Sample records for saline aquifer water

  1. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    PubMed

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  3. Saline aquifer mapping project in the southeastern United States

    USGS Publications Warehouse

    Williams, Lester J.; Spechler, Rick M.

    2011-01-01

    In 2009, the U.S. Geological Survey initiated a study of saline aquifers in the southeastern United States to evaluate the potential use of brackish or saline water from the deeper portions of the Floridan aquifer system and the underlying Coastal Plain aquifer system (Fig. 1). The objective of this study is to improve the overall understanding of the available saline water resources for potential future development. Specific tasks are to (1) develop a digital georeferenced database of borehole geophysical data to enable analysis and characterization of saline aquifers (see locations in Fig. 1), (2) identify and map the regional extent of saline aquifer systems and describe the thickness and character of hydrologic units that compose these systems, and (3) delineate salinity variations at key well sites and along section lines to provide a regional depiction of the freshwater-saltwater interfaces. Electrical resistivity and induction logs, coupled with a variety of different porosity logs (sonic, density, and neutron), are the primary types of borehole geophysical logs being used to estimate the water quality in brackish and saline formations. The results from the geophysical log calculations are being compared to available water-quality data obtained from water wells and from drill-stem water samples collected in test wells. Overall, the saline aquifer mapping project is helping to improve the understanding of saline water resources in the area. These aquifers may be sources of large quantities of water that could be treated by using reverse osmosis or similar technologies, or they could be used for aquifer storage and recovery systems.

  4. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    NASA Astrophysics Data System (ADS)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  5. Characteristics of streams and aquifers and processes affecting the salinity of water in the upper Colorado River basin, Texas

    USGS Publications Warehouse

    Slade, R.M.; Buszka, P.M.

    1994-01-01

    The chemical characteristics of the saline water in streams and shallow aquifers in the study area were compared to characteristics of water that would result from the probable processes affecting the salinity of water, such as evapotranspiration, mineral dissolution, and mixing of water from streams and shallow-aquifer water with brines from deep aquifers. Dissolution of halite or mixing with deep-aquifer water was the most common cause of increased salinity in 48.0 percent of 77 water samples from shallow aquifers, as classified using salt-norm analysis; the second most common cause was the weathering and dissolution of sulfur-bearing minerals. Mixing with water from soil-mineral dissolution was classified as the principal source of chloride in 28.4 percent of 67 water samples from shallow aquifers with nitrate determinations. Trace-species/chloride ratios indicated that mixing with water from deep aquifers in rocks of the Pennsylvanian System was the principal source of chloride in 24.4 percent of 45 shallow-aquifer samples lacking nitrate determinations.

  6. Salinity increases in the navajo aquifer in southeastern Utah

    USGS Publications Warehouse

    Naftz, D.L.; Spangler, L.E.

    1994-01-01

    Salinity increases in water in some parts of the Navajo aquifer in southeastern Utah have been documented previously. The purpose of this paper is to use bromide, iodide, and chloride concentrations and del oxygen-18 and deuterium values in water from the study area to determine if oil-field brines (OFB) could be the source of increased salinity. Mixing-model results indicate that the bromide-to-chloride X 10,000 weight ratio characteristic of OFB in and outside the study area could not be causing the bromide depletion with increasing salinity in the Navajo aquifer. Mixing-model results indicate that a mixture of one percent OFB with 99 percent Navajo aquifer water would more than double the bromide-to-chloride weight ratio, instead of the observed decrease in the weight ratio with increasing chloride concentration. The trend of the mixing line representing the isotopically enriched samples from the Navajo aquifer does not indicate OFB as the source of isotopically enriched water; however, the simulated isotopic composition of injection water could be a salinity source. The lighter isotopic composition of OFB samples from the Aneth, Ratherford, White Mesa Unit, and McElmo Creek injection sites relative to the Ismay site is a result of continued recycling of injection water mixed with various proportions of isotopically lighter make-up water from the alluvial aquifer along the San Juan River. A mixing model using the isotopic composition of the simulated injection water suggests that enriched samples from the Navajo aquifer are composed of 36 to 75 percent of the simulated injection water. However, chloride concentrations predicted by the isotopic mixing model are up to 13.4 times larger than the measured chloride concentrations in isotopically enriched samples from the Navajo aquifer, indicating that injection water is not the source of increased salinity. Geochemical data consistently show that OFB and associated injection water from the Greater Aneth Oil Field

  7. Distribution and origin of salinity in the surficial and intermediate aquifer systems, southwestern Florida

    USGS Publications Warehouse

    Schmerge, David L.

    2001-01-01

    Chloride concentrations in the surficial and intermediate aquifer systems in southwestern Florida indicate a general trend of increasing salinity coastward and with depth. There are some notable exceptions to this trend. Brackish water is present in the sandstone and mid-Hawthorn aquifers in several inland areas in Lee County. In an area near the coast in Collier County, the lower Tamiami aquifer contains freshwater, with brackish water present farther inland. Saline water is present in the lower Tamiami aquifer along the coast in Collier County, but water is brackish in the underlying mid-Hawthorn and Upper Floridan aquifers. The analyses of major ions, hydrogen and oxygen isotopes, and strontium isotopes indicate the primary sources of salinity are underlying aquifers and the Gulf of Mexico. Based on these data, much of the salinity is from upward leakage of brackish water from underlying aquifers. Discharge as diffuse upward leakage and artesian wells are two possible pathways of saltwater intrusion from underlying aquifers. Artesian wells open to multiple aquifers have been pathways of saltwater intrusion in the sandstone and mid-Hawthorn aquifers in much of Lee County. The source of brackish water in the lower Tamiami and mid-Hawthorn aquifers in Collier County may be natural diffuse leakage from underlying aquifers. The source of the saline water in the lower Tamiami aquifer in Collier County is apparently the Gulf of Mexico; it is unclear however, whether this saline water is residual water from former Pleistocene sea invasions or recent saltwater intrusion.

  8. Storm-damaged saline-contaminated boreholes as a means of aquifer contamination

    USGS Publications Warehouse

    Carlson, D.A.; Van Biersel, T. P.; Milner, L.R.

    2008-01-01

    Saline water from a storm surge can flow down storm-damaged submerged water supply wells and contaminate boreholes and surrounding aquifers. Using data from conventional purging techniques, aquifer test response analysis, chemical analysis, and regression analysis of chloride/silica (Cl/Si) ratio, equations were derived to estimate the volume of saline water intrusion into a well and a porous media aquifer, the volume of water needed to purge a well shortly following an intrusion event, and the volume of water needed after delay of several or more months, when the saline plume has expanded. Purging time required is a function of volume of water and pumping rate. The study site well is located within a shoreline community of Lake Pontchartrain, St. Tammany Parish, in southeastern Louisiana, United States, which was impacted by two hurricane storm surges and had neither been rehabilitated nor chlorinated prior to our study. Chemical analysis of water samples in fall 2005 and purging of well and aquifer in June 6, 2006, indicated saline water had intruded the well in 2005 and the well and aquifer in 2006. The volume of water needed to purge the study well was approximately 200 casing volumes, which is significantly greater than conventionally used during collection of water samples for water quality analyses. ?? 2007 National Ground Water Association.

  9. Modelling the salinization of a coastal lagoon-aquifer system

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  10. ZVI (Fe0) desalination: catalytic partial desalination of saline aquifers

    NASA Astrophysics Data System (ADS)

    Antia, David D. J.

    2018-05-01

    Globally, salinization affects between 100 and 1000 billion m3 a-1 of irrigation water. The discovery that zero valent iron (ZVI, Fe0) could be used to desalinate water (using intra-particle catalysis in a diffusion environment) raises the possibility that large-scale in situ desalination of aquifers could be undertaken to support agriculture. ZVI desalination removes NaCl by an adsorption-desorption process in a multi-stage cross-coupled catalytic process. This study considers the potential application of two ZVI desalination catalyst types for in situ aquifer desalination. The feasibility of using ZVI catalysts when placed in situ within an aquifer to produce 100 m3 d-1 of partially desalinated water from a saline aquifer is considered.

  11. Configuration of freshwater/saline-water interface and geologic controls on distribution of freshwater in a regional aquifer system, central lower peninsula of Michigan

    USGS Publications Warehouse

    Westjohn, David B.; Weaver, T.L.

    1996-01-01

    Electrical-resistivity logs and water-quality data were used to delineate the fresh water/saline-water interface in a 22,000-square-mile area of the central Michigan Basin, where Mississippian and younger geologic units form a regional system of aquifers and confining units.Pleistocene glacial deposits in the central Lower Peninsula of Michigan contain freshwater, except in a 1,600-square-mile area within the Saginaw Lowlands, where these deposits typically contain saline water. Pennsylvanian and Mississippian sandstones are freshwater bearing where they subcrop below permeable Pleistocene glacial deposits. Down regional dip from subcrop areas, salinity of ground water progressively increases in Early Pennsylvanian and Mississippian sandstones, and these units contain brine in the central part of the basin. Freshwater is present in Late Pennsylvanian sandstones in the northern and southern parts of the aquifer system. Typically, saline water is present in Pennsylvanian sandstones in the eastern and western parts of the aquifer system.Relief on the freshwater/saline-water interface is about 500 feet. Altitudes of the interface are low (300 to 400 feet above sea level) along a north-south-trending corridor through the approximate center of the area mapped. In isolated areas in the northern and western parts of the aquifer system, the altitude of the base of freshwater is less than 400 feet, but altitude is typically more than 400 feet. In the southern and northern parts of the aquifer system where Pennsylvanian rocks are thin or absent, altitudes of the base of freshwater range from 700 to 800 feet and from 500 to 700 feet above sea level, respectively.Geologic controls on distribution of freshwater in the regional aquifer system are (1) direct hydraulic connection of sandstone aquifers and freshwater-bearing, permeable glacial deposits, (2) impedance of upward discharge of saline water from sandstones by lodgement tills, (3) impedance of recharge of freshwater to

  12. Effect of hypersaline cooling canals on aquifer salinization

    USGS Publications Warehouse

    Hughes, Joseph D.; Langevin, Christian D.; Brakefield-Goswami, Linzy

    2010-01-01

    The combined effect of salinity and temperature on density-driven convection was evaluated in this study for a large (28 km2) cooling canal system (CCS) at a thermoelectric power plant in south Florida, USA. A two-dimensional cross-section model was used to evaluate the effects of hydraulic heterogeneities, cooling canal salinity, heat transport, and cooling canal geometry on aquifer salinization and movement of the freshwater/saltwater interface. Four different hydraulic conductivity configurations, with values ranging over several orders of magnitude, were evaluated with the model. For all of the conditions evaluated, aquifer salinization was initiated by the formation of dense, hypersaline fingers that descended downward to the bottom of the 30-m thick aquifer. Saline fingers reached the aquifer bottom in times ranging from a few days to approximately 5 years for the lowest hydraulic conductivity case. Aquifer salinization continued after saline fingers reached the aquifer bottom and coalesced by lateral movement away from the site. Model results showed that aquifer salinization was most sensitive to aquifer heterogeneity, but was also sensitive to CCS salinity, temperature, and configuration.

  13. Hydrogeologic framework and salinity distribution of the Floridan aquifer system of Broward County, Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Cunningham, Kevin J.

    2014-01-01

    Concerns about water-level decline and seawater intrusion in the surficial Biscayne aquifer, currently the principal source of water supply to Broward County, prompted a study to refine the hydrogeologic framework of the underlying Floridan aquifer system to evaluate its potential as an alternative source of supply. This report presents cross sections that illustrate the stratigraphy and hydrogeology in eastern Broward County; maps of the upper surfaces and thicknesses of several geologic formations or units within the Floridan aquifer system; and maps of two of the potentially productive water-bearing zones within the system, the Upper Floridan aquifer and the Avon Park permeable zone. An analysis of data on rock depositional textures, associated pore networks, and flow zones in the Floridan aquifer system shows that groundwater moves through the system in two ways. These data support a conceptual, dual-porosity model of the system wherein groundwater moves either as concentrated flow in discrete, thin bedding-plane vugs or zones of vuggy megaporosity, or as diffuse flow through rocks with primarily interparticle and moldic-particle porosity. Because considerable exchange of groundwater may occur between the zones of vuggy and matrix-dominated porosity, understanding the distribution of that porosity and flow zone types is important to evaluating the suitability of the several units within the Floridan aquifer system for managing the water through practices such as aquifer storage and recovery (ASR). The salinity of the water in the Floridan aquifer system is highest in the central part of the study area, and lower toward the north and south. Although salinity generally increases with depth, in the western part of the study area a zone of relatively high saline water is perched above water of lower salinity in the underlying Avon Park permeable zone. Overall, the areas of highest salinity in the aquifer system coincide with those with the lowest estimated

  14. Saline Groundwater from Coastal Aquifers As a Source for Desalination.

    PubMed

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yoseph; Rahav, Eyal; Oren, Yoram; Kasher, Roni

    2016-02-16

    Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs.

  15. Maximizing the value of pressure data in saline aquifer characterization

    NASA Astrophysics Data System (ADS)

    Yoon, Seonkyoo; Williams, John R.; Juanes, Ruben; Kang, Peter K.

    2017-11-01

    The injection and storage of freshwater in saline aquifers for the purpose of managed aquifer recharge is an important technology that can help ensure sustainable water resources. As a result of the density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial salinity distribution, and therefore experiences transient changes. The effect of variable density can be quantified by the mixed convection ratio, which is a ratio between the strength of two convection processes: free convection due to the density differences and forced convection due to hydraulic gradients. We combine a density-dependent flow and transport simulator with an ensemble Kalman filter (EnKF) to analyze the effects of freshwater injection rates on the value-of-information of transient pressure data for saline aquifer characterization. The EnKF is applied to sequentially estimate heterogeneous aquifer permeability fields using real-time pressure data. The performance of the permeability estimation is analyzed in terms of the accuracy and the uncertainty of the estimated permeability fields as well as the predictability of breakthrough curve arrival times in a realistic push-pull setting. This study demonstrates that injecting fluids at a rate that balances the two characteristic convections can maximize the value of pressure data for saline aquifer characterization.

  16. Saline-water resources of Texas

    USGS Publications Warehouse

    Winslow, Allen George; Kister, Lester Ray

    1956-01-01

    Most of the aquifers in Texas contain saline water in some parts, and a few are capable of producing large quantities of saline water. Of the early Paleozoic formations, the Hickory sandstone member of the Riley formation of Cambrian age and the Ellenburger group of Ordovician age are potential sources of small to moderate supplies of saline water in parts of central and west-central Texas.

  17. Hydrogeology and the distribution of salinity in the Floridan aquifer system, Palm Beach County, Florida

    USGS Publications Warehouse

    Reese, R.S.; Memberg, S.J.

    2000-01-01

    The virtually untapped Floridan aquifer system is considered to be a supplemental source of water for public use in the highly populated coastal area of Palm Beach County. A recent study was conducted to delineate the distribution of salinity in relation to the local hydrogeology and assess the potential processes that might control (or have affected) the distribution of salinity in the Floridan aquifer system. The Floridan aquifer system in the study area consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer and ranges in age from Paleocene to Oligocene. Included at its top is part of a lowermost Hawthorn Group unit referred to as the basal Hawthorn unit. The thickness of this basal unit is variable, ranging from about 30 to 355 feet; areas where this unit is thick were paleotopographic lows during deposition of the unit. The uppermost permeable zones in the Upper Floridan aquifer occur in close association with an unconformity at the base of the Hawthorn Group; however, the highest of these zones can be up in the basal unit. A dolomite unit of Eocene age generally marks the top of the Lower Floridan aquifer, but the top of this dolomite unit has a considerable altitude range: from about 1,200 to 2,300 feet below sea level. Additionally, where the dolomite unit is thick, its top is high and the middle confining unit of the Floridan aquifer system, as normally defined, probably is not present. An upper zone of brackish water and a lower zone of water with salinity similar to that of seawater (saline-water zone) are present in the Floridan aquifer system. The brackish-water and saline-water zones are separated by a transition zone (typically 100 to 200 feet thick) in which salinity rapidly increases with depth. The transition zone was defined by using a salinity of 10,000 mg/L (milligrams per liter) of dissolved-solids concentration (about 5,240 mg/L of chloride concentration) at its top and 35,000 mg/L of dissolved

  18. Hydrogeology, Water Quality, and Distribution and Sources of Salinity in the Floridan Aquifer System, Martin and St. Lucie Counties, Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    2004-01-01

    The Floridan aquifer system is considered to be a valuable source for agricultural and municipal water supply in Martin and St. Lucie Counties, despite its brackish water. Increased withdrawals, however, could increase salinity and threaten the quality of withdrawn water. The Floridan aquifer system consists of limestone, dolomitic limestone, and dolomite and is divided into three hydrogeologic units: the Upper Floridan aquifer, a middle confining unit, and the Lower Floridan aquifer. An informal geologic unit at the top of the Upper Floridan aquifer, referred to as the basal Hawthorn/Suwannee unit, is bound above by a marker unit in the Hawthorn Group and at its base by the Ocala Limestone; a map of this unit shows an area where substantial eastward thickening begins near the coast. This change in thickness is used to divide the study area into inland and coastal areas. In the Upper Floridan aquifer, an area of elevated chloride concentration greater than 1,000 milligrams per liter and water temperature greater than 28 degrees Celsius exists in the inland area and trends northwest through north-central Martin County and western St. Lucie County. A structural feature coincides with this area of greater salinity and water temperature; this feature is marked by a previously mapped northwest-trending basement fault and, based on detailed mapping in this study of the structure at the top of the basal Hawthorn/Suwannee unit, an apparent southeast-trending trough. Higher hydraulic head also has been mapped in this northwest-trending area. Another area of high chloride concentration in the Upper Floridan aquifer occurs in the southern part of the coastal area (in eastern Martin County and northeastern Palm Beach County); chloride concentration in this area is more than 2,000 milligrams per liter and is as great as 8,000 milligrams per liter. A dissolved-solids concentration of less than 10,000 milligrams per liter defines the brackish-water zone in the Floridan aquifer

  19. Factors controlling the configuration of the fresh-saline water interface in the Dead Sea coastal aquifers: Synthesis of TDEM surveys and numerical groundwater modeling

    USGS Publications Warehouse

    Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C.I.

    2001-01-01

    TDEM (time domain electromagnetic) traverses in the Dead Sea (DS) coastal aquifer help to delineate the configuration of the interrelated fresh-water and brine bodies and the interface in between. A good linear correlation exists between the logarithm of TDEM resistivity and the chloride concentration of groundwater, mostly in the higher salinity range, close to that of the DS brine. In this range, salinity is the most important factor controlling resistivity. The configuration of the fresh-saline water interface is dictated by the hydraulic gradient, which is controlled by a number of hydrological factors. Three types of irregularities in the configuration of fresh-water and saline-water bodies were observed in the study area: 1. Fresh-water aquifers underlying more saline ones ("Reversal") in a multi-aquifer system. 2. "Reversal" and irregular residual saline-water bodies related to historical, frequently fluctuating DS base level and respective interfaces, which have not undergone complete flushing. A rough estimate of flushing rates may be obtained based on knowledge of the above fluctuations. The occurrence of salt beds is also a factor affecting the interface configuration. 3. The interface steepens towards and adjacent to the DS Rift fault zone. Simulation analysis with a numerical, variable-density flow model, using the US Geological Survey's SUTRA code, indicates that interface steep- ening may result from a steep water-level gradient across the zone, possibly due to a low hydraulic conductivity in the immediate vicinity of the fault.

  20. Simulation of ground-water flow and the movement of saline water in the Hueco Bolson aquifer, El Paso, Texas, and adjacent areas

    USGS Publications Warehouse

    Groschen, George E.

    1994-01-01

    Results of the projected withdrawal simulations from 1984-2000 indicate that the general historical trend of saline-water movement probably will continue. The saline water in the Rio Grande alluvium is the major source of saline-water intrusion into the freshwater zone throughout the historical period and into the future on the basis of simulation results. Some saline water probably will continue to move downward from the Rio Grande alluvium to the freshwater below. Injection of treated sewage effluent into some wells will create a small zone of freshwater containing slightly increased amounts of dissolved solids in the northern area of the Texas part of the Hueco bolson aquifer. Many factors, such as well interference, pumping schedules, and other factors not specifically represented in the regional simulation, can substantially affect dissolved-solids concentrations at individual wells.

  1. The hydrogeochemical and isotopic investigations of the two-layered Shiraz aquifer in the northwest of Maharlou saline lake, south of Iran

    NASA Astrophysics Data System (ADS)

    Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr

    2018-03-01

    Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.

  2. Review of factors affecting recovery of freshwater stored in saline aquifers

    USGS Publications Warehouse

    Merritt, Michael L.

    1989-01-01

    A simulation analysis reported previously, and summarized herein, identified the effects of various geohydrologic and operational factors on recoverability of the injected water. Buoyancy stratification, downgradient advection, and hydrodynamic dispersion are the principal natural processes that reduce the amount of injected water that can be recovered. Buoyancy stratification is shown to depend on injection-zone permeability and the density contrast between injected and saline native water. Downgradient advection occurs as a result of natural or induced hydraulic gradients in the aquifer. Hydrodynamic dispersion reduces recovery efficiency by mixing some of the injected water with native saline aquifer water. In computer simulations, the relation of recovery efficiency to volume injected and its improvement during successive injection-recovery cycles was shown to depend on changes in the degree of hydrodynamic dispersion that occurs. Additional aspects of the subject are discussed.

  3. Study of quaternary aquifers in Ganga Plain, India: focus on groundwater salinity, fluoride and fluorosis.

    PubMed

    Misra, Anil Kumar; Mishra, Ajai

    2007-06-01

    In marginal and central alluvial plains (Ganga Plain) of India, the inland salinity is continuously increasing, canal network and arid to semi-arid climatic conditions that led to excessive evapotranspiration concentrates the salt in soil and thereby escalating the groundwater salinity. In Mat Tahsil, Mathura district (Ganga Plain) study on shallow and deep aquifer salinity and fluoride was carried out in August 2001 and 2004. Groundwater salinity in some parts is more then 4000 microOmega(-1)/cm. This region is severely affected by endemic fluorosis due to consumption of fluoride-contaminated water. Analysis of F(-), Na(+), K(+), Cl(-) and HCO(3)(-) was carried out at 30 sites of dugwells and borewells. Result shows that there is a variation and continuous escalation in the groundwater salinity and fluoride concentration in deep and shallow aquifers on the basis of analysis. Classification of salinity levels was carried out in 2001 and 2004. The deep aquifers (borewells) are found more saline as compare to the shallow aquifers (dugwells) while F(-), Na(+), K(+), Cl(-) and HCO(3)(-) shows high concentration in shallow aquifers. The fluoride concentration in the groundwater of these villages showed values from 0.1 to 2.5mg/l, severe enough to cause dental and skeletal fluorosis among the inhabitants, especially children of these villages. One of the major effects of inland salinity in this region is from saline groundwater, which is reaching the land surface and causing soil salinisations and water logging in the NE and SE parts of Mat block.

  4. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain.

    PubMed

    Cruz-Fuentes, Tatiana; Cabrera, María del Carmen; Heredia, Javier; Custodio, Emilio

    2014-06-15

    The origin of the groundwater salinity and hydrochemical conditions of a 44km(2) volcano-sedimentary aquifer in the semi-arid to arid La Aldea Valley (western Gran Canaria, Spain) has been studied, using major physical and chemical components. Current aquifer recharge is mainly the result of irrigation return flows and secondarily that of rainfall infiltration. Graphical, multivariate statistical and modeling tools have been applied in order to improve the hydrogeological conceptual model and identify the natural and anthropogenic factors controlling groundwater salinity. Groundwater ranges from Na-Cl-HCO3 type for moderate salinity water to Na-Mg-Cl-SO4 type for high salinity water. This is mainly the result of atmospheric airborne salt deposition; silicate weathering, and recharge incorporating irrigation return flows. High evapotranspiration produces significant evapo-concentration leading to relative high groundwater salinity in the area. Under average conditions, about 70% of the water used for intensive agricultural exploitation in the valley comes from three low salinity water runoff storage reservoirs upstream, out of the area, while the remaining 30% derives from groundwater. The main alluvial aquifer behaves as a short turnover time reservoir that adds to the surface waters to complement irrigation water supply in dry periods, when it reaches 70% of irrigation water requirements. The high seasonality and intra-annual variability of water demand for irrigation press on decision making on aquifer use by a large number of aquifer users acting on their own. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Hydrogeology and the distribution of salinity in the Floridan Aquifer system, southwestern Florida

    USGS Publications Warehouse

    Reese, R.S.

    2000-01-01

    In most of the study area, the Floridan aquifer system can be divided into a brackish-water zone, a salinity transition zone, and a saline-water zone. The brackish-water zone contains water with a dissolved-solids concentration of less than 10,000 milligrams per liter. The saline-water zone has a dissolved-solids concentration of at least 35,000 milligrams per liter and a salinity similar to that of seawater. The salinity transition zone that separates these two zones is usually 150 feet or less in thickness. The altitude of the base of the brackish-water zone was mapped primarily using geophysical logs; it ranges from as shallow as 565 feet below sea level along the coast to almost 2,200 feet below sea level inland. This mapping indicated that the boundary represents a salinity interface, the depth of which is controlled by head in the brackish-water zone. Chloride concentrations in the upper part of the brackish-water zone range from 400 to 4,000 milligrams per liter. A large area of relatively low salinity in north-central Collier County and to the northwest, as defined by a 1,200-milligram-per-liter chloride-concentration line, coincides with a high area on the basal contact of the Hawthorn Group. As this contact dips away from this high area to central Hendry and southwestern Collier Counties, chloride concentration increases to 2,000 milligrams per liter or greater. However, the increase in salinity in these areas occurs only in the basal Hawthorn unit or Suwannee Limestone, but not in deeper units. In central Hendry County, the increase occurs only in the basal Hawthorn unit in an area where the unit is well developed and thick. These areas of higher salinity could have resulted from the influx of seawater from southwestern Collier County into zones of higher permeability in the Upper Floridan aquifer during high sea-level stands. The influx may only have occurred in structurally low areas and may have experienced incomplete flushing subsequently by the

  6. A Geology-Based Estimate of Connate Water Salinity Distribution

    DTIC Science & Technology

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  7. Distribution of injected wastewater in the saline-lava aquifer, Wailuku-Kahului wastewater treatment facility, Kahului, Maui, Hawaii

    USGS Publications Warehouse

    Burnham, Willis L.; Larson, S.P.; Cooper, Hilton Hammond

    1977-01-01

    Field studies and digital modeling of a lava rock aquifer system near Kahului, Maui, Hawaii, describe the distribution of planned injected wastewater from a secondary treatment facility. The aquifer contains water that is almost as saline as seawater. The saline water is below a seaward-discharging freshwater lens, and separated from it by a transition zone of varying salinity. Injection of wastewater at an average rate of 6.2 cubic feet per second is planned through wells open only to the aquifer deep within the saline water zone. The lava rock aquifer is overlain by a sequence of residual soil, clay, coral reef deposits, and marine sand that form a low-permeability caprock which semiconfines the lava rock aquifer. Under conditions measured and assumed without significant change. After reaching a new steady state, the wastewater will discharge into and through the caprock sequence within an area measuring approximately 1,000 feet inland, 1,000 feet laterally on either side of the injection site, and about 2,000 feet seaward. Little, if any, of the injected wastewater may be expected to reach the upper part of the caprock flow system landward of the treatment plant facility. (Woodard-USGS)

  8. Saline-water intrusion related to well construction in Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride

  9. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco

    USGS Publications Warehouse

    Bouchaou, L.; Michelot, J.L.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C.B.; Bullen, T.D.; Zuppi, G.M.

    2008-01-01

    Groundwater and surface water in Souss-Massa basin in the west-southern part of Morocco is characterized by a large variation in salinity, up to levels of 37 g L-1. The high salinity coupled with groundwater level decline pose serious problems for current irrigation and domestic water supplies as well as future exploitation. A combined hydrogeologic and isotopic investigation using several chemical and isotopic tracers such as Br/Cl, ??18O, ??2H, 3H, 87Sr/86Sr, ??11B, and 14C was carried out in order to determine the sources of water recharge to the aquifer, the origin of salinity, and the residence time of water. Stable isotope, 3H and 14C data indicate that the high Atlas mountains in the northern margin of the Souss-Massa basin with high rainfall and low ??18O and ??2H values (-6 to -8??? and -36 to -50???) is currently constitute the major source of recharge to the Souss-Massa shallow aquifer, particularly along the eastern part of the basin. Localized stable isotope enrichments offset meteoric isotopic signature and are associated with high nitrate concentrations, which infer water recycling via water agricultural return flows. The 3H and 14C data suggest that the residence time of water in the western part of the basin is in the order of several thousands of years; hence old water is mined, particularly in the coastal areas. The multiple isotope analyses and chemical tracing of groundwater from the basin reveal that seawater intrusion is just one of multiple salinity sources that affect the quality of groundwater in the Souss-Massa aquifer. We differentiate between modern seawater intrusion, salinization by remnants of seawater entrapped in the middle Souss plains, recharge of nitrate-rich agricultural return flow, and dissolution of evaporate rocks (gypsum and halite minerals) along the outcrops of the high Atlas mountains. The data generated in this study provide the framework for a comprehensive management plan in which water exploitation should shift

  10. Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators.

    PubMed

    Faye, Serigne; Maloszewski, Piotr; Stichler, Willibald; Trimborn, Peter; Cissé Faye, Seynabou; Bécaye Gaye, Cheikh

    2005-05-01

    The hydrochemistry of minor elements bromide (Br), boron (B), strontium (Sr), environmental stable isotopes (18O and 2H) together with major-ion chemistry (chloride, sodium, calcium) has been used to constrain the source(s), relative age, and processes of salinization in the Continental Terminal (CT) aquifer in the Saloum (mid-west Senegal) region. Seventy-one groundwater wells which include 24 wells contaminated by saltwater and three sites along the hypersaline Saloum River were sampled to obtain additional information on the hydrochemical characteristics of the groundwater defined in previous studies. Use of Br against Cl confirms the Saloum River saline water intrusion up to a contribution of 7% into the aquifer. In addition to this recent intrusion, a relatively ancient intrusion of the Saloum River water which had reached at least as far as 20 km south from the source was evidenced. The high molar ratio values of Sr/Cl and Sr/Ca indicate an additional input of strontium presumably derived from carbonate precipitation/dissolution reactions and also via adsorption reactions. The variable B concentrations (7-650 microg/L) found in the groundwater samples were tested against the binary mixing model to evaluate the processes of salinization which are responsible for the investigated system. Sorption of B and depletion of Na occur as the Saloum river water intrudes the aquifer (salinization) in the northern part of the region, whereas B desorption and Na enrichment occur as the fresh groundwater flushing displaces the saline waters in the coastal strip (refreshening). In the central zone where ancient intrusion prevailed, the process of freshening of the saline groundwater is indicated by the changes in major-ion chemistry as well as B desorption and Na enrichment. In addition to these processes, stable isotopes reveal that mixing with recently infiltrating waters and evaporation contribute to the changes in isotopic signature.

  11. Hurricane Ingrid and Tropical Storm Hanna's effects on the salinity of the coastal aquifer, Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Kovacs, Shawn E.; Reinhardt, Eduard G.; Stastna, Marek; Coutino, Aaron; Werner, Christopher; Collins, Shawn V.; Devos, Fred; Le Maillot, Christophe

    2017-08-01

    There is a lack of information on aquifer dynamics in anchialine systems, especially in the Yucatán Peninsula of Mexico. Most of our knowledge is based on ;spot; measurements of the aquifer with no long-term temporal monitoring. In this study spanning four years (2012-2016), sensors (water depth and conductivity (salinity)) were deployed and positioned (-9 and -10 m) in the meteoric Water Mass (WM) close to the transition with the marine WM (halocline) in 2 monitoring sites within the Yax Chen cave system to investigate precipitation effects on the salinity of the coastal aquifer. The results show variation in salinity (<1 ppt) of the freshwater over seasonal cycles of wet and dry (approx. 6.5-7.25 ppt), depending on the position of the halocline. The aquifer response to larger precipitation events (>95 mm) such as Hurricane Ingrid (2013) and Tropical Storm Hanna (2014) shows meteoric water mass salinity rapidly increasing (approx. 6.39 to >8.6 ppt), but these perturbations have a shorter duration (weeks and days). Wavelet analysis of the salinity record indicates seasonal mixing effects in agreement with the wet and dry periods, but also seasonal effects of tidal mixing (meteoric and marine water masses) occurring on shorter time scales (diurnal and semi-diurnal). These results demonstrate that the salinity of the freshwater lens is influenced by precipitation and turbulent mixing with the marine WM. The salinity response is scaled with precipitation; larger more intense rainfall events (>95 mm) create a larger response in terms of the magnitude and duration of the salinity perturbation (>1 ppt). The balance of precipitation and its intensity controls the temporal and spatial patterning of meteoric WM salinity.

  12. Hydrogeologic conditions and saline-water intrusion, Cape Coral, Florida, 1978-81

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1986-01-01

    The upper limestone unit of the intermediate aquifer system, locally called the upper Hawthorn aquifer, is the principal source of freshwater for Cape Coral, Florida. The aquifer has been contaminated with saline water by downward intrusion from the surficial aquifer system and by upward intrusion from the Floridan aquifer system. Much of the intrusion has occurred through open wellbores where steel casings are short or where casings have collapsed because of corrosion. Saline-water contamination of the upper limestone unit due to downward intrusion from the surficial aquifer is most severe in the southern and eastern parts of Cape Coral; contamination due to upward intrusion has occurred in many areas throughout Cape Coral. Intrusion is amplified in areas of heavy water withdrawals and large water-level declines. (USGS)

  13. Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Post, Vincent E. A.; Song, Xianfang

    2015-12-01

    Seawater intrusion (SWI) has led to salinization of fresh groundwater reserves in coastal areas worldwide and has forced the closure of water supply wells. There is a paucity of well-documented studies that report on the reversal of SWI after the closure of a well field. This study presents data from the coastal carbonate aquifer in northeast China, where large-scale extraction has ceased since 2001 after salinization of the main well field. The physical flow and concomitant hydrogeochemical processes were investigated by analyzing water level and geochemical data, including major ion chemistry and stable water isotope data. Seasonal water table and salinity fluctuations, as well as changes of δ2H-δ18O values of groundwater between the wet and dry season, suggest local meteoric recharge with a pronounced seasonal regime. Historical monitoring testifies of the reversibility of SWI in the carbonate aquifer, as evidenced by a decrease of the Cl- concentrations in groundwater following restrictions on groundwater abstraction. This is attributed to the rapid flushing in this system where flow occurs preferentially along karst conduits, fractures and fault zones. The partially positive correlation between δ18O values and TDS concentrations of groundwater, as well as high NO3- concentrations (>39 mg/L), suggest that irrigation return flow is a significant recharge component. Therefore, the present-day elevated salinities are more likely due to agricultural activities rather than SWI. Nevertheless, seawater mixing with fresh groundwater cannot be ruled out in particular where formerly intruded seawater may still reside in immobile zones of the carbonate aquifer. The massive expansion of fish farming in seawater ponds in the coastal zone poses a new risk of salinization. Cation exchange, carbonate dissolution, and fertilizer application are the dominant processes further modifying the groundwater composition, which is investigated quantitatively using hydrogeochemical

  14. Water-level, borehole geophysical log, and water-quality data from wells transecting the freshwater/saline-water interface of the San Antonio segment of the Edwards Aquifer, South-Central Texas, 1999-2007

    USGS Publications Warehouse

    Lambert, Rebecca B.; Hunt, Andrew G.; Stanton, Gregory P.; Nyman, Michael B.

    2009-01-01

    As a part of a 9-year (1999-2007) study done by the U.S. Geological Survey in cooperation with the San Antonio Water System to improve understanding of the San Antonio segment of the Edwards aquifer, south-central Texas, in and near the freshwater/saline-water transition zone of the aquifer, the U.S. Geological Survey collected water-level, borehole geophysical, and water-quality data during 1999-2007 from 37 wells arranged in nine transects (except for two wells) across the freshwater/saline-water interface of the aquifer. This report presents the data collected and also describes the data-collection, analytical, and quality-assurance methods used. The wells, constructed with casing from land surface into the upper part of the aquifer and completed as open hole in the aquifer, are in Uvalde County (East Uvalde transect), in Medina County (South Medina and Devine wells), in Bexar County (Pitluk, Mission, and San Antonio transects), in Comal and Guadalupe Counties (Tri-County transect), in Comal County (New Braunfels transect), and in Hays County (Fish Hatchery, San Marcos, and Kyle transects). Data collected included continuous water level at 18 wells; fluid electrical conductivity and temperature with depth (fluid profiles) obtained by borehole geophysical logging of 15 wells; discrete (periodic) samples for major ions and trace elements at 36 wells; stable isotopes or stable isotopes and tritium at 27 wells; dissolved gases obtained by pumping (or collecting flow) of 19 wells; and continuous specific conductance and temperature at three of the wells equipped with continuous water-level sensors.

  15. A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer.

    PubMed

    Anders, Robert; Mendez, Gregory O; Futa, Kiyoto; Danskin, Wesley R

    2014-01-01

    Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major-ions, the chemical composition is classified as Na-Ca-Cl-SO4, Na-Cl, or Na-Ca-Cl type water. δ(2)H and δ(18)O values range from -47.7‰ to -12.8‰ and from -7.0‰ to -1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. (87)Sr/(86)Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. (3)H and (14)C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher-elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest-to-southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers. © 2013, National Ground Water Association.

  16. A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer

    USGS Publications Warehouse

    Anders, Robert; Mendez, Gregory O.; Futa, Kiyoto; Danskin, Wesley R.

    2014-01-01

    Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major-ions, the chemical composition is classified as Na-Ca-Cl-SO4, Na-Cl, or Na-Ca-Cl type water. δ2H and δ18O values range from −47.7‰ to −12.8‰ and from −7.0‰ to −1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher-elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest-to-southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.

  17. Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece

    NASA Astrophysics Data System (ADS)

    Petalas, C. P.; Diamantis, I. B.

    1999-06-01

    This paper describes the origins and distribution of saline groundwaters in the coastal area of Rhodope, Greece. The aquifer system includes two aquifers within coarse-grained alluvial sediments in the coastal part of the study area. Two major water-quality groups occur in the study area, namely Ca2+-rich saline groundwater and Ca2+-poor, almost fresh groundwater. The main process controlling the groundwater chemistry is the exchange of calcium and sodium between the aquifer matrix and intruding seawater. The natural salt water in the study area is probably residual water that infiltrated the aquifer system during repeated marine transgressions in late Pleistocene time. Seawater intrusion into the coastal aquifer system occurs as a result of overpumping in two seawater wedges separated vertically by a low-permeability layer. The rate of intrusion averages 0.8 m/d and is less than expected due to a decline of the aquifer's permeability at the interface with the seawater. The application of several hydrochemical techniques (Piper and Durov diagrams; Na+/Cl-, Ca2+/Cl-, Mg2+/Cl-, and Br-/Cl- molar ratios; Ca2+/Mg2+ weight ratio; and chloride concentrations), combined with field observations, may lead to a better explanation of the origin of the saline groundwater.

  18. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    NASA Astrophysics Data System (ADS)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios

  19. Salinity sources of Kefar Uriya wells in the Judea Group aquifer of Israel. Part 1—conceptual hydrogeological model

    NASA Astrophysics Data System (ADS)

    Avisar, D.; Rosenthal, E.; Flexer, A.; Shulman, H.; Ben-Avraham, Z.; Guttman, J.

    2003-01-01

    In the Yarkon-Taninim groundwater basin, the karstic Judea Group aquifer contains groundwater of high quality. However, in the western wells of the Kefar Uriya area located in the foothills of the Judea Mountains, brackish groundwater was locally encountered. The salinity of this water is caused presumably by two end members designated as the 'Hazerim' and 'Lakhish' water types. The Hazerim type represents surface water percolating through a highly fractured thin chalky limestone formation overlying the Judea Group aquifer. The salinity of the water derives conjointly from several sources such as leachates from rendzina and grumosols, dissolution of caliche crusts which contain evaporites and of rock debris from the surrounding formations. This surface water percolates downwards into the aquifer through a funnel- or chimney-like mechanism. This local salinization mechanism supercedes another regional process caused by the Lakhish waters. These are essentially diluted brines originating from deep formations in the western parts of the Coastal Plain. The study results show that salinization is not caused by the thick chalky beds of the Senonian Mt Scopus Group overlying the Judea Group aquifer, as traditionally considered but prevalently by aqueous leachates from soils and rock debris. The conceptual qualitative hydrogeological model of the salinization as demonstrated in this study, is supported by a quantitative hydrological model presented in another paper in this volume.

  20. Characterization of saline groundwater across the coastal aquifer of Israel as resource for desalination

    NASA Astrophysics Data System (ADS)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni

    2015-04-01

    In arid countries with access to marine water seawater desalination is becoming an important water source in order to deal with the water scarcity and population growth. Seawater reverse osmosis (RO) facilities use open seawater intake, which requires pretreatment processes to remove particles in order to avoid fouling of the RO membrane. In small and medium size desalination facilities, an alternative water source can be saline groundwater in coastal aquifers. Using saline groundwater from boreholes near the shore as feed water may have the advantage of natural filtration and low organic content. It will also reduce operation costs of pretreatment. Another advantage of using groundwater is its availability in highly populated areas, where planning of large RO desalination plants is difficult and expensive due to real-estate prices. Pumping saline groundwater underneath the freshwater-seawater interface (FSI) might shift the interface towards the sea, thus rehabilitating the fresh water reservoirs in the aquifer. In this research, we tested the potential use of saline groundwater in the coastal aquifer of Israel as feed water for desalination using field work and desalination experiments. Specifically, we sampled the groundwater from a pumping well 100 m from the shore of Tel-Aviv and sea water from the desalination plant in Ashqelon, Israel. We used an RO cross flow system in a pilot plant in order to compare between the two water types in terms of permeate flux, permeate flux decline, salt rejection of the membrane and the fouling on the membrane. The feed, brine and fresh desalinated water from the outlet of the desalination system were chemically analyzed and compared. Field measurements of dissolved oxygen, temperature, pH and salinity were also conducted in situ. Additionally, SDI (silt density index), which is an important index for desalination, and total organic carbon that has a key role in organic fouling and development of biofouling, were measured and

  1. Sources of salinity and boron in the Gaza strip: Natural contaminant flow in the southern Mediterranean coastal aquifer

    NASA Astrophysics Data System (ADS)

    Vengosh, Avner; Kloppmann, Wolfram; Marei, Amer; Livshitz, Yakov; Gutierrez, Alexis; Banna, Mazen; Guerrot, Catherine; Pankratov, Irena; Raanan, Hadas

    2005-01-01

    Salinization in coastal aquifers is a global phenomenon resulting from the overexploitation of scarce water resources. The Gaza Strip is one of the most severe cases of salinization, as accelerated degradation of the water quality endangers the present and future water supply for over 1 million people. We investigate the chemical and isotopic (87Sr/86Sr, δ11B, δ18O, δ2H, and δ34SSO4) compositions of groundwater from the southern Mediterranean coastal aquifer (Israel) and the Gaza Strip in order to elucidate the origin of salinity and boron contamination. The original salinity in the eastern part of the aquifer is derived from discharge of saline groundwater from the adjacent Avedat aquitard (Na/Cl < 1, 87Sr/86Sr ˜ 0.7079, and δ11B ˜ 40‰). As the groundwater flows to the central part of the aquifer, a dramatic change in its composition occurs (Na/Cl > 1, high B/Cl, SO4/Cl, and HCO3, 87Sr/86Sr ˜ 0.7083; δ11B ˜ 48‰), although the δ18O-δ2H slope is identical to that of the Avedat aquitard. The geochemical data suggest that dissolution of pedogenic carbonate and gypsum minerals in the overlying loessial sequence generated the Ca-rich solution that triggered base exchange reactions and produced Na- and B-rich groundwater. The geochemical data show that most of the salinization process in the Gaza Strip is derived from the lateral flow of the Na-rich saline groundwater, superimposed with seawater intrusion and anthropogenic nitrate pollution. The methodology of identification of multiple salinity sources can be used to establish a long-term management plan for the Gaza Strip and can also be implemented to understand complex salinization processes in other similarly stressed coastal aquifers.

  2. Sources of salinity and boron in the Gaza strip: Natural contaminant flow in the southern Mediterranean coastal aquifer

    NASA Astrophysics Data System (ADS)

    Vengosh, Avner; Kloppmann, Wolfram; Marei, Amer; Livshitz, Yakov; Gutierrez, Alexis; Banna, Mazen; Guerrot, Catherine; Pankratov, Irena; Raanan, Hadas

    2005-01-01

    Salinization in coastal aquifers is a global phenomenon resulting from the overexploitation of scarce water resources. The Gaza Strip is one of the most severe cases of salinization, as accelerated degradation of the water quality endangers the present and future water supply for over 1 million people. We investigate the chemical and isotopic (87Sr/86Sr, δ11B, δ18O, δ2H, and δ34SSO4) compositions of groundwater from the southern Mediterranean coastal aquifer (Israel) and the Gaza Strip in order to elucidate the origin of salinity and boron contamination. The original salinity in the eastern part of the aquifer is derived from discharge of saline groundwater from the adjacent Avedat aquitard (Na/Cl < 1, 87Sr/86Sr ~ 0.7079, and δ11B ~ 40‰). As the groundwater flows to the central part of the aquifer, a dramatic change in its composition occurs (Na/Cl > 1, high B/Cl, SO4/Cl, and HCO3, 87Sr/86Sr ~ 0.7083; δ11B ~ 48‰), although the δ18O-δ2H slope is identical to that of the Avedat aquitard. The geochemical data suggest that dissolution of pedogenic carbonate and gypsum minerals in the overlying loessial sequence generated the Ca-rich solution that triggered base exchange reactions and produced Na- and B-rich groundwater. The geochemical data show that most of the salinization process in the Gaza Strip is derived from the lateral flow of the Na-rich saline groundwater, superimposed with seawater intrusion and anthropogenic nitrate pollution. The methodology of identification of multiple salinity sources can be used to establish a long-term management plan for the Gaza Strip and can also be implemented to understand complex salinization processes in other similarly stressed coastal aquifers.

  3. Numerical Simulation of Ground-Water Salinization in the Arkansas River Corridor, Southwest Kansas

    NASA Astrophysics Data System (ADS)

    Whittemore, D. O.; Perkins, S.; Tsou, M.; McElwee, C. D.; Zhan, X.; Young, D. P.

    2001-12-01

    The salinity of ground water in the High Plains aquifer underlying the upper Arkansas River corridor in southwest Kansas has greatly increased during the last few decades. The source of the salinization is infiltration of Arkansas River water along the river channel and in areas irrigated with diverted river water. The saline river water is derived from southeastern Colorado where consumptive losses of water in irrigation systems substantially concentrate dissolved solids in the residual water. Before development of surface- and ground-water resources, the Arkansas River gained flow along nearly all of its length in southwest Kansas. Since the 1970's, ground-water levels have declined in the High Plains aquifer from consumptive use of ground water. The water-level declines have now changed the river to a generally losing rather than gaining system. We simulated ground-water flow in the aquifers underlying 126 miles of the river corridor using MODFLOW integrated with the GIS software ArcView (Tsou and Whittemore, 2001). There are two layers in the model, one for the Quaternary alluvial aquifer and the other for the underlying High Plains aquifer. We prepared a simulation for circa 1940 that represented conditions prior to substantial ground-water development, and simulations for 40 years into the future that were based on holding constant either average water use or average ground-water levels for the 1990's. Streamflows along the river computed from the model results illustrated the flow gains from ground-water discharge for circa 1940 and losses during the 1990's. We modeled the movement of salinity as particle tracks generated by MODPATH based on the MODFLOW solutions. The results indicate that during the next 40 years, saline water will move a substantial distance in the High Plains aquifer on the south side of the central portion of the river valley. The differences between the circa 1940 and 1990's simulations fit the observed data that show large increases in

  4. The integrated impacts of natural processes and human activities on the origin and processes of groundwater salinization in the coastal aquifers of Beihai, Southern China

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zhan, Y., , Dr; Chen, W. Ms; Yu, S., , Dr

    2017-12-01

    Salinization in coastal aquifers usually is the results of contamination related to both seawater intrusion and water-rock interaction. The chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai. The concentrations of the major ions that dominate in sea water (Cl-, Na+, Ca2+, Mg2+ and SO2- 4), as well as the isotopic ratios (2H, 18O, 87Sr/86Sr and 13C) suggest that the salinization occurring in the aquifer water of the coastal plain is related to seawater and the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization occurred in parts of the area, which is significantly influenced by the land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds is identified in the confined aquifer I at site BBW2. In consequence, the leakage from this polluted aquifer causes the salinization of groundwater in the confined aquifer II. At site BBW3, the confined aquifer I and lower confined aquifer II are remarkably contaminated by seawater intrusion. The weak connectivity with upper aquifers and seaward movement of freshwater prevents saltwater from encroaching the confined aquifer III. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for sustainable planning and management of groundwater resources in this region.

  5. Mapping deep aquifer salinity trends in the southern San Joaquin Valley using borehole geophysical data constrained by chemical analyses

    NASA Astrophysics Data System (ADS)

    Gillespie, J.; Shimabukuro, D.; Stephens, M.; Chang, W. H.; Ball, L. B.; Everett, R.; Metzger, L.; Landon, M. K.

    2016-12-01

    The California State Water Resources Control Board and the California Division of Oil, Gas and Geothermal Resources are collaborating with the U.S. Geological Survey to map groundwater resources near oil fields and to assess potential interactions between oil and gas development and groundwater resources. Groundwater resources having salinity less than 10,000 mg/L total dissolved solids may be classified as Underground Sources of Drinking Water (USDW) and subject to protection under the federal Safe Drinking Water Act. In this study, we use information from oil well borehole geophysical logs, oilfield produced water and groundwater chemistry data, and three-dimensional geologic surfaces to map the spatial distribution of salinity in aquifers near oil fields. Salinity in the southern San Joaquin Valley is controlled primarily by depth and location. The base of protected waters occurs at very shallow depths, often < 300 meters, in the western part of the valley where aquifer recharge is low in the rain shadow of the Coast Ranges. The base of protected water is much deeper, often >1,500 meters, in the eastern part of the San Joaquin Valley where higher runoff from the western slopes of the Sierra Nevada provide relatively abundant aquifer recharge. Stratigraphy acts as a secondary control on salinity within these broader areas. Formations deposited in non-marine environments are generally fresher than marine deposits. Layers isolated vertically between confining beds and cut off from recharge sources may be more saline than underlying aquifers that outcrop in upland areas on the edge of the valley with more direct connection to regional recharge areas. The role of faulting is more ambiguous. In some areas, abrupt changes in salinity may be fault controlled but, more commonly, the faults serve as traps separating oil-bearing strata that are exempt from USDW regulations, from water-bearing strata that are not exempt.

  6. Geophysical delineation of the freshwater/saline-water transition zone in the Barton Springs segment of the Edwards Aquifer, Travis and Hays Counties, Texas, September 2006

    USGS Publications Warehouse

    Payne, J.D.; Kress, W.H.; Shah, S.D.; Stefanov, J.E.; Smith, B.A.; Hunt, B.B.

    2007-01-01

    During September 2006, the U.S. Geological Survey, in cooperation with the Barton Springs/Edwards Aquifer Conservation District, conducted a geophysical pilot study to determine whether time-domain electromagnetic (TDEM) sounding could be used to delineate the freshwater/saline-water transition zone in the Barton Springs segment of the Edwards aquifer in Travis and Hays Counties, Texas. There was uncertainty regarding the application of TDEM sounding for this purpose because of the depth of the aquifer (200-500 feet to the top of the aquifer) and the relatively low-resistivity clayey units in the upper confining unit. Twenty-five TDEM soundings were made along four 2-3-mile-long profiles in a study area overlying the transition zone near the Travis-Hays County boundary. The soundings yield measurements of subsurface electrical resistivity, the variations in which were correlated with hydrogeologic and stratigraphic units, and then with dissolved solids concentrations in the aquifer. Geonics Protem 47 and 57 systems with 492-foot and 328-foot transmitter-loop sizes were used to collect the TDEM soundings. A smooth model (vertical delineation of calculated apparent resistivity that represents an estimate [non-unique] of the true resistivity) for each sounding site was created using an iterative software program for inverse modeling. The effectiveness of using TDEM soundings to delineate the transition zone was indicated by comparing the distribution of resistivity in the aquifer with the distribution of dissolved solids concentrations in the aquifer along the profiles. TDEM sounding data show that, in general, the Edwards aquifer in the study area is characterized by a sharp change in resistivity from west to east. The western part of the Edwards aquifer in the study area shows higher resistivity than the eastern part. The higher resistivity regions correspond to lower dissolved solids concentrations (freshwater), and the lower resistivity regions correspond to

  7. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA

    USGS Publications Warehouse

    Huff, G.F.

    2006-01-01

    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  8. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region.

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Ra was measured in deep saline formation waters produced from a variety of US Gulf Coast subsurface environments, including oil and gas reservoirs, and water-producing geopressured aquifers. A strong positive correlation was found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th on and within the solid matrix. The processes believed to be primarily responsible for transfering Ra from matrix to formation water are chemical leaching and alpha -particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following: 1) ion exchange; 2) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of re-equilibration of silica between solution and quartz grains; and 3) the equilibration of Ra in solution with detrital baryte within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs.-P.Br.

  9. Hydrogeology, water quality, and water-supply potential of the Lower Floridan Aquifer, coastal Georgia, 1999-2002

    USGS Publications Warehouse

    Falls, W. Fred; Harrelson, Larry G.; Conlon, Kevin J.; Petkewich, Matthew D.

    2005-01-01

    day at the St Simons Island site and 13,000 feet squared per day at the St Marys site. The Lower Floridan aquifer at the Brunswick and St Marys sites includes the Fernandina permeable zone, which consists of saltwater-bearing dolomite. Hydrographs of Coastal Sound Science Initiative wells and other nearby wells open to the Upper Floridan aquifer, and the upper permeable and Fernandina permeable zones of the Lower Floridan aquifer have similar trends. Water levels in wells open to the Upper and Lower Floridan aquifers are below land surface at the northern sites and the St Simons Island site, and above land surface at the Brunswick and St Marys sites, as of January 1, 2004. Freshwater is present in the Lower Floridan aquifer at Pineora, Pembroke, and St Marys, and from 1,259 to 1,648 feet below land surface at Brunswick. Slightly saline water is present in the Lower Floridan aquifer at Richmond Hill, Shellman Bluff, St Simons Island, and from 1,679 to 1,970 feet below land surface in well 34H495 at Brunswick. The upper permeable zone of the Lower Floridan aquifer contains bicarbonate water at the Pembroke site, sulfate-bicarbonate water at the Brunswick site, and sulfate water at the St Simons Island, Shellman Bluff, St Marys, and Richmond Hill sites. The bicarbonate, sulfate-bicarbonate, and sulfate waters are saturated relative to calcite and dolomite, and undersaturated with gypsum and anhydrite. The Fernandina permeable zone in well 34H495 includes moderately saline water, very saline water, and brine. The Fernandina permeable zone of the Lower Floridan aquifer beneath downtown Brunswick contains chloride water that is slightly undersaturated to saturated with gypsum and anhydrite. Concentrations of total dissolved solids, sulfate, and chloride exceeded the Federal secondary drinking-water standards. The chloride-contaminated plumes beneath downtown Brunswick would require at least a 12- to 20-percent contribution of very saline water from the Fernandi

  10. The integrated impacts of natural processes and human activities on groundwater salinization in the coastal aquifers of Beihai, southern China

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Zhang, Yanpeng; Chen, Wen; Yu, Shaowen

    2018-03-01

    Salinization in coastal aquifers is usually related to both seawater intrusion and water-rock interaction. The results of chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai, southern China. The concentrations of the major ions that dominate in seawater (Cl-, Na+, Ca2+, Mg2+ and SO4 2- ), as well as the isotopic content and ratios (2H, 18O, 87Sr/86Sr and 13C), suggest that the salinization occurring in the aquifer of the coastal plain is related to seawater and that the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization has occurred in an area that is significantly influenced by land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds are identified in the shallowest confined aquifer (I) in the middle of the area (site BBW2). Leakage from this polluted confined aquifer causes the salinization of groundwater in the underlying confined aquifer (II). At the coastal monitoring site (BBW3), confined aquifer I and lower confined aquifer II are heavily contaminated by seawater intrusion. The weak connectivity between the upper aquifers, and the seaward movement of freshwater, prevents saltwater from encroaching the deepest confined aquifer (III). A conceptual model is presented. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for the planning and sustainable management of groundwater resources in this region.

