significant (P<0.001) reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance). BES significantly (P<0.001) reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation.

  1. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation.

    PubMed

    Guldhe, Abhishek; Kumari, Sheena; Ramanna, Luveshan; Ramsundar, Prathana; Singh, Poonam; Rawat, Ismail; Bux, Faizal

    2017-12-01

    Microalgae are recognized as one of the most powerful biotechnology platforms for many value added products including biofuels, bioactive compounds, animal and aquaculture feed etc. However, large scale production of microalgal biomass poses challenges due to the requirements of large amounts of water and nutrients for cultivation. Using wastewater for microalgal cultivation has emerged as a potential cost effective strategy for large scale microalgal biomass production. This approach also offers an efficient means to remove nutrients and metals from wastewater making wastewater treatment sustainable and energy efficient. Therefore, much research has been conducted in the recent years on utilizing various wastewater streams for microalgae cultivation. This review identifies and discusses the opportunities and challenges of different wastewater streams for microalgal cultivation. Many alternative routes for microalgal cultivation have been proposed to tackle some of the challenges that occur during microalgal cultivation in wastewater such as nutrient deficiency, substrate inhibition, toxicity etc. Scope and challenges of microalgal biomass grown on wastewater for various applications are also discussed along with the biorefinery approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes

    USDA-ARS?s Scientific Manuscript database

    Cultivated potato, Solanum tuberosum L., is the third most important food crop and is grown and consumed worldwide. Indigenous primitive cultivated (landrace) potatoes, and wild potatoes, all classified as Solanum section Petota, are widely used for potato improvement. Members of section Petota are ...

  3. Application of Hazard Analysis and Critical Control Points (HACCP) to the Cultivation Line of Mushroom and Other Cultivated Edible Fungi.

    PubMed

    Pardo, José E; de Figueirêdo, Vinícius Reis; Alvarez-Ortí, Manuel; Zied, Diego C; Peñaranda, Jesús A; Dias, Eustáquio Souza; Pardo-Giménez, Arturo

    2013-09-01

    The Hazard analysis and critical control points (HACCP) is a preventive system which seeks to ensure food safety and security. It allows product protection and correction of errors, improves the costs derived from quality defects and reduces the final overcontrol. In this paper, the system is applied to the line of cultivation of mushrooms and other edible cultivated fungi. From all stages of the process, only the reception of covering materials (stage 1) and compost (stage 3), the pre-fruiting and induction (step 6) and the harvest (stage 7) have been considered as critical control point (CCP). The main hazards found were the presence of unauthorized phytosanitary products or above the permitted dose (stages 6 and 7), and the presence of pathogenic bacteria (stages 1 and 3) and/or heavy metals (stage 3). The implementation of this knowledge will allow the self-control of their productions based on the system HACCP to any plant dedicated to mushroom or other edible fungi cultivation.

  4. The Population Genetics of Cultivation: Domestication of a Traditional Chinese Medicine, Scrophularia ningpoensis Hemsl. (Scrophulariaceae)

    PubMed Central

    Chen, Chuan; Li, Pan; Wang, Rui-Hong; Schaal, Barbara A.; Fu, Cheng-Xin

    2014-01-01

    Background Domestic cultivation of medicinal plants is an important strategy for protecting these species from over harvesting. Some species of medicinal plants have been brought into cultivation for more than hundreds years. Concerns about severe loss of genetic diversity and sustainable cultivation can potentially limit future use of these valuable plants. Genetic studies with comprehensive sampling of multiple medicinal species by molecular markers will allow for assessment and management of these species. Here we examine the population genetic consequences of cultivation and domestication in Scrophularia ningpoensis Hemsl. We used chloroplast DNA and genomic AFLP markers to clarify not only the effects of domestication on genetic diversity, but also determine the geographic origins of cultivars and their genetic divergence from native populations. These results will allow both better management of cultivated populations, but also provide insights for crop improvement. Results Twenty-one cpDNA haplotypes of S. ningpoensis were identified. Wild populations contain all haplotypes, whereas only three haplotypes were found in cultivated populations with wild populations having twice the haplotype diversity of cultivated populations. Genetic differentiation between cultivated populations and wild populations was significant. Genomic AFLP markers revealed similar genetic diversity patterns. Furthermore, Structure analysis grouped all wild populations into two gene pools; two of which shared the same gene pool with cultivated S. ningpoensis. The result of Neighbor-Joining analysis was consistent with the structure analysis. In principal coordinate analysis, three cultivated populations from Zhejiang Province grouped together and were separated from other cultivated populations. Conclusions These results suggest that cultivated S. ningpoensis has experienced dramatic loss of genetic diversity under anthropogenic influence. We postulate that strong artificial selection

  5. Plant growth and gas balance in a plant and mushroom cultivation system

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Tani, A.; Kiyota, M.; Aiga, I.

    1994-11-01

    In order to obtain basic data for construction of a plant cultivation system incorporating a mushroom cultivation subsystem in the CELSS, plant growth and atmospheric CO2 balance in the system were investigated. The plant growth was promoted by a high level of CO2 which resulted from the respiration of the mushroom mycelium in the system. The atmospheric CO2 concentration inside the system changed significantly due to the slight change in the net photosynthetic rate of plants and/or the respiration rate of the mushroom when the plant cultivation system combined directly with the mushroom cultivation subsystem.

  6. Exploiting combinatorial cultivation conditions to infer transcriptional regulation

    PubMed Central

    Knijnenburg, Theo A; de Winde, Johannes H; Daran, Jean-Marc; Daran-Lapujade, Pascale; Pronk, Jack T; Reinders, Marcel JT; Wessels, Lodewyk FA

    2007-01-01

    Background Regulatory networks often employ the model that attributes changes in gene expression levels, as observed across different cellular conditions, to changes in the activity of transcription factors (TFs). Although the actual conditions that trigger a change in TF activity should form an integral part of the generated regulatory network, they are usually lacking. This is due to the fact that the large heterogeneity in the employed conditions and the continuous changes in environmental parameters in the often used shake-flask cultures, prevent the unambiguous modeling of the cultivation conditions within the computational framework. Results We designed an experimental setup that allows us to explicitly model the cultivation conditions and use these to infer the activity of TFs. The yeast Saccharomyces cerevisiae was cultivated under four different nutrient limitations in both aerobic and anaerobic chemostat cultures. In the chemostats, environmental and growth parameters are accurately controlled. Consequently, the measured transcriptional response can be directly correlated with changes in the limited nutrient or oxygen concentration. We devised a tailor-made computational approach that exploits the systematic setup of the cultivation conditions in order to identify the individual and combined effects of nutrient limitations and oxygen availability on expression behavior and TF activity. Conclusion Incorporating the actual growth conditions when inferring regulatory relationships provides detailed insight in the functionality of the TFs that are triggered by changes in the employed cultivation conditions. For example, our results confirm the established role of TF Hap4 in both aerobic regulation and glucose derepression. Among the numerous inferred condition-specific regulatory associations between gene sets and TFs, also many novel putative regulatory mechanisms, such as the possible role of Tye7 in sulfur metabolism, were identified. PMID:17241460

  7. Perpendicular cultivation for improved weed control in organic peanut production

    USDA-ARS?s Scientific Manuscript database

    Intensive cultivation in organic peanut is partially effective, but in-row weed control remains problematic. In an attempt to improve in-row weed control, trials were conducted to determine the feasibility of early-season cultivation perpendicular to row direction using a tine weeder when integrate...

  8. Aggregate Stability of Tropical Soils Under Long-Term Eucalyptus Cultivation

    USDA-ARS?s Scientific Manuscript database

    Eucalyptus cultivation has increased in all Brazilian regions. Despite the large amount of cultivated area, little is known about how this kind of management system affects soil properties, mainly the aggregate stability. Aggregate stability analyses have proved to be a sensitive tool to measure soi...

  9. Toxicity of Engineered Nickel Oxide and Cobalt Oxide Nanoparticles to Artemia salina in seawater

    PubMed Central

    Ates, Mehmet; Demir, Veysel; Arslan, Zikri; Camas, Mustafa; Celik, Fatih

    2016-01-01

    In this study, the effects of exposure to engineered nickel oxide (NiO 40–60 nm) and cobalt oxide (CoO <100 nm) nanoparticles (NP) were investigated on Artemia salina. Aggregation and stability of the aqueous NP suspensions were characterized by DLS and TEM. Acute exposure was conducted on nauplii (larvae) in seawater in a concentration range from 0.2 to 50 mg/L NPs for 24 h (short term) and 96 h (long term). The hydrodynamic diameters of NiO and CoO NPs in exposure medium were larger than those estimated by TEM. Accumulation rate of NiO NPs were found to be four times higher than that of CoO NPs under the same experimental conditions. Examinations under phase contrast microscope showed that the nanoparticles accumulated in the intestine of artemia, which increased with increasing exposure concentration. Differences were observed in the extent of dissolution of the NPs in the seawater. The CoO NPs dissolved significantly while NiO NPs were relatively more stable. Oxidative stress induced by the NP suspensions was measured by malondialdehyde assay. Suspensions of NiO NPs caused higher oxidative stress on nauplii than those of CoO NPs. The results imply that CoO and NiO NPs exhibit toxicity on artemia (e.g., zooplankton) that are an important source of food in aquatic food chain. PMID:27152058

  10. [Theory and practice of bionic cultivation of traditional Chinese medicine].

    PubMed

    Liu, Dahui; Huang, Luqi; Guo, Lanping; Shao, Aijuan; Chen, Meilan

    2009-03-01

    The bionic cultivation of medicinal plant is an ecological cultivation pattern, which is adopting ecological engineering and modern agricultural techniques to simulate the natural ecosystem of wild medicinal plant community, and has been given greater attention on the agriculture of traditional Chinese medicine (TCM). It is also the cross subject that combines Chinese traditional medicine, agronomy, horticulture, ecology, agricultural engineering and management. Moreover, it has significant technology advantages of promoting the sustainable utilization of medicinal plant resources, improving the ecological environment and harmonizing man and nature. So it's important to develop the bionic cultivation of TCM.

  11. Biomek Cell Workstation: A Variable System for Automated Cell Cultivation.

    PubMed

    Lehmann, R; Severitt, J C; Roddelkopf, T; Junginger, S; Thurow, K

    2016-06-01

    Automated cell cultivation is an important tool for simplifying routine laboratory work. Automated methods are independent of skill levels and daily constitution of laboratory staff in combination with a constant quality and performance of the methods. The Biomek Cell Workstation was configured as a flexible and compatible system. The modified Biomek Cell Workstation enables the cultivation of adherent and suspension cells. Until now, no commercially available systems enabled the automated handling of both types of cells in one system. In particular, the automated cultivation of suspension cells in this form has not been published. The cell counts and viabilities were nonsignificantly decreased for cells cultivated in AutoFlasks in automated handling. The proliferation of manual and automated bioscreening by the WST-1 assay showed a nonsignificant lower proliferation of automatically disseminated cells associated with a mostly lower standard error. The disseminated suspension cell lines showed different pronounced proliferations in descending order, starting with Jurkat cells followed by SEM, Molt4, and RS4 cells having the lowest proliferation. In this respect, we successfully disseminated and screened suspension cells in an automated way. The automated cultivation and dissemination of a variety of suspension cells can replace the manual method. © 2015 Society for Laboratory Automation and Screening.

  12. On the cultivation of free-living marine and estuarine nematodes

    NASA Astrophysics Data System (ADS)

    Moens, T.; Vincx, M.

    1998-06-01

    Although a large body of literature exists on the systematics and ecology of free-living marine and brackish-water nematodes, key questions on the nature and magnitude of interactions between nematodes and other organisms in the benthos remain unanswered. Relatively few authors have investigated live nematodes in food web studies or in experiments dealing with the nematodes’ response to a varying environment. It is mainly for the latter purpose that attempts have been made to maintain, rear and cultivate selected species. This paper describes the methodology used for the maintenance, rearing, and eventual permanent agnotobiotic cultivation of a variety of estuarine nematodes. Spot plates, where small samples of sediment or macrophyte material are inoculated on a sloppy agar layer, have been used for the purpose of maintenance and initial cultivation. Those species that reproduce on spot plates are then selected for monospecific cultivation on agar layers with different nutrient enrichments and with micro-organisms cotransferred from the spot plates as food. Mixtures of bacto and nutrient agar prepared in artificial seawater were specifically suitable for the xenic cultivation of nine bacterivorous and, when supplied with Erdschreiber nutrients, two algivorous/bacterivorous nematode species. Up to three generations of five other nematode species have been reared under laboratory conditions, and several more were kept alive and active for variable periods of time on agar. Generation times observed on spot plates for Adoncholaimus fuscus and Oncholaimus oxyuris were substantially shorter than previously published estimates and suggest a correspondingly higher predatory and scavenging potency for these and related enoplids. A procedure for the long-term storage of nematodes at -80°C with glycerol as a cryoprotectant was successfully used for Diplolaimella dievengatensis, Panagrolaimus sp. 1, and Pellioditis marina, but not for Diplolaimelloides meyli. The authors

  13. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta)

    PubMed Central

    Wichard, Thomas

    2015-01-01

    Green macroalgae, such as Ulvales, lose their typical morphology completely when grown under axenic conditions or in the absence of the appropriate microbiome. As a result, slow growing aberrant phenotypes or even callus-like morphotypes are observed in Ulvales. The cross-kingdom interactions between marine algae and microorganisms are hence not only restricted by the exchange of macronutrients, including vitamins and nutrients, but also by infochemicals such as bacterial morphogenetic compounds. The latter are a fundamental trait mediating the mutualism within the chemosphere where the organisms interact with each other via compounds in their surroundings. Approximately 60 years ago, pilot studies demonstrated that certain bacteria promote growth, whereas other bacteria induce morphogenesis; this is particularly true for the order of Ulvales. However, only slow progress was made towards the underlying mechanism due to the complexity of, for example, algal cultivation techniques, and the lack of standardized experiments in the laboratory. A breakthrough in this research was the discovery of the morphogenetic compound thallusin, which was isolated from an epiphytic bacterium and induces normal germination restoring the foliaceous morphotypes of Monostroma. Owing to the low concentration, the purification and structure elucidation of highly biologically active morphogenetic compounds are still challenging. Recently, it was found that only the combination of two specific bacteria from the Rhodobacteraceae and Flavobacteriaceae can completely recover the growth and morphogenesis of axenic Ulva mutabilis cultures forming a symbiotic tripartite community by chemical communication. This review combines literature detailing evidences of bacteria-induced morphogenesis in Ulvales. A set of standardized experimental approaches is further proposed for the preparation of axenic algal tissues, bacteria isolation, co-cultivation experiments, and the analysis of the chemosphere

  14. Psychological Processes Underlying Cultivation Effects: Further Tests of Construct Accessibility.

    ERIC Educational Resources Information Center

    Shrum, L. J.

    1996-01-01

    Describes a study that tested whether the accessibility of information in memory mediates the cultivation effect (the effect of television viewing on social perceptions), consistent with the availability heuristic. Shows that heavy viewers gave higher frequency estimates (cultivation effect) and responded faster (accessibility effect) than did…

  15. Molecular Characterization of Cultivated Pawpaw (Asimina triloba) Using RAPD Markers

    Treesearch

    Hongwen Huang; Desmond R. Layne; Thomas L. Kubisiak

    2003-01-01

    Thirty-four extant pawpaw [Asimina triloba (L.) Dunal] cultivars and advanced selections representing a large portion of the gene pool of cultivated pawpaws were investigated using 71 randomly amplified polymorphic DNA (RAPD) markers to establish genetic identities and evaluate genetic relatedness. All 34 cultivated pawpaws were uniquely...

  16. A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant.

    PubMed

    Al-Obaidi, Jameel R; Halabi, Mohammed Farouq; AlKhalifah, Nasser S; Asanar, Shanavaskhan; Al-Soqeer, Abdulrahman A; Attia, M F

    2017-08-24

    Jojoba is considered a promising oil crop and is cultivated for diverse purposes in many countries. The jojoba seed produces unique high-quality oil with a wide range of applications such as medical and industrial-related products. The plant also has potential value in combatting desertification and land degradation in dry and semi-dry areas. Although the plant is known for its high-temperature and high-salinity tolerance growth ability, issues such as its male-biased ratio, relatively late flowering and seed production time hamper the cultivation of this plant. The development of efficient biotechnological platforms for better cultivation and an improved production cycle is a necessity for farmers cultivating the plant. In the last 20 years, many efforts have been made for in vitro cultivation of jojoba by applying different molecular biology techniques. However, there is a lot of work to be done in order to reach satisfactory results that help to overcome cultivation problems. This review presents a historical overview, the medical and industrial importance of the jojoba plant, agronomy aspects and nutrient requirements for the plant's cultivation, and the role of recent biotechnology and molecular biology findings in jojoba research.

  17. Cultivation and uses of cucurbits

    USDA-ARS?s Scientific Manuscript database

    Cultivated cucurbits have spread through trade and exploration from their respective Old and New World centers of origin to the six arable continents and are important in local, regional and world trade. Cucumber (Cucumis sativus L.), melon (Cucumis melo L.), pumpkin, squash and gourd (Cucurbita spp...

  18. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production.

    PubMed

    Yuan, Zhenhong; Wang, Zhongming; Takala, Josu; Hiltunen, Erkki; Qin, Lei; Xu, Zhongbin; Qin, Xiaoxi; Zhu, Liandong

    2013-06-01

    Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for simultaneous wastewater treatment and biodiesel production was tested. The cultivation of C. zofingiensis with autoclaved wastewater and NaClO-pretreated wastewater, cultivation of algae indoors and outdoors, and stability of semi-continuous feeding operation were examined. The results showed that C. zofingiensis cultivated in piggery wastewater pretreated by autoclaving and NaClO had no evident difference in the performance of nutrient removal, algal growth and biodiesel production. The outdoor cultivation experiments indicated that C. zofingiensis was able to adapt and grow well outdoors. The semi-continuous feeding operation by replacing 50% of algae culture with fresh wastewater every 1.5 days could provide a stable net biomass productivity of 1.314 g L(-1) day(-1). These findings in this study can prove that it is greatly possible to amplify the cultivation of C. zofingiensis in piggery wastewater for nutrient removal and biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Karyological features of wild and cultivated forms of myrtle (Myrtus communis, Myrtaceae).

    PubMed

    Serçe, S; Ekbiç, E; Suda, J; Gündüz, K; Kiyga, Y

    2010-03-09

    Myrtle is an evergreen shrub or small tree widespread throughout the Mediterranean region. In Turkey, both cultivated and wild forms, differing in plant and fruit size and fruit composition, can be found. These differences may have resulted from the domestication of the cultivated form over a long period of time. We investigated whether wild and cultivated forms of myrtle differ in karyological features (i.e., number of somatic chromosomes and relative genome size). We sampled two wild forms and six cultivated types of myrtle. All the samples had the same chromosome number (2n = 2x = 22). The results were confirmed by 4',6-diamidino-2-phenylindole (DAPI) flow cytometry. Only negligible variation (approximately 3%) in relative fluorescence intensity was observed among the different myrtle accessions, with wild genotypes having the smallest values. We concluded that despite considerable morphological differentiation, cultivated and wild myrtle genotypes in Turkey have similar karyological features.

  20. Cultivating Self-Awareness in Counselors-in-Training through Group Supervision

    ERIC Educational Resources Information Center

    Del Moro, Ronald R.

    2012-01-01

    This study investigated processes, strategies, and frameworks that took place during group supervision classes, which best cultivate the self-awareness of Mental Health and Marriage and Family Counselors-in-Training (CITs). It was designed to explore factors across multiple theoretical models, which contributed to the cultivation of self-awareness…

  1. Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain cultivated ginseng leaves using UHPLC/QTOF-MS.

    PubMed

    Chang, Xiangwei; Zhang, Juanjuan; Li, Dekun; Zhou, Dazheng; Zhang, Yuling; Wang, Jincheng; Hu, Bing; Ju, Aichun; Ye, Zhengliang

    2017-07-15

    The adulteration or falsification of the cultivation age of mountain cultivated ginseng (MCG) has been a serious problem in the commercial MCG market. To develop an efficient discrimination tool for the cultivation age and to explore potential age-dependent markers, an optimized ultra high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS)-based metabolomics approach was applied in the global metabolite profiling of 156 MCG leaf (MGL) samples aged from 6 to 18 years. Multivariate statistical methods such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to compare the derived patterns between MGL samples of different cultivation ages. The present study demonstrated that 6-18-year-old MGL samples can be successfully discriminated using two simple successive steps, together with four PLS-DA discrimination models. Furthermore, 39 robust age-dependent markers enabling differentiation among the 6-18-year-old MGL samples were discovered. The results were validated by a permutation test and an external test set to verify the predictability and reliability of the established discrimination models. More importantly, without destroying the MCG roots, the proposed approach could also be applied to discriminate MCG root ages indirectly, using a minimum amount of homophyletic MGL samples combined with the established four PLS-DA models and identified markers. Additionally, to the best of our knowledge, this is the first study in which 6-18-year-old MCG root ages have been nondestructively differentiated by analyzing homophyletic MGL samples using UHPLC/QTOF-MS analysis and two simple successive steps together with four PLS-DA models. The method developed in this study can be used as a standard protocol for discriminating and predicting MGL ages directly and homophyletic MCG root ages indirectly. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cultivating strategic thinking skills.

    PubMed

    Shirey, Maria R

    2012-06-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author presents an overview of strategic leadership and offers approaches for cultivating strategic thinking skills.

  3. Hartmannella vermiformis inhibition of Legionella pneumophila cultivability.

    PubMed

    Buse, Helen Y; Donohue, Maura J; Ashbolt, Nicholas J

    2013-10-01

    Hartmannella vermiformis and Acanthamoeba polyphaga are frequently isolated from drinking water and permissive to Legionella pneumophila parasitization. In this study, extracellular factor(s) produced by H. vermiformis and A. polyphaga were assessed for their effects on cultivability of L. pneumophila. Page's amoeba saline (PAS) was used as an encystment medium for H. vermiformis and A. polyphaga monolayers, and the culture supernatants (HvS and ApS, respectively) were assessed against L. pneumophila growth. Compared to PAS and ApS, HvS significantly inhibited L. pneumophila strain Philadelphia-1 (Ph-1) cultivability by 3 log(10) colony forming unit (CFU) mL(-1) after 3 days of exposure compared to <0.5 log(10) CFU mL(-1) reduction of strain Lp02 (P < 0.001). Flow cytometric analysis revealed changes in the percentage and cultivability of three bacterial subpopulations: intact/slightly damaged membrane (ISM), undefined membrane status (UD), and mixed type (MT). After 3 days of HvS exposure, the MT subpopulation decreased significantly (31.6 vs 67.2 %, respectively, P < 0.001), while the ISM and UD subpopulations increased (+26.7 and +6.9 %, respectively) with the ISM subpopulation appearing as viable but nonculturable (VBNC) cells. HvS was separated into two fractions based on molecular weight, with more than 99 % of the L. pneumophila inhibition arising from the <5 kDa fraction (P < 0.001). Liquid chromatography indicated the inhibitory molecule(s) are likely polar and elute from a Novapak C18 column between 6 and 15 min. These results demonstrate that H. vermiformis is capable of extracellular modulation of L. pneumophila cultivability and probably promote the VBNC state for this bacterium.

  4. Brackish habitat dictates cultivable Actinobacterial diversity from marine sponges

    PubMed Central

    Chanana, Shaurya; Adnani, Navid; Szachowicz, Emily; Braun, Doug R.; Harper, Mary Kay; Wyche, Thomas P.; Bugni, Tim S.

    2017-01-01

    Bacterial communities associated with marine invertebrates such as sponges and ascidians have demonstrated potential as sources of bio-medically relevant small molecules. Metagenomic analysis has shown that many of these invertebrates harbor populations of Actinobacteria, many of which are cultivable. While some populations within invertebrates are transmitted vertically, others are obtained from the environment. We hypothesized that cultivable diversity from sponges living in brackish mangrove habitats have associations with Actinobacterial populations that differ from those found in clear tropical waters. In this study, we analyzed the cultivable Actinobacterial populations from sponges found in these two distinct habitats with the aim of understanding the secondary metabolite potential. Importantly, we wanted to broadly evaluate the potential differences among these groups to guide future Actinobacterial collection strategies for the purposes of drug discovery. PMID:28692665

  5. Cultivable bacteria isolated from apple trees cultivated under different crop systems: Diversity and antagonistic activity against Colletotrichum gloeosporioides

    PubMed Central

    dos Passos, João Frederico M.; da Costa, Pedro B.; Costa, Murilo D.; Zaffari, Gilmar R.; Nava, Gilberto; Boneti, José Itamar; de Oliveira, Andréia Mara R.; Passaglia, Luciane M.P.

    2014-01-01

    This study evaluated the diversity of cultivable plant growth-promoting (PGP) bacteria associated with apple trees cultivated under different crop management systems and their antagonistic ability against Colletotrichum gloeosporioides. Samples of roots and rhizospheric soil from apple trees cultivated in organic and conventional orchards in southern Brazil were collected, together with soil samples from an area never used for agriculture (native field). Bacteria were identified at the genus level by PCR-RFLP and partial sequencing of the 16S rRNA, and were evaluated for some PGP abilities. The most abundant bacterial genera identified were Enterobacter (27.7%), Pseudomonas (18.7%), Burkholderia (13.7%), and Rahnella (12.3%). Sixty-nine isolates presented some antagonist activity against C. gloeosporioides. In a greenhouse experiment, five days after exposure to C. gloeosporioides, an average of 30% of the leaf area of plants inoculated with isolate 89 (identified as Burkholderia sp.) were infected, whereas 60 to 73% of the leaf area of untreated plants was affected by fungal attack. Our results allowed us to infer how anthropogenic activity is affecting the bacterial communities in soil associated with apple tree crop systems, and to obtain an isolate that was able to delay the emergence of an important disease for this culture. PMID:25249780

  6. Hydroponic cultivation improves the nutritional quality of soybean and its products.

    PubMed

    Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo

    2012-01-11

    Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.

  7. Low density supercritical fluids precipitation of 9-cis and all trans-β-carotenes enriched particulates from Dunaliella salina.

    PubMed

    Chen, Jian-Ren; Wu, Jia-Jiuan; Lin, Justin Chun-Te; Wang, Yuan-Chuen; Young, Chiu-Chung; Shieh, Chwen-Jen; Hsu, Shih-Lan; Chang, Cheih-Ming J

    2013-07-19

    In this study, supercritical anti-solvent (SAS) pulverization coupled with reverse phase elution chromatography was employed to isolate 9-cis and trans-β-carotenes from Dunaliella salina. Total concentration of 9-cis (134.7mg/g) and trans-β-carotene (204.2mg/g) was increased from 338.9mg/g of the ultrasonic extract to 859.7mg/g (338.9 for 9-cis and 520.8 for trans) of the elution fraction. The SAS pulverization of the collected fraction further produced submicron-sized particulates containing 932.1mg/g (355.6 for 9-cis and 576.5 for trans) of total β-carotenes with a recovery of 86.3% (83.9% for cis and 87.8% for trans). Effects of two SAS operational conditions on the purity, recovery of total β-carotenes, mean size and morphology of the precipitates were obtained from an experimentally designed method. Generation of micronized particulates enriched with 9-cis and trans-β-carotenes by low-density SAS was proved to be feasible and environmental benign. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. On the Cultivation of Innovative Talents in Colleges and Universities

    ERIC Educational Resources Information Center

    Yu, Changli; Jia, Hongchun

    2009-01-01

    It is the sure pursuit for the Colleges and Universities to cultivate the innovative talents for the society. The cultivation of innovative talents in Colleges and Universities plays a crucial role not only in economic and social development, but also in schools' and personal development. The internal quality of innovative talents includes the…

  9. Cultivating Political Morality for Deliberative Citizens--Rawls and Callan Revisited

    ERIC Educational Resources Information Center

    Leung, Cheuk-Hang

    2016-01-01

    In this article, I will argue that the implementation of deliberative democracy needs to be supplemented by a specific political morality in order to cultivate free and equal citizens in exercising public reason for achieving a cooperative and inclusive liberal society. This cultivation of personality is literally an educational project with a…

  10. Water use and its recycling in microalgae cultivation for biofuel application.

    PubMed

    Farooq, Wasif; Suh, William I; Park, Min S; Yang, Ji-Won

    2015-05-01

    Microalgal biofuels are not yet economically viable due to high material and energy costs associated with production process. Microalgae cultivation is a water-intensive process compared to other downstream processes for biodiesel production. Various studies found that the production of 1 L of microalgal biodiesel requires approximately 3000 L of water. Water recycling in microalgae cultivation is desirable not only to reduce the water demand, but it also improves the economic feasibility of algal biofuels as due to nutrients and energy savings. This review highlights recently published studies on microalgae water demand and water recycling in microalgae cultivation. Strategies to reduce water footprint for microalgal cultivation, advantages and disadvantages of water recycling, and approaches to mitigate the negative effects of water reuse within the context of water and energy saving are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Isolation and characterization of a cDNA encoding a heat shock protein 70 from a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta).

    PubMed

    Tominaga, Hiroshi; Coury, Daniel Adam; Amano, Hideomi; Kakinuma, Makoto

    2010-03-01

    Synthesis and accumulation of molecular chaperones are universal responses found in all cellular organisms when exposed to a variety of unfavorable conditions. Heat shock protein 70 (Hsp70), which is one of the major classes of molecular chaperones, plays a particularly important role in cellular stress responses, and the Hsp70 system is the most intensely studied in higher plants and algae. Therefore, we isolated and characterized a cDNA clone encoding Hsp70 from a sterile strain of Ulva pertusa (Ulvales, Chlorophyta). The sterile U. pertusa Hsp70 (UpHsp70) cDNA consisted of 2,272 nucleotides and had an open reading frame encoding a polypeptide of 663 amino acid (AA) residues with a molecular mass of 71.7 kDa. Amino acid alignment and phylogenetic analysis of Hsp70s from other organisms showed that UpHsp70 was more similar to cytoplasmic Hsp70s from green algae and higher plants (> or =75%) than to those from other algae and microorganisms. Southern blot analysis indicated that the sterile U. pertusa genome had at least four cytoplasmic Hsp70-encoding genes. UpHsp70 mRNA levels were significantly affected by diurnal changes, rapidly increased by high-temperature stress, and gradually increased by exposure to copper, cadmium, and lead. These results suggest that UpHsp70 plays particularly important roles in adaptation to high-temperature conditions and diurnal changes, and is potentially involved in tolerance to heavy metal toxicity.

  12. [Review on application of plant growth retardants in medicinal plants cultivation].

    PubMed

    Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming

    2013-09-01

    Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.

  13. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation.

    PubMed

    Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N; Andersson-Svahn, Helene

    2017-01-01

    The potential of using droplet microfluidics for screening mammalian cell factories has been limited by the difficulty in achieving continuous cell division during cultivation in droplets. Here, we report the influence of droplet size on mammalian cell division and viability during cultivation in droplets. Chinese Hamster Ovary (CHO) cells, the most widely used mammalian host cells for biopharmaceuticals production were encapsulated and cultivated in 33, 180 and 320 pL droplets for 3 days. Periodic monitoring of the droplets during incubation showed that the cell divisions in 33 pL droplets stopped after 24 h, whereas continuous cell division was observed in 180 and 320 pL droplets for 72 h. The viability of the cells cultivated in the 33 pL droplets also dropped to about 50% in 72 h. In contrast, the viability of the cells in the larger droplets was above 90% even after 72 h of cultivation, making them a more suitable droplet size for 72-h cultivation. This study shows a direct correlation of microfluidic droplet size to the division and viability of mammalian cells. This highlights the importance of selecting suitable droplet size for mammalian cell factory screening assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. What quantitative mechanical loading stimulates in vitro cultivation best?

    PubMed

    Natenstedt, Jerry; Kok, Aimee C; Dankelman, Jenny; Tuijthof, Gabrielle Jm

    2015-12-01

    Articular cartilage has limited regeneration capacities. One of the factors that appear to affect the in vitro cultivation of articular cartilage is mechanical stimulation. So far, no combination of parameters has been identified that offers the best results. The goal is to review the literature in search of the best available set of quantitative mechanical stimuli that lead to optimal in vitro cultivation.The databases Scopus and PubMed were used to survey the literature, and strict in- and exclusion criteria were applied regarding the presence of quantitative data. The review was performed by studying the type of loading (hydrostatic compression or direct compression), the loading magnitude, the frequency and the loading regime (duration of the loading) in comparison to quantitative evidence of cartilage quality response (cellular, signaling and mechanical).Thirty-three studies met all criteria of which 8 studied human, 20 bovine, 2 equine, 1 ovine, 1 porcine and 1 canine cells using four different types of cultivated constructs. Six studies investigated loading magnitude within the same setup, three studies the frequency, and seven the loading regime. Nine studies presented mechanical tissue response. The studies suggest that a certain threshold exits for enhanced cartilage in vitro cultivation of explants (>20 % strain and 0.5 Hz), and that chondrocyte-seeded cultivated constructs show best results when loaded with physiological mechanical stimuli. That is a loading pressure between 5-10 MPa and a loading frequency of 1 Hz exerted at intermittent intervals for a period of a week or longer. Critical aspects remain to be answered for translation into in vivo therapies.