  11. Impact of Variable-Density Flow on the Value-of-Information from Pressure and Concentration Data for Saline Aquifer Characterization

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.

    2017-12-01

    Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.

  12. Sources of groundwater based on Helium analyses in and near the freshwater/saline-water transition zone of the San Antonio segment of the Edwards Aquifer, South-Central Texas, 2002-03

    USGS Publications Warehouse

    Hunt, Andrew G.; Lambert, Rebecca B.; Fahlquist, Lynne

    2010-01-01

    This report evaluates dissolved noble gas data, specifically helium-3 and helium-4, collected by the U.S. Geological Survey, in cooperation with the San Antonio Water System, during 2002-03. Helium analyses are used to provide insight into the sources of groundwater in the freshwater/saline-water transition zone of the San Antonio segment of the Edwards aquifer. Sixty-nine dissolved gas samples were collected from 19 monitoring wells (categorized as fresh, transitional, or saline on the basis of dissolved solids concentration in samples from the wells or from fluid-profile logging of the boreholes) arranged in five transects, with one exception, across the freshwater/saline-water interface (the 1,000-milligrams-per-liter dissolved solids concentration threshold) of the Edwards aquifer. The concentration of helium-4 (the dominant isotope in atmospheric and terrigenic helium) in samples ranged from 63 microcubic centimeters per kilogram at standard temperature (20 degrees Celsius) and pressure (1 atmosphere) in a well in the East Uvalde transect to 160,587 microcubic centimeters per kilogram at standard temperature and pressure in a well in the Kyle transect. Helium-4 concentrations in the 10 saline wells generally increase from the western transects to the eastern transects. Increasing helium-4 concentrations from southwest to northeast in the transition zone, indicating increasing residence time of groundwater from southwest to northeast, is consistent with the longstanding conceptualization of the Edwards aquifer in which water recharges in the southwest, flows generally northeasterly (including in the transition zone, although more slowly than in the fresh-water zone), and discharges at major springs in the northeast. Excess helium-4 was greater than 1,000 percent for 60 of the 69 samples, indicating that terrigenic helium is largely present and that most of the excess helium-4 comes from sources other than the atmosphere. The helium data of this report cannot be

  13. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Radium has been measured in deep saline formation waters produced from a variety of U.S. Gulf Coast subsurface environments, including oil reservoirs, gas reservoirs and water-producing geopressured aquifers. A strong positive correlation has been found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th, which are located at sites on and within the solid matrix. Processes that are belived to be primarily responsible for transferring Ra from matrix to formation water are chemical leaching and alpha-particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following factors: (a) ion exchange; (b) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of reequilibration of silica between solution and quartz grains; and (c) the equilibration of Ra in solution with detrial barite within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs. ?? 1984.

  14. A model for calculating effects of liquid waste disposal in deep saline aquifer

    USGS Publications Warehouse

    Intercomp Resource Development and Engineering, Inc.

    1976-01-01

    Injection of liquid industrial wastes into confined underground saline aquifers can offer a good disposal alternative from both environmental and economic considerations. One of the needs in choosing from among several disposal alternatives is a means of evaluating the influence such an injection will have on the aquifer system. This report describes a mathematical model to accomplish this purpose.The objective of the contract was to develop a three-dimensional transient mathematical model which would accurately simulate behavior of waste injection into deep saline aquifers. Fluid properties, density and viscosity are functions of pressure, temperature and composition to provide a comprehensive assessment tool. The model is a finite-difference numerical solution of the partial differential equations describingsingle phase flow in the aquifer,energy transport by convection and conduction, andcompositional changes in the aquifer fluid.The model is not restricted to examining waste disposal operations. It can be used effectively to evaluate fresh water storage in saline aquifers, hot water storage in underground aquifers, salt water intrusion into groundwater flow systems and other similar applications.The primary advantages of the present model can be summarized as:The model is user-oriented for easy application to full-scale evaluation needs.The model is fully three-dimensional and transient.The model is comprehensive accounting for density and viscosity variations in the aquifer due to temperature or compositional changes.The model includes the effects of hydrodynamic dispersion in both the temperature and compositional mixing between resident and injected fluids.The model energy balance includes the effects of pressure. This can be important in deep aquifer systems where the viscous pressure gradient is significant.The model uses second-order correct space and time approximations to the convective terms. This minimizes the numerical dispersion problem.The model is

  15. Sources of salinity and urban pollution in the Quaternary sand aquifers of Dar es Salaam, Tanzania

    NASA Astrophysics Data System (ADS)

    Walraevens, Kristine; Mjemah, Ibrahimu Chikira; Mtoni, Yohana; Van Camp, Marc

    2015-02-01

    Groundwater is globally important for human consumption, and changes in quality can have serious consequences. The study area is within a coastal aquifer where groundwater quality is influenced by various potential sources of salinity that determine the composition of water extracted from wells. Groundwater chemistry data from the aquifer have been acquired to determine the geochemical conditions and processes that occur in this area and assess their implications for aquifer susceptibility. Analysis of groundwater samples shows that the dominant watertype is mostly NaCl with pH < 7 in both aquifers (i.e. upper and lower) except for the shallow wells where CaHCO3 prevails with pH ⩾ 7, and boreholes located near the Indian Ocean, where coral reef limestone deposits are located and the watertype evolves towards CaHCO3. In the lower aquifer, Cl- is higher than in the upper aquifer. The origin of salinity in the area is strongly influenced by groundwater ascending from deep marine Miocene Spatangid Shales through faults, seawater incursion on the border of the Indian Ocean, and throughout, there is some salinity within the Quaternary aquifer, especially in intercalated deltaic clays in the fluviatile deposits, showing some marine influences. The seawater intrusion is linked to the strongly increasing groundwater exploitation since 1997. Another process that plays a major role to the concentration of major ions in the groundwater is calcite dissolution. Next to geogenic salinity and seawater intrusion, anthropogenic pollution as well is affecting groundwater quality in the aquifer. An important result of this study is the observation of high nitrate concentrations, that call for improved sanitation in the area, where domestic sewage with on-site sanitation (mainly pit latrines) also threatens the groundwater resource.

  16. Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Haaken, Klaus; Piero Deidda, Gian; Cassiani, Giorgio; Deiana, Rita; Putti, Mario; Paniconi, Claudio; Scudeler, Carlotta; Kemna, Andreas

    2017-03-01

    Saline-freshwater interaction in porous media is a phenomenon of practical interest particularly for the management of water resources in arid and semi-arid environments, where precious freshwater resources are threatened by seawater intrusion and where storage of freshwater in saline aquifers can be a viable option. Saline-freshwater interactions are controlled by physico-chemical processes that need to be accurately modeled. This in turn requires monitoring of these systems, a non-trivial task for which spatially extensive, high-resolution non-invasive techniques can provide key information. In this paper we present the field monitoring and numerical modeling components of an approach aimed at understanding complex saline-freshwater systems. The approach is applied to a freshwater injection experiment carried out in a hyper-saline aquifer near Cagliari (Sardinia, Italy). The experiment was monitored using time-lapse cross-hole electrical resistivity tomography (ERT). To investigate the flow dynamics, coupled numerical flow and transport modeling of the experiment was carried out using an advanced three-dimensional (3-D) density-driven flow-transport simulator. The simulation results were used to produce synthetic ERT inversion results to be compared against real field ERT results. This exercise demonstrates that the evolution of the freshwater bulb is strongly influenced by the system's (even mild) hydraulic heterogeneities. The example also highlights how the joint use of ERT imaging and gravity-dependent flow and transport modeling give fundamental information for this type of study.

  17. Geohydrology and potential for upward movement of saline water in the Cocoa well field, East Orange County, Florida

    USGS Publications Warehouse

    Phelps, G.G.; Schiffer, D.M.

    1996-01-01

    The Floridan aquifer system, an approximately 2,000-foot thick sequence of Eocene-age limestone and dolomite, is the main source of water supply in central Florida. Hydraulic conductivity is different in strata of different lithology and is the basis for separating the aquifer system into the Upper Floridan aquifer, a middle semi- confining unit, and the Lower Floridan aquifer. The coastal city of Cocoa withdraws about 26 million gallons of water per day from the Upper Floridan aquifer from a well field in east Orange County, about 25 miles inland. About 60 million gallons per day are withdrawn from the Upper Floridan aquifer and 56 million gallons per day from the Lower Floridan aquifer in the Orlando area, about 15 miles west of the Cocoa well field. Wells drilled in the Cocoa well field from 1955-61 yielded water with chloride concentrations ranging from 25-55 milligrams per liter. Soon after the wells were put in service, chloride concentrations increased; therefore, new wells were drilled further inland. Chloride concen- trations in water from many of the new wells also have increased. Possible sources of saline water are lateral movement of relict seawater in the Upper Floridan aquifer from the east, regional upconing of saline water from the Lower Floridan aquifer or underlying older rocks, or localized upward movement of saline water through fractures. Several test wells were drilled to provide information about chloride concentration changes with depth and to monitor changes with time, including a multi-zone well drilled in 1965 (well C) and two wells drilled in the 1990's (wells R and S). Chloride concentrations have increased in the zone pumped by the supply wells (the upper 500 feet of the aquifer) and in the 1,351-1,357-foot deep zone of well C, but not in the two intervening zones. This indicates that the source of saline water is located laterally, rather than vertically, from the pumped zone in the area of well C. The potential for upward movement

  18. Saline water in the Little Arkansas River Basin area, south-central Kansas

    USGS Publications Warehouse

    Leonard, Robert B.; Kleinschmidt, Melvin K.

    1976-01-01

    Ground water in unconsolidated deposits of Pleistocene age in part of the Little Arkansas River basin has been polluted by the influx of saline water. The source of the saline water generally is oil-field brine that leaked from disposal ponds on the land surface. Locally, pollution by saline water also has been caused by upwelling of oil-field brine injected under pressure into the "lost-circulation zone" of the Lower Permian Wellington Formation and, possibly, by leakage of brine from corroded or improperly cased disposal wells. Anomalously high concentrations of chloride ion in some reaches of the Little Arkansas River probably can be attributed to pollution by municipal wastes rather than from inflow of saline ground water. Hydraulic connection exists between the "lost-circulation zone" and unconsolidated deposits, as evidenced by the continuing development of sinkholes, by the continuing discharge of saline water through springs and seeps along the Arkansas River south of the Little Arkansas River basin and by changes in the chloride concentration in water pumped from wells in the "lost-circulation zone." The hydraulic head in the "lost-circulation zone" is below the base of the unconsolidated deposits, and much below the potentiometric surface of the aquifer in those deposits. Any movement of water, therefore, would be downward from the "fresh-water" aquifer to the saline "lost-circulation zone."

  19. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection

    DOE PAGES

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing; ...

    2017-05-31

    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less

  20. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing

    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: themore » time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Thus, our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.« less

  1. Influence of the paleogeographic evolution on the groundwater salinity in a coastal aquifer. Cabo de Gata aquifer, SE Spain

    NASA Astrophysics Data System (ADS)

    Vallejos, A.; Sola, F.; Yechieli, Y.; Pulido-Bosch, A.

    2018-02-01

    The groundwater of the Cabo de Gata detritic aquifer, in southeastern Spain, exhibit salinities of between 70-726 mmol/L of Cl- (brackish-salt to hypersaline waters). We have investigated the causes of the high salinity anomaly, which at certain points exceeds that of present-day seawater (600 mmol/L). Two hypotheses are considered as possible sources for the saline water: (1) The deeper, more saline groundwater date back to an old marine intrusion that occurred at the end of the last Ice Age (14-17 ka), when seawater salinity was higher than in the present day. This hypothesis is supported by the values of 14C measured in this water (∼6-10 pmc), which indicate old water of up to 17 ka. However, the values of 18O and 2H are lower than would be expected. (2) The water is the result of mixing between fresh groundwater and seawater. The latter explanation agrees well with the low values of 18O and 2H. This mixture is later subject to evaporation, explaining its high salinity. Hydrogeochemical modelling was carried out for the most saline samples, assuming such mixing between freshwater and seawater followed by evaporation, and the results show a very good agreement between the measured and simulated values. According to the model calculation, the original mixture contained approximately 60% seawater and its volume subsequently was reduced through evaporation by around 30%. This mixing and evaporation could occur during the Flandrian Transgression (6000-8000 y), when this area accommodated a coastal lagoon.

  2. Using Heat as a Tracer to Estimate Saline Groundwater Fluxes from the Deep Aquifer System to the Shallow Aquifers and the Rio Grande in the Mesilla Basin, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Pepin, J. D.; Robertson, A.; Ferguson, C.; Burns, E. R.

    2017-12-01

    Heat is used as a tracer to estimate vertical groundwater flow and associated saline fluxes from deep (greater than 1 km) parts of the Mesilla Basin regional aquifer to the Rio Grande. Profiles of temperature with depth below ground surface are used to locate groundwater upflow zones and to estimate associated salinity fluxes. The results of this study will inform understanding of the impact of deep saline groundwater on regional water supplies. The Mesilla Basin in southern New Mexico, Texas, and Chihuahua, Mexico was designated by the U.S. as a priority transboundary aquifer in part because of the presence of the Rio Grande within the basin. Declining water levels, deteriorating water quality in both the aquifer and the river, and increasing use of water resources on both sides of the international border raise concerns about the sustainability of regional water supplies. The Rio Grande chloride concentration increases by about 130% (120 ppm to 280 ppm) as the river traverses the Mesilla Basin. Previous research attributed this reduction in water quality to the upwelling of deep sedimentary brines and geothermal waters within the basin. However, the spatial distribution of these upflow zones and their groundwater flow rates are poorly understood. Temperature profiles from 374 existing boreholes within the Mesilla Basin indicate that temperature-profile shape is affected by heat advection in the basin. Three distinct geothermal upflow zones were identified along regional fault zones in the study area based on the temperature profiles. Groundwater in these zones is considered thermal, having temperatures greater than 50°C at depths of less than 200 m. Identification of upflow-zone profiles combines analysis of temperature profiles, lithologic records, well-completion data, and profile derivatives. The Bredehoeft and Papadopulos (1965) one-dimensional heat-transport analytical solution will be applied to upflow-zone profiles to estimate the corresponding vertical

  3. Remote Detection of Saline Intrusion in a Coastal Aquifer Using Borehole Measurements of Self-Potential

    NASA Astrophysics Data System (ADS)

    MacAllister, DJ.; Jackson, M. D.; Butler, A. P.; Vinogradov, J.

    2018-03-01

    Two years of self-potential (SP) measurements were made in a monitoring borehole in the coastal UK Chalk aquifer. The borehole SP data showed a persistent gradient with depth, and temporal variations with a tidal power spectrum consistent with ocean tides. No gradient with depth was observed at a second coastal monitoring borehole ca. 1 km further inland, and no gradient or tidal power spectrum were observed at an inland site ca. 80 km from the coast. Numerical modeling suggests that the SP gradient recorded in the coastal monitoring borehole is dominated by the exclusion-diffusion potential, which arises from the concentration gradient across a saline front in close proximity to, but not intersecting, the base of the borehole. No such saline front is present at the two other monitoring sites. Modeling further suggests that the ocean tidal SP response in the borehole, measured prior to breakthrough of saline water, is dominated by the exclusion-diffusion potential across the saline front, and that the SP fluctuations are due to the tidal movement of the remote front. The electrokinetic potential, caused by changes in hydraulic head across the tide, is one order of magnitude too small to explain the observed SP data. The results suggest that in coastal aquifers, the exclusion-diffusion potential plays a dominant role in borehole SP when a saline front is nearby. The SP gradient with depth indicates the close proximity of the saline front to the borehole and changes in SP at the borehole reflect changes in the location of the saline front. Thus, SP monitoring can be used to facilitate more proactive management of abstraction and saline intrusion in coastal aquifers.

  4. Characterization and geostatistical mapping of water salinity: A case study of terminal complex in the Oued Righ Valley (southern Algeria)

    NASA Astrophysics Data System (ADS)

    Belkesier, Mohamed Saleh; Zeddouri, Aziez; Halassa, Younes; Kechiched, Rabah

    2018-05-01

    The region of Oued Righ contains large quantities of groundwater hosted by the three aquifers: the Terminal Complex (CT), the Continental Intercalary (CI) and the phreatic aquifer. The present study is focused on the water from CT aquifer in order to characterize their salinity using geostatistical tool for maping. Indeed, water in this aquifer show a high mineralization exceeding the OMS standards. The main hydro-chemical facies of this water is Chloride-Sodium and Sulfate-Sodium. The elementary statistics have been performed on the physico-chemical analysis from 97 wells whereas 766 wells were analyzed on salinity and are used for the geostatistical mapping. The obtained results show a spatial evolution of the salinity toward the direction South to the North. The salinity is locally strong in the central part of Oued Righ valley. The non-parametric geostatistic of indicator kriging was performed on the salinity data using a cut-off of 5230 mg/l which represents the average value in the studied area. The indicator Kriging allows the estimation of salinity probabilities I (5230 mg / l) in the water of the CT aquifer using bloc model (500 x 500 m). The automatic mapping is used to visualize the distribution of the kriged probabilities of salinity. These results can help to ensure a rational and a selective exploitation of groundwater according the salinity contents.

  5. What Drives Saline Circulation Cells in Coastal Aquifers? An Energy Balance for Density-Driven Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Harvey, C. F.; Michael, H. A.

    2017-12-01

    We formulate the energy balance for coastal groundwater systems and apply it to: (1) Explain the energy driving offshore saline circulation cells, and; (2) Assess the accuracy of numerical simulations of coastal groundwater systems. The flow of fresh groundwater to the ocean is driven by the loss of potential energy as groundwater drops from the elevation of the inland watertable, where recharge occurs, to discharge at sea level. This freshwater flow creates an underlying circulation cell of seawater, drawn into coastal aquifers offshore and discharging near shore, that adds to total submarine groundwater discharge. The saline water in the circulation cell enters and exits the aquifer through the sea floor at the same hydraulic potential. Existing theory explains that the saline circulation cell is driven by mixing of fresh and saline without any additional source of potential or mechanical power. This explanation raises a basic thermodynamic question: what is the source of energy that drives the saline circulation cell? Here, we resolve this question by building upon Hubbert's conception of hydraulic potential to formulate an energy balance for density-dependent flow and salt transport through an aquifer. We show that, because local energy dissipation within the aquifer is proportional to the square of the groundwater velocity, more groundwater flow may be driven through an aquifer for a given energy input if local variations in velocity are smoothed. Our numerical simulations of coastal groundwater systems show that dispersion of salt across the fresh-saline interface spreads flow over larger volumes of the aquifer, smoothing the velocity field, and increasing total flow and submarine groundwater discharge without consuming more power. The energy balance also provides a criterion, in addition to conventional mass balances, for judging the accuracy of numerical solutions of non-linear density-dependent flow problems. Our results show that some numerical

  6. Impacts of preferential flow on coastal groundwater-surface water interactions: The heterogeneous volcanic aquifer of Hawaii

    NASA Astrophysics Data System (ADS)

    Geng, X.; Kreyns, P.; Koneshloo, M.; Michael, H. A.

    2017-12-01

    Groundwater flow and salt transport processes are important for protection of coastal water resources and ecosystems. Geological heterogeneity has been recognized as a key factor affecting rates and patterns of groundwater flow and the evolution of subsurface salinity distributions in coastal aquifers. The hydrogeologic system of the volcanic Hawaiian Islands is characterized by lava flows that can form continuous, connected geologic structures in subsurface. Understanding the role of geological heterogeneity in aquifer salinization and water exchange between aquifers and the ocean is essential for effective assessment and management of water resources in the Hawaii islands. In this study, surface-based geostatistical techniques were adopted to generate geologically-realistic, statistically equivalent model realizations of the hydrogeologic system on the Big Island of Hawaii. The density-dependent groundwater flow and solute transport code SEAWAT was used to perform 3D simulations to investigate subsurface flow and salt transport through these random realizations. Flux across the aquifer-ocean interface, aquifer salinization, and groundwater flow pathways and associated transit times were quantified. Numerical simulations of groundwater pumping at various positions in the aquifers were also conducted, and associated impacts on saltwater intrusion rates were evaluated. Results indicate the impacts of continuous geologic features on large-scale groundwater processes in coastal aquifers.

  7. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE PAGES

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; ...

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO 2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO 2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO 2 storage capacity estimation can strongly exceed the cumulative CO 2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to themore » flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO 2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO 2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO 2 storage without water extraction, and highlights the need for any CO 2 storage estimate to specify whether it is intended to represent CO 2 storage capacity with or without water extraction.« less

  8. Salinization in a stratified aquifer induced by heat transfer from well casings

    NASA Astrophysics Data System (ADS)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan; Cirkel, D. Gijsbert; Raoof, Amir

    2015-12-01

    The temperature inside wells used for gas, oil and geothermal energy production, as well as steam injection, is in general significantly higher than the groundwater temperature at shallower depths. While heat loss from these hot wells is known to occur, the extent to which this heat loss may result in density-driven flow and in mixing of surrounding groundwater has not been assessed so far. However, based on the heat and solute effects on density of this arrangement, the induced temperature contrasts in the aquifer due to heat transfer are expected to destabilize the system and result in convection, while existing salt concentration contrasts in an aquifer would act to stabilize the system. To evaluate the degree of impact that may occur under field conditions, free convection in a 50-m-thick aquifer driven by the heat loss from penetrating hot wells was simulated using a 2D axisymmetric SEAWAT model. In particular, the salinization potential of fresh groundwater due to the upward movement of brackish or saline water in a stratified aquifer is studied. To account for a large variety of well applications and configurations, as well as different penetrated aquifer systems, a wide range of well temperatures, from 40 to 100 °C, together with a range of salt concentration (1-35 kg/m3) contrasts were considered. This large temperature difference with the native groundwater (15 °C) required implementation of a non-linear density equation of state in SEAWAT. We show that density-driven groundwater flow results in a considerable salt mass transport (up to 166,000 kg) to the top of the aquifer in the vicinity of the well (radial distance up to 91 m) over a period of 30 years. Sensitivity analysis showed that density-driven groundwater flow and the upward salt transport was particularly enhanced by the increased heat transport from the well into the aquifer by thermal conduction due to increased well casing temperature, thermal conductivity of the soil, as well as decreased

  9. Records of wells in sandstone and alluvial aquifers and chemical data for water from selected wells in the Navajo aquifer in the vicinity ofthe Greater Aneth Oil Field, San Juan County, Utah

    USGS Publications Warehouse

    Spangler, Lawrence E.

    1992-01-01

    This report contains hydrologic data for wells finished in sandstone and alluvial aquifers in southeastern San Juan County, Utah, and chemical data for water from selected wells in the Navajo aquifer. Temperature, specific conductance, pH, and discharge data from 1989-91 for water from selected wells in all aquifers are also presented.Data presented in this report were compiled from previously published reports (Goode, 1958; Sumsion, 1975; Avery, 1986; Kimball, 1987; Howells, 1990); data bases of the U.S. Geological Survey, the Navajo Tribe, the U.S. Bureau of Land Management, the Utah Division of Water Rights, and the Utah Division of Oil, Gas, and Mining; and from information obtained from oil companies in the Greater Aneth Oil Field. Results of investigations by Avery (1986) during 1982-83 indicated that water from many wells in the Navajo aquifer in the vicinity of the Greater Aneth Oil Field was moderately saline and that in some wells, salinity appeared to increase over time. The purpose of this study is to assess the physical extent and concentration of saline water in the Navajo and other aquifers in this area. The purpose of this report is to present available water-quality data for water from wells in the Navajo aquifer and present records for selected wells in the Navajo and other aquifers.

  10. Assessment of Well Safety from Pressure and Temperature-Induced Damage during CO2 Injection in Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Delfs, J.; Goerke, U.; Kolditz, O.

    2013-12-01

    Carbon dioxide Capture and Storage (CCS) technology is known for disposing a specific amount of CO2 from industrial release of flue gases into a suitable storage where it stays for a defined period of time in a safe way. Types of storage sites for CO2 are depleted hydrocarbon reservoirs, unmineable coal seams and saline aquifers. In this poster, we address the problem of CO2 sequestration into deep saline aquifers. The main advantage of this kind of site for the CO2 sequestration is its widespread geographic distribution. However, saline aquifers are very poorly characterized and typically located at one kilometer depth below the earth's surface. To demonstrate that supercritical CO2 injection into deep saline aquifers is technically and environmentally safe, it is required to perform thermo-hydro-mechanical analysis of failure moods with numerical models. In the poster, we present simple process-catching benchmark for testing the scenario of compressed CO2 injection into a multi- layered saline aquifer.The pores of the deformable matrix are initially filled with saline water at hydrostatic pressure and geothermal temperature conditions. This benchmark investigates (i) how the mechanical and thermal stresses enhance the permeability for CO2 migration; and (ii) subsequent failures mode, i.e., tensile, and shear failures. The tensile failure occurs when pore fluid pressure exceeds the principle stress whereas the Mohr-Coulomb failure criterion defines the shear failure mode. The thermo-hydro-mechanical (THM) model is based on a ';multi-componential flow' module . The coupled system of balance equations is solvedin the monolithic way. The Galerkin finite element approach is used for spatial discretization, whereas temporal discretization is performed with a generalized single step scheme. This numerical module has been implemented in the open-source scientific software OpenGeoSys.

  11. Tackling the salinity-pollution nexus in coastal aquifers from arid regions using nitrate and boron isotopes.

    PubMed

    Re, V; Sacchi, E

    2017-05-01

    Salinization and nitrate pollution are generally ascertained as the main issues affecting coastal aquifers worldwide. In arid zones, where agricultural activities also result in soil salinization, both phenomena tend to co-exist and synergically contribute to alter groundwater quality, with severe negative impacts on human populations and natural ecosystems' wellbeing. It becomes therefore necessary to understand if and to what extent integrated hydrogeochemical tools can help in distinguishing among possible different salinization and nitrate contamination origins, in order to provide adequate science-based support to local development and environmental protection. The alluvial plain of Bou-Areg (North Morocco) extends over about 190 km 2 and is separated from the Mediterranean Sea by the coastal Lagoon of Nador. Its surface is covered for more than 60% by agricultural activities, although the region has been recently concerned by urban population increase and tourism expansion. All these activities mainly rely on groundwater exploitation and at the same time are the main causes of both aquifer and lagoon water quality degradation. For this reason, it was chosen as a case study representative of the typical situation of coastal aquifers in arid zones worldwide, where a clear identification of salinization and pollution sources is fundamental for the implementation of locally oriented remedies and long-term management strategies. Results of a hydrogeochemical investigation performed between 2009 and 2011 show that the Bou-Areg aquifer presents high salinity (often exceeding 100 mg/L in TDS) due to both natural and anthropogenic processes. The area is also impacted by nitrate contamination, with concentrations generally exceeding the WHO statutory limits for drinking water (50 mg/L) and reaching up to about 300 mg/L, in both the rural and urban/peri-urban areas. The isotopic composition of dissolved nitrates (δ 15 N NO3 and δ 18 O NO ) was used to constrain

  12. Groundwater-saline lakes interaction - The contribution of saline groundwater circulation to solute budget of saline lakes: a lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Weinstein, Yishai; Starinsky, Abraham; Yechieli, Yoseph

    2013-04-01

    Saline lakes act as base level for both surface water and groundwater. Thus, a change in lake levels is expected to result in changes in the hydrogeological system in its vicinity, exhibited in groundwater levels, location of the fresh-saline water interface, sub-lacustrine groundwater discharge (SGD) and saline water circulation. All these processes were observed in the declining Dead Sea system, whose water level dropped by ~35 meters in the last 50 years. This work focuses mainly on the effect of circulation of Dead Sea water in the aquifer, which continues even in this very rapid base level drop. In general, seawater circulation in coastal aquifers is now recognized as a major process affecting trace element mass balances in coastal areas. Estimates of submarine groundwater discharge (SGD) vary over several orders of magnitude (1-1000000 m3/yr per meter shoreline). These estimates are sensitive to fresh-saline SGD ratios and to the temporal and spatial scales of the circulation. The Dead Sea system is an excellent natural field lab for studying seawater-groundwater interaction and large-scale circulation due to the absence of tides and to the minor role played by waves. During Dead Sea water circulation in the aquifer several geochemical reactions occur, ranging from short-term adsorption-desorption reactions and up to long-term precipitation and dissolution reactions. These processes affect the trace element distribution in the saline groundwater. Barite and celestine, which are supersaturated in the lake water, precipitate during circulation in the aquifer, reducing barium (from 5 to 1.5 mg/L), strontium (from 350 to 300 mg/L) and the long-lived 226Ra (from 145 to 60 dpm/L) in the saline groundwater. Redox-controlled reactions cause a decrease in uranium from 2.4 to 0.1 μg/L, and an increase in iron from 1 to 13 mg/L. 228Ra (t1/2=5.75 yr) activity in the Dead Sea is ~1 dpm/L and increase gradually as the saline water flows further inland until reaching

  13. Ground-water flow and quality in Wisconsin's shallow aquifer system

    USGS Publications Warehouse

    Kammerer, P.A.

    1995-01-01

    In terms of chemical quality, the water is suitable for potable supply and most other uses, but objectionable hardness in large areas and concen- trations of iron and manganese that exceed State drinking-water standards cause aesthetic problems that may require treatment of the water for some uses. Concentrations of major dissolved constitu- ents (calcium, magnesium, and bicarbonate), hard- ness, alkalinity, and dissolved solids are highest where the bedrock component of the aquifer is dolo- mite and lowest where the shallow aquifer is almost entirely sand and gravel. Concentrations of other minor constituents (sodium, potassium, sulfate, chloride, and fluoride) are less closely related to common minerals that compose the aquifer system. Sulfate and fluoride concentrations exceed State drinking-water standards locally. Extreme variability in concentrations of iron and manganese are common locally. Iron and manganese concentra- tions exceed State drinking-water standards in water from one-third and one-quarter of the wells, respectively. Likely causes of nitrate-nitrogen con- centrations that exceed State drinking-water stan- dards include local contamination from plant fertilizers, animal wastes, waste water disposed of on land, and septic systems. Water quality in the shallow aquifer system has been affected by saline water from underlying aquifers, primarily along the eastern and western boundaries of the State where the thickness of Paleozoic rocks is greatest.

  14. How Do Deep Saline Aquifer Microbial Communities Respond to Supercritical CO2 Injection?

    NASA Astrophysics Data System (ADS)

    Mu, A.; Billman-Jacobe, H.; Boreham, C.; Schacht, U.; Moreau, J. W.

    2011-12-01

    Carbon Capture and Storage (CCS) is currently seen as a viable strategy for mitigating anthropogenic carbon dioxide pollution. The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently conducting a field experiment in the Otway Basin (Australia) studying residual gas saturation in the water-saturated reservoir of the Paaratte Formation. As part of this study, a suite of pre-CO2 injection water samples were collected from approximately 1400 meters depth (60°C, 13.8 MPa) via an in situ sampling system. The in situ sampling system isolates aquifer water from sources of contamination while maintaining the formation pressure. Whole community DNA was extracted from these samples to investigate the prokaryotic biodiversity of the saline Paaratte aquifer (EC = 1509.6 uS/cm). Bioinformatic analysis of preliminary 16S ribosomal gene data revealed Thermincola, Acinetobacter, Sphingobium, and Dechloromonas amongst the closest related genera to environmental clone sequences obtained from a subset of pre-CO2 injection groundwater samples. Epifluorescent microscopy with 4',6-diamidino-2-phenylindole (DAPI) highlighted an abundance of filamentous cells ranging from 5 to 45 μM. Efforts are currently directed towards utilising a high throughput sequencing approach to capture an exhaustive profile of the microbial diversity of the Paaratte aquifer CO2 injection site, and to understand better the response of in situ microbial populations to the injection of large volumes (e.g. many kilotonnes) of supercritical CO2 (sc-CO2). Sequencing results will be used to direct cultivation efforts towards enrichment of a CO2-tolerant microorganism. Understanding the microbial response to sc-CO2 is an integral aspect of carbon dioxide storage, for which very little information exists in the literature. This study aims to elucidate molecular mechanisms, through genomic and cultivation-based methods, for CO2 tolerance with the prospect of engineering biofilms to enhance

  15. Subsurface injection of treated sewage into a saline-water aquifer at St. Petersburg, Florida - Water-quality changes and potential for recovery of injected sewage

    USGS Publications Warehouse

    Hickey, J.J.; Ehrlich, G.G.

    1984-01-01

    The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/l). Treated sewage with a mean chloride concentration of 170 mg/ml was injected through a single well for 12 months at a mean rate of 4.7 x 105 cubic feet per day. The volume of water injected during the year was 1.7x108 cubic feet. Dissolved oxygen was contained in the sewage prior to injection. Water removed from the injection zone during injection was essentially free of oxygen. Probable growth of denitrifying bacteria and, thus, microbial denitrification, was suggested by bacterial counts in water from two observation wells that were close to the injection well. The volume fraction of treated sewage in water from wells located 35 feet and 733 feet from the injection well and open to the upper part of the injection zone stabilized at about 0.9 and 0.75, respectively. Chloride concentrations stabilized at about 1,900 mg/l in water from the well that was 35 feet from the injection well and stabilized at about 4,000 mg/l in water from the well that was 733 feet from the injection well. These and other data suggest that very little near injection-quality treated sewage would be recoverable from storage in the injection zone.The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/l). Data suggest that very little near

  16. Hydrologic conditions, recharge, and baseline water quality of the surficial aquifer system at Jekyll Island, Georgia, 2012-13

    USGS Publications Warehouse

    Gordon, Debbie W.; Torak, Lynn J.

    2016-03-08

    Groundwater levels and specific-conductance measurements showed the dependence of freshwater resources on rainfall to recharge the water-table zone of the surficial aquifer system and to influence groundwater flow on Jekyll Island. The unseasonably dry conditions during November 2012 to April 2013 induced saline water infiltration to the water-table zone from the marshland separating the Jekyll River from the island. A strong correlation (R2 = 0.97) of specific conductance to chloride concentration in water samples from wells installed in the water-table zone provided support for the determination of seasonal directions of groundwater flow by confirming salinity changes in the water-table zone. Unseasonably wet conditions during the late spring to August caused groundwater-flow reversals in some areas. The high dependence of the water-table zone in the surficial aquifer system on precipitation to replenish the aquifer with freshwater underscored the importance of monitoring groundwater levels, water quality, and water use to identify aquifer-discharge conditions that have the potential to promote seawater encroachment and degrade freshwater resources on Jekyll Island.

  17. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer

    NASA Astrophysics Data System (ADS)

    Sáinz-García, Alvaro; Abarca, Elena; Rubí, Violeta; Grandia, Fidel

    2017-04-01

    Renewable energies are unsteady, which results in temporary mismatches between demand and supply. The conversion of surplus energy to hydrogen and its storage in geological formations is one option to balance this energy gap. This study evaluates the feasibility of seasonal storage of hydrogen produced from wind power in Castilla-León region (northern Spain). A 3D multiphase numerical model is used to test different extraction well configurations during three annual injection-production cycles in a saline aquifer. Results demonstrate that underground hydrogen storage in saline aquifers can be operated with reasonable recovery ratios. A maximum hydrogen recovery ratio of 78%, which represents a global energy efficiency of 30%, has been estimated. Hydrogen upconing emerges as the major risk on saline aquifer storage. However, shallow extraction wells can minimize its effects. Steeply dipping geological structures are key for an efficient hydrogen storage.

  18. How does natural groundwater flow affect CO2 dissolution in saline aquifers?

    NASA Astrophysics Data System (ADS)

    Rosenzweig, R.; Michel-Meyer, I.; Tsinober, A.; Shavit, U.

    2017-12-01

    The dissolution of supercritical CO2 in aquifer brine is one of the most important trapping mechanisms in CO2 geological storage. Diffusion-limited dissolution is a very slow process. However, since the CO2-rich water is slightly denser than the CO2-free water, when CO2-free water is overlaid by heavier CO2-rich water, convective instability results in fingers of dense CO2-rich water that propagate downwards, causing CO2-unsaturated water to move upwards. This convection process significantly accelerates the dissolution rate of CO2 into the aquifer water.Most previous works have neglected the effect of natural groundwater flow and assumed it has no effect on the dissolution dynamics. However, it was found that in some of the saline aquifers groundwater flow rate, although small, is not zero. In this research, we study the effect of groundwater flow on dissolution by performing laboratory experiments in a bead pack cell using a mixture of methanol and ethylene-glycol as a CO2 analog while varying the water horizontal flow rate. We find that water horizontal flow decreases the number of fingers, their wavelength and their propagation velocity. When testing high water flow rates, no fingers were developed and the dissolution process was entirely diffusive. The effect of water flow on the dissolution rate did not show a clear picture. When increasing the horizontal flow rate the convective dissolution flux slightly decreased and then increased again. It seems that the combination of density-driven flow, water horizontal flow, mechanical dispersion and molecular diffusion affect the dissolution rate in a complex and non-monotonic manner. These intriguing dynamics should be further studied to understand their effect on dissolution trapping.

  19. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida

    USGS Publications Warehouse

    Sacks, Laura A.; Tihansky, Ann B.

    1996-01-01

    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  20. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    NASA Astrophysics Data System (ADS)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  1. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan

    2016-08-01

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.

  2. Hydrogeology, distribution, and volume of saline groundwater in the southern midcontinent and adjacent areas of the United States

    USGS Publications Warehouse

    Osborn, Noël I.; Smith, S. Jerrod; Seger, Christian H.

    2013-01-01

    The hydrogeology, distribution, and volume of saline water in 22 aquifers in the southern midcontinent of the United States were evaluated to provide information about saline groundwater resources that may be used to reduce dependency on freshwater resources. Those aquifers underlie six States in the southern midcontinent—Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas—and adjacent areas including all or parts of Alabama, Colorado, Florida, Illinois, Kentucky, Mississippi, Nebraska, New Mexico, South Dakota, Tennessee, and Wyoming and some offshore areas of the Gulf of Mexico. Saline waters of the aquifers were evaluated by defining salinity zones; digitizing data, primarily from the Regional Aquifer-System Analysis Program of the U.S. Geological Survey; and computing the volume of saline water in storage. The distribution of saline groundwater in the southern midcontinent is substantially affected by the hydrogeology and groundwater-flow systems of the aquifers. Many of the aquifers in the southern midcontinent are underlain by one or more aquifers, resulting in vertically stacked aquifers containing groundwaters of varying salinity. Saline groundwater is affected by past and present hydrogeologic conditions. Spatial variation of groundwater salinity in the southern midcontinent is controlled primarily by locations of recharge and discharge areas, groundwater-flow paths and residence time, mixing of freshwater and saline water, and interactions with aquifer rocks and sediments. The volume calculations made for the evaluated aquifers in the southern midcontinent indicate that about 39,900 million acre-feet (acre-ft) of saline water is in storage. About 21,600 million acre-ft of the water in storage is slightly to moderately saline (1,000–10,000 milligrams per liter [mg/L] dissolved solids), and about 18,300 million acre-ft is very saline (10,000–35,000 mg/L dissolved solids). The largest volumes of saline water are in the coastal lowlands (about

  3. Groundwater Quality and Quantity in a Coastal Aquifer Under High Human Pressure: Understand the Aquifer Functioning and the Social Perception of Water Use for a Better Water Management. Example of Recife (PE, Brazil)

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, E.; Cary, L.; Bertrand, G.; Alves, L. M.; Cary, P.; Giglio-Jacquemot, A.; Aquilina, L.; Hirata, R.; Montenegro, S.; Aurouet, A.; Franzen, M.; Chatton, E.

    2015-12-01

    The Recife Metropolitan Region is a typical "hot spot" illustrating the problems of southern countries on water issues inducing high pressures on water resources both on quantity and quality in the context of global social and environmental changes. This study is based on an interdisciplinary approach, coupling "hard" geosciences together with "soft" social sciences with the aim to study the human impact on coastal aquifers in a context of overexploitation to improve the existing water management tools. By revisiting the geological and hydrogeological conceptual models, field campaigns of groundwater and surface water sampling and analysis, and of interviews of different actors on the theme of water supply and management in Recife Metropolitan Region, the main results can be summarized as follows: (1) The recharge of the deep strategic confined aquifers is very limited resulting in water level decrease (up to -90m in 25y) due to overexploitation. (2) Groundwater residence time in these deep aquifers is over 10,000 years. (3) The natural upward flux of these confined aquifers is observed inland, but is reversed in the heavily populated areas along the coast leading to mixing with modern groundwater coming from the shallow aquifers. (4) Groundwater salinization is inherited from the Pleistocene marine transgression, only partly diluted by the recharge through the mangroves during the subsequent regression phase. Today, leakage from surficial aquifers induces local salinization. (5) Local climatic scenarios predict a reduction of rainfall volume of 20% together with an increase of sea level (18-59cm by 2100). (5) The Public authorities tend to deny the difficulties that people, especially those in precarious situation, are confronted with regarding water, especially in times of drought. The COQUEIRAL research project is financially supported by ANR (ANR-11-CEPL-012); FACEPE (APQ-0077-3.07/11); FAPESP (2011/50553-0

  4. Integral Analysis of Field Work and Laboratory Electrical Resistivity Imaging for Saline Water Intrusion Prediction in Groundwater

    NASA Astrophysics Data System (ADS)

    Zawawi, M. H.; Zahar, M. F.; Hashim, M. M. M.; Hazreek, Z. A. M.; Zahari, N. M.; Kamaruddin, M. A.

    2018-04-01

    Saline water intrusion is a serious threat to the groundwater as many part of the world utilize groundwater as their main source of fresh water supply. The usage of high salinity level of water as drinking water can lead to a very serious health hazard towards human. Saline water intrusion is a process by which induced flow of seawater into freshwater aquifer along the coastal area. It might happen due to human action and/or by natural event. The climate change and rise up of sea level may speed up the saline water intrusion process. The conventional method for distinguishing and checking saltwater interference to groundwater along the coast aquifers is to gather and test the groundwater from series of observation wells (borehole) with an end goal to give the important information about the hydrochemistry data to conclude whether the water in the well are safe to consume or not. An integrated approach of field and laboratory electrical resistivity investigation is proposed for indicating the contact region between saline and fresh groundwater. It was found that correlation for both soilbox produced almost identical curvilinear trends for 2% increment of seawater tested using sand sample. This project contributes towards predicting the saline water intrusion to the groundwater by non-destructive test that can replaced the conventional method of groundwater monitoring using series of boreholes in the coastal area

  5. Fingerprinting groundwater salinity sources in the Gulf Coast Aquifer System, USA

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ali H.; Scanlon, Bridget R.; Reedy, Robert C.; Young, Steve

    2018-02-01

    Understanding groundwater salinity sources in the Gulf Coast Aquifer System (GCAS) is a critical issue due to depletion of fresh groundwater and concerns for potential seawater intrusion. The study objective was to assess sources of groundwater salinity in the GCAS using ˜1,400 chemical analyses and ˜90 isotopic analyses along nine well transects in the Texas Gulf Coast, USA. Salinity increases from northeast (median total dissolved solids (TDS) 340 mg/L) to southwest (median TDS 1,160 mg/L), which inversely correlates with the precipitation distribution pattern (1,370- 600 mm/yr, respectively). Molar Cl/Br ratios (median 540-600), depleted δ2H and δ18O (-24.7‰, -4.5‰) relative to seawater (Cl/Br ˜655 and δ2H, δ18O 0‰, 0‰, respectively), and elevated 36Cl/Cl ratios (˜100), suggest precipitation enriched with marine aerosols as the dominant salinity source. Mass balance estimates suggest that marine aerosols could adequately explain salt loading over the large expanse of the GCAS. Evapotranspiration enrichment to the southwest is supported by elevated chloride concentrations in soil profiles and higher δ18O. Secondary salinity sources include dissolution of salt domes or upwelling brines from geopressured zones along growth faults, mainly near the coast in the northeast. The regional extent and large quantities of brackish water have the potential to support moderate-sized desalination plants in this location. These results have important implications for groundwater management, suggesting a current lack of regional seawater intrusion and a suitable source of relatively low TDS water for desalination.

  6. Percolation pond as a method of managed aquifer recharge in a coastal saline aquifer: A case study on the criteria for site selection and its impacts

    NASA Astrophysics Data System (ADS)

    Christy, Raicy Mani; Lakshmanan, Elango

    2017-07-01

    Percolation ponds have become very popular methods of managed aquifer recharge due to their low cost, ease of construction and the participation and assistance of community. The objective of this study is to assess the feasibility of a percolation pond in a saline aquifer, north of Chennai, Tamil Nadu, India, to improve the storage and quality of groundwater. Electrical resistivity and ground penetrating radar methods were used to understand the subsurface conditions of the area. From these investigations, a suitable location was chosen and a percolation pond was constructed. The quality and quantity of groundwater of the nearby area has improved due to the recharge from the pond. This study indicated that a simple excavation without providing support for the slope and paving of the bunds helped to improve the groundwater quality. This method can be easily adoptable by farmers who can have a small pond within their farm to collect and store the rainwater. The cost of water recharged from this pond works out to be about 0.225 Re/l. Cleaning the pond by scrapping the accumulated sediments needs to be done once a year. Due to the small dimension and high saline groundwater, considerable improvement in quality at greater depths could not be achieved. However, ponds of larger size with recharge shafts can directly recharge the aquifer and help to improve the quality of water at greater depths.

  7. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Julio Enrique

    2003-01-01

    Injection of carbon dioxide (CO 2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO 2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO 2 and NaCl has beenmore » conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO 2-H 2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO 2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO 2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO 2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO 2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO 2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO 2) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower

  8. Subsurface injection of treated sewage into a saline-water aquifer at St. Petersburg, Florida - Aquifer pressure buildup

    USGS Publications Warehouse

    Hickey, J.J.

    1984-01-01

    The city of St. Petersburg has been testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. Treated sweage that had a mean chloride concentration of 170 milligrams per liter (mg/l) was injected through a single well for 12 months at a mean rate of 4. 7 multiplied by 10**5 cubic feet per day (ft**3/d). The volume of water injected during the year was 1. 7 multiplied by 10**8 cubic feet. Pressure buildup at the end of one year ranged from less than 0. 1 to as much as 2. 4 pounds per square inch (lb/in**2) in observation wells at the site. Pressure buildup in wells open to the upper part of the injection zone was related to buoyant lift acting on the mixed water in the injection zone in addition to subsurface injection through the injection well. Calculations of the vertical component of pore velocity in the semiconfining bed underlying the shallowest permeable zone of the Floridan aquifer indicate upward movement of native water.

  9. Revisiting analytical solutions for steady interface flow in subsea aquifers: Aquitard salinity effects

    NASA Astrophysics Data System (ADS)

    Werner, Adrian D.; Robinson, Neville I.

    2018-06-01

    Existing analytical solutions for the distribution of fresh groundwater in subsea aquifers presume that the overlying offshore aquitard, represented implicitly, contains seawater. Here, we consider the case where offshore fresh groundwater is the result of freshwater discharge from onshore aquifers, and neglect paleo-freshwater sources. A recent numerical modeling investigation, involving explicit simulation of the offshore aquitard, demonstrates that offshore aquitards more likely contain freshwater in areas of upward freshwater leakage to the sea. We integrate this finding into the existing analytical solutions by providing an alternative formulation for steady interface flow in subsea aquifers, whereby the salinity in the offshore aquitard can be chosen. The new solution, taking the aquitard salinity as that of freshwater, provides a closer match to numerical modeling results in which the aquitard is represented explicitly.

  10. Assessing the Risk of Aquifer Salinization in a Large-Scale Coastal Irrigation Scheme in Southern Italy

    NASA Astrophysics Data System (ADS)

    Zaccaria, Daniele; Passarella, Giuseppe; D'Agostino, Daniela; Giordano, Raffaele; Sandoval-Solis, Samuel; Maggi, Sabino; Bruno, Delia; Foglia, Laura

    2017-04-01

    A research study was conducted on a coastal irrigated agricultural area of southern Italy to assess the risks of aquifer degradation likely resulting from the intensive groundwater pumping from individual farm wells and reduced aquifer recharge. Information were collected both from farmers and delivery system's operators during a survey conducted in 2012 revealing that farmers depend mainly on groundwater with the aim to achieve flexible irrigation management as opposed to the rigid rotational delivery service of surface water supply provided by the local water management agency. The study area is intensively farmed by small land-holding growers with high-value micro-irrigated horticultural crops. Our team appraised the soil and aquifer degradation hazards using a simplified procedure for environmental risk assessment that allowed identifying the risk-generating processes, evaluating the magnitude of impacts, and estimating the overall risks significance. We also collected the stakeholders' perceptions on agricultural water management and use through field interviews, whereas parallel investigations revealed significant aquifer salinity increase during the recent years. As a final step, some preliminary risk mitigation options were appraised by exploring the growers' response to possible changes of irrigation deliveries by the water management agency. The present study integrated multi-annual observations, data interpretation, and modelling efforts, which jointly enabled the analysis of complex water management scenarios and the development of informed decisions. Keywords: Environmental risk assessment, Fuzzy cognitive maps, Groundwater degradation, Seawater intrusion

  11. Lithologic and physicochemical properties and hydraulics of flow in and near the freshwater/saline-water transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, based on water-level and borehole geophysical log data, 1999-2007

    USGS Publications Warehouse

    Lambert, Rebecca B.; Hunt, Andrew G.; Stanton, Gregory P.; Nyman, Michael B.

    2010-01-01

    The freshwater zone of the San Antonio segment of the Edwards aquifer in south-central Texas (hereinafter, the Edwards aquifer) is bounded to the south and southeast by a zone of transition from freshwater to saline water (hereinafter, the transition zone). The boundary between the two zones is the freshwater/saline-water interface (hereinafter, the interface), defined as the 1,000-milligrams per liter dissolved solids concentration threshold. This report presents the findings of a study, done by the U.S. Geological Survey in cooperation with the San Antonio Water System, to obtain lithologic properties (rock properties associated with known stratigraphic units) and physicochemical properties (fluid conductivity and temperature) and to analyze the hydraulics of flow in and near the transition zone of the Edwards aquifer on the basis of water-level and borehole geophysical log data collected from 15 monitoring wells in four transects during 1999-2007. No identifiable relation between conductivity values from geophysical logs in monitoring wells in all transects and equivalent freshwater heads in the wells at the times the logs were run is evident; and no identifiable relation between conductivity values and vertical flow in the boreholes concurrent with the times the logs were run is evident. The direction of the lateral equivalent freshwater head gradient and thus the potential lateral flow at the interface in the vicinity of the East Uvalde transect fluctuates between into and out of the freshwater zone, depending on recharge and withdrawals. Whether the prevailing direction on average is into or out of the freshwater zone is not clearly indicated. Equivalent freshwater head data do not indicate a prevailing direction of the lateral gradient at the interface in the vicinity of the Tri-County transect. The prevailing direction on average of the lateral gradient and thus potential lateral flow at the interface in the vicinity of the Kyle transect likely is from the

  12. Integrating an artificial intelligence approach with k-means clustering to model groundwater salinity: the case of Gaza coastal aquifer (Palestine)

    NASA Astrophysics Data System (ADS)

    Alagha, Jawad S.; Seyam, Mohammed; Md Said, Md Azlin; Mogheir, Yunes

    2017-12-01

    Artificial intelligence (AI) techniques have increasingly become efficient alternative modeling tools in the water resources field, particularly when the modeled process is influenced by complex and interrelated variables. In this study, two AI techniques—artificial neural networks (ANNs) and support vector machine (SVM)—were employed to achieve deeper understanding of the salinization process (represented by chloride concentration) in complex coastal aquifers influenced by various salinity sources. Both models were trained using 11 years of groundwater quality data from 22 municipal wells in Khan Younis Governorate, Gaza, Palestine. Both techniques showed satisfactory prediction performance, where the mean absolute percentage error (MAPE) and correlation coefficient ( R) for the test data set were, respectively, about 4.5 and 99.8% for the ANNs model, and 4.6 and 99.7% for SVM model. The performances of the developed models were further noticeably improved through preprocessing the wells data set using a k-means clustering method, then conducting AI techniques separately for each cluster. The developed models with clustered data were associated with higher performance, easiness and simplicity. They can be employed as an analytical tool to investigate the influence of input variables on coastal aquifer salinity, which is of great importance for understanding salinization processes, leading to more effective water-resources-related planning and decision making.

  13. High Magnetic Susceptibility in a Highly Saline Sulfate-Rich Aquifer Undergoing Biodegradation of Hydrocarbon Results from Sulfate Reduction.

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; Enright, A.; Ntarlagiannis, D.; Slater, L. D.; Bernier, R.; Beaver, C. L.; Rossbach, S.

    2016-12-01

    We investigated the chemical and stable carbon isotope composition of groundwater in a highly saline aquifer contaminated with hydrocarbon. Our aim to evaluate hydrocarbon degradation and to constrain the geochemical conditions that generated high anomalous magnetic susceptibility (MS) signatures observed at the water table interface. The occurrence of high MS in the water table fluctuating zone has been attributed to microbial iron reduction, suggesting the use of MS as a proxy for iron cycling. The highly saline aquifer had total dissolved solids concentrations of 3.7 to 29.3 g/L and sulfate concentrations of 787 to 37,100 mg/L. We compared our results for groundwater locations with high hydrocarbon contamination (total petroleum hydrocarbon (TPH) >10 mg/L), at lightly contaminated (TPH <10 mg/L) and locations with no contaminations. Our results for the terminal electron acceptors (TEAs) dissolved oxygen (DO), nitrate (NO3-), dissolved iron (Fe2+) , dissolved manganese (Mn2+), sulfate (SO42-) and methane (CH4) suggest a chemically heterogeneous aquifer, probably controlled by heterogeneous distribution of TEAs and contamination (type of hydrocarbon, phase and age of contamination). The concentrations of dissolved inorganic carbon (DIC) ranged from 67 to 648 mg C/L and the stable carbon isotope (δ13CDIC) ranged from -30.0‰ to 1.0 ‰ and DIC-δ13CDIC modeling indicates that the carbon in the DIC is derived primarily from hydrocarbon degradation. The concentrations of Fe2+ in the aquifer ranged from 0.1 to 55.8 mg/L, but was mostly low, averaging 2.7+10.9 mg/L. Given the low Fe2+ [AE1] in the aqueous phase and the high MS at contaminated locations, we suggest that the high MS observed does not arise from iron reduction but rather from sulfate reduction. Sulfate reduction produces H2S which reacts with Fe2+ to produce ferrous sulfide (Fe2+S) or the mixed valence greigite (Fe2+Fe3+2S4). We conclude that in highly saline aquifers with high concentrations of sulfate

  14. Effects of a Reservoir Water on the GW Quality in a Coastal Aquifer of Semi-arid Region, North-east of Tunisia

    NASA Astrophysics Data System (ADS)

    Uchida, C.; Kawachi, A.; Tsujimura, M.; Tarhouni, J.

    2015-12-01

    This study investigated effects of a reservoir water in a salinized shallow aquifer based on spatial distribution of geochemical properties in groundwater (GW). In many coastal shallow aquifers of arid and semi-arid regions, groundwater table (GWT) depression and salinization have occurred due to GW overexploitation. In Korba aquifer, north-east of Tunisia, after a dam reservoir has been constructed in order to assure a water resource for irrigation, improvement of GW level and quality have been observed in the downstream area of the dam (area-A), while the GW in the other area (area-B) still has high salinity. This study, therefore, aimed to investigate the effects of the reservoir water on the GW quality. In June 2013, water quality survey and sampling were carried out at 60 wells (GW), a dam reservoir, river and the sea. Major ions, boron, bromide, and oxygen-18 and deuterium in collected samples were analyzed. From the results, in the area-B, the GWT was lower than the sea level and the high salinity were observed. The Br- concentration of the GW was correlated with the Cl- concentration, and the values of B/Cl- and Br-/Cl- of the GW were similar to the seawater. Since the GWT depression allowed the seawater to intrude into the aquifer, the GW salinization occurred in this area. On the other hand, in the area-A, GWT was higher than the seawater level, and the Na+ and Cl- concentrations were lower than the area-B. Especially, in the irrigated areas by using the reservoir water, the isotopic values, B/Cl- and Br-/Cl- of the GW were relatively higher than the others. The reservoir water has high isotopic values due to evaporation effect, and the B/Cl- and Br-/Cl- values become higher due to organic matters in sediment of the reservoir or soil in the filtration process. Thus, in addition to the direct infiltration from the reservoir into the aquifer, irrigation using a reservoir water probably has a positive impact on the GW quality in this area.

  15. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  16. The influence of fish ponds and salinization on groundwater quality in the multi-layer coastal aquifer system in Israel

    NASA Astrophysics Data System (ADS)

    Tal, A.; Weinstein, Y.; Yechieli, Y.; Borisover, M.

    2017-08-01

    This study focuses on the impact of surface reservoirs (fish ponds) on a multi aquifer coastal system, and the relation between the aquifer and the sea. The study was conducted in an Israeli Mediterranean coastal aquifer, which includes a sandy phreatic unit and two confined calcareous sandstone units. The geological description is based on 52 wells, from which 33 samples were collected for stable isotope analysis and 25 samples for organic and inorganic parameters. Hydraulic head and chemical measurements suggest that there is an hydraulic connection between the fish ponds above the aquifer and the phreatic unit, whereas the connection with the confined units is very limited. The phreatic unit is characterized by a low concentration of oxygen and high concentrations of ammonium and phosphate, while the confined units are characterized by higher oxygen and much lower ammonium and phosphate concentrations. Organic matter fluorescence was found to be a tool to distinguish the contribution of the pond waters, whereby a pond water signature (characterized by proteinaceous (tryptophan-like) and typical humic-matter fluorescence) was found in the phreatic aquifer. The phreatic unit is also isotopically enriched, similar to pond waters, with δ18O of -1‰ and δD of -4.6‰, indicating enhanced evaporation of the pond water before infiltration, whereas there is a depleted isotopic composition in the confined units (δ18O = -4.3‰, δD = -20.4‰), which are also OM-poor. The Phreeqc model was used for quantitative calculation of the effect of pond losses on the different units. The Dissolved Inorganic Nitrogen (DIN) in the upper unit increases downstream from the ponds toward the sea, probably due to organic matter degradation, suggesting contribution of DIN from shallow groundwater flow to the sea. 87Sr/86Sr and Mg/Ca in the brackish and saline groundwater of the lower confined units increase toward seawater value, suggesting that the salinization process in the region

  17. Impact of saline water sources on hypertension and cardiovascular disease risk in coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Butler, Adrian; Hoque, Mohammad; Mathewson, Eleanor; Ahmed, Kazi; Rahman, Moshuir; Vineis, Paolo; Scheelbeek, Pauline

    2016-04-01

    Southern Bangladesh is periodically affected by tropical cyclone induced storm surges. Such events can result in the inundation of large areas of the coastal plain by sea water. Over time these episodic influxes of saline water have led to the build-up of a high of salinities (e.g. > 1,000 mg/l) in the shallow (up to ca. 150 m depth) groundwater. Owing to the highly saline groundwater, local communities have developed alternative surface water sources by constructing artificial drinking water ponds, which collect monsoonal rainwater. These have far greater storage than traditional rainwater harvesting systems, which typically use 40 litre storage containers that are quickly depleted during the dry season. Unfortunately, the ponds can also become salinised during storm surge events, the impacts of which can last for a number of years. A combined hydrological and epidemiological research programme over the past two years has been undertaken to understand the potential health risks associated with these saline water sources, as excessive intake of sodium can lead to hypertension and an increased risk of cardiovascular disease (such as stroke and heart attack). An important aspect of the selected research sites was the variety of drinking water sources available. These included the presence of managed aquifer recharge sites where monsoonal rainwater is stored in near-surface (semi-)confined aquifers for abstraction during the dry season. This provided an opportunity for the effects of interventions with lower salinity sources to be assessed. Adjusting for confounding factors such as age, gender and diet, the results show a significant association between salinity and blood pressure. Furthermore, the results also showed such impacts are reversible. In order to evaluate the costs and benefits of such interventions, a water salinity - dose impact model is being developed to assess the effectiveness of alternative drinking water sources, such as enhanced rainwater

  18. Comparative Study of Effects of CO 2 Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer

    DOE PAGES

    Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.

    2016-08-09

    Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less

  19. Comparative Study of Effects of CO 2 Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.

    Injected CO 2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO 2. Microbial community change in these subsurface sites may affect injectivity of CO 2, permanence of stored CO 2, and shallow subsurface water quality. The effect of CO 2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%,more » and 100% pCO 2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO 2-exposed deep saline aquifer fluids. Overall, results suggest that CO 2 exposure to microbial communities will result in pH-dependent population change, and the CO 2-selected microbial communities will vary among sites. In conclusion, this is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO 2-exposed environments.« less

  20. Review of Knowledge on the Occurrence, Chemical Composition, and Potential Use for Desalination of Saline Ground Water in Arizona, New Mexico, and Texas with a Discussion of Potential Future Study Needs

    USGS Publications Warehouse

    Huff, G.F.

    2004-01-01

    Increasing demand on the limited supplies of freshwater in the desert Southwest, as well as other parts of the United States, has increased the level of interest in saline-water resources. Saline ground water has long been recognized as a potentially important contributor to water supply in the Southwest, as demonstrated by the number of hydrologic, geologic, and engineering studies on the distribution of saline water and the feasibility of desalination. Potential future study needs include investigating and documenting the three-dimensional distribution of salinity and chemical composition of saline-water resources and the hydraulic properties of aquifers containing these saline-water resources, assessing the chemical suitability of saline water for use with existing and anticipated desalination technologies, simulating the effect of withdrawal of saline ground water on water levels and water composition in saline and adjoining or overlying freshwater aquifers, and determining the suitability of target geologic formations for injection of desalination-generated waste.

  1. Salinization of porewater in a multiple aquitard-aquifer system in Jiangsu coastal plain, China

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liang, Xing; Zhang, Yanian; Liu, Yan; Chen, Naijia; Abubakari, Alhassan; Jin, Menggui

    2017-12-01

    Chemical and isotopic compositions were analyzed in porewater squeezed from a clayey aquitard in Jiangsu coastal plain, eastern China, to interpret the salinity origin, chemical evolution and water-mass mixing process. A strong geochemical fingerprint was obtained with an aligned Cl/Br ratio of 154 in the salinized aquitard porewater over a wide Cl- concentration range (396-9,720 mg/L), indicating that porewater salinity is likely derived from a mixing with old brine with a proportion of less than 20%. Very small contributions of brine exerted limited effects on water stable isotopes. The relationships between porewater δ18O and δD indicate that shallow and intermediate porewaters could be original seawater and were subsequently diluted with modern meteoric water, whereas deep porewaters with depleted stable isotopic values were probably recharged during a cooler period and modified by evaporation and seawater infiltration. The cation-Cl relationship and mineralogy of associated strata indicate that porewater has been chemically modified by silicate weathering and ion-exchange reactions. 87Sr/86Sr ratios of 0.7094-0.7112 further confirm the input source of silicate minerals. Numerical simulations were used to evaluate the long-term salinity evolution of the deep porewater. The alternations of boundary conditions (i.e., the third aquifer mixed with brine at approximately 70 ka BP, followed by recharge of glacial meltwater at 20-25 ka BP, and then mixing with Holocene seawater at 7-10 ka BP) are responsible for the shift in porewater salinity. These timeframes correspond with the results of previous studies on ancient marine transgression-regression in Jiangsu coastal plain.

  2. Stepped-wedge cluster-randomised controlled trial to assess the cardiovascular health effects of a managed aquifer recharge initiative to reduce drinking water salinity in southwest coastal Bangladesh: study design and rationale

    PubMed Central

    Naser, Abu Mohd; Unicomb, Leanne; Doza, Solaiman; Ahmed, Kazi Matin; Rahman, Mahbubur; Uddin, Mohammad Nasir; Quraishi, Shamshad B; Selim, Shahjada; Shamsudduha, Mohammad; Burgess, William; Chang, Howard H; Gribble, Matthew O; Clasen, Thomas F; Luby, Stephen P

    2017-01-01

    Introduction Saltwater intrusion and salinisation have contributed to drinking water scarcity in many coastal regions globally, leading to dependence on alternative sources for water supply. In southwest coastal Bangladesh, communities have few options but to drink brackish groundwater which has been associated with high blood pressure among the adult population, and pre-eclampsia and gestational hypertension among pregnant women. Managed aquifer recharge (MAR), the purposeful recharge of surface water or rainwater to aquifers to bring hydrological equilibrium, is a potential solution for salinity problem in southwest coastal Bangladesh by creating a freshwater lens within the brackish aquifer. Our study aims to evaluate whether consumption of MAR water improves human health, particularly by reducing blood pressure among communities in coastal Bangladesh. Methods and analysis The study employs a stepped-wedge cluster-randomised controlled community trial design in 16 communities over five monthly visits. During each visit, we will collect data on participants’ source of drinking and cooking water and measure the salinity level and electrical conductivity of household stored water. At each visit, we will also measure the blood pressure of participants ≥20 years of age and pregnant women and collect urine samples for urinary sodium and protein measurements. We will use generalised linear mixed models to determine the association of access to MAR water on blood pressure of the participants. Ethics and dissemination The study protocol has been reviewed and approved by the Institutional Review Boards of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b). Informed written consent will be taken from all the participants. This study is funded by Wellcome Trust, UK. The study findings will be disseminated to the government partners, at research conferences and in peer-reviewed journals. Trial registration number NCT02746003; Pre

  3. Stepped-wedge cluster-randomised controlled trial to assess the cardiovascular health effects of a managed aquifer recharge initiative to reduce drinking water salinity in southwest coastal Bangladesh: study design and rationale.

    PubMed

    Naser, Abu Mohd; Unicomb, Leanne; Doza, Solaiman; Ahmed, Kazi Matin; Rahman, Mahbubur; Uddin, Mohammad Nasir; Quraishi, Shamshad B; Selim, Shahjada; Shamsudduha, Mohammad; Burgess, William; Chang, Howard H; Gribble, Matthew O; Clasen, Thomas F; Luby, Stephen P

    2017-09-01

    Saltwater intrusion and salinisation have contributed to drinking water scarcity in many coastal regions globally, leading to dependence on alternative sources for water supply. In southwest coastal Bangladesh, communities have few options but to drink brackish groundwater which has been associated with high blood pressure among the adult population, and pre-eclampsia and gestational hypertension among pregnant women. Managed aquifer recharge (MAR), the purposeful recharge of surface water or rainwater to aquifers to bring hydrological equilibrium, is a potential solution for salinity problem in southwest coastal Bangladesh by creating a freshwater lens within the brackish aquifer. Our study aims to evaluate whether consumption of MAR water improves human health, particularly by reducing blood pressure among communities in coastal Bangladesh. The study employs a stepped-wedge cluster-randomised controlled community trial design in 16 communities over five monthly visits. During each visit, we will collect data on participants' source of drinking and cooking water and measure the salinity level and electrical conductivity of household stored water. At each visit, we will also measure the blood pressure of participants ≥20 years of age and pregnant women and collect urine samples for urinary sodium and protein measurements. We will use generalised linear mixed models to determine the association of access to MAR water on blood pressure of the participants. The study protocol has been reviewed and approved by the Institutional Review Boards of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b). Informed written consent will be taken from all the participants. This study is funded by Wellcome Trust, UK. The study findings will be disseminated to the government partners, at research conferences and in peer-reviewed journals. NCT02746003; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the

  4. Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain.

    PubMed

    Argamasilla, M; Barberá, J A; Andreo, B

    2017-02-15

    In detrital coastal aquifers, seawater and surface water may interact with groundwater in multiple ways. Understanding the interference of water fluxes in this type of environment is essential to effectively manage the groundwater resources in water-stressed regions, such as the Mediterranean coastal fringe. In this research, the characterization of the main hydrogeochemical processes and the interaction between surface water and groundwater in the Marbella-Estepona coastal aquifers (southern Spain) have been carried out by means of the combined use of different hydrogeochemical indicators along with isotope data. The results show that the diversity of source lithologies (peridotite, carbonate and/or metapelitic) substantially conditions the groundwater geochemistry. The analysis of ionic deltas made it possible a preliminary screening of the geochemical reactions that occur in the Marbella-Estepona aquifers, while the Discriminant Analysis allowed for a consistent classification of sampled groundwater types. The dissolution of calcite and dolomite determines the chemical composition of the groundwater from the eastern sector that are more conditioned by the rainwater infiltration. The dissolution of magnesium-bearing minerals (predominantly forming peridotite rocks) is observed in groundwater samples from the western and central sectors, whose chemical composition showed a greater influence of surface water. The spatial analysis of rCl - /Br - in groundwater has permitted to corroborate that saline intrusion is negligible, hardly affecting to its original water quality. The irregularly distributed recharge by precipitation (seasonal effect) and the atmospheric circulation of cloud fronts (coastal/continental effect) explains why most of groundwater sampled is isotopically impoverished with respect to the rainfall signature. The isotope approach also suggests the hydraulic relationship between surface water and groundwater in the study site. A deeper knowledge of

  5. Use of a time-domain electromagnetic method with geochemical tracers to explore the salinity anomalies in a small coastal aquifer in north-eastern Tunisia

    NASA Astrophysics Data System (ADS)

    Chekirbane, Anis; Tsujimura, Maki; Kawachi, Atsushi; Lachaal, Fethi; Isoda, Hiroko; Tarhouni, Jamila

    2014-12-01

    The study area is a small coastal plain in north-eastern Tunisia. It is drained by an ephemeral stream network and is subject to several pollutant discharges such as oilfield brine coming from a neighboring oil company and wastewater from Somâa city, located in the upstream of the plain. Furthermore, a hydraulic head near the coastal part of the aquifer is below sea level, suggesting that seawater intrusion may occur. A time-domain electromagnetic (TDEM) survey, based on 28 soundings, was conducted in Wadi Al Ayn and Daroufa plains to delineate the saline groundwater. Based on longitudinal and transversal resistivity two-dimensional pseudosections calibrated with boring data, the extent of saline water was identified. Geochemical tracers were combined with the resistivity dataset to differentiate the origin of groundwater salinization. In the upstream part of the plain, the infiltration of oilfield brine through the sandy bed of Wadi Al Ayn seems to have a considerable effect on groundwater salinization. However, in the coastal part of the aquifer, groundwater salinization is due to seawater intrusion and the saltwater is reaching an inland extent around 1.3 km from the shoreline. The contribution ratios of saline water bodies derived from the inverted chloride data vary for the oilfield brine from 1 to 13 % and for the seawater from 2 to 21 %.

  6. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  7. Using radon-222 to study coastal groundwater/surface-water interaction in the Crau coastal aquifer (southeastern France)

    NASA Astrophysics Data System (ADS)

    Mayer, Adriano; Nguyen, Bach Thao; Banton, Olivier

    2016-11-01

    Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada "single-well method" (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).

  8. CO2/Brine transport into shallow aquifers along fault zones.

    PubMed

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-02

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

  9. Sea water in coastal aquifers

    USGS Publications Warehouse

    Cooper, Hilton Hammond

    1964-01-01

    Investigations in the coastal part of the Biscayne aquifer, a highly productive aquifer of limestone and sand in the Miami area, Florida, show that the salt-water front is dynamically stable as much as 8 miles seaward of the position computed according to the Ghyben-Herzberg principle. This discrepancy results, at least in part, from the fact that the salt water in the Biscayne aquifer is not static, as explanations of the dynamic balance commonly assume. Cross sections showing lines of equal fresh-water potential indicate that during periods of heavy recharge, the fresh-water head is high enough to cause the fresh water, the salt water, and the zone of diffusion between them to move seaward. When the fresh-water head is low, salt water in the lower part of the aquifer intrudes inland, but some of the diluted sea water in the zone of diffusion continues to flow seaward. Thus, salt water circulates inland from the floor of the sea through the lower part of the aquifer becoming progressively diluted with fresh water to a line along which there is no horizontal component of flow, after which it moves upward and returns to the sea. This cyclic flow is demonstrated by a flow net which is constructed by the use of horizontal gradients determined from the low-head equipotential diagram. The flow net shows that about seven-eights of the total discharge at the shoreline originates as fresh water in inland parts of the aquifer. The remaining one-eighth represents a return of sea water entering the aquifer through the floor of the sea.

  10. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    USGS Publications Warehouse

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  11. Determining sources of elevated salinity in pre-hydraulic fracturing water quality data using a multivariate discriminant analysis model

    NASA Astrophysics Data System (ADS)

    Lautz, L. K.; Hoke, G. D.; Lu, Z.; Siegel, D. I.

    2013-12-01

    Hydraulic fracturing has the potential to introduce saline water into the environment due to migration of deep formation water to shallow aquifers and/or discharge of flowback water to the environment during transport and disposal. It is challenging to definitively identify whether elevated salinity is associated with hydraulic fracturing, in part, due to the real possibility of other anthropogenic sources of salinity in the human-impacted watersheds in which drilling is taking place and some formation water present naturally in shallow groundwater aquifers. We combined new and published chemistry data for private drinking water wells sampled across five southern New York (NY) counties overlying the Marcellus Shale (Broome, Chemung, Chenango, Steuben, and Tioga). Measurements include Cl, Na, Br, I, Ca, Mg, Ba, SO4, and Sr. We compared this baseline groundwater quality data in NY, now under a moratorium on hydraulic fracturing, with published chemistry data for 6 different potential sources of elevated salinity in shallow groundwater, including Appalachian Basin formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. A multivariate random number generator was used to create a synthetic, low salinity (< 20 mg/L Cl) groundwater data set (n=1000) based on the statistical properties of the observed low salinity groundwater. The synthetic, low salinity groundwater was then artificially mixed with variable proportions of different potential sources of salinity to explore chemical differences between groundwater impacted by formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. We then trained a multivariate, discriminant analysis model on the resulting data set to classify observed high salinity groundwater (> 20 mg/L Cl) as being affected by formation water, road salt, septic effluent, landfill leachate, animal waste, or water softeners. Single elements or pairs of

  12. A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer)

    NASA Astrophysics Data System (ADS)

    Motevalli, Alireza; Moradi, Hamid Reza; Javadi, Saman

    2018-02-01

    Aquifer salinization has recently increased significantly due to human activity and has caused irreparable environmental and economic effects. In this research, a new method is proposed for modeling the vulnerability to salinity for the Ghaemshahr-juybar aquifer. Specifically, the GALDIT (Sea water intrusion) and TAWLBIC (Saltwater up-coning) indices were combined to produce a map of vulnerability (Comprehensive Salinity Index or CSI) to seawater intrusion of a region near the coast and saltwater up-coning away from the coast, respectively. Single parameter and removal layer sensitivity analysis were performed in order to identify the sensitive parameters and achieve optimal weights (through the single-parameter method) of contributing factors in all three methods. The three optimized methods produced were GALDIT-Opt, TAWLBIC-Opt and CSI-Opt. To assess the accuracy of the original maps and optimal ones, the Pearson correlation was used. Results indicated that the Pearson correlation of the optimized GALDIT, TAWLBIC and CSI model was better than GALDIT, TAWLBIC and CSI. The results show that the increase in correlation between EC (Electrical Conductivity), TDS (Total Dissolved Solids) and SAR (Sodium Adsorption Ratio) from the GALDIT model to the CSI-Opt model from values of 0.64, 0.56 and 0.68 has improved to values of 0.81, 0.88 and 0.91, respectively. The highest concentration of EC, with a value of 7050 μs/cm, is sampled in the areas of the east and northwest of the Ghaemshahr-juybar aquifer, which are classified in the CSI-Opt model as high and very high vulnerability levels. The highest concentration of TDS and SAR has been found in the east, northwest and northeast of the Ghaemshahr-juybar aquifer with a value of 4724 ppm for TDS and 14 mg/l for SAR that have been modeled in the CSI-Opt index as highly vulnerable areas. Eventually, CSI mapping can be used as an efficient tool in prioritizing in terms of the vulnerability to aquifer salinity, carrying out

  13. The Sparta aquifer in Arkansas' critical ground-water areas: Response of the aquifer to supplying future water needs

    USGS Publications Warehouse

    Hays, Phillip D.; Fugitt, D. Todd

    1999-01-01

    The Sparta aquifer is a confined aquifer of great regional importance that comprises a sequence of unconsolidated sand, silt, and clay units extending across much of eastern and southeastern Arkansas and into adjoining States. Water use from the aquifer has doubled since 1975 and continues to increase, and large water-level declines are occurring in many areas of the aquifer. To focus State attention and resources on the growing problem and to provide a mechanism for locally based education and management, the Arkansas Soil and Water Conservation Commission has designated Critical Ground-Water Areas in some counties (see page 6, ?What is a Critical Ground-Water Area??). Ground-water modeling study results show that the aquifer cannot continue to meet growing water-use demands. Dewatering of the primary producing sands is predicted to occur within 10 years in some areas if current trends continue. The predicted dewatering will cause reduced yields and damage the aquifer. Modeling also shows that a concerted ground-water conservation management plan could enable sustainable use of the aquifer. Water-conservation measures and use of alternative sources that water managers in Union County (an area of high demand and growth in Arkansas' initial five-county Critical Ground-Water Area) think to be realistic options result in considerable recovery in water levels in the aquifer during a 30-year model simulation.

  14. Ground water recharge to the aquifers of northern San Luis Valley, Colorado: A remote sensing investigation

    NASA Technical Reports Server (NTRS)

    Lee, K. (Principal Investigator); Huntley, D.

    1976-01-01

    The author has identified the following significant results. Ground water recharge to the aquifers of San Luis Valley west of San Luis Creek was primarily from ground water flow in the volcanic aquifers of the San Juan Mountains. The high permeability and anisotropic nature of the volcanic rocks resulted in very little contrast in flow conditions between the San Juan Mountains and San Luis Valley. Ground water recharge to aquifers of eastern San Luis Valley was primarily from stream seepage into the upper reaches of the alluvial fans at the base of the Sangre de Cristo Mountains. The use of photography and thermal infrared imagery resulted in a savings of time and increase in accuracy in regional hydrogeologic studies. Volcanic rocks exhibited the same spectral reflectance curve as sedimentary rocks, with only the absolute magnitude of reflectance varying. Both saline soils and vegetation were used to estimate general ground water depths.

  15. A Search for Freshwater in the Saline Aquifers of Coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Peters, C.; Hornberger, G. M.

    2017-12-01

    Can we locate pockets of freshwater amidst brackish groundwater in remote villages in Bangladesh? This study explores what we can infer about local groundwater-surface water (GW-SW) interactions in the polders of coastal Bangladesh. In this underdeveloped region, the shallow groundwater is primarily brackish with unpredictable apportioning of freshwater pockets. We use transects of piezometers, cores, electromagnetic induction, and water chemistry surveys to explore two sources of potential fresh groundwater: (1) tidal channel-aquifer exchange and (2) meteoric recharge. Freshwater is difficult to find due to disparate subsurface lithology, asymmetrical tidal dynamics, extreme seasonal fluctuations in rainfall, and limited field data. Observations suggest substantial lateral variability in shallow subsurface conductivity profiles as well as tidal pressure signals in piezometers. Nevertheless, active exchange of freshwater may be limited due to low permeability of banks and surface sediments limits. Small scale heterogeneity in delta formation likely caused much of the groundwater salinity variation. Without adequate ground truthing of groundwater quality, the ability to deduce the exact location of freshwater pockets may be restricted.

  16. Impact of heterogeneity on groundwater salinization due to coastal pumping

    NASA Astrophysics Data System (ADS)

    Yu, X.; Michael, H. A.

    2017-12-01

    Groundwater abstraction causes and accelerates seawater intrusion in many coastal areas. In heterogeneous aquifers, preferential flow paths can lead to fast intrusion, while low permeability layers can serve as barriers. The extent to which different types of heterogeneous aquifers are vulnerable to pumping-induced seawater intrusion has not been well studied. Here we show that the connectedness of pumping location and local boundary condition drive salinization patterns. Salinization patterns in homogeneous aquifers were relatively simple and only related to the hydraulic properties and pumping rate. The salinization rates and patterns in heterogeneous aquifers were much more complicated and related to pumping location, rate and depth, preferential flow path locations, and local boundary conditions. An intrusion classification approach was developed with three types in homogeneous aquifers and four types in heterogeneous aquifers. After classification the main factors of salinized areas, intrusion rates and salinization time could be identified. The ranges of these salinization assessment criteria suggested different aspect of groundwater vulnerability in each class. We anticipate the classification approach to be a starting point for more comprehensive groundwater abstraction vulnerability assessment (including consideration of pumping rates, locations and depths, connectivity, preferential flow paths, etc.), which is critical for coastal water resources management.

  17. Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling: A study of Red River delta aquifer, Vietnam

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Hyun; Kim, Kyoung-Ho; Thao, Nguyen Thi; Batsaikhan, Bayartungalag; Yun, Seong-Taek

    2017-06-01

    In this study, we evaluated the water quality status (especially, salinity problems) and hydrogeochemical processes of an alluvial aquifer in a floodplain of the Red River delta, Vietnam, based on the hydrochemical and isotopic data of groundwater samples (n = 23) from the Kien Xuong district of the Thai Binh province. Following the historical inundation by paleo-seawater during coastal progradation, the aquifer has been undergone progressive freshening and land reclamation to enable settlements and farming. The hydrochemical data of water samples showed a broad hydrochemical change, from Na-Cl through Na-HCO3 to Ca-HCO3 types, suggesting that groundwater was overall evolved through the freshening process accompanying cation exchange. The principal component analysis (PCA) of the hydrochemical data indicates the occurrence of three major hydrogeochemical processes occurring in an aquifer, namely: 1) progressive freshening of remaining paleo-seawater, 2) water-rock interaction (i.e., dissolution of silicates), and 3) redox process including sulfate reduction, as indicated by heavy sulfur and oxygen isotope compositions of sulfate. To quantitatively assess the hydrogeochemical processes, the end-member mixing analysis (EMMA) and the forward mixing modeling using PHREEQC code were conducted. The EMMA results show that the hydrochemical model with the two-dimensional mixing space composed of PC 1 and PC 2 best explains the mixing in the study area; therefore, we consider that the groundwater chemistry mainly evolved by mixing among three end-members (i.e., paleo-seawater, infiltrating rain, and the K-rich groundwater). The distinct depletion of sulfate in groundwater, likely due to bacterial sulfate reduction, can also be explained by EMMA. The evaluation of mass balances using geochemical modeling supports the explanation that the freshening process accompanying direct cation exchange occurs through mixing among three end-members involving the K-rich groundwater. This

  18. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    PubMed

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  19. Quality Characteristics of Ground Water in the Ozark Aquifer of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006-07

    USGS Publications Warehouse

    Pope, L.M.; Mehl, H.E.; Coiner, R.L.

    2009-01-01

    be caused by cracks or fissures in the confining unit that separates the upper and lower parts of the aquifer, poorly constructed or abandoned wells, or historic mining activities. Analyses of major ions in water from wells along the flow paths indicated a transition from freshwater in the east to saline water in the west. Generally, ground water along flow paths evolved from a calcium magnesium bicarbonate type to a sodium calcium bicarbonate or a sodium calcium chloride bicarbonate type as water moved from recharge areas in Missouri into Kansas. Much of this evolution occurred within the last 20 to 25 miles of the flow paths along a water-quality transition zone near the Kansas-Missouri State line and west. The water quality of the Kansas part of the Ozark aquifer is degraded compared to the Missouri part. Geophysical and well-bore flow information and depth-dependent water-quality samples were collected from a large-capacity (1,900-2,300 gallons per minute) municipal-supply well to evaluate vertical ground-water flow accretion and variability in water-quality characteristics at different levels. Although the 1,050-foot deep supply well had 500 feet of borehole open to the Ozark aquifer, 77 percent of ground-water flow entering the borehole came from two 20-foot thick rock layers above the 1,000-foot level. For the most part, water-quality characteristics changed little from the deepest sample to the well-head sample, and upwelling of saline water from deeper geologic formations below the well was not evident. However, more saline water may be present below the bottom of the well.

  20. Simulated effects of irrigation on salinity in the Arkansas River Valley in Colorado

    USGS Publications Warehouse

    Goff, K.; Lewis, M.E.; Person, M.A.; Konikow, Leonard F.

    1998-01-01

    Agricultural irrigation has a substantial impact on water quantity and quality in the lower Arkansas River valley of southeastern Colorado. A two-dimensional flow and solute transport model was used to evaluate the potential effects of changes in irrigation on the quantity and quality of water in the alluvial aquifer and in the Arkansas River along an 17.7 km reach of the fiver. The model was calibrated to aquifer water level and dissolved solids concentration data collected throughout the 24 year study period (197195). Two categories of irrigation management were simulated with the calibrated model: (1) a decrease in ground water withdrawals for irrigation; and (2) cessation of all irrigation from ground water and surface water sources. In the modeled category of decreased irrigation from ground water pumping, there was a resulting 6.9% decrease in the average monthly ground water salinity, a 0.6% decrease in average monthly river salinity, and an 11.1% increase in ground water return flows to the river. In the modeled category of the cessation of all irrigation, average monthly ground water salinity decreased by 25%; average monthly river salinity decreased by 4.4%; and ground water return flows to the river decreased by an average of 64%. In all scenarios, simulated ground water salinity decreased relative to historical conditions for about 12 years before reaching a new dynamic equilibrium condition. Aquifer water levels were not sensitive to any of the modeled scenarios. These potential changes in salinity could result in improved water quality for irrigation purposes downstream from the affected area.

  1. Hydrodynamic framework of Saharan Triassic aquifers in South Tunisia and Algeria

    NASA Astrophysics Data System (ADS)

    Dhia, H. Ben; Chiarelli, A.

    The main characteristics of the lower Triassic in the Saharan part of Tunisia are presented. This first study of the aquifer is made possible because of data available from numerous petroleum wells that exist in the region. The results show that the reservoir is of importance for either geothermal energy recovering or human water needs; especially since its salinity lies in the range 2 g/l to 60 g/l. Along the Tunisian-Llibyan frontier, because of its pressure and salinity (<3 g/l), the aquifer can be used for regional needs. The study also shows that the salinity gradient (SE-NW) increases orthogonally to the runoff direction (SW-NE). This phenomenon was unexpected and it is necessary to consider the aquifer in its regional North African framework and to include its Algerian part to understand it; when the salinity and potentiometric maps include both countries, a regional pattern is evident. Furthermore, a correspondence is noted between the salinity variations and the percentage of detritic elements in the reservoir. Salinity increases toward the NW, while the detritic elements decrease in that direction. Zones with salt content lower than 5 g/l seem to be related to good reservoirs and shales, that are rich in sands, and carbonates. The aquifer water supply is primarily linked to gravity flow and secondarily to compaction flow.

  2. Geoelectric imaging for saline water intrusion in Geopark zone of Ciletuh Bay, Indonesia

    NASA Astrophysics Data System (ADS)

    Ardi, N. D.; Iryanti, M.; Asmoro, C. P.; Yusuf, A.; Sundana, A. N. A.; Safura, H. Y.; Fitri, M.; Anggraeni, M.; Kurniawan, R.; Afrianti, R.; Sumarni

    2018-05-01

    Saline water intrusion in estuary is an urgent ecological encounter across the world. The Ciletuh Bay, located in the southern Sukabumi district, is an area with high cultivated potential becoming one of the most important geology tourism zones in Indonesia. However, salt water intrusion along the creek is a natural spectacle that disturbs the economic growth of the whole region. This research was intended at plotting the subsurface level of saltwater interventions into aquifers at the northern part of Ciletuh creek, Indonesia. The study implemented geoelectric imaging methods. 37 imaging datum were acquired using Wenner array configuration. The saline water were identified across the study area. The result of two dimensional cross-sectional resistivity shows that there is an indication of sea content in our measured soil, i.e. the smallest resistivity value is 0.579 Ωm found at a depth of 12.4 m to 19.8 m at a track length of 35 m to 60 m is categorized in the clayey which shows low groundwater quality. However, when compared with the results of direct observation of groundwater from the wells of residents, the water obtained is brackish water. A water chemistry test is conducted to ascertain the initial results of this method so that a potential sea intrusion potential map can be interpreted more clearly. This can consequently help as an extrapolative model to define depth to saline water at any site within the saline water zone in the study area.

  3. Contributions of groundwater conditions to soil and water salinization

    NASA Astrophysics Data System (ADS)

    Salama, Ramsis B.; Otto, Claus J.; Fitzpatrick, Robert W.

    Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Résumé La salinisation est le processus par lequel la

  4. Unsafe Practice of Extracting Potable Water From Aquifers in the Southwestern Coastal Region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. H.; Ahmed, A. U.; Iqbal, M. Z.

    2009-05-01

    The groundwater resource is of paramount importance to the lives and livelihoods of the millions of people in Bangladesh. Unfortunately, high levels of arsenic have been found in groundwater in many parts of Bangladesh. Besides, the salinity in water systems in the coastal areas has increased as a consequence of the flow diversion from the upper reaches of Ganges River by the neighboring country India. Since hand- pumped groundwater (tube) wells are the only viable sources of drinking water, maintaining drinking water security for over 6 million people in the south-west (SW) region has been a major challenge for the Bangladesh Government. Due to rapid exploitation of groundwater resources in excess of recharge capacity, non-saline water sources in the SW region have already been depleted and the hand tube wells have mostly been abandoned. Meanwhile, shrimp farming has resulted in saline water infiltration into the perched aquifer system in many areas. A recent survey covering123 wells out of 184, extending to a depth of 330 m, showed high salinity in water. Combined factors of rapid exploitation of shallow groundwater, depletion of the deep aquifers and the subsequent saline water intrusion into these aquifers have put long-term sustainability of the remaining fresh groundwater resource into jeopardy. Very high concentrations of nitrite are found in this study in many tube wells in the area where samples have been drawn from aquifer systems up to 244 m deep. Nitrite concentrations in 35 wells randomly sampled in this study range from 16.98 to 43.11 mg/L, averaging 27.55 mg/L. This is much higher than the Maximum Contaminant Level (MCL) of 1 mg/L set by the U.S. EPA for human consumption. Simultaneously, dissolved oxygen (DO) is found to be very low (0.1 to 2 mg/L). There are numerous reports and anecdotal evidences of "Blue Baby Syndrome" (methemoglobinemia) in the region, which is generally due to gradual suffocation caused by poor transport of oxygen from the

  5. Geochemical evolution processes and water-quality observations based on results of the National Water-Quality Assessment Program in the San Antonio segment of the Edwards aquifer, 1996-2006

    USGS Publications Warehouse

    Musgrove, MaryLynn; Fahlquist, Lynne; Houston, Natalie A.; Lindgren, Richard J.; Ging, Patricia B.

    2010-01-01

    increase along flow paths; results for samples of Edwards aquifer groundwater show an increase from shallow/urban unconfined, to unconfined, to confined groundwater categories. These differences are consistent with longer residence times and greater extents of water-rock interaction controlling fluid compositions as groundwater evolves from shallow unconfined groundwater to deeper confined groundwater. Results for stable isotopes of hydrogen and oxygen indicate specific geochemical processes affect some groundwater samples, including mixing with downdip saline water, mixing with recent recharge associated with tropical cyclonic storms, or mixing with recharge water than has undergone evaporation. The composition of surface water recharging the aquifer, as well as mixing with downdip water from the Trinity aquifer or the saline zone, also might affect water quality. A time-series record (1938-2006) of discharge at Comal Springs, one of the major aquifer discharge points, indicates an upward trend for nitrate and chloride concentrations, which likely reflects anthropogenic activities. A small number of organic contaminants were routinely or frequently detected in Edwards aquifer groundwater samples. These were the pesticides atrazine, its degradate deethylatrazine, and simazine; the drinking-water disinfection byproduct chloroform; and the solvent tetrachloroethene. Detection of these contaminants was most frequent in samples of the shallow/urban unconfined groundwater category and least frequent in samples of the unconfined groundwater category. Results indicate that the shallow/urban unconfined part of the aquifer is most affected by anthropogenic contaminants and the unconfined part of the aquifer is the least affected. The high frequency of detection for these anthropogenic contaminants aquifer-wide and in samples of deep, confined groundwater indicates that the entire aquifer is susceptible to water-quality changes as a result of anthropogenic activities. L

  6. Genesis of economic relevant fresh groundwater resources in Pleistocene/ Neogene aquifers in Nam Dinh (Red River Delta, Vietnam).

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Ludwig, R. R.; Noell, U.; Hoang, H. V.; Pham, N. Q.; Larsen, F.; Lindenmaier, F.

    2012-04-01

    In the Southern Red River Delta (Nam Dinh Province, Vietnam), a local lens of low saline pore water of high quality has been identified in unconsolidated Pleistocene and Neogene aquifers, which are regionally known to contain brackish and saline pore waters. Since the 1990ies, ongoing overexploitation of the fresh groundwater results in decreasing GW heads up to 0.6 m/a and the development of a regional abstraction cone. The presented study focuses on distribution and genesis of fresh and saline pore waters and reflects the results in frame of the regional hydrogeological context. Observations of the geological structure and groundwater dynamics combined with hydrochemical and isotopic studies suggest adjacent Triassic hard rock aquifers as the major source for fresh Pleistocene and Neogene groundwater. Salinization status in the economically most relevant Pleistocene aquifer has been studied based on archive and new hydrochemical and geophysical data. Own hydrochemical field studies as well as laboratory measurements of the specific resistivity of dry sediment samples allow the translation of induction logging data from existing monitoring wells into vertical pore water salinity profiles. This approach suggests the regional occurrence of saline pore water in shallow Holocene sediments in the working area, as confirmed by pore water studies in Hoan et al. (2010). Interpretation of induction logging and stable isotope data suggest vertical diffusion of saline pore water in shallow Holocene sediments as a source for high saline pore water in deeper aquifers. Analytical diffusion modeling for a period of 3000 years confirms that vertical diffusion of Holocene paleo-sea water can explain saline pore water in Pleistocene and Neogene aquifers in a stagnant environment. The constant influx of fresh groundwater from adjacent Triassic hard rocks results in flushing of the primary Pleistocene and Neogene pore water and inhibits the infiltration of saline water from marine

  7. Distribution of chloride concentrations in the principal aquifers of the New Jersey coastal plain, 1977-81

    USGS Publications Warehouse

    Schaefer, F.L.

    1983-01-01

    The U.S. Geological Survey maintains a saltwater monitoring network in New Jersey to document and evaluate the movement of saline water into freshwater aquifers that serve as sources of water supply. Areas in the Coastal Plain with existing or potential saltwater intrusion are delineated. Data collected through 1981 indicate that freshwater aquifers in parts of seven Coastal-Plain counties are contaminated by saline water. Encroachment of saltwater into freshwater aquifers in the Sayreville area of Middlesex County and in the lower peninsula of Cape May County has been reported for about 40 years and is now more extensive. Several other areas are experiencing limited saltwater intrusion. These include the Keyport-Union Beach area in Monmouth County, areas along the Delaware estuary in Gloucester and Salem Counties, and at Point Pleasant Beach and Seaside Heights in Ocean County. The continuing updip movement of saline water in the Potomac-Raritan-Magothy aquifer system is also threatening existing freshwater supplies in the interior areas of Gloucester and Salem Counties. Saltwater intrusion has resulted from extensive ground-water withdrawals. The resultant freshwater head declines have caused reversals in the natural hydraulic gradients that permit inland movement of saline water from adjacent saltwater bodies. (USGS)

  8. Hydrogeology, ground-water movement, and subsurface storage in the Floridan aquifer system in southern Florida

    USGS Publications Warehouse

    Meyer, Frederick W.

    1989-01-01

    The Floridan aquifer system of southern Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the aquifer system in southern Florida generally is at depths ranging from 500 to 1,000 feet, and the average thickness is about 3,000 feet. It is divided into three general hydrogeologic units: (1) the Upper Floridan aquifer, (2) the middle confining unit, and (3) the Lower Floridan aquifer. The Upper Floridan aquifer contains brackish ground water, and the Lower Floridan aquifer contains salty ground water that compares chemically to modern seawater. Zones of high permeability are present in the Upper and Lower Floridan aquifers. A thick, cavernous dolostone in the Lower Floridan aquifer, called the Boulder Zone, is one of the most permeable carbonate units in the world (transmissivity of about 2.5 x 107 feet squared per day). Ground-water movement in the Upper Floridan aquifer is generally southward from the area of highest head in central Florida, eastward to the Straits of Florida, and westward to the Gulf of Mexico. Distributions of natural isotopes of carbon and uranium generally confirm hydraulic gradients in the Lower Floridan aquifer. Groundwater movement in the Lower Floridan aquifer is inland from the Straits of Florida. The concentration gradients of the carbon and uranium isotopes indicate that the source of cold saltwater in the Lower Floridan aquifer is seawater that has entered through the karat features on the submarine Miami Terrace near Fort Lauderdale. The relative ages of the saltwater suggest that the rate of inland movement is related in part to rising sea level during the Holocene transgression. Isotope, temperature, and salinity anomalies in waters from the Upper Floridan aquifer of southern Florida suggest upwelling of saltwater from the Lower Floridan aquifer. The results of the study support the hypothesis of circulating relatively modern seawater and cast doubt on the theory that the

  9. Multiscale characterization of a heterogeneous aquifer using an ASR operation.

    PubMed

    Pavelic, Paul; Dillon, Peter J; Simmons, Craig T

    2006-01-01

    Heterogeneity in the physical properties of an aquifer can significantly affect the viability of aquifer storage and recovery (ASR) by reducing the recoverable proportion of low-salinity water where the ambient ground water is brackish or saline. This study investigated the relationship between knowledge of heterogeneity and predictions of solute transport and recovery efficiency by combining permeability and ASR-based tracer testing with modeling. Multiscale permeability testing of a sandy limestone aquifer at an ASR trial site showed that small-scale core data give lower-bound estimates of aquifer hydraulic conductivity (K), intermediate-scale downhole flowmeter data offer valuable information on variations in K with depth, and large-scale pumping test data provide an integrated measure of the effective K that is useful to constrain ground water models. Chloride breakthrough and thermal profiling data measured during two cycles of ASR showed that the movement of injected water is predominantly within two stratigraphic layers identified from the flowmeter data. The behavior of the injectant was reasonably well simulated with a four-layer numerical model that required minimal calibration. Verification in the second cycle achieved acceptable results given the model's simplicity. Without accounting for the aquifer's layered structure, high precision could be achieved on either piezometer breakthrough or recovered water quality, but not both. This study demonstrates the merit of an integrated approach to characterizing aquifers targeted for ASR.

  10. Investigating the salinization and freshening processes of coastal groundwater resources in Urmia aquifer, NW Iran.

    PubMed

    Amiri, Vahab; Nakhaei, Mohammad; Lak, Razyeh; Kholghi, Majid

    2016-04-01

    This paper presents the results of an assessment about interaction between Urmia Lake (UL) and coastal groundwater in the Urmia aquifer (UA). This aquifer is the most significant contributor to the freshwater supply of the coastal areas. The use of hydrochemical facies can be very useful to identify the saltwater encroachment or freshening phases in the coastal aquifers. In this study, the analysis of salinization/freshening processes was carried out through the saturation index (SI), ionic deltas (Δ), binary diagrams, and hydrochemical facies evolution (HFE) diagram. Based on the Gibbs plot, the behavior of the major ions showed that the changes in the chemical composition of the groundwater are mainly controlled by the water-soil/rock interaction zone and few samples are relatively controlled by evaporation. A possible explanation for this phenomenon is that the deposited chloride and sulfate particles can form the minor salinity source in some coastal areas when washed down by precipitation. The SI calculations showed that all groundwater samples, collected in these periods, show negative saturation indices, which indicate undersaturation with respect to anhydrite, gypsum, and halite. In addition, except in a few cases, all other samples showed the undersaturation with respect to the carbonate minerals such as aragonite, calcite, and dolomite. Therefore, these minerals are susceptible to dissolution. In the dry season, the SI calculations showed more positive values with respect to dolomite, especially in the northern part of UA, which indicated a higher potential for precipitation and deposition of dolomite. The percentage of saltwater in the groundwater samples of Urmia plain was very low, ranging between 0.001 and 0.79 % in the wet season and 0.0004 and 0.81 % in the dry season. The results of HFE diagram, which was taken to find whether the aquifer was in the saltwater encroachment phase or in the freshening phase, indicated that except for a few wells

  11. Geohydrology of deep-aquifer system monitoring-well site at Marina, Monterey County, California

    USGS Publications Warehouse

    Hanson, Randall T.; Everett, Rhett; Newhouse, Mark W.; Crawford, Steven M.; Pimentel, M. Isabel; Smith, Gregory A.

    2002-01-01

    In 2000, a deep-aquifer system monitoring-well site (DMW1) was completed at Marina, California to provide basic geologic and hydrologic information about the deep-aquifer system in the coastal region of the Salinas Valley. The monitoring-well site contains four wells in a single borehole; one completed from 930 to 950 feet below land surface (bls) in the Paso Robles Formation (DMW1-4); one 1,040 to 1,060 feet below land surface in the upper Purisima Formation (DMW1-3); one from 1,410 to 1,430 feet below land surface in the middle Purisima Formation (DMW1-2); and one from 1,820 to 1,860 feet below land surface in the lower Purisima Formation (DMW1-1). The monitoring site is installed between the coast and several deep-aquifer system supply wells in the Marina Coast Water District, and the completion depths are within the zones screened in those supply wells. Sediments below a depth of 955 feet at DMW1 are Pliocene age, whereas the sediments encountered at the water-supply wells are Pleistocene age at an equivalent depth. Water levels are below sea level in DMW1 and the Marina Water District deep-aquifer system supply wells, which indicate that the potential for seawater intrusion exists in the deep-aquifer system. If the aquifers at DMW1 are hydraulically connected with the submarine outcrops in Monterey Bay, then the water levels at the DMW1 site are 8 to 27 feet below the level necessary to prevent seawater intrusion. Numerous thick fine-grained interbeds and confining units in the aquifer systems retard the vertical movement of fresh and saline ground water between aquifers and restrict the movement of seawater to narrow water-bearing zones in the upper-aquifer system.Hydraulic testing of the DMW1 and the Marina Water District supply wells indicates that the tested zones within the deep-aquifer system are transmissive water-bearing units with hydraulic conductivities ranging from 2 to 14.5 feet per day. The hydraulic properties of the supply wells and monitoring

  12. Salinity of deep groundwater in California: Water quantity, quality, and protection.

    PubMed

    Kang, Mary; Jackson, Robert B

    2016-07-12

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California's Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km(3), most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km(3) of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California's Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond.

  13. Salinity of deep groundwater in California: Water quantity, quality, and protection

    PubMed Central

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  14. Geochemistry of ground water in the Gallup, Dakota, and Morrison aquifers, San Juan Basin, New Mexico

    USGS Publications Warehouse

    Dam, W.L.

    1995-01-01

    Ground water was sampled from wells completed in the Gallup, Dakota, and Morrison aquifers in the San Juan Basin, New Mexico, to examine controls on solute concentrations. Samples were collected from 38 wells primarily from the Morrison aquifer (25 wells) in the northwestern part of the basin. A series of samples was collected along ground-water flow paths; dissolved constituents varied horizontally and vertically. The understanding of the flow system changed as a result of the geochemical analyses. The conceptual model of the flow system in the Morrison aquifer prior to the study reported here assumed the Westwater Canyon Member of the Morrison aquifer as the only significant regional aquifer; flow was assumed to be two dimensional; and vertical leakage was assumed to be negligible. The geochemical results indicate that the Westwater Canyon Member is not the only major water-yielding zone and that the flow system is three dimensional. The data presented in this report suggest an upward component of flow into the Morrison aquifer. The entire section above and below the Morrison aquifer appears to be controlled by a three-dimensional flow regime where saline brine leaks near the San Juan River discharge area. Predominant ions in the Gallup aquifer were calcium bicarbonate in recharge areas and sodium sulfate in discharge areas. In the Dakota aquifer, predominant ions were sodium bicarbonate and sodium sulfate. Water in the Morrison aquifer was predominantly sodium bicarbonate in the recharge area, changing to sodium sulfate downgradient. Chemical and radioisotopic data indicate that water from overlying and underlying units mixes with recharge water in the Morrison aquifer. Recharge water contained a large ratio of chlorine-36 to chlorine and a small ratio of bromide to chloride. Approximately 10 miles downgradient, samples from four wells completed in the Morrison aquifer were considerably different in composition compared to recharge samples. Oxygen stable

  15. Using helicopter TEM to delineate fresh water and salt water zones in the aquifer beneath the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Podgorski, Joel E.; Kinzelbach, Wolfgang K. H.; Kgotlhang, Lesego

    2017-09-01

    The Okavango Delta is a vast wetland wilderness in the middle of the Kalahari Desert of Botswana. It is a largely closed hydrological system with most water leaving the delta by evapotranspiration. In spite of this, the channels and swamps of the delta remain surprisingly low in salinity. To help understand the hydrological processes at work, we reanalyzed a previous inversion of data collected from a helicopter transient electromagnetic (HTEM) survey of the entire delta and performed an inversion of a high resolution dataset recorded during the same survey. Our results show widespread infiltration of fresh water to as much as ∼200 m depth into the regional saline aquifer. Beneath the western delta, freshwater infiltration extends to only about 80 m depth. Hydrological modeling with SEAWAT confirms that this may be due to rebound of the regional saltwater-freshwater interface following the cessation of surface flooding over this part of the delta in the 1880s. Our resistivity models also provide evidence for active and inactive saltwater fingers to as much as ∼100 m beneath islands. These results demonstrate the great extent of freshwater infiltration across the delta and also show that all vegetated areas along the delta's channels and swamps are potential locations for transferring solutes from surface water to an aquifer at depth.

  16. Characterization of the lowland coastal aquifer of Comacchio (Ferrara, Italy): Hydrology, hydrochemistry and evolution of the system

    NASA Astrophysics Data System (ADS)

    Giambastiani, B. M. S.; Colombani, N.; Mastrocicco, M.; Fidelibus, M. D.

    2013-09-01

    This study delineates the actual hydrogeochemistry and the geological evolution of an unconfined coastal aquifer located in a lowland setting in order to understand the drivers of the groundwater salinization. Physical aquifer parameterization highlights a vertical hydraulic gradient due to the presence of a heavy drainage system, which controls the hydrodynamics of this coastal area, forcing groundwater to flow from the bottom toward the top of the aquifer. As a consequence, relict seawater in stable density stratification, preserved within low permeability sediments in the deepest portion of the aquifer, has been drawn upward. The hydrogeochemical investigations allow identifying the role of seepage and water-sediment interactions in the aquifer salinization process and in the modification of groundwater chemistry. Mixing between freshwater and saltwater occurs; however, it is neither the only nor the dominant process driving groundwater hydrochemistry. In the aquifer several concurring and competing water-sediment interactions - as NaCl solution, ion-exchange, calcite and dolomite dissolution/precipitation, oxidation of organic matter, and sulfate bacterial reduction - are triggered by or overlap freshwater-saltwater mixing The hyper-salinity found in the deepest portion of the aquifer cannot be associated with present seawater intrusion, but suggests the presence of salt water of marine origin, which was trapped in the inter-basin during the Holocene transgression. The results of this study contribute to a better understanding of groundwater dynamics and salinization processes in this lowland coastal aquifer.

  17. Storage of treated sewage effluent and stormwater in a saline aquifer, Pinellas Peninsula, Florida

    USGS Publications Warehouse

    Rosenshein, J.S.; Hickey, J.J.

    1977-01-01

    The Pinellas Peninsula, an area of 750 square kilometres (290 square miles) in coastal west-central Florida, is a small hydrogeologic replica of Florida. Most of the Peninsula's water supply is imported from well fields as much as 65 kilometres (40 miles) inland. Stresses on the hydrologic environment of the Peninsula and on adjacent water bodies, resulting from intensive water-resources development and waste discharge, have resulted in marked interest in subsurface storage of waste water (treated effluent and untreated storm water) and in future retrieval of the stored water for nonpotable use. If subsurface storage is approved by regulatory agencies, as much as 265 megalitres per day (70 million gallons a day) of waste water could be stored underground within a few years, and more than 565 megalitres per day (150 million gallons a day) could be stored in about 25 years. This storage would constitute a large resource of nearly fresh water in the saline aquifers underlying about 520 square kilometres (200 square miles) of the Peninsula.The upper 1,060 metres (3,480 feet) of the rock column underlying four test sites on the Pinellas Peninsula have been explored. The rocks consist chiefly of limestone and dolomite. Three moderately to highly transmissive zones, separated by leaky confining beds, (low permeability limestone) from about 225 to 380 metres (740 to 1,250 feet) below mean sea level, have been identified in the lower part of the Floridan aquifer in the Avon Park Limestone. Results of withdrawal and injection tests in Pinellas County indicate that the middle transmissive zone has the highest estimated transmissivity-about 10 times other reported values. The chloride concentration of water in this zone, as well as in the two other transmissive zones in the Avon Park Limestone in Pinellas Peninsula, is about 19,000 milligrams per litre. If subsurface storage is approved and implemented, this middle zone probably would be used for storage of the waste water and

  18. Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria.

    PubMed

    Belkhiri, Lazhar; Mouni, Lotfi; Tiri, Ammar

    2012-02-01

    Hydrochemical, multivariate statistical, and inverse geochemical modeling techniques were used to investigate the hydrochemical evolution within the Ain Azel aquifer, Algeria. Cluster analysis based on major ion contents defined 3 main chemical water types, reflecting different hydrochemical processes. The first group water, group 1, has low salinity (mean EC = 735 μS/cm). The second group waters are classified as Cl-HCO(3)-alkaline earth type. The third group is made up of water samples, the cation composition of which is dominated by Ca and Mg with anion composition varying from dominantly Cl to dominantly HCO(3) plus SO(4). The varifactors obtained from R-mode FA indicate that the parameters responsible for groundwater quality variations are mainly related to the presence and dissolution of some carbonate, silicate, and evaporite minerals in the aquifer. Inverse geochemical modeling along groundwater flow paths indicates the dominant processes are the consumption of CO(2), the dissolution of dolomite, gypsum, and halite, along with the precipitation of calcite, Ca-montmorillonite, illite, kaolinite, and quartz. © Springer Science+Business Media B.V. 2011

  19. Hydrogeology of the surficial and intermediate aquifer systems in Sarasota and adjacent counties, Florida

    USGS Publications Warehouse

    Barr, G.L.