  15. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  16. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time.

    PubMed

    Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.

  17. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    PubMed

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  18. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil” includes...

  19. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil” includes...

  20. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil” includes...

  1. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil” includes...

  2. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil” includes...

  3. Response of Newly Established Slash Pine to Cultivation and Fertilization

    Treesearch

    A.E. Tiarks; J.D. Haywood

    1981-01-01

    Response of newly established slash pine to fertilization is increased if herbaceous plants are controlled. To find the amount of cultivation required in Louisiana, fertilized and unfertilized rows of planted pines were hand-hoed in a wedge-shaped pattern. By using this technique, the amount of cultivation was varied from none to complete. Slash pine growth was...

  4. Simulating the hydrologic response of a semiarid watershed to switchgrass cultivation

    USDA-ARS?s Scientific Manuscript database

    The conversion of land for biofuel cultivation is expected to increase given concerns about the sustainability of current fossil-fuel supplies. Nonetheless, research into the environmental impacts of biofuel crops, primarily the hydrological impacts of their cultivation, is in its infancy. To inve...

  5. Assessment of Crystal Morphology on Uptake, Particle Dissolution, and Toxicity of Nanoscale Titanium Dioxide on Artemia salina

    PubMed Central

    Johnson, Martha; Ates, Mehmet; Arslan, Zikri; Farah, Ibrahim; Bogatu, Coneliu

    2017-01-01

    Knowledge of nanomaterial toxicity is critical to avoid adverse effects on human and environment health. In this study, the influences of crystal morphology on physico-chemical and toxic properties of nanoscale TiO2 (n-TiO2) were investigated. Artemia salina were exposed to anatase, rutile and mixture polymorphs of n-TiO2 in seawater. Short-term (24 h) and long-term (96 h) exposures were conducted in 1, 10 and 100 mg/L suspensions of n-TiO2 in the presence and absence of food. Anatase form had highest accumulation followed by mixture and rutile. Presence of food greatly reduced accumulation. n-TiO2 dissolution was not significant in seawater (p<0.05) nor was influenced from crystal structure. Highest toxic effects occurred in 96h exposure in the order of anatase > mixture > rutile. Mortality and oxidative stress levels increased with increasing n-TiO2 concentration and exposure time (p<0.05). Presence of food in the exposure medium alleviated the oxidative stress, indicating that deprivation from food could promote toxic effects of n-TiO2 under long-term exposure. PMID:29333492

  6. Culture cultivating culture: the four products of the meaning-made world.

    PubMed

    Carriere, Kevin R

    2014-09-01

    Culture, in a semiotic cultural psychology, is defined from the viewpoint of cultivation--the meaning making processes that give meaning to the world (Valsiner 2000, 2007a). However, the individual is not simply a process-machine in an empty world--there are both the external outcomes of meaning making (individual and group based) as well as the collective influence on the cultivation process. I argue to examine the cultivation process more completely, one must look at these external influences that catalyze future cultivation processes. By examining the power of the external (environmental Umwelten) and group-internal (myths, morals), a much greater understanding of the behavior of individuals can be accomplished beyond examining the individual's process of meaning making. Further work into examining the objects that affectively activate the individual as well as group action and meaning making is called for and examples of such studies are given.

  7. Glass bead cultivation of fungi: combining the best of liquid and agar media.

    PubMed

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette; Sondergaard, Teis Esben

    2013-09-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier than from agar plates and the quality was superior. The system allows simple control of nutrient availability throughout fungal cultivation. This combined with the ease of extraction of nucleic acids and metabolites makes the system highly suitable for the study of gene regulation in response to specific nutrient factors. © 2013.

  8. Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Lammers, Peter J.; Huesemann, Michael; Boeing, Wiebke; ...

    2016-12-12

    The cultivation efforts within the National Alliance for Advanced Biofuels and Bioproducts (NAABB) were developed to provide four major goals for the consortium, which included biomass production for downstream experimentation, development of new assessment tools for cultivation, development of new cultivation reactor technologies, and development of methods for robust cultivation. The NAABB consortium testbeds produced over 1500 kg of biomass for downstream processing. The biomass production included a number of model production strains, but also took into production some of the more promising strains found through the prospecting efforts of the consortium. Cultivation efforts at large scale are intensive andmore » costly, therefore the consortium developed tools and models to assess the productivity of strains under various environmental conditions, at lab scale, and validated these against scaled outdoor production systems. Two new pond-based bioreactor designs were tested for their ability to minimize energy consumption while maintaining, and even exceeding, the productivity of algae cultivation compared to traditional systems. Also, molecular markers were developed for quality control and to facilitate detection of bacterial communities associated with cultivated algal species, including the Chlorella spp. pathogen, Vampirovibrio chlorellavorus, which was identified in at least two test site locations in Arizona and New Mexico. Finally, the consortium worked on understanding methods to utilize compromised municipal wastewater streams for cultivation. In conclusion, this review provides an overview of the cultivation methods and tools developed by the NAABB consortium to produce algae biomass, in robust low energy systems, for biofuel production.« less

  9. Training programmes can change behaviour and encourage the cultivation of over-harvested plant species.

    PubMed

    Williams, Sophie J; Jones, Julia P G; Clubbe, Colin; Gibbons, James M

    2012-01-01

    Cultivation of wild-harvested plant species has been proposed as a way of reducing over-exploitation of wild populations but lack of technical knowledge is thought to be a barrier preventing people from cultivating a new species. Training programmes are therefore used to increase technical knowledge to encourage people to adopt cultivation. We assessed the impact of a training programme aiming to encourage cultivation of xaté (Chamaedorea ernesti-augusti), an over-harvested palm from Central America. Five years after the training programme ended, we surveyed untrained and trained individuals focusing on four potential predictors of behaviour: technical knowledge, attitudes (what individuals think about a behaviour), subjective norms (what individuals perceive others to think of a behaviour) and perceived behavioural control (self assessment of whether individuals can enact the behaviour successfully). Whilst accounting for socioeconomic variables, we investigate the influence of training upon these behavioural predictors and examine the factors that determine whether people adopt cultivation of a novel species. Those who had been trained had higher levels of technical knowledge about xaté cultivation and higher belief in their ability to cultivate it while training was not associated with differences in attitudes or subjective norms. Technical knowledge and perceived behavioural control (along with socio-economic variables such as forest ownership and age) were predictors of whether individuals cultivate xaté. We suggest that training programmes can have a long lasting effect on individuals and can change behaviour. However, in many situations other barriers to cultivation, such as access to seeds or appropriate markets, will need to be addressed.

  10. Training Programmes Can Change Behaviour and Encourage the Cultivation of Over-Harvested Plant Species

    PubMed Central

    Williams, Sophie J.; Jones, Julia P. G.; Clubbe, Colin; Gibbons, James M.

    2012-01-01

    Cultivation of wild-harvested plant species has been proposed as a way of reducing over-exploitation of wild populations but lack of technical knowledge is thought to be a barrier preventing people from cultivating a new species. Training programmes are therefore used to increase technical knowledge to encourage people to adopt cultivation. We assessed the impact of a training programme aiming to encourage cultivation of xaté (Chamaedorea ernesti-augusti), an over-harvested palm from Central America. Five years after the training programme ended, we surveyed untrained and trained individuals focusing on four potential predictors of behaviour: technical knowledge, attitudes (what individuals think about a behaviour), subjective norms (what individuals perceive others to think of a behaviour) and perceived behavioural control (self assessment of whether individuals can enact the behaviour successfully). Whilst accounting for socioeconomic variables, we investigate the influence of training upon these behavioural predictors and examine the factors that determine whether people adopt cultivation of a novel species. Those who had been trained had higher levels of technical knowledge about xaté cultivation and higher belief in their ability to cultivate it while training was not associated with differences in attitudes or subjective norms. Technical knowledge and perceived behavioural control (along with socio-economic variables such as forest ownership and age) were predictors of whether individuals cultivate xaté. We suggest that training programmes can have a long lasting effect on individuals and can change behaviour. However, in many situations other barriers to cultivation, such as access to seeds or appropriate markets, will need to be addressed. PMID:22431993

  11. Omega-3 fatty acid concentrate from Dunaliella salina possesses anti-inflammatory properties including blockade of NF-κB nuclear translocation.

    PubMed

    Chitranjali, T; Anoop Chandran, P; Muraleedhara Kurup, G

    2015-02-01

    The health benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA), mainly eicosapentaenoic acid (EPA 20:5) and docosahexaenoic acid (DHA, 22:6), have been long known. Although various studies have demonstrated the health benefits of ω-3 PUFA, the mechanisms of action of ω-3 PUFAs are still not completely understood. While the major commercial source is marine fish oil, in this study we suggest the marine micro algae, Dunaliella salina as an alternate source of omega-3 fatty acids. Treatment with this algal omega-3 fatty acid concentrate (Ds-ω-3 FA) resulted in significant down-regulation of LPS-induced production of TNF-α and IL-6 by peripheral blood mononuclear cells (PBMCs). The concentrate was also found to be a potent blocker of cyclooxygenase (COX-2) and matrix metalloproteinase (MMP-2 and MMP-9) expression. The present study reveals the anti-inflammatory properties of Ds-ω-3 FA concentrate including the inhibition of NF-κB translocation.

  12. Status and understanding of groundwater quality in the Monterey-Salinas Shallow Aquifer Study Unit, 2012–13: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen; Wright, Michael

    2018-05-30

    Groundwater quality in the approximately 7,820-square-kilometer (km2) Monterey-Salinas Shallow Aquifer (MS-SA) study unit was investigated from October 2012 to May 2013 as part of the second phase of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in the central coast region of California in the counties of Santa Cruz, Monterey, and San Luis Obispo. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in cooperation with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.The MS-SA study was designed to provide a statistically robust assessment of untreated-groundwater quality in the shallow aquifer systems. The assessment was based on water-quality samples collected by the U.S. Geological Survey from 100 groundwater sites and 70 household tap sites, along with ancillary data such as land use and well-construction information. The shallow aquifer systems were defined by the depth interval of wells associated with domestic supply. The MS-SA study unit consisted of four study areas—Santa Cruz (210 km2), Pajaro Valley (360 km2), Salinas Valley (2,000 km2), and Highlands (5,250 km2).This study had two primary components: the status assessment and the understanding assessment. The first primary component of this study—the status assessment—assessed the quality of the groundwater resource indicated by data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally present inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of groundwater resources in the shallow aquifer system of the MS-SA study unit, not the treated drinking water delivered to consumers by water purveyors. As opposed to the public wells, however, water from private wells, which often tap the shallow aquifer, is usually consumed without any treatment. The second

  13. Pond Crash Forensics: Presumptive identification of pond crash agents by next generation sequencing in replicate raceway mass cultures of Nannochloropsis salina

    DOE PAGES

    Carney, Laura T.; Wilkenfeld, Joshua S.; Lane, Pam D.; ...

    2016-06-02

    Productivity of algal mass culture can be severely reduced by contaminating organisms. It is, therefore, important to identify contaminants, determine their effect on productivity and, ultimately, develop countermeasures against such contamination. In this paper, we utilized microbiome analysis by second-generation sequencing of small subunit rRNA genes to characterize the predator and pathogen burden of open raceway cultures of Nannochloropsis salina. Samples were analyzed from replicate raceways before and after crashes. In one culture cycle, we identified two algivorous species, the rotifer Brachionus and gastrotrich Chaetonotus, the presence of which may have contributed to the loss of algal biomass. In themore » second culture cycle, the raceways were treated with hypochlorite in an unsuccessful attempt to interdict the crash. Finally, our analyses were shown to be an effective strategy for the identification of the biological contaminants and the characterization of intervention strategies.« less

  14. Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms▿

    PubMed Central

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-01-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus. PMID:19363082

  15. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms.

    PubMed

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-06-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.

  16. Greatly reduced phylogenetic structure in the cultivated potato clade of potatoes, Solanum section Petota

    USDA-ARS?s Scientific Manuscript database

    The species boundaries of wild and cultivated potatoes, Solanum section Petota, are controversial with most of the taxonomic problems in a clade containing cultivated potatoes. We here provide the first in-depth phylogenetic study of the cultivated potato clade to explore possible causes of these pr...

  17. Effect of 3D Cultivation Conditions on the Differentiation of Endodermal Cells

    PubMed Central

    Petrakova, O. S.; Ashapkin, V. V.; Voroteliak, E. A.; Bragin, E. Y.; Shtratnikova, V. Y.; Chernioglo, E. S.; Sukhanov, Y. V.; Terskikh, V. V.; Vasiliev, A. V.

    2012-01-01

    Cellular therapy of endodermal organs is one of the most important issues in modern cellular biology and biotechnology. One of the most promising directions in this field is the study of the transdifferentiation abilities of cells within the same germ layer. A method for anin vitroinvestigation of the cell differentiation potential (the cell culture in a three-dimensional matrix) is described in this article. Cell cultures of postnatal salivary gland cells and postnatal liver progenitor cells were obtained; their comparative analysis under 2D and 3D cultivation conditions was carried out. Both cell types have high proliferative abilities and can be cultivated for more than 20 passages. Under 2D cultivation conditions, the cells remain in an undifferentiated state. Under 3D conditions, they undergo differentiation, which was confirmed by a lower cell proliferation and by an increase in the differentiation marker expression. Salivary gland cells can undergo hepatic and pancreatic differentiation under 3D cultivation conditions. Liver progenitor cells also acquire a pancreatic differentiation capability under conditions of 3D cultivation. Thus, postnatal salivary gland cells exhibit a considerable differentiation potential within the endodermal germ layer and can be used as a promising source of endodermal cells for the cellular therapy of liver pathologies. Cultivation of cells under 3D conditions is a useful model for thein vitroanalysis of the cell differentiation potential. PMID:23346379

  18. Production, perceptions, and punishment: restrictive deterrence in the context of cannabis cultivation.

    PubMed

    Nguyen, Holly; Malm, Aili; Bouchard, Martin

    2015-03-01

    American authorities have invested extraordinary resources to keep up with the growth in cannabis cultivation, and state-level cannabis laws have been changing rapidly. Despite these changes, little research on the relationship between criminal justice sanctions and grower behaviours exist, in particular research that examines restrictive deterrence - the altering of an illegal behaviour as opposed to desisting from it completely. We examine restrictive deterrence in the context of cannabis cultivation by modelling the relationship between the threat of sanctions and the size of cultivation site and number of co-offenders. We use data from an anonymous web survey where participants were recruited through advertisements on websites related to cannabis use and cultivation. Negative binomial regression were used on 337 cases that contain valid data on size of cultivation site and 338 cases that contain valid data on the number of co-offenders. Our study found some evidence that the severity of state sanctions reduces the size of cultivation sites among growers who reside in the state. However, the number of contacts with the police had the opposite effect. In addition, we did not find a restrictive deterrent effect for the number of co-offenders, suggesting that different factors affect different decision points. Interestingly, objective skill and subjective skill had positive and independent effects on size of site. Results suggest that state-level sanctions have a structuring effect by restricting the size of cultivation sites but further increases in sanctions or enforcement are unlikely to deter more individuals from growing cannabis. In fact, there may be some potential dangers of increased enforcement on cannabis growers. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review).

    PubMed

    Elisashvili, Vladimir

    2012-01-01

    Medicinal mushrooms belonging to higher Basidiomycetes are an immensely rich yet largely untapped resource of useful, easily accessible, natural compounds with various biological activities that may promote human well-being. The medicinal properties are found in various cellular components and secondary metabolites (polysaccharides, proteins and their complexes, phenolic compounds, polyketides, triterpenoids, steroids, alkaloids, nucleotides, etc.), which have been isolated and identified from the fruiting bodies, culture mycelium, and culture broth of mushrooms. Some of these compounds have cholesterol-lowering, anti-diabetic, antioxidant, antitumor, immunomodulating, antimicrobial, and antiviral activities ready for industrial trials and further commercialization, while others are in various stages of development. Recently, the submerged cultivation of medicinal mushrooms has received a great deal of attention as a promising and reproducible alternative for the efficient production of mushroom mycelium and metabolites. Submerged cultivation of mushrooms has significant industrial potential, but its success on a commercial scale depends on increasing product yields and development of novel production systems that address the problems associated with this technique of mushroom cultivation. In spite of many researchers' efforts for the production of bioactive metabolites by mushrooms, the physiological and engineering aspects of submerged cultures are still far from being thoroughly studied. The vast majority of studies have focused on polysaccharide and ganoderic acid production in submerged cultivation of medicinal mushrooms, and very little has been written so far on the antioxidant and hemagglutinating activity of submerged mushroom cultures. The purpose of this review is to provide an update of the present state of the art and future prospects of submerged cultivation of medicinal mushrooms to produce mycelium and bioactive metabolites, and to make a

  20. Allelopathy as a potential strategy to improve microalgae cultivation.

    PubMed

    Bacellar Mendes, Leonardo Brantes; Vermelho, Alane Beatriz

    2013-10-21

    One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production.

  1. Inferring ancient Agave cultivation practices from contemporary genetic patterns.

    PubMed

    Parker, Kathleen C; Trapnell, Dorset W; Hamrick, J L; Hodgson, Wendy C; Parker, Albert J

    2010-04-01

    Several Agave species have played an important ethnobotanical role since prehistory in Mesoamerica and semiarid areas to the north, including central Arizona. We examined genetic variation in relict Agave parryi populations northeast of the Mogollon Rim in Arizona, remnants from anthropogenic manipulation over 600 years ago. We used both allozymes and microsatellites to compare genetic variability and structure in anthropogenically manipulated populations with putative wild populations, to assess whether they were actively cultivated or the result of inadvertent manipulation, and to determine probable source locations for anthropogenic populations. Wild populations were more genetically diverse than anthropogenic populations, with greater expected heterozygosity, polymorphic loci, effective number of alleles and allelic richness. Anthropogenic populations exhibited many traits indicative of past active cultivation: fixed heterozygosity for several loci in all populations (nonexistent in wild populations); fewer multilocus genotypes, which differed by fewer alleles; and greater differentiation among populations than was characteristic of wild populations. Furthermore, manipulated populations date from a period when changes in the cultural context may have favoured active cultivation near dwellings. Patterns of genetic similarity among populations suggest a complex anthropogenic history. Anthropogenic populations were not simply derived from the closest wild A. parryi stock; instead they evidently came from more distant, often more diverse, wild populations, perhaps obtained through trade networks in existence at the time of cultivation.

  2. Allelopathy as a potential strategy to improve microalgae cultivation

    PubMed Central

    2013-01-01

    One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production. PMID:24499580

  3. Bioremediation of industrial waste through mushroom cultivation.

    PubMed

    Kulshreshtha, Shweta; Mathur, Nupur; Bhatnagar, Pradeep; Jain, B L

    2010-07-01

    Handmade paper and cardboard industries are involved in processing of cellulosic and ligno-cellulosic substances for making paper by hand or simple machinery. In the present study solid sludge and effluent of both cardboard and handmade paper industries was collected for developing a mushroom cultivation technique to achieve zero waste discharges. Findings of present research work reveals that when 50% paper industries waste is used by mixing with 50% (w/w) wheat straw, significant increase (96.38%) in biological efficiency over control of wheat straw was observed. Further, cultivated basidiocarps showed normal morphology of stipe and pileus. Cross section of lamellae did not show any abnormality in the attachment of basidiospores, hymenal trama and basidium. No toxicity was found when fruiting bodies were tested chemically.

  4. Morphology and rheology in filamentous cultivations.

    PubMed

    Wucherpfennig, T; Kiep, K A; Driouch, H; Wittmann, C; Krull, R

    2010-01-01

    Because of their metabolic diversity, high production capacity, secretion efficiency, and capability of carrying out posttranslational modifications, filamentous fungi are widely exploited as efficient cell factories in the production of metabolites, bioactive substances, and native or heterologous proteins, respectively. There is, however, a complex relationship between the morphology of these microorganisms, transport phenomena, the viscosity of the cultivation broth, and related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass, every growth form having a distinct influence on broth rheology. Hence, the advantages and disadvantages for mycelial or pellet cultivation have to be balanced out carefully. Because of the still inadequate understanding of the morphogenesis of filamentous microorganisms, fungal morphology is often a bottleneck of productivity in industrial production. To obtain an optimized production process, it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the relevant approaches in biochemical engineering. In this chapter, morphology and growth of filamentous fungi are described, with special attention given to specific problems as they arise from fungal growth forms; growth and mass transfer in fungal biopellets are discussed as an example. To emphasize the importance of the flow behavior of filamentous cultivation broths, an introduction to rheology is also given, reviewing important rheological models and recent studies concerning rheological parameters. Furthermore, current knowledge on morphology and productivity in relation to the environom is outlined in the last section of this review. Copyright 2010 Elsevier Inc. All rights reserved.

  5. [Semicontinuous cultivation of fungi of the genus Aspergillus, producers of hydrolases].

    PubMed

    Blieva, R K

    1982-01-01

    The production of exohydrolases (alpha-amylase and pectinase) by fungi belonging to the genus Aspergillus was studied in the course of batch cultivation and, if immobilized cells were used, in the semicontinuous regime of growth. The cells were immobilized on a fixed filtering plate and on floating, in the growth medium, polyhedrons. Such a cultivation of immobilized microbial cells in the semicontinuous regime of growth on submerged polyhedrons freely floating in the nutrient medium makes it possible to cultivate the cells for 1.5 months with the active production of exocellular hydrolases. Under these conditions, Aspergillus oryzae 3-9-15 produces more alpha-amylase and A. awamori synthesizes more pectinases.

  6. Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains.

    PubMed

    Greger, Maria; Landberg, Tommy

    2015-01-01

    Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.

  7. The effect of cattle manure cultivation on moisture content and survival of Escherichia coli.

    PubMed

    Weinberg, Z; Chen, Y; Khanal, P; Pinto, R; Zakin, V; Sela, S

    2011-03-01

    A new practice whereby wet slurry is added daily to the cattle manure bedding at the barn and cultivated has been developed in Israel. The objective of the present study was to examine the effect of manure cultivation on the persistence of Escherichia coli in a model system. A cow manure-derived E. coli strain was tagged with green fluorescence protein (GFP) and antibiotic resistance markers and was used to inoculate cow manure in 10-L buckets. After 3 successive cycles of inoculation and cultivation, wet slurry was added during an additional 2 cycles. After 32 d, the cultivated and noncultivated manure contained 677 ± 14 and 505 ± 2 g·kg(-1) DM, respectively. The cultivated manure remained drier compared with the noncultivated manure after the addition of wet slurry, and its texture remained lumpy compared with the compact, cohesive, and sticky texture of the noncultivated manure. Throughout the experiment, the counts of the tagged E. coli were less (P < 0.05) and disappeared faster in the cultivated than in the noncultivated manure. These results support the hypothesis that daily cultivation of manure may result in reduced incidence of mastitis and improves the welfare and performance of dairy cows.

  8. Yield of illicit indoor cannabis cultivation in the Netherlands.

    PubMed

    Toonen, Marcel; Ribot, Simon; Thissen, Jac

    2006-09-01

    To obtain a reliable estimation on the yield of illicit indoor cannabis cultivation in The Netherlands, cannabis plants confiscated by the police were used to determine the yield of dried female flower buds. The developmental stage of flower buds of the seized plants was described on a scale from 1 to 10 where the value of 10 indicates a fully developed flower bud ready for harvesting. Using eight additional characteristics describing the grow room and cultivation parameters, regression analysis with subset selection was carried out to develop two models for the yield of indoor cannabis cultivation. The median Dutch illicit grow room consists of 259 cannabis plants, has a plant density of 15 plants/m(2), and 510 W of growth lamps per m(2). For the median Dutch grow room, the predicted yield of female flower buds at the harvestable developmental stage (stage 10) was 33.7 g/plant or 505 g/m(2).

  9. [Key techniques for precision cultivation of nitrogenous fertilizer of pollution-free ginseng].

    PubMed

    Guo, Li-Li; Guo, Shuai; Dong, Lin-Lin; Shen, Liang; Li, Xi-Wen; Xu, Jiang; Chen, Shi-Lin

    2018-04-01

    Planting pollution-free farmland is the main mode of industrialization of ginseng cultivation, fine management of nitrogen fertilizer ginseng pollution-free farmland cultivation technology system is one of the key factors. In order to investigate the effect of nitrogenous fertilizer on the accumulation of ginseng biomass and saponins synthesis in vegetative growth stage, two-years-old ginsengs were used as test materials in this study. The test materials were cultivated by Hoagland medium with different nitrogen concentration (0,10,20,40 mg·L⁻¹) for 40 days. During the cultivation, photosynthetic rate was measured four times. After 40 days cultivation, chlorophyll content, stem diameter and the spatiotemporal expression of saponin synthesis related genes PgHMGR and PgSQE were tested. The results showed that there were significant differences in the photosynthetic rate and chlorophyll content among different nitrogen concentrations. The relative expression level of PgHMGR gene and PgSQE gene in root, stem and leaves of ginseng were different. Ginseng seedlings cultivated by 20 mg·L⁻¹ nitrogen possess the highest photosynthetic rate and chlorophyll content, while PgHMGR and PgSE showed the highest gene expression level. The optimal nitrogen concentration for the growth of 2-years-old ginseng might be 20 mg·L⁻¹ with 57.14 g ammonium nitrate each plant or pure 20.00 mg nitrogen each plant. It is concluded that this concentration is the most suitable concentration for the ginsenoside synthesis. Pollution-free ginseng with fine nitrogen fertilizer cultivation is conducive to the production of high quality and efficient ginseng medicinal materials. It lays a theoretical foundation for the rational fertilization and environment-friendly sustainable ecological ginseng planting industry. Copyright© by the Chinese Pharmaceutical Association.

  10. Monitoring and Evaluation of Cultivated Land Irrigation Guarantee Capability with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, C., Sr.; Huang, J.; Li, L.; Wang, H.; Zhu, D.

    2015-12-01

    Abstract: Cultivated Land Quality Grade monitoring and evaluation is an important way to improve the land production capability and ensure the country food safety. Irrigation guarantee capability is one of important aspects in the cultivated land quality monitoring and evaluation. In the current cultivated land quality monitoring processing based on field survey, the irrigation rate need much human resources investment in long investigation process. This study choses Beijing-Tianjin-Hebei as study region, taking the 1 km × 1 km grid size of cultivated land unit with a winter wheat-summer maize double cropping system as study object. A new irrigation capacity evaluation index based on the ratio of the annual irrigation requirement retrieved from MODIS data and the actual quantity of irrigation was proposed. With the years of monitoring results the irrigation guarantee capability of study area was evaluated comprehensively. The change trend of the irrigation guarantee capability index (IGCI) with the agricultural drought disaster area in rural statistical yearbook of Beijing-Tianjin-Hebei area was generally consistent. The average of IGCI value, the probability of irrigation-guaranteed year and the weighted average which controlled by the irrigation demand index were used and compared in this paper. The experiment results indicate that the classification result from the present method was close to that from irrigation probability in the gradation on agriculture land quality in 2012, with overlap of 73% similar units. The method of monitoring and evaluation of cultivated land IGCI proposed in this paper has a potential in cultivated land quality level monitoring and evaluation in China. Key words: remote sensing, evapotranspiration, MODIS cultivated land quality, irrigation guarantee capability Authors: Chao Zhang, Jianxi Huang, Li Li, Hongshuo Wang, Dehai Zhu China Agricultural University zhangchaobj@gmail.com

  11. Identification of cultivated land using remote sensing images based on object-oriented artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zhu, Xiufang

    2017-04-01

    Cultivated land resources is the key to ensure food security. Timely and accurate access to cultivated land information is conducive to a scientific planning of food production and management policies. The GaoFen 1 (GF-1) images have high spatial resolution and abundant texture information and thus can be used to identify fragmentized cultivated land. In this paper, an object-oriented artificial bee colony algorithm was proposed for extracting cultivated land from GF-1 images. Firstly, the GF-1 image was segmented by eCognition software and some samples from the segments were manually identified into 2 types (cultivated land and non-cultivated land). Secondly, the artificial bee colony (ABC) algorithm was used to search for classification rules based on the spectral and texture information extracted from the image objects. Finally, the extracted classification rules were used to identify the cultivated land area on the image. The experiment was carried out in Hongze area, Jiangsu Province using wide field-of-view sensor on the GF-1 satellite image. The total precision of classification result was 94.95%, and the precision of cultivated land was 92.85%. The results show that the object-oriented ABC algorithm can overcome the defect of insufficient spectral information in GF-1 images and obtain high precision in cultivated identification.

  12. Development of a Perfusion Platform for Dynamic Cultivation of in vitro Skin Models.

    PubMed

    Strüver, Kay; Friess, Wolfgang; Hedtrich, Sarah

    2017-01-01

    Reconstructed skin models are suitable test systems for toxicity testing and for basic investigations on (patho-)physiological aspects of human skin. Reconstructed human skin, however, has clear limitations such as the lack of immune cells and a significantly weaker skin barrier function compared to native human skin. Potential reasons for the latter might be the lack of mechanical forces during skin model cultivation which is performed classically in static well-plate setups. Mechanical forces and shear stress have a major impact on tissue formation and, hence, tissue engineering. In the present work, a perfusion platform was developed allowing dynamic cultivation of in vitro skin models. The platform was designed to cultivate reconstructed skin at the air-liquid interface with a laminar and continuous medium flow below the dermis equivalent. Histological investigations confirmed the formation of a significantly thicker stratum corneum compared to the control cultivated under static conditions. Moreover, the skin differentiation markers involucrin and filaggrin as well as the tight junction proteins claudin 1 and occludin showed increased expression in the dynamically cultured skin models. Unexpectedly, despite improved differentiation, the skin barrier function of the dynamically cultivated skin models was not enhanced compared with the skin models cultivated under static conditions. © 2017 S. Karger AG, Basel.

  13. Simple rain-shelter cultivation prolongs accumulation period of anthocyanins in wine grape berries.

    PubMed

    Li, Xiao-Xi; He, Fei; Wang, Jun; Li, Zheng; Pan, Qiu-Hong

    2014-09-17

    Simple rain-shelter cultivation is normally applied during the grape growth season in continental monsoon climates aiming to reduce the occurrence of diseases caused by excessive rainfall. However, whether or not this cultivation practice affects the composition and concentration of phenolic compounds in wine grapes remains unclear. The objective of this study was to investigate the effect of rain-shelter cultivation on the accumulation of anthocyanins in wine grapes (Vitis vinifera L. Cabernet Sauvignon) grown in eastern China. The results showed that rain-shelter cultivation, compared with the open-field, extended the period of rapid accumulation of sugar, increased the soluble solid content in the grape berries, and delayed the senescence of the green leaves at harvest. The concentrations of most anthocyanins were significantly enhanced in the rain-shelter cultivated grapes, and their content increases were closely correlated with the accumulation of sugar. However, the compositions of anthocyanins in the berries were not altered. Correspondingly, the expressions of VvF3'H, VvF3'5'H, and VvUFGT were greatly up-regulated and this rising trend appeared to continue until berry maturation. These results suggested that rain-shelter cultivation might help to improve the quality of wine grape berries by prolonging the life of functional leaves and hence increasing the assimilation products.

  14. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    USGS Publications Warehouse

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer’s accuracy of 93% and a user’s accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  15. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer's accuracy of 93% and a user's accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  16. 3D Cultivation Techniques for Primary Human Hepatocytes

    PubMed Central

    Bachmann, Anastasia; Moll, Matthias; Gottwald, Eric; Nies, Cordula; Zantl, Roman; Wagner, Helga; Burkhardt, Britta; Sánchez, Juan J. Martínez; Ladurner, Ruth; Thasler, Wolfgang; Damm, Georg; Nussler, Andreas K.

    2015-01-01

    One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device. PMID:27600213

  17. [Studies on chemical constituents of cultivated Cistanche salsa].