    1996-01-01

    From 1991 to 1995, the hydrogeology of the surficial aquifer system and the major permeable zones and confining units of the intermediate aquifer system in southwest Florida was studied. The study area is a 1,400-square-mile area that includes Sarasota County and parts of Manatee, De Soto, Charlotte, and Lee Counties. Lithologic, geophysical, hydraulic property, and water-level data were used to correlate the hydrogeology and map the extent of the aquifer systems. Water chemistry was evaluated in southwest Sarasota County to determine salinity of the surficial and intermediate aquifer systems. The surficial aquifer is an unconfined aquifer system that overlies the intermediate aquifer system and ranges from a few feet to over 60 feet in thickness in the study area. Hydraulic properties of the surficial aquifer system determined from aquifer and laboratory tests, and model simulations vary considerably across the study area. The intermediate aquifer system, a confined aquifer system that lies between the surficial and the Upper Floridan aquifers, is composed of alternating confining units and permeable zones. The intermediate aquifer system has three major permeable zones that exhibit a wide range of hydraulic properties. Horizontal flow in the intermediate aquifer system is northeast to southwest. Most of the study area is in a discharge area of the intermediate aquifer system. Water ranges naturally from fresh in the surficial aquifer system and upper permeable zones of the intermediate aquifer system to moderately saline in the lower permeable zone. Water-quality data collected in coastal southwest Sarasota County indicate that ground-water withdrawals from major pumping centers have resulted in lateral seawater intrusion and upconing into the surficial and intermediate aquifer systems.

  20. Southwest principal aquifers regional ground-water quality assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, Susan A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  1. On the origins of hypersaline groundwater in the Nile Delta Aquifer

    NASA Astrophysics Data System (ADS)

    van Engelen, Joeri; Oude Essink, Gualbert H. P.; Kooi, Henk; Bierkens, Marc F. P.

    2017-04-01

    The fresh groundwater resources in the Nile Delta, Egypt, are of eminent socio-economic importance. These resources are under major stress due to population growth, the anticipated sea level rise and increased groundwater extraction rates, making fresh water availability the most challenging issue in this area. Up till now, numerous groundwater studies mainly focused on sea water intrusion on the top 100m of the groundwater system and assumed salinities not exceeding that of Mediterranean sea water, as there was no knowledge on groundwater in the deeper coastal parts of the Quaternary Nile Delta aquifer (that ranges up to 1000m depth). Recently, however, the Egyptian Research Institute for Groundwater (RIGW) collected salinity measurements and found a widespread occurrence of "hypersaline" groundwater: groundwater with salinities largely exceeding that of sea water at 600m depth (Nofal et al., 2015). This hypersaline groundwater greatly influences flow patterns and the fresh water potential of the aquifer. This research focuses on the origins of the hypersaline groundwater and the possible processes causing its transport. We consider all relevant salinization processes in the Nile Delta aquifer, over a time domain of up to 2.5 million years, which is the time span in which the aquifer got deposited. The following hypotheses were investigated with a combination of analytical solutions and numerical modelling: upward salt transport due to a) molecular diffusion, b) thermal buoyancy, c) consolidation-induced advection and dispersion, or downward transport due to d) composition buoyancy (salt inversion). We conclude that hypotheses a) and b) can be rejected, but c) and d) are both possible with the available information. An enhanced chemical analysis is suggested for further research, to determine the origins of this hypersaline water. This information in combination with the conclusions drawn in this research will give more insight in the potential amount of non

  2. Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation.

    PubMed

    Shao, Hongbo; Ray, Jessica R; Jun, Young-Shin

    2011-02-15

    To ensure the viability of geologic CO2 sequestration (GCS), we need a holistic understanding of reactions at supercritical CO2 (scCO2)-saline water-rock interfaces and the environmental factors affecting these interactions. This research investigated the effects of salinity and the extent of water on the dissolution and surface morphological changes of phlogopite [KMg2.87Si3.07Al1.23O10(F,OH)2], a model clay mineral in potential GCS sites. Salinity enhanced the dissolution of phlogopite and affected the location, shape, size, and phase of secondary minerals. In low salinity solutions, nanoscale particles of secondary minerals formed much faster, and there were more nanoparticles than in high salinity solutions. The effect of water extent was investigated by comparing scCO2-H2O(g)-phlogopite and scCO2-H2O(l)-phlogopite interactions. Experimental results suggested that the presence of a thin water film adsorbed on the phlogopite surface caused the formation of dissolution pits and a surface coating of secondary mineral phases that could change the physical properties of rocks. These results provide new information for understanding reactions at scCO2-saline water-rock interfaces in deep saline aquifers and will help design secure and environmentally sustainable CO2 sequestration projects.

  3. The Sparta Aquifer: A Sustainable Water Resource?

    USGS Publications Warehouse

    McKee, Paul W.; Hays, Phillip D.

    2002-01-01

    Introduction The Sparta aquifer is an aquifer of regional importance within the Mississippi embayment aquifer system. It consists of varying amounts of unconsolidated sand, inter-stratified with silt and clay lenses within the Sparta Sand of the Claiborne Group. It extends from south Texas, north into Louisiana, Arkansas, and Tennessee, and eastward into Mississippi and Alabama (fig. 1). On both the west and east sides of the Mississippi embayment, the Sparta aquifer is exposed at the surface (outcrops) and is locally unconfined; it becomes confined as it dips toward the axis of the embayment, (generally corresponding with the Mississippi River) and southward toward the Gulf of Mexico where it is deeply buried in the subsurface (Hosman, 1968). Generalized ground-water flow in the Sparta aquifer is from the outcrop areas to the axis (center) of the embayment (fig. 2). In Arkansas, the Sparta aquifer outcrops parallel to the Fall Line at the western extreme of the Mississippi embayment (the Fall Line is a line dividing the mountainous highlands of Arkansas from the lowland area); and the formation dips from its outcrop area to the southeast. The Sparta aquifer supplies water for municipalities, industries such as paper production, and to a lesser degree, irrigation of agricultural crops (fig. 3). This report highlights hydrologic conditions of the aquifer in Arkansas County as an example of how water use is affecting water levels.

  4. Early warning of freshwater salinization due to upward brine displacement by species transport simulations combined with a hydrochemical genesis model

    NASA Astrophysics Data System (ADS)

    Langer, Maria; Kühn, Michael

    2016-04-01

    Shallow groundwater resources could be possibly affected by intruding brines, which are displaced along hydraulically conductive faults as result of subsurface activities like CO2 injection. To avoid salinization of potable freshwater aquifers an early detection of intruding saline water is necessary, especially in regions where an initial geogenic salinization already exists. Our study is based on work of Tillner et al. [1] and Langer et al. [2] who investigated the influence of permeable fault systems on brine displacement for the prospective storage site Beeskow-Birkholz in the Northeast German Basin. With a 3D regional scale model considering the deep groundwater system, they demonstrated that the existence of hydraulically conductive faults is not necessarily an exclusion criterion for potential injection sites, because salinization of shallower aquifers strongly depends on the effective damage zone volume, the initial salinity distribution and overlying reservoirs [2], while permeability of fault zones does not influence salinization of shallower aquifers significantly [1]. Here we extracted a 2D cross section regarding the upper 220 m of the study area mainly represented by shallow freshwater aquifers, but also considering an initial geogenic salinization [3]. We took flow rates of the intruding brines from the previous studies [2] and implemented species transport simulations with the program code SHEMAT [4]. Results are investigated and interpreted with the hydrochemical genesis model GEBAH [5] which has been already applied as early warning of saltwater intrusions into freshwater aquifers and surface water [6]. GEBAH allows a categorization of groundwater by the ion ratios of the dissolved components and offers a first indicative determination for an existence and the intensity of saline water intrusion in shallow groundwater aquifer, independent of the concentration of the solution. With our model we investigated the migration of saline water through a

  5. Numerical Study of Groundwater Flow and Salinity Distribution Cycling Controlled by Seawater/Freshwater Interaction in Karst Aquifer Using SEAWAT

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Hu, B.

    2017-12-01

    The interest to predict seawater intrusion and salinity distribution in Woodville Karst Plain (WKP) has increased due to the huge challenge on quality of drinkable water and serious environmental problems. Seawater intrudes into the conduit system from submarine karst caves at Spring Creek Spring due to density difference and sea level rising, nowadays the low salinity has been detected at Wakulla Spring which is 18 km from coastal line. The groundwater discharge at two major springs and salinity distribution in this area is controlled by the seawater/freshwater interaction under different rainfall conditions: during low rainfall periods, seawater flow into the submarine spring through karst windows, then the salinity rising at the submarine spring leads to seawater further intrudes into conduit system; during high rainfall periods, seawater is pushed out by fresh water discharge at submarine spring. The previous numerical studies of WKP mainly focused on the density independent transport modeling and seawater/freshwater discharge at major karst springs, in this study, a SEAWAT model has been developed to fully investigate the salinity distribution in the WKP under repeating phases of low rainfall and high rainfall periods, the conduit system was simulated as porous media with high conductivity and porosity. The precipitation, salinity and discharge at springs were used to calibrate the model. The results showed that the salinity distribution in porous media and conduit system is controlled by the rainfall change, in general, the salinity distribution inland under low rainfall conditions is much higher and wider than the high rainfall conditions. The results propose a prediction on the environmental problem caused by seawater intrusion in karst coastal aquifer, in addition, provide a visual and scientific basis for future groundwater remediation.

  6. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    NASA Astrophysics Data System (ADS)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  7. Water-Level Conditions in Selected Confined Aquifers of the New Jersey and Delaware Coastal Plain, 2003

    USGS Publications Warehouse

    dePaul, Vincent T.; Rosman, Robert; Lacombe, Pierre J.

    2009-01-01

    The Coastal Plain aquifers of New Jersey provide an important source of water for more than 2 million people. Steadily increasing withdrawals from the late 1800s to the early 1990s resulted in declining water levels and the formation of regional cones of depression. In addition to decreasing water supplies, declining water levels in the confined aquifers have led to reversals in natural hydraulic gradients that have, in some areas, induced the flow of saline water from surface-water bodies and adjacent aquifers to freshwater aquifers. In 1978, the U.S. Geological Survey began mapping the potentiometric surfaces of the major confined aquifers of New Jersey every 5 years in order to provide a regional assessment of ground-water conditions in multiple Coastal Plain aquifers concurrently. In 1988, mapping of selected potentiometric surfaces was extended into Delaware. During the fall of 2003, water levels measured in 967 wells in New Jersey, Pennsylvania, northeastern Delaware, and northwestern Maryland were used estimate the potentiometric surface of the principal confined aquifers in the Coastal Plain of New Jersey and five equivalent aquifers in Delaware. Potentiometric-surface maps and hydrogeologic sections were prepared for the confined Cohansey aquifer of Cape May County, the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, the Vincentown aquifer, and the Englishtown aquifer system in New Jersey, as well as for the Piney Point aquifer, the Wenonah-Mount Laurel aquifer, and the Upper Potomac-Raritan-Magothy, the Middle and undifferentiated Potomac-Raritan-Magothy, and the Lower Potomac-Raritan-Magothy aquifers in New Jersey and their equivalents in Delaware. From 1998 to 2003, water levels in many Coastal Plain aquifers in New Jersey remained stable or had recovered, but in some areas, water levels continued to decline as a result of pumping. In the Cohansey aquifer in Cape May County, water levels near the center of the cone of depression

  8. Revised shallow and deep water-level and storage-volume changes in the Equus Beds Aquifer near Wichita, Kansas, predevelopment to 1993

    USGS Publications Warehouse

    Hansen, Cristi V.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.

    2013-01-01

    Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita. The decline of water levels in the aquifer was noted soon after the development of the Wichita well field began. Development of irrigation wells began in the 1960s. City and agricultural withdrawals led to substantial water-level declines. Water-level declines enhanced movement of brines from past oil and gas activities near Burrton, Kansas and enhanced movement of natural saline water from the Arkansas River into the well field area. Large chloride concentrations may limit use or require the treatment of water from the well field for irrigation or public supply. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program (ILWSP) to ensure an adequate water supply for the city through 2050 and as part of its effort to effectively manage the part of the Equus Beds aquifer it uses. ILWSP uses several strategies to do this including the Equus Beds Aquifer Storage and Recovery (ASR) project. The purpose of the ASR project is to store water in the aquifer for later recovery and to help protect the aquifer from encroachment of a known oilfield brine plume near Burrton and saline water from the Arkansas River. As part of Wichita’s ASR permits, Wichita is prohibited from artificially recharging water into the aquifer in a Basin Storage area (BSA) grid cell if water levels in that cell are above the January 1940 water levels or are less than 10 feet below land surface. The map previously used for this purpose did not provide an accurate representation of the shallow water table. The revised predevelopment water-level altitude map of the shallow part of the aquifer is presented in this report. The city of Wichita’s ASR permits specify that the January 1993 water-level altitudes will be used as a lower baseline for regulating the withdrawal of artificial rechage

  9. Alternative Options for Safe Drinking Water in Arsenic and Salinity Affected Bornal-Iliasabad Union of Kalia Upazila, Narail District, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Hasan, M. A.; Ahmed, K. M.; Nawrin, N.

    2016-12-01

    The study area, Bornal-Ilisabad union, Kalia, Narail is one of the most vulnerable areas of Bangladesh in terms of access to safe drinking water. Shallow groundwater of this area is highly arsenic contaminated (mostly >500 μg/L) and deep groundwater is saline (EC ranges 1 to 8 mS/cm). Local communities rely on rainwater for drinking and cooking purposes during the monsoon and rest of the year they use surface water from pond which are mostly polluted. In areas where surface water is not available people are compelled to use arsenic contaminated groundwater and thus exposing themselves to serious health hazard. Principal objective of the research is to evaluate the effectiveness of managed aquifer recharge (MAR) and subsurface arsenic removal (SAR) technology in mitigating groundwater salinity and arsenic, to provide alternative sources of safe water. Surface water (pond water) and rainwater collected from roof top are used as source water to be recharged into the target aquifer for the MAR system. Source water is filtered through a sand filtration unit to remove turbidity and microorganisms before recharging through infiltration wells. For SAR system, on the other hand, a certain volume (2000L) of groundwater is abstracted from the target aquifer and then aerated for about half an hour to saturate with oxygen. The oxygenated water is injected into the aquifer and kept there for 6-8 hours and then abstracted for use. The MAR system constructed in the study area is found very effective in reducing groundwater salinity. The electrical conductivity (EC) of the groundwater of MAR system has been reduced 72-81% from the initial EC value of 3.4 mS/cm. A significant improvement in groundwater arsenic and iron concentration is also observed. The system is yielding groundwater with arsenic within permissible limit of Bangladesh drinking water standard (50 μg/L) which was 100 μg/L before introduction of MAR system. The SAR system is also found effective in reducing

  10. Radium Adsorption to Iron Bearing Minerals in Variable Salinity Waters

    NASA Astrophysics Data System (ADS)

    Chen, M.; Kocar, B. D.

    2014-12-01

    Radium is a common, naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are a product of natural uranium and thorium decay, and are particularly abundant within groundwaters where minimal flux leads to accumulation within porewaters. Radium has been used as a natural tracer to estimate submarine groundwater discharge (SGD) [1], where the ratios of various radium isotopes are used to estimate total groundwater flux to and from the ocean [2]. Further, it represents a substantial hazard in waste water produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a primary pathway of radium retention within subsurface environments. For SGD studies, it is important to understand adsorption processes to correctly estimate GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids will mediate the activities of radium within produced water. While some studies of radium adsorption to various minerals have been performed [4], there is a limited understanding of the surface chemistry of radium adsorption, particularly to iron-bearing minerals such as pyrite, goethite and ferrihydrite. Accordingly, we present the results of sorption experiments of radium to a suite of iron-bearing minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through the use of artificial groundwater, seawater, and shale formation brine. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the retention of radium. This work lays the groundwork for further study of radium use as a tracer for SGD, as well as understanding mechanisms of radium retention and release from deep aquifer materials following hydraulic fracturing

  11. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  12. Occurrence, Distribution, Sources, and Trends of Elevated Chloride Concentrations in the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    USGS Publications Warehouse

    Kresse, Timothy M.; Clark, Brian R.

    2008-01-01

    Water-quality data from approximately 2,500 sites were used to investigate the distribution of chloride concentrations in the Mississippi River Valley alluvial aquifer in southeastern Arkansas. The large volume and areal distribution of the data used for the investigation proved useful in delineating areas of elevated (greater than 100 milligrams per liter) chloride concentrations, assessing potential sources of saline water, and evaluating trends in chloride distribution and concentration over time. Irrigation water containing elevated chloride concentrations is associated with negative effects to rice and soybeans, two of the major crops in Arkansas, and a groundwater chloride concentration of 100 milligrams per liter is recommended as the upper limit for use on rice. As such, accurately delineating areas with high salinity ground water, defining potential sources of chloride, and documenting trends over time is important in assisting the agricultural community in water management. The distribution and range of chloride concentrations in the study area revealed distinct areas of elevated chloride concentrations. Area I includes an elongated, generally northwest-southeast trending band of moderately elevated chloride concentrations in the northern part of the study area. This band of elevated chloride concentrations is approximately 40 miles in length and varies from approximately 2 to 9 miles in width, with a maximum chloride concentration of 360 milligrams per liter. Area II is a narrow, north-south trending band of elevated chloride concentrations in the southern part of the study area, with a maximum chloride concentration of 1,639 milligrams per liter. A zone of chloride concentrations exceeding 200 milligrams per liter is approximately 25 miles in length and 5 to 6 miles in width. In Area I, low chloride concentrations in samples from wells completed in the alluvial aquifer next to the Arkansas River and in samples from the upper Claiborne aquifer, which

  13. Impact of topography on groundwater salinization due to ocean surge inundation

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Yang, Jie; Graf, Thomas; Koneshloo, Mohammad; O'Neal, Michael A.; Michael, Holly A.

    2016-08-01

    Sea-level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low-lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable-density groundwater flow and salt transport in 3-D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real-world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.

  14. Saltwater intrusion in the surficial aquifer system of the Big Cypress Basin, southwest Florida, and a proposed plan for improved salinity monitoring

    USGS Publications Warehouse

    Prinos, Scott T.

    2013-01-01

    The installation of drainage canals, poorly cased wells, and water-supply withdrawals have led to saltwater intrusion in the primary water-use aquifers in southwest Florida. Increasing population and water use have exacerbated this problem. Installation of water-control structures, well-plugging projects, and regulation of water use have slowed saltwater intrusion, but the chloride concentration of samples from some of the monitoring wells in this area indicates that saltwater intrusion continues to occur. In addition, rising sea level could increase the rate and extent of saltwater intrusion. The existing saltwater intrusion monitoring network was examined and found to lack the necessary organization, spatial distribution, and design to properly evaluate saltwater intrusion. The most recent hydrogeologic framework of southwest Florida indicates that some wells may be open to multiple aquifers or have an incorrect aquifer designation. Some of the sampling methods being used could result in poor-quality data. Some older wells are badly corroded, obstructed, or damaged and may not yield useable samples. Saltwater in some of the canals is in close proximity to coastal well fields. In some instances, saltwater occasionally occurs upstream from coastal salinity control structures. These factors lead to an incomplete understanding of the extent and threat of saltwater intrusion in southwest Florida. A proposed plan to improve the saltwater intrusion monitoring network in the South Florida Water Management District’s Big Cypress Basin describes improvements in (1) network management, (2) quality assurance, (3) documentation, (4) training, and (5) data accessibility. The plan describes improvements to hydrostratigraphic and geospatial network coverage that can be accomplished using additional monitoring, surface geophysical surveys, and borehole geophysical logging. Sampling methods and improvements to monitoring well design are described in detail. Geochemical analyses

  15. Effects of clay dispersion on aquifer storage and recovery in coastal aquifers

    USGS Publications Warehouse

    Konikow, Leonard F.; August, L.L.; Voss, C.I.

    2001-01-01

    Cyclic injection, storage, and withdrawal of freshwater in brackish aquifers is a form of aquifer storage and recovery (ASR) that can beneficially supplement water supplies in coastal areas. A 1970s field experiment in Norfolk, Virginia, showed that clay dispersion in the unconsolidated sedimentary aquifer occurred because of cation exchange on clay minerals as freshwater displaced brackish formation water. Migration of interstitial clay particles clogged pores, reduced permeability, and decreased recovery efficiency, but a calcium preflush was found to reduce clay dispersion and lead to a higher recovery efficiency. Column experiments were performed in this study to quantify the relations between permeability changes and clay mineralogy, clay content, and initial water salinity. The results of these experiments indicate that dispersion of montmorillonite clay is a primary contributor to formation damage. The reduction in permeability by clay dispersion may be expressed as a linear function of chloride content. Incorporating these simple functions into a radial, cross-sectional, variable-density, ground-water flow and transport model yielded a satisfactory simulation of the Norfolk field test - and represented an improvement over the model that ignored changes in permeability. This type of model offers a useful planning and design tool for ASR operations in coastal clastic aquifer systems.

  16. Physical and economic potential of geological CO2 storage in saline aquifers.

    PubMed

    Eccles, Jordan K; Pratson, Lincoln; Newell, Richard G; Jackson, Robert B

    2009-03-15

    Carbon sequestration in sandstone saline reservoirs holds great potential for mitigating climate change, but its storage potential and cost per ton of avoided CO2 emissions are uncertain. We develop a general model to determine the maximum theoretical constraints on both storage potential and injection rate and use it to characterize the economic viability of geosequestration in sandstone saline aquifers. When applied to a representative set of aquifer characteristics, the model yields results that compare favorably with pilot projects currently underway. Over a range of reservoir properties, maximum effective storage peaks at an optimal depth of 1600 m, at which point 0.18-0.31 metric tons can be stored per cubic meter of bulk volume of reservoir. Maximum modeled injection rates predict minima for storage costs in a typical basin in the range of $2-7/ ton CO2 (2005 U.S.$) depending on depth and basin characteristics in our base-case scenario. Because the properties of natural reservoirs in the United States vary substantially, storage costs could in some cases be lower or higher by orders of magnitude. We conclude that available geosequestration capacity exhibits a wide range of technological and economic attractiveness. Like traditional projects in the extractive industries, geosequestration capacity should be exploited starting with the low-cost storage options first then moving gradually up the supply curve.

  17. Fractured-rock aquifers, understanding an increasingly important source of water

    USGS Publications Warehouse

    Shapiro, Allen M.

    2002-01-01

    Ground water is one of the Nation?s most important natural resources. It provides drinking water to communities, supports industry and agriculture, and sustains streams and wetlands. A long record of contributions exists in understanding ground-water movement in sand and gravel aquifers; historically, these aquifers were easily accessible and the first to be investigated. With increased demand for water, communities are looking to fractured-rock aquifers, where water moves through fractures in the rock. Frac-tures, however, may not always convey or store large quantities of water. Understanding ground-water flow through fractured-rock aquifers is an area of ground-water research that will have increasing importance to our Nation over the coming years. Many areas of the United States rely on fractured-rock aquifers for water supply. In addition, areas experiencing population growth in the Northeast, Southeast, and mountainous regions of the West are likely to rely heavily on water supplies from fractured-rock aquifers. Finding water for thirsty communities, however, is not the only societal issue requiring an understanding of ground-water flow in fractured rock. Land-use practices affect water quality in fractured-rock aquifers, particularly where ground water flows rapidly through fractures. Fractured rock aquifers also are viewed as potential repositories for radioactive and other types of waste, where it is desirable for the ground water to be inaccessible or move at a very slow rate.

  18. Effects of aquifer heterogeneity on ground-water flow and chloride concentrations in the Upper Floridan aquifer near and within an active pumping well field, west-central Florida

    USGS Publications Warehouse

    Tihansky, A.B.

    2005-01-01

    Chloride concentrations have been increasing over time in water from wells within and near the Eldridge-Wilde well field, near the coast in west-central Florida. Variable increases in chloride concentrations from well to well over time are the combined result of aquifer heterogeneity and ground-water pumping within the Upper Floridan aquifer. Deep mineralized water and saline water associated with the saltwater interface appear to move preferentially along flow zones of high transmissivity in response to ground-water withdrawals. The calcium-bicarbonate-type freshwater of the Upper Floridan aquifer within the study area is variably enriched with ions by mixing with introduced deep and saline ground water. The amount and variability of increases in chloride and sulfate concentrations at each well are related to well location, depth interval, and permeable intervals intercepted by the borehole. Zones of high transmissivity characterize the multilayered carbonate rocks of the Upper Floridan aquifer. Well-developed secondary porosity within the Tampa/Suwannee Limestones and the Avon Park Formation has created producing zones within the Upper Floridan aquifer. The highly transmissive sections of the Avon Park Formation generally are several orders of magnitude more permeable than the Tampa/Suwannee Limestones, but both are associated with increased ground-water flow. The Ocala Limestone is less permeable and is dominated by primary, intergranular porosity. Acoustic televiewer logging, caliper logs, and borehole flow logs (both electromagnetic and heat pulse) indicate that the Tampa/Suwannee Limestone units are dominated by porosity owing to dissolution between 200 and 300 feet below land surface, whereas the porosity of the Avon Park Formation is dominated by fractures that occur primarily from 600 to 750 feet below land surface and range in angle from horizontal to near vertical. Although the Ocala Limestone can act as a semiconfining unit between the Avon Park

  19. Identification of saline water intrusion in part of Cauvery deltaic region, Tamil Nadu, Southern India: using GIS and VES methods

    NASA Astrophysics Data System (ADS)

    Gnanachandrasamy, G.; Ramkumar, T.; Venkatramanan, S.; Chung, S. Y.; Vasudevan, S.

    2016-06-01

    We use electrical resistivity data arrayed in a 2715 km2 region with 30 locations to identify the saline water intrusion zone in part of Cauvery deltaic region, offshore Eastern India. From this dataset we are able to derive information on groundwater quality, thickness of aquifer zone, structural and stratigraphic conditions relevant to groundwater conditions, and permeability of aquifer systems. A total of 30 vertical electrode soundings (VES) were carried out by Schlumberger electrode arrangement to indicate complete lithology of this region using curve matching techniques. The electrical soundings exhibited that H and HK type curves were suitable for 16 shallow locations, and QH, KQ, K, KH, QQ, and HA curves were fit for other location. Low resistivity values suggested that saline water intrusion occurred in this region. According to final GIS map, most of the region was severely affected by seawater intrusion due to the use of over-exploitation of groundwater.The deteriorated groundwater resources in this coastal region should raise environmental and health concerns.

  20. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  1. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    USGS Publications Warehouse

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  2. Appraisal of water in bedrock aquifers, northern Cascade County, Montana

    USGS Publications Warehouse

    Wilke, K.R.

    1982-01-01

    Suburban residential expansion of the city of Great Falls has resulted in an increased demand on water supplies from bedrock aquifers in northern Cascade County. The unconsolidated deposits aquifer of Quaternary age, including alluvium and glacial lake deposits, also is an important source of water in the area. Water levels in the Madison-Swift aquifer and all overlying aquifers, including the Quaternary deposits aquifer, reflect unconfined (water-table) conditions in the Great Falls vicinity. This interconnected hydrologic system is the result of breaching of the major anticlinal structure, by ancestral and present day erosion of drainage channels by the Missouri River and its tributaries. Significant vertical inter-aquifer mixing of water, as well as surface water/groundwater interchange, probably occurs in the central part of the study area. Characterization of the chemical composition of water in individual aquifers based on samples from wells in this area probably is unreliable because of this mixing. Quality of water from two wells in the Madison-Swift aquifer near Giant Springs is similar to water from the springs. Water from these three samples is less mineralized than most groundwater in the study area; dissolved solids concentrations for the three samples range from 516 to 550 mg/L. The quality of water varies among aquifers and throughout the study area. The ranges of dissolved solids concentrations determined by chemical analysis are Madison-Swift aquifer, about 520 to 1,570 mg/L; Morrison Formation, 908 to 1 ,480 mg/L; Kootenai Formation, 558 to 1,550 mg/L; Colorado Group , 2,690 and 2,740 mg/L (two samples); and unconsolidated Quaternary deposits, 383 to 2,060 mg/L. The chemical quality of water from the Colorado Group in the western one-third of the area generally is more mineralized than water from aquifers in the rest of the area. Specific conductance of water from eight wells completed in the Colorado Group averages 4,440 micromhos at 25 C

  3. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  4. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  5. Geochemical and isotopic determination of deep groundwater contributions and salinity to the shallow groundwater and surface water systems, Mesilla Basin, New Mexico, Texas, and Mexico

    NASA Astrophysics Data System (ADS)

    Robertson, A.; Carroll, K. C.; Kubicki, C.; Purtshert, R.

    2017-12-01

    The Mesilla Basin/Conejos-Médanos aquifer system, extending from southern New Mexico to Chihuahua, Mexico, is a priority transboundary aquifer under the 2006 United States­-Mexico Transboundary Aquifer Assessment Act. Declining water levels, deteriorating water quality, and increasing groundwater use by municipal, industrial, and agricultural users on both sides of the international border raise concerns about long-term aquifer sustainability. Relative contributions of present-day and "paleo" recharge to sustainable fresh groundwater yields has not been determined and evidence suggests that a large source of salinity at the distal end of the Mesilla Basin is saline discharge from deep groundwater flow. The magnitude and distribution of those deep saline flow paths are not determined. The contribution of deep groundwater to discharge and salinity in the shallow groundwater and surface water of the Mesilla Basin will be determined by collecting discrete groundwater samples and analyzing for aqueous geochemical and isotopic tracers, as well as the radioisotopes of argon and krypton. Analytes include major ions, trace elements, the stable isotopes of water, strontium and boron isotopes, uranium isotopes, the carbon isotopes of dissolved inorganic carbon, noble gas concentrations and helium isotope ratios. Dissolved gases are extracted and captured from groundwater wells using membrane contactors in a process known as ultra-trace sampling. Gas samples are analyzed for radioisotope ratios of krypton by the ATTA method and argon by low-level counting. Effectiveness of the ultra-trace sampling device and method was evaluated by comparing results of tritium concentrations to the krypton-85 content. Good agreement between the analyses, especially in samples with undetectable tritium, indicates that the ultra-trace procedure is effective and confirms that introduction of atmospheric air has not occurred. The geochemistry data indicate a complex system of geochemical

  6. Using Geophysics to Define Hydrostratigraphic Units in the Edwards and Trinity Aquifers, Texas

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Blome, C. D.; Clark, A. K.; Kress, W.; Smith, D. V.

    2007-05-01

    area (Devils River Trend and Maverick Basin) of the Trinity aquifer system there are well-defined collapse units and features that are marked by moderate resistivities bracketed by resistive limestone and conductive mudstone of the Glen Rose Limestone. In the central part of the aquifer (San Marcos Platform) the Trinity's lithologies are divided into upper and lower units with further subdivisions into hydrostratigraphic units. These hydrostratigraphic units are well mapped by an airborne electromagnetic survey in Bexar County. Electrical properties of the Edwards aquifer also vary across the fresh-saline water interface where ground and borehole electrical surveys have been conducted. The saline- saturated Edwards is predictably more conductive than the fresh-water saturated rocks. Similar fresh-saline water interfaces exist within the upper confining units of the Edwards aquifer (Carrizo-Wilcox aquifer) and the Trinity aquifer rocks.

  7. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    USGS Publications Warehouse

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    The U.S. Army Corps of Engineers (USACE) has proposed dredging a 13-mile reach of the St. Johns River navigation channel in Jacksonville, Florida, deepening it to depths between 50 and 54 feet below North American Vertical Datum of 1988. The dredging operation will remove about 10 feet of sediments from the surficial aquifer system, including limestone in some locations. The limestone unit, which is in the lowermost part of the surficial aquifer system, supplies water to domestic wells in the Jacksonville area. Because of density-driven hydrodynamics of the St. Johns River, saline water from the Atlantic Ocean travels upstream as a saltwater “wedge” along the bottom of the channel, where the limestone is most likely to be exposed by the proposed dredging. A study was conducted to determine the potential effects of navigation channel deepening in the St. Johns River on salinity in the adjacent surficial aquifer system. Simulations were performed with each of four cross-sectional, variable-density groundwater-flow models, developed using SEAWAT, to simulate hypothetical changes in salinity in the surficial aquifer system as a result of dredging. The cross-sectional models were designed to incorporate a range of hydrogeologic conceptualizations to estimate the effect of uncertainty in hydrogeologic properties. The cross-sectional models developed in this study do not necessarily simulate actual projected conditions; instead, the models were used to examine the potential effects of deepening the navigation channel on saltwater intrusion in the surficial aquifer system under a range of plausible hypothetical conditions. Simulated results for modeled conditions indicate that dredging will have little to no effect on salinity variations in areas upstream of currently proposed dredging activities. Results also indicate little to no effect in any part of the surficial aquifer system along the cross section near River Mile 11 or in the water-table unit along the cross

  8. Recovery of injected freshwater to differentiate fracture flow in a low-permeability brackish aquifer

    NASA Astrophysics Data System (ADS)

    Miotliński, Konrad; Dillon, Peter J.; Pavelic, Paul; Cook, Peter G.; Page, Declan W.; Levett, Kerry

    2011-10-01

    SummaryA low-permeability weathered siltstone-sandstone aquifer containing brackish water was investigated to measure recoverability of injected freshwater with the aim of determining the significance of secondary porosity in contributing to groundwater flow and transport. Examination of the core, borehole geophysics, Radon-222, electromagnetic flowmeter (EMF) profiles and step-drawdown pumping tests did not identify whether fractures contribute to groundwater flow. A number of injection and recovery tests lasting from 3 days to 3 months using potable water showed a large degree of mixing with native groundwater. Withdrawal greater than 12-17% of the injected volume resulted in recovered water containing more native groundwater than injected water. A finite element solute transport model was set up to reproduce the observed salinity in recovered water. Without the inclusion of discrete fractures in the model it was not possible to get a fit between the observed and modelled salinity of recovered water within a realistic range of dispersivity values. The model was subsequently verified by using data from long-term injection and recovery trials. This evaluation of mixing conclusively demonstrated that the aquifer behaved as a fractured rock aquifer and not as an aquifer with primary porosity alone. Therefore, aquifer storage and recovery can be a very useful hydrogeological method to identify the occurrence of fracture flow in aquifers where there is a measurable concentration difference between the injected water and ambient groundwater.

  9. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    NASA Astrophysics Data System (ADS)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity

  10. The Spokane aquifer, Washington: its geologic origin and water-bearing and water-quality characteristics

    USGS Publications Warehouse

    Molenaar, Dee

    1988-01-01

    The Spokane aquifer is an unconfined aquifer consisting of coarse sand, gravel, cobbles, and boulders deposited during several catastrophic glacial outburst floods--known as the Spokane Floods---of Pleistocene time. The aquifer is one of the most productive in the United States, and, as the only significant source of good-quality water supply in the Spokane Valley, it has been designated as a 'Sole Source Aquifer' by the U.S. Environmental Protection Agency. The Spokane aquifer underlies an area of about 135 square miles in the Spokane Valley and varies in saturated thickness from a few feet to 500 feet or more. The aquifer is recharged by ground-water underflow from the Rathdrum Prairie aquifer in Idaho on the east, by ground-water underflow and surface-water seepage from small drainage areas along the Spokane Valley margins, and by percolation from various sources--from rainfall and snowmelt, from some reaches of the Spokane and Little Spokane Rivers, and from septic-tank drain fields, cesspools, and irrigation water. Discharge from the aquifer occurs by ground-water underflow from the lowermost end of the valley, by leakage to the Spokane and the Little Spokane Rivers, by evapotranspiration, and by ground-water withdrawal by pumping. The transmissivity of the aquifer ranges from less than 0.05 to 70 feet squared per second, and its specific yield ranges from less than 5 to 20 percent of the aquifer volume. Seasonal water-level fluctuations in wells tapping the aquifer are generally less than 10 feet. The annual pumpage from the aquifer in 1977 was about 164,000 acre-feet, of which about 70 percent was for municipal supplies, which included some industrial and commercial supplies. Land use over the aquifer includes predominantly agricultural activities in the eastern one-third of the valley and urban and residential developments in most of the remaining area. Potential sources of contamination of the aquifer include percolation from cesspools, septic-tank drain

  11. Groundwater quality at the Saline Valley Conservancy District well field, Gallatin County, Illinois

    USGS Publications Warehouse

    Gorczynska, Magdalena; Kay, Robert T.

    2016-08-29

    The Saline Valley Conservancy District (SVCD) operates wells that supply water to most of the water users in Saline and Gallatin Counties, Illinois. The SVCD wells draw water from a shallow sand and gravel aquifer located in close proximity to an abandoned underground coal mine, several abandoned oil wells, and at least one operational oil well. The aquifer that yields water to the SVCD wells overlies the New Albany Shale, which may be subjected to shale-gas exploration by use of hydraulic fracturing. The SVCD has sought technical assistance from the U.S. Geological Survey to characterize baseline water quality at the SVCD well field so that future changes in water quality (if any) and the cause of those changes (including mine leachate and hydraulic fracturing) can be identified.

  12. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations.

    PubMed

    Bouzourra, Hazar; Bouhlila, Rachida; Elango, L; Slama, Fairouz; Ouslati, Naceur

    2015-02-01

    Coastal aquifers are at threat of salinization in most parts of the world. This study was carried out in coastal shallow aquifers of Aousja-Ghar El Melh and Kalâat el Andalous, northeastern of Tunisia with an objective to identify sources and processes of groundwater salinization. Groundwater samples were collected from 42 shallow dug wells during July and September 2007. Chemical parameters such as Na(+), Ca(2+), Mg(2+), K(+), Cl(-), SO4 (2-), HCO3 (-), NO3 (-), Br(-), and F(-) were analyzed. The combination of hydrogeochemical, statistical, and GIS approaches was used to understand and to identify the main sources of salinization and contamination of these shallow coastal aquifers as follows: (i) water-rock interaction, (ii) evapotranspiration, (iii) saltwater is started to intrude before 1972 and it is still intruding continuously, (iv) irrigation return flow, (v) sea aerosol spray, and finally, (vi) agricultural fertilizers. During 2005/2006, the overexploitation of the renewable water resources of aquifers caused saline water intrusion. In 2007, the freshening of a brackish-saline groundwater occurred under natural recharge conditions by Ca-HCO3 meteoric freshwater. The cationic exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. The sulfate reduction process and the neo-formation of clays minerals characterize the hypersaline coastal Sebkha environments. Evaporation tends to increase the concentrations of solutes in groundwater from the recharge areas to the discharge areas and leads to precipitate carbonate and sulfate minerals.

  13. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R D; Wolery, T J; Hao, Y

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh watermore » to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that

  14. The High Plains Aquifer, USA: Groundwater development and sustainability

    USGS Publications Warehouse

    Dennehy, K.F.; Litke, D.W.; McMahon, P.B.

    2002-01-01

    The High Plains Aquifer, located in the United States, is one of the largest freshwater aquifers in the world and is threatened by continued decline in water levels and deteriorating water quality. Understanding the physical and cultural features of this area is essential to assessing the factors that affect this groundwater resource. About 27% of the irrigated land in the United States overlies this aquifer, which yields about 30% of the nation's groundwater used for irrigation of crops including wheat, corn, sorghum, cotton and alfalfa. In addition, the aquifer provides drinking water to 82% of the 2.3 million people who live within the aquifer boundary. The High Plains Aquifer has been significantly impacted by human activities. Groundwater withdrawals from the aquifer exceed recharge in many areas, resulting in substantial declines in groundwater level. Residents once believed that the aquifer was an unlimited resource of high-quality water, but they now face the prospect that much of the water may be gone in the near future. Also, agricultural chemicals are affecting the groundwater quality. Increasing concentrations of nitrate and salinity can first impair the use of the water for public supply and then affect its suitability for irrigation. A variety of technical and institutional measures are currently being planned and implemented across the aquifer area in an attempt to sustain this groundwater resource for future generations. However, because groundwater withdrawals remain high and water quality impairments are becoming more commonplace, the sustainability of the High Plains Aquifer is uncertain.

  15. Direct Evidence of Meltwater Flow Within a Firn Aquifer in Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Miller, Olivia; Solomon, D. Kip; Miège, Clément; Koenig, Lora; Forster, Richard; Schmerr, Nicholas; Ligtenberg, Stefan R. M.; Montgomery, Lynn

    2018-01-01

    Within the lower percolation zone of the southeastern Greenland ice sheet, meltwater has accumulated within the firn pore space, forming extensive firn aquifers. Previously, it was unclear if these aquifers stored or facilitated meltwater runoff. Following mixing of a saline solution into boreholes within the aquifer, we observe that specific conductance measurements decreased over time as flowing freshwater diluted the saline mixture in the borehole. These tests indicate that water flows through the aquifer with an average specific discharge of 4.3 × 10-6 m/s (σ = 2.5 × 10-6 m/s). The specific discharge decreases dramatically to 0 m/s, defining the bottom of the aquifer between 30 to 50 m depth. The observed flow indicates that the firn pore space is a short-term (<30 years) storage mechanism in this region. Meltwater flows out of the aquifer, likely into nearby crevasses, and possibly down to the base of the ice sheet and into the ocean.

  16. Hypoaigic influences on groundwater flux to a seasonally saline river

    NASA Astrophysics Data System (ADS)

    Trefry, M. G.; Svensson, T. J. A.; Davis, G. B.

    2007-03-01

    SummaryHypoaigic zones are aquifer volumes close to and beneath the shores of saline surface water bodies, and are characterized by the presence of time-dependent natural convection and chemical stratification. When transient and cyclic processes are involved there is significant potential for complex flow and reaction in the near-shore aquifer, presenting a unique challenge to pollutant risk assessment methodologies. This work considers the nature of some hypoaigic processes generated by the seasonally saline Canning River of Western Australia near a site contaminated by petroleum hydrocarbons. A dissolved hydrocarbon plume migrates within the shallow superficial aquifer to the nearby bank of the Canning River. Beneath the river bank a zone of complex fluid mixing is established by seasonal and tidal influences. Understanding this complexity and the subsequent ramifications for local biogeochemical conditions is critical to inferring the potential for degradation of advecting contaminants. A range of modelling approaches throws light on the overall topographic controls of discharge to the river, on the saline convection processes operating under the river bank, on the potential for fluid mixing, and on the various important time scales in the system. Saline distributions simulated within the aquifer hypoaigic zone are in at least qualitative agreement with previous field measurements at the site and are strongly affected by seasonal influences. Groundwater seepage velocities at the shoreline are found to be positively correlated with river salinity. Calculations of fluid age distributions throughout the system show sensitivity to dispersivity values; however, maximum fluid ages under the river appear to be diffusion limited to a few decades. The saline convection cell in the aquifer defines a zone of strong dispersive dilution of aged (many decades) deep aquifer fluids with relatively young (several months) riverine fluids. Seasonal recharge and river salinity

  17. Changes in chloride concentration in water from municipal wells that tap aquifers in rocks of Cambrian and Ordovician age in northeastern Illinois, 1915-84

    USGS Publications Warehouse

    Balding, G.O.

    1991-01-01

    During the past few decades, several municipalities in northeastern Illinois have noted increases in the salinity of water from wells that tap aquifers in rocks of Cambrian and Ordovician age. The municipalities have discontinued the use of, or sealed-off sections of, those wells. The aquifers involved include the Ancell, the Ironton-Galesville, and the Elmhurst-Mt. Simon. To define the location, magnitude, and possible causes for the salinity increases in the six northeastern counties of Illinois, 17 municipal wells and 1 deep test well were selected on the basis of their proximity to major pumping centers, the availability of water-quality data, and their documented maintenance history. Well depths ranged from about 960 to 3,475 feet. One well was finished in the middle confining unit, 2 wells were finished in the Ironton-Galesville aquifer, 4 wells were finished in the Eau Claire confining unit, and 10 wells were finished in the Elmhurst-Mt. Simon aquifer. The deep test well was finished below the Elmhurst-Mt. Simon aquifer in Precambrian-age rock. Chloride concentrations in the municipal wells ranged from less than 5 to greater than 600 milligrams per liter; in the deep test well, they ranged from 13 t o 37,000 milligrams per liter. Some changes in the chloride concentration in water from the studied municipal wells can be related to physical changes to the wells, including the partial filling in of a well, bridging within a well, the cleaning out of a well, or the deepening of a well. Some changes in chloride concentration are not related to physical changes but may be caused by increased pumpage; changes in pumping rate, frequency, or duration; cessation of pumping; improper abandonment of wells; and the upconing of highly mineralized water. The data base was inadequate for a quantitative study of the changes in chloride concentration in water from individual aquifers in rocks of Cambrian and Ordovician age.

  18. The quality of our Nation's waters: water quality in the Upper Floridan aquifer and overlying surficial aquifers, southeastern United States, 1993-2010

    USGS Publications Warehouse

    Berndt, Marian P.; Katz, Brian G.; Kingsbury, James A.; Crandall, Christy A.

    2015-01-01

    About 10 million people rely on groundwater from the Upper Floridan and surficial aquifers for drinking water. The Upper Floridan aquifer also is of primary importance to the region as a source of water for irrigation and as a source of crystal clear water that discharges to springs and streams providing recreational and tourist destinations and unique aquatic habitats. The reliance of the region on the Upper Floridan aquifer for drinking water and for the tourism and agricultural economies highlights the importance of long-term management to sustain the availability and quality of these resources.

  19. Simulation of subsurface storage and recovery of treated effluent injected in a saline aquifer, St. Petersburg, Florida

    USGS Publications Warehouse

    Yobbi, D.K.

    1996-01-01

    The potential for subsurface storage and recovery of treated effluent into the uppermost producing zone (zone A) of the Upper Floridan aquifer in St. Petersburg, Florida, is being studied by the U.S. Geological Survey, in cooperation with the city of St. Petersburg and the Southwest Florida Water Management District. A measure of the success of this practice is the recovery efficiency, or the quantity of water relative to the quantity injected, that can be recovered before the water that is withdrawn fails to meet water-quality standards. The feasibility of this practice will depend upon the ability of the injected zone to receive, store, and discharge the injected fluid. A cylindrical model of ground-water flow and solute transport, incorporating available data on aquifer properties and water quality, was developed to determine the relation of recovery efficiency to various aquifer and fluid properties that could prevail in the study area. The reference case for testing was a base model considered representative of the saline aquifer underlying St. Petersburg. Parameter variations in the tests represent possible variations in aquifer conditions in the area. The model also was used to study the effect of various cyclic injection and withdrawal schemes on the recovery efficiency of the well and aquifer system. A base simulation assuming 15 days of injection of effluent at a rate of 1.0 million gallons per day and 15 days of withdrawal at a rate of 1.0 million gallons per day was used as reference to compare changes in various hydraulic and chemical parameters on recovery efficiency. A recovery efficiency of 20 percent was estimated for the base simulation. For practical ranges of hydraulic and fluid properties that could prevail in the study area, the model analysis indicates that (1) the greater the density contrast between injected and resident formation water, the lower the recovery efficiency, (2) recovery efficiency decreases significantly as dispersion

  20. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    PubMed

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  1. Global assessment of coastal aquifer state and its vulnerability respect to Sea Water Intrusion. Application to several Mediterranean Coastal Aquifers.

    NASA Astrophysics Data System (ADS)

    Baena, Leticia; Pulido-Velazquez, David; Renau-Pruñonosa, Arianna; Morell, Ignacio

    2017-04-01

    In this research we propose a method for a global assessment of coastal aquifer state and its vulnerability to Sea Water Intrusion (SWI). It is based on two indices, the MART index, which summarize the global significance of the SWI phenomenon, and the L_GALDIT for a lumped assessment of the vulnerability to SWI. Both of them can be useful as a tool to assess coastal groundwater bodies in risk of not achieving good status in accordance with the Water Framework Directive (WFD, 2000) and to identify possible management alternative to reduce existing impacts. They can be obtained even from a reduced number of data (in the MART case only depend on the geometry and available aquifer state data) with simple calculations, which have been implemented in a general GIS tool that can be easily applied to other case studies. The MART index in an aquifer is related with the total mass of chloride in the aquifer due to sea water intrusion and can be obtained by simple linear operations of volume and concentrations that can be deduced from a schematic conceptual cross-section approach (orthogonal to the shore line) defined to summarize the intrusion volume in the aquifer. At a certain historical time, this representative aquifer cross-section can be defined in a systhematic way from the aquifer geometry, the specific yield, and the hydraulic head and chloride concentration fields that can be deduced from the available information by using appropriate interpolation methods. Following the proposed procedure we will finally obtain a summary of the historical significance of the SWI in an aquifer at different spatial resolution: 3D salinity concentration maps, 2D representative conceptual cross-section of intrusion and the MART lumped significance index. The historical evolution of the MART can be employed to perform a global assessment of the resilience and trends of global significance of the SWI in an aquifer. It can be useful to compare the significance of intrusion problems in

  2. Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2013-05-01

    A vast region in north-central Texas, centering on Dallas-Fort Worth metroplex, suffers from intense groundwater drawdown and water quality degradation, which led to inclusion of 18 counties of this region into Priority Groundwater Management Areas. We combined aquifer-based and county-based hydrologic analyses to (1) assess spatio-temporal changes in groundwater level and quality between 1960 and 2010 in the Trinity and Woodbine aquifers underlying the study region, (2) delve into major hydrochemical facies with reference to aquifer hydrostratigraphy, and (3) identify county-based spatial zones to aid in future groundwater management initiatives. Water-level and quality data was obtained from the Texas Water Development Board (TWDB) and analyzed on a decadal scale. Progressive water-level decline was the major concern in the Trinity aquifer with >50% of observations occurring at depths >100 m since the 1980s, an observation becoming apparent only in the 2000s in the Woodbine aquifer. Water quality degradation was the major issue in the Woodbine aquifer with substantially higher percentage of observations exceeding the secondary maximum contaminant levels (SMCL; a non-enforceable threshold set by the United State Environmental Protection Agency (USEPA)) and/or maximum contaminant level (MCL, a legally enforceable drinking water standard set by the USEPA) for sulfate (SO4(2-)), chloride (Cl(-)), and fluoride (F(-)) in each decade. In both aquifers, however, >70% of observations exceeded the SMCL for total dissolved solids indicating high groundwater salinization. Water-level changes in Trinity aquifer also had significant negative impact on water quality. Hydrochemical facies in this region sequentially evolved from Ca-Mg-HCO3 and Ca-HCO3 in the fluvial sediments of the west to Na-SO4-Cl in the deltaic sediments to the east. Sequentially evolving hydrogeochemical facies and increasing salinization closely resembled regional groundwater flow pattern. Distinct spatial

  3. Ground-water quality of coastal aquifer systems in the West Coast Basin, Los Angeles County, California, 1999-2002

    USGS Publications Warehouse

    Land, Michael; Reichard, Eric G.; Crawford, Steven M.; Everett, Rhett; Newhouse, Mark W.; Williams, Colin F.

    2004-01-01

    The extensive use of ground water throughout the Central and West Coast Basins of Los Angeles County during the first half of the 20th century resulted in declining water levels, widespread seawater intrusion, and deterioration of water quality along most reaches of the coast. In order to control seawater intrusion in the West Coast Basin, freshwater is injected into a series of wells at two seawater barrier projects. In order to better understand the processes of seawater intrusion and the efficiency of current barrier operation, data were collected from multiple-well monitoring sites installed by the U.S. Geological Survey, from local observation wells, and from production wells. The occurrence and areal extent of native, saline, and recently injected ground water near the coast were defined through the collection and analysis of inorganic and isotopic water-quality data and geophysical logs. Most water in the West Coast Basin with a dissolved-solids concentration less than 500 milligrams per liter generally has a sodium-bicarbonate to sodium/calcium-bicarbonate character. Water with a dissolved-solids concentration greater than 1,000 milligrams per liter also contains variable amounts of calcium and sodium, but chloride is predominant. Most of these high-dissolved-solids wells are perforated in the Upper aquifer systems; several have dissolved-chloride values near that of seawater. Elevated chloride concentrations were measured at many wells in both the Upper and Lower aquifer systems inland from the barrier projects. Although water levels have increased in many wells over the last 30 years, some of the wells do not show a corresponding decrease in dissolved chloride. A detailed assessment of saline ground water was provided by examining the ratios of chloride to bromide, iodide, and boron. Seawater-freshwater mixing lines were constructed using all three ratios. These ion ratios also identify water affected by mixing with injected imported water and oil

  4. Water-quality characteristics of quaternary unconsolidated-deposit aquifers and lower tertiary aquifers of the Bighorn Basin, Wyoming and Montana, 1999-2001

    USGS Publications Warehouse

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Norris, Jody R.; Gamper, Merry E.; Hallberg, Laura L.

    2004-01-01

    As part of the Yellowstone River Basin National Water Quality Assessment study, ground-water samples were collected from Quaternary unconsolidated-deposit and lower Tertiary aquifers in the Bighorn Basin of Wyoming and Montana from 1999 to 2001. Samples from 54 wells were analyzed for physical characteristics, major ions, trace elements, nutrients, dissolved organic carbon, radionuclides, pesticide compounds, and volatile organic compounds (VOCs) to evaluate current water-quality conditions in both aquifers. Water-quality samples indicated that waters generally were suitable for most uses, and that natural conditions, rather than the effects of human activities, were more likely to limit uses of the waters. Waters in both types of aquifers generally were highly mineralized, and total dissolved-solids concentrations frequently exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 milligrams per liter (mg/L). Because of generally high mineralization, waters from nearly one-half of the samples from Quaternary aquifers and more than one-half of the samples from lower Tertiary aquifers were not classified as fresh (dissolved-solids concentration were not less than 1,000 mg/L). The anions sulfate, fluoride, and chloride were measured in some ground-water samples at concentrations greater than SMCLs. Most waters from the Quaternary aquifers were classified as very hard (hardness greater than 180 mg/L), but hardness varied much more in waters from the lower Tertiary aquifers and ranged from soft (less than 60 mg/L) to very hard (greater than 180 mg/L). Major-ion chemistry varied with dissolved-solids concentrations. In both types of aquifers, the predominant anion changes from bicarbonate to sulfate with increasing dissolved-solids concentrations. Samples from Quaternary aquifers with fresh waters generally were calcium-bicarbonate, calcium-sodium-bicarbonate, and calcium-sodium-sulfate-bicarbonate type waters, whereas

  5. Bedrock aquifers in the Denver basin, Colorado; a quantitative water-resources appraisal

    USGS Publications Warehouse

    Robson, S.G.