    PubMed

    Yang, Jian-Hu; Hu, Jun-Ping; Rena, Kasimu; Du, Nian-Sheng

    2008-11-01

    To study the chemical constituents of cultivated Cistanche salsa. Compounds were isolated and purified on several chromatography, and then were identified by physico-chemical properties and structurally elucidated by spectral analysis. Seven compounds were isolated and identified as beta-sitosterol (I), daucosterol (II), beta-sitosteryl glucoside 3'-O-heptadecoicate (III), 8-hydroxygeraniol 1-beta-D-glucopyranoside (IV), 2-methanol-5-hydroxy-pyridine (V), betaine (VI), galactitol (VII). The chemical constituents of artificial cultivated Cistanche salsa are studied for the first time. Among them, compound III and IV are isolated from the plant for the first time, compound V is isolated from this genus for the first time.

  18. Accumulation characteristics and correlation analysis of five ginsenosides with different cultivation ages from different regions.

    PubMed

    Xiao, Dan; Yue, Hao; Xiu, Yang; Sun, Xiuli; Wang, YiBo; Liu, ShuYing

    2015-10-01

    Ginseng (the roots of Panax ginseng Meyer) is a well-known traditional Oriental medicine and is now widely used as a health food. It contains several types of ginsenosides, which are considered the major active medicinal components of ginseng. It has recently been reported that the qualitative and quantitative properties of ginsenosides found in ginseng may differ, depending on cultivation regions, ages, species, and so on. Therefore, it is necessary to study these variations with respect to cultivation ages and regions. In this study, 3-6-yr-old roots of P. ginseng were collected from three different cultivation regions. The contents of five ginsenosides (Rb1, Rd, Rc, Re, and Rgl) were measured by rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry. The Kruskal-Wallis Rank sum test and multiple t test were used for comparative analysis of the data to evaluate the dynamic changes in the accumulation of these ginsenosides affected by cultivation regions and ages. The content and composition of ginsenosides varied significantly among specimens collected from different cultivation regions and having different cultivation ages. For all samples, the content of Rg1 and Re ginsenosides increases with age and this rate of increase is different for each sample. The contents of Rb1, Rc, and Rd varied with cultivation ages in samples from different cultivation regions; especially, Rb1 from a 6-yr-old root showed approximately twofold variation among the samples from three cultivation regions. Furthermore, the content of Rb1 highly correlated with that of Rd (r = 0.89 across all locations and ages). In our study, only the contents of ginsenosides Rg1 and Re were affected by the root age. Ginsenosides Rb1, Rc, and Rd varied widely with ages in samples from different cultivation regions.

  19. Cultivating an entrepreneurial mindset.

    PubMed

    Matheson, Sandra A

    2013-01-01

    Now as never before, familiar challenges require bold, novel approaches. Registered dietitians will benefit by cultivating an entrepreneurial mindset that involves being comfortable with uncertainty, learning to take calculated risks, and daring to just try it. An entrepreneur is someone who takes risks to create something new, usually in business. But the entrepreneurial mindset is available to anyone prepared to rely only on their own abilities for their economic security and expect no opportunity without first creating value for others.

  20. Parental material and cultivation determine soil bacterial community structure and fertility.

    PubMed

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  1. On Cultivation of Characteristic Talents in Law in Institutes of Technology

    ERIC Educational Resources Information Center

    Li, Hong

    2011-01-01

    For the time being, professional education of law offered by institutes of technology has become an important component of cultivation of professional talents in law in China. Only if institutes of technology face up with their disadvantages, make full use of their resource advantages and cultivate characteristic talents in law, are they able to…

  2. Industry Growth Forum Cultivates Clean Energy Entrepreneurship -

    Science.gov Websites

    Innovation Partnership (ATIP) Foundation. Photo by Dennis Schroeder, NREL Industry Growth Forum Cultivates , Colorado. Photo by Dennis Schroeder, NREL An analysis of data for all of the presenting companies since

  3. Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)--different cultivation techniques influence fungal biodiversity assessment.

    PubMed

    Unterseher, Martin; Schnittler, Martin

    2009-05-01

    Two cultivation-based isolation techniques - the incubation of leaf fragments (fragment plating) and dilution-to-extinction culturing on malt extract agar - were compared for recovery of foliar endophytic fungi from Fagus sylvatica near Greifswald, north-east Germany. Morphological-anatomical characters of vegetative and sporulating cultures and ITS sequences were used to assign morphotypes and taxonomic information to the isolates. Data analysis included species-accumulation curves, richness estimators, multivariate statistics and null model testing. Fragment plating and extinction culturing were significantly complementary with regard to species composition, because around two-thirds of the 35 fungal taxa were isolated with only one of the two cultivation techniques. The difference in outcomes highlights the need for caution in assessing fungal biodiversity based upon single isolation techniques. The efficiency of cultivation-based studies of fungal endophytes was significantly increased with the combination of the two isolation methods and estimations of species richness, when compared with a 20-years old reference study, which needed three times more isolates with fragment plating to attain the same species richness. Intensified testing and optimisation of extinction culturing in endophyte research is advocated.

  4. Rare earth elements profile in a cultivated and non-cultivated soil determined by laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Neves, Vinicius M; Heidrich, Graciela M; Hanzel, Flavia B; Muller, Edson I; Dressler, Valderi L

    2018-05-01

    Rare earth elements (REEs) have several applications but the effects on environment are not well known. Therefore, the aim of this work is to establish a method for direct solid sample analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) to evaluate the concentration and distribution of REEs in cultivated and non-cultivated soil. Samples were collected in two areas to 40 cm of depth. The LA-ICP-MS method is easy to be implemented and the sample treatment is very fast comprising only its drying, grounding and pressing as a pellet. The accuracy of the method was evaluated by using a certified reference material (BCR 667 - Estuarine Sediment, Institute for Reference Materials and Measurements (IRMM)) where good agreement with the certified values was obtained. Analyte recovery at two levels of concentration (2.5 and 15.0 μg g -1 ) was also performed and recoveries in the range of 85%-120% were achieved, values that are acceptable for LA-ICP-MS analysis. In general, the concentration of the REEs is higher in the cultivated soil and increased from the surface to deeper layers, which can be a consequence of fertilizer application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor.

    PubMed

    Egger, Dominik; Schwedhelm, Ivo; Hansmann, Jan; Kasper, Cornelia

    2017-05-23

    Extensive expansion of mesenchymal stem cells (MSCs) for cell-based therapies remains challenging since long-term cultivation and excessive passaging in two-dimensional conditions result in a loss of essential stem cell properties. Indeed, low survival rate of cells, alteration of surface marker profiles, and reduced differentiation capacity are observed after in vitro expansion and reduce therapeutic success in clinical studies. Remarkably, cultivation of MSCs in three-dimensional aggregates preserve stem cell properties. Hence, the large scale formation and cultivation of MSC aggregates is highly desirable. Besides other effects, MSCs cultivated under hypoxic conditions are known to display increased proliferation and genetic stability. Therefore, in this study we demonstrate cultivation of adipose derived human MSC aggregates in a stirred tank reactor under hypoxic conditions. Although aggregates were exposed to comparatively high average shear stress of 0.2 Pa as estimated by computational fluid dynamics, MSCs displayed a viability of 78-86% and maintained their surface marker profile and differentiation potential after cultivation. We postulate that cultivation of 3D MSC aggregates in stirred tank reactors is valuable for large-scale production of MSCs or their secreted compounds after further optimization of cultivation parameters.

  6. Study on diversified cultivation orientation and pattern of optoelectronic major undergraduates

    NASA Astrophysics Data System (ADS)

    Liu, Zhiying

    2017-08-01

    To improve the research quality preparation for graduate study and looking for job competition ability of undergraduates students, the education orientation objective need to be explicit. Universities need develop undergraduates' cultivation plan according to students' classification. Based on analysis of students export characteristic, there will be corresponding cultivation plan. Keep tracking study during the cultivation plan implantation process, the Curriculum system and related manage documents are revised corresponding to exist problems. There are mainly three kinds of undergraduates' career direction plan for opto-electronic major undergraduates. In addition to the vast majority university graduates opting for direct employment, nearly one third of university students choose to take part in the postgraduate entrance exams and other further education abroad, and also one-tenth choose their own businesses, university chooses are diversified. The exports are further studying as graduates, working and study abroad. Because national defense students are also recruited, the cultivation plan will be diversified to four types. For students, who go to work directly after graduation, the "Excellence engineers plan" is implemented to enhance their practice ability. For students, who will study further as graduate student, the scientific innovation research ability cultivation is paid more attention to make good foundation for their subsequent development. For students, who want to study abroad after graduation, the bilingual teaching method is introduced, and the English environment is built. We asked foreign professionals to give lectures for students. The knowledge range is extending, and the exchange and cooperation chance is provided at the same time. And the cultivation plan is revised during docking with Universities abroad. For national defense students, combat training and other defense theory courses are added to make them familiar with force knowledge. And

  7. Simplified and lower cost methods for culinary-medicinal mushrooms cultivation.

    PubMed

    Cleaver, Phillip D; Bailey, Cody; Holliday, John C

    2012-01-01

    The importance and prospect of growing mushrooms through utilization of low-cost, technologically simple methods for developing Third World countries has recently been outlined. Three different species from genus Pleurotus (P. djamor, P. pulmonarius, and P. sajor-caju) and one from genus Hypsizygus (H. ulmarius) were studied. Whole stalk wheat straw, shredded wheat straw, and ground maize cob (Zea mays) were used as the substrates. Wheat straw is the post-harvest stalk of Triticum aestivum. Biological efficiency (BE), growth dynamics, and photographs are provided for each cultivated strain, on different substrates, and substrate treatment comparisons are made. From several experiments conducted with various technologically simple methods of cultivation, it was found that all above mentioned species can be successfully cultivated at the village level in any country, be it highly developed or the poorest country on earth.

  8. Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae.

    PubMed

    Zhang, Zhen-Yu; Yuan, Yimin; Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu

    2018-01-01

    As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4', 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species.

  9. Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae

    PubMed Central

    Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu

    2018-01-01

    As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4’, 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species. PMID:29304141

  10. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.

    PubMed

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C

    2015-07-10

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m(-2) sec(-1) and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants.

  11. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae

    PubMed Central

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C.

    2015-01-01

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m-2 sec-1 and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants. PMID:26274060

  12. Capacity-oriented curriculum system of optoelectronics in the context of large category cultivation

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Hu, Zhangfang; Zhang, Yi

    2017-08-01

    In order to cultivate the innovative talents with the comprehensive development to meet the talents demand for development of economic society, Chongqing University of Posts and Telecommunications implements cultivation based on broadening basic education and enrolment in large category of general education. Optoelectronic information science and engineering major belongs to the electronic engineering category. The "2 +2" mode is utilized for personnel training, where students are without major in the first and second year and assigned to a major within the major categories in the end of the second year. In the context of the comprehensive cultivation, for the changes in the demand for professionals in the global competitive environment with the currently rapid development, especially the demand for the professional engineering technology personnel suitable to industry and development of local economic society, the concept of CDIO engineering ability cultivation is used for reference. Thus the curriculum system for the three-node structure optoelectronic information science and engineering major is proposed, which attaches great importance to engineering practice and innovation cultivation under the background of the comprehensive cultivation. The conformity between the curriculum system and the personnel training objectives is guaranteed effectively, and the consistency between the teaching philosophy and the teaching behavior is enhanced. Therefore, the idea of major construction is clear with specific characteristics.

  13. Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan.

    PubMed

    Iizuka, Takashi; Jojima, Yasuko; Fudou, Ryosuke; Tokura, Mitsunori; Hiraishi, Akira; Yamanaka, Shigeru

    2003-06-01

    Six isolates of novel marine myxobacteria, designated strains SHK-1T, SMK-1-1, SMK-1-3, SMK-10, SKK-2, and SMP-6, were obtained from various coastal samples (mud, sands and algae) collected around Japan. All of the isolates had Gram-negative rod-shaped cells, motile by gliding and grew aerobically. They showed bacteriolytic action, fruiting body formation, and NaCl requirement for growth with an optimum concentration of 1.0-2.0% (w/v). In addition, divalent cationic components of seawater, such as Mg2+ or Ca2+, were also needed for growth. The major respiratory quinone was MK-7. The G+C content of genomic DNA ranged from 65.6 to 67.4 mol% (by HPLC). The isolates shared almost identical 16S rDNA sequences, and clustered with a recently described marine myxobacterium, Plesiocystis pacifica, as their closest relative on a phylogenetic tree (95.9-96.0% similarity). Physiological and chemotaxonomic differences between the new strains and strains of the genus Plesiocystis justify the proposal of a new genus. Therefore, we propose to classify the six isolates into a new taxon of marine myxobacteria with the name, Enhygromyxa salina gen. nov., sp. nov. The type strain is SHK-1(T) (JCM 11769(T) = DSM 15217(T) = AJ 110011(T)).

  14. Cultivating Student Learning across Faith Lines

    ERIC Educational Resources Information Center

    Larson, Marion; Shady, Sara

    2013-01-01

    Educators face the important challenge of preparing students to live constructively in a religiously diverse world. At some institutions, a reluctance to allow issues of faith into the classroom creates an obstacle to cultivating the skills students need to understand, process, and engage a religiously pluralistic society. At faith-based…

  15. Cultivation in the Newer Media Environment.

    ERIC Educational Resources Information Center

    Perse, Elizabeth M.; And Others

    Researchers who study television's cultivation effects believe that heavy television viewing exposes people to consistent messages that lead them to be more fearful and mistrustful of others. The widespread adoption and use of new television technologies, such as cable, VCR, and remote control devices (RCD), however, have the potential to alter…

  16. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview.

    PubMed

    Macedo, Maria Filomena; Miller, Ana Zélia; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2009-11-01

    The presence and deteriorating action of micro-organisms on monuments and stone works of art have received considerable attention in the last few years. Knowledge of the microbial populations living on stone materials is the starting point for successful conservation treatment and control. This paper reviews the literature on cyanobacteria and chlorophyta that cause deterioration of stone cultural heritage (outdoor monuments and stone works of art) in European countries of the Mediterranean Basin. Some 45 case studies from 32 scientific papers published between 1976 and 2009 were analysed. Six lithotypes were considered: marble, limestone, travertine, dolomite, sandstone and granite. A wide range of stone monuments in the Mediterranean Basin support considerable colonization of cyanobacteria and chlorophyta, showing notable biodiversity. About 172 taxa have been described by different authors, including 37 genera of cyanobacteria and 48 genera of chlorophyta. The most widespread and commonly reported taxa on the stone cultural heritage in the Mediterranean Basin are, among cyanobacteria, Gloeocapsa, Phormidium and Chroococcus and, among chlorophyta, Chlorella, Stichococcus and Chlorococcum. The results suggest that cyanobacteria and chlorophyta colonize a wide variety of substrata and that this is related primarily to the physical characteristics of the stone surface, microclimate and environmental conditions and secondarily to the lithotype.

  17. Groundwater-quality data in the Monterey–Salinas shallow aquifer study unit, 2013: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.

    2016-09-01

    Groundwater quality in the 3,016-square-mile Monterey–Salinas Shallow Aquifer study unit was investigated by the U.S. Geological Survey (USGS) from October 2012 to May 2013 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project. The GAMA Monterey–Salinas Shallow Aquifer study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the shallow-aquifer systems in parts of Monterey and San Luis Obispo Counties and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The shallow-aquifer system in the Monterey–Salinas Shallow Aquifer study unit was defined as those parts of the aquifer system shallower than the perforated depth intervals of public-supply wells, which generally corresponds to the part of the aquifer system used by domestic wells. Groundwater quality in the shallow aquifers can differ from the quality in the deeper water-bearing zones; shallow groundwater can be more vulnerable to surficial contamination.Samples were collected from 170 sites that were selected by using a spatially distributed, randomized grid-based method. The study unit was divided into 4 study areas, each study area was divided into grid cells, and 1 well was sampled in each of the 100 grid cells (grid wells). The grid wells were domestic wells or wells with screen depths similar to those in nearby domestic wells. A greater spatial density of data was achieved in 2 of the study areas by dividing grid cells in those study areas into subcells, and in 70 subcells, samples were collected from exterior faucets at sites where there were domestic wells or wells with screen depths similar to those in nearby domestic wells (shallow-well tap sites).Field water-quality indicators (dissolved oxygen, water temperature, pH, and specific conductance) were measured, and samples for analysis of inorganic

  18. A Flexible System for Cultivation of Methanococcus and Other Formate-Utilizing Methanogens

    PubMed Central

    Wang, Liangliang; Lupa, Boguslaw

    2017-01-01

    Many hydrogenotrophic methanogens use either H2 or formate as the major electron donor to reduce CO2 for methane production. The conventional cultivation of these organisms uses H2 and CO2 as the substrate with frequent replenishment of gas during growth. H2 is explosive and requires an expensive gassing system to handle safely. Formate is as an ideal alternative substrate from the standpoints of both economy and safety but leads to large changes in the culture pH during growth. Here, we report that glycylglycine is an inexpensive and nontoxic buffer suitable for growth of Methanococcus maripaludis and Methanothermococcus okinawensis. This cultivation system is suitable for growth on liquid as well as solid medium in serum bottles. Moreover, it allows cultivation of liter scale cultures without expensive fermentation equipment. This formate cultivation system provides an inexpensive and flexible alternative for the growth of formate-utilizing, hydrogenotrophic methanogens. PMID:29348732

  19. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration.

    PubMed

    Ahmed, Nesar; Thompson, Shirley; Glaser, Marion

    2018-05-01

    Globally, shrimp farming has had devastating effects on mangrove forests. However, mangroves are the most carbon-rich forests, with blue carbon (i.e., carbon in coastal and marine ecosystems) emissions seriously augmented due to devastating effects on mangrove forests. Nevertheless, integrated mangrove-shrimp cultivation has emerged as a part of the potential solution to blue carbon emissions. Integrated mangrove-shrimp farming is also known as organic aquaculture if deforested mangrove area does not exceed 50% of the total farm area. Mangrove destruction is not permitted in organic aquaculture and the former mangrove area in parts of the shrimp farm shall be reforested to at least 50% during a period of maximum 5 years according to Naturland organic aquaculture standards. This article reviews integrated mangrove-shrimp cultivation that can help to sequester blue carbon through mangrove restoration, which can be an option for climate change mitigation. However, the adoption of integrated mangrove-shrimp cultivation could face several challenges that need to be addressed in order to realize substantial benefits from blue carbon sequestration.

  20. Cultivation of parasitic leptospires: effect of pyruvate.

    PubMed

    Johnson, R C; Walby, J; Henry, R A; Auran, N E

    1973-07-01

    Sodium pyruvate (100 mug/ml) is a useful addition to the Tween 80-albumin medium for the cultivation of parasitic serotypes. It is most effective in promoting growth from small inocula and growth of the nutritionally fastidious serotypes.

  1. Energy-water nexus for mass cultivation of algae.

    PubMed

    Murphy, Cynthia Folsom; Allen, David T

    2011-07-01

    Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.

  2. Hydrologic, water-quality, and biological assessment of Laguna de las Salinas, Ponce, Puerto Rico, January 2003-September 2004

    USGS Publications Warehouse

    Soler-López, Luis R.; Gómez-Gómez, Fernando; Rodríguez-Martínez, Jesús

    2005-01-01

    The Laguna de Las Salinas is a shallow, 35-hectare, hypersaline lagoon (depth less than 1 meter) in the municipio of Ponce, located on the southern coastal plain of Puerto Rico. Hydrologic, water-quality, and biological data in the lagoon were collected between January 2003 and September 2004 to establish baseline conditions. During the study period, rainfall was about 1,130 millimeters, with much of the rain recorded during three distinct intense events. The lagoon is connected to the sea by a shallow, narrow channel. Subtle tidal changes, combined with low rainfall and high evaporation rates, kept the lagoon at salinities above that of the sea throughout most of the study. Water-quality properties measured on-site (temperature, pH, dissolved oxygen, specific conductance, and Secchi disk transparency) exhibited temporal rather than spatial variations and distribution. Although all physical parameters were in compliance with current regulatory standards for Puerto Rico, hyperthermic and hypoxic conditions were recorded during isolated occasions. Nutrient concentrations were relatively low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 1.9 milligrams per liter and the average total phosphorus concentration was 0.4 milligram per liter. Total organic carbon concentrations ranged from 12.0 to 19.0 milligrams per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll a concentration was 13.4 micrograms per liter. Chlorophyll b was detected (detection limits 0.10 microgram per liter) only twice during the study. About 90 percent of the primary productivity in the Laguna de Las Salinas was generated by periphyton such as algal mats and macrophytes such as seagrasses. Of the average net productivity of 13.6 grams of oxygen per cubic meter per day derived from the diel

  3. Adulteration and cultivation region identification of American ginseng using HPLC coupled with multivariate analysis

    PubMed Central

    Yu, Chunhao; Wang, Chong-Zhi; Zhou, Chun-Jie; Wang, Bin; Han, Lide; Zhang, Chun-Feng; Wu, Xiao-Hui; Yuan, Chun-Su

    2014-01-01

    American ginseng (Panax quinquefolius) is originally grown in North America. Due to price difference and supply shortage, American ginseng recently has been cultivated in northern China. Further, in the market, some Asian ginsengs are labeled as American ginseng. In this study, forty-three American ginseng samples cultivated in the USA, Canada or China were collected and 14 ginseng saponins were determined using HPLC. HPLC coupled with hierarchical cluster analysis and principal component analysis was developed to identify the species. Subsequently, an HPLC-linear discriminant analysis was established to discriminate cultivation regions of American ginseng. This method was successfully applied to identify the sources of 6 commercial American ginseng samples. Two of them were identified as Asian ginseng, while 4 others were identified as American ginseng, which were cultivated in the USA (3) and China (1). Our newly developed method can be used to identify American ginseng with different cultivation regions. PMID:25044150

  4. Differentiation of the root of Cultivated Ginseng, Mountain Cultivated Ginseng and Mountain Wild Ginseng using FT-IR and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Yong-Guo; Xu, Hong; Sun, Su-Qin; Wang, Zheng-Tao

    2008-07-01

    Ginseng is one of the most widely used herbal medicines. Based on the grown environments and the cultivate method, three kinds of ginseng, Cultivated Ginseng (CG), Mountain Cultivated Ginseng (MCG) and Mountain Wild Ginseng (MWG) are classified. A novel and scientific-oriented method was developed and established to discriminate and identify three kinds of ginseng using Fourier transform infrared spectroscopy (FT-IR), secondary derivative IR spectra and two-dimensional correlation infrared spectroscopy (2D-IR). The findings indicated that the relative contents of starch in the CG were more than that in MCG and MWG, while the relative contents of calcium oxalate and lipids in MWG were more than that in CG and MCG, and the relative contents of fatty acid in MCG were more than that in CG and MWG. The hierarchical cluster analysis was applied to data analysis of MWG, CG and MWG, which could be classified successfully. The results demonstrated the macroscopic IR fingerprint method, including FT-IR, secondary derivative IR and 2D-IR, can be applied to discriminate different ginsengs rapidly, effectively and non-destructively.

  5. Biofuel production utilizing a dual-phase cultivation system with filamentous cyanobacteria.

    PubMed

    Aoki, Jinichi; Kawamata, Toru; Kodaka, Asuka; Minakawa, Masayuki; Imamura, Nobukazu; Tsuzuki, Mikio; Asayama, Munehiko

    2018-04-17

    Biomass yields and biofuel production were examined in a dual (solid and liquid)-phase cultivation system (DuPHA) with the unique filamentous cyanobacteria, Pseudanabaena sp. ABRG 5-3 and Limnothrix sp. SK1-2-1. Continuous circular cultivation was driven under the indoor closed (IC) or indoor opened (IO) conditions and provided biomass yields of approximately 8 to 27 g dry cell weight (DCW) floor m -2 d -1 . Alkanes of heptadecane (C 17 H 36 ) or pentadecane (C 15 H 32 ) as liquid biofuels were also recovered from the lower liquid-phase, in which cyanobacteria were dropped from the upper solid-phase and continuously cultivated with a small amount of medium. After the main cultivation in DuPHA, the upper solid-phase of a cotton cloth on which cyanobacteria grew was dried and directly subjected to a combustion test. This resulted in the thermal power (kJ s -1 ) of the cloth with microalgae increasing approximately 20 to 50% higher than that of the cloth only, suggesting a possibility of using the solid phase with microalgae as solid biofuel. Copyright © 2018. Published by Elsevier B.V.

  6. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach.

    PubMed

    Eevers, N; Hawthorne, J R; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Propagating the Haze? Community and professional perceptions of cannabis cultivation and the impacts of prohibition.

    PubMed

    Beckett Wilson, Helen; Taylor, Stuart; Barrett, Giles; Jamieson, Janet; Grindrod, Lauren

    2017-10-01

    Recent decades have seen substantial changes in the UK cannabis landscape, including increased domestic production, the ascendancy of stronger strains (namely 'skunk') and the drug's reclassification under the 1971 Misuse of Drugs Act. Resultantly, cannabis retains significance in the consciousness, priorities and policy agendas of communities, drug services and criminal justice agencies. This paper presents an empirical study, which examined both perceptions and impacts of cannabis cultivation and its control within a North-West English borough. It draws on qualitative research with samples of professionals, practitioners, resident groups, cannabis users, cannabis users' families and cannabis cultivators themselves. The findings suggest that cannabis cultivation was not a uniformly familiar concept to respondents, who had limited knowledge and experience of its production. Across all participant groups, the transmission of accurate information was lacking, with individuals instead drawing on the reductionist drug discourse (Taylor, 2016) to fill knowledge deficits. Consequently, some participants conflated cannabis cultivation with wider prohibitionist constructions of drug markets, resulting in the diffusion of misinformation and an amplification of anxieties. In contrast, other participants construed cultivation as making economic sense during austerity, justifying such tolerance through inverse adherence to the same narrow socio-cultural construction of drugs i.e. that cultivation carried comparatively less harms than real drug markets. Enforcement mechanisms also drew on generic prohibitionist conceptions, assuming cultivators to be unconstrained, autonomous actors in need of punishment; a belief which lacked nuanced understanding of the local terrain where vulnerable individuals cultivating under duress played a key role in the supply chain. The paper concludes with a call for the provision of accessible information/education; the need to challenge and

  8. Definition of management zones for enhancing cultivated land conservation using combined spatial data.

    PubMed

    Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi

    2013-10-01

    The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation

  9. Genetic and Epigenetic Diversities Shed Light on Domestication of Cultivated Ginseng (Panax ginseng).

    PubMed

    Li, Ming-Rui; Shi, Feng-Xue; Zhou, Yu-Xin; Li, Ya-Ling; Wang, Xin-Feng; Zhang, Cui; Wang, Xu-Tong; Liu, Bao; Xiao, Hong-Xing; Li, Lin-Feng

    2015-11-02

    Chinese ginseng (Panax ginseng) is a medically important herb within Panax and has crucial cultural values in East Asia. As the symbol of traditional Chinese medicine, Chinese ginseng has been used as a herbal remedy to restore stamina and capacity in East Asia for thousands of years. To address the evolutionary origin and domestication history of cultivated ginseng, we employed multiple molecular approaches to investigate the genetic structures of cultivated and wild ginseng across their distribution ranges in northeastern Asia. Phylogenetic and population genetic analyses revealed that the four cultivated ginseng landraces, COMMON, BIANTIAO, SHIZHU, and GAOLI (also known as Korean ginseng), were not domesticated independently and Fusong Town is likely one of the primary domestication centers. In addition, our results from population genetic and epigenetic analyses demonstrated that cultivated ginseng maintained high levels of genetic and epigenetic diversity, but showed distinct cytosine methylation patterns compared with wild ginseng. The patterns of genetic and epigenetic variation revealed by this study have shed light on the domestication history of cultivated ginseng, which may serve as a framework for future genetic improvements. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  10. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy.

    PubMed

    Zhou, Weizheng; Wang, Zhongming; Xu, Jingliang; Ma, Longlong

    2018-05-22

    The high cost of large-scale cultivation of microalgae has limited their industrial application. This study investigated the potential use of mixed biogas slurry and municipal wastewater to cultivate microalgae. Pig biogas slurry as the sole nutrient supplement, was assessed for the cultivation of Chlorella zofingiensis in municipal wastewater. Batch culture of various ratios of pig biogas slurry and municipal wastewater were compared. The characteristics of algal growth and lipid production were analyzed, and the removal rates of nitrogen and phosphate were examined. Results indicate that 8% pig bio-gas slurry in municipal wastewater, had a significant effect on microalgal growth. C. zofingiensis, with 2.5 g L -1 biomass, 93% total nitrogen and 90% total phosphorus removal. Lipid content was improved by 8% compared to BG11 medium. These findings show that mixing pig biogas slurry and municipal wastewater, without additional nutrition sources, allows efficient cultivation of C. zofingiensis. This is of high research and industrial significance, allowing cultivation of C. zofingiensis in mixed waste culture solution without additional nutrition sources. Copyright © 2018. Published by Elsevier B.V.

  11. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation

    PubMed Central

    Granzin, Markus; Wagner, Juliane; Köhl, Ulrike; Cerwenka, Adelheid; Huppert, Volker; Ullrich, Evelyn

    2017-01-01

    Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an attractive option to increase NK cells in numbers and to improve their antitumor potential prior to clinical applications. Consequently, various strategies to generate NK cells for adoptive immunotherapy have been developed. Here, we give an overview of different NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture and expand NK cells. The selection of the respective cytokine combination is an important factor that directly affects NK cell maturation, proliferation, survival, distribution of NK cell subpopulations, activation, and function in terms of cytokine production and cytotoxic potential. Importantly, cytokines can upregulate the expression of certain activating receptors on NK cells, thereby increasing their responsiveness against tumor cells that express the corresponding ligands. Apart from using cytokines, cocultivation with autologous accessory non-NK cells or addition of growth-inactivated feeder cells are approaches for NK cell cultivation with pronounced effects on NK cell activation and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells become frequently dysfunctional in cancer patients, for instance, by downregulation of NK cell activating receptors, disabling them in their antitumor response. In such scenario, ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to overcome immunosuppression. In this review, we summarize the current knowledge on NK cell modulation by different ex vivo cultivation strategies focused on increasing NK cytotoxicity for clinical application in malignant

  12. Effect of Rice Cultivation Systems on Indigenous Arbuscular Mycorrhizal Fungal Community Structure

    PubMed Central

    Watanarojanaporn, Nantida; Boonkerd, Nantakorn; Tittabutr, Panlada; Longtonglang, Aphakorn; Young, J. Peter W.; Teaumroong, Neung

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem are necessary for proper management of beneficial symbiosis. Here we explored how the patterns of the AMF community in rice roots were affected by rice cultivation systems (the system of rice intensification [SRI] and the conventional rice cultivation system [CS]), and by compost application during growth stages. Rice plants harvested from SRI-managed plots exhibited considerably higher total biomass, root dry weight, and seed fill than those obtained from conventionally managed plots. Our findings revealed that all AMF sequences observed from CS plots belonged (only) to the genus Glomus, colonizing in rice roots grown under this type of cultivation, while rice roots sown in SRI showed sequences belonging to both Glomus and Acaulospora. The AMF community was compared between the different cultivation types (CS and SRI) and compost applications by principle component analysis. In all rice growth stages, AMF assemblages of CS management were not separated from those of SRI management. The distribution of AMF community composition based on T-RFLP data showed that the AMF community structure was different among four cultivation systems, and there was a gradual increase of Shannon-Weaver indices of diversity (H′) of the AMF community under SRI during growth stages. The results of this research indicated that rice grown in SRI-managed plots had more diverse AMF communities than those grown in CS plots. PMID:23719585

  13. Progress in cultivation-independent phyllosphere microbiology

    PubMed Central

    Müller, Thomas; Ruppel, Silke

    2014-01-01

    Most microorganisms of the phyllosphere are nonculturable in commonly used media and culture conditions, as are those in other natural environments. This review queries the reasons for their ‘noncultivability’ and assesses developments in phyllospere microbiology that have been achieved cultivation independently over the last 4 years. Analyses of total microbial communities have revealed a comprehensive microbial diversity. 16S rRNA gene amplicon sequencing and metagenomic sequencing were applied to investigate plant species, location and season as variables affecting the composition of these communities. In continuation to culture-based enzymatic and metabolic studies with individual isolates, metaproteogenomic approaches reveal a great potential to study the physiology of microbial communities in situ. Culture-independent microbiological technologies as well advances in plant genetics and biochemistry provide methodological preconditions for exploring the interactions between plants and their microbiome in the phyllosphere. Improving and combining cultivation and culture-independent techniques can contribute to a better understanding of the phyllosphere ecology. This is essential, for example, to avoid human–pathogenic bacteria in plant food. PMID:24003903

  14. Map showing drainage basins and historic cloudburst floods in the Salina quadrangle, Utah

    USGS Publications Warehouse

    Hackman, Robert J.; Williams, Paul L.