    1984-01-01

    The Denver metropolitan area is experiencing a rapid population growth that is requiring increasing supplies of potable water to be pumped from bedrock aquifers in order to meet demand. In an effort to determine the ability of the aquifers to continue to meet this demand, the Colorado Department of Natural Resources, the Denver Board of Water Commissioners, and Adams, Arapahoe, Douglas, Elbert and El Paso Counties joined with the U.S. Geological Survey in undertaking a hydrologic evaluation of the ground-water resources of the basin. This involved mapping of aquifer extent, thickness, structure, hydraulic characteristics, and water-level and water-quality conditions. This enabled ground-water modeling techniques to be used to simulate aquifer response to various pumpage estimates and ground-water development plans.The Laramie-Fox Hills aquifer (the deepest aquifer) underlies the 6,700-square-mile study area and is overlain by the more permeable Arapahoe aquifer, the Denver aquifer, and the Dawson aquifer, which crops out in the southern part of the study area. It is estimated that 260x106 acre-feet of recoverable ground water are in storage in these four bedrock aquifers. However, less than 0.1 percent of this volume of water is stored under confined conditions. The larger volume of water stored under unconfined conditions will be available for use only when the water levels in the confined aquifers decline below the top of the individual aquifer, allowing water-table conditions to develop.Annual precipitation on the Denver basin supplies an average of 6,900 cubic feet per second of water to the area; about 55 cubic feet per second of this recharges the bedrock aquifers, principally through the Dawson Arkose. The direction of ground-water movement is generally from ground-water divides in the southern part of the area northward toward the margins of the aquifers. Pumpage has ranged from about 5 cubic feet per second in 1884 to about 41 cubic feet per second in

  6. Geophysical evaluation of sandstone aquifers in the Reconcavo-Tucano Basin, Bahia -- Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, O.A.L. de

    1993-11-01

    The upper clastic sediments in the Reconcavo-Tucano basin comprise a multilayer aquifer system of Jurassic age. Its groundwater is normally fresh down to depths of more than 1,000 m. Locally, however, there are zones producing high salinity or sulfur geothermal water. Analysis of electrical logs of more than 150 wells enabled the identification of the most typical sedimentary structures and the gross geometries for the sandstone units in selected areas of the basin. Based on this information, the thick sands are interpreted as coalescent point bars and the shales as flood plain deposits of a large fluvial environment. The resistivitymore » logs and core laboratory data are combined to develop empirical equations relating aquifer porosity and permeability to log-derived parameters such as formation factor and cementation exponent. Temperature logs of 15 wells were useful to quantify the water leakage through semiconfining shales. The groundwater quality was inferred from spontaneous potential (SP) log deflections under control of chemical analysis of water samples. An empirical chart is developed that relates the SP-derived water resistivity to the true water resistivity within the formations. The patterns of salinity variation with depth inferred from SP logs were helpful in identifying subsurface flows along major fault zones, where extensive mixing of water is taking place. A total of 49 vertical Schlumberger resistivity soundings aid in defining aquifer structures and in extrapolating the log derived results. Transition zones between fresh and saline waters have also been detected based on a combination of logging and surface sounding data. Ionic filtering by water leakage across regional shales, local convection and mixing along major faults and hydrodynamic dispersion away from lateral permeability contrasts are the main mechanisms controlling the observed distributions of salinity and temperature within the basin.« less

  7. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now

  8. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization: 2. Seepage of saltwater through semi-confining layers

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a generalized basic study that addresses practical needs for an understanding of the major mechanisms involved in the mineralization of groundwater in the Great Bend Prairie aquifer in south- central Kansas. This Quaternary alluvial aquifer and associated surface waters are subject to contamination by saltwater, which in some areas seeps from the deeper Permian bedrock formation into the overlying freshwater aquifer through semiconfining layers. A simplified conceptual model is adopted. It incorporates the freshwater aquifer whose bottom is comprised of a semiconfining layer through which a hydrologically minor but geochemically important saline water discharge seeps into the aquifer. A hierarchy of approximate approaches is considered to analyze the mineralization processes taking place in the aquifer. The recently developed top specified boundary layer (TSBL) approach is very convenient to use for the initial characterization of these processes, and is further adapted to characterization of head-driven seepage through semi-confining layers. TSBL calculations indicate that the seeping saline water may create two distinct new zones in the aquifer: (1) a completely saline zone (CSZ) adjacent to the semiconfining bottom of the aquifer, and (2) a transition zone (TZ) which develops between the CSZ and the freshwater zone. Some possible scenarios associated with the various mineralization patterns are analyzed and discussed.

  9. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion

    NASA Astrophysics Data System (ADS)

    Moyce, William; Mangeya, Pride; Owen, Richard; Love, David

    The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the

  10. Interpretation of well logs in a carbonate aquifer

    USGS Publications Warehouse

    MacCary, L.M.

    1978-01-01

    This report describes the log analysis of the Randolph and Sabial core holes in the Edwards aquifer in Texas, with particular attention to the principles that can be applied generally to any carbonate system. The geologic and hydrologic data were obtained during the drilling of the two holes, from extensive laboratory analysis of the cores, and from numerous geophysical logs run in the two holes. Some logging methods are inherently superiors to others for the analysis of limestone and dolomite aquifers. Three such systems are the dentistry, neutron, and acoustic-velocity (sonic) logs. Most of the log analysis described here is based on the interpretation of suites of logs from these three systems. In certain instances, deeply focused resistivity logs can be used to good advantage in carbonate rock studies; this technique is used to computer the water resistivity in the Randolph core hole. The rocks penetrated by the Randolph core hole are typical of those carbonates that have undergone very little solution by recent ground-water circulation. There are few large solutional openings; the water is saline; and the rocks are dark, dolomitic, have pore space that is interparticle or intercrystalline, and contain unoxidized organic material. The total porosity of rocks in the saline zone is higher than that of rocks in the fresh-water aquifer; however, the intrinsic permeability is much less in the saline zone because there are fewer large solutional openings. The Sabinal core hole penetrates a carbonate environment that has experienced much solution by ground water during recent geologic time. The rocks have high secondary porosities controlled by sedimentary structures within the rock; the water is fresh; and the dominant rock composition is limestone. The relative percentages of limestone and dolomite, the average matrix (grain) densities of the rock mixtures , and the porosity of the rock mass can be calculated from density, neutron, and acoustic logs. With supporting

  11. Aquifer characteristics, water availability, and water quality of the Quaternary aquifer, Osage County, northeastern Oklahoma, 2001-2002

    USGS Publications Warehouse

    Mashburn, Shana L.; Cope, Caleb C.; Abbott, Marvin M.

    2003-01-01

    Additional sources of water are needed on the Osage Reservation for future growth and development. The Quaternary aquifer along the Arkansas River in the Osage Reservation may represent a substantial water resource, but limited amounts of hydrogeologic data were available for the aquifer. The study area is about 116 square miles of the Quaternary aquifer in the Arkansas River valley and the nearby upland areas along the Osage Reservation. The study area included the Arkansas River reach downstream from Kaw Lake near Ponca City, Oklahoma to upstream from Keystone Lake near Cleveland, Oklahoma. Electrical conductivity logs were produced for 103 test holes. Water levels were determined for 49 test holes, and 105 water samples were collected for water-quality field analyses at 46 test holes. Water-quality data included field measurements of specific conductance, pH, water temperature, dissolved oxygen, and nitrate (nitrite plus nitrate as nitrogen). Sediment cores were extracted from 20 of the 103 test holes. The Quaternary aquifer consists of alluvial and terrace deposits of sand, silt, clay, and gravel. The measured thickness of the alluvium ranged from 13.7 to 49.8 feet. The measured thickness of the terrace sediments ranged from 7 to 93.8 feet. The saturated thickness of all sediments ranged from 0 to 38.2 feet with a median of 24.8 feet. The weighted-mean grain size for cores from the alluvium ranged from 3.69 to 0.64 f, (0.08- 0.64 millimeter), and ranged from 4.02 to 2.01 f (0.06-0.25 millimeter) for the cores from terrace deposits. The mean of the weighted-mean grain sizes for cores from the alluvium was 1.67 f (0.31 millimeter), and the terrace deposits was 2.73 f (0.15 millimeter). The hydraulic conductivity calculated from grain size of the alluvium ranged from 2.9 to 6,000 feet per day and of the terrace deposits ranged from 2.9 to 430 feet per day. The calculated transmissivity of the alluvium ranged from 2,000 to 26,000 feet squared per day with a median

  12. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    NASA Astrophysics Data System (ADS)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  13. Hot-water aquifer storage: A field test

    NASA Astrophysics Data System (ADS)

    Parr, A. D.; Molz, F. J.; Andersen, P. F.

    1980-03-01

    The basic water injection cycle used in a large-scale field study of heat storage in a confined aquifer near Mobile, Alabama is described. Water was pumped from an upper semi-confined aquifer, passed through a boiler where it was heated to a temperature of about 55 C, and injected into a medium sand confined aquifer. The injection well has a 6-inch (15-cm) partially-penetrating steel screen. The top of the storage formation is about 40 meters below the surface and the formation thickness is about 21 meters. In the first cycle, after a storage period of 51 days, the injection well was pumped until the temperature of the recovered water dropped to 33 c. At that point 55,300 cubic meters of water had been withdrawn and 66 percent of the injected energy had been recovered. The recovery period for the second cycle continued until the water temperature was 27.5 C and 100,100 cubic meters of water was recovered. At the end of the cycle about 90 percent of the energy injected during the cycle had been recovered.

  14. Sedimentologic and diagenetic controls on aquifer properties, Lower Cretaceous Edwards Carbonate Aquifer, Texas: Implications for aquifer management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovorka, S.D.; Dutton, A.R.; Ruppel, S.C.

    1994-09-01

    The three-dimensional distribution of water in the Edwards aquifer was assessed using a core and log-based study. Porosity distribution reflects both depositional fabric and subsequent diagenesis. Vertical facies stacking patterns influence the depositional porosity as well as dolomitization and diagentic porosity modification. Subtidal facies deposited during sea level highstands are generally undolomitized and exhibit low porosity (5-10%); platform grainstones typically have high depositional porosity and significant solution enhancement (20-42% porosity). Dolomitized subtidal facies in tidal-flat-capped cycles have very high porosity (20-40%) because of selective dolomite dissolution in the freshwater aquifer. Porosity in gypsum beds is high in some areas becausemore » of dissolution and collapse, but low where gypsum was replaced by calcite cement. Low-energy subtidal and evaporitic units in the Maverick basin have porosity generally less than 15%. The overlying basinal packstones and grainstones have solution-enhanced porosities of 25 to 35%. Diagenesis associated with fluctuations in water chemistry near the saline-freshwater interface may explain one high-porosity trend. Other complex patterns of high and low porosity are attributed to structurally and hydrologically controlled porosity enhancement and cementation. Three-dimensional mapping of porosity trends provides data for improved aquifer management. Only about 3% of the maximum stored water lies above the water table at which natural spring flow is diminished. An average specific yield of 42% in the unconfined aquifer is determined from total porosity, changes in the water-table elevation, and changes in estimated recharge and discharge. Average storativity of 2.6 x 10{sup -4} in the confined Edwards is estimated using average porosity and barometric efficiency calculated from comparing water-level hydrographs and atmospheric pressure changes.« less

  15. Water-Quality Assessment of the High Plains Aquifer, 1999-2004

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, Kevin F.; Bruce, Breton W.; Gurdak, Jason J.; Qi, Sharon L.

    2007-01-01

    Water quality of the High Plains aquifer was assessed for the period 1999-2004 as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This effort represents the first systematic regional assessment of water quality in this nationally important aquifer. A stratified, nested group of studies was designed to assess linkages between the quality of water recharging the aquifer, the effect of transport through the hydrologic system on water quality, and the quality of the resource used for human consumption and agricultural applications. The stratified, nested design facilitated upscaling of monitoring results to unmonitored areas of the aquifer as well as upscaling of process understanding from local to regional scales.

  16. Seawater Upconing Under a Pumping Horizontal Well in a Confined Coastal Aquifer

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zhan, H.

    2003-12-01

    Coastal margins are one of the nation­_s greatest natural resources and economic assets. Due to increasing concentration of human settlements and economic activities in the coastal margins, it is critical to find better technologies of managing the coastal groundwater resources. Coastal aquifers always have saline water underneath the fresh water. This phenomenon substantially limits the groundwater pumping rates using traditional vertical wells because of the upconing of the fresh/saline water interfaces and the potential of sea water intrusion. With the advancement of horizontal well technology, we propose to use long-screen (kilometers) horizontal wells in coastal aquifers to increase groundwater supply and prevent sea water intrusion into those wells. In this study, we have developed two mathematical models to predict the equilibrium location of upconed sharp interfaces due to pumping horizontal wells based on the linear model of Muskat (1982) and the non-linear model of Dagan and Bear (1968) which described the upcoming due to a partially penetrating vertical pumping well. The horizontal well solution is obtained by integrating the point sink solution along the horizontal well axis. The linear solution based on Muskat­_s model (1982) is acquired by neglecting the pressure field variation caused by the change of the fresh/saline water interface, while the nonlinear solution includes that variation. The computed interface profiles based on these two models are compared with those of vertical wells. The critical pumping rate is calculated and the sensitivity of the interface profile on aquifer anisotropy, horizontal well depth, and horizontal well length is tested. References: G. Dagan and J. Bear, Solving the problem of local interface upcoming in a coastal aquifer by the method of small perturbations, J. Hydraulic Research, 6, 15-44, 1968. Muskat, M, The flow of homogeneous Fluids Through Porous Media, International Human Resources Development Corporation

  17. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  18. Hydrochemical characterization of a groundwater aquifer and its water quality in relation to irrigation in the Jinghuiqu irrigation district of China.

    PubMed

    Liu, Xiuhua; Li, Lin; Hu, Anyan

    2013-03-01

    The Jinghuiqu irrigation district is located in the semi-arid regions of northwestern China, where groundwater is the most important natural source for local industry, agriculture and residents. The present work was conducted in the Jinghuiqu irrigation district to characterize the groundwater aquifer, which has undergone long-term flood irrigation for over 2000 years. Isotopic and hydrochemical analyses, along with geological and hydrogeological tools, were used to determine the chemical properties and evolutionary processes of the groundwater aquifer. Results showed that the groundwater chemistry had changed significantly from 1990 to 2009. Water with concentrations of CaMgSO4 had decreased significantly, from 60% to 28% of the total water samples, during the period, while water with concentrations of NaSO4 and NaCl increased significantly, from 28% to 72%. The salinity of the groundwater increased rapidly and the affected area had expanded to most of the irrigation district. Stable isotope studies showed that most of the groundwater concentrations were derived from sulfate mineral dissolution. The minerals saturation indices (SI), ion ratios and oxygen isotope values of the groundwater indicated that the shallow groundwater had mainly experienced mineral dissolution, cation exchange, and mixing of the irrigated surface waters and groundwater. The groundwater quality had continuously evolved toward salinization as concentrations of SO4(2-) and Na+ grew to dominate it. Water quality risk analyses showed that most of the saline groundwater is not suitable for domestic and irrigation uses, especially in the middle and eastern parts of the irrigation district. These findings indicate that the irrigation district should strengthen the groundwater resources management.

  19. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    PubMed

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  20. Evaluation of effects of changes in canal management and precipitation patterns on salinity in Biscayne Bay, Florida, using an integrated surface-water/groundwater model

    USGS Publications Warehouse

    Lohmann, Melinda A.; Swain, Eric D.; Wang, John D.; Dixon, Joann

    2012-01-01

    Biscayne National Park, located in Biscayne Bay in southeast Florida, is one of the largest marine parks in the country and sustains a large natural marine fishery where numerous threatened and endangered species reproduce. In recent years, the bay has experienced hypersaline conditions (salinity greater than 35 practical salinity units) of increasing magnitude and duration. Hypersalinity events were particularly pronounced during April to August 2004 in nearshore areas along the southern and middle parts of the bay. Prolonged hypersaline conditions can cause degradation of water quality and permanent damage to, or loss of, brackish nursery habitats for multiple species of fish and crustaceans as well as damage to certain types of seagrasses that are not tolerant of extreme changes in salinity. To evaluate the factors that contribute to hypersalinity events and to test the effects of possible changes in precipitation patterns and canal flows into Biscayne Bay on salinity in the bay, the U.S. Geological Survey constructed a coupled surface-water/groundwater numerical flow model. The model is designed to account for freshwater flows into Biscayne Bay through the canal system, leakage of salty bay water into the underlying Biscayne aquifer, discharge of fresh and salty groundwater from the Biscayne aquifer into the bay, direct effects of precipitation on bay salinity, indirect effects of precipitation on recharge to the Biscayne aquifer, direct effects of evapotranspiration (ET) on bay salinity, indirect effects of ET on recharge to the Biscayne aquifer, and maintenance of mass balance of both water and solute. The model was constructed using the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator, version 3.3, which couples the two-dimensional, surface-water flow and solute-transport simulator SWIFT2D with the density-dependent, groundwater flow an solute-transport simulator SEAWAT. The model was calibrated by a trial

  1. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania

    PubMed Central

    Warner, Nathaniel R.; Jackson, Robert B.; Darrah, Thomas H.; Osborn, Stephen G.; Down, Adrian; Zhao, Kaiguang; White, Alissa; Vengosh, Avner

    2012-01-01

    The debate surrounding the safety of shale gas development in the Appalachian Basin has generated increased awareness of drinking water quality in rural communities. Concerns include the potential for migration of stray gas, metal-rich formation brines, and hydraulic fracturing and/or flowback fluids to drinking water aquifers. A critical question common to these environmental risks is the hydraulic connectivity between the shale gas formations and the overlying shallow drinking water aquifers. We present geochemical evidence from northeastern Pennsylvania showing that pathways, unrelated to recent drilling activities, exist in some locations between deep underlying formations and shallow drinking water aquifers. Integration of chemical data (Br, Cl, Na, Ba, Sr, and Li) and isotopic ratios (87Sr/86Sr, 2H/H, 18O/16O, and 228Ra/226Ra) from this and previous studies in 426 shallow groundwater samples and 83 northern Appalachian brine samples suggest that mixing relationships between shallow ground water and a deep formation brine causes groundwater salinization in some locations. The strong geochemical fingerprint in the salinized (Cl > 20 mg/L) groundwater sampled from the Alluvium, Catskill, and Lock Haven aquifers suggests possible migration of Marcellus brine through naturally occurring pathways. The occurrences of saline water do not correlate with the location of shale-gas wells and are consistent with reported data before rapid shale-gas development in the region; however, the presence of these fluids suggests conductive pathways and specific geostructural and/or hydrodynamic regimes in northeastern Pennsylvania that are at increased risk for contamination of shallow drinking water resources, particularly by fugitive gases, because of natural hydraulic connections to deeper formations. PMID:22778445

  2. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania.

    PubMed

    Warner, Nathaniel R; Jackson, Robert B; Darrah, Thomas H; Osborn, Stephen G; Down, Adrian; Zhao, Kaiguang; White, Alissa; Vengosh, Avner

    2012-07-24

    The debate surrounding the safety of shale gas development in the Appalachian Basin has generated increased awareness of drinking water quality in rural communities. Concerns include the potential for migration of stray gas, metal-rich formation brines, and hydraulic fracturing and/or flowback fluids to drinking water aquifers. A critical question common to these environmental risks is the hydraulic connectivity between the shale gas formations and the overlying shallow drinking water aquifers. We present geochemical evidence from northeastern Pennsylvania showing that pathways, unrelated to recent drilling activities, exist in some locations between deep underlying formations and shallow drinking water aquifers. Integration of chemical data (Br, Cl, Na, Ba, Sr, and Li) and isotopic ratios ((87)Sr/(86)Sr, (2)H/H, (18)O/(16)O, and (228)Ra/(226)Ra) from this and previous studies in 426 shallow groundwater samples and 83 northern Appalachian brine samples suggest that mixing relationships between shallow ground water and a deep formation brine causes groundwater salinization in some locations. The strong geochemical fingerprint in the salinized (Cl > 20 mg/L) groundwater sampled from the Alluvium, Catskill, and Lock Haven aquifers suggests possible migration of Marcellus brine through naturally occurring pathways. The occurrences of saline water do not correlate with the location of shale-gas wells and are consistent with reported data before rapid shale-gas development in the region; however, the presence of these fluids suggests conductive pathways and specific geostructural and/or hydrodynamic regimes in northeastern Pennsylvania that are at increased risk for contamination of shallow drinking water resources, particularly by fugitive gases, because of natural hydraulic connections to deeper formations.

  3. Source and mobility of Rare Earth Elements in a sedimentary aquifer system: Aquitaine basin (Southern France)

    NASA Astrophysics Data System (ADS)

    Negrel, P. J.; Petelet-Giraud, E.; Millot, R.; Malcuit, E.

    2011-12-01

    , middle Eocene, and late Eocene. One important feature, in these confined systems isolated from anthropogenic influence, is the range in salinities by a factor of 10, from 250 mg/L up to 2.5 g/L. The ΣREE, in the range 2-54 ng/L, with a dependence on salinity when expressed in % HCO3 or SO4, reflect the carbonate or evaporite source of REEs. The UCC normalized-REE patterns show a large variability as exemplified by the REE flat patterns-low SREE associated with salinity controlled by HCO3. In the present work, the REEs are investigated in terms of saturation indices, speciation modelling, REE patterns in order to recognize the aquifer type hosting groundwater and decipher the origin of the salinity of the groundwater as some part of the aquifer display in the groundwater concentration of chemical element exceeding the drinking water standard (SO4, F...). Such high concentrations of naturally-occurring substances (e.g. unaffected by human activities) can have negative impacts on groundwater thresholds and deciphering their origin by means of geochemical tools like REE is a remaining challenge.

  4. Water-level altitudes 2008 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973-2007 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Houston, Natalie A.

    2008-01-01

    This report, done in cooperation with the Harris-Galveston Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District, is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region, Texas. The report contains 17 sheets and 16 tables: 3 sheets are maps showing current-year (2008) water-level altitudes for each aquifer, respectively; 3 sheets are maps showing 1-year (2007-08) water-level changes for each aquifer, respectively; 3 sheets are maps showing 5-year (2003-08) water-level changes for each aquifer, respectively; 4 sheets are maps showing long-term (1990-2008 and 1977-2008) water-level changes for the Chicot and Evangeline aquifers, respectively; 1 sheet is a map showing long-term (2000-2008) water-level change for the Jasper aquifer; 1 sheet is a revision of a previously published water-level-altitude map for the Jasper aquifer for 2003; 1 sheet is a map showing site locations of borehole extensometers; and 1 sheet comprises graphs showing measured compaction of subsurface material at the sites from 1973 or later through 2007, respectively. Tables listing the data used to construct the aquifer-data maps and the compaction graphs are included.

  5. Water-level altitudes 2007 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973-2006 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Houston, Natalie A.

    2007-01-01

    This report, done in cooperation with the Harris-Galveston Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District, is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston, Texas, region. The report contains 18 sheets and 17 tables: 3 sheets are maps showing current-year (2007) water-level altitudes for each aquifer, respectively; 3 sheets are maps showing 1-year (2006-07) water-level changes for each aquifer, respectively; 3 sheets are maps showing 5-year (2002-07) water-level changes for each aquifer, respectively; 4 sheets are maps showing long-term (1990-2007 and 1977-2007) water-level changes for the Chicot and Evangeline aquifers, respectively; 1 sheet is a map showing long-term (2000-2007) water-level change for the Jasper aquifer; 2 sheets are revisions of previously published water-level-altitude maps for the Jasper aquifer for 2000 and 2002, respectively; 1 sheet is a map showing site locations of borehole extensometers; and 1 sheet comprises graphs showing measured compaction of subsurface material at the sites from 1973 or later through 2006, respectively. Tables listing the data used to construct the aquifer-data maps and the compaction graphs also are included.

  6. Assessing the Impact of Topography on Groundwater Salinization Due to Storm Surge Inundation

    NASA Astrophysics Data System (ADS)

    Yu, X.; Yang, J.; Graf, T.; Koneshloo, M.; O'Neal, M. A.; Michael, H. A.

    2015-12-01

    The sea-level rise and increase in the frequency and intensity of coastal storms due to climate change are likely to exacerbate adverse effects of storm surges on low-lying coastal areas. The landward flow of water during storm surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topography (e.g. ponds, dunes, canals) likely has a strong impact on overwash and salinization processes, but is generally highly simplified in modeling studies. To understand the topographic impacts on groundwater salinization, we modeled overwash and variable-density groundwater flow and salt transport in 3D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering processes such as overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density flow. To represent various coastal landscape types, we started with realistic coastal topography from Delaware, USA, and then generated synthetic fields with differing shore-perpendicular connectivity and surface depressions. The groundwater salinization analysis suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, depression storage of surface water mainly controls the time for infiltrated salt to flush from the aquifer. The results indicate that for a range of synthetic conditions, topography increases the flushing time of salt by 20-300% relative to an equivalent "simple slope" in which topographic variation is absent. Our study suggests that topography have a significant impact on overwash salinization, with important implications for land management at local scales and groundwater vulnerability assessment at regional to global scales.

  7. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    USGS Publications Warehouse

    Adamski, J.C.; Knowles, Leel

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  8. River-aquifer interactions and their relationship to stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New South Wales, Australia).

    PubMed

    Menció, A; Korbel, K L; Hose, G C

    2014-05-01

    In contrast to surface water ecosystems, groundwater ecosystems are usually considered to have relatively stable conditions and physically inert environments. However, many groundwater ecosystems undergo substantial changes through space and time, related to fluxes in groundwater flow, exchange and nutrient imports. In this study we used hydrochemical data to: 1) determine the different hydrogeological conditions in an alluvial system, the shallow Gwydir River alluvial aquifer (located in Northern New South Wales, Australia); and 2) analyze the relationship between hydrochemical conditions and the composition of stygofauna assemblages in the aquifer. Using hydrochemical modeling and multivariate analyses, four main hydrogeological situations were defined as occurring in the aquifer. Bores were classified as having either a high, low or no influence from or exchange with the river. The latter group was further subdivided into those of low and high salinity. Further analysis combining the biological and hydrochemical data identified two main groups of samples. The first group was composed mainly of samples related to the aquifer groundwater which had higher richness and abundance of fauna compared to samples in the second group which was comprised of samples affected by stream water leakage and samples related to the highest salinities. These results suggest that more stable conditions (mainly related to steadier groundwater head levels) and lower nitrate concentrations promoted a more diverse and abundant stygofauna community. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer.

    PubMed

    Gray, Cassie J; Engel, Annette S

    2013-02-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.

  10. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer

    PubMed Central

    Gray, Cassie J; Engel, Annette S

    2013-01-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface. PMID:23151637

  11. Alluvial and bedrock aquifers of the Denver Basin; eastern Colorado's dual ground-water resource

    USGS Publications Warehouse

    Robson, Stanley G.

    1989-01-01

    Large volumes of ground water are contained in alluvial and bedrock aquifers in the semiarid Denver basin of eastern Colorado. The bedrock aquifer, for example, contains 1.2 times as much water as Lake Erie of the Great Lakes, yet it supplies only about 9 percent of the ground water used in the basin. Although this seems to indicate underutilization of this valuable water supply, this is not necessarily the case, for many factors other than the volume of water in the aquifer affect the use of the aquifer. Such factors as climatic conditions, precipitation runoff, geology and water-yielding character of the aquifers, water-level conditions, volume of recharge and discharge, legal and economic constraints, and water-quality conditions can ultimately affect the decision to use ground water. Knowledge of the function and interaction of the various parts of this hydrologic system is important to the proper management and use of the ground-water resources of the region. The semiarid climatic conditions on the Colorado plains produce flash floods of short duration and large peak-flow rates. However, snowmelt runoff from the Rocky Mountains produces the largest volumes of water and is typically of longer duration with smaller peak-flow rates. The alluvial aquifer is recharged easily from both types of runoff and readily stores and transmits the water because it consists of relatively thin deposits of gravel, sand, and clay located in the valleys of principal streams. The bedrock aquifer is recharged less easily because of its greater thickness (as much as 3,000 feet) and prevalent layers of shale which retard the downward movement of water in the formations. Although the bedrock aquifer contains more than 50 times as much water in storage as the alluvial aquifer, it does not store and transmit water as readily as the alluvial aquifer. For example, about 91 percent of the water pumped from wells is obtained from the alluvial aquifer, yet water-level declines generally have

  12. Hydrogeochemical and isotopic evidences of groundwater salinization in coastal aquifers: A case study in Jeju volcanic island, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, D.; Lee, K.; Koh, D.; Lee, S.; Park, W.; Koh, G.; Woo, N.

    2001-12-01

    In order to clearly identify the origin of saline groundwaters in the eastern part of Jeju volcanic island, Korea the hydrogeochemical and isotopic studies have been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid (TDS) contents of groundwater samples are highly variable (77 to 21,782 mg/L). Most of the groundwaters in the study area are classified into Na-Cl type except a few samples showing Ca-Cl type. Hydrochemical characteristics based on bivariate and triangular diagrams of major ions show that the changes of chemical compositions of groundwaters were mainly controlled by the salinization process linked to cation-exchange reactions. The oxygen, hydrogen, sulfur, and strontium isotopic data explicitly show a simple mixing trend of groundwater and seawater. Using two-components fractional mixing model on the basis of 18O contents as well as Br and Cl contents, the proportion of seawater in fresh groundwater was quantitatively determined as high as 60 %. Sr isotopic compositions and Br/Cl ratios strongly suggest that the source of groundwater salinization is present-day seawater intrusion rather than paleoseawater or formation water, which can also be supported by the I/Cl ratios. The highly permeable aquifers in the east coastal region characterized by low hydraulic gradient and recharge rate and high hydraulic conductivity comparing with other regions are advantageous to the groundwater salinization. Based on the Cl, ¥ä18O, and 87Sr/86Sr it was determined that seawater has intruded into inland 2.5 km from coastline.

  13. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    USGS Publications Warehouse

    Gonthier, Gerard; Clarke, John S.

    2016-06-02

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  14. Geochemical Evidence for Possible Natural Migration of Marcellus Formation Brine to Shallow Aquifers in Pennsylvania

    NASA Astrophysics Data System (ADS)

    Warner, N. R.; Darrah, T. H.; Jackson, R. B.; Osborn, S.; Down, A.; Vengosh, A.

    2012-12-01

    The acceleration in production of natural gas from shale formations through horizontal drilling and hydraulic fracturing has altered the landscape of domestic energy production in the USA. Yet shale gas exploration has generated an increased awareness of risks to drinking water quality amid concerns for the possible migration of stray gas or hydraulic fracturing fluid and/or flowback brine to shallow drinking water aquifers. The degree to which shallow drinking water is at risk from hydraulic fracturing could depend upon the hydraulic connectivity between the shale gas formations and the surface. In this study, we analyzed the geochemistry of over 400 water samples located across six counties of northeastern Pennsylvania in the three principle aquifers, two Upper Devonian Age bedrock aquifers (Catskill and Lock Haven) and one Quaternary Age (Alluvium) that overlie the Marcellus Formation. Based on a detailed analysis of major (Br, Cl, Na, Mg, Ba, and Sr) and trace (Li) element geochemistry, coupled with utilization of a specific spectrum of isotopic tracers (87Sr/86Sr, 228Ra/ 226Ra, 2H/H, 18O/16O), we identify a salinized (Cl> 20 mg/L) shallow groundwater type which suggests conservative mixing relationships between fresh shallow groundwater and an underlying brine. Identification of the brine source is complicated as many of the brines in the northern Appalachian Basin likely share a common origin as the expelled remnants of the formation of the Silurian Salina evaporate deposits. To determine the ultimate source of the diluted brine we compared the observed geochemistry to over 80 brines produced from northern Appalachian Basin formations. The shallow salinized groundwater most closely resembles diluted produced water from the Middle Devonian Marcellus Formation. The 18O/16O and 2H/H of the salinized groundwater indicate that the brine is likely diluted with post-glacial (<10,000 ybp) meteoric water. Combined, these data indicate that hydraulic connections

  15. Ground-Water Availability from the Hawi Aquifer in the Kohala Area, Hawaii

    USGS Publications Warehouse

    Underwood, Mark R.; Meyer, William; Souza, William R.

    1995-01-01

    A ground-water study consisting of test-well drilling, aquifer tests, and numerical simulation was done to investigate ground-water availability in the basal part of the Hawi aquifer between the western drainage divide of Pololu Valley and Upolu Point in Kohala, Hawaii. The test-well drilling provided information on geology, water levels, water quality, vertical extent of the freshwater, and the thickness of the freshwater-saltwater transition zone in that aquifer. A total of 12 test wells were drilled at eight locations. Aquifer tests were done at five locations to estimate the hydraulic conductivity of the aquifer. Using information on the distribution of recharge, vertical extent of freshwater, hydraulic conductivity, and geometry of the basal aquifer, a numerical model was used to simulate the movement of water into, through, and out of the basal aquifer, and the effect of additional pumping on the water levels in the aquifer. Results of the modeling indicate that ground-water withdrawal of 20 million gallons per day above the existing withdrawal of 0.6 million gallons per day from the basal aquifer is hydrologically feasible, but that spacing, depth, and pumping rates of individual wells are important. If pumping is concentrated, the likelihood of saltwater intrusion is increased. The additional withdrawal of 20 million gallons per day would result in a reduction of ground-water discharge to the ocean by an amount equal to pumpage. Although model-calculated declines in water-level outside the area of pumping are small, pumping could cause some reduction of streamflow near the mouth of Pololu Stream.

  16. Application of groundwater sustainability indicators to the Upper Pliocene aquifer in Ho Chi Minh city, Viet Nam

    NASA Astrophysics Data System (ADS)

    Ngo, T. M.; Lee, J.; Lee, H.; Woo, N. C.

    2013-12-01

    Groundwater plays an importance role for domestic, industrial, and agricultural uses in Ho Chi Minh city, Viet Nam. This study is objected to evaluate the sustainability of groundwater by using groundwater sustainability indicators (GWSIs) defined by UNESCO/IAEA/IAH Working Group on Groundwater Indicators at aquifer scale (the Upper Pliocene aquifer). There are four main indicators selected and one new indicator designed for the particular characteristic of Ho Chi Minh city which is under influence of by saline-water intrusion. The results indicated groundwater of the Upper Pliocene aquifer, the main groundwater supply source, is generally in the unsustainable state. The abstraction of groundwater, which was much greater than its capability, is probably causing the serious state of annual groundwater depletion and saline-water intrusion. The GWSIs, which expressed in such a simple way but scientifically-based and policy-relevant, proved its usefulness in evaluating the sustainability of groundwater at the aquifer scale in Ho Chi Minh city, and subsequently should be incorporated in water resource management practices.

  17. Selected techniques for monitoring water movement through unsaturated alluvium during managed aquifer recharge

    USGS Publications Warehouse

    Nawikas, Joseph M.; O'Leary, David R.; Izbicki, John A.; Burgess, Matthew K.

    2016-10-21

    Managed aquifer recharge is used to augment natural recharge to aquifers. It can be used to replenish aquifers depleted by pumping or to store water during wetter years for withdrawal during drier years. Infiltration from ponds is a commonly used, inexpensive approach for managed aquifer recharge.At some managed aquifer-recharge sites, the time when infiltrated water arrives at the water table is not always clearly shown by water-level data. As part of site characterization and operation, it can be desirable to track downward movement of infiltrated water through the unsaturated zone to identify when it arrives at the water table.

  18. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbonmore » production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water

  19. Water-level altitudes 2009 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973-2008 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Houston, Natalie A.; Ramage, Jason K.

    2009-01-01

    This report, done in cooperation with the Harris-Galveston Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District, is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region, Texas. The report (excluding appendixes) contains 16 sheets and 15 tables: 3 sheets are maps showing current-year (2009) water-level altitudes for each aquifer, respectively; 3 sheets are maps showing 1-year (2008-09) water-level changes for each aquifer, respectively; 3 sheets are maps showing 5-year (2004-09) water-level changes for each aquifer, respectively; 4 sheets are maps showing long-term (1990-2009 and 1977-2009) water-level changes for the Chicot and Evangeline aquifers, respectively; 1 sheet is a map showing long-term (2000-2009) water-level change for the Jasper aquifer; 1 sheet is a map showing site locations of borehole extensometers; and 1 sheet comprises graphs showing measured compaction of subsurface material at the sites from 1973 or later through 2008, respectively. Tables listing the data used to construct the aquifer-data maps and the compaction graphs are included.

  20. Hydrogeochemical features of groundwater of semi-confined coastal aquifer in Amol-Ghaemshahr plain, Mazandaran Province, Northern Iran.

    PubMed

    Khairy, Houshang; Janardhana, M R

    2013-11-01

    Hydrogeochemical data of groundwater from the semi-confined aquifer of a coastal two-tier aquifer in Amol-Ghaemshahr plain, Mazandaran Province, Northern Iran reveal salinization of the fresh groundwater (FGW). The saline groundwater zone is oriented at an angle to both Caspian Sea coastline and groundwater flow direction and extends inland from the coastline for more than 40 km. Spearman's rank correlation coefficient matrices, factor analysis data, and values of C ratio, chloro-alkaline indices, and Na(+)/Cl(-) molar ratio indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicate minerals, relict connate saline water, and ion exchange reactions. Saline groundwater samples (SGWS) (n = 20) can be classified into two groups. SGWS of group 1 (n = 17) represent the saline groundwater zone below the Caspian Sea level, and salinization is attributed essentially to (1) lateral intrusion of Caspian seawater as a consequence of (a) excessive withdrawal of groundwater from closely spaced bore wells located in the eastern part of the coastal zone and (b) imbalance between recharge and discharge of the two-tier aquifer and (2) upconing of paleobrine (interfaced with FGW) along deep wells. SGWS of this group contain, on average, 7.9% of saltwater, the composition of which is similar to that of Caspian seawater. SGWS of group 2 (n = 3) belong to the saline groundwater zone encountered above the Caspian Sea level, and salinization of the groundwater representing these samples is attributed to irrigation return flow (n = 2) and inflow of saline river water (n = 1).

  1. Groundwater quality assessment in semi-arid regions using integrated approaches: the case of Grombalia aquifer (NE Tunisia).

    PubMed

    Kammoun, Siwar; Trabelsi, Rim; Re, Viviana; Zouari, Kamel; Henchiri, Jihed

    2018-01-19

    As many arid and semi-arid regions in the Mediterranean Basin, the Grombalia coastal aquifer (NE Tunisia) is affected by severe groundwater exploitation and contamination. Therefore, quality assessments are becoming increasingly important as the long-term protection of water resources is at stake. Multidisciplinary investigations, like the one presented in this paper, are particularly effective in identifying the different origins of mineralization within an aquifer and investigating the impact of anthropogenic activities on groundwater quality. An integrated assessment, focused on the combined use of geostatistical, geochemical and isotopic (δ 18 O, δ 2 H and 3 H) tools, was performed in the Grombalia aquifer between February and March 2014. The overall goal was to study the main processes controlling aquifer salinization, with special focus to nitrate contamination. Results indicate a persisting deterioration of water quality over the whole basin except the south-eastern zone juxtaposing the recharge area of the aquifer. Nitrate contents exceed the drinking water standard (50 mg/l) in 70% of groundwater samples, mainly due to the excessive use of fertilizers and urban activities. Stable isotope measurements showed the contribution of modern rainwater to aquifer recharge and proved the presence of evaporation contributing to the salinity increase. Tritium values of groundwater samples suggested two hypotheses: the existence of mixture between old and recent water or/and the existence of two recharge periods of the aquifer, pre- and post-nuclear weapons test. Principal component analysis confirmed the geochemical interpretation, highlighting that water-rock interaction evaporation effect and intensive anthropogenic activities constitute the main processes controlling the regional groundwater mineralization.

  2. Aquifer water abundance evaluation using a fuzzy- comprehensive weighting method

    NASA Astrophysics Data System (ADS)

    Wei, Z.

    2016-08-01

    Aquifer water abundance evaluation is a highly relevant issue that has been researched for many years. Despite prior research, problems with the conventional evaluation method remain. This paper establishes an aquifer water abundance evaluation method that combines fuzzy evaluation with a comprehensive weighting method to overcome both the subjectivity and lack of conformity in determining weight by pure data analysis alone. First, this paper introduces the principle of a fuzzy-comprehensive weighting method. Second, the example of well field no. 3 (of a coalfield) is used to illustrate the method's process. The evaluation results show that this method is can more suitably meet the real requirements of aquifer water abundance assessment, leading to more precise and accurate evaluations. Ultimately, this paper provides a new method for aquifer water abundance evaluation.

  3. Microbial monitoring during CO2 storage in deep subsurface saline aquifers in Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Wuerdemann, H.; Wandrey, M.; Fischer, S.; Zemke, K.; Let, D.; Zettlitzer, M.; Morozova, D.

    2010-12-01

    Investigations on subsurface saline aquifers have shown an active biosphere composed of diverse groups of microorganisms in the subsurface. Since microorganisms represent very effective geochemical catalysts, they may influence the process of CO2 storage significantly. In the frames of the EU Project CO2SINK a field laboratory to study CO2 storage into saline aquifer was operated. Our studies aim at monitoring of biological and biogeochemical processes and their impact on the technical effectiveness of CO2 storage technique. The interactions between microorganisms and the minerals of both the reservoir and the cap rock may cause changes to the structure and chemical composition of the rock formations, which may influence the reservoir permeability locally. In addition, precipitation and corrosion may be induced around the well affecting the casing and the casing cement. Therefore, analyses of the composition of microbial communities and its changes should contribute to an evaluation of the effectiveness and reliability of the long-term CO2 storage technique. In order to investigate processes in the deep biosphere caused by the injection of supercritical CO2, genetic fingerprinting (PCR SSCP Single-Strand-Conformation Polymorphism) and FISH (Fluorescence in situ Hybridisation) were used for identification and quantification of microorganisms. Although saline aquifers could be characterised as an extreme habitat for microorganisms due to reduced conditions, high pressure and salinity, a high number of diverse groups of microorganisms were detected with downhole sampling in the injection and observation wells at a depth of about 650m depth. Of great importance was the identification of the sulphate reducing bacteria, which are known to be involved in corrosion processes. Microbial monitoring during CO2 injection has shown that both quantity and diversity of microbial communities were strongly influenced by the CO2 injection. In addition, the indigenous microbial

  4. Quality of water in the Trinity and Edwards aquifers, south-central Texas, 1996-98

    USGS Publications Warehouse

    Fahlquist, Lynne; Ardis, Ann F.

    2004-01-01

    During 1996–98, the U.S. Geological Survey studied surface- and ground-water quality in south-central Texas. The ground-water components included the upper and middle zones (undifferentiated) of the Trinity aquifer in the Hill Country and the unconfined part (recharge zone) and confined part (artesian zone) of the Edwards aquifer in the Balcones fault zone of the San Antonio region. The study was supplemented by information compiled from four ground-water-quality studies done during 1996–98.Trinity aquifer waters are more mineralized and contain larger dissolved solids, sulfate, and chloride concentrations compared to Edwards aquifer waters. Greater variability in water chemistry in the Trinity aquifer likely reflects the more variable lithology of the host rock. Trace elements were widely detected, mostly at small concentrations. Median total nitrogen was larger in the Edwards aquifer than in the Trinity aquifer. Ammonia nitrogen was detected more frequently and at larger concentrations in the Trinity aquifer than in the Edwards aquifer. Although some nitrate nitrogen concentrations in the Edwards aquifer exceeded a U.S. Geological Survey national background threshold concentration, no concentrations exceeded the U.S. Environmental Protection Agency public drinking-water standard.Synthetic organic compounds, such as pesticides and volatile organic compounds, were detected in the Edwards aquifer and less frequently in the Trinity aquifer, mostly at very small concentrations (less than 1 microgram per liter). These compounds were detected most frequently in urban unconfined Edwards aquifer samples. Atrazine and its breakdown product deethylatrazine were the most frequently detected pesticides, and trihalomethanes were the most frequently detected volatile organic compounds. Widespread detections of these compounds, although at small concentrations, indicate that anthropogenic activities affect ground-water quality.Radon gas was detected throughout the Trinity

  5. Water quality of the Edwards Aquifer and streams recharging the aquifer in the San Antonio region, Texas

    USGS Publications Warehouse

    Roddy, W.R.

    1992-01-01

    The Edwards aquifer in south-central Texas is one of the most productive and most important aquifers in the State, with an average annual discharge of about 608,000 acre-ft of water during 1932-82 (Reeves and Ozuna, 1985).  The Edwards aquifer is the principal source of water for municipal, industrial, and irrigation use in all or parts of five counties- Bexar, Comal, hays, Medina, and Uvalde- and is the only source of water for San Antonio, the tenth-largest city in the United States (1980 population, 786,000) (A.H. Belo Corporation, 1985).

  6. Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment

    USGS Publications Warehouse

    Glenn, Edward P.; Nagler, Pamela L.; Morino, Kiyomi; Hultine, Kevin

    2013-01-01

    Conclusions: Salts accumulated in the vadose zone at both sites so usable water was confined to the saturated capillary fringe above the aquifer. Existence of a saline aquifer imposes several types of constraints on phreatophyte EG, which need to be considered in models of plant water uptake. The heterogeneous nature of saltcedar EG over river terraces introduces potential errors into estimates of ET by wide-area methods.

  7. Relation of Chlorofluorocarbon Ground-Water Age Dates to Water Quality in Aquifers of West Virginia

    USGS Publications Warehouse

    ,; Kurt, J.; Kozar, Mark D.

    2007-01-01

    The average apparent age of ground water in fractured-bedrock aquifers in West Virginia was determined using chlorofluorocarbon (CFC) dating methods. Since the introduction of CFC gases as refrigerants in the late 1930s, atmospheric concentrations have increased until production ceased in the mid-1990s. CFC dating methods are based on production records that date to the early 1940s, and the preservation of atmospheric CFC concentrations in ground water at the time of recharge. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Ambient Ground-Water Monitoring Network (AGN) programs in West Virginia from 1997 to 2005, 80 samples from the Appalachian Plateaus Physiographic Province, 27 samples from the Valley and Ridge Physiographic Province, and 5 samples from the Ohio River alluvial aquifers were collected to estimate ground-water ages in aquifers of West Virginia. Apparent CFC ages of water samples from West Virginia aquifers ranged from 5.8 to 56 years. In the Appalachian Plateaus, topographically driven ground-water flow is evident from apparent ages of water samples from hilltop, hillside, and valley settings (median apparent ages of 12, 14, and 25 years, respectively). Topographic setting was the only factor that was found to be related to apparent ground-water age in the Plateaus at the scale of this study. Similar relations were not found in Valley and Ridge aquifers, indicating that other factors such as bedding or geologic structure may serve larger roles in controlling ground-water flow in that physiographic province. Degradation of CFCs was common in samples collected from methanogenic/anoxic aquifers in the Appalachian Plateaus and suboxic to anoxic aquifers in the Valley and Ridge. CFC contamination was most common in Ohio River alluvial aquifers and carbonate units of the Valley and Ridge, indicating that these highly transmissive surficial aquifers are the most vulnerable to water-quality degradation and may

  8. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  9. Geohydrology and simulated ground-water flow, Plymouth-Carver Aquifer, southeastern Massachusetts

    USGS Publications Warehouse

    Hansen, Bruce P.; Lapham, Wayne W.

    1992-01-01

    The Plymouth-Carver aquifer underlies an area of 140 square miles and is the second largest aquifer in areal extent in Massachusetts. It is composed primarily of saturated glacial sand and gravel. The water-table and bedrock surface were mapped and used to determine saturated thickness of the aquifer, which ranged from less than 20 feet to greater than 200 feet. Ground water is present mainly under unconfined conditions, except in a few local areas such as beneath Plymouth Harbor. Recharge to the aquifer is derived almost entirely from precipitation and averages about 1.15 million gallons per day per square mile. Water discharges from the aquifer by pumping, evapotranspiration, direct evaporation from the water table, and seepage to streams, ponds, wetlands, bogs, and the ocean. In 1985, water use was about 59.6 million gallons per day, of which 82 percent was used for cranberry production. The Plymouth-Carver aquifer was simulated by a three-dimensional, finite difference ground-water-flow model. Most model boundaries represent the natural hydrologic boundaries of the aquifer. The model simulates aquifer recharge, withdrawals by pumped wells, leakage through streambeds, and discharge to the ocean. The model was calibrated for steady-state and transient conditions. Model results were compared with measured values of hydraulic head and ground-water discharge. Results of simulations indicate that the modeled ground-water system closely simulates actual aquifer conditions. Four hypothetical ground-water development alternatives were simulated to demonstrate the use of the model and to examine the effects on the ground-water system. Simulation of a 2-year period of no recharge and average pumping rates that occurred from 1980-85 resulted in water-level declines exceeding 5 feet throughout most of the aquifer and a decrease of 54 percent in average ground-water discharge to streams. In a second simulation, four wells in the northern part of the area were pumped at 10

  10. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  11. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    USGS Publications Warehouse

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  12. Water-Level Changes in Aquifers of the Atlantic Coastal Plain, Predevelopment to 2000

    USGS Publications Warehouse

    dePaul, Vincent T.; Rice, Donald E.; Zapecza, Otto S.

    2008-01-01

    The Atlantic Coastal Plain aquifer system, which underlies a large part of the east coast of the United States, is an important source of water for more than 20 million people. As the population of the region increases, further demand is being placed on those ground-water resources. To define areas of past and current declines in ground-water levels, as well as to document changes in those levels, historical water-level data from more than 4,000 wells completed in 13 regional aquifers in the Atlantic Coastal Plain were examined. From predevelopment to 1980, substantial water-level declines occurred in many areas of the Atlantic Coastal Plain. Regional variability in water-level change in the confined aquifers of the Atlantic Coastal Plain resulted from regional differences in aquifer properties and patterns of ground-water withdrawals. Within the Northern Atlantic Coastal Plain, declines of more than 100 ft were observed in New Jersey, Delaware, Maryland, Virginia, and North Carolina. Regional declines in water levels were most widespread in the deeper aquifers that were most effectively confined?the Upper, Middle, and Lower Potomac aquifers. Within these aquifers, water levels had declined up to 200 ft in southern Virginia and to more than 100 ft in New Jersey, Delaware, Maryland, and North Carolina. Substantial water-level declines were also evident in the regional Lower Chesapeake aquifer in southeastern New Jersey; in the Castle Hayne-Piney Point aquifer in Delaware, Maryland, southern Virginia and east-central North Carolina; in the Peedee-Severn aquifer in east-central New Jersey and southeastern North Carolina; and in the Black Creek-Matawan aquifer in east-central New Jersey and east-central North Carolina. Conversely, declines were least severe in the regional Upper Chesapeake aquifer during this period. In the Southeastern Coastal Plain, declines of more than 100 ft in the Chattahoochee River aquifer occurred in eastern South Carolina and in southwestern

  13. Geochemistry and origins of mineralized waters in the Floridan aquifer system, northeastern Florida

    USGS Publications Warehouse

    Phelps, G.G.

    2001-01-01

    Increases in chloride concentration have been observed in water from numerous wells tapping the Floridan aquifer system in northeastern Florida. Although most increases have been in the eastern part of Duval County, Florida, no spatial pattern in elevated chloride concentrations is discernible. Possible sources of the mineralized water include modern seawater intrusion; unflushed Miocene-to-Pleistocene-age seawater or connate water in aquifer sediments; or mineralized water from deeper zones of the aquifer system or from formations beneath the Floridan aquifer system. The purpose of this study was to document the chemical and isotopic characteristics of water samples from various aquifer zones, and from geochemical and hydrogeologic data, to infer the source of the increased mineralization. Water samples were collected from 53 wells in northeastern Florida during 1997-1999. Wells tapped various zones of the aquifer including: the Fernandina permeable zone (FPZ), the upper zone of the Lower Floridan aquifer (UZLF), the Upper Floridan aquifer (UFA), and both the UFA and the UZLF. Water samples were analyzed for major ions and trace constituents and for isotopes of carbon, oxygen, hydrogen, sulfur, strontium, chlorine, and boron. Samples of rock from the aquifer were analyzed for isotopes of oxygen, carbon, and strontium. In general, water from various aquifer zones cannot be differentiated based on chemistry, except for water from FPZ wells. Major-ion concentrations vary as much within the upper zone of the Lower Floridan aquifer and the Upper Floridan aquifer as between these two zones. Simple models of mixing between fresh ground water and either modern seawater or water from the FPZ as a mineralized end member show that many water samples from the UZLF aquifer and the UFA are enriched in bicarbonate, calcium, magnesium, sulfate, fluoride, and silica and are depleted in sodium and potassium (as compared to concentrations predicted by simple mixing). Chemical mass

  14. Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments

    USGS Publications Warehouse

    Rotzoll, Kolja; Oki, Delwyn S.; El-Kadi, Aly I.

    2010-01-01

    Freshwater-lens thickness and long-term changes in freshwater volume in coastal aquifers are commonly assessed through repeated measurement of salinity profiles from monitor wells that penetrate into underlying salt water. In Hawaii, the thickest measured freshwater lens is currently 262 m in dike-free, volcanic-rock aquifers that are overlain by thick coastal sediments. The midpoint depth (depth where salinity is 50% salt water) between freshwater and salt water can serve as an indicator for freshwater thickness. Most measured midpoints have risen over the past 40 years, indicating a shrinking lens. The mean rate of rise of the midpoint from 1999–2009 varied locally, with faster rates in highly developed areas (1.0 m/year) and slower rates in less developed areas (0.5 m/year). The thinning of the freshwater lenses is the result of long-term groundwater withdrawal and reduced recharge. Freshwater/salt-water interface locations predicted from measured water levels and the Ghyben-Herzberg principle may be deeper than measured midpoints during some periods and shallower during other periods, although depths may differ up to 100 m in some cases. Moreover, changes in the midpoint are slower than changes in water level. Thus, water levels may not be a reliable indicator of the amount of freshwater in a coastal aquifer.

  15. Changes in water levels and storage in the High Plains Aquifer, predevelopment to 2009

    USGS Publications Warehouse

    McGuire, V.L.

    2011-01-01

    The High Plains aquifer underlies 111.8 million acres (175,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the primary agricultural regions in the Nation. Water-level declines began in parts of the High Plains aquifer soon after the onset of substantial irrigation with groundwater from the aquifer (about 1950 and termed "predevelopment" in this fact sheet). By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (ft) (Luckey and others, 1981). In 1987, in response to declining water levels, Congress directed the U.S. Geological Survey (USGS), in collaboration with numerous Federal, State, and local water-resources entities, to assess and track water-level changes in the aquifer. This fact sheet summarizes changes in water levels and drainable water in storage in the High Plains aquifer from predevelopment to 2009. Drainable water in storage is the fraction of water in the aquifer that will drain by gravity and can be withdrawn by wells. The remaining water in the aquifer is held to the aquifer material by capillary forces and generally cannot be withdrawn by wells. Drainable water in storage is termed "water in storage" in this report. A companion USGS report presents more detailed and technical information about water-level and storage changes in the High Plains aquifer during this period (McGuire, 2011).

  16. Numerical simulation of flow in deep open boreholes in a coastal freshwater lens, Pearl Harbor Aquifer, O‘ahu, Hawai‘i

    USGS Publications Warehouse

    Rotzoll, Kolja

    2012-01-01

    .65 percent seawater salinity. Groundwater withdrawals and drawdowns generally occur at shallow depths in the freshwater system with respect to the depth of the DMW and cause upward flow in the DMW. Simulated groundwater withdrawal of 4.3 million gallons per day that is 100 ft from a DMW causes thirty times more borehole flow than borehole flow that is induced by the regional flow field alone. The displacement of the 2 percent borehole salinity depth increases from 17 to 33 ft, and the average salinity difference between aquifer and borehole is 0.85 percent seawater salinity. Peak borehole flow caused by local groundwater withdrawal near DMWs is directly proportional to the pumping rate in the nearby production well. Increasing groundwater withdrawal to 16.7 million gallons per day increases upward displacement of the 50 percent salinity depth (midpoint of the transition zone) from 4.6 to 77 ft, and the average salinity difference between aquifer and borehole is 1.4 percent seawater salinity. Simulated groundwater withdrawal that is 3,000 ft away from DMWs causes less borehole flow and salinity displacements than nearby withdrawal. Simulated effects of groundwater withdrawal from a horizontal shaft and withdrawal from a vertical well in a homogeneous aquifer were similar. Generally, the 50 percent salinity depths are less affected by borehole flow than the 2 percent salinity depths. Hence, measured salinity profiles are useful for calibration of regional numerical models despite borehole-flow effects. Commonly, a 1 percent error in salinity is acceptable in numerical modeling studies. Incorporation of heterogeneity in the model is necessary to simulate long vertical steps observed in salinity profiles in southern O‘ahu. A thick zone of low aquifer hydraulic conductivity limits exchange of water between aquifer and well and creates a long vertical step in the salinity profile. A heterogeneous basalt-aquifer scenario simulates observed vertical salinity steps and borehole

  17. Preliminary study of the aquifers of the lower Mesilla Valley in Texas and New Mexico by model simulation

    USGS Publications Warehouse

    Gates, J.S.; White, D.E.; Leggat, E.R.

    1984-01-01

    Because the salinity of water in all three aquifers south of Canutillo is greater than elsewhere in the study area, there is potential for movement of this water northward toward the Canutillo well field if the cone of depression reaches that part of the aquifer system. This potential should be evaluated in future geohydrologic studies of the lower Mesilla Valley.

  18. The origin of increased salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, northern Estonia

    NASA Astrophysics Data System (ADS)

    Karro, Enn; Marandi, Andres; Vaikmäe, Rein

    Monitoring of the confined Cambrian-Vendian aquifer system utilised for industrial water supply at Kopli Peninsula in Tallinn over 24 years reveals remarkable changes in chemical composition of groundwater. A relatively fast 1.5 to 3.0-fold increase in TDS and in concentrations of major ions in ed groundwater is the consequence of heavy pumping. The main sources of dissolved load in Cambrian-Vendian groundwater are the leaching of host rock and the other geochemical processes that occur in the saturated zone. Underlying crystalline basement, which comprises saline groundwater in its upper weathered and fissured portion, and which is hydraulically connected with the overlying Cambrian-Vendian aquifer system, is the second important source of ions. The fractured basement and its clayey weathering crust host the Ca-Cl type groundwater, which is characterised by high TDS values (2-20 g/L). Intensive water ion accelerates the exchange of groundwaters and increases the area of influence of pumping. Chemical and isotopic studies of groundwater indicate an increasing contribution of old brackish water from the crystalline basement and rule out the potential implication of an intrusion of seawater into aquifer. L'origine de la salinité croissante dans le système aquifère du Cambrien-Vendien dans la péninsule de Kopli, nord de l'Estonie Le suivi à long terme du système aquifère captif du Cambrien-Vendien utilisé pour l'approvisionnement d'eaux industrielles dans la Péninsule de Kopli, nord de l'Estonie, révèle de remarquables changements dans la composition chimique des eaux souterraines. Une augmentation de facteur 1.5 à 3 de la TDS et des concentrations en ions majeurs dans l'eau souterraine est la conséquence de pompages intensifs. Les sources principales des charges dissoutes dans les eaux de l'aquifère du Cambrien-Vendien sont le lessivage des roches et d'autres phénomènes géochimiques ayant lieu dans la zone saturée. Le soubassement rocheux cristallin

  19. Simulated effects of projected withdrawals from the Wenonah-Mount Laurel Aquifer on ground-water levels in the Camden, New Jersey, area and vicinity

    USGS Publications Warehouse

    Navoy, A.S.

    1994-01-01

    The Wenonah-Mount Laurel aquifer is being considered as a potential source of future water supply for the Camden, New Jersey, area. The deeper Potomac- Raritan-Magothy aquifer system is currently the major major source of water supply for the area, but its use may be curtailed or reduced by 35 percent of 1983 withdrawals through its designation by the New Jersey Department of Environmental Protection and Energy as "Water Supply Critical Area#2." Withdrawals from the Wenonah-Mount Laurel aquifer currently (1989) total about 7 million gallons per day. The anticipated use of this aquifer by communities with access to it, as an alternative supply, could increase to more than 14 million gallons per day by 2020. If the communities of Clayton and Glassboro decrease their withdrawals from the Potomac-Raritan-Magothy aquifer system by 50 percent or cease them entirely because of their proximity to saline water, the use of Wenonah-Mount Laurel aquifer could increase to greater than 15 million gallons per day by 2020. Simulation of the ground-water system indicates that the projected increase in withdrawals will cause cones of depression in the potentiometric surface of the Wenonah-Mount Laurel aquifer in the Camden metro- politan area by 2020 that extend to depths ranging from 10 feet above sea level to 60 feet below sea level. This represents a secline of about 40 to 100 feet thr 1990 conditions. Withdrawals in northeastern Burlington County will cause a large cone of depression that, by 2020, will extend to depths of about 220 feet below sea level, represent- ing a decline of about 140 feet from 1990 conditions. Simulation results indicate that water levels in the Wenonah-Mount Laurel aquifer near the Salem Nuclear Power Plant are somewhat insensitive to withdrawals elsewhere in the aquifer. In some areas, especially in Burlington County, the cones of depression have developed in proximity to the aquifer-outcrop area and could induce infiltration from streams crossing the

  20. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  1. Water levels in, extent of freshwater in, and water withdrawal from eight major confined aquifers, New Jersey Coastal Plain, 1993

    USGS Publications Warehouse

    Lacombe, Pierre J.; Rosman, Robert

    1997-01-01

    Water levels in 722 wells in the Coastal Plain of New Jersey, Pennsylvania, and northeastern Delaware were measured during October and November 1993 and were used to define the potentiometric surface of the eight major confined aquifers of the area. Isochlors (lines of equal chloride concentration) for 250 and 10,000 milligrams per liter are included to show the extent of freshwater in each of the aquifers. Estimated water withdrawals from the eight major confined aquifers are reported for 1978-94. Water-withdrawal and water-level maps including isochlors were constructed for the Cohansey aquifer of Cape May County, the Atlantic City 800-foot sand, the Piney Point aquifer, the Wenonah-Mount Laurel aquifer, the Englishtown aquifer system, the Upper Potomac-Raritan-Magothy, the Middle and undifferentiated Potomac-Raritan-Magothy, and the Lower Potomac-Raritan-Magothy aquifers. From 1988 to 1993, water levels near the center of the large cones of depression in the Middlesex-Monmouth County area rose as much as 120 ft in the Wenonah-Mount Laurel aquifer and Englishtown aquifer system, 40 ft in the Upper Potomac-Raritan-Magothy aquifer, and 96 ft in the Middle and undifferentiated Potomac-Raritan-Magothy aquifers. Large cones of depression in the potentiometric surface of aquifers of the Potomac-Raritan-Magothy aquifer system in the Burlington-Camden-Gloucester area remained at about the same altitude; that is, the potentiometric surface neither rose nor fell in the aquifers by more than 5 feet. In the same area, water levels in the Englishtown aquifer system were static, whereas the water levels in the Wenonah-Mount Laurel aquifer declined 5 to 20 feet, forming an expanded cone of depression. Water levels in the Cohansey, Atlantic City 800-foot sand, and Piney Point aquifers declined by 1 to 10 feet during 1988?93.

  2. Movement of coliform bacteria and nutrients in ground water flowing through basalt and sand aquifers.

    PubMed

    Entry, J A; Farmer, N

    2001-01-01

    Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.

  3. Geohydrology and water quality of the Roubidoux Aquifer, northeastern Oklahoma

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.; Fairchild, R.W.

    1990-01-01

    The Roubidoux aquifer is an important source of freshwater for public supplies, commerce, industry, and rural water districts in northeastern Oklahoma. Ground-water withdrawals from the aquifer in 1981 were estimated to be 4.8 million gallons per day, of which about 90 percent was withdrawn in Ottawa County. Wells drilled at the beginning of the 20th century originally flowed at the land surface, but in 1981 water levels ranged from 22 to 471 feet below land surface. A large cone of depression has formed as a result of ground water withdrawals near Miami. Wells completed in the Roubidoux aquifer have yields that range from about 100 to more than 1,000 gallons per minute. An aquifer test and a digital ground-water flow model were used to estimate aquifer and confining-layer hydraulic characteristics. Using these methods, the transmissivity of the aquifer was estimated to be within a range of 400 to 700 square feet per day. The leakance of the confining layer was determined to be within a range from 0 to 0.13 per day, with a best estimate value in a range from 4.3 x 10-8 to 7.7 x 10-8 per day. Analyses of water samples collected as part of this study and of water-quality data from earlier work indicate that a large areal change in major-ion chemistry occurs in ground water in the Roubidoux aquifer in northeastern Oklahoma. The ground water in the easternmost part of the study unit has relatively small dissolved-solids concentrations (less than 200 milligrams per liter) with calcium, magnesium, and bicarbonate as the major ions. Ground water in the westernmost part of the study unit has relatively large dissolved-solids concentrations (greater than 800 milligrams per liter) with sodium and chloride as the major ions. A transition zone of intermediate sodium, chloride, and dissolved-solids concentrations exists between the easternmost and westernmost parts of the study unit. Three water-quality problems are apparent in the Roubidoux aquifer in northeast Oklahoma: (1

  4. Transmissivity and water quality of water-producing zones in the intermediate aquifer system, Sarasota County, Florida

    USGS Publications Warehouse

    Knochenmus, L.A.; Bowman, Geronia

    1998-01-01

    The intermediate aquifer system is an important water source in Sarasota County, Florida, because the quality of water in it is usually better than that in the underlying Upper Floridan aquifer. The intermediate aquifer system consists of a group of up to three water-producing zones separated by less-permeable units that restrict the vertical movement of ground water between zones. The diverse lithology, that makes up the intermediate aquifer system, reflects the variety of depositional environments that occurred during the late Oligocene and Miocene epochs. Slight changes in the depositional environment resulted in aquifer heterogeneity, creating both localized connection between water-producing zones and abrupt culmination of water-producing zones that are not well documented. Aquifer heterogeneity results in vertical and areal variability in hydraulic and water-quality properties. The uppermost water-producing zone is designated producing zone 1 but is not extensively used because of its limited production capability and limited areal extent. The second water-producing zone is designated producing zone 2, and most of the domestic- and irrigation-supply wells in the area are open to this zone. Additionally, producing zone 2 is utilized for public supply in southern coastal areas of Sarasota County. Producing zone 3 is the lowermost and most productive water-producing zone in the intermediate aquifer system. Public-supply well fields serving the cities of Sarasota and Venice, as well as the Plantation and Mabry Carlton Reserve well fields, utilize producing zone 3. Heads within the intermediate aquifer system generally increase with aquifer depth. However, localized head-gradient reversals occur in the study area, coinciding with sites of intense ground-water withdrawals. Heads in producing zones 1, 2, and 3 range from 1 to 23, 0.2 to 34, and 7 to 42 feet above sea level, respectively. Generally, an upward head gradient exists between producing zones 3 and 2

  5. Potential for water-quality degradation of interconnected aquifers in west-central Florida

    USGS Publications Warehouse

    Metz, P.A.; Brendle, D.L.

    1996-01-01

    Thousands of deep artesian wells were drilled into the Upper Floridan aquifer in west-central Florida prior to well-drilling regulations adopted in the 1970's. The wells were usually completed with a short length of casing through the unconsolidated sediments and were left open to multiple aquifers containing water of varying quality. These open boreholes serve as a potential source of water-quality degradation within the aquifers when vertical internal borehole flow is induced by hydraulic-head differences. Thispotential for water-quality degradation exists in west-central Florida where both the intermediate aquifer system and Upper Floridan aquifer exist. Measurements of caliper, temperature, gamma, fluid conductivity, and flow were obtained in 87 wells throughout west-central Florida to determine the occurrence of interaquifer borehole flow between the intermediate aquifer system and the Upper Floridan aquifer. Flow measurements were made using an impeller flowmeter, a heat-pulse flowmeter, and a video camera with an impeller flowmeter attachment. Of the 87 wells measured with the impeller flowmeter, 17 had internal flow which ranged from 10 to 300 gallons per minute. A heat-pulse flowmeter was used in 19 wells in which flow was not detected using the impeller flowmeter. Of these 19 wells, 18 had internal flow which ranged from 0.3 to 10gallons per minute. Additionally, water-quality samples were collected from specific contributing zones in wells that had internal flow. Analysis of geophysical and water-quality data indicates degradation of water quality has occurred from mineralized ground water flowing upward from the Upper Floridan aquifer into the intermediate aquifer system through both uncased boreholes and corroded black-iron well casings. In areas where there is a downward component of flow, data indicate that potable water from the intermediate aquifer system is artificially recharging the Upper Floridan aquifer through open boreholes. A geographical

  6. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    NASA Astrophysics Data System (ADS)

    Plaksina, Tatyana; Kanfar, Mohammed

    2017-11-01

    With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3) approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  7. Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983

    USGS Publications Warehouse

    Eckel, J.A.; Walker, R.L.

    1986-01-01

    Water levels and changes in water levels in the major aquifers of the New Jersey Coastal Plain are documented. Water levels in 1,071 wells were measured in 1983, and are compared with 827 water level measurements made in the same wells in 1978. Increased groundwater withdrawals from the major artesian aquifers that underlie the New Jersey Coastal Plain have caused large cones of depression in the artesian heads. These cones are delineated on detailed potentiometric surface maps based on water level data collected in the fall of 1983. Hydrographs from observation wells show trends of water levels for the 6-year period of 1978 through 1983. The Potomac-Raritan-Magothy aquifer system is divided into the lower, middle, and upper aquifers. The potentiometric surfaces in these aquifers form large cones of depression centered in the Camden and Middlesex-Monmouth County areas. Measured water levels declined as much as 23 ft in these areas for the period of study. The lowest levels are 96 ft below sea level in Camden County and 91 ft below sea level in the Middlesex-Monmouth County area. Deep cones of depression in coastal Monmouth and Ocean counties in both the Englishtown aquifer system and Wenonah-Mount Laurel aquifer are similar in location and shape. This is because of an effective hydraulic connection between these aquifers. Measured water levels declined as much as 29 ft in the Englishtown aquifer system and 21 ft in the Wenonah-Mount Laurel aquifer during the period of study. The lowest levels are 249 ft below sea level in the Englishtown aquifer system and 196 ft below sea level in the Wenonah-Mount Laurel aquifer. Water levels in the Piney Point aquifer are as low as 75 ft below sea level at Seaside Park, Ocean County and 35 ft below sea level in southern Cumberland County. Water levels in Cumberland County are affected by large withdrawals of groundwater in Kent County, Delaware. Water levels in the Atlantic City 800 ft sand of the Kirkwood Formation define an

  8. Time-lapse resistivity investigation of salinity changes at an ex-promontory land: a case study of Carey Island, Selangor, Malaysia.

    PubMed

    Tajul Baharuddin, Mohamad Faizal; Taib, Samsudin; Hashim, Roslan; Zainal Abidin, Mohd Hazreek; Ishak, Mohd Fakhrurrazi

    2011-09-01

    Time-lapse resistivity measurements and groundwater geochemistry were used to study salinity effect on groundwater aquifer at the ex-promontory-land of Carey Island in Malaysia. Resistivity was measured by ABEM Terrameter SAS4000 and ES10-64 electrode selector. Relationship between earth resistivity and total dissolved solids (TDS) was derived, and with resistivity images, used to identify water types: fresh (ρ ( e ) > 6.5 Ω m), brackish (3 Ω m < ρ ( e ) < 6.5 Ω m), or saline (ρ ( e ) < 3 Ω m). Long-term monitoring of the studied area's groundwater quality via measurements of its time-lapse resistivity showed salinity changes in the island's groundwater aquifers not conforming to seawater-freshwater hydraulic gradient. In some aquifers far from the coast, saline water was dominant, while in some others, freshwater 30 m thick showed groundwater potential. Land transformation is believed to have changed the island's hydrogeology, which receives saltwater pressure all the time, limiting freshwater recharge to the groundwater system. The time-lapse resistivity measurements showed active salinity changes at resistivity-image bottom moving up the image for two seasons' (wet and dry) conditions. The salinity changes are believed to have been caused by incremental tide passing through highly porous material in the active-salinity-change area. The study's results were used to plan a strategy for sustainable groundwater exploration of the island.

  9. Tests of subsurface storage of freshwater at Hialeah, Dade County, Florida, and numerical simulation of the salinity of recovered water

    USGS Publications Warehouse

    Merritt, Michael L.

    1997-01-01

    This paper presents and interprets data from three cycles of injection, storage, and recovery of freshwater in a brackish aquifer through wells drilled at the Hialeah Water Treatment Plant in northeastern Dade County, Florida. Also described is an application of solute-transport modeling techniques to depict the hypothetical movement of the freshwater mass and to simulate the increasing salinity of the recovered water during the withdrawal phases. This paper also reports results of use of the calibrated model to predict recovery efficiencies in hypothetical future operational schedules of injection and recovery.

  10. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  11. Drainage of Southeast Greenland firn aquifer water through crevasses to the bed

    NASA Astrophysics Data System (ADS)

    Poinar, Kristin; Joughin, Ian; Lilien, David; Brucker, Ludovic; Kehrl, Laura; Nowicki, Sophie

    2017-02-01

    A firn aquifer in the Helheim Glacier catchment of Southeast Greenland lies directly upstream of a crevasse field. Previous measurements show that a 3.5-km long segment of the aquifer lost a large volume of water (26,000 - 65,000 m2 in cross section) between spring 2012 and spring 2013, compared to annual meltwater accumulation of 6000 - 15,000 m2. The water is thought to have entered the crevasses, but whether the water reached the bed or refroze within the ice sheet is unknown. We used a thermo-visco-elastic model for crevasse propagation to calculate the depths and volumes of these water-filled crevasses. We compared our model output to data from the Airborne Topographic Mapper (ATM), which reveals the near-surface geometry of specific crevasses, and WorldView images, which capture the surface expressions of crevasses across our 1.5-km study area. We found a best fit with a shear modulus between 0.2 and 1.5 GPa within our study area. We show that surface meltwater can drive crevasses to the top surface of the firn aquifer ( 20 m depth), whereupon it receives water at rates corresponding to the water flux through the aquifer. Our model shows that crevasses receiving firn-aquifer water hydrofracture through to the bed, 1000 m below, in 10-40 days. Englacial refreezing of firn-aquifer water raises the average local ice temperature by 4°C over a ten-year period, which enhances deformational ice motion by 50 m/yr, compared to the observed surface velocity of 200 m/yr. The effect of the basal water on the sliding velocity remains unknown. Were the firn aquifer not present to concentrate surface meltwater into crevasses, we find that no surface melt would reach the bed; instead, it would refreeze annually in crevasses at depths <500 m. The crevasse field downstream of the firn aquifer likely allows a large fraction of the aquifer water in our study area to reach the bed. Thus, future studies should consider the aquifer and crevasses as part of a common system. This

  12. A preliminary appraisal of the Garber-Wellington Aquifer, southern Logan and northern Oklahoma counties, Oklahoma

    USGS Publications Warehouse

    Carr, Jerry E.; Marcher, Melvin V.

    1977-01-01

    than 250 feet deep range from 70 to 475 gallons per minute and average 240 gallons per minute. Potential well yields range from 225 gallons per minute when the fresh-water zone is 350 feet thick to about 550 gallons per minute where the fresh water zone is 850 feet thick. These estimates of potential yield are based on an available drawdown of half the thickness of the fresh-water zone and a specific capacity of 1.3 gallons per minute per foot. Intrusion of saline water into the fresh-water zone is a potential threat to water quality in the aquifer if the pressure head in the fresh-water zone is reduced sufficiently to allow upconing of saline water. One way to avoid the problem of upconing is by steady pumping at low rates from widely spaced wells; however, information required to determine pumping rates and well spacing is not available. For proper aquifer management the distribution of wells and rates of withdrawals should be designed to capture maximum recharge to the ground-water system. This may be accomplished by developing regional ground-water gradients that are sufficiently large to move water to pumpage centers but not so steep as to cause upconing of saline water or excessive water-level declines.

  13. The calculation of aquifer chemistry in hot-water geothermal systems

    USGS Publications Warehouse

    Truesdell, Alfred H.; Singers, Wendy

    1974-01-01

    The temperature and chemical conditions (pH, gas pressure, and ion activities) in a geothermal aquifer supplying a producing bore can be calculated from the enthalpy of the total fluid (liquid + vapor) produced and chemical analyses of water and steam separated and collected at known pressures. Alternatively, if a single water phase exists in the aquifer, the complete analysis (including gases) of a sample collected from the aquifer by a downhole sampler is sufficient to determine the aquifer chemistry without a measured value of the enthalpy. The assumptions made are that the fluid is produced from a single aquifer and is homogeneous in enthalpy and chemical composition. These calculations of aquifer chemistry involving large amounts of ancillary information and many iterations require computer methods. A computer program in PL-1 to perform these calculations is available from the National Technical Information Service as document PB-219 376.

  14. Calcite raft geochemistry as a hydrological proxy for Holocene aquifer conditions in Hoyo Negro and Ich Balam (Sac Actun Cave System), Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Kovacs, Shawn E.; Reinhardt, Eduard G.; Chatters, James C.; Rissolo, Dominique; Schwarcz, Henry P.; Collins, Shawn V.; Kim, Sang-Tae; Nava Blank, Alberto; Luna Erreguerena, Pilar

    2017-11-01

    Two cores from calcite rafts deposits located in Cenote Ich Balam and Hoyo Negro were dated and analyzed for 87Sr/86Sr, δ18O, δ13C, Sr/Ca and Cl/Ca. The geochemical records show changing aquifer salinity spanning the last ∼ 8.5 cal kyrs BP and interrelationships with Holocene climate trends (wet and dry periods). During the wet mid-Holocene, the salinity of the meteoric Water Mass (WM; at 7.8-8.3 cal kyrs BP) was relatively high at 1.5-2.7 ppt and then became less saline (1.0-1.5 ppt) during the last ∼ 7000 yrs as climate became progressively drier. High salinity of the meteoric WM during the wet mid-Holocene is attributed to increased turbulent mixing between the meteoric and underlying marine WM. Increased precipitation, in terms of amount, frequency, and intensity (e.g. hurricanes) causes higher flow of meteoric water towards the coast and mixing at the halocline, a phenomenon recorded with recent instrumental monitoring of the aquifer. Conversely, during dry periods reduced precipitation and flow in the meteoric WM would result in lower salinity. Karst properties and Holocene sea-level rise also seem to have an effect on the aquifer. When the regionally extensive network of shallow cave passages (∼ 10-12 m water depth) are flooded at ∼ 8000 cal yrs BP, there is a rapid shift in salinity. This study demonstrates that calcite raft deposits can be used as paleo-environmental recorders documenting the effects of sea level and climate change on aquifer condition.

  15. Assessment of the Efficacy of Home Remedial Methods to Improve Drinking Water Quality in Two Major Aquifer Systems in Jaffna Peninsula, Sri Lanka

    PubMed Central

    Subanky, Suvendran

    2017-01-01

    Chunnakam and Vadamaradchi are two major aquifer systems in Jaffna Peninsula, Sri Lanka. This study was performed to compare water quality in the domestic wells in these aquifers and to assess the efficacy of household water treatments for treating contaminated water. Replicate well water samples were collected from each aquifer and pH, dissolved oxygen (DO), conductivity, total dissolved solids (TDS), salinity, temperature, total solids (TS), total hardness (TH), chemical oxygen demand (COD), oil and grease (OG), nitrate N (N), and total phosphate (TP) were measured. The sampled water from the domestic wells was filtered through commercial mineral filter and Moringa oleifera leaf powder and boiled at 100°C for 10 minutes and the TH, OG, N, and TP were measured. Both OG and N in Chunnakam were significantly higher and the DO were significantly lower than those of Vadamaradchi. TH, N, and OG of some wells exceeded the drinking water quality standards established by Sri Lanka Standards Institution. Moringa oleifera leaf powder filtration reduced N significantly and filtering through commercial mineral filter reduced OG, TH, and N significantly. Boiling at 100°C could remove TH significantly but may cause significant increase in N which might result in health impacts. PMID:29181225

  16. Assessment of the Efficacy of Home Remedial Methods to Improve Drinking Water Quality in Two Major Aquifer Systems in Jaffna Peninsula, Sri Lanka.

    PubMed

    Wijeyaratne, W M Dimuthu Nilmini; Subanky, Suvendran

    2017-01-01

    Chunnakam and Vadamaradchi are two major aquifer systems in Jaffna Peninsula, Sri Lanka. This study was performed to compare water quality in the domestic wells in these aquifers and to assess the efficacy of household water treatments for treating contaminated water. Replicate well water samples were collected from each aquifer and pH, dissolved oxygen (DO), conductivity, total dissolved solids (TDS), salinity, temperature, total solids (TS), total hardness (TH), chemical oxygen demand (COD), oil and grease (OG), nitrate N (N), and total phosphate (TP) were measured. The sampled water from the domestic wells was filtered through commercial mineral filter and Moringa oleifera leaf powder and boiled at 100°C for 10 minutes and the TH, OG, N, and TP were measured. Both OG and N in Chunnakam were significantly higher and the DO were significantly lower than those of Vadamaradchi. TH, N, and OG of some wells exceeded the drinking water quality standards established by Sri Lanka Standards Institution. Moringa oleifera leaf powder filtration reduced N significantly and filtering through commercial mineral filter reduced OG, TH, and N significantly. Boiling at 100°C could remove TH significantly but may cause significant increase in N which might result in health impacts.

  17. Constraints of costal aquifer functioning in a deeply antropized area through a multi-isotope fingerprinting (Recife, Brazil)

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, Emmanuelle; Cary, Lise; Bertrand, Guillaume; Hirata, Ricardo; Martins, Veridiana; Montenegro, Suzana; Pauwels, Hélène; Kloppmann, Wolfram; Aquilina, Luc

    2014-05-01

    The Metropolitan Region of Recife (RMR) went through large changes of water and land uses over the last decades due to an increasing demographic pressure (1.5 M of inhabitants). These evolutions gave rise to numerous environmental consequences, such as a dramatic decline of the water levels, groundwater salinization and contamination. This degradation of natural resources is linked to the increase of water demand that is also punctually amplified by drought periods, inducing the construction of thousands of private wells. Recife city was built on an estuarine area, at the geological limits of the two sedimentary basins of Pernambuco (north of the city) and Paraíba (south of the city) separated by a famous shear zone (the Pernambuco lineament). Tectonic and sedimentary events involved in the genesis and evolution of these basins were mainly controlled by the opening of the Atlantic Ocean leading to the deposition of cretaceous sediments which now constitute the two main exploited aquifers, the Beberibe and Cabo aquifers. These two deep aquiferous formations are topped by the unconfined Boa Viagem aquifer of quaternary sediments. It is the most directly exposed to contamination, since it is connected to mangroves, rivers, estuaries and highly urbanized areas. Both the Beberibe and Cabo aquifers contain large clay levels and are separated by a rather continuous clayed formation which seems to play a consistent role of screen and to interfere in the hydraulic connections between the three aquifers. Previous isotopic studies have shown that recharge processes are similar in the aquifers, suggesting that exchanges may occur and may be modified or amplified by overexploitation. This very complex aquifer system is studied through more than 60 water samples, including some surface water samples from the main rivers. A methodology based on multi-isotopes fingerprinting is applied, including stable isotopes of the water molecule, strontium isotopes, boron isotopes, sulfur

  18. Water-level altitudes 2010 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2009 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2010-01-01

    Most of the subsidence in the Houston-Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps showing 2010 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers, respectively; maps showing 1-year (2009-10) water-level-altitude changes for each aquifer; maps showing 5-year (2005-10) water-level-altitude changes for each aquifer; maps showing long-term (1990-2010 and 1977-2010) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000-10) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2009. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included. Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2009-March 2010. In 2010, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below National Geodetic Vertical Datum of 1929 or North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 49-foot decline to a 67

  19. Water-level altitudes 2011 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2010 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Johnson, Michaela R.; Ramage, Jason K.; Kasmarek, Mark C.

    2011-01-01

    Most of the subsidence in the Houston–Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris–Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing 2011 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2010–11) water-level-altitude changes for each aquifer; maps showing 5-year (2006–11) water-level-altitude changes for each aquifer; maps showing long-term (1990–2011 and 1977–2011) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–11) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2010. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included.Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2010–February 2011. In 2011, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 40-foot decline to a 33-foot rise (2010–11), from a 10-foot

  20. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, Maurice E.

    1986-01-01

    pressure from the time of completion to 1978. The decrease of pressure is partly the result of water moving from the Flathead Sandstone into the Madison-Bighorn aquifer, which has a lower potentiometric surface than does the Flathead Sandstone, even during the time the wells are not in operation. Pressure in some small-capacity wells completed in the Goose Egg Formation also has decreased near Ten Sleep. Most of the wells, particularly the irrigation wells, show a progressive decrease in pressure during the irrigation season but recover during periods of nonuse. Measurements of the pressure were made principally in 1953, 1962, 1970, and 1975-78. Well water from the Paleozoic aquifers generally contains minimal concentrations of dissolved solids and individual constituents but excessive hardness. Dissolved-solids concentrations of water are less than 300 milligrams per liter in the Tensleep Sandstone and the Madison-Bighorn aquifer, less than 200 milligrams per liter in the Flathead Sandstone, and as much as 450 milligrams per liter in the Goose Egg Formation. Bicarbonate is the major constituent, followed by calcium and magnesium. Relatively large concentrations of sulfate, as much as 490 milligrams per liter, were found, mainly in water from the Goose Egg Formation. The water has low sodium (alkali) and medium salinity; therefore, the water is satisfactory for irrigation and most other uses, if excessive hardness is not a detrimental factor. Wellhead temperatures range from 11 ? to 27.5 ? Celsius (51 ? to 81.5 ? Fahrenheit) within a range in depth of approximately 250 to 4,000 feet. This gives a geothermal gradient of about 0.44 ? Celsius per 100 feet (0.79 ? Fahrenheit per 100 feet).

  1. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    USGS Publications Warehouse

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  2. Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida

    USGS Publications Warehouse

    Spechler, Rick M.; Halford, Keith J.

    2001-01-01

    The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been

  3. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China).

    PubMed

    Zhang, Xiaoying; Miao, Jinjie; Hu, Bill X; Liu, Hongwei; Zhang, Hanxiong; Ma, Zhen

    2017-09-01

    The aquifer in the coastal area of the Laizhou Bay is affected by salinization processes related to intense groundwater exploitation for brine resource and for agriculture irrigation during the last three decades. As a result, the dynamic balances among freshwater, brine, and seawater have been disturbed and the quality of groundwater has deteriorated. To fully understand the groundwater chemical distribution and evolution in the regional aquifers, hydrogeochemical and isotopic studies have been conducted based on the water samples from 102 observation wells. Groundwater levels and salinities in four monitoring wells are as well measured to inspect the general groundwater flow and chemical patterns and seasonal variations. Chemical components such as Na + , K + , Ca 2+ , Mg 2+ , Sr 2+ , Cl - , SO 4 2- , HCO 3 - , NO 3 - , F - , and TDS during the same period are analyzed to explore geochemical evolution, water-rock interactions, sources of salt, nitrate, and fluoride pollution in fresh, brackish, saline, and brine waters. The decreased water levels without typical seasonal variation in the southeast of the study area confirm an over-exploitation of groundwater. The hydrogeochemical characteristics indicate fresh-saline-brine-saline transition pattern from inland to coast where evaporation is a vital factor to control the chemical evolution. The cation exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. Meanwhile, isotopic data indicate that the brine in aquifers was either originated from older meteoric water with mineral dissolution and evaporation or repeatedly evaporation of retained seawater with fresher water recharge and mixing in geological time. Groundwater suitability for drinking is further evaluated according to water quality standard of China. Results reveal high risks of nitrate and fluoride contamination. The elevated nitrate concentration of 560 mg/L, which as high as 28 times of the standard content

  4. Framework for Evaluating Water Quality of the New England Crystalline Rock Aquifers

    USGS Publications Warehouse

    Harte, Philip T.; Robinson, Gilpin R.; Ayotte, Joseph D.; Flanagan, Sarah M.

    2008-01-01

    Little information exists on regional ground-water-quality patterns for the New England crystalline rock aquifers (NECRA). A systematic approach to facilitate regional evaluation is needed for several reasons. First, the NECRA are vulnerable to anthropogenic and natural contaminants such as methyl tert-butyl ether (MTBE), arsenic, and radon gas. Second, the physical characteristics of the aquifers, termed 'intrinsic susceptibility', can lead to variable and degraded water quality. A framework approach for characterizing the aquifer region into areas of similar hydrogeology is described in this report and is based on hypothesized relevant physical features and chemical conditions (collectively termed 'variables') that affect regional patterns of ground-water quality. A framework for comparison of water quality across the NECRA consists of a group of spatial variables related to aquifer properties, hydrologic conditions, and contaminant sources. These spatial variables are grouped under four general categories (features) that can be mapped across the aquifers: (1) geologic, (2) hydrophysiographic, (3) land-use land-cover, and (4) geochemical. On a regional scale, these variables represent indicators of natural and anthropogenic sources of contaminants, as well as generalized physical and chemical characteristics of the aquifer system that influence ground-water chemistry and flow. These variables can be used in varying combinations (depending on the contaminant) to categorize the aquifer into areas of similar hydrogeologic characteristics to evaluate variation in regional water quality through statistical testing.

  5. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PETERSEN SW; EDRINGTON RS; MAHOOD RO

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining andmore » losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.« less

  6. Water balance of global aquifers revealed by groundwater footprint.

    PubMed

    Gleeson, Tom; Wada, Yoshihide; Bierkens, Marc F P; van Beek, Ludovicus P H

    2012-08-09

    Groundwater is a life-sustaining resource that supplies water to billions of people, plays a central part in irrigated agriculture and influences the health of many ecosystems. Most assessments of global water resources have focused on surface water, but unsustainable depletion of groundwater has recently been documented on both regional and global scales. It remains unclear how the rate of global groundwater depletion compares to the rate of natural renewal and the supply needed to support ecosystems. Here we define the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services) and show that humans are overexploiting groundwater in many large aquifers that are critical to agriculture, especially in Asia and North America. We estimate that the size of the global groundwater footprint is currently about 3.5 times the actual area of aquifers and that about 1.7 billion people live in areas where groundwater resources and/or groundwater-dependent ecosystems are under threat. That said, 80 per cent of aquifers have a groundwater footprint that is less than their area, meaning that the net global value is driven by a few heavily overexploited aquifers. The groundwater footprint is the first tool suitable for consistently evaluating the use, renewal and ecosystem requirements of groundwater at an aquifer scale. It can be combined with the water footprint and virtual water calculations, and be used to assess the potential for increasing agricultural yields with renewable groundwaterref. The method could be modified to evaluate other resources with renewal rates that are slow and spatially heterogeneous, such as fisheries, forestry or soil.

  7. Water Flow in the High Plains Aquifer in Northwestern Oklahoma

    USGS Publications Warehouse

    Luckey, Richard R.; Osborn, Noel I.; Becker, Mark F.; Andrews, William J.

    2000-01-01

    The High Plains is a major agricultural area, supported primarily by water from the High Plains aquifer, which is used to irrigate wheat and corn and to raise cattle and swine. The U.S. Geological Survey (USGS) and the Oklahoma Water Resources Board (OWRB) began a study of the High Plains aquifer in 1996. One purpose of the study was to develop a ground-water flow model that the OWRB could use to allocate the amount of water withdrawn from the a aquifer. The study area in Oklahoma covers all or parts of Beaver, Cimarron, Dewey, Ellis, Harper, Texas, and Woodward Counties. To provide appropriate hydrologic boundaries for the ground-water flow model, the study area was expanded to include parts of Colorado, Kansas, New Mexico, and Texas.

  8. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    USGS Publications Warehouse

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  9. Water-level altitudes 2004 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2003 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Lanning-Rush, Jennifer

    2004-01-01

    This report is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region. The Houston-Galveston region comprises Harris, Galveston, Fort Bend, Waller, and Montgomery Counties and adjacent parts of Brazoria, Grimes, Walker, San Jacinto, Liberty, and Chambers Counties. The report was prepared in cooperation with the Harris-Galveston Coastal Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District. For the Chicot and Evangeline aquifers, maps show approximate water-level altitudes in 2004, water-level changes from 2003 to 2004, approximate water-level changes from 1977 to 2004, and approximate water-level changes from 1990 to 2004 (figs. 1, 2, 3, 4, 5, 6, 7, 8). For the Jasper aquifer, maps show approximate water-level altitudes in 2004 and water-level changes from 2003 to 2004 and 2000 to 2004 (figs. 9, 10, 11). The report also contains a map showing borehole extensometer (well equipped with compaction monitor) site locations (fig. 12) and graphs showing measured compaction of subsurface material at these sites from 1973 or later to 2003 (fig. 13). The U.S. Geological Survey (USGS) has published annual reports of water-level altitudes and water-level changes for the Chicot and Evangeline aquifers in the Houston-Galveston region since 1979; and annual reports of same for the Fort Bend subregion (Fort Bend County and adjacent areas) since 1990. The USGS published its first water-level-altitude map for the Jasper aquifer in the greater Houston area (primarily Montgomery County) in 2001. The 2004 water-level-altitude and water-level-change maps for the three aquifers are included in this report.

  10. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio; Tiedeman, Claire; O'Reilly, Andrew M.; Davis, Jeffrey B.; Burger, Patrick

    2012-01-01

    per liter in the Floridan aquifer system. Potential flow across the interface represented by this chloride concentration is simulated by the General Head Boundary Package. During 1995 through 2006, there were no major groundwater withdrawals near the freshwater and saline-water interface, making the general head boundary a suitable feature to estimate flow through the interface. The east-central Florida transient model was calibrated using the inverse parameter estimation code, PEST. Steady-state models for 1999 and 2003 were developed to estimate hydraulic conductivity (K) using average annual heads and spring flows as observations. The spatial variation of K was represented using zones of constant values in some layers, and pilot points in other layers. Estimated K values were within one order of magnitude of aquifer performance test data. A simulation of the final two years (2005-2006) of the 12-year model, with the K estimates from the steady-state calibration, was used to guide the estimation of specific yield and specific storage values. The final model yielded head and spring-flow residuals that met the calibration criteria for the 12-year transient simulation. The overall mean residual for heads, defining residual as simulated minus measured value, was -0.04 foot. The overall root-mean square residual for heads was less than 3.6 feet for each year in the 1995 to 2006 simulation period. The overall mean residual for spring flows was -0.3 cubic foot per second. The spatial distribution of head residuals was generally random, with some minor indications of bias. Simulated average ET over the 1995 to 2006 period was 34.47 inches per year, compared to the calculated average ET rate of 36.39 inches per year from the model-independent water-budget analysis. Simulated average net recharge to the surficial aquifer system was 3.58 inches per year, compared with the calculated average of 3.39 inches per year from the model-independent water-budget analysis. Groundwater

  11. Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer (Middle Claiborne Aquifer) in Arkansas, Spring-Summer 2007

    USGS Publications Warehouse

    Schrader, T.P.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively), since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2007, 309 water levels were measured in wells completed in the Sparta-Memphis aquifer. During the summer of 2007, 129 water-quality samples were collected and measured for temperature and specific conductance and 102 were collected and analyzed for chloride from wells completed in the Sparta-Memphis aquifer. Water-level measurements collected in wells screened in the Sparta-Memphis aquifer were used to produce a regional potentiometric-surface map. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large ground-water withdrawals. The highest water-level altitude measured in the Sparta-Memphis aquifer was 326 feet above National Geodetic Vertical Datum of 1929, located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 161 feet below National Geodetic Vertical Datum of 1929 in Union County near the southern boundary of the study area. Eight cones of depression (generally represented by closed contours) are located in the following counties: Bradley, Drew, and Ashley; Calhoun; Cleveland; Columbia; Crittenden; Arkansas, Jefferson, and Lincoln; Cross and Poinsett; and Union. Two large depressions are shown on the 2007 potentiometric-surface map, centered

  12. Fraction of young water as an indicator of aquifer vulnerability along two regional flow paths in the Mississippi embayment aquifer system, southeastern USA

    NASA Astrophysics Data System (ADS)

    Kingsbury, James A.; Barlow, Jeannie R. B.; Jurgens, Bryant C.; McMahon, Peter B.; Carmichael, John K.

    2017-09-01

    Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.

  13. Water-level altitudes 2005 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2004 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Houston, Natalie A.

    2005-01-01

    This report is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region. The Houston-Galveston region comprises Harris, Galveston, Fort Bend, Waller, and Montgomery Counties and adjacent parts of Brazoria, Grimes, Walker, San Jacinto, Liberty, and Chambers Counties. The report was prepared in cooperation with the Harris-Galveston Coastal Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District. For the Chicot and Evangeline aquifers, maps show approximate water-level altitudes in 2005, water-level changes from 2004 to 2005, and approximate water-level changes from 2000 to 2005, from 1990 to 2005, and from 1977 to 2005 (figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10). For the Jasper aquifer, maps show approximate water-level altitudes in 2005 and water-level changes from 2004 to 2005 and 2000 to 2005 (figs. 11, 12, and 13). The report also contains a map showing borehole extensometer (well equipped with compaction monitor) site locations (fig. 14) and graphs showing measured compaction of subsurface material at these sites from 1973 or later to 2004 (fig. 15).The U.S. Geological Survey (USGS) has published annual reports of water-level altitudes and water-level changes for the Chicot and Evangeline aquifers in the Houston-Galveston region since 1979; and annual reports of same for the Fort Bend subregion (Fort Bend County and adjacent areas) since 1990. The USGS published its first water-level-altitude map for the Jasper aquifer in the greater Houston area (primarily Montgomery County) in 2001. The 2005 water-level-altitude and water-level-change maps for the three aquifers are included in this report.

  14. Water-level altitudes 2006 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2005 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Houston, Natalie A.; Brown, Dexter W.

    2006-01-01

    This report is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region. The Houston-Galveston region comprises Harris, Galveston, Fort Bend, Waller, and Montgomery Counties and adjacent parts of Brazoria, Grimes, Walker, San Jacinto, Liberty, and Chambers Counties. The report was prepared in cooperation with the Harris-Galveston Coastal Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District. For the Chicot and Evangeline aquifers, maps show approximate water-level altitudes in 2006, water-level changes from 2005 to 2006, and approximate water-level changes from 2001 to 2006, from 1990 to 2006, and from 1977 to 2006 (figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). For the Jasper aquifer, maps show approximate water-level altitudes in 2006 and water-level changes from 2005 to 2006 and 2000 to 2006 (figs. 11, 12, 13). The report also contains a map showing borehole extensometer (well equipped with compaction monitor) site locations (fig. 14) and graphs showing measured compaction of subsurface material at these sites from 1973 or later to 2005 (fig. 15).The U.S. Geological Survey (USGS) has published annual reports of water-level altitudes and water-level changes for the Chicot and Evangeline aquifers in the Houston-Galveston region since 1979; and annual reports of same for the Fort Bend subregion (Fort Bend County and adjacent areas) since 1990. The USGS published its first water-level-altitude map for the Jasper aquifer in the greater Houston area (primarily Montgomery County) in 2001. The 2006 water-level-altitude and water-level-change maps for the three aquifers are included in this report.

  15. Hydrogeological study of the aquifer system of the northern Sahara in the Algero-Tunisian border: A case study of Oued Souf region

    NASA Astrophysics Data System (ADS)

    Halassa, Younes; Zeddouri, Aziez; Mouhamadou, Ould Babasy; Kechiched, Rabah; Benhamida, Abdeldjebbar Slimane

    2018-05-01

    The aquifer system in The Algero-Tunisian border and Chotts region is mainly composed of two aquifers: The first is the Complex Terminal (CT) and the second is the Intercalary aquifer (CI). This study aims the identification and spatial evolution of factors that controlling the water quality in the Complex Terminal aquifer (CT) in the Chotts region (Oued Souf region - Southeastern of Algeria). The concentration of major elements, temperature, pH and salinity were monitored during 2015 in 34 wells from the CT aquifer. The geological, geophysical, hydrogeological and hydrochemical methods were applied in order to carried out a model for the investigated aquifer system and to characterize the hydrogeological and the geochemical behavior, as well as the geometrical and the lithological configuration. Multivariate statistical analyses such as Principal Component Analysis (PCA) were also used for the treatment of several data. Results show that the salinity follows the same regional distribution of Chloride, Sodium, Magnesium, Sulfate and Calcium. Note that the salinity shows low contents in the upstream part of investigated region suggesting restricted dissolution of salts. Hydro-chemical study and saturation indexes highlight the dominance of the dissolution and the precipitation of calcite, dolomite, anhydrite, gypsum and halite. The PCA analysis indicates that Na+, Cl-, Ca2+, Mg2+, SO42- and K+ variables that influence the water mineralization.

  16. Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico

    USGS Publications Warehouse

    Plummer, Niel; Bexfield, Laura M.; Anderholm, Scott K.; Sanford, Ward E.; Busenberg, Eurybiades

    2004-01-01

    and sulfur hexafluoride from 288 wells and springs in parts of the Santa Fe Group aquifer system. The surface-water data collected as part of this study include monthly measurements of major- and minor-element chemistry (30 elements), oxygen-18 and deuterium content of water, chlorofluorocarbons, and tritium content at 14 locations throughout the basin. Additional data include stable isotope analyses of precipitation and of ground water from City of Albuquerque production wells collected and archived from the early 1980?s, and other data on the chemical and isotopic composition of air, unsaturated zone air, plants, and carbonate minerals from throughout the basin. The data were used to identify 12 sources of water to the basin, map spatial and vertical extents of ground-water flow, map water chemistry in relation to hydrogeologic, stratigraphic, and structural properties of the basin, determine radiocarbon ages of ground water, and reconstruct paleo-environmental conditions in the basin over the past 30,000 years. The data indicate that concentrations of most elements and isotopes generally parallel the predominant north to south direction of ground-water flow. The radiocarbon ages of dissolved inorganic carbon in ground water range from modern (post-1950) to more than 30,000 years before present, and appear to be particularly well defined in the predominantly siliciclastic aquifer system. Major sources of water to the basin include (1) recharge from mountains along the north, east and southwest margins (median age 5,000-9,000 years); (2) seepage from the Rio Grande and Rio Puerco (median age 4,000-8,000 years), and from Abo and Tijeras Arroyos (median age 3,000-9,000 years); (3) inflow of saline water along the southwestern basin margin (median age 20,000 years); and (4) inflow along the northern basin margin that probably represents recharge from the Jemez Mountains during the last glacial period (median age 20,000 years). Water recharged from the Jemez Mountains

  17. Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Lipinski, B.A.; Sams, J.I.; Smith, B.D.; Harbert, W.

    2008-01-01

    Production of methane from thick, extensive coal beds in the Powder River Basin of Wyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam's inversion algorithms to determine the aquifer bulk conductivity, which was then correlated towater salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin. ?? 2008 2008 Society of ExplorationGeophysicists. All rights reserved.

  18. Effects of Aquifer Development and Changes in Irrigation Practices on Ground-Water Availability in the Santa Isabel Area, Puerto Rico

    USGS Publications Warehouse

    Kuniansky, Eve L.; Gómez-Gómez, Fernando; Torres-Gonzalez, Sigfredo

    2003-01-01

    The alluvial aquifer in the area of Santa Isabel is located within the South Coastal Plain aquifer of Puerto Rico. Variations in precipitation, changes in irrigation practices, and increasing public-supply water demand have been the primary factors controlling water-level fluctuations within the aquifer. Until the late 1970s, much of the land in the study area was irrigated using inefficient furrow flooding methods that required large volumes of both surface and ground water. A gradual shift in irrigation practices from furrow systems to more efficient micro-drip irrigation systems occurred between the late 1970s and the late 1980s. Irrigation return flow from the furrow-irrigation systems was a major component of recharge to the aquifer. By the early 1990s, furrow-type systems had been replaced by the micro-drip irrigation systems. Water levels declined about 20 feet in the aquifer from 1985 until present (February 2003). The main effect of the changes in agricultural practices is the reduction in recharge to the aquifer and total irrigation withdrawals. Increases in ground-water withdrawals for public supply offset the reduction in ground-water withdrawals for irrigation such that the total estimated pumping rate in 2003 was only 8 percent less than in 1987. Micro-drip irrigation resulted in the loss of irrigation return flow to the aquifer. These changes resulted in lowering the water table below sea level over most of the Santa Isabel area. By 2002, lowering of the water table reversed the natural discharge along the coast and resulted in the inland movement of seawater, which may result in increased salinity of the aquifer, as had occurred in other parts of the South Coastal Plain. Management alternatives for the South Coastal Plain aquifer in the vicinity of Santa Isabel include limiting groundwater withdrawals or implementing artificial recharge measures. Another alternative for the prevention of saltwater intrusion is to inject freshwater or treated sewage

  19. Quantifying the water storage volume of major aquifers in the US

    NASA Astrophysics Data System (ADS)

    Jame, S. A.; Bowling, L. C.

    2017-12-01

    Groundwater is one of our most valuable natural resources which affects not only the food and energy nexus, but ecosystem and human health, through the availability of drinking water. Quantification of current groundwater storage is not only required to better understand groundwater flow and its role in the hydrologic cycle, but also sustainable use. In this study, a new high resolution map (5' minutes) of groundwater properties is created for US major aquifers to provide an estimate of total groundwater storage. The estimation was done using information on the spatial extent of the principal aquifers of the US from the USGS Groundwater Atlas, the average porosity of different hydrolithologic groups and the current saturated thickness of each aquifer. Saturated thickness varies within aquifers, and has been calculated by superimposing current water-table contour maps over the base aquifer altitude provided by USGS. The average saturated thickness has been computed by interpolating available data on saturated thickness for an aquifer using the kriging method. Total storage of aquifers in each cell was then calculated by multiplying the spatial extent, porosity, and thickness of the saturated layer. The resulting aquifer storage estimates was compared with current groundwater withdrawal rates to produce an estimate of how many years' worth of water are stored in the aquifers. The resulting storage map will serve as a national dataset for stakeholders to make decisions for sustainable use of groundwater.

  20. Large sedimentary aquifer systems functioning. Constraints by classical isotopic and chemical tools, and REE in the Eocene sand aquifer, SW France

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, E.; Negrel, P. J.; Millot, R.; Guerrot, C.; Brenot, A.; Malcuit, E.

    2010-12-01

    continuous decrease of water levels in the IMS aquifer for instance constitute major indicators to be taken into account for water management at the aquifer system scale. Major elements variability was interpreted in terms of water-rock interactions in these confined systems isolated from anthropogenic influence, with the main role played by evaporites on the water salinity (up to 2.5 g.L-1). Rare Earth Elements (REE) were also analysed in some groundwater samples, resulting in a large variability of UCC normalized-REE patterns, ΣREE ranging from 1.9 to 50.6 µg.L-1, with no dependence on TDS. For instance, interaction with carbonates delivers REE flat patterns and highest ΣREE. The REE patterns and control by key parameters are investigated in order to test REE as a potential supplementary geochemical tracer to recognize the aquifer type hosting groundwater.

  1. The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.

    2008-12-01

    Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.

  2. Soft-water zone in the Chicot Aquifer, Bayou Teche area, Louisiana

    USGS Publications Warehouse

    Hosman, R.L.

    1974-01-01

    Test drilling in the vicinity of Bayou Teche in St. Martin Parish in southern Louisiana has disclosed a zone of soft water in the basal unit of the Chicot aquifer; the Chicot aquifer system blankets all southwestern Louisiana. Fresh water, which is defined as containing 250 milligrams per liter chloride or less, in the Chicot aquifer is characteristically hard and high in iron concentration; in this area the hardness is generally 200-300 milligrams per liter. The soft-water zone, containing water with a hardness of less than 60 milligrams per liter, is anomalous and occurs in an area where the basal part of the aquifer is separated from the main body of the aquifer by a thick clay layer. The zone has been mapped in parts of St. Martin and adjoining Lafayette Parishes. Although the exact areal extent of the zone cannot be determined with available data, it appears to be sufficiently large that the soft water should prove to be an important asset to the area. The water could be used by itself or mixed with either hard or slightly salty water (more than 250 milligrams per liter chloride) to provide a blend that would require little or no treatment for most purposes. Because of the proximity of salty water in much of the area, careful planning and monitoring will be necessary to maintain the soft-water zone as a dependable supply of usable water. The soft water appears to be an exhaustible supply; however, its useful life as a resource can be maximized by proper management.

  3. Groundwater geochemistry in shallow aquifers above longwall mines in Illinois, USA

    NASA Astrophysics Data System (ADS)

    Booth, C. J.; Bertsch, L. P.

    1999-12-01

    Aquifers above high-extraction underground coal mines are not affected by mine drainage, but they may still exhibit changes in groundwater chemistry due to alterations in groundwater flow induced by mine subsidence. At two active longwall mine sites in Illinois, USA, glacial-drift aquifers were largely unaffected by mining, but the geochemistry of the bedrock aquifers changed during the post-mining water-level recovery. At the Jefferson site, brackish, high-sulfate water present in the upper bedrock shale briefly had lower values of total dissolved solids (TDS) after mining due to increased recharge from the overlying drift, whereas TDS and sulfate increased in the sodium-bicarbonate water present in the underlying sandstone due to downward leakage from the shale and lateral inflow of water through the sandstone. At the Saline site, sandstones contained water ranging from brackish sodium-chloride to fresh sodium-bicarbonate type. Post-mining recovery of the potentiometric levels was minimal, and the water had minor quality changes. Longwall mining affects geochemistry due to subsidence-related fracturing, which increases downward leakage from overlying units, and due to the temporary potentiometric depression and subsequent recovery, whereby water from surrounding areas of the aquifer recharges the affected zone above and adjacent to the mine.

  4. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh

    PubMed Central

    Chowdhury, Muhammad A.H.; Haines, Andy; Alam, Dewan S.; Hoque, Mohammad A.; Butler, Adrian P.; Khan, Aneire E.; Mojumder, Sontosh K.; Blangiardo, Marta A.G.; Elliott, Paul; Vineis, Paolo

    2017-01-01

    Background: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. Objectives: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. Methods: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from “conventional” ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. Results: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. Conclusions: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in “real-life” salinity-affected settings. https://doi.org/10.1289/EHP659 PMID:28599268

  5. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    PubMed

    Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo

    2017-05-30

    Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.

  6. Fraction of young water as an indicator of aquifer vulnerability along two regional flow paths in the Mississippi embayment aquifer system, southeastern USA

    USGS Publications Warehouse

    Kingsbury, James A.; Barlow, Jeannie R.; Jurgens, Bryant; McMahon, Peter B.; Carmichael, John K.

    2017-01-01

    Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.

  7. Revising the `Henry Problem' of density-driven groundwater flow: A review of historic Biscayne aquifer data.

    NASA Astrophysics Data System (ADS)

    Weyer, K. U.

    2016-12-01

    Coastal groundwater flow investigations at the Cutler site of the Biscayne Bay south of Miami, Florida, gave rise to the dominating concept of density-driven flow of sea water into coastal aquifers indicated as a saltwater wedge. Within that wedge convection type return flow of seawater and a dispersion zone were concluded by Cooper et al. (1964, USGS Water Supply Paper 1613-C) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was merely based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program has to be able to simulate to be considered acceptable. Revisiting the above summarizing publication with its record of piezometric field data (heads) showed that the so-called sea water wedge was actually caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be backed up by head data as energy indicators of flow fields. At the Biscayne site density driven flow of seawater did and does not exist. Instead this site and the Florida coast line in general are the end points of local fresh and regional saline groundwater flow systems driven by gravity forces and not by density differences.