    1972-01-01

    In the Salina quadrangle, as in most of the arid West, summer precipitation commonly occurs as thunderstorms. Suring these storms, rain falls as a torrential downpour, or cloudburst, in a local area. An inch of rain or more may fall in half an hour; U.S. Weather Bureau records show that o.4 inch of rain has fallen in a period of 5 minutes (Woolley, 1946). Such a fall of water far exceeds the absorptive capacity of the ground surface, and in areas of steep sparsely vegetated terrain the runoff forms a cloudburst flood in which loose rock, soil, and alluvium combine with water to form a debris-laden mudflow. The mudflow then moves rapidly down gullies and canyons with power great enough to erode and to transport debris, and to destroy the works of man lying in its path. When the mudflow pours from the canyon mount into an open valley, solid debris separates from the water and is added to the alluvial fan built by numerous previous floods. Because many towns in Utah are built on fans at the mouths of canyons, there has been loss of life and considerable damage to buildings, streets, and crops since 1847, when white men first settled in Utah.This map shows historical cloudburst floods for which records exist; data were taken from the sources listed below. Most of the flooded areas shown are in or near populated places, and so the floods were observed and recorded. Actually, no part of the quadrangle is exempt from cloudburst floods; every canyon, dry wash, and swale is visited sooner or later by a cloudburst and becomes, briefly, the site of a destructive mudflow. The traveler is advised to exercise caution in all drainageways, especially during July and August, when 80 percent of the cloudbursts occur.

  15. Microbiota of radish plants, cultivated in closed and open ecological systems

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.

    It is common knowledge that microorganisms respond to environmental changes faster than other representatives of the living world. The major aim of this work was to examine and analyze the characteristics of the microbiota of radish culture, cultivated in the closed ecological system of human life-support Bios-3 and in an open system in different experiments. Microbial community of near-root, root zone and phyllosphere of radish were studied at the phases of seedlings, root formation, technical ripeness—by washing-off method—like microbiota of the substrate (expanded clay aggregate) and of the seeds of radish culture. Inoculation on appropriate media was made to count total quantity of anaerobic and aerobic bacteria, bacteria of coliform group, spore-forming, Proteus group, fluorescent, phytopathogenic bacteria, growing on Fermi medium, yeasts, microscopic fungi, Actinomyces. It was revealed that formation of the microbiota of radish plants depends on the age, plant cultivation technology and the specific conditions of the closed system. Composition of microbial conveyor-cultivated in phytotrons varied in quality and in quantity with plant growth phases—in the same manner as cultivation of even-aged soil and hydroponics monocultures which was determined by different qualitative and quantitative composition of root emissions in the course of plant vegetation. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of radish. We registered the changes in the species composition and microorganism quantity during plant cultivation in the closed system on a long-used solution. It was demonstrated that during the short-term (7 days) use of the nutrient solution in the experiments without system closing, the species composition of the microbiota of radish plants was more diverse in a multiple-aged vegetable polyculture (61

  16. Ecological balance between supply and demand based on cultivated land ecological footprint method in Guizhou Province

    NASA Astrophysics Data System (ADS)

    Qian, Qinghuan; Zhou, Dequan; Bai, Xiaoyong; Xiao, Jianyong; Chen, Fei; Zeng, Cheng

    2018-01-01

    In order to construct the indicators of the balance between supply and demand of the cultivated land ecological carrying capacity, basing on the relation of the cultivated land ecological carrying capacity supply and demand, applying the model of Cultivated Land Ecological Footprints and the method of CIS and considering the factors of cultivated land production, taking the statistical data of 2015 as an example, and then made a systematic evaluation of the balance between supply and demand of the cultivated land ecological carrying capacity in Guizhou Province. The results show that (1) the spatial distribution of supply and demand of cultivated land ecological carrying capacity in Guizhou is unbalanced, and the northern and eastern parts are the overloading area, the middle, the south and the west parts are the balance area. (2) From the perspective of cultivated land structure, the crops with ecological carrying capacity surplus were rice, vegetables and peanuts, among which rice was the highest and the ecological balance index was 0.7354. The crops with ecological carrying capacity overload were potato, wheat, maize, rapeseeds, soybeans and cured tobacco, of which the index of potato up to 7.11, other types of indices are less than 1.5. The research can provide the ecological security early warning, the overall plan of land use and sustainable development of the area cultivated land with scientific evidence and decision support.

  17. Developing Virtue and Rehabilitating Vice: Worries about Self-Cultivation and Self-Reform

    ERIC Educational Resources Information Center

    Battaly, Heather

    2016-01-01

    Aristotelian virtue theorists have emphasized the role of the self in developing virtue and in rehabilitating vice. But this article argues that, as Aristotelians, we have placed too much emphasis on self-cultivation and self-reform. Self-cultivation is not required for developing virtue or vice. Nor will "sophia"-inspired self-reform…

  18. Attached cultivation technology of microalgae for efficient biomass feedstock production.

    PubMed

    Liu, Tianzhong; Wang, Junfeng; Hu, Qiang; Cheng, Pengfei; Ji, Bei; Liu, Jinli; Chen, Yu; Zhang, Wei; Chen, Xiaoling; Chen, Lin; Gao, Lili; Ji, Chunli; Wang, Hui

    2013-01-01

    The potential of microalgae biofuel has not been realized because of low productivity and high costs associated with the current cultivation systems. In this paper, an attached cultivation method was introduced, in which microalgae cells grew on the surface of vertical artificial supporting material to form algal film. Multiple of the algal films were assembled in an array fashion to dilute solar irradiation to facilitate high photosynthetic efficiency. Results showed that a broad range of microalgae species can grow with this attached method. A biomass productivity of 50-80 g m(-2) d(-1) was obtained outdoors for Scenedesmus obliquus, corresponding to the photosynthetic efficiency of 5.2-8.3% (total solar radiation). This attached method also offers lots of possible advantages over traditional open ponds, such as on water saving, harvesting, contamination controlling and scale-up. The attached cultivation represents a promising technology for economically viable production of microalgae biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Process-product dynamics: the role of Otherness in cultural cultivation.

    PubMed

    Lyra, Maria C D P

    2014-06-01

    Carriere (2013) presents a stimulating perspective on the cultural phenomena aiming to recover the role of the external products of culture to imbalance the currently popular emphasis on subject's process of cultivation highlighted by semiotic developmental cultural psychology. The excessive focus on subject's internal processes dismissing a better consideration of products of culture and the compelling objective realities of other dimensions of culture are pointed out. By this way the author's proposes a better dialogue with others perspectives on (cross)cultural psychology. These arguments are analyzed through a closer consideration of I-Other perennial movement. A dialogical view of process-product dynamics is then proposed. The role of Otherness--the one that (partially)shares and the one as witness, approving or disapproving subject's products of cultivation--is discussed through the analysis of a concrete episode of the cultivation of the subject. It is concluded that a semiotic developmental cultural psychology and (cross) cultural psychology have different objects of knowledge comprising distinct interests and research fields.

  20. CHARACTERISTICS OF GROWTH OF SARCOMA AND CARCINOMA CULTIVATED IN VITRO

    PubMed Central

    Lambert, Robert A.; Hanes, Frederic M.

    1911-01-01

    1. The transplantable sarcomata of rats and mice grow very readily by the method of cultivating tissues in vitro. 2. Sarcomatous tissue grows in conformity to a type which may be regarded as characteristic for tissues of mesenchymal origin. 3. The growth of sarcoma cells in vitro consists in ameboid wandering into the surrounding plasma, karyokinetic proliferation. and evidences of active metabolism on the part of the cells. 4. Mouse carcinomata can be cultivated in vitro. The outgrowth of carcinoma cells assumes a sheet-like form, only one cell in thickness. They migrate into the plasma by ameboid movement, the advancing edge showing numerous prolongations of the cytoplasm into pseudopods. 5. Karyokinetic figures are frequently seen in growing carcinoma cells. The cells show evidences of active metabolism. 6. Both sarcoma and carcinoma cells cultivated in vitro show active phagocytosis; carmin particles placed in the plasma are taken up rapidly by the growing cells. PMID:19867430

  1. Cultivation of Parasitic Leptospires: Effect of Pyruvate

    PubMed Central

    Johnson, R. C.; Walby, J.; Henry, R. A.; Auran, N. E.

    1973-01-01

    Sodium pyruvate (100 μg/ml) is a useful addition to the Tween 80-albumin medium for the cultivation of parasitic serotypes. It is most effective in promoting growth from small inocula and growth of the nutritionally fastidious serotypes. Images PMID:4580191

  2. Cultivation Of Microalgae (Chlorella vulgaris) For Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Blinová, Lenka; Bartošová, Alica; Gerulová, Kristína

    2015-06-01

    Production of biofuel from renewable sources is considered to be one of the most sustainable alternatives to petroleum sourced fuels. Biofuels are also viable means of environmental and economic sustainability. Biofuels are divided into four generations, depending on the type of biomass used for biofuels production. At present, microalgae are presented as an ideal third generation biofuel feedstock because of their rapid growth rate. They also do not compete with food or feed crops, and can be produced on non-arable land. Cultivation conditions (temperature, pH, light, nutrient quantity and quality, salinity, aerating) are the major factors that influence photosynthesis activity and behaviour of the microalgae growth rate. In this paper, we present an overview about the effect of cultivation conditions on microalgae growth.

  3. Cultivation of pathogenic Treponema pallidum in vitro.

    PubMed

    Horváth, I; Duncan, W P; Bullard, J C

    1981-01-01

    Treponema pallidum was discovered relatively late and was not cultured in vitro. Both the delineation of T. pallidum biology and the eradication of syphilis suggest the necessity of cultivation in vitro. An attempt has been made with an improved medium to cultivate pathogenic T. pallidum Budapest strain in vitro. Only in the first passage, evidence of in vitro multiplication of T. pallidum has been established by (i) macroscopic observation, (ii) darkfield examination, (iii) electron microscopic examination, (iv) optical densities, (v) tritium labelled thymidine incorporation, and (vi) the pathogenicity off the cultured organisms was evidenced by rabbit challenge. Explanation of the oxygen utilization of T. pallidum suspension is discussed. Unidentified formations were observed on electron micrographs from the 96 h cultures. They may belong to the multiplication forms of treponemes. Further experiments are needed for their identification and for expansion of the multiplication of T. pallidum beyond the first passage.

  4. Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation.

    PubMed

    Nambu-Nishida, Yumiko; Sakihama, Yuri; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2018-01-01

    To efficiently utilize xylose, a major sugar component of hemicelluloses, in Saccharomyces cerevisiae requires the proper expression of varied exogenous and endogenous genes. To expand the repertoire of promoters in engineered xylose-utilizing yeast strains, we selected promoters in S. cerevisiae during cultivation and fermentation using xylose as a carbon source. To select candidate promoters that function in the presence of xylose, we performed comprehensive gene expression analyses using xylose-utilizing yeast strains both during xylose and glucose fermentation. Based on microarray data, we chose 29 genes that showed strong, moderate, and weak expression in xylose rather than glucose fermentation. The activities of these promoters in a xylose-utilizing yeast strain were measured by lacZ reporter gene assays over time during aerobic cultivation and microaerobic fermentation, both in xylose and glucose media. In xylose media, P TDH3 , P FBA1 , and P TDH1 were favorable for high expression, and P SED1 , P HXT7 , P PDC1 , P TEF1 , P TPI1 , and P PGK1 were acceptable for medium-high expression in aerobic cultivation, and moderate expression in microaerobic fermentation. P TEF2 allowed moderate expression in aerobic culture and weak expression in microaerobic fermentation, although it showed medium-high expression in glucose media. P ZWF1 and P SOL4 allowed moderate expression in aerobic cultivation, while showing weak but clear expression in microaerobic fermentation. P ALD3 and P TKL2 showed moderate promoter activity in aerobic cultivation, but showed almost no activity in microaerobic fermentation. The knowledge of promoter activities in xylose cultivation obtained in this study will permit the control of gene expression in engineered xylose-utilizing yeast strains that are used for hemicellulose fermentation. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    NASA Astrophysics Data System (ADS)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  6. Phylogeography of the wild and cultivated stimulant plant qat (Catha edulis, Celastraceae) in areas of historic cultivation1

    USDA-ARS?s Scientific Manuscript database

    Qat (Catha edulis, Celastraceae) is a woody plant species cultivated for its stimulant alkaloids. Qat is important to the economy and culture in large regions of Ethiopia, Kenya, and Yemen. Despite the importance of this species, the wild origins and dispersal of cultivars have only been described i...

  7. Progress and prospects for field cultivation of Iridaea cordata and Gigartina exasperata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumford, T.F. Jr.; Waaland, J.R.

    1980-01-01

    Research on cultivation of two carrageenan producing seaweeds, Iridaea cordatas and Gigartina exasperata, has resulted in 60 net units, each 1.2 x 18 m outplanted in the inland marine waters of Washington State. This paper traces the progress from beginning field and laboratory studies that demonstrated the biological feasibility of growing these species on artificial substrates, to current commercial sized net modules. The results achieved with these species are compared with other experimental, pilot, and commercial-scale red algal cultivation efforts. Methods are given here for inoculating nets and outplanting them in small, intermediate and commercial-scale net modules which can bemore » used to determine the feasibility of cultivating these or other species in various localities. A brief summary of supporting research which has been accomplished, which is in progress, and which needs to be done is also given. The outlook for expanded seaweed cultivation is promising and its potential great for providing new and expanded sources of chemicals, food, and biomass.« less

  8. Expanded algal cultivation can reverse key planetary boundary transgressions.

    PubMed

    Calahan, Dean; Osenbaugh, Edward; Adey, Walter

    2018-02-01

    Humanity is degrading multiple ecosystem services, potentially irreversibly. Two of the most important human impacts are excess agricultural nutrient loading in our fresh and estuarine waters and excess carbon dioxide in our oceans and atmosphere. Large-scale global intervention is required to slow, halt, and eventually reverse these stresses. Cultivating attached polyculture algae within controlled open-field photobioreactors is a practical technique for exploiting the ubiquity and high primary productivity of algae to capture and recycle the pollutants driving humanity into unsafe regimes of biogeochemical cycling, ocean acidification, and global warming. Expanded globally and appropriately distributed, algal cultivation is capable of removing excess nutrients from global environments, while additionally sequestering appreciable excess carbon. While obviously a major capital and operational investment, such a project is comparable in magnitude to the construction and maintenance of the global road transportation network. Beyond direct amelioration of critical threats, expanded algal cultivation would produce a major new commodity flow of biomass, potentially useful either as a valuable organic commodity itself, or used to reduce the scale of the problem by improving soils, slowing or reversing the loss of arable land. A 100 year project to expand algal cultivation to completely recycle excess global agricultural N and P would, when fully operational, require gross global expenses no greater than $2.3 × 10 12 yr -1 , (3.0% of the 2016 global domestic product) and less than 1.9 × 10 7 ha (4.7 × 10 7 ac), 0.38% of the land area used globally to grow food. The biomass generated embodies renewable energy equivalent to 2.8% of global primary energy production.

  9. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    NASA Astrophysics Data System (ADS)

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  10. Method of producing purified carotenoid compounds

    NASA Technical Reports Server (NTRS)

    Eggink, Laura (Inventor)

    2007-01-01

    A method of producing a carotenoid in solid form includes culturing a strain of Chlorophyta algae cells in a minimal inorganic medium and separating the algae comprising a solid form of carotenoid. In one embodiment f the invention, the strain of Chlorophyta algae cells includes a strain f Chlamydomonas algae cells.

  11. The utilization of ultisol soil for horticulture crops cultivation

    NASA Astrophysics Data System (ADS)

    Sumono; Parinduri, SM; Huda, N.; Ichwan, N.

    2018-02-01

    Ultisol soil is a marginal soil commonly used for palm oil cultivation in Indonesia, its very potential for cultivation of horticulture crops. The utilization of ultisol soil can be done with adding compost with certain proportions. The research aimed to know best proportion of ultisol soil and compost, and proportion of water concentration, and its relationship with fresh and dry weight of horticulture crops . The research was divided 3 steps. The first, mixed ultisol soil and compost with certain proportion and flooding until steady. The second, watering with different concentration to soil mixture. The last, studied its relationship with fresh and dry weight of crops. The result show that physical properties and nutrient content of ultisol soil was increasing with adding compost. SC4 (70% soil and 30% compost) is the best composition to soil mixture. Watering with different concentration show that trend decreased from reference and the bulk density and porosity decreased not significantly at the significant level ∝ = 0.05. Watering affect mass of pakcoynot significantly at the significant level ∝ = 0.05. Hence, ultisol soil was a potential marginal soil to utilizing as a media for cultivating horticulture crops.

  12. Evolution of Cuphea PSR23 under cultivation

    USDA-ARS?s Scientific Manuscript database

    A series of experiments carried out under controlled environments and field conditions (2002-2008) evaluated populations of the potential oilseed crop PSR23, a selection from a cross between two wild Cuphea species (C. viscosissima and C. lanceolata) for indicators of evolution under cultivation and...

  13. Aggregate stability in soils cultivated with eucalyptus

    USDA-ARS?s Scientific Manuscript database

    Eucalyptus cultivation has increased in many Brazilian regions. In order to recommend good management practices, it is necessary to understand changes in soil properties where eucalyptus is planted. Aggregate stability analyses have proved to be a useful tool to measure soil effects caused by change...

  14. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium

    NASA Astrophysics Data System (ADS)

    Putri, D.; Ulhidayati, A.; Musthofa, I. A.; Wardani, A. K.

    2018-03-01

    The aim of this study was to investigate the effect of various food processing wastes on the production of single cell protein by Chlorella sp. Three various food processing wastes i.e. tofu waste, tempeh waste and cheese whey waste were used as cultivation medium for Chlorella sp. growth. Sea water was used as a control of cultivation medium. The addition of waste into cultivation medium was 10%, 20%, 30%, 40%, and 50%. The result showed that the highest yield of cell mass and protein content was found in 50% tofu waste cultivation medium was 47.8 × 106 cell/ml with protein content was 52.24%. The 50% tofu waste medium showed improved cell yield as nearly as 30% than tempeh waste medium. The yield of biomass and protein content when 30% tempeh waste was used as cultivation medium was 37.1 × 106 cell/ml and 52%, respectively. Thus, food processing waste especially tofu waste would be a promising candidate for cultivation medium for single cell production from Chlorella sp. Moreover, the utilization of waste can reduce environmental pollution and increase protein supply for food supplement or animal feed.

  15. Spatial patterns and processes for shifting cultivation landscape in Garo Hills, India.

    Treesearch

    Ashish Kumar; Bruce G. Marcot; P.S. Roy

    2006-01-01

    We analyzed a few spatial patterns and processes of a shifting cultivation landscape in the Garo Hills of Meghalaya state in North East India, where about 85% of land belongs to native community. The landscape comprised 2459 km2 of land with forest cover and shifting cultivation patches over 69% and 7% area of landscape, respectively. The mean...

  16. Characterization of cultivated murine lacrimal gland epithelial cells

    PubMed Central

    Kobayashi, Shinya; Kawashima, Motoko; Okada, Naoko; Mishima, Kenji; Saito, Ichiro; Ito, Masataka; Shimmura, Shigeto; Tsubota, Kazuo

    2012-01-01

    Purpose To date, mouse lacrimal gland epithelial cells have been cultured successfully but only in cases involving newborn mouse lacrimal glands. In this work, we attempted to cultivate and characterize adult mouse lacrimal gland epithelial cells. Methods Lacrimal glands were removed from newborn mice (C57B/6) and isolated lacrimal gland epithelial cells were seeded onto tissue culture treated or low adherent culture dishes in Cnt-07 culture medium with or without cholera toxin. Cultivated cells were characterized by immunostaining with pan-cytokeratin, α-smooth muscle actin, and lactoferrin antibodies. Lacrimal gland cells from 7-week-old green fluorescent protein (GFP) and non-GFP (C57B/6) mice were mixed and seeded onto uncoated dishes to assess sphere-forming efficiency. Cells were also seeded onto 3T3 cell feeder layers to assess colony forming efficiency. Results Lacrimal gland epithelial cells were selectively cultured with cholera toxin, and cell type was verified by pan-cytokeratin and α-smooth muscle actin immunostaining. Sphere formation from single cells of adult mice was observed using specific medium and low adherent culture dishes. These cells could also undergo colony formation on 3T3 feeder cells. Conclusions Adult mouse lacrimal gland epithelial cells were successfully cultivated in cholera toxin-containing medium, and were observed to form spheres from single cells. PMID:22665974

  17. Waste biorefineries - integrating anaerobic digestion and microalgae cultivation for bioenergy production.

    PubMed

    Chen, Yi-di; Ho, Shih-Hsin; Nagarajan, Dillirani; Ren, Nan-Qi; Chang, Jo-Shu

    2018-04-01

    Commercialization of microalgal cultivation has been well realized in recent decades with the use of effective strains that can yield the target products, but it is still challenged by the high costs arising from mass production, harvesting, and further processing. Recently, more interest has been directed towards the utilization of waste resources, such as sludge digestate, to enhance the economic feasibility and sustainability of microalgae production. Anaerobic digestion for waste disposal and phototrophic microalgal cultivation are well-characterized technologies in both fields. However, integration of anaerobic digestion and microalgal cultivation to achieve substantial economic and environmental benefits is extremely limited, and thus deserves more attention and research effort. In particular, combining these two makes possible an ideal 'waste biorefinery' model, as the C/N/P content in the anaerobic digestate can be used to produce microalgal biomass that serves as feedstock for biofuels, while biogas upgrading can simultaneously be performed by phototrophic CO 2 fixation during microalgal growth. This review is thus aimed at elucidating recent advances as well as challenges and future directions with regard to waste biorefineries associated with the integration of anaerobic waste treatment and microalgal cultivation for bioenergy production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [The spirit of humanism should be cultivated in the nursing profession].

    PubMed

    Yeh, Mei-Yu; Lee, Sheuan

    2011-10-01

    As nursing is an art that emphasizes the nature of caring it should have humanistic attributes. Humanistic education of a nursing professional should emphasize a person-centered perspective in order to foster cultivation of the humanities and infuse the spirit of humane care into medical practice. Cultivation of humanism refers to the emotional level of personal-affective experience that blends humanistic science and aesthetic experience to enhance nurse observational abilities. The ability generated by self-awareness and reflection can trigger deep empathy and empathetic performance, which is ideal humanistic-nursing behavior in nursing staff. Traditional nursing education focuses on acquiring professional knowledge and largely ignores the cultivation of a humanist spirit. To help nurses adjust to the rapidly changing environment of nursing care and demonstrate a professional and humane character, in addition to advocating for a humane medical environment, the six Es of humanistic-nursing education (Example, Explanation, Exhortation, Environment, Experience, Expectation) should be promoted. The six Es are essential to building a framework to cultivate humanistic education strategies and strengthen humanist content in nursing education. In order to instill deeply the spirit of humanistic care in nursing and make the nursing-care process more humane, these ideals must be emphasized in nursing education to raise the level of humanism.

  19. Preliminary study on the responses of three marine algae, Ulva pertusa (Chlorophyta), Gelidium amansii (Rhodophyta) and Sargassum enerve (Phaeophyta), to nitrogen source and its availability

    NASA Astrophysics Data System (ADS)

    Liu, Dongyan; Amy, Pickering; Sun, Jun

    2004-04-01

    An experiment was designed to select economically valuable macroalga species with high nutrient uptake rates. Such species cultured on a large scale could be a potential solution to eutrophication. Three macroalgae species, Ulva pertusa (Chlorophyta), Gelidium amansii (Rhodophyta) and Sargassum enerve (Phaeophyta), were chosen for the experiment because of their economic values and availability. Control and four nitrogen concentrations were achieved by adding NH{4/+} and NO{3/-}. The results indicate that the fresh weights of all species increase faster than that of control after 5 d culture. The fresh weight of Ulva pertusa increases fastest among the 3 species. However, different species show different responses to nitrogen source and its availability. They also show the advantage of using NH{4/+} than using NO{3/-}. U. pertusa grows best and shows higher capability of removing nitrogen at 200µmolL-1, but it has lower economical value. G. amansii has higher economical value but lower capability of removing nitrogen at 200 µmolL-1. The capability of nitrogen assimilation of S. enerve is higher than that of G. amansii at 200µmolL -1, but the former’s increase of fresh weight is lower than those of other two species. Then present preliminary study demonstrates that it is possible to use macroalgae as biofilters and further development of this approach could provide biologically valuable information on the source, fate, and transport of N in marine ecosystems. Caution is needed should we extrapolate these findings to natural environments.

  20. Cultivation-independent detection of autotrophic hydrogen-oxidizing bacteria by DNA stable-isotope probing.

    PubMed

    Pumphrey, Graham M; Ranchou-Peyruse, Anthony; Spain, Jim C

    2011-07-01

    Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of (13)CO(2) was H(2) dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from (13)C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H(2) concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation.

  1. Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses.

    PubMed

    Gambardella, Chiara; Mesarič, Tina; Milivojević, Tamara; Sepčić, Kristina; Gallus, Lorenzo; Carbone, Serena; Ferrando, Sara; Faimali, Marco

    2014-07-01

    The aim was to investigate the toxicity of selected metal oxide nanoparticles (MO-NPs) on the brine shrimp Artemia salina, by evaluating mortality and behavioural and biochemical responses. Larvae were exposed to tin(IV) oxide (stannic oxide (SnO2)), cerium(IV) oxide (CeO2) and iron(II, III) oxide (Fe3O4) NPs for 48 h in seawater, with MO-NP suspensions from 0.01 to 1.0 mg/mL. Mortality and behavioural responses (swimming speed alteration) and enzymatic activities of cholinesterase, glutathione-S-transferase and catalase were evaluated. Although the MO-NPs did not induce any mortality of the larvae, they caused changes in behavioural and biochemical responses. Swimming speed significantly decreased in larvae exposed to CeO2 NPs. Cholinesterase and glutathione-S-transferase activities were significantly inhibited in larvae exposed to SnO2 NPs, whereas cholinesterase activity significantly increased after CeO2 NP and Fe3O4 NP exposure. Catalase activity significantly increased in larvae exposed to Fe3O4 NPs. In conclusion, swimming alteration and cholinesterase activity represent valid endpoints for MO-NP exposure, while glutathione-S-transferase and catalase activities appear to be NP-specific.

  2. An Online Process Model of Second-Order Cultivation Effects: How Television Cultivates Materialism and Its Consequences for Life Satisfaction

    ERIC Educational Resources Information Center

    Shrum, L. J.; Lee, Jaehoon; Burroughs, James E.; Rindfleisch, Aric

    2011-01-01

    Two studies investigated the interrelations among television viewing, materialism, and life satisfaction, and their underlying processes. Study 1 tested an online process model for television's cultivation of materialism by manipulating level of materialistic content. Viewing level influenced materialism, but only among participants who reported…

  3. Interactions among cultivation, weeds, and a bio-fungicide in organic Vidalia sweet onion

    USDA-ARS?s Scientific Manuscript database

    Weed management in organic Vidalia® sweet onion (Allium cepa) is largely dependent on multiple cultivations with a tine weeder. Earlier research suggested cultivation with a tine weeder did not predispose onion bulbs to infection during storage. Trials were conducted from 2012 through 2014 near Ly...

  4. Cultivating a Community of Effective Special Education Teachers: Local Special Education Administrators' Roles

    ERIC Educational Resources Information Center

    Bettini, Elizabeth; Benedict, Amber; Thomas, Rachel; Kimerling, Jenna; Choi, Nari; McLeskey, James

    2017-01-01

    Evidence of the powerful impact teachers have on student achievement has led to an intensive focus on cultivating effective teachers, including special education teachers (SETs). Local special education administrators (LSEAs) share responsibility for cultivating effective SETs throughout their districts. However, the roles LSEAs play in this…

  5. Development of basic technologies for improvement of breeding and cultivation of Japanese gentian

    PubMed Central

    Nishihara, Masahiro; Tasaki, Keisuke; Sasaki, Nobuhiro; Takahashi, Hideyuki

    2018-01-01

    Japanese gentians are the most important ornamental flowers in Iwate Prefecture and their breeding and cultivation have been actively conducted for half a century. With its cool climate and large hilly and mountainous area, more than 60% of gentian production in Japan occurs in Iwate Prefecture. Recent advances in gentian breeding and cultivation have facilitated the efficient breeding of new cultivars; disease control and improved cultivation conditions have led to the stable production of Japanese gentians. Molecular biology techniques have been developed and applied in gentian breeding, including the diagnosis of viral diseases and analysis of physiological disorders to improve gentian production. This review summarizes such recent approaches that will assist in the development of new cultivars and support cultivation. More recently, new plant breeding techniques, including several new biotechnological methods such as genome editing and viral vectors, have also been developed in gentian. We, therefore, present examples of their application to gentians and discuss their advantages in future studies of gentians. PMID:29681744

  6. Biodiversity, evolution and adaptation of cultivated crops.

    PubMed

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  7. A NEW PATHOGENIC LEPTOSPIRA, NOT READILY CULTIVATED

    PubMed Central

    Alexander, Aaron D.; Stoenner, Herbert G.; Wood, Garnett E.; Byrne, Robert J.

    1962-01-01

    Alexander, Aaron D. (Walter Reed Army Institute of Research, Washington, D.C.), Herbert G. Stoenner, Garnett E. Wood, and Robert J. Byrne. A new pathogenic Leptospira, not readily cultivated. J. Bacteriol. 83:754–760. 1962.—A pathogenic Leptospira was isolated from water of the Grand River, (S.D.) that differed significantly from other known leptospirae in that it could not be cultivated in conventional leptospiral media. Growth was promoted in Fletcher's medium modified to contain 20% rabbit serum. The isolate, after several serial passages, was lethal for hamsters. It could not be adapted to grow in the chick embryo. Guinea pigs and calves inoculated with the isolate developed febrile and antibody responses but showed no other overt signs of disease. The strain was identified on the basis of cross-agglutination and agglutinin-adsorption tests as a new subserotype of Leptospira naam and was therefore designated as L. naam, subserotype dakotii. PMID:13860321

  8. A water-resources data-network evaluation for Monterey County, California; Phase 3, Northern Salinas River drainage basin

    USGS Publications Warehouse

    Templin, W.E.; Schluter, R.C.

    1990-01-01

    This report evaluates existing data collection networks and possible additional data collection to monitor quantity and quality of precipitation, surface water, and groundwater in the northern Salinas River drainage basin, California. Of the 34 precipitation stations identified, 20 were active and are concentrated in the northwestern part of the study area. No precipitation quality networks were identified, but possible data collection efforts include monitoring for acid rain and pesticides. Six of ten stream-gaging stations are active. Two surface water quality sites are sampled for suspended sediment, specific conductance, and chloride; one U.S. Geological Survey NASOAN site and one site operated by California Department of Water Resources make up the four active sampling locations; reactivation of 45 inactive surface water quality sites might help to achieve objectives described in the report. Three local networks measure water levels in 318 wells monthly, during peak irrigation, and at the end of the irrigation season. Water quality conditions are monitored in 379 wells; samples are collected in summer to monitor saltwater intrusion near Castroville and are also collected annually throughout the study area for analysis of chloride, specific conductance, and nitrate. An ideal baseline network would be an evenly spaced grid of index wells with a density of one per section. When baseline conditions are established, representative wells within the network could be monitored periodically according to specific data needs. (USGS)

  9. Distinction between wild and cultivated enset (Ensete ventricosum) gene pools in Ethiopia using RAPD markers.

    PubMed

    Birmeta, Genet; Nybom, Hilde; Bekele, Endashaw

    2004-01-01

    In southwest Ethiopia, the cultivation area of Ensete ventricosum (enset) overlaps with the natural distribution area of this species. Analyses of genetic diversity were undertaken using RAPD to provide information for conservation strategies as well as evidence of possible gene flow between the different gene pools, which can be of interest for future improvement of cultivated enset. The extent of RAPD variation in wild enset was investigated in 5 populations in the Bonga area (Kefficho administrative region) and 9 cultivated clones. Comparisons were also made with some Musa samples of potential relevance for crop improvement. Nine oligonucleotide primers amplified 72 polymorphic loci. Population differentiation was estimated with the Shannon index (G'(ST)=0.10), Nei's G(ST) (0.12) and AMOVA (Phi(ST)=0.12), and appears to be relatively low when compared with outbreeding, perennial species in general. Cluster analysis (UPGMA) and principal component analysis (PCA) similarly indicated low population differentiation, and also demonstrated that cultivated clones essentially clustered distinctly from wild enset samples, suggesting that the present-day cultivated enset clones have been introduced to domestication from a limited number of wild progenitors. In addition, subsequent gene flow between wild and cultivated enset may have been prohibited by differences between modes of propagation and harvesting time; cultivated enset is propagated vegetatively through sucker production and the plant is generally harvested before maturity or flower set, thereby hindering pollination by wild enset or vice versa. A significant correlation was not found between genetic and geographical distances. The relatively high total RAPD diversity suggests that wild enset populations in the Bonga area harbour genetic variability which could potentially act as a source for useful or rare genes in the improvement of cultivated enset. As expected, E. ventricosum was clearly differentiated from

  10. The Edibility and Cultivation of the Oyster Mushroom.

    ERIC Educational Resources Information Center

    Brenneman, James; Guttman, Mark C.