  8. Managed Aquifer Recharge Using Treated Wastewater: An Option to Manage a Coastal Aquifer In Oman For Better Domestic Water Supply

    NASA Astrophysics Data System (ADS)

    Al-Maktoumi, Ali; Zekri, Slim; ElRawy, Mustafa

    2016-04-01

    Arid countries, such as the Sultanate of Oman, are facing challenges of water shortages threatening economic development and social stability. Most of those countries are vulnerable to the potential adverse impacts of climate change, the most significant of which are increased average temperatures, less and more erratic precipitation, sea level rise, and desertification. The combined effect of existing adverse conditions and likely impacts of future climate change will make water management even more difficult than what it is today. Tremendous efforts have been devoted to augment the water resources. Managed Aquifer Recharge (MAR) is practiced widely to store water during periods of surpluses and withdraw during deficits from an aquifer. In Muscat, there will be a surplus of >100,000 m3/day of TWW during winter months in the coming few years. The aquifer along the northern coast of Oman (Al-Khawd Aquifer) is conducive for MAR. Data show that TWW volumes will increase from 7.6 Mm3 in 2003 to 70.9 Mm3 in 2035 in Muscat city only. This study assesses, using MODFLOW 2005 numerical code, the impact of MAR using TWW on better management of the Al-Khawd unconfined coastal aquifer for better urban water supply. Specifically, aiming to maximize withdrawals from the domestic wells with minimize adverse effect of seawater intrusion. The model operates under a number of constrains that minimize the loss to the sea and the injected TWW must not migrates upstream (due to developed mound) and reach the wellfields used for domestic supply. The hypothetical injection wells are located downstream the domestic wellfield zone. The results of different managerial scenarios show that MAR produces a hydraulic barrier that decelerates the seawater intrusion which allows higher abstraction of pristine water from the upstream part of the aquifer. MAR along with redistribution/relocation of public wells allows abstraction of 2 times the current abstraction rate (around 6 Mm3/year to 12 Mm3

  9. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio; Tiedeman, Claire; O'Reilly, Andrew M.; Davis, Jeffery B.; Burger, Patrick

    2012-01-01

    ,000 milligrams per liter in the Floridan aquifer system. Potential flow across the interface represented by this chloride concentration is simulated by the General Head Boundary Package. During 1995 through 2006, there were no major groundwater withdrawals near the freshwater and saline-water interface, making the general head boundary a suitable feature to estimate flow through the interface. The east-central Florida transient model was calibrated using the inverse parameter estimation code, PEST. Steady-state models for 1999 and 2003 were developed to estimate hydraulic conductivity (K) using average annual heads and spring flows as observations. The spatial variation of K was represented using zones of constant values in some layers, and pilot points in other layers. Estimated K values were within one order of magnitude of aquifer performance test data. A simulation of the final two years (2005-2006) of the 12-year model, with the K estimates from the steady-state calibration, was used to guide the estimation of specific yield and specific storage values. The final model yielded head and spring-flow residuals that met the calibration criteria for the 12-year transient simulation. The overall mean residual for heads, defining residual as simulated minus measured value, was -0.04 foot. The overall root-mean square residual for heads was less than 3.6 feet for each year in the 1995 to 2006 simulation period. The overall mean residual for spring flows was -0.3 cubic foot per second. The spatial distribution of head residuals was generally random, with some minor indications of bias. Simulated average evapotranspiration (ET) over the 1995 to 2006 period was 34.5 inches per year, compared to the calculated average ET rate of 36.6 inches per year from the model-independent water-budget analysis. Simulated average net recharge to the surficial aquifer system was 3.6 inches per year, compared with the calculated average of 3.2 inches per year from the model-independent waterbudget

  10. Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA.

    PubMed

    Fox, P; Narayanaswamy, K; Genz, A; Drewes, J E

    2001-01-01

    Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant (NWWRP) were evaluated by sampling a network of groundwater monitoring wells located within the reclaimed water plume. The Mesa Northwest Water Reclamation Plant has used soil aquifer treatment (SAT) since it began operation in 1990 and the recovery of reclaimed water from the impacted groundwater has been minimal. Groundwater samples obtained represent travel times from several days to greater than five years. Samples were analyzed for a wide range of organic and inorganic constituents. Sulfate was used as a tracer to estimate travel times and define reclaimed water plume movement. Dissolved organic carbon concentrations were reduced to approximately 1 mg/L after 12 to 24 months of soil aquifer treatment with an applied DOC concentration from the NWWRP of 5 to 7 mg/L. The specific ultraviolet absorbance (SUVA) increased during initial soil aquifer treatment on a time-scale of days and then decreased as longer term soil aquifer treatment removed UV absorbing compounds. The trihalomethane formation potential (THMFP) was a function of the dissolved organic carbon concentration and ranged from 50 to 65 micrograms THMFP/mg DOC. Analysis of trace organics revealed that the majority of trace organics were removed as DOC was removed with the exception of organic iodine. The majority of nitrogen was applied as nitrate-nitrogen and the reclaimed water plume had lower nitrate-nitrogen concentrations as compared to the background groundwater. The average dissolved organic carbon concentrations in the reclaimed water plume were less than 50% of the drinking water dissolved organic concentrations from which the reclaimed water originated.

  11. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    USGS Publications Warehouse

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  12. Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is

  13. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress.

    PubMed

    le Roux, Betsie; van der Laan, Michael; Vahrmeijer, Teunis; Bristow, Keith L; Annandale, John G

    2017-12-01

    Future water scarcities in the face of an increasing population, climate change and the unsustainable use of aquifers will present major challenges to global food production. The ability of water footprints (WFs) to inform water resource management at catchment-scale was investigated on the Steenkoppies Aquifer, South Africa. Yields based on cropping areas were multiplied with season-specific WFs for each crop to determine blue and green water consumption by agriculture. Precipitation and evapotranspiration of natural vegetation and other uses of blue water were included with the agricultural WFs to compare water availability and consumption in a catchment sustainability assessment. This information was used to derive a water balance and develop a catchment WF framework that gave important insights into the hydrology of the aquifer through a simplified method. This method, which requires the monitoring of only a few key variables, including rainfall, agricultural production, WFs of natural vegetation and other blue water flows, can be applied to inform the sustainability of catchment scale water use (as opposed to more complex hydrological studies). Results indicate that current irrigation on the Steenkoppies Aquifer is unsustainable. This is confirmed by declining groundwater levels, and suggests that there should be no further expansion of irrigated agriculture on the Steenkoppies Aquifer. Discrepancies between in- and outflows of water in the catchment indicated that further development of the WF approach is required to improve understanding of the geohydrology of the aquifer and to set and meet sustainability targets for the aquifer. It is envisaged that this 'working' framework can be applied to other water-stressed aquifers around the world. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Use of saline water in energy development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israelsen, C.E.; Adams, V.D.; Batty, J.C.

    1980-06-01

    Maps were made of the Upper Colorado River Basin showing locations of coal deposits, oil and gas, oil shale, uranium, and tar sand, in relationship to cities and towns in the area. Superimposed on these are locations of wells showing four ranges of water quality; 1000 to 3000 mg/l, 3000 to 10,000 mg/l, 10,000 to 35,000 mg/l, and over 35,000 mg/l. Information was assembled relative to future energy-related projects in the upper basin, and estimates were made of their anticipated water needs. Using computer models, various options were tested for using saline water for coal-fired power plant cooling. Both coolingmore » towers and brine evaporation ponds were included. Information is presented of several proven water treatment technologies, and comparisons are made of their cost effectiveness when placed in various combinations in the power plant makeup and blowdown water systems. A relative value scale was developed which compares graphically the relative values of waters of different salinities based on three different water treatment options and predetermined upper limits of cooling tower circulating salinities. Coal from several different mines was slurried in waters of different salinities. Samples were analyzed in the laboratory to determine which constituents had been leached from or absorbed by the coal, and what possible deleterious effects this might have on the burning properties of the coal, or on the water for culinary use or irrigation.« less

  15. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  16. Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    NASA Astrophysics Data System (ADS)

    Costall, A.; Harris, B.; Pigois, J. P.

    2018-05-01

    Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.

  17. Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    NASA Astrophysics Data System (ADS)

    Costall, A.; Harris, B.; Pigois, J. P.

    2018-07-01

    Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.

  18. Quality of water in the fractured-bedrock aquifer of New Hampshire

    USGS Publications Warehouse

    Moore, Richard Bridge

    2004-01-01

    Over the past few decades, New Hampshire has experienced considerable population growth, which is forcing some communities to look for alternative public and private water supplies in the bedrock aquifer. Because the quality of water from the aquifer can vary, the U.S. Geological Survey statistically analyzed well data from 1,353 domestic and 360 public-supply bedrock wells to characterize the ground water. The domestic-well data were from homeowner-collected samples analyzed by the New Hampshire Department of Environmental Services (NHDES) Environmental Laboratory from 1984 to 1994. Bedrock water in New Hampshire often contains high concentrations of iron, manganese, arsenic, and radon gas. Water samples from 21 percent of the domestic bedrock wells contained arsenic above the U.S. Environmental Protection Agency (USEPA) 10 micrograms per liter (?g/L) drinking-water standard for public-water supplies, and 96 percent had radon concentrations greater than the USEPA-proposed 300 picocurie per liter (pCi/L) standard for public-water supplies. Some elevated fluoride concentrations (2 percent of samples) were above the 4 milligrams per liter (mg/L) USEPA drinking-water standard for public-water supplies. Water from the bedrock aquifer also typically is soft to moderately hard, and has a pH greater than 7.0. Variations in bedrock water quality were discernable when the data were compared to lithochemical groupings of the bedrock, indicating that the type of bedrock has an effect on the quality of water in the bedrock aquifer of New Hampshire. Ground-water samples from the metasedimentary lithochemical group have greater concentrations of total iron and total manganese than do the felsic and mafic igneous lithochemical groups. Ground-water samples from the felsic igneous group have higher concentrations of total fluoride than do those from the other lithochemical groups. For arsenic, the calcareous metasedimentary group was identified, using the public-supply database, as

  19. Potentiometric levels and water quality in the aquifers underlying Belvidere, Illinois, 1993-96

    USGS Publications Warehouse

    Mills, Patrick C.; Thomas, C.A.; Brown, T.A.; Yeskis, D.J.; Kay, R.T.

    1999-01-01

    In 1992, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency (USEPA), began a study of the hydrogeology and water quality of the aquifers underlying the vicinity of Belvidere, Boone County, Ill. Previously, volatile organic compounds (VOC's) and other constituents of industrial origin were detected in one or more ground-water samples from about 100 of the approximately 700 monitoring and water-supply wells in the area, including the 8 municipal wells in Belvidere. A glacial drift aquifer underlies at least 50 percent of the 80-square-mile study area; bedrock aquifers that underlie virtually all of the study area include the Galena-Platteville, St. Peter Sandstone, Ordovician, and Cambrian-Ordovician aquifers. During 1993, water levels were measured in 152 wells and water-quality samples were collected from 97 wells distributed throughout the study area. During 1994-96, similar data were collected from 31 wells. Potentiometric levels in the glacial drift and Galena-Platteville aquifers are similar and range from about 750 to 900 feet above sea level. The potentiometric surfaces of the aquifers are subdued representations of the land surface. Horizontal ground-water flow in the aquifers primarily is towards the Kishwaukee River, which flows through the central part of the study area, and its principal tributaries. Vertical ground-water flow appears to be downward at most locations in the study area, particularly in the urbanized areas affected by pumping of the Belvidere municipal wells and upland areas remote from the principal surface-water drainages. Flow appears to be upward between the Galena-Platteville and glacial drift aquifers where ground water discharges to the Kishwaukee River and its principal tributaries. All water samples were analyzed for VOC's. Selected samples also were analyzed for trace metals, cyanide, semivolatile organic compounds, or other constituents. VOC's were detected in samples from 50 wells (52

  20. Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan.

    PubMed

    Ali, Jamshed; Kazi, Tasneem G; Tuzen, Mustafa; Ullah, Naeem

    2017-07-01

    In the current study, mercury (Hg) and physicochemical parameters have been evaluated in aquifer water at different depths of Thar coal field. The water samples were collected from first aquifer (AQ 1 ), second aquifer (AQ 2 ), and third aquifer (AQ 3 ) at three depths, 50-60, 100-120, and 200-250 m, respectively. The results of aquifer water of three depths were interpreted by using different multivariate statistical techniques. Validation of desired method was checked by spiking standard addition method in studied aquifer water samples. The content of Hg in aquifer water samples was measured by cold vapor atomic absorption spectrometer (CV-AAS). These determined values illustrate that the levels of Hg were higher than WHO recommended values for drinking water. All physicochemical parameters were higher than WHO permissible limits for drinking water except pH and SO 4 2- in aquifer water. The positive correlation of Hg with other metals in aquifer water samples of AQ 1 , AQ 2 , and AQ 3 of Thar coalfield except HCO 3 - was observed which might be caused by geochemical minerals. The interpretation of determined values by the cluster technique point out the variations within the water quality parameter as well as sampling location of studied field. The aquifer water AQ 2 was more contaminated with Hg as compared to AQ 1 and AQ 3 ; it may be due to leaching of Hg from coal zone. The concentration of Hg in aquifer water obtained from different depths was found in the following decreasing order: AQ 2  < AQ 1  < AQ 3 .

  1. Hydrogeologic Heterogeneity Enhances the Transfer of Salt Toward the High-Quality Deep Aquifers of the Western San Joaquin Valley (CA, USA)

    NASA Astrophysics Data System (ADS)

    Henri, C. V.; Harter, T.; Zhang, H.

    2016-12-01

    Increasing anthropogenic and drought stresses lead salinity to be of serious concern within regard to with the sustainability of regional groundwater quality. Agricultural basins of the Central Valley, CA (USA) are, and will continue to be, impacted by salinity issues in the coming future decades and or centuries. The aquifer system below the Western San Joaquin Valley is characterized by a shallow unconfined aquifer with high salinity overlying high quality semi-confined and deeper confined aquifers. A key challenge in the area is to predict if, when and how water traveling from the the low-quality shallow groundwater will reach and degrade the deeper semi-confined and confined aquifers. Previous studies, accounting for a simplified description of the aquifer hydraulic properties in their flow model, concluded that saline shallow groundwater would need 200-400 years to reach the semi-confined aquifer and 250-600 years to impact the deeper confined aquifer. However, well known heterogeneities in aquifer hydraulic properties significantly impact contaminant transport due to preferential flow paths and increased dispersion. Our study aims to (1) better understand the impact of heterogeneous hydraulic properties on the distribution of travel times from non-point source contamination, and (2) reassess the temporal scale of salt transfer into the deeper aquifers of the Western San Joaquin Valley. A detailed non-stationary geostatistical model was developed to describe the spatial variability of hydrofacies in great detail at the basin scale. The hydraulic properties corresponding to each hydrofacies are then calibrated in order to reproduce water fluxes previously modeled and calibrated. Subsequently, we use the random-walk particle tracking method to simulate the advective-dispersive transport of salt throughout the study area from a non-point source zone represented by the entire top layer of the model. The flux concentrations of solute crossing a series of monitoring

  2. Water levels and water quality in the Sparta-Memphis aquifer (middle Claiborne aquifer) in Arkansas, spring-summer 2009

    USGS Publications Warehouse

    Schrader, T.P.

    2013-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively) since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2009, 324 water levels were measured in wells completed in the Sparta-Memphis aquifer and used to produce a regional potentiometric-surface map. During the summer of 2009, 64 water-quality samples were collected and measured for specific conductance, temperature, and pH from wells completed in the Sparta-Memphis aquifer. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large groundwater withdrawals. The highest and lowest water-level altitudes measured in the Sparta-Memphis aquifer were 325 feet above and 157 feet below National Geodetic Vertical Datum of 1929, respectively. Eight depressions (generally represented by closed contours) are located in the following counties: Bradley; Ashley; Calhoun; Cleveland; Columbia; Arkansas, Jefferson, Lincoln, and Prairie; Cross and Poinsett; and Union. Two large depressions shown on the 2009 potentiometric-surface map, centered in Jefferson and Union Counties, are the result of large withdrawals for industrial, irrigation, or public supply. The depression centered in Jefferson County deepened and expanded in recent years into Arkansas and Prairie Counties. The area enclosed within the 40-foot contour on the 2009 potentiometric-surface map has expanded south to the Drew

  3. Hydrogeology and water quality of the Shell Valley Aquifer, Rolette County, North Dakota

    USGS Publications Warehouse

    Strobel, M.L.

    1997-01-01

    The Shell Valley aquifer is the sole source of water for the city of Belcourt and the primary source of water for most of the Turtle Mountain Indian Reservation. The Turtle Mountain Band of Chippewa Indians is concerned about the quantity and quality of water in the Shell Valley aquifer, which underlies about 56 square miles in central Rolette County and has an average saturated thickness of about 35 feet. Water levels across most of the Shell Valley aquifer fluctuate with variations in precipitation but generally are stable. Withdrawals from the north well field decreased slightly during 1976-95, but withdrawals from the south well field increased during 1983-95. Water levels in the south well field declined as withdrawals increased. The average decline during the last 8 years was about 1.75 feet per year. The water level has reached the well screen in at least one of the production wells. Most of the water in the aquifer is a bicarbonate type and has dissolved-solids concentrations ranging from 479 to 1,510 milligrams per liter. None of the samples analyzed had detectable concentrations of pesticides, but hydrocarbons were detected in both ground- and surfacewater samples. Polycyclic aromatic hydrocarbons (PAH) were the most frequently detected hydrocarbons. Benzene, toluene, ethylbenzene, and xylene (BTEX), polychlorinated biphenyls (PCB), and pentachlorophenol (PCP) also were detected.Generally, the Shell Valley aquifer is an adequate source of water for current needs, but evaluation of withdrawals in relation to a knowledge of aquifer hydrology would be important in quantifying sustainable water supplies. Water quality in the aquifer generally is good; the Turtle Mountain Band of Chippewa Indians filters the water to reduce concentrations of dissolved constituents. Hydrocarbons, although present in the aquifer, have not been quantified and may not pose a general health risk. Further analysis of the quantity and distribution of the hydrocarbons would be useful

  4. CO2 Capillary-Trapping Processes in Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Soltanian, Mohamadreza; Ritzi, Robert W., Jr.; Dominic, David F.

    2014-05-01

    The idea of reducing the Earth's greenhouse effect by sequestration of CO2 into the Earth's crust has been discussed and evaluated for more than two decades. Deep saline aquifers are the primary candidate formations for realization of this idea. Evaluation of reservoir capacity and the risk of CO2 leakage require a detailed modeling of the migration and distribution of CO2 in the subsurface structure. There is a finite risk that structural (or hydrodynamic) trapping by caprock may be compromised (e.g. by improperly abandoned wells, stratigraphic discontinuities, faults, etc.). Therefore, other trapping mechanisms (capillary trapping, dissolution, and mineralization) must be considered. Capillary trapping may be very important in providing a "secondary-seal", and is the focus of our investigation. The physical mechanism of CO2 trapping in porous media by capillary trapping incorporates three related processes, i.e. residual trapping, trapping due to hysteresis of the relative permeability, and trapping due to hysteresis of the capillary pressure. Additionally CO2 may be trapped in heterogeneous media due to difference in capillary pressure entry points for different materials. The amount of CO2 trapped by these processes is a complicated nonlinear function of the spatial distribution of permeability, permeability anisotropy, capillary pressure, relative permeability of brine and CO2, permeability hysteresis and residual gas saturation (as well as the rate, total amount and placement of injected CO2). Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. We investigated how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such

  5. Water Decisions for Sustainability of the Arbuckle-Simpson Aquifer

    NASA Astrophysics Data System (ADS)

    Lazrus, H.; Mcpherson, R. A.; Morss, R. E.; PaiMazumder, D.; Silvis, V.; Towler, E.

    2012-12-01

    The Arbuckle-Simpson Aquifer in south-central Oklahoma, situated in the heart of the Chickasaw Nation, is the state's only sole-source groundwater basin and sustains the Blue River, the state's only freeflowing river. The recent comprehensive hydrological studies of the aquifer indicate the need for sustainable management of the amount of water extracted. However, the question of how to deal with that management in the face of increasing drought vulnerability, diverse demands, and climate variability and change remains. Water management carries a further imperative to be inclusive of tribal and non-tribal interests. To address these issues, this interdisciplinary project takes an integrated approach to understanding risk perceptions and water decisions for sustainability of the Arbuckle-Simpson Aquifer. Our interdisciplinary research asks: How do stakeholders in the Arbuckle-Simpson Aquifer perceive drought risks across weather and climate scales, and how do these perceptions guide water management decisions given (i) diverse cultural beliefs, (ii) valued hydrologic services, (iii) past drought experience, and (iv) uncertainties in future projection of precipitation and drought? We will use ethnographic methods to diagnose how cultural values and beliefs inform risk perceptions, and how this in turn guides decision making or ignites conflict across different sectors and stakeholder groups. Further, the characterization of drought risk will be examined in the context of historic meteorological and hydrologic events, as well as climate variability and change. This will identify which risks are prioritized, and under what conditions, in regional decision making or water-related conflicts.

  6. Integrated subsurface water solutions for coastal environments through integrated pump&treat and aquifer storage and recovery (ASR) schemes

    NASA Astrophysics Data System (ADS)

    Perdikaki, Martha; Kallioras, Andreas; Christoforidis, Christophoros; Iossifidis, Dimitris; Zafeiropoulos, Anastasios; Dimitriadis, Klisthenis; Makropoulos, Christos; Raat, Klaasjan; van den Berg, Gerard

    2016-04-01

    Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions. The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring -and today degraded- coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment. A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO). for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii

  7. The quality of our Nation's waters: water quality in the Denver Basin aquifer system, Colorado, 2003-05

    USGS Publications Warehouse

    Bauch, Nancy J.; Musgrove, MaryLynn; Mahler, Barbara J.; Paschke, Suzanne

    2015-01-01

    Availability and sustainability of groundwater in the Denver Basin aquifer system depend on water quantity and water quality. The Denver Basin aquifer system underlies about 7,000 square miles of the Great Plains in eastern Colorado and is the primary or sole source of water for domestic and public supply in many areas of the basin. Use of groundwater from the Denver Basin sandstone aquifers has been instrumental for development of the south Denver metropolitan area and other areas, but has resulted in a decline in water levels in some parts of the system. Human activities in many areas have adversely affected the quality of water in the aquifer system, especially the shallow parts. Groundwater in deeper parts of the system used for drinking water, once considered isolated from the effects of overlying land use, is increasingly vulnerable to contamination from human activities and geologic materials. Availability and sustainability of high-quality groundwater are vital to the economic health of the Denver Basin area.

  8. Hydrologeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer pumping on the Upper Floridan aquifer, Pooler, Chatham County, Georgia, 2011–2012

    USGS Publications Warehouse

    Gonthier, Gerard

    2012-01-01

    Two test wells were completed in Pooler, Georgia, in 2011 to investigate the potential of using the Lower Floridan aquifer as a source of water for municipal use. One well was completed in the Lower Floridan aquifer at a depth of 1,120 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 486 ft below land surface. At the Pooler test site, the U.S. Geological Survey performed flowmeter surveys, packer-isolated slug tests within the Lower Floridan confining unit, slug tests of the entire Floridan aquifer system, and aquifer tests of the Upper and Lower Floridan aquifers. Drill cuttings, geophysical logs, and borehole flowmeter surveys indicate that the Upper Floridan aquifer extends 333 –515 ft below land surface, the Lower Floridan confining unit extends 515–702 ft below land surface, and the Lower Floridan aquifer extends 702–1,040 ft below land surface. Flowmeter surveys indicate that the Upper Floridan aquifer contains two water-bearing zones at depth intervals of 339 –350 and 375–515 ft; the Lower Floridan confining unit contains one zone at a depth interval of 550–620 ft; and the Lower Floridan aquifer contains five zones at depth intervals of 702–745, 745–925, 925–984, 984–1,015, and 1,015–1,040 ft. Flowmeter testing of the test borehole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 92.4 percent of the total flow rate of 708 gallons per minute; the Lower Floridan confining unit contributed 3.0 percent; and the Lower Floridan aquifer contributed 4.6 percent. Horizontal hydraulic conductivity of the Lower Floridan confining unit derived from slug tests within three packer-isolated intervals ranged from 0.5 to 10 feet per day (ft/d). Aquifer-test analyses yielded values of transmissivity for the Upper Floridan aquifer, Lower Floridan confining unit, and the Lower Floridan aquifer of 46,000, 700, and 4,000 feet squared per day (ft2/d

  9. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use

    NASA Astrophysics Data System (ADS)

    Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida

    2014-05-01

    In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.

  10. On the origins of hypersaline groundwater in the Nile Delta aquifer

    NASA Astrophysics Data System (ADS)

    van Engelen, Joeri; Oude Essink, Gualbert H. P.; Kooi, Henk; Bierkens, Marc F. P.

    2018-05-01

    The Nile Delta is essential to Egypt's agro- and socio-economy. Although surface water is the traditional source for Egypt's irrigation, the shallow fresh groundwater resources underlying the delta are increasingly burdened by groundwater pumping, which increases interest in the status of the groundwater resources. Groundwater up to three times more saline than sea water was found at 600 m depth. The occurrence of this hypersaline groundwater raises doubts on the often-made assumption in the literature that seawater is the only source of salt in the Nile Delta aquifer and makes further investigation necessary. Knowledge on the origin of this hypersaline groundwater is key in assessing the possibility of deep fresh groundwater pockets. In this paper we conducted computational analyses to assess possible origins using both analytical solutions and numerical models. It is concluded that the hypersaline groundwater can either originate from Quaternary free convection systems, or from compaction-induced upward salt transport of hypersaline groundwater that formed during the Messinian salinity crisis. Our results also indicate that with groundwater dating it is possible to discriminate between these two hypotheses. Furthermore, it is deduced that the hydrological connection between aquifer and sea is crucial to the hydrogeological functioning of the Nile Delta Aquifer.

  11. Changes in Water Levels and Storage in the High Plains Aquifer, Predevelopment to 2005

    USGS Publications Warehouse

    McGuire, V.L.

    2007-01-01

    The High Plains aquifer underlies 111.4 million acres (174,000 square miles) in parts of eight States-Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the major agricultural regions in the world. Water-level declines began in parts of the High Plains aquifer soon after the beginning of extensive ground-water irrigation. By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (Luckey and others, 1981). In response to these water-level declines, the U.S. Geological Survey (USGS), in cooperation with numerous Federal, State, and local water-resources agencies, began monitoring more than 7,000 wells in 1988 to assess annual water-level change in the aquifer. A report by the USGS, 'Water-Level Changes in the High Plains Aquifer, Predevelopment to 2005 and 2003 to 2005' (McGuire, 2007), shows the areas of substantial water-level changes in the aquifer from the time prior to substantial ground-water irrigation development (predevelopment or about 1950) to 2005 (fig. 1). In parts of the area, farmers began using ground water for irrigation extensively in the 1930s and 1940s. Estimated irrigated acreage in the area overlying the High Plains aquifer increased rapidly from 1940 to 1980 and changed slightly from 1980 to 2002: 1949-2.1 million acres, 1980-13.7 million acres, 1997-13.9 million acres, 2002-12.7 million acres. Irrigated acres in 2002 were 12 percent of the aquifer area, not including the areas with little or no saturated thickness (McGuire, 2007). Ground-water withdrawals for irrigation and other uses are compiled and reported by the USGS and agencies in each State about every 5 years. Ground-water withdrawals from the High Plains aquifer for irrigation increased from 4 to 19 million acre-feet from 1949 to 1974. Ground-water withdrawals for irrigation in 1980, 1985, 1990, and 1995 were from 4 to 18

  12. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1996-01-01

    Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream

  13. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    USGS Publications Warehouse

    Katz, B.G.; Bullen, M.P.; Bullen, T.D.; Hansard, Paul

    1999-01-01

    Concentrations of total lead (Pb) and dissolved Pb exceeded the U.S. Environmental Protection Agency action level of 15 micrograms per liter (mg/L) in approximately 19 percent and 1.3 percent, respectively, of ground-water samples collected during 1991-96 from a statewide network of monitoring wells designed to delineate background water quality of Florida's major aquifer systems. Differences in total Pb concentrations among aquifer systems reflect the combined influence of anthropogenic sources and chemical conditions in each system. A highly significant (p<0.001) difference in median total Pb concentrations was found for water samples from wells with water-level recording devices that contain Pb-counterweights (14 mg/L) compared to non-recorder wells (2 mg/L). Differences between total Pb concentrations for recorder and non-recorder wells are even more pronounced when compared for each aquifer system. The largest differences for recorder status are found for the surficial aquifer system, where median total Pb concentrations are 44 and 2.4 mg/L for recorder wells and non-recorder wells, respectively. Leaching of Pb from metal casing materials is another potential source of Pb in ground water samples. Median total Pb concentrations in water samples from the surficial, intermediate, and Floridan aquifer systems are higher from recorder wells cased with black iron than for recorder wells with steel and PVC casing material. Stable isotopes of Pb were used in this study to distinguish between anthropogenic and natural sources of Pb in ground water, as Pb retains the isotopic signature of the source from which it is derived. Based on similarities between slopes and intercepts of trend lines for various sample types (plots of 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb versus 208Pb/204Pb) the predominant source of total Pb in water samples from the surficial aquifer system is corrosion of Pb counterweights. It is likely that only ground-water samples, not the aquifer

  14. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study.

    PubMed

    Yang, Jie; Graf, Thomas; Ptak, Thomas

    2015-01-01

    Climate change is expected to induce sea level rise in the German Bight, which is part of the North Sea, Germany. Climate change may also modify river discharge of the river Weser flowing into the German Bight, which will alter both pressure and salinity distributions in the river Weser estuary. To study the long-term interaction between sea level rise, discharge variations, a storm surge and coastal aquifer flow dynamics, a 3D seawater intrusion model was designed using the fully coupled surface-subsurface numerical model HydroGeoSphere. The model simulates the coastal aquifer as an integral system considering complexities such as variable-density flow, variably saturated flow, irregular boundary conditions, irregular land surface and anthropogenic structures (e.g., dyke, drainage canals, water gates). The simulated steady-state groundwater flow of the year 2009 is calibrated using PEST. In addition, four climate change scenarios are simulated based on the calibrated model: (i) sea level rise of 1m, (ii) the salinity of the seaside boundary increases by 4 PSU (Practical Salinity Units), (iii) the salinity of the seaside boundary decreases by 12 PSU, and (iv) a storm surge with partial dyke failure. Under scenarios (i) and (iv), the salinized area expands several kilometers further inland during several years. Natural remediation can take up to 20 years. However, sudden short-term salinity changes in the river Weser estuary do not influence the salinized area in the coastal aquifer. The obtained results are useful for coastal engineering practices and drinking water resource management. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Water-level and recoverable water in storage changes, High Plains aquifer, predevelopment to 2015 and 2013–15

    USGS Publications Warehouse

    McGuire, Virginia L.

    2017-06-01

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). This report presents water-level changes and change in recoverable water in storage in the High Plains aquifer from predevelopment (about 1950) to 2015 and from 2013 to 2015.The methods to calculate area-weighted, average water-level changes; change in recoverable water in storage; and total recoverable water in storage used geospatial data layers organized as rasters with a cell size of 500 meters by 500 meters, which is an area of about 62 acres. Raster datasets of water-level changes are provided for other uses.Water-level changes from predevelopment to 2015, by well, ranged from a rise of 84 feet to a decline of 234 feet. Water-level changes from 2013 to 2015, by well, ranged from a rise of 24 feet to a decline of 33 feet. The area-weighted, average water-level changes in the aquifer were an overall decline of 15.8 feet from predevelopment to 2015 and a decline of 0.6 feet from 2013 to 2015. Total recoverable water in storage in the aquifer in 2015 was about 2.91 billion acre-feet, which was a decline of about 273.2 million acre-feet since predevelopment and a decline of 10.7 million acre-feet from 2013 to 2015.

  16. Origins and delineation of saltwater intrusion in the Biscayne aquifer and changes in the distribution of saltwater in Miami-Dade County, Florida

    USGS Publications Warehouse

    Prinos, Scott T.; Wacker, Michael A.; Cunningham, Kevin J.; Fitterman, David V.

    2014-01-01

    Intrusion of saltwater into parts of the shallow karst Biscayne aquifer is a major concern for the 2.5 million residents of Miami-Dade County that rely on this aquifer as their primary drinking water supply. Saltwater intrusion of this aquifer began when the Everglades were drained to provide dry land for urban development and agriculture. The reduction in water levels caused by this drainage, combined with periodic droughts, allowed saltwater to flow inland along the base of the aquifer and to seep directly into the aquifer from the canals. The approximate inland extent of saltwater was last mapped in 1995. An examination of the inland extent of saltwater and the sources of saltwater in the aquifer was completed during 2008–2011 by using (1) all available salinity information, (2) time-series electromagnetic induction log datasets from 35 wells, (3) time-domain electromagnetic soundings collected at 79 locations, (4) a helicopter electromagnetic survey done during 2001 that was processed, calibrated, and published during the study, (5) cores and geophysical logs collected from 8 sites for stratigraphic analysis, (6) 8 new water-quality monitoring wells, and (7) analyses of 69 geochemical samples. The results of the study indicate that as of 2011 approximately 1,200 square kilometers (km2) of the mainland part of the Biscayne aquifer were intruded by saltwater. The saltwater front was mapped farther inland than it was in 1995 in eight areas totaling about 24.1 km2. In many of these areas, analyses indicated that saltwater had encroached along the base of the aquifer. The saltwater front was mapped closer to the coast than it was in 1995 in four areas totaling approximately 6.2 km2. The changes in the mapped extent of saltwater resulted from improved spatial information, actual movement of the saltwater front, or a combination of both. Salinity monitoring in some of the canals in Miami-Dade County between 1988 and 2010 indicated influxes of saltwater, with maximum

  17. Evaluation of long-term water-level declines in basalt aquifers near Mosier, Oregon

    USGS Publications Warehouse

    Burns, Erick R.; Morgan, David S.; Lee, Karl K.; Haynes, Jonathan V.; Conlon, Terrence D.

    2012-01-01

    The Mosier area lies along the Columbia River in northwestern Wasco County between the cities of Hood River and The Dalles, Oregon. Major water uses in the area are irrigation, municipal supply for the city of Mosier, and domestic supply for rural residents. The primary source of water is groundwater from the Columbia River Basalt Group (CRBG) aquifers that underlie the area. Concerns regarding this supply of water arose in the mid-1970s, when groundwater levels in the orchard tract area began to steadily decline. In the 1980s, the Oregon Water Resources Department (OWRD) conducted a study of the aquifer system, which resulted in delineation of an administrative area where parts of the Pomona and Priest Rapids aquifers were withdrawn from further appropriations for any use other than domestic supply. Despite this action, water levels continued to drop at approximately the same, nearly constant annual rate of about 4 feet per year, resulting in a current total decline of between 150 and 200 feet in many wells with continued downward trends. In 2005, the Mosier Watershed Council and the Wasco Soil and Water Conservation District began a cooperative investigation of the groundwater system with the U.S. Geological Survey. The objectives of the study were to advance the scientific understanding of the hydrology of the basin, to assess the sustainability of the water supply, to evaluate the causes of persistent groundwater-level declines, and to evaluate potential management strategies. An additional U.S. Geological Survey objective was to advance the understanding of CRBG aquifers, which are the primary source of water across a large part of Oregon, Washington, and Idaho. In many areas, significant groundwater level declines have resulted as these aquifers were heavily developed for agricultural, municipal, and domestic water supplies. Three major factors were identified as possible contributors to the water-level declines in the study area: (1) pumping at rates that

  18. New insights into the Edwards Aquifer—Brackish-water simulation, drought, and the role of uncertainty analysis

    USGS Publications Warehouse

    Foster, Linzy K.; White, Jeremy T.

    2016-02-03

    The Edwards aquifer consists of three water-quality zones. The freshwater zone of the Edwards aquifer is bounded to the south by a zone of brackish water (transition zone) where the aquifer transitions from fresh to saline water. The saline zone is downdip from the transition zone. There is concern that a recurrence of extreme drought, such as the 7-year drought from 1950 through 1956, could cause the transition zone to move toward (encroach upon) the freshwater zone, causing production wells near the transition zone to pump saltier water. There is also concern of drought effects on spring flows from Comal and San Marcos Springs. These concerns were evaluated through the development of a new numerical model of the Edwards aquifer.

  19. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuan Lu; CHI Zhang; Hai Hanag

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoringmore » the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.« less

  20. Hydrogeology and geochemistry of aquifers underlying the San Lorenzo and San Leandro areas of the East Bay Plain, Alameda County, California

    USGS Publications Warehouse

    Izbicki, John A.; Borchers, James W.; Leighton, David A.; Kulongoski, Justin T.; Fields, Latoya; Galloway, Devin L.; Michel, Robert L.

    2003-01-01

    The East Bay Plain, on the densely populated eastern shore of San Francisco Bay, contains an upper aquifer system to depths of 250 feet below land surface and an underlying lower aquifer system to depths of more than 650 feet. Injection and recovery of imported water has been proposed for deep aquifers at two sites within the lower aquifer system. Successful operation requires that the injected water be isolated from surface sources of poor-quality water during storage and recovery. Hydraulic, geochemical, and isotopic data were used to evaluate the isolation of deeper aquifers. Ground-water responses to tidal changes in the Bay suggest that thick clay layers present within these deposits effectively isolate the deeper aquifers in the northern part of the study area from overlying surficial deposits. These data also suggest that the areal extent of the shallow and deep aquifers beneath the Bay may be limited in the northern part of the study area. Despite its apparent hydraulic isolation, the lower aquifer system may be connected to the overlying upper aquifer system through the corroded and failed casings of abandoned wells. Water-level measurements in observation wells and downward flow measured in selected wells during nonpumped conditions suggest that water may flow through wells from the upper aquifer system into the lower aquifer system during nonpumped conditions. The chemistry of water from wells in the East Bay Plain ranges from fresh to saline; salinity is greater than seawater in shallow estuarine deposits near the Bay. Water from wells completed in the lower aquifer system has higher pH, higher sodium, chloride, and manganese concentrations, and lower calcium concentrations and alkalinity than does water from wells completed in the overlying upper aquifer system. Ground-water recharge temperatures derived from noble-gas data indicate that highly focused recharge processes from infiltration of winter streamflow and more diffuse recharge processes from

  1. Evaluation of ground-water quality data from Kentucky

    USGS Publications Warehouse

    Sprinkle, C.L.; Davis, R.W.; Mull, D.S.

    1983-01-01

    The report reviews and summarizes 10,578 chemical analyses, from 2,362 wells and springs in Kentucky. These water-quality data were collected prior to September 30, 1981, and are available in computer files of the U.S. Geological Survey. The principal water-bearing rocks in Kentucky were combined into 10 major groups to aid in data summary preparation and general description of the ground-water quality of the State. Ground water in Kentucky is generally fresh near the outcrop of the rocks comprising the aquifer. Slightly saline to briny water occurs at variable depths beneath the freshwater. Preparation of quadrilinear diagrams revealed three principal geochemical processes in the aquifers of Kentucky: (1) mixing of freshwater and saline water in an interface zone; (2) dedolomitization of the Devonian and Silurian and Lower Mississippian carbonate rocks; (3) sodium for calcium exchange in the freshwater sections of many of the sandstone-shale aquifers. A number of errors and deficiencies were found in the data base. The principal deficiencies were: (1) very few complete analyses which included important field measurements; (2) inadequate definition of the chemistry of the freshwater-saline water interface zone throughout much of the State; (3) no analyses of stable isotopes and dissolved gases; (4) fewer than 10 analyses of most trace metals, radionuclides, and man-made organic chemicals; and (5) no data on bacteria in ground water from any aquifer in the State. (USGS)

  2. Hydrogeology, water quality, and water-resources development potential of the upper Floridan Aquifer in the Valdosta area, south-central Georgia

    USGS Publications Warehouse

    McConnell, J.B.; Hacke, C.M.

    1993-01-01

    Water quality in the Upper Floridan aquifer in the Valdosta, Georgia area is adversely affected by direct recharge from the Withlacoochee River. Water enters the aquifer along a short reach of the river where sinkholes have formed in the stream bed. The water receives little filtration as it recharges the Upper Floridan aquifer through these sinkholes. Naturally occurring organic material in the river provides a readily available source of energy for the growth of microbiota in the aquifer. Microbiological processes and chemical reactions in the aquifer produce methane and hydrogen sulfide as the water from the river mixes with ground water and moves downgradient in the aquifer. Humic substances associated with the organic material in the ground water in this area can form trihalomethanes when the water is chlorinated for public supply. To assess areas most suitable for ground-water supply development, areal distributions of total organic carbon, total sulfide, and methane in the Upper Floridan aquifer were mapped and used to evaluate areas affected by recharge from the Withlacoochee River. Areas where concentrations of total organic carbon, total sulfide, and methane were less than or equal to 2.0 milligrams per liter, 0.5 milligrams per liter, and 100 micrograms per liter, respectively, were considered to be relatively unaffected by recharge from the river and to have the greatest potential for water- resources development.

  3. Modeling the Impact of Energy and Water Prices on Reservoir and Aquifer Management

    NASA Astrophysics Data System (ADS)

    Dale, L. L.; Vicuna, S.; Faybishenko, B.

    2008-12-01

    Climate change and polices to limit carbon emissions are likely to increase energy and water scarcity and raise prices. These price impacts affect the way that reservoirs and aquifers should be managed to maximize the value of water and energy outputs. In this paper, we use a model of storage in a specific region to illustrate how energy and water prices affect optimal reservoir and aquifer management. We evaluate reservoir-aquifer water management in the Merced water basin in California, applying an optimization model of storage benefits associated with different management options and input prices. The model includes two submodels: (a) a monthly nonlinear submodel for optimization of the conjunctive energy/water use and (b) an inter-annual stochastic dynamic programming submodel used for determining an operating rule matrix which maximizes system benefits for given economic and hydrologic conditions. The model input parameters include annual inflows, initial storage, crop water demands, crop prices and electricity prices. The model is used to determine changes in net energy generation and water delivery and associated changes in water storage levels caused by changes in water and energy output prices. For the scenario of water/energy tradeoffs for a pure reservoir (with no groundwater use), we illustrate the tradeoff between the agricultural water use and hydropower generation (MWh) for different energy/agriculture price ratios. The analysis is divided into four steps. The first and second steps describe these price impacts on reservoirs and aquifers, respectively. The third step covers price impacts on conjunctive reservoir and aquifer management. The forth step describes price impacts on reservoir and aquifer storage in the more common historical situation, when these facilities are managed separately. The study indicates that optimal reservoir and aquifer storage levels are a positive function of the energy to water price ratio. The study also concludes that

  4. Potential for saltwater intrusion into the lower Tamiami aquifer near Bonita Springs, southwestern Florida

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Edwards, K. Michelle

    2003-01-01

    A study was conducted to examine the potential for saltwater intrusion into the lower Tamiami aquifer beneath Bonita Springs in southwestern Florida. Field data were collected, and constant- and variable-density ground-water flow simulations were performed that: (1) spatially quantified modern and seasonal stresses, (2) identified potential mechanisms of saltwater intrusion, and (3) estimated the potential extent of saltwater intrusion for the area of concern. MODFLOW and the inverse modeling routine UCODE were used to spatially quantify modern and seasonal stresses by calibrating a constant-density ground-water flow model to field data collected in 1996. The model was calibrated by assuming hydraulic conductivity parameters were accurate and by estimating unmonitored ground-water pumpage and potential evapotranspiration with UCODE. Uncertainty in these estimated parameters was quantified with 95-percent confidence intervals. These confidence intervals indicate more uncertainty (or less reliability) in the estimates of unmonitored ground-water pumpage than estimates of pan-evaporation multipliers, because of the nature and distribution of observations used during calibration. Comparison of simulated water levels, streamflows, and net recharge with field data suggests the model is a good representation of field conditions. Potential mechanisms of saltwater intrusion into the lower Tamiami aquifer include: (1) lateral inland movement of the freshwater-saltwater interface from the southwestern coast of Florida; (2) upward leakage from deeper saline water-bearing zones through natural upwelling and upconing, both of which could occur as diffuse upward flow through semiconfining layers, conduit flow through karst features, or pipe flow through leaky artesian wells; (3) downward leakage of saltwater from surface-water channels; and (4) movement of unflushed pockets of relict seawater. Of the many potential mechanisms of saltwater intrusion, field data and variable

  5. Rapid estimation of aquifer salinity structure from oil and gas geophysical logs

    NASA Astrophysics Data System (ADS)

    Shimabukuro, D.; Stephens, M.; Ducart, A.; Skinner, S. M.

    2016-12-01

    We describe a workflow for creating aquifer salinity maps using Archie's equation for areas that have geophysical data from oil and gas wells. We apply this method in California, where geophysical logs are available in raster format from the Division of Oil, Gas, and Geothermal Resource (DOGGR) online archive. This method should be applicable to any region where geophysical logs are readily available. Much of the work is controlled by computer code, allowing salinity estimates for new areas to be rapidly generated. For a region of interest, the DOGGR online database is scraped for wells that were logged with multi-tool suites, such as the Platform Express or Triple Combination Logging Tools. Then, well construction metadata, such as measured depth, spud date, and well orientation, is attached. The resultant local database allows a weighted criteria selection of wells that are most likely to have the shallow resistivity, deep resistivity, and density porosity measurements necessary to calculate salinity over the longest depth interval. The algorithm can be adjusted for geophysical log availability for older well fields and density of sampling. Once priority wells are identified, a student researcher team uses Neuralog software to digitize the raster geophysical logs. Total dissolved solid (TDS) concentration is then calculated in clean, wet sand intervals using the resistivity-porosity method, a modified form of Archie's equation. These sand intervals are automatically selected using a combination of spontaneous potential and the difference in shallow resistivity and deep resistivity measurements. Gamma ray logs are not used because arkosic sands common in California make it difficult to distinguish sand and shale. Computer calculation allows easy adjustment of Archie's parameters. The result is a semi-continuous TDS profile for the wells of interest. These profiles are combined and contoured using standard 3-d visualization software to yield preliminary salinity

  6. Effects of Barometric Fluctuations on Well Water-Level Measurements and Aquifer Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spane, Frank A.

    1999-12-16

    This report examines the effects of barometric fluctuations on well water-level measurements and evaluates adjustment and removal methods for determining areal aquifer head conditions and aquifer test analysis. Two examples of Hanford Site unconfined aquifer tests are examined that demonstrate baro-metric response analysis and illustrate the predictive/removal capabilities of various methods for well water-level and aquifer total head values. Good predictive/removal characteristics were demonstrated with best corrective results provided by multiple-regression deconvolution methods.

  7. Evaluation of water levels in major aquifers of the New Jersey coastal plain, 1978

    USGS Publications Warehouse

    Walker, R.L.

    1983-01-01

    Increased withdrawals from the major artesian aquifers that underlie the New Jersey Coastal Plain have caused water-level declines and large regional cones of depression. These cones of depression are delineated on detailed potentiometric surface maps produced from water-level data collected in the field in 1978. Water levels for 1978 are compared with those from 1970 or 1973, and water-level changes are evaluated and compared with hydrographs from observation wells. The Potomac-Raritan-Magothy aquifer system is divided into regionally extensive lower and upper aquifers. These aquifers have large cones of depression centered in Camden, Middlesex, and Monmouth Counties. Water levels declined 5 to 20 feet in these areas between 1973 and 1978. Deep cones of depression in coastal Monmouth and Ocean Counties in the Englishtown and Wenonah-Mount Laurel aquifers are similar in location and shape, due to a good hydraulic connection between these aquifers. Water levels declined 2 to 31 feet in the Englishtown aquifer and 12 to 26 feet in the Wenonah-Mount Laurel aquifer between 1973 and 1978. Water levels in the Atlantic City 800-foot sand of the Kirkwood Formation define an extensive elongated cone of depression centered near Margate, Atlantic County. Head changes ranged from a decline of 4 feet to a recovery of 9 feet during 1970-78. The lowest heads in the Cohansey Sand were about 26 feet below sea level at Cape May, Cape May County, and less than 0.5 miles from salty ground water. (USGS)

  8. Geochemical characterization of shallow ground water in the Eutaw aquifer, Montgomery, Alabama

    USGS Publications Warehouse

    Robinson, J.L.; Journey, C.A.

    2004-01-01

    Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium-sodium-chloride- dominated type in the recharge area to calcium-bicarbonate-dominated type in the confined portion of the aquifer. Ground water in the recharge area was undersaturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite-plus-nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.

  9. Assessing the groundwater salinization in closed hydrologic basins due to overdraft

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Pauloo, R.; Fogg, G. E.

    2016-12-01

    Population growth and the expansion of agriculture, coupled with climate uncertainties, have accelerated groundwater pumping and overdraft in alluvial aquifers worldwide. In many agricultural basins, the low rate of replenishment is far exceeded by the rate of groundwater pumping in overdrafted aquifers, which results in the substantial water table declines and in effect contributes to the formation of a "closed" basin. In fact, even modest amounts of groundwater system drawdown that do not produce what is construed as overdraft, can result in most of the groundwater discharge occurring as evapotranspiration via irrigation practices, converting the basin to a closed groundwater basin. Moreover, in past decades, extreme weather conditions (i.e., severe drought in California for the past five years) have resulted in substantially reduced surface water storage. This increases demand for groundwater to supplement low surface water supplies, and consequently, drives groundwater overdraft, and hence, groundwater salinization. In these newly closed basins, just as in other naturally closed basins such as Death Valley and the Great Salt Lake, groundwater salinity must increase not only due to evaporation, but also due to rock water interactions in the groundwater system, and lack of a natural outlet for the groundwater. In this study, the water balance and salt balance in closed basins of the Central Valley, California are computed. Groundwater degradation under the current overdraft conditions is further investigated using simple models that are developed by upscaling more complex and heterogeneous transport models. The focus of this study is to determine the applicability of these simple models to represent regional transport without explicitly including the large-scale heterogeneity inherent in the more complex models. Groundwater salinization processes, including salt accumulation caused by evapotranspiration of applied irrigation water and rock

  10. The Dammam aquifer in Bahrain - Hydrochemical characterization and alternatives for management of groundwater quality

    NASA Astrophysics Data System (ADS)

    Zubari, Waleed K.

    Over-ion of the Dammam aquifer, the principal aquifer in Bahrain, by the agricultural and domestic sectors, has led to its salinization by adjacent brackish and saline water bodies. A hydrochemical study identified the locations of the sources of aquifer salinization and delineated their areas of influence. The investigation indicates that the aquifer water quality is significantly modified as groundwater flows from the northwestern parts of Bahrain, where the aquifer receives its water by lateral underflow from eastern Saudi Arabia, to the southern and southeastern parts. Four types of salinization of the aquifer are identified: brackish-water up-flow from the underlying brackish-water zones in north-central, western, and eastern regions; seawater intrusion in the eastern region; intrusion of sabkha water in the southwestern region; and irrigation return flow in a local area in the western region. Four alternatives for the management of groundwater quality that are available to the water authorities in Bahrain are discussed and their priority areas are proposed, based on the type and extent of each salinization source, in addition to groundwater use in that area. The effectiveness of the proposed management options in controlling the degradation of water quality in the Dammam aquifer should be evaluated using simulation modeling. Résumé La surexploitation de l'aquifère de Damman, principal aquifère de Bahreïn, du fait des besoins agricoles et domestiques, a conduit à sa salinisation à partir d'eaux voisines saumâtres et salées. Une étude hydrochimique a identifié les origines de la salinisation de l'aquifère et a délimité leurs zones d'influence. Les recherches montrent que la qualité de l'eau souterraine est modifiée de façon significative pour les écoulements souterrains dirigés vers les secteurs sud et sud-est et provenant de la région nord-ouest de Bahreïn, là où l'aquifère est alimenté latéralement à partir de l'Arabie Saoudite

  11. Recovery of energetically overexploited urban aquifers using surface water

    NASA Astrophysics Data System (ADS)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  12. Simulation of ground-water flow in the Coastal Plain aquifer system of North Carolina

    USGS Publications Warehouse

    Giese, G.I.; Eimers, J.L.; Coble, R.W.

    1997-01-01

    A three-dimensional finite-difference digital model was used to simulate ground-water flow in the 25,000-square-mile aquifer system of the North Carolina Coastal Plain. The model was developed from a hydrogeologic framework that is based on an alternating sequence of 10 aquifers and 9 confining units, which make up a seaward-thickening wedge of sediments that form the Coastal Plain aquifer system in the State of North Carolina. The model was calibrated by comparing observed and simulated water levels. The model calibration was achieved by adjusting model parameters, primarily leakance of confining units and transmissivity of aquifers, until differences between observed and simulated water levels were within acceptable limits, generally within 15 feet. The maximum transmissivity of an individual aquifer in the calibrated model is 200,000 feet squared per day in a part of the Castle Hayne aquifer, which consists predominantly of limestone. The maximum value for simulated vertical hydraulic conductivity in a confining unit was 2.5 feet per day, in a part of the confining unit overlying the upper Cape Fear aquifer. The minimum value was 4.1x10-6 feet per day, in part of the confining unit overlying the lower Cape Fear aquifer. Analysis indicated the model is highly sensitive to changes in transmissivity and leakance near pumping centers; away from pumping centers, the model is only slightly sensitive to changes in transmissivity but is moderately sensitive to changes in leakance. Recharge from precipitation to the surficial aquifer ranges from about 12 inches per year in areas having clay at the surface to about 20 inches per year in areas having sand at the surface. Most of this recharge moves laterally to streams, and only about 1 inch per year moves downward to the confined parts of the aquifer system. Under predevelopment conditions, the confined aquifers were generally recharged in updip interstream areas and discharged through streambeds and in downdip coastward

  13. Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers

    PubMed Central

    Rathnaweera, T. D.; Ranjith, P. G.; Perera, M. S. A.

    2016-01-01

    Interactions between injected CO2, brine, and rock during CO2 sequestration in deep saline aquifers alter their natural hydro-mechanical properties, affecting the safety, and efficiency of the sequestration process. This study aims to identify such interaction-induced mineralogical changes in aquifers, and in particular their impact on the reservoir rock’s flow characteristics. Sandstone samples were first exposed for 1.5 years to a mixture of brine and super-critical CO2 (scCO2), then tested to determine their altered geochemical and mineralogical properties. Changes caused uniquely by CO2 were identified by comparison with samples exposed over a similar period to either plain brine or brine saturated with N2. The results show that long-term reaction with CO2 causes a significant pH drop in the saline pore fluid, clearly due to carbonic acid (as dissolved CO2) in the brine. Free H+ ions released into the pore fluid alter the mineralogical structure of the rock formation, through the dissolution of minerals such as calcite, siderite, barite, and quartz. Long-term CO2 injection also creates a significant CO2 drying-out effect and crystals of salt (NaCl) precipitate in the system, further changing the pore structure. Such mineralogical alterations significantly affect the saline aquifer’s permeability, with important practical consequences for the sequestration process. PMID:26785912

  14. Availability of water from the Outwash Aquifer, Marion County, Indiana

    USGS Publications Warehouse

    Smith, B.S.

    1983-01-01

    The outwash aquifer in Marion County, Indiana is a continuous, unconfined sand and gravel deposit containing isolated boulder, till, silt, and clay deposits along the White River, Fall Creek, and Eagle Creek. Flow in the aquifer is from the boundaries of the aquifer with the Tipton till plain toward the streams and major pumping centers in the aquifer. A two-dimensional, finite-difference model of the outwash aquifer was calibrated to water levels of October 6 to 10, 1980 and used to estimate availability of water in the aquifer. A drawdown limit of 50-percent saturated thickness applied to 78 simulated-pumping wells assumed to be 1 foot in diameter produced 97 cubic feet per second from the outwash aquifer. Streamflow reductions caused by 97 cubic feet per second simulated pumpage and constant-flux boundaries were estimated to be 85 cubic feet per second in the White River and 12 cubic feet per second in Fall Creek. In comparison, the 7-day, 10-year low flows were 83 cubic feet per second in the White River near Nora and 23 cubic feet per second in Fall Creek at Millersville. Simulated pumpage of 115 cubic feet per second and constant-flux boundaries produced streamflow reductions of 101 cubic feet per second on the White River and 13 cubic feet per second on Fall Creek. (USGS)

  15. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer

    NASA Astrophysics Data System (ADS)

    Patterson, B. M.; Shackleton, M.; Furness, A. J.; Bekele, E.; Pearce, J.; Linge, K. L.; Busetti, F.; Spadek, T.; Toze, S.

    2011-03-01

    The fate of nine trace organic compounds was evaluated during a 12 month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life < 1 day). Lag-times for the start of degradation of these compounds ranged from < 15 to 30 days. While iodipamide was persistent under aerobic conditions, artificial reductive geochemical conditions promoted via the addition of ethanol, resulted in rapid degradation (half life < 1 days). Pharmaceuticals (carbamazepine and oxazepam) and disinfection by-products (NDMA and NMOR) did not degrade under either aerobic or anaerobic aquifer geochemical conditions (half life > 50 days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required.

  16. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.

    2018-01-01

    Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.