    1994-01-01

    Describes an enjoyable and fascinating experience that involves the cultivation of oyster mushrooms. By allowing students to participate in this process, the students are able to better understand the biology and utility of fungi. (ZWH)

  11. Bioremediation efficiency of the largest scale artificial Porphyra yezoensis cultivation in the open sea in China.

    PubMed

    Wu, Hailong; Huo, Yuanzi; Zhang, Jianheng; Liu, Yuanyuan; Zhao, Yating; He, Peimin

    2015-06-15

    The bioremediation efficiency of China's largest scale Porphyra yezoensis cultivation for removing dissolved nutrients and controlling harmful algae was studied in the radial sandbanks waters of Jiangsu Province in the year 2012-2013. Mean nutrient concentration values in the P. yezoensis cultivation area were significantly lower than those in the non-cultivation area, especially during the cultivation season (p<0.05). Tissue nitrogen and phosphorus contents of seaweeds were 5.99-0.80% (dry weight (DW)) and 0.16-0.19% (DW), respectively. Production of P. yezoensis was 58950.87tons DW. Based on these values, 3688.15tons of tissue nitrogen and 105.61tons of tissue phosphorus were removed by harvesting P. yezoensis. The richness index of the red tide species Skeleton emacostatum declined from 0.32 to 0.05 during the P. yezoensis cultivation season. These results indicate that large-scale cultivation of P. yezoensis can be used to efficiently alleviate eutrophication and control harmful algae blooms in open sea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The practice of jhum cultivation and its relationship to Plasmodium falciparum infection in the Chittagong Hill Districts of Bangladesh.

    PubMed

    Galagan, Sean R; Prue, Chai Shwai; Khyang, Jacob; Khan, Wasif Ali; Ahmed, Sabeena; Ram, Malathi; Alam, Mohammad Shafiul; Haq, M Zahirul; Akter, Jasmin; Streatfield, Peter Kim; Glass, Gregory; Norris, Douglas E; Nyunt, Myaing Myaing; Shields, Timothy; Sullivan, David J; Sack, David A

    2014-08-01

    Malaria is endemic in the Chittagong Hill Districts of southeastern Bangladesh. Previous epidemiological analyses identified the agricultural practice of jhum cultivation as a potential risk factor for malaria infection. We conducted qualitative interviews with jhum cultivators and surveillance workers to describe jhum cultivation and used demographic and malaria surveillance in two study unions from May of 2010 to August of 2012 to better understand the relationship between jhum cultivation and malaria infection. Qualitative interviews revealed that jhum cultivation is conducted on remote, steep hillsides by ethnic tribal groups. Quantitative analyses found that adult jhum cultivators and individuals who live in the same residence had significantly higher incidence rates of symptomatic Plasmodium falciparum infection compared with non-cultivators. These results confirm that jhum cultivation is an independent risk factor for malaria infection and underscore the need for malaria testing and treatment services to reach remote populations in the Chittagong Hill Districts. © The American Society of Tropical Medicine and Hygiene.

  13. Cultivation Theory and Research: A Conceptual Critique.

    ERIC Educational Resources Information Center

    Potter, W. James

    1993-01-01

    Presents a critical analysis of how cultivation (long-term formation of perceptions and beliefs about the world as a result of exposure to media) has been conceptualized in theory and research. Analyses the construct of television exposure. Suggests revisions for conceptualizing the existing theory and extending it. (RS)

  14. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer)

    PubMed Central

    Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili

    2017-01-01

    Abstract Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. PMID:28922794

  15. A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis.

    PubMed

    Zhang, Xu; Liu, Qun; Zhou, Wei; Li, Ping; Alolga, Raphael N; Qi, Lian-Wen; Yin, Xiaojian

    2018-06-15

    Cordyceps sinensis has gained increasing attention due to its nutritional and medicinal properties. Herein, we employed label-free quantitative mass spectrometry to explore the proteome differences between naturally- and artificially-cultivated C. sinensis. A total of 22,829 peptides with confidence ≥95%, corresponding to 2541 protein groups were identified from the caterpillar bodies/stromata of 12 naturally- and artificially-cultivated samples of C. sinensis. Among them, 165 proteins showed significant differences between the samples of natural and artificial cultivation. These proteins were mainly involved in energy production/conversion, amino acid transport/metabolism, and transcription regulation. The proteomic results were confirmed by the identification of 4 significantly changed metabolites, thus, lysine, threonine, serine, and arginine via untargeted metabolomics. The change tendencies of these metabolites were partly in accordance with changes in abundance of the proteins, which was upstream of their synthetic pathways. In addition, the nutritional value in terms of the levels of nucleosides, nucleotides, and adenosine between the artificially- and naturally-cultivated samples was virtually same. These proteomic data will be useful for understanding the medicinal value of C. sinensis and serve as reference for its artificial cultivation. C. sinensis is a precious and valued medicinal product, the current basic proteome dataset would provide useful information to understand its development/infection processes as well as help to artificially cultivate it. This work would also provide basic proteome profile for further study of C. sinensis. Copyright © 2018. Published by Elsevier B.V.

  16. Soybean cultivar selection for Bioregenerative Life Support Systems (BLSSs) - Hydroponic cultivation

    NASA Astrophysics Data System (ADS)

    Paradiso, R.; Buonomo, R.; De Micco, V.; Aronne, G.; Palermo, M.; Barbieri, G.; De Pascale, S.

    2012-12-01

    Four soybean cultivars ('Atlantic', 'Cresir', 'Pr91m10' and 'Regir'), selected through a theoretical procedure as suitable for cultivation in BLSS, were evaluated in terms of growth and production. Germination percentage and Mean Germination Time (MGT) were measured. Plants were cultivated in a growth chamber equipped with a recirculating hydroponic system (Nutrient Film Technique). Cultivation was performed under controlled environmental conditions (12 h photoperiod, light intensity 350 μmol m-2 s-1, temperature regime 26/20 °C light/dark, relative humidity 65-75%). Fertigation was performed with a standard Hoagland solution, modified for soybean specific requirements, and EC and pH were kept at 2.0 dS m-1 and 5.5 respectively. The percentage of germination was high (from 86.9% in 'Cresir' to 96.8% in 'Regir')and the MGT was similar for all the cultivars (4.3 days). The growing cycle lasted from 114 in 'Cresir' to 133 days on average in the other cultivars. Differences in plant size were recorded, with 'Pr91m10' plants being the shortest (58 vs 106 cm). Cultivars did not differ significantly in seed yield (12 g plant-1) and in non edible biomass (waste), water consumption and biomass conversion efficiency (water, radiation and acid use indexes). 'Pr91m10' showed the highest protein content in the seeds (35.6% vs 33.3% on average in the other cultivars). Results from the cultivation experiment showed good performances of the four cultivars in hydroponics. The overall analysis suggests that 'Pr91m10' could be the best candidate for the cultivation in a BLSS, coupling the small plant size and the good yield with high resource use efficiency and good seed quality.

  17. Cultivation and diversity of fungi buried in the Baltic Sea sediments

    NASA Astrophysics Data System (ADS)

    Xiao, N.

    2015-12-01

    @font-face { "MS 明朝"; }@font-face { "Century"; }@font-face { "Century"; }@font-face { "@MS 明朝"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0mm 0mm 0.0001pt; text-align: justify; font-size: 12pt; ; }.MsoChpDefault { ; }div.WordSection1 { page: WordSection1; } Studies on molecular biological and cultivation have been done for the prokaryotic microbial community in the deep biosphere. Compare to the prokaryotic community, few attempts have been done for eukaryotic microbial community. Here we report the study on fungi buried in deep-subsurface sediments by approaches of both cultivation and molecular diversity survey. Cultivation targeting fungi has been done using a sequential sediment samples obtained from the Baltic Sea, Landsort Deep site during the IODP expedition 347. 6 culture media with different nutrition and salt concentration have been tried for the fungi cultivation. 50 isolates of fungi were obtained from the sediment samples. The surface sediments showed richness of fungi strains but not for the deep sediments. Internal Transcribed Spacer (ITS) regions of RNA genes were amplified and for the identification of the isolates. The isolates were classified to 11 different genera. Pseudeurotium bakeri was the dominant strain throughout the glacial and interglacial sediments. We also found different representative fungal strains from glacial and interglacial sediments, suggesting the cultivated strains are buried from different sources. The survey of fungal diversity was done by sequencing the 18S RNA genes in the total DNA extracted from selected sediment samples. Fungi community showed different cluster in the glacial and interglacial sediments.Our results revealed the presence and activity of fungi in the deep biosphere of the Baltic sea and provided evidence of fungal community response to the climate change.

  18. Microcolony Cultivation on a Soil Substrate Membrane System Selects for Previously Uncultured Soil Bacteria

    PubMed Central

    Ferrari, Belinda C.; Binnerup, Svend J.; Gillings, Michael

    2005-01-01

    Traditional microbiological methods of cultivation recover less than 1% of the total bacterial species, and the culturable portion of bacteria is not representative of the total phylogenetic diversity. Classical cultivation strategies are now known to supply excessive nutrients to a system and therefore select for fast-growing bacteria that are capable of colony or biofilm formation. New approaches to the cultivation of bacteria which rely on growth in dilute nutrient media or simulated environments are beginning to address this problem of selection. Here we describe a novel microcultivation method for soil bacteria that mimics natural conditions. Our soil slurry membrane system combines a polycarbonate membrane as a growth support and soil extract as the substrate. The result is abundant growth of uncharacterized bacteria as microcolonies. By combining microcultivation with fluorescent in situ hybridization, previously “unculturable” organisms belonging to cultivated and noncultivated divisions, including candidate division TM7, can be identified by fluorescence microscopy. Successful growth of soil bacteria as microcolonies confirmed that the missing culturable majority may have a growth strategy that is not observed when traditional cultivation indicators are used. PMID:16332866

  19. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2016-01-01

    The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm. PMID:27786300

  20. Effect of cultivation ages on Cu accumulation in Greenhouse Soils in North China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Guo, Wenmiao; Chen, Xin; Shi, Yi

    2017-11-01

    In this study, we determined the influence of cultivation age on Cu accumulation in greenhouse soils. The concentration of plant available Cu (A-Cu) decreased with depth, and the contents of top soils (0-40 cm) in greenhouses were higher than those of the open field. There was a positive correlation between A-Cu concentrations in soils and cultivation ages (R2=0.572). The contents of total Cu (T-Cu) decreased with depth, and positively correlated with cultivation ages in top soils (0-20cm) (R2=0.446). The long-term usage of manures can cause Cu increase and accumulation in greenhouse soils in comparison to the open field.

  1. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview.

    PubMed

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2015-06-05

    Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed. Moringa oleifera shows diversity in many characters and extensive morphological variability, which may provide a resource for its improvement. Great genetic variability is present in the natural and cultivated accessions, but no collection of cultivated and wild accessions currently exists. A germplasm bank encompassing the genetic variability present in Moringa is needed to perform breeding programmes and develop elite varieties adapted to local conditions. Alimentary and medicinal uses of moringa are reviewed, alongside the production of biodiesel. Finally, being that the leaves are the most used part of the plant, their contents in terms of bioactive compounds and their pharmacological properties are discussed. Many studies conducted on cell lines and animals seem concordant in their support for these properties. However, there are still too few studies on humans to recommend Moringa leaves as medication in the prevention or treatment of diseases. Therefore, further studies on humans are recommended.

  2. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview

    PubMed Central

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2015-01-01

    Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed. Moringa oleifera shows diversity in many characters and extensive morphological variability, which may provide a resource for its improvement. Great genetic variability is present in the natural and cultivated accessions, but no collection of cultivated and wild accessions currently exists. A germplasm bank encompassing the genetic variability present in Moringa is needed to perform breeding programmes and develop elite varieties adapted to local conditions. Alimentary and medicinal uses of moringa are reviewed, alongside the production of biodiesel. Finally, being that the leaves are the most used part of the plant, their contents in terms of bioactive compounds and their pharmacological properties are discussed. Many studies conducted on cell lines and animals seem concordant in their support for these properties. However, there are still too few studies on humans to recommend Moringa leaves as medication in the prevention or treatment of diseases. Therefore, further studies on humans are recommended. PMID:26057747

  3. Weed control using ammonium nonanoate and cultivation in organic Vidalia sweet onion production

    USDA-ARS?s Scientific Manuscript database

    Ammonium nonanoate is registered for weed control in certified organic crop production and may be useful to control cool-season weeds in organic Vidalia® sweet onion. Cultivation with a tine weeder has been identified as a cost-effective means of weed control, but delays in cultivation cause some w...

  4. Review on Natural Enemies and Diseases in the Artificial Cultivation of Chinese Caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes).

    PubMed

    Lu, Zenghui; Shi, Ping; He, Yuanchuan; Zhang, Deli; He, Zongyi; Chen, Shijiang; Tu, Yongqin; Li, Li; Liu, Fei; Zeng, Wei

    2015-01-01

    Ophiocordyceps sinensis (syn. Cordyceps sinensis), well known as DongChongXiaCao (DCXC), is one of the most valuable traditional Chinese medicinal species. In this article, we provide a systematic review of natural enemies and diseases encountered in artificial cultivation of DCXC. Unfortunately, DCXC has been endangered over the past decades due to overharvesting and a worsening ecological environment. Therefore, the artificial cultivation of DCXC has been extensively investigated in recent years. Complete indoor artificial cultivation and semi-field cultivation are the two most common strategies used to cultivate DCXC. However, cultured DCXCs are often attacked by various natural enemies and diseases, which have resulted in substantial loss of the valuable medicinal resource. In this study, we have summarized the species of natural enemies and types of diseases confronted by DCXC. Twenty reported natural enemy species are categorized into four classes, one of which is reported for the first time in this study. Moreover, six microbial pathogens are also discussed. The recapitulation of the natural enemies and diseases in DCXC artificial cultivation not only promote the development of integrated pest management of DCXC cultivation but also provide important information to help preserve and develop this valuable resource.

  5. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (asmore » flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords

  6. REE Distribution in Cultivated and No Cultivated Soils in Two Viticultural Areas of Central Chile: Mineralogical, Pedological and Anthropic Influences

    NASA Astrophysics Data System (ADS)

    Castillo, P.; Townley, B.; Aburto, F.

    2017-12-01

    Within the scope of a Corfo-Innova Project (I+D Wines of Chile-University of Chile) we have recognized remarkable REE patterns in soils of two vineyards located in traditional vinicultural areas: Casablanca and Santa Cruz. Both vineyards have granitic parent rock, with similar petrographic features and REE patterns. We studied REE distribution on twelve cultivated soil profiles at each vineyard, where a full mineralogical, geochemical and pedogenic sampling and characterization was performed. To establish the effect of management no cultivated soil profiles were included from each vineyard location. REE in soil samples were measured by ICP-MS using two digestion methods: lithium metaborate/tetraborate fusion to obtain REE contents in total soil and MMI® partial extraction technique for REE contents on bioavailable phases.Soils display similar signatures of REEs respect to the rock source at both vineyards, but showing relative enrichments in soils of Casablanca and depletion in soils of Santa Cruz. Bioavailable phase data indicates a relative depletion of LREEs compared to HREEs and different anomalies for Ce (positive vs negative) in different areas of the same vineyard. Similar patterns of soils and parent rock suggest that REEs are adequate tracers of lithological source. Enrichments and/or depletions of REE patterns in soils respect to the rock source and Ce anomalies, evidence differential pedogenetic processes occurring at each sampled site. Results of bioavailable phase are coherent with the immobilization and fractionation of LREEs by stable minerals within soils as clays and Fe oxides. Mineralogical results in soil thin sections of Casablanca evidence the occurrence of Ti phases as sphene, ilmenite and rutile, which probably control the relative REE enrichment, since these minerals are considered more stable under pedogenic conditions.Finally, cultivated soils show a depleted but analogous pattern of REE regarding to no cultivated soil, indicating the

  7. Biological limits on nitrogen use for plant photosynthesis: a quantitative revision comparing cultivated and wild species.

    PubMed

    Rotundo, José L; Cipriotti, Pablo A

    2017-04-01

    The relationship between leaf photosynthesis and nitrogen is a critical production function for ecosystem functioning. Cultivated species have been studied in terms of this relationship, focusing on improving nitrogen (N) use, while wild species have been studied to evaluate leaf evolutionary patterns. A comprehensive comparison of cultivated vs wild species for this relevant function is currently lacking. We hypothesize that cultivated species show increased carbon assimilation per unit leaf N area compared with wild species as associated with artificial selection for resource-acquisition traits. We compiled published data on light-saturated photosynthesis (A max ) and leaf nitrogen (LN area ) for cultivated and wild species. The relationship between A max and LN area was evaluated using a frontier analysis (90 th percentile) to benchmark the biological limit of nitrogen use for photosynthesis. Carbon assimilation in relation to leaf N was not consistently higher in cultivated species; out of 14 cultivated species, only wheat, rice, maize and sorghum showed higher ability to use N for photosynthesis compared with wild species. Results indicate that cultivated species have not surpassed the biological limit on nitrogen use observed for wild species. Future increases in photosynthesis based on natural variation need to be assisted by bioengineering of key enzymes to increase crop productivity. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Impacts of surface water diversions for marijuana cultivation on aquatic habitat in four northwestern California watersheds.

    PubMed

    Bauer, Scott; Olson, Jennifer; Cockrill, Adam; van Hattem, Michael; Miller, Linda; Tauzer, Margaret; Leppig, Gordon

    2015-01-01

    Marijuana (Cannabis sativa L.) cultivation has proliferated in northwestern California since at least the mid-1990s. The environmental impacts associated with marijuana cultivation appear substantial, yet have been difficult to quantify, in part because cultivation is clandestine and often occurs on private property. To evaluate the impacts of water diversions at a watershed scale, we interpreted high-resolution aerial imagery to estimate the number of marijuana plants being cultivated in four watersheds in northwestern California, USA. Low-altitude aircraft flights and search warrants executed with law enforcement at cultivation sites in the region helped to validate assumptions used in aerial imagery interpretation. We estimated the water demand of marijuana irrigation and the potential effects water diversions could have on stream flow in the study watersheds. Our results indicate that water demand for marijuana cultivation has the potential to divert substantial portions of streamflow in the study watersheds, with an estimated flow reduction of up to 23% of the annual seven-day low flow in the least impacted of the study watersheds. Estimates from the other study watersheds indicate that water demand for marijuana cultivation exceeds streamflow during the low-flow period. In the most impacted study watersheds, diminished streamflow is likely to have lethal or sub-lethal effects on state- and federally-listed salmon and steelhead trout and to cause further decline of sensitive amphibian species.

  9. Impacts of Surface Water Diversions for Marijuana Cultivation on Aquatic Habitat in Four Northwestern California Watersheds

    PubMed Central

    Cockrill, Adam; van Hattem, Michael; Miller, Linda; Tauzer, Margaret; Leppig, Gordon

    2015-01-01

    Marijuana (Cannabis sativa L.) cultivation has proliferated in northwestern California since at least the mid-1990s. The environmental impacts associated with marijuana cultivation appear substantial, yet have been difficult to quantify, in part because cultivation is clandestine and often occurs on private property. To evaluate the impacts of water diversions at a watershed scale, we interpreted high-resolution aerial imagery to estimate the number of marijuana plants being cultivated in four watersheds in northwestern California, USA. Low-altitude aircraft flights and search warrants executed with law enforcement at cultivation sites in the region helped to validate assumptions used in aerial imagery interpretation. We estimated the water demand of marijuana irrigation and the potential effects water diversions could have on stream flow in the study watersheds. Our results indicate that water demand for marijuana cultivation has the potential to divert substantial portions of streamflow in the study watersheds, with an estimated flow reduction of up to 23% of the annual seven-day low flow in the least impacted of the study watersheds. Estimates from the other study watersheds indicate that water demand for marijuana cultivation exceeds streamflow during the low-flow period. In the most impacted study watersheds, diminished streamflow is likely to have lethal or sub-lethal effects on state-and federally-listed salmon and steelhead trout and to cause further decline of sensitive amphibian species. PMID:25785849

  10. 24. Photocopy of original photo from Corps of Engineers, Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of original photo from Corps of Engineers, Los Angeles District, 'Report on Salinas Dam, Salinas River, California,' June 15, 1943. (Photographer unknown, report located at City of San Luis Obispo.) SALINAS DAM COMPLETION PHOTO. - Salinas Dam, Salinas River near Pozo Road, Santa Margarita, San Luis Obispo County, CA

  11. The Origin of Cultivation and Proto-Weeds, Long Before Neolithic Farming.

    PubMed

    Snir, Ainit; Nadel, Dani; Groman-Yaroslavski, Iris; Melamed, Yoel; Sternberg, Marcelo; Bar-Yosef, Ofer; Weiss, Ehud

    2015-01-01

    Weeds are currently present in a wide range of ecosystems worldwide. Although the beginning of their evolution is largely unknown, researchers assumed that they developed in tandem with cultivation since the appearance of agricultural habitats some 12,000 years ago. These rapidly-evolving plants invaded the human disturbed areas and thrived in the new habitat. Here we present unprecedented new findings of the presence of "proto-weeds" and small-scale trial cultivation in Ohalo II, a 23,000-year-old hunter-gatherers' sedentary camp on the shore of the Sea of Galilee, Israel. We examined the plant remains retrieved from the site (ca. 150,000 specimens), placing particular emphasis on the search for evidence of plant cultivation by Ohalo II people and the presence of weed species. The archaeobotanically-rich plant assemblage demonstrates extensive human gathering of over 140 plant species and food preparation by grinding wild wheat and barley. Among these, we identified 13 well-known current weeds mixed with numerous seeds of wild emmer, barley, and oat. This collection provides the earliest evidence of a human-disturbed environment-at least 11 millennia before the onset of agriculture-that provided the conditions for the development of "proto-weeds", a prerequisite for weed evolution. Finally, we suggest that their presence indicates the earliest, small-scale attempt to cultivate wild cereals seen in the archaeological record.

  12. The Origin of Cultivation and Proto-Weeds, Long Before Neolithic Farming

    PubMed Central

    Snir, Ainit; Nadel, Dani; Groman-Yaroslavski, Iris; Melamed, Yoel; Sternberg, Marcelo; Bar-Yosef, Ofer; Weiss, Ehud

    2015-01-01

    Weeds are currently present in a wide range of ecosystems worldwide. Although the beginning of their evolution is largely unknown, researchers assumed that they developed in tandem with cultivation since the appearance of agricultural habitats some 12,000 years ago. These rapidly-evolving plants invaded the human disturbed areas and thrived in the new habitat. Here we present unprecedented new findings of the presence of “proto-weeds” and small-scale trial cultivation in Ohalo II, a 23,000-year-old hunter-gatherers' sedentary camp on the shore of the Sea of Galilee, Israel. We examined the plant remains retrieved from the site (ca. 150,000 specimens), placing particular emphasis on the search for evidence of plant cultivation by Ohalo II people and the presence of weed species. The archaeobotanically-rich plant assemblage demonstrates extensive human gathering of over 140 plant species and food preparation by grinding wild wheat and barley. Among these, we identified 13 well-known current weeds mixed with numerous seeds of wild emmer, barley, and oat. This collection provides the earliest evidence of a human-disturbed environment—at least 11 millennia before the onset of agriculture—that provided the conditions for the development of "proto-weeds", a prerequisite for weed evolution. Finally, we suggest that their presence indicates the earliest, small-scale attempt to cultivate wild cereals seen in the archaeological record. PMID:26200895

  13. Use of diluted urine for cultivation of Chlorella vulgaris.

    PubMed

    Jaatinen, Sanna; Lakaniemi, Aino-Maija; Rintala, Jukka

    2016-01-01

    Our aim was to study the biomass growth of microalga Chlorella vulgaris using diluted human urine as a sole nutrient source. Batch cultivations (21 days) were conducted in five different urine dilutions (1:25-1:300), in 1:100-diluted urine as such and with added trace elements, and as a reference, in artificial growth medium. The highest biomass density was obtained in 1:100-diluted urine with and without additional trace elements (0.73 and 0.60 g L(-1), respectively). Similar biomass growth trends and densities were obtained with 1:25- and 1:300-diluted urine (0.52 vs. 0.48 gVSS L(-1)) indicating that urine at dilution 1:25 can be used to cultivate microalgal based biomass. Interestingly, even 1:300-diluted urine contained sufficiently nutrients and trace elements to support biomass growth. Biomass production was similar despite pH-variation from < 5 to 9 in different incubations indicating robustness of the biomass growth. Ammonium formation did not inhibit overall biomass growth. At the beginning of cultivation, the majority of the biomass consisted of living algal cells, while towards the end, their share decreased and the estimated share of bacteria and cell debris increased.

  14. Review of the cultivation program within the national alliance for advanced biofuels and bioproducts

    USDA-ARS?s Scientific Manuscript database

    The cultivation efforts within the National Alliance for Advanced Biofuels and Bioproducts (NAABB) were developed to provide four major goals for the consortium, which included biomass production for downstream experimentation, development of new assessment tools for cultivation, development of new ...

  15. Degradation Processes of Pesticides Used in Potato Cultivations.

    PubMed

    Kurek, M; Barchańska, H; Turek, M

    Potato is one of the most important crops, after maize, rice and wheat. Its global production is about 300 million tons per year and is constantly increasing. It grows in temperate climate and is used as a source of starch, food, and in breeding industry.Potato cultivation requires application of numerous agro-technical products, including pesticides, since it can be affected by insects, weeds, fungi, and viruses. In the European Union the most frequently used pesticides in potato cultivations check are: thiamethoxam, lambda-cyhalothrin and deltamethrin (insecticides), rimsulfuron (herbicide) and metalaxyl (fungicide).Application of pesticides improves crop efficiency, however, as pesticides are not totally selective, it affects also non-target organisms. Moreover, the agrochemicals may accumulate in crops and, as a consequence, negatively influence the quality of food products and consumer health. Additional risks of plant protection products are related to their derivatives, that are created both in the environment (soil, water) and in plant organisms, since many of these compounds may exhibit toxic effects.This article is devoted to the degradation processes of pesticides used in potato crop protection. Attention is also paid to the toxicity of both parent compounds and their degradation products for living organisms, including humans. Information about the level of pesticide contamination in the environment (water, soil) and accumulation level in edible plants complement the current knowledge about the risks associated with widespread use of thiamethoxam, lambda-cyhalothrin and deltamethrin, rimsulfuron and metalaxyl in potato cultivation.

  16. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  17. 21. Photocopy of original photo from Corps of Engineers, Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of original photo from Corps of Engineers, Los Angeles District, 'Report on Salinas Dam, Salinas River, California,' June 15, 1943. (Photographer unknown; report located at City of San Luis Obispo.) SALINAS DAM UNDER CONSTRUCTION IN 1941. - Salinas Dam, Salinas River near Pozo Road, Santa Margarita, San Luis Obispo County, CA

  18. Novel green algal isolates from the Egyptian hyper-arid desert oases: a polyphasic approach with a description of Pharao desertorum gen. et sp. nov. (Chlorophyceae, Chlorophyta).

    PubMed

    Saber, Abdullah A; Fučíková, Karolina; McManus, Hilary A; Guella, Graziano; Cantonati, Marco

    2018-03-30

    The biodiversity of terrestrial algae is still grossly understudied, and African deserts in particular are barely touched in this respect. Here, four coccoid green algae from oases in the Western Desert of Egypt were characterized using a combination of morphotaxonomic, ecological and 18S rDNA data, with additional carotenoid and lipid analyses for two of the strains. Three strains were identified as affiliated with known taxa: Mychonastes sp., Asterarcys sp. (first report of this genus from a desert soil), and Stichococcus cf. deasonii. The fourth strain is proposed to represent a new cryptic genus Pharao gen. nov., with the type species P. desertorum sp. nov. The new taxon is sister to the clade of uncharacterized North American desert strains of Radiococcaceae (Chlorophyceae, Chlorophyta). The pigment profile of P. desertorum gen. et sp. nov. revealed carotenoids and chlorophylls typical of green algae. Bioorganic analysis showed a complex lipidome based on phospho- (PC), galacto- (MGDG and DGDG), betaine- (DGTS), and sulfoquinovosyl- (SQDG) membrane lipids, besides significant amounts of storage neutral lipids such as diacyl- (DAG) and triacylglycerols (TAG). The presence of saturated alkyl chains within all the membrane lipid classes in P. desertorum and Asterarcys sp. appears to reflect the need to maintain membrane fluidity and viscosity. In summary, African deserts likely still harbor new taxa to be described, and lipidomic analyses of such taxa may provide clues about their ability to survive in the extremely harsh desert habitats. © 2018 Phycological Society of America.

  19. Population-based resequencing revealed an ancestral winter group of cultivated flax: implication for flax domestication processes

    PubMed Central

    Fu, Yong-Bi

    2012-01-01

    Cultivated flax (Linum usitatissimum L.) is the earliest oil and fiber crop and its early domestication history may involve multiple events of domestication for oil, fiber, capsular indehiscence, and winter hardiness. Genetic studies have demonstrated that winter cultivated flax is closely related to oil and fiber cultivated flax and shows little relatedness to its progenitor, pale flax (L. bienne Mill.), but winter hardiness is one major characteristic of pale flax. Here, we assessed the genetic relationships of 48 Linum samples representing pale flax and four trait-specific groups of cultivated flax (dehiscent, fiber, oil, and winter) through population-based resequencing at 24 genomic regions, and revealed a winter group of cultivated flax that displayed close relatedness to the pale flax samples. Overall, the cultivated flax showed a 27% reduction of nucleotide diversity when compared with the pale flax. Recombination frequently occurred at these sampled genomic regions, but the signal of selection and bottleneck was relatively weak. These findings provide some insight into the impact and processes of flax domestication and are significant for expanding our knowledge about early flax domestication, particularly for winter hardiness. PMID:22822439

  20. [Advances in research on relationships among Lycium species and origin of cultivated Lycium in China].

    PubMed

    Qian, Dan; Ji, Rui-Feng; Gao, Wei; Huang, Lu-Qi

    2017-09-01

    The Lycium genus consists of consist of 7 species and 3 variety which are main distributed in Northwest region in China, the cultivated Goji berry appeared about 1 000 years ago. The phylogeny of the wild Goji berry and the domestication of cultivated Goji berry are important scientific and practical value due to the medicinal and economic value. In this paper, a new advances achieved in studies on the phylogeny of wild Goji berry is summarized. The origin of cultivated Goji berry includes when, where, how and ancestral specie were reviewed. The current situation of cultivation and existing problems were summarized. We considered that through mutations and artificial selections, wild ancestors were domesticated to current cultivar groups. To find direct evidence for the origin of cultivated Goji berry, we must rely on genetic analysis in addition to morphological characters. To make full use of the Goji berry germplasm resources, the investigation and mining on wild Goji berry resource should be strengthened in the future. Copyright© by the Chinese Pharmaceutical Association.

  1. Lignocellulose pretreatment in a fungus-cultivating termite

    Treesearch

    Hongjie Li; Daniel J. Yelle; Chang Li; Mengyi Yang; Jing Ke; Ruijuan Zhang; Yu Liu; Na Zhu; Shiyou Liang; Xiaochang Mo; John Ralph; Cameron R. Currie; Jianchu Mo

    2017-01-01

    Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether– and carbon–carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating...

  2. Cultivating Visionary Leaders to Transform Our World

    ERIC Educational Resources Information Center

    Coers, Natalie J.

    2018-01-01

    Vision has long been a quality and characteristic defining leadership. To cultivate vision among undergraduate students in a course, the United Nations' Sustainable Development Goals are utilized as a foundation to inspire a vision that connects local service and personal interests to global, complex issues. Students select a goal to work with for…

  3. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer).

    PubMed

    Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili; Liu, Bao; Li, Lin-Feng

    2017-09-01

    Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Genoprotective Capacity of Alternatively Cultivated Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), Basidiocarps.

    PubMed

    Cilerdzic, Jasmina; Stajic, Mirjana; Zivkovic, Lada; Vukojevic, Jelena; Bajic, Vladan; Spremo-Potparevic, Biljana

    2016-01-01

    Ganoderma lucidum is traditionally used in Eastern medicine to preserve vitality, promote longevity, and treat disease. It possesses immunomodulatory, antitumor, antimicrobial, and antiaging activities, among others, but one of the most important is its antioxidant property, which is the basis for other effects, because free radicals trigger many diseases. The substrate commonly used for commercial cultivation of G. lucidum is not environmentally friendly nor economically justified, so there is a need to find new alternative substrates. The aim of this study was to analyze the effect of substrate composition on the bioactivity of G. lucidum basidiocarps. G. lucidum was cultivated on 2 different substrates: (1) a mixture of wheat straw, grapevine branches, and wheat bran, and (2) wheat straw. Commercial fruiting bodies, cultivated on oak sawdust, were used as the control. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, total phenols, and flavonoid content were determined spectrophotometrically to define the antioxidative potential of basidiocarp extracts. The comet test was performed to detect the degree of DNA damage in the cells that were exposed to G. lucidum extracts before and after the effect of oxidants. Higher antioxidative potential was observed for the extract of G. lucidum basidiocarps cultivated on wheat straw compared with that from the mixed substrate and especially with commercial ones. The alternatively cultivated basidiocarps also showed stronger antigenotoxic potential compared with commercial ones. The study showed that fruiting bodies produced on wheat straw, one of the most accessible and cheapest crop residues, are more potent antioxidant and antigenotoxic agents than commercially cultivated ones.

  5. Angiostrongylus cantonensis (Nematode: Metastrongiloidea): in vitro cultivation of infective third-stage larvae to fourth-stage larvae.

    PubMed

    Lin, Rong-Jyh; He, Jie-Wen; Chung, Li-Yu; Lee, June-Der; Wang, Jiun-Jye; Yen, Chuan-Min

    2013-01-01

    The present study to attempt to cultivate Angiostrongylus cantonensis from third-stage larvae (AcL3) to fourth-stage larvae (AcL4) in vitro in defined complete culture medium that contained with Minimum Essential Medium Eagle (MEM), supplemented amino acid (AA), amine (AM), fatty acid (FA), carbohydrate (CA) and 20% fetal calf serum (FCS) was successful. When AcL3 were cultured in the defined complete culture medium at 37°C in a 5% CO2 atmosphere, the larvae began to develop to AcL4 after 30 days of cultivation, and were enclosed within the sheaths of the third molts of the life cycle. Under these conditions, the larvae developed uniformly and reached to the fourth-stage 36 days. The morphology of AcL3 develop to AcL4 were recording and analyzing. Then comparison of A. cantonensis larval morphology and development between in vitro cultivation in defined complete culture medium and in vivo cultivation in infective BALB/c mice. The larvae that had been cultivated in vitro were smaller than AcL4 of infective BALB/c mice. However the AcL3 that were cultured using defined incomplete culture medium (MEM plus 20% FCS with AA+AM, FA, CA, AA+AM+FA, FA+CA, CA+AA+AM or not) did not adequately survive and develop. Accordingly, the inference is made that only the defined complete medium enable AcL3 develop to AcL4 in vitro. Some nematodes have been successfully cultured into mature worms but only a few researches have been made to cultivate A. cantonensis in vitro. The present study is the first to have succeeded in developing AcL3 to AcL4 by in vitro cultivation. Finally, the results of in vitro cultivation studies herein contribute to improving media for the effective development and growth of A. cantonensis. The gap in the A. cantonensis life cycle when the larvae are cultivated in vitro from third-stage larvae to fourth-stage larvae can thus be solved.

  6. The cultivation of the mushroom Agaricus bisporus (Champignon) and some environmental and health aspects.

    PubMed

    Zicari, Giuseppe; Rivetti, Daniela; Soardo, Vincenzo; Cerrato, Elena

    2012-01-01

    The cultivation of the mushroom Agaricus bisporus, also known as button mushroom, requires the use of substrates for its cultivation, such as chicken and/or horse manure and the application of manufacturing steps, such as storage and composting that produce odours. The odours may cause disturbance to people living near the plant and may be a problem for workers. This article examines some measures that can be taken to reduce the odorous emissions during the production of Agaricus bisporus. The possibility of recovery of some organic matter left from the cultivation is examined. Finally, some occupational hazards for workers are highlighted.

  7. Cultivation-Independent Detection of Autotrophic Hydrogen-Oxidizing Bacteria by DNA Stable-Isotope Probing ▿

    PubMed Central

    Pumphrey, Graham M.; Ranchou-Peyruse, Anthony; Spain, Jim C.

    2011-01-01

    Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of 13CO2 was H2 dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from 13C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H2 concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation. PMID:21622787

  8. Biphasic cultivation strategy to avoid Epo-Fc aggregation and optimize protein expression.

    PubMed

    Kaisermayer, Christian; Reinhart, David; Gili, Andreas; Chang, Martina; Aberg, Per-Mikael; Castan, Andreas; Kunert, Renate

    2016-06-10

    In biphasic cultivations, the culture conditions are initially kept at an optimum for rapid cell growth and biomass accumulation. In the second phase, the culture is shifted to conditions ensuring maximum specific protein production and the protein quality required. The influence of specific culture parameters is cell line dependent and their impact on product quality needs to be investigated. In this study, a biphasic cultivation strategy for a Chinese hamster ovary (CHO) cell line expressing an erythropoietin fusion protein (Epo-Fc) was developed. Cultures were run in batch mode and after an initial growth phase, cultivation temperature and pH were shifted. Applying a DoE (Design of Experiments) approach, a fractional factorial design was used to systematically evaluate the influence of cultivation temperature and pH as well as their synergistic effect on cell growth as well as on recombinant protein production and aggregation. All three responses were influenced by the cultivation temperature. Additionally, an interaction between pH and temperature was found to be related to protein aggregation. Compared with the initial standard conditions of 37°C and pH 7.05, a parameter shift to low temperature and acidic pH resulted in a decrease in the aggregate fraction from 75% to less than 1%. Furthermore, the synergistic effect of temperature and pH substantially lowered the cell-specific rates of glucose and glutamine consumption as well as lactate and ammonium production. The optimized culture conditions also led to an increase of the cell-specific rates of recombinant Epo-Fc production, thus resulting in a more economic bioprocess. Copyright © 2016. Published by Elsevier B.V.

  9. Identification of suitable sites for mountain ginseng cultivation using GIS and geo-temperature.

    PubMed

    Kang, Hag Mo; Choi, Soo Im; Kim, Hyun

    2016-01-01

    This study was conducted to explore an accurate site identification technique using a geographic information system (GIS) and geo-temperature (gT) for locating suitable sites for growing cultivated mountain ginseng (CMG; Panax ginseng), which is highly sensitive to the environmental conditions in which it grows. The study site was Jinan-gun, South Korea. The spatial resolution for geographic data was set at 10 m × 10 m, and the temperatures for various climatic factors influencing CMG growth were calculated by averaging the 3-year temperatures obtained from the automatic weather stations of the Korea Meteorological Administration. Identification of suitable sites for CMG cultivation was undertaken using both a conventional method and a new method, in which the gT was added as one of the most important factors for crop cultivation. The results yielded by the 2 methods were then compared. When the gT was added as an additional factor (new method), the proportion of suitable sites identified decreased by 0.4 % compared with the conventional method. However, the proportion matching real CMG cultivation sites increased by 3.5 %. Moreover, only 68.2 % corresponded with suitable sites identified using the conventional factors; i.e., 31.8 % were newly detected suitable sites. The accuracy of GIS-based identification of suitable CMG cultivation sites improved by applying the temperature factor (i.e., gT) in addition to the conventionally used factors.

  10. Self-Cultivation: Culturally Sensitive Psychotherapies in Confucian Societies

    ERIC Educational Resources Information Center

    Hwang, Kwang-Kuo; Chang, Jeffrey

    2009-01-01

    This article describes self-cultivation practices originating from the cultural traditions of Confucianism, Taoism, and Buddhism. It delineates the therapeutic implications of the three states of self pursued by these three traditions: namely, the "relational self", the "authentic self", and the "nonself". Several…

  11. Low-cost production of green microalga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation.

    PubMed

    Yeesang, Chittra; Cheirsilp, Benjamas

    2014-09-01

    Botryococcus braunii is a microalga that is regarded as a potential source of renewable fuel because of its ability to produce large amounts of lipid that can be converted into biodiesel. Agro-industrial by-products and wastes are of great interest as cultivation medium for microorganisms because of their low cost, renewable nature, and abundance. In this study, two strategies for low-cost production of B. braunii biomass with high lipid content were performed: (i) the mixotrophic cultivation using molasses, a cheap by-product from the sugar cane plant as a carbon source, and (ii) the photoautotrophic cultivation using nitrate-rich wastewater supplemented with CO2 as a carbon source. The mixotrophic cultivation added with 15 g L(-1) molasses produced a high amount of biomass of 3.05 g L(-1) with a high lipid content of 36.9 %. The photoautotrophic cultivation in nitrate-rich wastewater supplemented with 2.0 % CO2 produced a biomass of 2.26 g L(-1) and a lipid content of 30.3 %. The benefits of this photoautotrophic cultivation are that this cultivation would help to reduce accumulation of atmospheric carbon dioxide and more than 90 % of the nitrate could be removed from the wastewater. When this cultivation was scaled up in a stirred tank photobioreactor and run with semi-continuous cultivation regime, the highest microalgal biomass of 5.16 g L(-1) with a comparable lipid content of 32.2 % was achieved. These two strategies could be promising ways for producing cheap lipid-rich microalgal biomass that can be used as biofuel feedstocks and animal feeds.

  12. [Analysis of the use of the Salinas forceps at the Gynecologic-Obstetric Hospital of Garza García, N.L. (Nuevo León)].

    PubMed

    de la Garza Quintanilla, C; González Salinas, M V; Celaya Juárez, J A

    1995-09-01

    Six hundred and thirteen cases of Salinas forceps application at Hospital de Ginecoobstetricia de Garza García, N.L. from November 1992 to April, 1993, were reviewed. The largest patients group, 20 to 29 years of age with 54.5%; primiparae were predominant with 55.9%, the largest amount of applications in term products, 80.8%; elective forceps with 72.5%; low application with 83.0%; medium 2.5%; episiotomy, medium, right lateral in all the cases; epidural block anesthesia in all the patients, and only one complication 0.1%; most frequent position variety OIA with 50%; and the smaller OIP with 2.6%; 96.3% of products weighted more than 2,500 g; and 87.1% with Apgar 8-9 at one minute. Maternal morbidity, 30.1%; fetal morbidity, 6.1%, with one case with facial paralysis (0.1%) by medium forceps. There were no maternal deaths; 3 antepartum fetal deaths; none postpartum.

  13. Nootropic activity of extracts from wild and cultivated Alfredia cernua.

    PubMed

    Mustafin, R N; Shilova, I V; Suslov, N I; Kuvacheva, N V; Amelchenko, V P

    2011-01-01

    Antihypoxic and nootropic activities of extracts from aerial parts of wild and cultivated Alfredia cernua (L.) Cass. were studied on the models of pressure chamber hypoxia, open field test, and passive avoidance conditioning. The extracts of Alfredia cernua promoted retention of the orientation reflex and passive avoidance conditioned response and normalized orientation and exploratory activities disordered as a result of hypoxic injury. The efficiency of the extracts was superior to that of piracetam by the effect on retention of passive avoidance response throughout the greater part of the experiment. Nootropic activity of cultivated Alfredia cernua was not inferior to that of the wild plant.

  14. Starting from grape cultivation.

    PubMed

    Yoshida, A

    1992-06-01

    Rapid population growth can only be stopped by lowering the fertility rate. The UNFPA recommends improving the employment opportunities for women as the single best way of achieving this reduction. An example of this phenomenon is the grape cultivation in the Nordeste (Northeastern) region of Brazil. This area is the poorest part of Brazil and has the highest proportion of indigent people. These people have been deforesting the Amazon in search of a better life. What they have done is sterilize the land and turned a tropical rain forest into a desert. In an effort to reverse this trend, grape cultivation has been introduced in an area called Petrolina. The area is very dry with less than 500 mm of precipitation annually. They do have access to a 5000 square kilometer artificial lake (the largest in the world) and the 3rd largest river in Brazil (the Sao Francisco). In an effort to avoid using agricultural medicines, the vines are fertilized with organic matter created on the farm and little or no pesticides are used since pests do not live in such an arid region. It has taken 20 years of trial and error, but the quality of the grapes is now very high and is competitive on the world market. Because of climate and location, harvesting is done year round which increases the productivity of the land. The farm managers have found that married women make the best workers and have the highest level of productivity. Age at 1st marriage averages 24-25, compared with 15-16 for unemployed women in the same area. The fertility rate averages 50% of that for unemployed women in the same area. Agricultural development offers the best opportunity for the women of developing countries. It can pay a high wage, reduce fertility, and replant desert areas.

  15. A Confucian Perspective of Self-Cultivation in Learning: Its Implications for Self-Directed Learning

    ERIC Educational Resources Information Center

    Tan, Charlene

    2017-01-01

    This article explores a Confucian perspective of self-cultivation in learning and its implications for self-directed learning. Focussing on two key Confucian texts, "Xueji" (Record of Learning) and "Xunzi," this essay expounds the purpose, content, process and essence of self-cultivation in learning. From a Confucian viewpoint,…

  16. SNP Discovery and Linkage Map Construction in Cultivated Tomato

    PubMed Central

    Shirasawa, Kenta; Isobe, Sachiko; Hirakawa, Hideki; Asamizu, Erika; Fukuoka, Hiroyuki; Just, Daniel; Rothan, Christophe; Sasamoto, Shigemi; Fujishiro, Tsunakazu; Kishida, Yoshie; Kohara, Mitsuyo; Tsuruoka, Hisano; Wada, Tsuyuko; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi

    2010-01-01

    Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/. PMID:21044984

  17. [Study on High-yield Cultivation Measures for Arctii Fructus].

    PubMed

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  18. Cultivating Demand for the Arts: Arts Learning, Arts Engagement, and State Arts Policy

    ERIC Educational Resources Information Center

    Zakaras, Laura; Lowell, Julia F.

    2008-01-01

    To shed light on the decline in demand for the nonprofit arts, the authors describe what it means to cultivate demand for the arts, examine how well U.S. institutions are serving this function, and discuss whether it is in the public interest to make such cultivation a higher priority than it has been in the past. The authors propose that a strong…

  19. Attitudes of cannabis growers to regulation of cannabis cultivation under a non-prohibition cannabis model.

    PubMed

    Lenton, Simon; Frank, Vibeke A; Barratt, Monica J; Dahl, Helle Vibeke; Potter, Gary R

    2015-03-01

    How cannabis cultivation is dealt with under various examples of cannabis legalization or regulation is an important consideration in design of such schemes. This study aimed to (i) investigate support among current or recent cannabis growers, for various potential policy options for cannabis cultivation if prohibition were repealed, and (ii) explore the support for these options across countries, scale of growing operations, demographics, drug use and cannabis supply involvement variables. This study utilized data from the online web survey of largely 'small-scale' cannabis cultivators, aged 18yrs and over, in eleven countries conducted by the Global Cannabis Cultivation Research Consortium (GCCRC). Data from 1722 current and recent cannabis growers in Australia, Denmark and the UK, who were all asked about policy, were included in the analysis. It investigated support for various frameworks for cultivation: (no regulation (free market); adult only; growing licenses; restrictions on plant numbers; licensed business-only sale; approved commercial growing; etc.). Among current growers, support for these options were compared across countries, across scale of growing operations, and by demographics, drug use and crime variables. Although there were some between country differences in support for the various policy options, what was striking was the similarity of the proportions for each of the eight most popular policy options. Among current growers, many of these positions were predicted by demographic, drug use and cannabis growing variables which were conceptually congruent with these positions. The results have relevance for the provisions regarding cannabis cultivation in the design of new non-prohibitionist models of cannabis which are increasingly under consideration. It should be of interest to policy makers, drug policy researchers, law enforcement and cannabis cultivators. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Biometry and diversity of Arabica coffee genotypes cultivated in a high density plant system.

    PubMed

    Rodrigues, W N; Tomaz, M A; Ferrão, M A G; Martins, L D; Colodetti, T V; Brinate, S V B; Amaral, J F T; Sobreira, F M; Apostólico, M A

    2016-02-11

    The present study was developed to respond to the need for an increase in crop yield in the mountain region of Caparaó (southern Espírito Santo State, Brazil), an area of traditional coffee production. This study aimed to analyze the diversity and characterize the crop yield of genotypes of Coffea arabica L. with potential for cultivation in high plant density systems. In addition, it also aimed to quantify the expression of agronomic traits in this cultivation system and provide information on the genotypes with the highest cultivation potential in the studied region. The experiment followed a randomized block design with 16 genotypes, four repetitions, and six plants per experimental plot. Plant spacing was 2.00 x 0.60 m, with a total of 8333 plants per hectare, representing a high-density cultivation system. Coffee plants were cultivated until the start of their reproductive phenological cycles and were evaluated along four complete reproductive cycles. Genotypes with high crop yield and beverage quality, short canopy, and rust resistance were selected. C. arabica genotypes showed variability in almost all characteristics. It was possible to identify different responses among genotypes grown in a high plant density cultivation system. Although the chlorophyll a content was similar among genotypes, the genotypes Acauã, Araponga MG1, Sacramento MG1, Tupi, and Catuaí IAC 44 showed a higher chlorophyll b content than the other genotypes. Among these, Sacramento MG1 also showed high leafiness and growth of vegetative structures, whereas Araponga MG1, Pau-Brasil MG1, and Tupi showed high fruit production. In addition, Araponga MG1 had also a higher and more stable crop yield over the years.

  1. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding. PMID:26483818

  2. Effects of hydraulic retention time on cultivation of indigenous microalgae as a renewable energy source using secondary effluent.

    PubMed

    Takabe, Yugo; Hidaka, Taira; Tsumori, Jun; Minamiyama, Mizuhiko

    2016-05-01

    Secondary effluent from wastewater treatment plants is suitable media for cultivating microalgae as a renewable energy source, and hydraulic retention time (HRT) control in culture is important to conduct well-planned outdoor indigenous microalgae cultivation with secondary effluent. This study revealed cultivation characteristics under various HRT by continuous 6-month experiments. In addition, effects of HRT on cultivation were determined by a mathematical model that described indigenous microalgae growth. Cultivated biomass mainly consisted of Chlorophyceae and its detritus regardless of HRT, and 5.93-14.8g/m(2)/day of biomass yield was obtained. The cultivated biomass had a stable higher heating value of 16kJ/g. Sensitivity analysis of the model suggests that HRT control had great effects on biomass yield, and 2-3days of HRT were recommended to obtain maximum biomass yield under certain weather conditions (temperature: approximately 12-25°C and solar radiation: approximately 8-19MJ/m(2)/day). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Groundwater level deterioration issues and suggested solution for the water curtain cultivation area in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Yongcheol; Lee, Bongju; Ha, Kucheol; Yoon, Yunyeol; Moon, Sangho; Cho, Suyoung; Kim, Seongyun

    2013-04-01

    Protected water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of the green house. But the issue is that the method results in groundwater level deterioration because it disposes the used groundwater to nearby stream. Reuse of the groundwater for water curtain cultivation is important Groundwater level, steam level, and groundwater usage rate are investigated at the five green house concentrated areas such as Cheongwon, Namyangju, Choongju, Namwon, Jinju. Groundwater usage rate is estimated using a ultrasonic flowmeter for a specific well and using the combination of pressure sensor and propeller type velocity counting equipment at a water disposal channel from November to April which is water curtain cultivating season. Groundwater usage rate ranges from 46.9m3/d to 108.0m3/d for a 10a greenhouse. Groundwater level change is strongly influenced by seasonal variation of rainfall and concentrated pumping activities in winter but the level is lower than stream level all year long resulting in all year around losing stream at Cheongwon, Namyangju, Jinju. At Nanwon, the stream is converted from losing one in winter to gaining one in summer. Groundwater level deterioration at concentrated water curtain cultivation area is found to be severe for some area where circulating water curtain cultivation system is need to be applied for groundwater restoration and sustainable cultivation in winter. Circulating water curtain cultivation system can restore the groundwater level by recharging the used groundwater through injection well and then pumping out from pumping well.

  4. Antioxidant capacity of several Iranian, wild and cultivated strains of the button mushroom

    PubMed Central

    Tajalli, Faezeh; Malekzadeh, Khalil; Soltanian, Hadi; Janpoor, Javad; Rezaeian, Sharareh; Pourianfar, Hamid R.

    2015-01-01

    The white button mushroom, Agaricus bisporus, is the most commonly grown mushroom in Iran; however, there is a significant shortage of research on its antioxidant activity and other medicinal properties. The aim of this study was to evaluate antioxidant capacity of the methanolic extracts from four cultivated strains and four Internal Transcribed Spacer (ITS)-identified, Iranian wild isolates of A. bisporus. Evaluations were made for total phenols, flavonoids and anthocyanins, and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Overall, results showed that all the wild isolates exhibited significantly lower DPPH-derived EC50, compared to the cultivated strains (p < 0.05). A relatively high relationship was observed between total phenols and flavonoids or anthocyanins (r2 > 0.60). However, these constituents could not statistically differentiate the group of wild samples from the cultivated ones, and there was low correlation with the DPPH-derived EC50s (r2 < 0.40). In conclusion, comparisons showed that wild isolate 4 and cultivated strains A15 and H1 had higher antioxidant capacity than the others (p < 0.05). This result identifies these mushrooms as good candidates for further investigation. PMID:26413059

  5. [Dynamics of Amomum villosum growth and its fruit yield cultivated under tropical forests].

    PubMed

    Zheng, Zheng; Gan, Jianmin; Feng, Zhili; Meng, Ying

    2004-01-01

    Investigations on the dynamics of Amomum villosum growth and its fruit yield cultivated under tropical ravine rainforest and secondary forest at different elevations in Xishuangbanna showed that the yield of A. villosum was influenced by the site age, sun light level of understorey, and water stress in dry season. The fruit yield and mature plant density decreased with increasing age of the A. villosum site. The fruit yield increased with sun light level when the light level in understorey was under 35% of full sun light (P < 0.05). The fruit yield at the lower site by stream was significantly higher than that at upper site (P < 0.05). The yield difference between ravine rainforest and secondary forest was not significant. Planned cultivation of A. villosum in the secondary forest of the shifting cultivation land by ravine from 800-1000 m elevation instead of customary cultivation in the ravine rainforest, could not only resolve the problem of the effect of light deficiency in understorey and water stress in the dry season on A. villosum fruit yield, but also be useful to protect the tropical ravine rain forest.

  6. Effects of organic and conventional cultivation methods on composition of eggplant fruits.

    PubMed

    Raigón, María D; Rodríguez-Burruezo, Adrián; Prohens, Jaime

    2010-06-09

    Organic food is associated by the general public with improved nutritional properties, and this has led to increasing demand for organic vegetables. The effects of organic and conventional cultivation methods on dry matter, protein, minerals, and total phenolic content has been studied for two successive years in two landraces and one commercial hybrid of eggplant. In the first year, organically produced eggplants had higher mean contents (expressed on a fresh weight basis) of K (196 vs 171 mg 100 g(-1)), Ca (11.1 vs 8.7 mg 100 g(-1)), Mg (6.0 vs 4.6 mg 100 g(-1)), and total phenolics (49.8 vs 38.2 mg 100 g(-1)) than conventionally grown eggplants. In the second year, in which matched plots having a history of organic management were cultivated following organic or conventional fertilization practices, organically produced eggplants still had higher contents of K (272 vs 249 mg 100 g(-1)) and Mg (8.8 vs 7.6), as well as of Cu (0.079 vs 0.065 mg 100 g(-1)), than conventionally fertilized eggplants. Conventionally cultivated eggplants had a higher polyphenol oxidase activity than organically cultivated ones (3.19 vs 2.17 enzyme activity units), although no differences in browning were observed. Important differences in mineral concentrations between years were detected, which resulted in many correlations among mineral contents being significant. The first component of the principal component analysis separates the eggplants according to year, whereas the second component separates them according to the cultivation method (organic or conventional). Overall, the results show that organic management and fertilization have a positive effect on the accumulation of certain beneficial minerals and phenolic compounds in eggplant and that organically and conventionally produced eggplants might be distinguished according to their composition profiles.

  7. On Design Experiment Teaching in Engineering Quality Cultivation

    ERIC Educational Resources Information Center

    Chen, Xiao

    2008-01-01

    Design experiment refers to that designed and conducted by students independently and is surely an important method to cultivate students' comprehensive quality. According to the development and requirements of experimental teaching, this article carries out a study and analysis on the purpose, significance, denotation, connotation and…

  8. Biogeography of mutualistic fungi cultivated by leafcutter ants

    USDA-ARS?s Scientific Manuscript database

    Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the USA, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA-sequence an...

  9. On-Site Production of Cellulolytic Enzymes by the Sequential Cultivation Method.

    PubMed

    Farinas, Cristiane S; Florencio, Camila; Badino, Alberto C

    2018-01-01

    The conversion of renewable lignocellulosic biomass into fuels, chemicals, and high-value materials using the biochemical platform has been considered the most sustainable alternative for the implementation of future biorefineries. However, the high cost of the cellulolytic enzymatic cocktails used in the saccharification step significantly affects the economics of industrial large-scale conversion processes. The on-site production of enzymes, integrated to the biorefinery plant, is being considered as a potential strategy that could be used to reduce costs. In such approach, the microbial production of enzymes can be carried out using the same lignocellulosic biomass as feedstock for fungal development and biofuels production. Most of the microbial cultivation processes for the production of industrial enzymes have been developed using the conventional submerged fermentation. Recently, a sequential solid-state followed by submerged fermentation has been described as a potential alternative cultivation method for cellulolytic enzymes production. This chapter presents the detailed procedure of the sequential cultivation method, which could be employed for the on-site production of the cellulolytic enzymes required to convert lignocellulosic biomass into simple sugars.

  10. Cultivating Uncultured Bacteria from Northern Wetlands: Knowledge Gained and Remaining Gaps

    PubMed Central

    Dedysh, Svetlana N.

    2011-01-01

    Northern wetlands play a key role in the global carbon budget, particularly in the budgets of the greenhouse gas methane. These ecosystems also determine the hydrology of northern rivers and represent one of the largest reservoirs of fresh water in the Northern Hemisphere. Sphagnum-dominated peat bogs and fens are the most extensive types of northern wetlands. In comparison to many other terrestrial ecosystems, the bacterial diversity in Sphagnum-dominated wetlands remains largely unexplored. As demonstrated by cultivation-independent studies, a large proportion of the indigenous microbial communities in these acidic, cold, nutrient-poor, and water-saturated environments is composed of as-yet-uncultivated bacteria with unknown physiologies. Most of them are slow-growing, oligotrophic microorganisms that are difficult to isolate and to manipulate in the laboratory. Yet, significant breakthroughs in cultivation of these elusive organisms have been made during the last decade. This article describes the major prerequisites for successful cultivation of peat-inhabiting microbes, gives an overview of the currently captured bacterial diversity from northern wetlands and discusses the unique characteristics of the newly discovered organisms. PMID:21954394

  11. Tea waste: an effective and economic substrate for oyster mushroom cultivation.

    PubMed

    Yang, Doudou; Liang, Jin; Wang, Yunsheng; Sun, Feng; Tao, Hong; Xu, Qiang; Zhang, Liang; Zhang, Zhengzhu; Ho, Chi-Tang; Wan, Xiaochun

    2016-01-30

    Tea waste is the residue that remains after tea leaves have been extracted by hot water to obtain water-soluble components. The waste contains a re-usable energy substrate and nutrients which may pollute the environment if they are not dealt with appropriately. Other agricultural wastes have been widely studied as substrates for cultivating mushrooms. In the present study, we cultivated oyster mushroom using tea waste as substrate. To study the feasibility of re-using it, tea waste was added to the substrate at different ratios in different experimental groups. Three mushroom strains (39, 71 and YOU) were compared and evaluated. Mycelia growth rate, yield, biological efficiency and growth duration were measured. Substrates with different tea waste ratios showed different growth and yield performance. The substrate containing 40-60% of tea waste resulted in the highest yield. Tea waste could be used as an effective and economic substrate for oyster mushroom cultivation. This study also provided a useful way of dealing with massive amounts of tea waste. © 2015 Society of Chemical Industry.

  12. Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts

    PubMed Central

    Temple, Joshua P.; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L.

    2015-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes. PMID:24014312

  13. Fungus cultivation by ambrosia beetles: Behavior and laboratory breeding success in three Xyleborine species

    Treesearch

    Peter Biedermann; Kier Klepzig; Taborsky Michael

    2009-01-01

    Fungus cultivation by ambrosia beetles is one of the four independently evolved cases of agriculture known in animals. Such cultivation is most advanced in the highly social subtribe Xyleborina (Scolytinae), which is characterized by haplodiploidy and extreme levels of inbreeding. Despite their ubiquity in forests worldwide, the behavior of these beetles remains poorly...

  14. Some personal observations on cultivating the Heliamphora

    Treesearch

    Robert R. Ziemer

    1979-01-01

    The following note is based on some 7 years experience growing three species of Heliamphora - H. heterodoxa, H. nutans, and H. minor. This information is not intended to be a definitive or even a comprehensive guide to the cultivation of these species, but simply some observations on what I have found to work for me through trial and error. I have not conducted...

  15. Carbon dioxide from geothermal gas converted to biomass by cultivating coccoid cyanobacteria.

    PubMed

    Svavarsson, Halldor G; Valberg, Johannes E; Arnardottir, Hronn; Brynjolfsdottir, Asa

    2017-07-11

    The Blue Lagoon is a geothermal aquifer with a diverse ecosystem located within the Reykjanes UNESCO Global Geopark on Iceland's Reykjanes Peninsula. Blue Lagoon Ltd., which exploits the aquifer, isolated a strain of coccoid cyanobacteria Cyanobacterium aponinum (C. aponinum) from the geothermal fluid of the Blue Lagoon more than two decades ago. Since then Blue Lagoon Ltd. has cultivated it in a photobioreactor, for use as an active ingredient in its skin care products. Until recently, the cultivation of C. aponinum was achieved by feeding it on 99.99% (4N) bottled carbon dioxide (CO 2 ). In this investigation, C. aponinum was cultivated using unmodified, non-condensable geothermal gas (geogas) emitted from a nearby geothermal powerplant as the feed-gas instead of the 4N-gas. The geogas contains roughly 90% vol CO 2 and 2% vol hydrogen sulfide (H 2 S). A comparison of both CO 2 sources was made. It was observed that the use of geogas did enhance the conversion efficiency. A 13 weeks' average CO 2 conversion efficiency of C. aponinum was 43% and 31% when fed on geogas and 4N-gas, respectively. Despite the high H 2 S concentration in the geogas, sulfur accumulation in the cultivated biomass was similar for both gas sources. Our results provide a model of a CO 2 sequestration by photosynthetic conversion of otherwise unused geothermal emission gas into biomass.

  16. Cultivation of moonmilk-born non-extremophilic Thaum and Euryarchaeota in mixed culture.

    PubMed

    Reitschuler, Christoph; Lins, Philipp; Wagner, Andreas Otto; Illmer, Paul

    2014-10-01

    PCR-DGGE, qPCR and sequencing highlighted a quite homogenous archaeal community prevailing in secondary calcite deposits, so-called moonmilk, within the cold alpine Hundalm cave in Tyrol (Austria). Furthermore, the depth profile of this moonmilk could prove that the Archaea are located in oxygen-rich near- and oxygen-depleted sub-surface layers. To gather these communities we therefore applied an aerobic and anaerobic cultivation approach in oligotrophic and methanotrophic media. The mixed moonmilk community was analyzed with a combination of molecular methods using qPCR, PCR-DGGE and sequencing. Anaerobic and aerobic cultures were additionally investigated with GC and HPLC analyses. It was possible to initially cultivate and enrich the supposed aerobic/microaerophilic and anaerobic archaeal fraction, representing the natural archaeal community. While the naturally less abundant near-surface Archaea are closely related to members of the Thaumarchaeota (Nitrosopumilus maritimus), the highly abundant anaerobic Archaea are more distantly related to members within the Euryarchaeota. It is possible that these cultivable moonmilk-born Archaea represent new ecotypes or are so far undescribed. Based on the sequencing results and the production of very low amounts of methane, a corresponding methanogenic community is thought to represent only a minor abundant archaeal fraction. On a physiological level the cultivated moonmilk community is cold-adapted and basically of oligotrophic and organotrophic character. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Agricultural intensification and changes in cultivated areas, 1970–2005

    PubMed Central

    Rudel, Thomas K.; Schneider, Laura; Uriarte, Maria; Turner, B. L.; DeFries, Ruth; Lawrence, Deborah; Geoghegan, Jacqueline; Hecht, Susanna; Ickowitz, Amy; Lambin, Eric F.; Birkenholtz, Trevor; Baptista, Sandra; Grau, Ricardo

    2009-01-01

    Does the intensification of agriculture reduce cultivated areas and, in so doing, spare some lands by concentrating production on other lands? Such sparing is important for many reasons, among them the enhanced abilities of released lands to sequester carbon and provide other environmental services. Difficulties measuring the extent of spared land make it impossible to investigate fully the hypothesized causal chain from agricultural intensification to declines in cultivated areas and then to increases in spared land. We analyze the historical circumstances in which rising yields have been accompanied by declines in cultivated areas, thereby leading to land-sparing. We use national-level United Nations Food and Agricultural Organization data on trends in cropland from 1970–2005, with particular emphasis on the 1990–2005 period, for 10 major crop types. Cropland has increased more slowly than population during this period, but paired increases in yields and declines in cropland occurred infrequently, both globally and nationally. Agricultural intensification was not generally accompanied by decline or stasis in cropland area at a national scale during this time period, except in countries with grain imports and conservation set-aside programs. Future projections of cropland abandonment and ensuing environmental services cannot be assumed without explicit policy intervention. PMID:19955435

  18. A new computer-controlled air-liquid interface cultivation system for the generation of differentiated cell cultures of the airway epithelium.

    PubMed

    Aufderheide, Michaela; Förster, Christine; Beschay, Morris; Branscheid, Detlev; Emura, Makito

    2016-01-01

    The increased application of in vitro systems in pharmacology and toxicology requires cell culture systems that facilitate the cultivation process and ensure stable, reproducible and controllable cultivation conditions. Up to now, some devices have been developed for the cultivation of cells under submersed conditions. However, systems meeting the requirements of an air-liquid interface (ALI) cultivation for the special needs of bronchial epithelial cells for example are still lacking. In order to obtain in vivo like organization and differentiation of these cells they need to be cultivated under ALI conditions on microporous membranes in direct contact with the environmental atmosphere. For this purpose, a Long-Term-Cultivation system was developed (CULTEX(®) LTC-C system) for the computer-controlled cultivation of such cells. The transwell inserts are placed in an incubator module (24 inserts), which can be adjusted for the medium level (ultrasonic pulse-echosensor), time and volume-dependent medium exchange, and frequency for mixing the medium with a rotating disc for homogeneous distribution of medium and secretion components. Normal primary freshly isolated bronchial epithelial cells were cultivated for up to 38 days to show the efficiency of such a cultivation procedure for generating 3D cultures exhibiting in vivo-like pseudostratified organization of the cells as well as differentiation characteristics like mucus-producing and cilia-forming cells. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. Influence of Different Supplements on the Commercial Cultivation of Milky White Mushroom

    PubMed Central

    Alam, Nuhu; Amin, Ruhul; Khair, Abul

    2010-01-01

    Calocybe indica, known as milky white mushroom, grows and cultivated in the sub-tropical and temperate zones of South Asia. We investigated the most suitable supplements and their levels for the commercial cultivation of milky white mushroom. Rice bran, maize powder, and wheat bran with their different levels (10, 20, 30, 40, and 50%) were used as supplements to evaluate the yield and yield contributing characteristics of C. indica. Primordia initiation was observed between 13.5 and 19.3 days. The results indicated that the 30% maize powder supplement was effective for producing viable fruiting bodies. The maximum diameters of the pileus and stalk were observed with 30% maize powder. The highest biological and economic yield and biological efficiency were also obtained with 30% maize powder as a supplement. The results indicate that increasing the supplement level resulted in less biological efficiency, and that 30% maize powder was the best supplement level for rice straw substrate to cultivate milky white mushrooms. PMID:23956652

  20. Application of ozonated piggery wastewater for cultivation of oil-rich Chlorella pyrenoidosa.

    PubMed

    Gan, Ke; Mou, Xiaoqing; Xu, Yan; Wang, Haiying

    2014-11-01

    Ozonated and autoclaved piggery wastewaters were compared for cultivation of oil-rich Chlorella pyrenoidosa by measuring nutrient removal from the medium and growth rate and lipid production of the microalgae. The removal rates of chemical oxygen demand, NH4(+)-N, total nitrogen and total phosphorus by C. pyrenoidosa were not influenced by both sterilisation methods. The specific growth rate and biomass of C. pyrenoidosa were determined by analysing the chlorophyll concentration for eliminating the disturbance of bacteria growth in culture system. Bacteria raised from the residue in the ozonated medium achieved 30% of the total microorganisms at the end of cultivation. They reduced the growth of C. pyrenoidosa by 10.4%, but contributed to a faster decline of the nutrient content on the first day. Lipid production and fatty acid profile did not change markedly in both sterilisation methods. The results suggest that ozonation is acceptable for piggery wastewater treatment for C. pyrenoidosa cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Production of deuterated switchgrass by hydroponic cultivation

    DOE PAGES

    Evans, Barbara R.; Bali, Garima; Foston, Marcus B.; ...

    2015-04-21

    Deuterium enrichment of biological materials can potential enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO 2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controlsmore » grown with H 2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50% D 2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by 1H- and 2H-NMR. Lastly, this capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.« less

  2. Cultivating Demand for the Arts: Arts Learning, Arts Engagement, and State Arts Policy. Summary

    ERIC Educational Resources Information Center

    Zakaras, Laura; Lowell, Julia F.

    2008-01-01

    The findings summarized in this report are intended to shed light on what it means to cultivate demand for the arts, why it is necessary and important to cultivate this demand, and what state arts agencies (SAAs) and other arts and education policymakers can do to help. The research considered only the benchmark arts central to public policy:…

  3. In vitro cultivation of Gymnophalloides seoi metacercariae (Digenea:Gymnophallidae).

    PubMed

    Kook, J; Lee, S H; Chai, J Y

    1997-03-01

    Gymnophalloides seoi is a human intestinal trematode prevalent on southwestern islands in Korea. In the present study, we investigated whether G. seoi metacercariae can grow and develop into adults by in vitro cultivation. The metacercariae were obtained from naturally infected oysters, and cultured in vitro for 5 days under three conditions; 37 degrees C/5% CO2, 41 degrees C/8% CO2, or 41 degrees C/5% CO2, in NCTC 109 complete media containing 20% FBS and 1% antibiotics-antimycotics. The degree of worm growth and development was compared with that grown in vivo of C3H mice. The length of the worms cultivated in vitro was 200-300 microns not significantly different from metacercariae, whereas the length of the worms recovered from C3H mice was significantly larger, 300-400 microns. The worms produced eggs when grown in C3H mice or cultured in vitro for 2 days under 41 degrees C/8% CO2 or 41 degrees C/5% CO2, but not when cultured under 37 degrees C/5% CO2. Among the in vitro conditions, 41 degrees C/5% CO2 was best for egg production, although the number of eggs was about half of worms obtained from C3H mice. In conclusion, in vitro cultivation of G. seoi metacercariae into egg-producing adults was partially successful under culture conditions of 41 degrees C/5% CO2 or 41 degrees C/8% CO2.

  4. Online automatic tuning and control for fed-batch cultivation

    PubMed Central

    van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.

    2007-01-01

    Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554

  5. Cultivating Critical-Thinking Dispositions throughout the Business Curriculum

    ERIC Educational Resources Information Center

    Bloch, Janel; Spataro, Sandra E.

    2014-01-01

    Critical thinking is an essential component of managerial literacy, yet business school graduates struggle to apply critical-thinking skills at work to the level that employers desire. This article argues for a dispositional approach to teaching critical thinking, rooted in cultivating a critical-thinking culture. We suggest a two-pronged approach…

  6. Technologies of Self and the Cultivation of Virtues

    ERIC Educational Resources Information Center

    Hattam, Robert; Baker, Bernadette

    2015-01-01

    In this article we engage with and against Foucault's provocation to think about diagrams of subjectivation. With Foucault we take up his meditation on spirituality and propose a Buddhist alternative to Greco-Roman technologies of self. Against Foucault's notion of an "arts of existence" we suggest instead "cultivation of…

  7. High-throughput micro-scale cultivations and chromatography modeling: Powerful tools for integrated process development.

    PubMed

    Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen

    2015-10-01

    Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance. © 2015 Wiley Periodicals, Inc.

  8. Introducing cultivated trees into the wild: Wood pigeons as dispersers of domestic olive seeds

    NASA Astrophysics Data System (ADS)

    Perea, Ramón; Gutiérrez-Galán, Alejandro

    2016-02-01

    Animals may disperse cultivated trees outside the agricultural land, favoring the naturalization or, even, the invasiveness of domestic plants. However, the ecological and conservation implications of new or unexplored mutualisms between cultivated trees and wild animals are still far from clear. Here, we examine the possible role of an expanding and, locally, overabundant pigeon species (Columba palumbus) as an effective disperser of domestic olive trees (Olea europaea), a widespread cultivated tree, considered a naturalized and invasive species in many areas of the world. By analyzing crop and gizzard content we found that olive fruits were an important food item for pigeons in late winter and spring. A proportion of 40.3% pigeons consumed olive seeds, with an average consumption of 7.8 seeds per pigeon and day. Additionally, most seed sizes (up to 0.7 g) passed undamaged through the gut and were dispersed from cultivated olive orchards to areas covered by protected Mediterranean vegetation, recording minimal dispersal distances of 1.8-7.4 km. Greenhouse experiments showed that seeds dispersed by pigeons significantly favored the germination and establishment in comparison to non-ingested seeds. The ability of pigeons to effectively disperse domestic olive seeds may facilitate the introduction of cultivated olive trees into natural systems, including highly-protected wild olive woodlands. We recommend harvesting ornamental olive trees to reduce both pigeon overpopulation and the spread of artificially selected trees into the natural environment.

  9. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process.

    PubMed

    Pinal, L; Cornejo, E; Arellano, M; Herrera, E; Nuñez, L; Arrizon, J; Gschaedler, A

    2009-05-01

    The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.

  10. [Effects of Loquat-Branch Dust Substitution on Ganoderma lucidum Cultivation in Its Main Active Components].

    PubMed

    Zhang, Ping; Chen, Feng; Lai, Teng-qiang; Jin, Ling-yun; Li, Ye

    2015-12-01

    To select the best Ganoderma lucidum cultivation medium of replacing sawdust into loquat-branch dust, in order to realize high output and high quality production of Ganoderma lucidum. Loquat-branch dust was added as substitution in Ganoderma lucidum cultivation, its effects on the biomass and the content of Ganoderma polysaccharides, triterpenoids and flavonoids were analyzed. By using loquat-branch dust in culture, Ganoderma lucidum grew well with normal fruiting body obtained and spores released. Compared with control group, the biological efficiency was increased by 11.34%, when the addition of the loquat-branch dust was 80%, while the amount of spore had little difference. When the addition of the loquat-branch dust was 90%, the content of Ganoderma polysaccharides and triterpenoids was increased by 32.29% and 30.58% respectively, while the efficiency of flavonoids had little difference. Using loquat-branch dust cultivation can improve the quality of Ganoderma lucidum. According to the comprehensive score, 80% loquat-branch dust is the most suitable cultivation medium.

  11. The archaeobotany of Asian rice expansion and the development of wet-field cultivation

    NASA Astrophysics Data System (ADS)

    Fuller, D.

    2008-12-01

    Archaeobotanical evidence provides direct data on past human diet and agriculture, including a geographical and chronological framework for studying the expansion of rice agriculture. The growth of systematic archaeobotanical sampling in recent years has allowed for the past presence of rice to be seen in relation to cultivation of other crops and associated weeds. The weed flora provides a basis for inferring the nature of cultivation systems, whether rain-fed dry rice or wetland "paddy" rice, a key distinction for considerations of past methane production. Nevertheless, current data is very unevenly distributed. This poster will summarize available evidence for the origins and spread of rice in South Asia (India and Pakistan), and mainland and Island Southeast Asia deriving from an earlier Chinese domestication. Where possible, such as in India or China, the potential of the weed flora remains for distinguishing wetland rice crops will be summarized. In broad terms, although the origins of rice use and cultivation begins by or during the Middle Holocene (6000- 3000 BC), rice cultivation spread outside the regions of the wild progenitor after this time. Two phases of rice expansion can be distinguished. Phase 1, between 3000 and 1500 BC, introduced rice to Southeast Asia, probably under wetland cultivation, and the spread of dry rice over northern India and Pakistan. Phase 2, taking place between 1000 and 0 BC, sees the spread of rice throughout the Southern Indian Peninsula, with weed evidence suggesting irrigated wetland rice. Similarly, this period sees the spread of intensive paddy agriculture through Korea and Japan, but in Southeast Asia is probably related to a spread of rice in upland, dry field systems.

  12. Naturalization of plant populations: the role of cultivation and population size and density.

    PubMed

    Minton, Mark S; Mack, Richard N

    2010-10-01

    Field experimentation is required to assess the effects of environmental stochasticity on small immigrant plant populations-a widely understood but largely unexplored aspect of predicting any species' likelihood of naturalization and potential invasion. Cultivation can mitigate this stochasticity, although the outcome for a population under cultivation nevertheless varies enormously from extinction to persistence. Using factorial experiments, we investigated the effects of population size, density, and cultivation (irrigation) on the fate of founder populations for four alien species with different life history characteristics (Echinochloa frumentacea, Fagopyrum esculentum, Helianthus annuus, and Trifolium incarnatum) in eastern Washington, USA. The fate of founder populations was highly variable within and among the 3 years of experimentation and illustrates the often precarious environment encountered by plant immigrants. Larger founder populations produced more seeds (P < 0.001); the role of founder population size, however, differed among years. Irrigation resulted in higher percent survival (P < 0.001) and correspondingly larger net reproductive rate (R(0); P < 0.001). But the minimum level of irrigation for establishment, R(0) > 1, differed among years and species. Sowing density did not affect the likelihood of establishment for any species. Our results underscore the importance of environmental stochasticity in determining the fate of founder populations and the potential of cultivation and large population size in countering the long odds against naturalization. Any implementation of often proposed post-immigration field trials to assess the risk of an alien species becoming naturalized, a requisite step toward invasion, will need to assess different sizes of founder populations and the extent and character of cultivation (intentional or unintentional) that the immigrants might receive.

  13. Cultivation of Cimicifuga racemosa (L.) nuttal and quality of CR extract BNO 1055.

    PubMed

    Popp, Michael; Schenk, Regina; Abel, Gudrun

    2003-03-14

    For Cimicifuga racemosa, well-founded investigations concerning multiplication, germination of seeds and field cultivation have not yet been published. Defined origins or varieties with certain agronomic properties and a specific pattern of active compounds are not commercially available. Special challenges are found with regard to growing of young plantlets from seeds. Comprehensive investigations have been started to find optimal conditions for all steps of the whole process to establish cultivation for Cimicifuga. Aim is to get defined varieties or sources with desirable agronomic characteristics and specific reproducible compound patterns in order to reach homogeneous plant raw material. For analytical tests, validated HPLC and TLC methods were used. Results from germination experiments with different temperature regimens show that the time for germination can be shortened from about 20 months to about 6 months. Gibberellic acid had positive influence on the development of the embryo. Content of triterpenglycosides and phenolic compounds was highest in May and June and decreased then from July until September. The quality of the ethanolic extract BNO 1055 (contained in Klimadynon(R) and Menofem(R)) differs from that of an isopropanolic extract. Comparison was carried out by means of TLC pattern of triterpenglycosides and phenolic compounds. Extensive systematic research on cultivation parameters with regard to all stages from the seeds to the herbal drug enables commercial field cultivation of Cimicifuga. Controlled cultivation (according to good agricultural practice or GAP) ensures the availability of homogenous standardized raw material. For pharmacological and clinical studies, standardized extracts and finished herbal medicinal products are required. Results of these studies are never transferable to other products and therefore valid only for the tested extracts/products.

  14. Effects of simple rain-shelter cultivation on fatty acid and amino acid accumulation in 'Chardonnay' grape berries.

    PubMed

    Meng, Nan; Ren, Zhi-Yuan; Yang, Xiao-Fan; Pan, Qiu-Hong

    2018-02-01

    Fatty acids and amino acids are the precursors of aliphatic and aromatic volatile compounds, higher alcohols and esters. They are also nutrition for yeast metabolism during fermentation. However, few reports have been concerned about the effect of viticulture practices on the accumulation of fatty acids and amino acids in wine grapes. This study aimed to explore the accumulation of these compounds in developing Vitis vinifera L. cv. Chardonnay grape berries under two vintages, and compare the influences of the rain-shelter cultivation and open-field cultivation. Fifteen fatty acids and 21 amino acids were detected in total. The rain-shelter cultivation led to an increase in the total concentration of fatty acids, and a decrease in the total concentration of amino acids compared with the open-field cultivation in 2012, while no significant difference was observed between two cultivation modes in 2013 vintage. Concentrations of palmitoleic acid, isoleucine and cysteine were significantly promoted in the rain-shelter grape berries, whereas those of tyrosine and ornithine were markedly reduced in both vintages. The rain-shelter cultivation of wine grapes in the rainy region is beneficial for improving grape quality and fermentation activity by influence on the concentration of fatty acids and amino acids. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  16. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm

    PubMed Central

    Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2016-01-01

    This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied. PMID:27006640

  17. Genome-wide sequence variations between wild and cultivated tomato species revisited by whole genome sequence mapping.

    PubMed

    Sahu, Kamlesh Kumar; Chattopadhyay, Debasis

    2017-06-02

    Cultivated tomato (Solanum lycopersicum L.) is the second most important vegetable crop after potato and a member of thirteen interfertile species of Solanum genus. Domestication and continuous selection for desirable traits made cultivated tomato species susceptible to many stresses as compared to the wild species. In this study, we analyzed and compared the genomes of wild and cultivated tomato accessions to identify the genomic regions that encountered changes during domestication. Analysis was based on SNP and InDel mining of twentynine accessions of twelve wild tomato species and forty accessions of cultivated tomato. Percentage of common SNPs among the accessions within a species corresponded with the reproductive behavior of the species. SNP profiles of the wild tomato species within a phylogenetic subsection varied with their geographical distribution. Interestingly, the ratio of genic SNP to total SNPs increased with phylogenetic distance of the wild tomato species from the domesticated species, suggesting that variations in gene-coding region play a major role in speciation. We retrieved 2439 physical positions in 1594 genes including 32 resistance related genes where all the wild accessions possessed a common wild variant allele different from all the cultivated accessions studied. Tajima's D analysis predicted a very strong purifying selection associated with domestication in nearly 1% of its genome, half of which is contributed by chromosome 11. This genomic region with a low Tajima's D value hosts a variety of genes associated with important agronomic trait such as, fruit size, tiller number and wax deposition. Our analysis revealed a broad-spectrum genetic base in wild tomato species and erosion of that in cultivated tomato due to recurrent selection for agronomically important traits. Identification of the common wild variant alleles and the genomic regions undergoing purifying selection during cultivation would facilitate future breeding program by

  18. Prolonged Maltose-Limited Cultivation of Saccharomyces cerevisiae Selects for Cells with Improved Maltose Affinity and Hypersensitivity

    PubMed Central

    Jansen, Mickel L. A.; Daran-Lapujade, Pascale; de Winde, Johannes H.; Piper, Matthew D. W.; Pronk, Jack T.

    2004-01-01

    Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport. PMID:15066785

  19. A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae)

    PubMed Central

    2011-01-01

    Background The second Internal Transcriber Spacer (ITS2) is a fast evolving part of the nuclear-encoded rRNA operon located between the 5.8S and 28S rRNA genes. Based on crossing experiments it has been proposed that even a single Compensatory Base Change (CBC) in helices 2 and 3 of the ITS2 indicates sexual incompatibility and thus separates biological species. Taxa without any CBC in these ITS2 regions were designated as a 'CBC clade'. However, in depth comparative analyses of ITS2 secondary structures, ITS2 phylogeny, the origin of CBCs, and their relationship to biological species have rarely been performed. To gain 'close-up' insights into ITS2 evolution, (1) 86 sequences of ITS2 including secondary structures have been investigated in the green algal order Ulvales (Chlorophyta, Viridiplantae), (2) after recording all existing substitutions, CBCs and hemi-CBCs (hCBCs) were mapped upon the ITS2 phylogeny, rather than merely comparing ITS2 characters among pairs of taxa, and (3) the relation between CBCs, hCBCs, CBC clades, and the taxonomic level of organisms was investigated in detail. Results High sequence and length conservation allowed the generation of an ITS2 consensus secondary structure, and introduction of a novel numbering system of ITS2 nucleotides and base pairs. Alignments and analyses were based on this structural information, leading to the following results: (1) in the Ulvales, the presence of a CBC is not linked to any particular taxonomic level, (2) most CBC 'clades' sensu Coleman are paraphyletic, and should rather be termed CBC grades. (3) the phenetic approach of pairwise comparison of sequences can be misleading, and thus, CBCs/hCBCs must be investigated in their evolutionary context, including homoplasy events (4) CBCs and hCBCs in ITS2 helices evolved independently, and we found no evidence for a CBC that originated via a two-fold hCBC substitution. Conclusions Our case study revealed several discrepancies between ITS2 evolution in the

  20. Wanted: Information on the Distribution of Cultivated Plants

    ERIC Educational Resources Information Center

    Howard, Richard A.

    1970-01-01

    Lack of documentation makes it very difficult to discover where species of cultivated plants may be found in the United States. Plead for compilation of "campus floras and herbarium collections. Need for a rational locator file of available plant materials. Lists and reviews present sources of information. Bibliography of campus floras. (EB)

  1. Assessing the regional impacts of increased energy maize cultivation on farmland birds.

    PubMed

    Brandt, Karoline; Glemnitz, Michael

    2014-02-01

    The increasing cultivation of energy crops in Germany substantially affects the habitat function of agricultural landscapes. Precise ex ante evaluations regarding the impacts of this cultivation on farmland bird populations are rare. The objective of this paper was to implement a methodology to assess the regional impacts of increasing energy maize cultivation on the habitat quality of agricultural lands for farmland birds. We selected five farmland bird indicator species with varying habitat demands. Using a crop suitability modelling approach, we analysed the availability of potential habitat areas according to different land use scenarios for a real landscape in Northeast Germany. The model was based on crop architecture, cultivation period, and landscape preconditions. Our results showed that the habitat suitability of different crops varied between bird species, and scenario calculations revealed an increase and a decrease in the size of the potential breeding and feeding habitats, respectively. The effects observed in scenario 1 (increased energy maize by 15%) were not reproduced in all cases in scenario 2 (increased energy maize by 30%). Spatial aggregation of energy maize resulted in a negative effect for some species. Changes in the composition of the farmland bird communities, the negative effects on farmland bird species limited in distribution and spread and the relevance of the type of agricultural land use being replaced by energy crops are also discussed. In conclusion, we suggest a trade-off between biodiversity and energy targets by identifying biodiversity-friendly energy cropping systems.

  2. The influence of co-cultivation on expression of the antifungal protein in Aspergillus giganteus.

    PubMed

    Meyer, Vera; Stahl, Ulf

    2003-01-01

    The afp gene of Aspergillus giganteus encodes a small, highly basic polypeptide with antifungal activity, named Antifungal Protein (AFP). The protein is secreted by the mould and inhibits the growth of various filamentous fungi. In this paper we report that co-cultivation of A. giganteus with various microorganisms alters afp expression. It was found that co-cultivation modulates afp expression on the level of transcription, using a reporter system based on the beta-glucuronidase gene. The presence of Fusarium oxysporum triggered afp transcription whereas dual cultures of A. giganteus and A. niger resulted in suppression of afp transcription. Growth tests performed with several carbon and nitrogen sources, revealed that the influence of co-cultivation is strongly dependent on the medium composition.

  3. Growth, antioxidant capacity and total carotene of Dunaliella salina DCCBC15 in a low cost enriched natural seawater medium.

    PubMed

    Tran, Duc; Doan, Nguyen; Louime, Clifford; Giordano, Mario; Portilla, Sixto

    2014-01-01

    Dunaliella is currently drawing worldwide attention as an alternative source of nutraceuticals. Commercially, β-carotene making up over 10% of Dunaliella biomass is generating the most interest. These compounds, because of their non-toxic properties, have found applications in the food, drug and cosmetic industry. The β-carotene content of Dunaliella cells, however, depends heavily on the growth conditions and especially on the availability of nutrients, salinity, irradiance and temperature in the growth medium. A chemically well defined medium is usually required, which significantly contributes to the cost of pigment production; hence a desire for low cost marine media. The present study aimed at evaluating the suitability of six different media, especially exploiting local potential resources, for the mass production of Dunaliella salina DCCBC15 as functional food and medicine. The efficacy of a new selected low-cost enriched natural seawater medium (MD4), supplemented with industrial N-P-K fertilizer, was investigated with respect to biomass production, chlorophyll, antioxidant capacity, and total carotene by Dunaliella though culture conditions were not optimized yet. This new medium (MD4) appears extremely promising, since it affords a higher production of Dunaliella biomass and pigments compared with the control, a common artificial medium (MD1), while allowing a substantial reduction in the production costs. The medium is also recommended for culturing other marine algae.

  4. Assessment of calcium and zinc accumulation in cultivated and wild apples.

    PubMed

    Liao, Liao; Fang, Ting; Ma, Baiquan; Deng, Xianbao; Zhao, Li; Han, Yuepeng

    2017-09-01

    Apple is one of the staple fruits worldwide which are a good source of mineral nutrients. However, little is known about genetic variation for mineral nutrition in apple germplasm. In this study, the calcium and zinc contents in mature fruits of 378 apple cultivars and 39 wild relatives were assessed. Mineral concentrations were quantified using flame atomic absorption spectroscopy (FAAS). Both calcium and zinc accumulation showed great variation among accessions tested. Overall, wild fruits were significantly richer in zinc than cultivated fruits, while the average concentration of calcium was similar between cultivated and wild fruits. The difference in zinc concentration between wild and cultivated fruits may be an indirect result of artificial selection on fruit characteristics during apple domestication. Moreover, calcium concentration in fruit showed a decreasing trend throughout fruit development of apple, while zinc concentration in fruit displayed a complex variation pattern in the late stages of fruit development. The finding of a wild genetic variation for fruit calcium and zinc accumulation in apple germplasm could be helpful for future research on genetic dissection and improvement of calcium and zinc accumulation in apple fruit. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Specific detection of cultivable Helicobacter pylori cells from wastewater treatment plants.

    PubMed

    Moreno, Yolanda; Ferrús, M Antonía

    2012-10-01

    Helicobacter pylori is present in surface water and wastewater, and biofilms in drinking water systems have been reported as possible reservoirs of H. pylori. However, its ability to survive in an infectious state in the environment is hindered because it rapidly loses its cultivability. The aim of this study was to determine the presence of cultivable and therefore viable H. pylori in wastewater treatment plants to understand the role of wastewater in the pathogen's transmission. A modified filter technique was used to obtain a positive H. pylori culture, and specific detection of this pathogen was achieved with FISH and PCR techniques. A total of six positive H. pylori cultures were obtained from the water samples, and molecular techniques positively identified H. pylori in 21 culture-negative samples. The combination of a culturing procedure after sample filtration followed by the application of a molecular method, such as PCR or FISH, provides a specific tool for the detection, identification, and direct visualization of cultivable and therefore viable H. pylori cells from complex mixed communities such as water samples. © 2012 Blackwell Publishing Ltd.

  6. [A brief introduction to life energy cultivation strategies in traditional Chinese medicine].

    PubMed

    Maa, Suh-Hwa

    2010-04-01

    The knowledge embraced within the broad field of Traditional Chinese Medicine (TCM) represents an important part of our common human heritage, as it incorporates time-tested and viable health promotion approaches applicable to everyone, regardless of ethnicity and geographic location. TCM emphasizes the importance of increased self-consciousness, which, once achieved, becomes regular aspect of daily life. Cultivating life energies in order to prevent and treat disease lies at the heart of TCM. This paper provides a brief introduction to TCM life energy cultivation strategies for nurse reference.

  7. Coca cultivation and crop eradication in Colombia: The challenges of integrating rural reality into effective anti-drug policy.

    PubMed

    Rincón-Ruiz, Alexander; Correa, Hyarold Leonardo; León, Daniel Oswaldo; Williams, Stewart

    2016-07-01

    This paper examines the positive and negative (or intended and unintended) impacts of anti-drug policies such as the aerial spraying of coca crops in Colombia. It provides spatial analysis of coca cultivation and crop eradication at a fine scale of resolution using the latest UNODC data. The findings suggest that anti-drug policy in Colombia between 2001 and 2012 has had some success with a significant decrease in overall levels of coca cultivation, but that it has also led to the displacement of coca cultivation, notably to areas within the Colombian Pacific region. Negative impacts include continued deforestation and damage to ecosystems, and the further marginalization of Afro-Colombian communities whose collective territories have been subject to increased coca cultivation between 2001 and 2012. Alternative development programs have not been well aligned with such areas where other illegal activities such as mining as well as coca cultivation now occur. Hence the importance of designing anti-drug policy that comprehensively integrates the local nuances of those peoples and places affected by coca cultivation and crop eradication according to their particular contexts. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The relationship between lignin peroxidase and manganese peroxidase production capacities and cultivation periods of mushrooms

    PubMed Central

    Xu, Jian Z; Zhang, Jun L; Hu, Kai H; Zhang, Wei G

    2013-01-01

    Mushrooms are able to secrete lignin peroxidase (LiP) and manganese peroxidase (MnP), and able to use the cellulose as sources of carbon. This article focuses on the relation between peroxidase-secreting capacity and cultivation period of mushrooms with non-laccase activity. Methylene blue and methyl catechol qualitative assay and spectrophotometry quantitative assay show LiP secreting unvaryingly accompanies the MnP secreting in mushroom strains. The growth rates of hyphae are detected by detecting the dry hyphal mass. We link the peroxidase activities to growth rate of mushrooms and then probe into the relationship between them. The results show that there are close relationships between LiP- and/or MnP-secretory capacities and the cultivation periods of mushrooms. The strains with high LiP and MnP activities have short cultivation periods. However, those strains have long cultivation periods because of the low levels of secreted LiP and/or MnP, even no detectable LiP and/or MnP activity. This study provides the first evidence on the imitate relation between the level of secreted LiP and MnP activities and cultivation periods of mushrooms with non-laccase activity. Our study has significantly increased the understanding of the role of LiP and MnP in the growth and development of mushrooms with non-laccase activity. PMID:22966760

  9. [Comparative study on specific chromatograms and main nucleosides of cultivated and wild Cordyceps sinensis].

    PubMed

    Zan, Ke; Huang, Li-Li; Guo, Li-Nong; Liu, Jie; Zheng, Jian; Ma, Shuang-Cheng; Qian, Zheng-Ming; Li, Wen-Jia

    2017-10-01

    This study is to establish the HPLC specific chromatogram and determine four main nucleosides of wild and cultivated Cordyceps sinensis. Uridine, inosine, guanosine and adenosine were selected as reference substance. HPLC analysis was performed on a Waters XSelect HSS T3 C₁₈ (4.6 mm×250 mm, 5 μm), with a mobile phase consisting of water(A)-acetonitrile (B) at a flow rate of 0.6 mL•min⁻¹ (0-5 min,0% B;5-15 min,0%-10% B, 15-30 min,10%-20% B, 30-33 min, 20%-50% B, 33-35 min, 50%-0% B, 35-40 min, 0% B). The detection wavelength was 260 nm and the column temperature was controlled at 30 ℃, and the injection volume was 5 μL. HPLC specific chromatogram of wild and cultivated C. sinensis was established and four main nucleosides were simultaneously determined by the above method. Specific chromatograms and contents of four main nucleosides showed no significant differences between cultivated and wild C. sinensis. These results can provide scientific evidences for further development and utilization of cultivated C. sinensis. Copyright© by the Chinese Pharmaceutical Association.

  10. Evaluation of the integrated hydrothermal carbonization-algal cultivation process for enhanced nitrogen utilization in Arthrospira platensis production.

    PubMed

    Yao, Changhong; Wu, Peichun; Pan, Yanfei; Lu, Hongbin; Chi, Lei; Meng, Yingying; Cao, Xupeng; Xue, Song; Yang, Xiaoyi

    2016-09-01

    Sustainable microalgal cultivation at commercial scale requires nitrogen recycling. This study applied hydrothermal carbonization to recover N of hot-water extracted Arthrospira platensis biomass residue into aqueous phase (AP) under different operation conditions and evaluated the N utilization, biomass yield and quality of A. platensis cultures using AP as the sole N source. With the increase of temperature at 190-210°C or reaction time of 2-3h, the N recovery rate decreased under nitrogen-repletion (+N) cultivation, while contrarily increased under nitrogen-limitation (-N) cultivation. Under +N biomass accumulation in the cultures with AP under 190°C was enhanced by 41-67% compared with that in NaNO3, and the highest protein content of 51.5%DW achieved under 200°C-2h was also 22% higher. Carbohydrate content of 71.4%DW under -N cultivation achieved under 210°C-3h was 14% higher than that in NaNO3. HTC-algal cultivation strategy under -N mode could save 60% of conventional N. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. First steps towards the successful surface-based cultivation of human embryonic stem cells in hanging drop systems.

    PubMed

    Schulz, Julia C; Stumpf, Patrick S; Katsen-Globa, Alisa; Sachinidis, Agapios; Hescheler, Jürgen; Zimmermann, Heiko

    2012-11-01

    Miniaturization and parallelization of cell culture procedures are in focus of research in order to develop test platforms with low material consumption and increased standardization for toxicity and drug screenings. The cultivation in hanging drops (HDs) is a convenient and versatile tool for biological applications and represents an interesting model system for the screening applications due to its uniform shape, the advantageous gas supply, and the small volume. However, its application has so far been limited to non-adherent and aggregate forming cells. Here, we describe for the first time the proof-of-principle regarding the adherent cultivation of human embryonic stem cells in HD. For this microcarriers were added to the droplet as dynamic cultivation surfaces resulting in a maintained pluripotency and proliferation capacity for 10 days. This enables the HD technique to be extended to the cultivation of adherence-dependent stem cells. Also, the possible automation of this method by implementation of liquid handling systems opens new possibilities for miniaturized screenings, the improvement of cultivation and differentiation conditions, and toxicity and drug development.

  12. First steps towards the successful surface-based cultivation of human embryonic stem cells in hanging drop systems

    PubMed Central

    Schulz, Julia C; Stumpf, Patrick S; Katsen-Globa, Alisa; Sachinidis, Agapios; Hescheler, Jürgen; Zimmermann, Heiko

    2012-01-01

    Miniaturization and parallelization of cell culture procedures are in focus of research in order to develop test platforms with low material consumption and increased standardization for toxicity and drug screenings. The cultivation in hanging drops (HDs) is a convenient and versatile tool for biological applications and represents an interesting model system for the screening applications due to its uniform shape, the advantageous gas supply, and the small volume. However, its application has so far been limited to non‐adherent and aggregate forming cells. Here, we describe for the first time the proof-of-principle regarding the adherent cultivation of human embryonic stem cells in HD. For this microcarriers were added to the droplet as dynamic cultivation surfaces resulting in a maintained pluripotency and proliferation capacity for 10 days. This enables the HD technique to be extended to the cultivation of adherence-dependent stem cells. Also, the possible automation of this method by implementation of liquid handling systems opens new possibilities for miniaturized screenings, the improvement of cultivation and differentiation conditions, and toxicity and drug development. PMID:23486530

  13. Heterotrophic cultivation of microalgae for pigment production: A review.

    PubMed

    Hu, Jianjun; Nagarajan, Dillirani; Zhang, Quanguo; Chang, Jo-Shu; Lee, Duu-Jong

    Pigments (mainly carotenoids) are important nutraceuticals known for their potent anti-oxidant activities and have been used extensively as high end health supplements. Microalgae are the most promising sources of natural carotenoids and are devoid of the toxic effects associated with synthetic derivatives. Compared to photoautotrophic cultivation, heterotrophic cultivation of microalgae in well-controlled bioreactors for pigments production has attracted much attention for commercial applications due to overcoming the difficulties associated with the supply of CO 2 and light, as well as avoiding the contamination problems and land requirements in open autotrophic culture systems. In this review, the heterotrophic metabolic potential of microalgae and their uses in pigment production are comprehensively described. Strategies to enhance pigment production under heterotrophic conditions are critically discussed and the challenges faced in heterotrophic pigment production with possible alternative solutions are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. First study of hormesis effect on mushroom cultivation.

    PubMed

    Zied, Diego Cunha; Dourado, Fernanda Aparecida; Dias, Eustáquio Souza; Pardo-Giménez, Arturo

    2017-10-05

    The use of fungicides is common in mushroom cultivation, but no study was carried out applying reduced doses of fungicides in order to increase yield, taking account the hormesis effect. The aim of this manuscript was to verify the effects of different concentrations of fungicides to stimulate the productivity of different strains of Agaricus bisporus. Two stages were developed, an in vitro study to define the best concentration to be applied in the second experiment an agronomic study, which consisted of the application of the selected fungicides, in their respective concentrations, in an experiment carried out in the mushroom chamber. Clearly, the result of the hormesis effect on mushroom cultivation can be verified. The results obtained in the 1st stage of the study (in vitro) were not always reproduced in the 2nd stage of the study (in vivo). The kresoxim methyl active ingredient may be an important chemical agent, while strain ABI 15/01 may be an extremely important biological agent to increase yield in the study of hormesis effects.

  15. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source.

    PubMed

    Abreu, Ana P; Fernandes, Bruno; Vicente, António A; Teixeira, José; Dragone, Giuliano

    2012-08-01

    Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Antioxidant Properties of Seeds from Lines of Artichoke, Cultivated Cardoon and Wild Cardoon

    PubMed Central

    Durazzo, Alessandra; Foddai, Maria Stella; Temperini, Andrea; Azzini, Elena; Venneria, Eugenia; Lucarini, Massimo; Finotti, Enrico; Maiani, Gianluca; Crinò, Paola; Saccardo, Francesco; Maiani, Giuseppe

    2013-01-01

    The artichoke (Cynara cardunculus L. subsp. scolymus L.), the cultivated cardoon (Cynara cardunculus var. altilis DC.) and the wild cardoon (Cynara cardunculus var. sylvestris L.) are species widely distributed in the Mediterranean area. The aim of this research was to evaluate the antioxidant properties of seeds from lines of artichoke and cultivated and wild cardoon in both aqueous-organic extracts and their residues by FRAP (Ferric Reducing Antioxidant Power) and TEAC (Trolox Equivalent Antioxidant Capacity) evaluations. Both artichoke and cardoon seeds are a good source of antioxidants. Among artichoke seeds, hydrolysable polyphenols contribution to antioxidant properties ranged from 41% to 78% for FRAP values and from 17% to 37% for TEAC values. No difference between cultivated and wild cardoon in antioxidant properties are reported. Our results could provide information about the potential industrial use and application of artichoke and/or cardoon seeds. PMID:26787623

  17. Comparative assessment of sugar and malic acid composition in cultivated and wild apples.

    PubMed

    Ma, Baiquan; Chen, Jie; Zheng, Hongyu; Fang, Ting; Ogutu, Collins; Li, Shaohua; Han, Yuepeng; Wu, Benhong

    2015-04-01

    Soluble sugar and malic acid contents in mature fruits of 364 apple accessions were quantified using high-performance liquid chromatography (HPLC). Fructose and sucrose represented the major components of soluble sugars in cultivated fruits, whilst fructose and glucose were the major items of sugars in wild fruits. Wild fruits were significantly more acidic than cultivated fruits, whilst the average concentration of total sugars and sweetness index were quite similar between cultivated and wild fruits. Thus, our study suggests that fruit acidity rather than sweetness is likely to have undergone selection during apple domestication. Additionally, malic acid content was positively correlated with glucose content and negatively correlated with sucrose content. This suggests that selection of fruit acidity must have an effect on the proportion of sugar components in apple fruits. Our study provides information that could be helpful for future apple breeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Use of extracts from oyster shell and soil for cultivation of Spirulina maxima.

    PubMed

    Jung, Joo-Young; Kim, Sunmin; Lee, Hansol; Kim, Kyochan; Kim, Woong; Park, Min S; Kwon, Jong-Hee; Yang, Ji-Won

    2014-12-01

    Calcium ion and trace metals play important roles in various metabolisms of photosynthetic organisms. In this study, simple methods were developed to extract calcium ion and micronutrients from oyster shell and common soil, and the prepared extracts were tested as a replacement of the corresponding chemicals that are essential for growth of microalgae. The oyster shell and soil were treated with 0.1 M sodium hydroxide or with 10 % hydrogen peroxide, respectively. The potential application of these natural sources to cultivation was investigated with Spirulina maxima. When compared to standard Zarrouk medium, the Spirulina maxima cultivated in a modified Zarrouk media with elements from oyster shell and soil extract exhibited increases in biomass, chlorophyll, and phycocyanin by 17, 16, and 64 %, respectively. These results indicate that the extracts of oyster shell and soil provide sufficient amounts of calcium and trace metals for successful cultivation of Spirulina maxima.

  19. Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology.

    PubMed

    Wang, Xue; Bao, Keting; Cao, Weixing; Zhao, Yongjun; Hu, Chang Wei

    2017-07-14

    The microalgae-based technology has been developed to reduce biogas slurry nutrients and upgrade biogas simultaneously. In this work, five microalgal strains named Chlorella vulgaris, Scenedesmus obliquus, Selenastrum capricornutum, Nitzschia palea, and Anabaena spiroides under mono- and co-cultivation were used for biogas upgrading. Optimum biogas slurry nutrient reduction could be achieved by co-cultivating microalgae (Chlorella vulgaris, Scenedesmus obliquus, and Nitzschia palea) with fungi using the pelletization technology. In addition, the effects of different ratio of mixed LED light wavelengths applying mixed light-emitting diode during algae strains and fungi co-cultivation on CO 2 and biogas slurry nutrient removal efficiency were also investigated. The results showed that the COD (chemical oxygen demand), TN (total nitrogen), and TP (total phosphorus) removal efficiency were 85.82 ± 5.37%, 83.31 ± 4.72%, and 84.26 ± 5.58%, respectively at red: blue = 5:5 under the co-cultivation of S. obliquus and fungi. In terms of biogas upgrading, CH 4 contents were higher than 90% (v/v) for all strains, except the co-cultivation with S. obliquus and fungi at red: blue = 3:7. The results indicated that co-cultivation of microalgae with fungi under mixed light wavelengths treatments was most successful in nutrient removal from wastewater and biogas upgrading.

  20. 23. Photocopy of original photo from Corps of Engineers, Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of original photo from Corps of Engineers, Los Angeles District, 'Report on Salinas Dam, Salinas River, California,' June 15, 1943. (Photographer unknown; report located at City of San Luis Obispo.) CONSTRUCTION PHOTO SHOWING CURVED CONCRETE CHUTE SPILLWAY. - Salinas Dam, Salinas River near Pozo Road, Santa Margarita, San Luis Obispo County, CA

  1. Negotiating ownership: Understanding the cultivation of student ownership in an urban science video project

    NASA Astrophysics Data System (ADS)

    O'Neill, Tara Breckenridge

    The intention of this study is to define student ownership in an informal science learning setting in a low performing middle school in New York City, to investigate what characterizes such ownership, and to determine how to cultivate it. In addition, I am interested in investigating the effects of the students' sense of ownership on their sense of self, in relation to the study and the practice of science and the role of race in power in framing the context in which ownership is cultivated. This is a qualitative study; specifically I apply a critical ethnography framework for both data collection an analysis. This study is based in an informal science video project lasting three years in which two groups of sixth and seventh grade students, made three movies about their perceptions of science, who they felt knew science, and how science related to their lives. In chapter IV, I explain that students' expression of ownership is visible via five main themes. (1) Students viewed themselves in relation to science in ways that are positive, empowering, and full of self-awareness. (2) Students actively and purposefully chose to expend their capital. (3) Students expressed pride around the multiple contexts. (4) Students used the video project to effect positive changes in their lives. (5) Students expressed positive and realistic vision for the role that science played in their lives. In chapter V, I explain that student agency and student ownership share a dialectic relationship in which student agency must be valued to cultivate student ownership and the cultivation of student ownership expands student agency. Lastly, in chapter VII, I explore the role race and power play in framing the context in which ownership is cultivated. Specifically, I argue that in order to cultivate ownership in high-poverty urban science learning environments, the teacher in this environment must be critically reflective of her/his practice and pay particular attention to issues of race and

  2. Isolation and Evaluation of Oil-Producing Microalgae from Subtropical Coastal and Brackish Waters

    PubMed Central

    Lim, David K. Y.; Garg, Sourabh; Timmins, Matthew; Zhang, Eugene S. B.; Thomas-Hall, Skye R.; Schuhmann, Holger; Li, Yan; Schenk, Peer M.

    2012-01-01

    Microalgae have been widely reported as a promising source of biofuels, mainly based on their high areal productivity of biomass and lipids as triacylglycerides and the possibility for cultivation on non-arable land. The isolation and selection of suitable strains that are robust and display high growth and lipid accumulation rates is an important prerequisite for their successful cultivation as a bioenergy source, a process that can be compared to the initial selection and domestication of agricultural crops. We developed standard protocols for the isolation and cultivation for a range of marine and brackish microalgae. By comparing growth rates and lipid productivity, we assessed the potential of subtropical coastal and brackish microalgae for the production of biodiesel and other oil-based bioproducts. This study identified Nannochloropsis sp., Dunaniella salina and new isolates of Chlorella sp. and Tetraselmis sp. as suitable candidates for a multiple-product algae crop. We conclude that subtropical coastal microalgae display a variety of fatty acid profiles that offer a wide scope for several oil-based bioproducts, including biodiesel and omega-3 fatty acids. A biorefinery approach for microalgae would make economical production more feasible but challenges remain for efficient harvesting and extraction processes for some species. PMID:22792403

  3. Socio-economic comparison between traditional and improved cultivation methods in agroforestry systems, East Usambara Mountains, Tanzania.

    PubMed

    Reyes, Teija; Quiroz, Roberto; Msikula, Shija

    2005-11-01

    The East Usambara Mountains, recognized as one of the 25 most important biodiversity hot spots in the world, have a high degree of species diversity and endemism that is threatened by increasing human pressure on resources. Traditional slash and burn cultivation in the area is no longer sustainable. However, it is possible to maintain land productivity, decrease land degradation, and improve rural people's livelihood by ameliorating cultivation methods. Improved agroforestry seems to be a very convincing and suitable method for buffer zones of conservation areas. Farmers could receive a reasonable net income from their farm with little investment in terms of time, capital, and labor. By increasing the diversity and production of already existing cultivations, the pressure on natural forests can be diminished. The present study shows a significant gap between traditional cultivation methods and improved agroforestry systems in socio-economic terms. Improved agroforestry systems provide approximately double income per capita in comparison to traditional methods. More intensified cash crop cultivation in the highlands of the East Usambara also results in double income compared to that in the lowlands. However, people are sensitive to risks of changing farming practices. Encouraging farmers to apply better land management and practice sustainable cultivation of cash crops in combination with multipurpose trees would be relevant in improving their economic situation in the relatively short term. The markets of most cash crops are already available. Improved agroforestry methods could ameliorate the living conditions of the local population and protect the natural reserves from human disturbance.

  4. Gain and Loss of Fruit Flavor Compounds Produced by Wild and Cultivated Strawberry Species

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Verstappen, Francel W.A.; Bertea, Cinzia M.; Sevenier, Robert; Sun, Zhongkui; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2004-01-01

    The blends of flavor compounds produced by fruits serve as biological perfumes used to attract living creatures, including humans. They include hundreds of metabolites and vary in their characteristic fruit flavor composition. The molecular mechanisms by which fruit flavor and aroma compounds are gained and lost during evolution and domestication are largely unknown. Here, we report on processes that may have been responsible for the evolution of diversity in strawberry (Fragaria spp) fruit flavor components. Whereas the terpenoid profile of cultivated strawberry species is dominated by the monoterpene linalool and the sesquiterpene nerolidol, fruit of wild strawberry species emit mainly olefinic monoterpenes and myrtenyl acetate, which are not found in the cultivated species. We used cDNA microarray analysis to identify the F. ananassa Nerolidol Synthase1 (FaNES1) gene in cultivated strawberry and showed that the recombinant FaNES1 enzyme produced in Escherichia coli cells is capable of generating both linalool and nerolidol when supplied with geranyl diphosphate (GPP) or farnesyl diphosphate (FPP), respectively. Characterization of additional genes that are very similar to FaNES1 from both the wild and cultivated strawberry species (FaNES2 and F. vesca NES1) showed that only FaNES1 is exclusively present and highly expressed in the fruit of cultivated (octaploid) varieties. It encodes a protein truncated at its N terminus. Green fluorescent protein localization experiments suggest that a change in subcellular localization led to the FaNES1 enzyme encountering both GPP and FPP, allowing it to produce linalool and nerolidol. Conversely, an insertional mutation affected the expression of a terpene synthase gene that differs from that in the cultivated species (termed F. ananassa Pinene Synthase). It encodes an enzyme capable of catalyzing the biosynthesis of the typical wild species monoterpenes, such as α-pinene and β-myrcene, and caused the loss of these

  5. Nitrous Oxide Reductase (nosZ) Gene Fragments Differ between Native and Cultivated Michigan Soils

    PubMed Central

    Stres, Blaž; Mahne, Ivan; Avguštin, Gorazd; Tiedje, James M.

    2004-01-01

    The effect of standard agricultural management on the genetic heterogeneity of nitrous oxide reductase (nosZ) fragments from denitrifying prokaryotes in native and cultivated soil was explored. Thirty-six soil cores were composited from each of the two soil management conditions. nosZ gene fragments were amplified from triplicate samples, and PCR products were cloned and screened by restriction fragment length polymorphism (RFLP). The total nosZ RFLP profiles increased in similarity with soil sample size until triplicate 3-g samples produced visually identical RFLP profiles for each treatment. Large differences in total nosZ profiles were observed between the native and cultivated soils. The fragments representing major groups of clones encountered at least twice and four randomly selected clones with unique RFLP patterns were sequenced to verify nosZ identity. The sequence diversity of nosZ clones from the cultivated field was higher, and only eight patterns were found in clone libraries from both soils among the 182 distinct nosZ RFLP patterns identified from the two soils. A group of clones that comprised 32% of all clones dominated the gene library of native soil, whereas many minor groups were observed in the gene library of cultivated soil. The 95% confidence intervals of the Chao1 nonparametric richness estimator for nosZ RFLP data did not overlap, indicating that the levels of species richness are significantly different in the two soils, the cultivated soil having higher diversity. Phylogenetic analysis of deduced amino acid sequences grouped the majority of nosZ clones into an interleaved Michigan soil cluster whose cultured members are α-Proteobacteria. Only four nosZ sequences from cultivated soil and one from the native soil were related to sequences found in γ-Proteobacteria. Sequences from the native field formed a distinct, closely related cluster (Dmean = 0.16) containing 91.6% of the native clones. Clones from the cultivated field were more

  6. Do Specialized MBA Programs Cultivate Alumni Relationships and Donations?

    ERIC Educational Resources Information Center

    Johnson, Jennifer Wiggins; Thomas, Veronica; Peck, Joann

    2010-01-01

    A recent trend among universities shifts from traditional MBA programs to specialized MBA offerings. Specialized programs are believed to cultivate stronger relationships with students, which lead to stronger alumni relationships and increased donations. This research tests this empirically by examining relationship perceptions and donation…

  7. Parenting Priorities and Pressures: Furthering Understanding of "Concerted Cultivation"

    ERIC Educational Resources Information Center

    Vincent, Carol; Maxwell, Claire

    2016-01-01

    This paper re-examines the purposes of a planned and intentional parenting style--"concerted cultivation"--for different middle-class groups, highlighting that social class fraction, ethnicity, and also individual family disposition, guides understandings of the purposes of enrolling children in particular enrichment activities. We…

  8. Kant and Rawls on the Cultivation of Virtue

    ERIC Educational Resources Information Center

    Brewer, Talbot

    2013-01-01

    In "Two Conceptions of Virtue," Thomas Hill reconstructs the conceptions of virtue, and of proper moral upbringing, found in Kant and Rawls. Here I offer some brief reflections on these conceptions of virtue and its cultivation. I argue that Kant's conception of virtue is grounded in a mistaken conception of desire, and that this…

  9. The Seeding and Cultivation of a Tropical Species of Filamentous Ulva for Algal Biomass Production

    PubMed Central

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially ‘seeded’ under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day−1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0±8.8 g dry weight m−1 (228.7±115.4 g fresh weight m−1) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5±7.3 g dry weight m−1 (120.2±71.8 g fresh weight m−1) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems. PMID:24897115

  10. Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium.

    PubMed

    Grekov, Igor; Svobodová, Milena; Nohýnková, Eva; Lipoldová, Marie

    2011-12-01

    Protozoan hemoflagellates Leishmania are causative agents of leishmaniases and an important biological model for study of host-pathogen interaction. A wide range of methods of Leishmania cultivation on both biphasic and liquid media is available. Biphasic media are considered to be superior for initial isolation of the parasites and obtaining high promastigote infectivity; however, liquid media are more suitable for large-scale experiments. The aim of the present study was the adaptation and optimization of the cultivation of Leishmania promastigotes on a biphasic SNB-9 (saline-neopeptone-blood 9) medium that was originally developed for Trypanosoma cultivation and combines the advantages of biphasic and liquid media. SNB-9 medium is characterized with a large volume of the liquid phase, which facilitates the manipulation with the culture and provides parasite yields comparable to parasite yields on such liquid medium as Schneider's Insect Medium. We demonstrate that SNB-9 very considerably surpasses Schneider's Insect Medium in in vitro infectivity of the parasites. Additionally, we show that the ratio of apoptotic parasites, which are important for the infectivity of the inoculum, in Leishmania culture in SNB-9 is higher than in Leishmania culture in Schneider's Insect Medium. Thus, we demonstrate that the cultivation of Leishmania on SNB-9 reliably yields highly infective promastigotes suitable for experimental infection. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Resilience and Alternative Stable States of Tropical Forest Landscapes under Shifting Cultivation Regimes

    PubMed Central

    2015-01-01

    Shifting cultivation is a traditional agricultural practice in most tropical regions of the world and has the potential to provide for human livelihoods while hosting substantial biodiversity. Little is known about the resilience of shifting cultivation to increasing agricultural demands on the landscape or to unexpected disturbances. To investigate these issues, we develop a simple social-ecological model and implement it with literature-derived ecological parameters for six shifting cultivation landscapes from three continents. Analyzing the model with the tools of dynamical systems analysis, we show that such landscapes exhibit two stable states, one characterized by high forest cover and agricultural productivity, and another with much lower values of these traits. For some combinations of agricultural pressure and ecological parameters both of these states can potentially exist, and the actual state of the forest depends critically on its historic state. In many cases, the landscapes’ ‘ecological resilience’, or amount of forest that could be destroyed without shifting out of the forested stability domain, declined substantially at lower levels of agricultural pressure than would lead to maximum productivity. A measure of ‘engineering resilience’, the recovery time from standardized disturbances, was independent of ecological resilience. These findings suggest that maximization of short-term agricultural output may have counterproductive impacts on the long-term productivity of shifting cultivation landscapes and the persistence of forested areas. PMID:26406907

  12. A Noble Quest: Cultivating Christian Spirituality in Catholic Adolescents and the Usefulness of 12 Pastoral Practices

    ERIC Educational Resources Information Center

    Canales, Arthur David

    2009-01-01

    The essay considers the process of cultivating Christian spirituality in Catholic adolescents. It will integrate and document official Catholic Church teachings on the subject and also unofficial scholarly reflections. The expose briefly defines adolescent spirituality and situates the process of cultivating adolescent spirituality in Catholic…

  13. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    PubMed

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation.

  14. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    PubMed Central

    Vandevenne, Floor I.; Delvaux, Claire; Hughes, Harold J.; André, Luc; Ronchi, Benedicta; Clymans, Wim; Barão, Lúcia; Govers, Gerard; Meire, Patrick; Struyf, Eric

    2015-01-01

    Despite increasing recognition of the relevance of biological cycling for Si cycling in ecosystems and for Si export from soils to fluvial systems, effects of human cultivation on the Si cycle are still relatively understudied. Here we examined stable Si isotope (δ30Si) signatures in soil water samples across a temperate land use gradient. We show that – independent of geological and climatological variation – there is a depletion in light isotopes in soil water of intensive croplands and managed grasslands relative to native forests. Furthermore, our data suggest a divergence in δ30Si signatures along the land use change gradient, highlighting the imprint of vegetation cover, human cultivation and intensity of disturbance on δ30Si patterns, on top of more conventionally acknowledged drivers (i.e. mineralogy and climate). PMID:25583031

  15. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice.

    PubMed

    Dai, Lei; Dai, Weimin; Song, Xiaoling; Lu, Baorong; Qiang, Sheng

    2014-01-01

    Competition from weedy rice can cause serious yield losses to cultivated rice. However, key traits that facilitate competitiveness are still not well understood. To explore the mechanisms behind the strong growth and competitive ability, replacement series experiments were established with six genotypes of weedy rice from different regions and one cultivated rice cultivar. (1) Weedy rice from southern China had the greatest impact on growth and yield of cultivated rice throughout the entire growing season. Weedy rice from the northeast was very competitive during the early vegetative stage while the competitive effects of eastern weedy rice were more detrimental at later crop-growth stages. (2) As the proportion of weedy rice increased, plant height, tillers, above-ground biomass, and yield of cultivated rice significantly declined; the crop always being at disadvantage regardless of proportion. (3) Weedy biotypes with greater diversity as estimated by their Shannon indexes were more detrimental to the growth and yield of cultivated rice. Geographic origin (latitude) of weedy rice biotype, its mixture proportion under competition with the crop and its genetic diversity are determinant factors of the outcome of competition and the associated decline in the rice crop yield. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.

  16. Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode

    PubMed Central

    2012-01-01

    Background Plasmid DNA (pDNA) is a promising molecule for therapeutic applications. pDNA is produced by Escherichia coli in high cell-density cultivations (HCDC) using fed-batch mode. The typical limitations of such cultivations, including metabolic deviations like aerobic acetate production due to the existence of substrate gradients in large-scale bioreactors, remain as serious challenges for fast and effective pDNA production. We have previously demonstrated that the substitution of the phosphotransferase system by the over-expressed galactose permease for glucose uptake in E. coli (strain VH33) allows efficient growth, while strongly decreases acetate production. In the present work, additional genetic modifications were made to VH33 to further improve pDNA production. Several genes were deleted from strain VH33: the recA, deoR, nupG and endA genes were inactivated independently and in combination. The performance of the mutant strains was evaluated in shake flasks for the production of a 6.1 kb plasmid bearing an antigen gene against mumps. The best producer strain was cultivated in lab-scale bioreactors using 100 g/L of glucose to achieve HCDC in batch mode. For comparison, the widely used commercial strain DH5α, carrying the same plasmid, was also cultivated under the same conditions. Results The various mutations tested had different effects on the specific growth rate, glucose uptake rate, and pDNA yields (YP/X). The triple mutant VH33 Δ (recA deoR nupG) accumulated low amounts of acetate and resulted in the best YP/X (4.22 mg/g), whereas YP/X of strain VH33 only reached 1.16 mg/g. When cultivated at high glucose concentrations, the triple mutant strain produced 186 mg/L of pDNA, 40 g/L of biomass and only 2.2 g/L of acetate. In contrast, DH5α produced only 70 mg/L of pDNA and accumulated 9.5 g/L of acetate. Furthermore, the supercoiled fraction of the pDNA produced by the triple mutant was nearly constant throughout the cultivation

  17. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development

    PubMed Central

    Guo, Shaogui; Sun, Honghe; Zhang, Haiying; Liu, Jingan; Ren, Yi; Gong, Guoyi; Jiao, Chen; Zheng, Yi; Yang, Wencai; Fei, Zhangjun; Xu, Yong

    2015-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an important vegetable crop world-wide. Watermelon fruit quality is a complex trait determined by various factors such as sugar content, flesh color and flesh texture. Fruit quality and developmental process of cultivated and wild watermelon are highly different. To systematically understand the molecular basis of these differences, we compared transcriptome profiles of fruit tissues of cultivated watermelon 97103 and wild watermelon PI296341-FR. We identified 2,452, 826 and 322 differentially expressed genes in cultivated flesh, cultivated mesocarp and wild flesh, respectively, during fruit development. Gene ontology enrichment analysis of these genes indicated that biological processes and metabolic pathways related to fruit quality such as sweetness and flavor were significantly changed only in the flesh of 97103 during fruit development, while those related to abiotic stress response were changed mainly in the flesh of PI296341-FR. Our comparative transcriptome profiling analysis identified critical genes potentially involved in controlling fruit quality traits including α-galactosidase, invertase, UDP-galactose/glucose pyrophosphorylase and sugar transporter genes involved in the determination of fruit sugar content, phytoene synthase, β-carotene hydroxylase, 9-cis-epoxycarotenoid dioxygenase and carotenoid cleavage dioxygenase genes involved in carotenoid metabolism, and 4-coumarate:coenzyme A ligase, cellulose synthase, pectinesterase, pectinesterase inhibitor, polygalacturonase inhibitor and α-mannosidase genes involved in the regulation of flesh texture. In addition, we found that genes in the ethylene biosynthesis and signaling pathway including ACC oxidase, ethylene receptor and ethylene responsive factor showed highly ripening-associated expression patterns, indicating a possible role of ethylene in fruit development and ripening of watermelon, a non-climacteric fruit. Our analysis provides

  18. Cultivation of Scenedesmus dimorphus using anaerobic digestate as a nutrient medium.

    PubMed

    Abu Hajar, Husam A; Riefler, R Guy; Stuart, Ben J

    2017-08-01

    In this study, the microalga Scenedesmus dimorphus was cultivated phototrophically using unsterilized anaerobic digestate as a nutrient medium. A bench-scale experiment was conducted by inoculating the microalga S. dimorphus with 0.05-10% dilutions of the anaerobic digestate supernatant. It was found that 1.25-2.5% dilutions, which is equivalent to 50-100 mg N/L total nitrogen concentrations and 6-12 mg P/L total phosphorus concentrations, provided sufficient nutrients to maximize the growth rate along with achieving high concentrations of algal biomass. The microalgae cultivation was scaled up to 100 L open raceway ponds, where the effect of paddlewheel mixing on the growth was investigated. It was concluded that 0.3 m/s water surface velocity yielded the highest specific growth rate and biomass concentration compared to 0.1 and 0.2 m/s. The microalga S. dimorphus was then cultivated in the raceway ponds using 2.5% diluted anaerobic digestate at 317 and 454 μmol/(m 2  × s) average incident light intensities and 1.25% diluted anaerobic digestate at 234 and 384 μmol/(m 2  × s) average incident light intensities. The maximum biomass concentration was 446 mg/L which was achieved in the 2.5% dilution and 454 μmol/(m 2  × s) light intensity culture. Moreover, nitrogen, phosphorus, and COD removal efficiencies from the nutrient media were 65-72, 63-100, and 78-82%, respectively, whereas ammonia was completely removed from all cultures. For a successful and effective cultivation in open raceway ponds, light intensity has to be increased considerably to overcome the attenuation caused by the algal biomass as well as the suspended solids from the digestate supernatant.

  19. The Intention of General Education in Taiwan's Universities: To Cultivate the Holistic Person

    ERIC Educational Resources Information Center

    Shih, Yi-Huang; Hsu, Jen-Pin; Ye, Yan-Hong

    2018-01-01

    The cultivation of the holistic person has always been a topic of concern for general education in Taiwan's universities. Hopefully students can attain a more perfect human nature. So the question is how to practice general education to cultivate the holistic person. This is the focus of this article. After reading and analyzing related studies,…

  20. 22. Photocopy of original photo from Corps of Engineers, Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of original photo from Corps of Engineers, Los Angeles District, 'Report on Salinas Dam, Salinas River, California,' June 15, 1943. (Photographer unknown; report located at City of San Luis Obispo.) CONSTRUCTION PHOTO SHOWING THE STRUTS, POURED TO ALIGN WITH THE RIGHT (WEST) BUTTRESS. - Salinas Dam, Salinas River near Pozo Road, Santa Margarita, San Luis Obispo County, CA