  17. Tests for injecting, storing, and recovering freshwater in a saline artesian aquifer, Lee County, Florida

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1986-01-01

    An investigation was made of the suitability of a saline, artesian limestone aquifer for the injection, storage, and recovery of freshwater from the Caloosahatchee River. The tests were conducted on a well tapping a leaky artesian system that has a transmissivity of 800 square feet per day, a storage of 1 x 10-4, and a leakance of 0.01 per day. The specific capacity of the injection well was increased through acidizing and was decreased as a result of well clogging during injection. Three injection tests were made wherein the amounts of freshwater injected, the storage duration, and the quality of water injected varied. Analysis of the test data showed that freshwater recoverability ranged from 9.7 to 38.7 percent of the total injected. Differences were attributed principally to differences in the quality of water injected and storage duration. Repeated injection-recovery cycles probably would result in greater recoverability. Head buildup, nearly 200 feet in one test, was a prime problem related chiefly to clogging from suspended material in the injected water and to bacterial growth at the wellbore-limestone interface. Regular backflushing was required. Total head buildup decreased as a result of acidizing the injection well. No coliforms or fecal streptococcus were noted in the recovered water. Growth of anaerobic bacteria occurred. Changes in the quality of the recovered water included decreases in concentration of dissolved organic carbon by as much as 15 mg/L (milligrams per liter), organic nitrogen by as much as 0.80 mg/L, and nitrate by as much as 0.50 mg/L. Increases were noted in ammonia by 0.40 mg/L, and iron by as much as 0.60 mg/L. These changes are consistent with the presence of an anaerobic bacterial ecosystem.

  18. Water Levels In Major Artesian Aquifers Of The New Jersey Coastal Plain, 1988

    USGS Publications Warehouse

    Rosman, Robert; Lacombe, Pierre J.; Storck, Donald A.

    1995-01-01

    Water levels in 1,251 wells in the New Jersey Coastal Plain, Philadelphia County, Pennsylvania, and Kent and New Castle Counties, Delaware, were measured from October 1988 to February 1989 and compared with 1,071 water levels measured from September 1983 to May 1984. Water levels in 916 of the wells measured in the 1983 study were remeasured in the 1988 study. Alternate wells were selected to replace wells used in 1983 that were inaccessible at the time of the water-level measurements in 1988 or had been destroyed. New well sites were added in strategic locations to increase coverage where possible. Large cones of depression have formed or expanded in the nine major artesian aquifers that underlie the New Jersey Coastal Plain. Water levels are shown on nine potentiometric-surface maps. Hydrographs for observation wells typically show water-level declines for 1983, through 1989. In the confined Cohansey aquifer, the lowest water level, 20 feet below sea level, was measured in a well located at Cape May City Water Department, Cape May County. Water levels in the Atlantic City 800-foot sand declined as much as 21 feet at Ventnor, Atlantic County, over the 6-year period from the 1983 study to this study for 1988. Water levels in the Piney Point aquifer were as low as 56 feet below sea level at Seaside Park, Ocean County; 45 feet below sea level in southern Cumberland County; and 28 feet below sea level at Margate, Atlantic County. Water levels in the Vincentown aquifer did not change over the 6-year period. The lowest water levels in the Wenonah-Mount Laurel aquifer and the Englishtown aquifer system were 218 feet and 256 feet below sea level, respectively. Large cones of depression in the Potomac- Raritan-Magothy aquifer system are centered in the Camden County area and the Middlesex and Monmouth County area. Water levels declined as much as 46 feet in these areas over the 6-year period.

  19. Synergy of climate change and local pressures on saltwater intrusion in heterogeneous coastal aquifers

    NASA Astrophysics Data System (ADS)

    Abou Najm, M.; Safi, A.; El-Fadel, M.; Doummar, J.; Alameddine, I.

    2016-12-01

    The relative importance of climate change induced sea level rise on the salinization of a highly urbanized karstified coastal aquifers were compared with non-sustainable pumping. A 3D variable-density groundwater flow and solute transport model was used to predict the displacement of the saltwater-freshwater interface in a pilot aquifer located along the Eastern Mediterranean. The results showed that the influence of sea level rise was marginal when compared with the encroachment of salinity associated with anthropogenic abstraction. Model predictions of salinity mass and volumetric displacement of the interface corresponding to a long-term monthly transient model showed that the saltwater intrusion dynamic is highly sensitive to change in the abstraction rates which were estimated based on combinations of water consumption rates and population growth rates. Salinity encroachment, however, appeared to be more sensitive to water consumption rates in comparison to population growth rates, where a 50% increase in the rate of former led to four times more intrusion as compared to an equivalent increase in population growth rate over 20 years. Coupling both increase in population growth and increased consumption rates had a synergistic effect that aggravated the intrusion beyond the sum of the individual impacts. Adaptation strategies targeting a decrease in groundwater exploitation proved to be effective in retarding the intrusion.

  20. The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona

    USGS Publications Warehouse

    Pool, D.R.

    2008-01-01

    Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  1. Water-level altitudes 2016 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973–2015 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Ramage, Jason K.; Johnson, Michaela R.

    2016-10-07

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2016 water-level altitudes (represented by measurements made during December 2015–March 2016) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2015–16) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2011–16) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2016 and 1977–2016) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–16) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2015. Tables listing the water-level data used to construct each water-level map for each aquifer and the measured long-term cumulative compaction data for each extensometer site are included. Graphs depicting water-level measurement data also are included; these graphs can be used to approximate

  2. The fissured East Yorkshire Chalk, UK - a 'sustainable' aquifer under stress ?

    NASA Astrophysics Data System (ADS)

    Elliot, T.; Younger, P. L.; Chadha, D. S.

    2003-04-01

    The fissured Chalk is an important regional aquifer in East Yorkshire, UK, with a large potential for water supply to the Humberside region and especially the City of Hull. It has been exploited since the end of the 19th Century, but although there are more than a dozen long-established pumping wells in the Chalk these currently abstract only 7% of the total recharge the aquifer receives. The classical notion of ‘safe aquifer yield' equates the quantity of groundwater available for abstraction with the long-term natural recharge to the aquifer. An incautious hydrogeologist might be lead to conclude that this is a secure, under-developed resource. In this case study, the aquifer is shown to be already displaying early symptoms of hydrological stress (eg drought effects, overexploitation), and hydrogeochemical indicators point to further effects of anthropogenic pollution impacts in the unconfined aquifer and both recent and ancient saline intrusion in its semi-confined and confined zones. The hydrochemical evidence clearly reveals the importance both of recent aquifer management decisions and palaeohydrogeology in determining the distribution of water qualities within the aquifer. Waters encountered in the confined aquifer are identified as complex (and potentially dynamic) mixtures between recently recharged waters, modern seawater intrusion, and ancient seawater which entered the aquifer many millennia ago. Elliot, T. Younger, P.L. &Chadha, D.S. (1998) The future sustainability of groundwater resources in East Yorkshire - past and present perspectives. In H. Wheater and C. Kirby (Eds.) Hydrology in a Changing Environment, Vol. II, Proc. British Hydrological Society (BHS) International Conference, 6-10 July 1998, Exeter, UK. pp.21-31. Elliot, T., Chadha, D.S. &Younger, P.L. (2001) Water Quality Impacts and Palaeohydrogeology in the East Yorkshire Chalk Aquifer, UK. Quarterly Journal of Engineering Geology and Hydrogeology, 34(4): 385-398. Younger, P.L., Teutsch

  3. Use of saline water in energy development. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israelsen, C.E.; Adams, V.D.; Batty, J.C.

    1980-06-01

    Information was assembled relative to future energy-related projects in the upper basin, and estimates were made of their anticipated water needs. Using computer models, various options were tested for using saline water for coal-fired power plant cooling. Both cooling towers and brine evaporation ponds were included. Information is presented of several proven water treatment technologies, and comparisons are made of their cost effectiveness when placed in various combinations in the power plant makeup and blowdown water systems. A relative value scale was developed which compares graphically the relative values of waters of different salinities based on three different water treatmentmore » options and predetermined upper limits of cooling tower circulating salinities. Coal from several different mines was slurried in waters of different salinities. Samples were analyzed in the laboratory to determine which constituents had been leached from or absorbed by the coal, and what possible deleterious effects this might have on the burning properties of the coal, or on the water for culinary use or irrigation.« less

  4. Organic and inorganic species in produced water: Implications for water reuse

    USGS Publications Warehouse

    Kharaka, Yousif K.; Rice, Cynthia A.

    2004-01-01

    Currently 20-30 billion barrels of formation water are co-produced annually in the USA with conventional oil and natural gas. The large database on the geochemistry of this produced water shows salinities that vary widely from ~5,000 to >350,000 mg/L TDS. Chloride, Na and Ca are generally the dominant ions, and concentrations of Fe, Mn, B, NH3 and dissolved organics, including, BTEX, phenols and poly aromatic hydrocarbons (PAHs) may be relatively high. Hazardous concentrations of NORMs, including Ra-226 and Rn-222 have been reported in produced water from several states.Coal-bed methane (CBM) wells currently produce close to a billion barrels of water and deliver ~8% of total natural gas. The salinity of this produced water generally is lower than that of water from petroleum wells; salinity commonly is 1,000-20,000 mg/L, but ranges to150,000 mg/L TDS. Most CBM wells produce Na-HCO3-Cl type water that is low in trace metals and has no reported NORMs. This water commonly has no oil and grease and has relatively low DOC, but its organic composition has not been characterized in detail. The water is disposed of by injection into saline aquifers, through evaporation and/or percolation in disposal pits, road spreading, and surface discharge. Water that has an acceptable salinity and sodium absorption ratio (SAR) is considered acceptable for surface discharge and for injection into freshwater aquifers.As an alternative to costly disposal, low salinity produced water is being considered for reclamation, especially in the arid western USA. The cost of reclaiming this water to meet irrigation, industrial and drinking water standards was evaluated in a 10 gpm pilot field study at Placerita oil field, California. This produced water had a low salinity of ~8,000 mg/L, but high concentration of Si and organics. Removal of B, Si, NH3 and especially organics from this water proved difficult, and the estimated treatment cost was high at $0.08-$0.39/bbl for water treated for

  5. The Slow Moving Threat of Groundwater Salinization: Mechanisms, Costs, and Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Pauloo, R.; Guo, Z.; Fogg, G. E.

    2016-12-01

    Population growth, the Green Revolution, and climate uncertainties have accelerated overdraft in groundwater basins worldwide, which in some regions is converting these basins into closed hydrologic systems, where the dominant exits for water are evapotranspiration and pumping. Irrigated agricultural basins are particularly at risk to groundwater salinization, as naturally occurring (i.e., sodium, potassium, chloride) and anthropogenic (i.e., nitrate fertilizers) salts leach back into the water table through the root zone, while a large portion of pumped groundwater leaves the system as it is evapotranspired by crops. Decreasing water quality associated with increases in Total Dissolved Solids (TDS) has been documented in aquifers across the United States in the past half century. This study suggests that the increase in TDS in aquifers can be partially explained by closed basin hydrogeology and rock-water interactions leading to groundwater salinization. This study will present: (1) a report on historical water quality in the Tulare basin, (2) a forward simulation of salt balance in Tulare Basin based on the Department of Water Resources numerical model C2VSim, and a simple mixing model, (3) an economic analysis forecasting the cost of desalination under varying degrees of managed groundwater recharge where the basin is gradually filled, avoiding hydraulic closure.

  6. The effect of the Baton Rouge fault on flow in the Abita aquifer of southeastern Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, T.R.

    1993-03-01

    The ground-water resources of southern Tangipahoa Parish and adjacent areas were studied to determine their potential for development as an alternative to the Mississippi River as a water supply source for Jefferson Parish, Louisiana. The study area, in southeastern Louisiana, is underlain by eight major aquifers and is crossed by a fault zone, referred to as the Baton Rouge fault. The fault restricts the flow of water in the aquifers of intermediate depth. Data from a test well drilling program and geophysical logs of a nearby oil well indicated that a significant freshwater aquifer that provides water to a nearbymore » municipality was actually the Abita aquifer and not the Covington aquifer, as was previously thought. The Abita aquifer, a shallower aquifer with a lower hydraulic conductivity, had been displaced to a position equivalent to that of the Covington aquifer by the Baton Rouge fault. An additional final test well drilled south of the fault penetrated the leading edge of a wedge-shaped saltwater interface. Analysis of lithologic and geophysical logs indicated that the Abita aquifer has a well-sorted, clean sand at the base of the aquifer and substantial amounts of clay in the top two-thirds of the aquifer. Geophysical logs of oil test wells south of the fault zone indicated that the sand thickens substantially to the south. The thicker sand south of a public supply well that pumps water from the Abita aquifer and the higher hydraulic conductivity of the lower part of the aquifer where the saline water was detected indicate that a much larger percentage of recharge to the public supply well may come from the south than was originally thought.« less

  7. Insights into the Groundwater Salinization Processes in Manas River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Jin, M.; Liu, Y.; Liang, X.

    2017-12-01

    Manas River Basin (MRB) is a typical mountains-oasis-desert inland basin in northwest China, where groundwater salinization is threatening the local water use and the environment, but the groundwater salinization process is not clear. Based on groundwater flow system analysis by integrating flow fields, hydrochemical and isotopic characteristics, a deuterium excess analytical method was used to quantitatively assess salinization mechanism and calculate the contribution ratios of evapoconcentration effect to the salinities. 73 groundwater samples and 11 surface water samples were collected from the basin. Hydrochemical diagrams and δD and δ18O compositions indicated that evapoconcentration, mineral dissolution and transpiration, increased the groundwater salinities (i.e. total dissolved solids). The results showed that the average contribution ratios of evapoconcentration effect to the increased salinities were 5.8% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the evapoconcentration effect increased the average groundwater loss from 7% to 29%. However, it only increased slight salinity (0 - 0.27 g/L), as determined from the deuterium excess signals. Minerals dissolution and anthropogenic activities are the major cause of groundwater salinization problem. The results revealed that fresh water in the rivers directly and quickly infiltrated the aquifers in the piedmont area with evapoconcentration affected weakly, and the fresh water interacted with the sediments and dissolved soluble minerals, subsequently increasing the salinities. Combined with the groundwater stable isotopic compositions and hydrochemical evolution, the relationships between δ18O and Cl and salinities reveal the soil evaporites leaching by the vertical recharge (irrigation return flow and channels leakage) mainly affect the groundwater salinization processes in the middle alluvial-diluvial plain and the desert land. The saline water

  8. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam

    PubMed Central

    2016-01-01

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium–helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO2 (PCO2) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L. PMID:27958705

  9. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam.

    PubMed

    Postma, Dieke; Mai, Nguyen Thi Hoa; Lan, Vi Mai; Trang, Pham Thi Kim; Sø, Helle Ugilt; Nhan, Pham Quy; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus

    2017-01-17

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium-helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO 2 (P CO 2 ) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L.

  10. Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

    2007-01-01

    Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement

  11. Valuing the subsurface pathogen treatment barrier in water recycling via aquifers for drinking supplies.

    PubMed

    Page, Declan; Dillon, Peter; Toze, Simon; Bixio, Davide; Genthe, Bettina; Jiménez Cisneros, Blanca Elena; Wintgens, Thomas

    2010-03-01

    A quantitative microbial risk assessment (QMRA) was performed at four managed aquifer recharge (MAR) sites (Australia, South Africa, Belgium, Mexico) where reclaimed wastewater and stormwater is recycled via aquifers for drinking water supplies, using the same risk-based approach that is used for public water supplies. For each of the sites, the aquifer treatment barrier was assessed for its log(10) removal capacity much like for other water treatment technologies. This information was then integrated into a broader risk assessment to determine the human health burden from the four MAR sites. For the Australian and South African cases, managing the aquifer treatment barrier was found to be critical for the schemes to have low risk. For the Belgian case study, the large treatment trains both in terms of pre- and post-aquifer recharge ensures that the risk is always low. In the Mexico case study, the risk was high due to the lack of pre-treatment and the low residence times of the recharge water in the aquifer. A further sensitivity analysis demonstrated that human health risk can be managed if aquifers are integrated into a treatment train to attenuate pathogens. However, reduction in human health disease burden (as measured in disability adjusted life years, DALYs) varied depending upon the number of pathogens in the recharge source water. The beta-Poisson dose response curve used for translating rotavirus and Cryptosporidium numbers into DALYs coupled with their slow environmental decay rates means poor quality injectant leads to aquifers having reduced value to reduce DALYs. For these systems, like the Mexican case study, longer residence times are required to meet their DALYs guideline for drinking water. Nevertheless the results showed that the risks from pathogens can still be reduced and recharging via an aquifer is safer than discharging directly into surface water bodies. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Hydrogeology and water-quality characteristics of the Lower Floridan aquifer in east-central Florida

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Spechler, Rick M.; McGurk, Brian E.

    2002-01-01

    The hydrogeology and water-quality characteristics of the Lower Floridan aquifer and the relation of the Lower Floridan aquifer to the framework of the Floridan aquifer system were evaluated during a 6-year (1995-2001) study. The study area, a 7,500 square-mile area of east-central Florida, is underlain by three principal hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The Floridan aquifer system, a carbonate-rock aquifer system composed of the Upper Floridan aquifer, a middle semiconfining unit, a middle confining unit, and the Lower Floridan aquifer, is the major source of water supply to east-central Florida. The Upper Floridan aquifer provides much of the water required to meet the current (2002) demand; however, the Lower Floridan aquifer is being used increasingly as a source of freshwater, particularly for municipal needs. For this reason, a better understanding of the aquifer is needed. The Lower Floridan aquifer is present throughout east-central Florida. The aquifer is composed of alternating beds of limestone and dolomite, and is characterized by abundant fractured dolomite zones and solution cavities. The altitude of the top of the Lower Floridan aquifer ranges from less than 600 feet below sea level in the northern part of the study area to more than 1,600 feet below sea level in the southwestern part. Thickness of the unit ranges from about 910 to 1,180 feet. The top of the Lower Floridan aquifer generally is marked by an increase in formation resistivity and by an increase in the occurrence of fractures and solution cavities within the carbonates. Also, a noticeable increase in borehole flow often marks the top of the unit. The bottom of the Lower Floridan aquifer is based on the first occurrence of evaporites. Ground-water in the Lower Floridan aquifer generally moves in a southwest-to-northeast direction across the study area. In September 1998, the altitude of the potentiometric

  13. Numerical Analysis of Ground-Water Flow and Salinity in the Ewa Area, Oahu, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Souza, William R.; Bolke, Edward I.; Bauer, Glenn R.

    1996-01-01

    The coastal plain in the Ewa area of southwestern Oahu, Hawaii, is part of a larger, nearly continuous sedimentary coastal plain along Oahu's southern coast. The coastal sediments are collectively known as caprock because they impede the free discharge of ground water from the underlying volcanic aquifers. The caprock is a layered sedimentary system consisting of interbedded marine and terrestrial sediments of both high and low permeability. Before sugarcane cultivation ended in late 1994, shallow ground water from the upper limestone unit, which is about 60 to 200 feet thick, was used primarily for irrigation of sugarcane. A cross-sectional ground-water flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in the Ewa area. Controls considered were: (1) overall caprock hydraulic conductivity, (2) stratigraphic variations of hydraulic conductivity in the caprock, and (3) recharge. In addition, the effects of a marina excavation were evaluated. Within the caprock, variations in hydraulic conductivity, caused by caprock stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of ground-water flow and the distribution of water levels and salinity. Model results also show that a reduction of recharge will result in increased salinity throughout the caprock with the greatest change in the upper limestone layer. In addition, the model indicates that excavation of an ocean marina will lower water levels in the upper limestone layer. Results of cross-sectional modeling confirm the general ground-water flow pattern that would be expected in the layered sedimentary system in the Ewa caprock. Ground-water flow is: (1) predominantly upward in the low-permeability sedimentary units, and (2) predominantly horizontal in the high-permeability sedimentary units.

  14. Factors affecting water quality in selected carbonate aquifers in the United States,1993-2005

    USGS Publications Warehouse

    Lindsey, Bruce D.; Berndt, Marian P.; Katz, Brian G.; Ardis, Ann F.; Skach, Kenneth A.

    2009-01-01

    Carbonate aquifers are an important source of water in the United States; however, these aquifers can be particularly susceptible to contamination from the land surface. The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program collected samples from wells and springs in 12 carbonate aquifers across the country during 1993–2005; water-quality results for 1,042 samples were available to assess the factors affecting ground-water quality. These aquifers represent a wide range of climate, land-use types, degrees of confinement, and other characteristics that were compared and evaluated to assess the effect of those factors on water quality. Differences and similarities among the aquifers were also identified. Samples were analyzed for major ions, radon, nutrients, 47 pesticides, and 54 volatile organic compounds (VOCs).Geochemical analysis helped to identify dominant processes that may contribute to the differences in aquifer susceptibility to anthropogenic contamination. Differences in concentrations of dissolved oxygen and dissolved organic carbon and in ground-water age were directly related to the occurrence of anthropogenic contaminants. Other geochemical indicators, such as mineral saturation indexes and calcium-magnesium molar ratio, were used to infer residence time, an indirect indicator of potential for anthropogenic contamination. Radon exceeded the U.S. Environmental Protection Agency proposed Maximum Contaminant Level (MCL) of 300 picocuries per liter in 423 of 735 wells sampled, of which 309 were drinking-water wells.In general, land use, oxidation-reduction (redox) status, and degree of aquifer confinement were the most important factors affecting the occurrence of anthropogenic contaminants. Although none of these factors individually accounts for all the variation in water quality among the aquifers, a combination of these characteristics accounts for the majority of the variation. Unconfined carbonate aquifers that had high

  15. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  16. Cyclic fluctuations of water level as a basis for determining aquifer transmissibility

    USGS Publications Warehouse

    Ferris, John G.

    1952-01-01

    In coastal areas, wells near bodies of tidal water frequently exhibit sinusoidal fluctuations of water level, in response to periodic changes of tidewater stage.  Inland, the regulation of a surface reservoir often produces correlative changes of ground-water stage in wells adjacent either to the reservoir or to its attendant stream.  As the stage of the surface water rises, the head upon the subaqueous outcrop of the aquifer increases and thereby either increases the rate of inflow to the aquifer or reduces the rate of outflow therefrom.  The increase in recharge or reduction in discharge results in a general recovery of water level in the aquifer. On the subsequent falling stage this pattern is reversed.  When the stage of the surface body fluctuates as a simple harmonic motion a train of sinusoidal waves is propagated shoreward through the sub-outcrop of the aquifer.  With increasing distance from the sub-outcrop, the amplitude of the transmitted wave decreases and the time lag of a given maximum or minimum increases.

  17. Planning report for the Gulf Coast Regional Aquifer-System Analysis in the Gulf of Mexico coastal plain, United States

    USGS Publications Warehouse

    Grubb, Hayes F.

    1984-01-01

    Large quantities of water for municipal, industrial and agriculture use are supplied from the aquifers in Tertiary and younger sediments over an area of about 225,000 square miles in the Coastal Plain of Alabama, Arkansas, Florida, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, and Texas. Three regional aquifer systems, the Mississippi Embayment aquifer system, the Coastal Lowlands aquifer system, and the Texas Coastal Uplands aquifer system have been developed to varying degrees throughout the area. A variety of problems has resulted from development such as movement of the saline-freshwater interface into parts of aquifers that were previously fresh, lowering of the potentiometric surface with resulting increases in pumping lift, and land-surface subsidence due to the compaction of clays within the aquifer. Increased demand for ground water is anticipated to meet the needs of urban growth, expanded energy development, and growth of irrigated agriculture. The U. S. Geological Survey initiated an eightyear study in 1981 to define the geohydrologic framework, describe the chemistry of the ground water, and to analyze the regional ground-water flow patterns. The objectives, plan, and organization of the study are described in this report and the major tasks to be undertaken are outlined.

  18. Ground-water hydrology of James City County, Virginia

    USGS Publications Warehouse

    Harsh, John F.

    1980-01-01

    Urbanization and increase in water demand prompted a 2-year study of groundwater availability and quality in the county of James City. The coastal-plain sediments, parts of which underlie the county, are the largest source of groundwater in Virginia. Four aquifers form the complex aquifer system. Hydraulic characteristics vary from aquifer to aquifer and from place to place. The Cretaceous aquifer furnishes nearly all the water for industrial and municipal needs. Movement of water in the Cretaceous aquifer is toward cones of depression formed by pumping centers at Williamsburg and Dow Badische Co. All aquifers contain water that generally meets State standards for drinking water. Water in the Cretaceous aquifer is of the sodium chloride bicarbonate type. As depth of aquifer increases, the concentrations of dissolved solids and chloride also increase. Saline water (more than 250 milligrams per liter) occupies the deeper parts of the confined aquifers. The amount of water stored in the coastal sediments is estimated to be 650-1300 billion gallons. An increase in pumpage to accomodate the expected daily demand of 9.8 million gallons per day in year 2000 is feasible provided pumpage is distributed over the county. (USGS)

  19. Impact of saline aquifer water on surface and shallow pit corrosion of martensitic stainless steels during exposure to CO2 environment (CCS)

    NASA Astrophysics Data System (ADS)

    Pfennig, Anja; Kranzmann, Axel

    2018-05-01

    Pipe steels suitable for carbon capture and storage technology (CCS) require resistance against the corrosive environment of a potential CCS-site, e.g. heat, pressure, salinity of the aquifer, CO2-partial pressure. Samples of different mild and high alloyed stainless injection-pipe steels partially heat treated: 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 as well as X5CrNiCuNb16-4 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Main corrosion products are FeCO3 and FeOOH. Corrosion rates obtained at 100 bar are generally much lower than those measured at ambient pressure. Highest surface corrosion rates are 0.8 mm/year for 42CrMo4 and lowest 0.01 mm/year for X5CrNiCuNb16-4 in the vapour phase at ambient pressure. At 100 bar the highest corrosion rates are 0.01 mm/year for 42CrMo4, X20Cr13 (liquid phase), X46Cr13 and less than 0.01 mm/year for X35CrMo4 and X5CrNiCuNb16-4 after 8000 h of exposure with no regard to atmosphere. Martensitic microstructure offers good corrosion resistance.

  20. Water withdrawals and trends from the Floridan aquifer system in the southeastern United States, 1950-2000

    USGS Publications Warehouse

    Marella, Richard L.; Berndt, Marian P.

    2005-01-01

    The Floridan aquifer system in the southeastern United States is one of the most productive aquifers in the world (Miller, 1990). This aquifer system underlies an area of about 100,000 square miles in southern Alabama, eastern and southern Georgia, southeastern Mississippi, southern South Carolina, and all of Florida. The Floridan aquifer system is the primary source of water for nearly 10 million people and supports agriculture, industry, and tourism throughout most of the region. In most areas, water from this aquifer is potable and needs very little treatment before use. However, in southern Florida (south of Lake Okeechobee), northwestern Florida and southern Alabama and Mississippi (Pensacola and westward), and eastern South Carolina, water in the aquifer system generally is not potable. The purpose of this report is to: Provide a general description of the Floridan aquifer system; Discuss water withdrawals by category for 2000; Highlight trends in water withdrawals between 1950 and 2000; and Provide a brief summary on the effects that human impacts have on the Floridan aquifer system.

  1. Water-level changes in the high plains regional aquifer, northwestern Oklahoma, predevelopment to 1980

    USGS Publications Warehouse

    Havens, J.S.

    1983-01-01

    During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. The predevelopment to 1980 water-level changes in the High Plains regional aquifer in Oklahoma are shown for Harper, Ellis, Woodward, Dewey, and Roger Mills Counties, on the east, and for the Oklahoma Panhandle, consist- ing of Cimarron, Texas, and Beaver Counties, on the west. About 1,470 water-level measurements in the Panhandle were used in compiling the predevelopment water-table map (Havens, 1982c). In the remaining area to the east about 150 water-level measurements from the 1950's to the 1970's are representative of predevelopment water levels. For the 1980 water-table map, about 330 measurements were made in the Panhandle and about 350 measurements in the eastern area by the Oklahoma Water Resources Board (Havens, 1982b).

  2. Hydrogeology of, water withdrawal from, and water levels and chloride concentrations in the major Coastal Plain aquifers of Gloucester and Salem Counties, New Jersey

    USGS Publications Warehouse

    Cauller, S.J.; Carleton, G.B.; Storck, M.J.

    1999-01-01

    Eight aquifers underlying Gloucester and Salem Counties in the southwestern Coastal Plain of New Jersey provide nearly all the drinking water for the 295,000 people who live in the area. Ground-water withdrawals in the two-county area and adjoining counties have affected water levels in several of these aquifers. Ground-water withdrawals in the two-county area also have affected the quality of water, increasing the chloride concentration in several of the aquifers as a result of saltwater intrusion. This report contains hydrologic data from the two-county area, including geometry and extent of hydrogeologic units, thickness and altitude of each aquifer, withdrawals from and water levels in major aquifers, and chloride concentrations in water from each aquifer. Reported ground-water withdrawals in Gloucester and Salem Counties during 1975-95 averaged 7,800 Mgal/yr (million gallons per year) for public supply, 4,900 Mgal/yr for industrial use, 700 Mgal/yr for irrigation, 500 Mgal/yr for power plants, 50 Mgal/yr for commercial use, and about 40 Mgal/yr for mining. Withdrawals for domestic self-supply in 1994 are estimated to be about 2,600 Mgal/yr, but only about 20 percent (520 Mgal/yr) is thought to be consumptive use; the remainder is returned to the aquifer through septic systems. The most heavily used aquifer in Salem and Gloucester Counties is the Upper Potomac-Raritan-Magothy aquifer, followed by, in decreasing order of use, the Middle Potomac-Raritan-Magothy aquifer, the Lower Potomac-Raritan-Magothy aquifer, the Kirkwood-Cohansey aquifer system, and the Wenonah-Mount Laurel aquifer. Reported withdrawals from these aquifers during 1975-95 averaged 5,000, 3,700, 3,200, and 330 Mgal/yr, respectively. Withdrawals from the Wenonah-Mount Laurel aquifer in Gloucester County increased during 1993-96 because of New Jersey Department of Environmental Protection restrictions on new withdrawals from the deeper Potomac-Raritan-Magothy aquifer system. Because of the

  3. Assessing Sea Level Rise Impacts on the Surficial Aquifer in the Kennedy Space Center Region

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Warnock, A. M.; Hall, C. R.

    2014-12-01

    Global sea level rise in the past century due to climate change has been seen at an average rate of approximately 1.7-2.2 mm per year, with an increasing rate over the next century. The increasing SLR rate poses a severe threat to the low-lying land surface and the shallow groundwater system in the Kennedy Space Center in Florida, resulting in saltwater intrusion and groundwater induced flooding. A three-dimensional groundwater flow and salinity transport model is implemented to investigate and evaluate the extent of floods due to rising water table as well as saltwater intrusion. The SEAWAT model is chosen to solve the variable-density groundwater flow and salinity transport governing equations and simulate the regional-scale spatial and temporal evolution of groundwater level and chloride concentration. The horizontal resolution of the model is 50 m, and the vertical domain includes both the Surficial Aquifer and the Floridan Aquifer. The numerical model is calibrated based on the observed hydraulic head and chloride concentration. The potential impacts of sea level rise on saltwater intrusion and groundwater induced flooding are assessed under various sea level rise scenarios. Based on the simulation results, the potential landward movement of saltwater and freshwater fringe is projected. The existing water supply wells are examined overlaid with the projected salinity distribution map. The projected Surficial Aquifer water tables are overlaid with data of high resolution land surface elevation, land use and land cover, and infrastructure to assess the potential impacts of sea level rise. This study provides useful tools for decision making on ecosystem management, water supply planning, and facility management.

  4. Vertical gradients in water chemistry in the central High Plains aquifer, southwestern Kansas and Oklahoma panhandle, 1999

    USGS Publications Warehouse

    McMahon, Peter B.

    2001-01-01

    The central High Plains aquifer is the primary source of water for domestic, industrial, and irrigation uses in parts of Colorado, Kansas, New Mexico, Oklahoma, and Texas. Water-level declines of more than 100 feet in some areas of the aquifer have increased the demand for water deeper in the aquifer. The maximum saturated thickness of the aquifer ranged from 500 to 600 feet in 1999. As the demand for deeper water increases, it becomes increasingly important for resource managers to understand how the quality of water in the aquifer changes with depth. In 1998?99, 18 monitoring wells at nine sites in southwestern Kansas and the Oklahoma Panhandle were completed at various depths in the central High Plains aquifer, and one monitoring well was completed in sediments of Permian age underlying the aquifer. Water samples were collected once from each well in 1999 to measure vertical gradients in water chemistry in the aquifer. Tritium concentrations measured in ground water indicate that water samples collected in the upper 30 feet of the aquifer were generally recharged within the last 50 years, whereas all of the water samples collected at depths more than 30 feet below the water table were recharged more than 50 years ago. Dissolved oxygen was present throughout the aquifer, with concentrations ranging from 1.7 to 8.4 mg/L. Water in the central High Plains aquifer was predominantly a calcium-bicarbonate type that exhibited little variability in concentrations of dissolved solids with depth (290 to 642 mg/L). Exceptions occurred in some areas where there had been upward movement of mineralized water from underlying sediments of Permian age and areas where there had been downward movement of mineralized Arkansas River water to the aquifer. Calcium-sulfate and sodium-chloride waters dominated and concentrations of dissolved solids were elevated (862 to 4,030 mg/L) near the base of the aquifer in the areas of upward leakage. Dissolution of gypsum or anhydrite and halite

  5. Hydrogeology and water quality of the Dublin and Midville aquifer systems at Waynesboro, Burke County, Georgia, 2011

    USGS Publications Warehouse

    Gonthier, Gerard

    2013-01-01

    The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer

  6. Seasonal changes in water quality of the lower ogallala aquifer

    USDA-ARS?s Scientific Manuscript database

    The Ogallala Aquifer extends beneath eight states in the Great Plains region of North America. It stretches from Texas to South Dakota and is among the largest aquifers in the world. In Texas, extraction of water, primarily for cropland irrigation, far exceeds recharge resulting in a significant dec...

  7. Framework for regional synthesis of water-quality data for the glacial aquifer system in the United States

    USGS Publications Warehouse

    Warner, Kelly L.; Arnold, Terri L.

    2005-01-01

    The glacial aquifer system is the largest principal aquifer in aerial extent and ground-water use for public supply in the United States. A principal aquifer is defined as a regionally extensive aquifer or aquifer system that has the potential to be used as a source of potable water (U.S. Geological Survey, 2003). Multiple aquifers often are grouped into large, extensive aquifer systems such as the glacial aquifer system. The glacial aquifer system is considered here to include all unconsolidated aquifers above bedrock north of the line of continental glaciation throughout the country (fig. 1). Total withdrawals from the glacial aquifer system were 3,560 million gallons per day in 2000, which constitutes almost 5 percent of total withdrawals from all aquifers in the United States (Maupin and Barber, 2005). Approximately 41 million people relied on the glacial aquifer for public supply and domestic use in 2000. The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program began assessing the glacial aquifer system in 1991. The assessment of water-quality data on a regional scale, such as the glacial aquifer system, is coincident with the regional framework established by the Regional Aquifer-System Analysis Program (RASA) (Sun and others, 1997). From 1978 to 1995, the RASA Program systematically evaluated 25 of the Nation's most important groundwater systems including studies in the glacial aquifer system in the northeast, Midwest, and northern Midwest United States. The NAWQA Program is building on the work of the RASA Program to study the water quality of 16 of the most important ground-water systems (Lapham and others, 2005). Over 1,700 water-quality samples have been collected by the NAWQA Program from 1991 to 2004 to assess the glacial aquifer system. This large data set is unique in that the samples have been collected using a consistent sampling protocol, and multiple nested samples. The nested samples address the recently recharged shallow

  8. Geology, ground-water flow, and dissolved-solids concentrations in ground water along hydrogeologic sections through Wisconsin aquifers

    USGS Publications Warehouse

    Kammerer, P.A.

    1998-01-01

    A cooperative project between the U.S. Geological Survey (USGS) and the Wisconsin Department of Natural Resources (DNR) was begun with the objectives of describing water quality and its relation to the hydrology of Wisconsin's principal aquifers and summarizing instances of ground-water contamination and quality problems from information available in DNR files. The first objective was met by a hydrologic investigation done by the USGS, and the second, by preparation of a report by the DNR, for their internal use, that describes the State's water resources and known ground-water quality and contamination problems and makes policy recommendations for ground-water management.The USGS investigation was divided into two phases. The first phase consisted of compiling available water-quality and hydrogeologic data and collecting new data to describe general regional water-quality and hydrogeologic relations within and between Wisconsin aquifers. The second phase began concurrently with the later part of the first phase and consisted of an areal description of water quality and flow in the State's shallow aquifer system (Kammerer, 1995). The overall purpose of this investigation was to provide a regional framework that could serve as a basis for intensive local and site specific ground-water investigations by State and local government agencies.This report presents the results of the first phase of the USGS investigation. Regional hydrogeologic and water-quality relations within and between aquifers are shown along 15 hydrogeologic sections that traverse the State. Maps are used to show surficial geology of bedrock and unconsolidated deposits and horizontal direction of ground-water flow. Interpretations on the maps and hydrogeologic sections are based on data from a variety of sources and provide the basis for the areal appraisal of water quality in the State's shallow aquifer system in the second phase of the investigation.

  9. Simulation of ground-water flow in glaciofluvial aquifers in the Grand Rapids area, Minnesota

    USGS Publications Warehouse

    Jones, Perry M.

    2004-01-01

    A calibrated steady-state, finite-difference, ground-waterflow model was constructed to simulate ground-water flow in three glaciofluvial aquifers, defined in this report as the upper, middle, and lower aquifers, in an area of about 114 mi2 surrounding the city of Grand Rapids in north-central Minnesota. The calibrated model will be used by Minnesota Department of Health and communities in the Grand Rapids area in the development of wellhead protection plans for their water supplies. The model was calibrated through comparison of simulated ground-water levels to measured static water levels in 351 wells, and comparison of simulated base-flow rates to estimated base-flow rates for reaches of the Mississippi and Prairie Rivers. Model statistics indicate that the model tends to overestimate ground-water levels. The root mean square errors ranged from +12.83 ft in wells completed in the upper aquifer to +19.10 ft in wells completed in the middle aquifer. Mean absolute differences between simulated and measured water levels ranged from +4.43 ft for wells completed in the upper aquifer to +9.25 ft for wells completed in the middle aquifer. Mean algebraic differences ranged from +9.35 ft for wells completed in the upper aquifer to +14.44 ft for wells completed in the middle aquifer, with the positive differences indicating that the simulated water levels were higher than the measured water levels. Percentage errors between simulated and estimated base-flow rates for the three monitored reaches all were less than 10 percent, indicating good agreement. Simulated ground-water levels were most sensitive to changes in general-head boundary conductance, indicating that this characteristic is the predominant model input variable controlling steady-state water-level conditions. Simulated groundwater flow to stream reaches was most sensitive to changes in horizontal hydraulic conductivity, indicating that this characteristic is the predominant model input variable controlling

  10. Appraisal of salinity and fluoride in a semi-arid region of India using statistical and multivariate techniques.

    PubMed

    Mor, Suman; Singh, Surender; Yadav, Poonam; Rani, Versha; Rani, Pushpa; Sheoran, Monika; Singh, Gurmeet; Ravindra, Khaiwal

    2009-12-01

    Various physico-chemical parameters, including fluoride (F(-)), were analyzed to understand the hydro-geochemistry of an aquifer in a semi-arid region of India. Furthermore, the quality of the shallow and deep aquifer (using tube well and hand pumps) was also investigated for their best ecological use including drinking, domestic, agricultural and other activities. Different multivariate techniques were applied to understand the groundwater chemistry of the aquifer. Findings of the correlation matrix were strengthened by the factor analysis, and this shows that salinity is mainly caused by magnesium salts as compared to calcium salts in the aquifer. The problem of salinization seems mainly compounded by the contamination of the shallow aquifers by the recharging water. High factor loading of total alkalinity and bicarbonates indicates that total alkalinity was mainly due to carbonates and bicarbonates of sodium. The concentration of F(-) was found more in the deep aquifer than the shallow aquifer. Further, only a few groundwater samples lie below the permissible limit of F(-), and this indicates a risk of dental caries in the populace of the study area. The present study indicates that regular monitoring of groundwater is an important step to avoid human health risks and to assess its quality for various ecological purposes.

  11. Water security and services in the ocean-aquifer system

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.

    2011-12-01

    Coastal vulnerability and water security are both important research subjects on global environmental problems under the pressures of changing climate and societies. A six years research project by RIHN on the coastal subsurface environments in seven Asia cities revealed that subsurface environmental problems including saltwater intrusion, groundwater contamination and subsurface thermal anomalies occurred one after another depending on the development stage of the cities during the last 100 years. Exchanges of water between ocean and aquifer in the coastal cities depend on driving force from land of natural resources capacities such as groundwater recharge rate, and social changes such as excessive groundwater pumping due to industrialization. Risk assessments and managements for aquifers which are parts of water security have been made for seven Asian coastal cities. On the other hand, submarine groundwater discharge (SGD) into the ocean provides water services directly to the coastal ecosystem through nutrient transports from land to the ocean. Constant geophysical and geochemical conditions served by SGD provide sustainable services to the coastal environment. Flora and fauna which prefer brackish water in the coastal zone depend on not only river water discharge but also SGD. Ocean -aquifer interaction can be found in the coastal ecosystem including sea shell, sea grass and fishes in the coastal zone though SGD. In order to evaluate a coastal security and sustainable environment, not only risk assessments due to disasters but also water services are important, and the both are evaluated in Asian coastal zones.

  12. Water quality of the Quaternary and Ada-Vamoosa aquifers on the Osage Reservation, Osage County, Oklahoma, 1997

    USGS Publications Warehouse

    Abbott, Marvin M.

    2000-01-01

    The project was to provide information on the quality of ground water from rural-domestic-water wells within the Osage Reservation and compare the water-quality to proximity to oil wells. About 38,500 oil wells have been drilled in the Reservation since drilling began in 1896. About 1,480 square miles or 64 percent of the Reservation is within a quarter mile of an oil well. The unconfined Quaternary sand aquifer covers about 315 square miles or about 14 percent of the Reservation and the confined Ada-Vamoosa sandstone aquifer covers about 800 square miles or about 35 percent of the Reservation. Fifty-eight percent of the Quaternary aquifer and 69 percent of the outcrop area of the Ada-Vamoosa aquifer are within a quarter mile of an oil well . One hundred twenty domestic ground-water wells were sampled from the Quaternary and Ada-Vamoosa aquifers. Forty-nine percent of the Reservation is underlain by the aquifers. Ground-water quality is good on most of the Reservation, but the use of domestic water-supply wells tend to minimize water-quality problems. Existing water-supply wells commonly are located in areas that produce usable volumes of potable water. Several constituents in samples from the Ada-Vamoosa-aquifer within a quarter mile of an oil well were significantly greater than from the aquifer not near oil wells. The constituents include specific conductance, dissolved solids, sodium, sulfate, chloride, bromide, and silica. These ions are probably derived from brine water. In the Ada-Vamoosa aquifer subgroups, 57 percent of the samples near oil wells and 24 percent of the samples not near oil wells had dissolved-solids concentrations greater than 500 milligrams per liter. The water quality in the Quaternary and Ada-Vamoosa aquifers is similar in areas where no oil wells have been drilled but is significantly different for several constituents. Median concentrations of major constituents from the Ada-Vamoosa aquifer not near oil wells were less than or equal to

  13. Water type and concentration of dissolved solids, chloride, and sulfate in water from the St. Francois aquifer in Missouri, Arkansas, Kansas, and Oklahoma

    USGS Publications Warehouse

    Imes, Jeffrey L.; Davis, J.V.

    1990-01-01

    The St. Francois aquifer, the lowermost of three regional aquifers that form part of the Ozark Plateaus aquifer system, is composed of water-bearing sandstone and dolostone of Late Cambrian age. The aquifer was studied as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA, Jorgensen and Signor, 1981), a study of regional aquifer systems in the midcontinent United States that includes parts of 10 States. Because of its significance as a source of freshwater in and adjacent to the Ozark Plateaus province (index map) of Missouri, Arkansas, Kansas, and Oklahoma, a subregional project was established to investigate the Ozark Plateaus aquifer system in more detail than the regional study could provide.The geologic and hydrologic relation between the Ozark Plateaus aquifer system and other regional aquifer systems of the Midwest is presented in Jorgensen an others (in press). The relation of the St. Francois aquifer to the Ozark Plateaus aquifer system is explained in Imes [in press (a)]. A companion publication, Imes [in press (b)], contains contour maps of the altitude of the top, thickness, and potentiometric surface of the St. Francois aquifer. This report contains maps that show water type and concentration of dissolved solids, chloride, and sulfate in water from the St. Francois aquifer. Most of the data from which these maps are compiled is stored in the CMRASA hydrochemical data base (R.B. Leonard, U.S. Geological Survey, written commun., 1986). Only water quality analyses that ionically balanced to within 10 percent are included in this report. Because few water wells are completed in the St. Francois aquifer beyond the vicinity of the St. Francois Mountains in southeastern Missouri (index map), water-quality data, with few exceptions, are limited to a relatively small area near the outcrop of the aquifer.

  14. Effects of groundwater withdrawal on borehole flow and salinity measured in deep monitor wells in Hawai'i-implications for groundwater management

    USGS Publications Warehouse

    Rotzoll, Kolja

    2010-01-01

    Water-resource managers in Hawai`i rely heavily on salinity profiles from deep monitor wells to estimate the thickness of freshwater and the depth to the midpoint of the transition zone between freshwater and saltwater in freshwater-lens systems. The deep monitor wells are typically open boreholes below the water table and extend hundreds of feet below sea level. Because of possible borehole-flow effects, there is concern that salinity profiles measured in these wells may not accurately reflect the salinity distribution in the aquifer and consequently lead to misinterpretations that adversely affect water-resource management. Steplike changes in salinity or temperature with depth in measured profiles from nonpumped deep monitor wells may be indicative of water moving within the well, and such changes are evident to some extent in all available profiles. The maximum vertical step length, or displacement, in measured profiles ranges from 7 to 644 feet. Vertical steps longer than 70 feet exceed the typical thickness of massive lava flows; they therefore cannot be attributed entirely to geologic structure and may be indicative of borehole flow. The longest vertical steps occur in monitor wells located in southern O'ahu, coinciding with the most heavily developed part of the aquifer. Although regional groundwater withdrawals have caused a thinning of the freshwater lens over the past several decades, the measured midpoint of the transition zone in most deep monitor wells has shown only inconsequential depth displacement in direct response to short-term variations in withdrawals from nearby production wells. For profiles from some deep monitor wells, however, the depth of the measured top of the transition zone, indicated by a specific-conductance value of 1,000 microsiemens per centimeter, has risen several hundred feet in response to withdrawals from nearby production wells. For these deep monitor wells, monitoring the apparent top of the transition zone may not

  15. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    PubMed

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  16. Impacts of Soil-aquifer Heat and Water Fluxes on Simulated Global Climate

    NASA Technical Reports Server (NTRS)

    Krakauer, N.Y.; Puma, Michael J.; Cook, B. I.

    2013-01-01

    Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer-soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer-soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil-aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of >1K in the Arctic. The soil-aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and in landsurface temperature, and decrease the soil moisture memory of the land surface on seasonal to annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.

  17. Effect of climate change on sea water intrusion in coastal aquifers

    NASA Astrophysics Data System (ADS)

    Sherif, Mohsen M.; Singh, Vijay P.

    1999-06-01

    There is increasing debate these days on climate change and its possible consequences. Much of this debate has focused in the context of surface water systems. In many arid areas of the world, rainfall is scarce and so is surface runoff. These areas rely heavily on groundwater. The consequences of climate change on groundwater are long term and can be far reaching. One of the more apparent consequences is the increased migration of salt water inland in coastal aquifers. Using two coastal aquifers, one in Egypt and the other in India, this study investigates the effect of likely climate change on sea water intrusion. Three realistic scenarios mimicking climate change are considered. Under these scenarios, the Nile Delta aquifer is found to be more vulnerable to climate change and sea level rise.

  18. Fast ground-water mixing and basal recharge in an unconfined, alluvial aquifer, Konza LTER Site, Northeastern Kansas

    USGS Publications Warehouse

    Macpherson, G.L.; Sophocleous, M.

    2004-01-01

    Ground-water chemistry and water levels at three levels in a well nest were monitored biweekly for two and a half years in a shallow unconfined floodplain aquifer in order to study the dynamics of such shallow aquifers. The aquifer, in northeastern Kansas, consists of high porosity, low hydraulic conductivity fine-grained sediments dominated by silt and bounded by fractured limestone and shale bedrock. Results show that the aquifer underwent chemical stratification followed by homogenization three times during the study period. The length of time between maximum stratification and complete homogenization was 3-5 months. The chemical parameters most useful for demonstrating the mixing trends were dissolved nitrate and sulfate. Higher nitrate concentrations were typical of unsaturated zone water and were sourced from fertilizer applied to the cultivated fields on the floodplain. Variations in sulfate concentrations are attributed to dissolution of rare gypsum in limestone bedrock and variable evapoconcentration in the unsaturated zone. The mixing of three chemically different waters (entrained, unsaturated-zone water; water entering the base of the floodplain aquifer; and water in residence before each mixing event) was simulated. The resident water component for each mixing event was a fixed composition based on measured water chemistry in the intermediate part of the aquifer. The entrained water composition was calculated using a measured composition of the shallow part of the aquifer and measurements of soil-water content in the unsaturated zone. The incoming basal water composition and the fractions of each mixing component were fitted to match the measured chemistry at the three levels in the aquifer. A conceptual model for this site explains: (1) rapid water-level rises, (2) water-chemistry changes at all levels in the aquifer coincident with the water-level rises, (3) low measured hydraulic conductivity of the valley fill and apparent lack of preferential flow

  19. Effects of saline drinking water on early gosling development

    USGS Publications Warehouse

    Stolley, D.S.; Bissonette, J.A.; Kadlec, J.A.; Coster, D.

    1999-01-01

    Relatively high levels of saline drinking water may adversely affect the growth, development, and survival of young waterfowl. Saline drinking water was suspect in the low survival rate of Canada goose (Branta canadensis) goslings at Fish Springs National Wildlife Refuge (FSNWR) in western Utah. Hence, we investigated the effects of saline drinking water on the survival and growth of captive, wild-strain goslings from day 1-28 following hatch. We compared survival and growth (as measured by body mass, wing length, and culmen length) between a control group on tap water with a mean specific conductivity of 650 ??S/cm, and 2 saline water treatments: (1) intermediate level (12,000 ??S/cm), and (2) high level (18,000 ??S/cm). Gosling mortality occurred only in the 18,000 ??S/cm treatment group (33%; n = 9). Slopes of regressions of mean body mass, wing length, and culmen length on age were different from each other (P < 0.05), except for culmen length for the intermediate and high treatment levels. We predict that free-ranging wild goslings will experience mortality at even lower salinity levels than captive goslings because of the combined effects of depressed growth and environmental stresses, including hot desert temperatures and variable food quality over summer.

  20. Unusual Recharge Processes near Arroyos of the Rio Grande Aquifer, El Paso/Juarez Area

    NASA Astrophysics Data System (ADS)

    Merino, M.; Hibbs, B. J.; Hogan, J.; Eastoe, C. J.; Druhan, J.

    2005-12-01

    The twin-cities of El Paso and Juarez share the water resources of the Hueco Bolson aquifer and overlying Rio Grande aquifer. Both aquifers span the international border between Mexico and the United States. Salinity in the Rio Grande aquifer varies widely, some parts of the shallow aquifer containing less than 1,000 mg/L total dissolved solids (TDS), other parts of the aquifer exceeding 5,000 mg/L TDS. One sizable part of the "Lower Valley" area, approximately 45 km below El Paso contains very dilute water near the outer edge of the floodplain. Historically it had been thought that the dilute waters in this location were derived from recharge from arroyos that drained proximal parts of the Hueco Bolson. Instead, our hydrogen and oxygen isotope data and carbon-14 data indicate that these dilute waters were derived from pre-dam infiltration of the Rio Grande. Relatively light and slightly evaporated pre-dam waters (-11.5 del O18) at the arroyos are also relatively young (60 to 90 percent modern carbon), tagging them as runoff waters from pre-dam snowmelt in Colorado. These isotopically light waters are found up to 110 meters beneath land surface. Prior to Rio Grande rectification and channelization of the mid-1930's, the Rio Grande flowed near the outer edge of the floodplain where these pre-dam, dilute waters are found at depth. Review of predevelopment drill stem tests indicated a permeable zone about 150 to 230 meters deep that had a lower hydraulic head than the overlying Rio Grande aquifer. The permeable zone acted as a predevelopment sink for flow that induced recharge from the Rio Grande and Rio Grande aquifer. Thus, we can account for local predevelopment recharge of the Rio Grande aquifer from infiltration of dilute water from the Rio Grande prior to the historic era of channel rectification, and not from recharge from flanking arroyos as had been postulated by previous researchers.

  1. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer’s importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey’s National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards.Mass-balance models indicate that changes in groundwater chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite

  2. Water-level altitudes 2017 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973–2016 in the Chicot and Evangeline Aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Ramage, Jason K.

    2017-08-16

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. This report contains regional-scale maps depicting approximate 2017 water-level altitudes (represented by measurements made during December 2016 through March 2017) and long-term water-level changes for the Chicot, Evangeline, and Jasper aquifers; a map depicting locations of borehole-extensometer (hereinafter referred to as “extensometer”) sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2016.In 2017, water-level-altitude contours for the Chicot aquifer ranged from 200 feet (ft) below the North American Vertical Datum of 1988 (hereinafter referred to as “datum”) in two localized areas in southwestern and northwestern Harris County to 200 ft above datum in west-central Montgomery County. The largest water-level-altitude decline (120 ft) depicted by the 1977–2017 water-level-change contours for the Chicot aquifer was in northwestern Harris County. A broad area where water-level altitudes declined in the Chicot aquifer extends from northwestern, north-central, and southwestern Harris County

  3. Water Table Uncertainties due to Uncertainties in Structure and Properties of an Unconfined Aquifer.

    PubMed

    Hauser, Juerg; Wellmann, Florian; Trefry, Mike

    2018-03-01

    We consider two sources of geology-related uncertainty in making predictions of the steady-state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined. © 2017, National Ground Water Association.

  4. Water-level surface in the Chicot equivalent aquifer system in southeastern Louisiana, 2009

    USGS Publications Warehouse

    Tomaszewski, Dan J.

    2011-01-01

    The Chicot equivalent aquifer system is an important source of freshwater in southeastern Louisiana. In 2005, about 47 million gallons per day (Mgal/d) were withdrawn from the Chicot equivalent aquifer system in East Baton Rouge, East Feliciana, Livingston, Tangipahoa, St. Helena, St. Tammany, Washington, and West Feliciana Parishes. Concentrated withdrawals exceeded 5 Mgal/d in Bogalusa, the city of Baton Rouge, and in northwestern East Baton Rouge Parish. In the study area, about 30,000 wells screened in the Chicot equivalent aquifer system were registered with the Louisiana Department of Transportation and Development (LaDOTD). These wells were constructed for public-supply, industry, irrigation, and domestic uses. Most of the wells were registered as domestic-use wells and are small-diameter, low-yielding wells. Total withdrawal from the Chicot equivalent aquifer system for domestic use was estimated to be 12 Mgal/d in 2005. This report documents the 2009 water-level surface of the Chicot equivalent aquifer system in southeastern Louisiana. The report also shows differences in water-level measurements for the years 1991 and 2009 at selected sites. Understanding changes and trends in water levels is important for continued use, planning, and management of groundwater resources. The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, conducted this study of the water-level surface of the Chicot equivalent aquifer system as part of an ongoing effort to monitor groundwater levels in aquifers in Louisiana.

  5. Geohydrology and quality of water in aquifers in Lucas, Sandusky, and Wood counties, northwestern Ohio

    USGS Publications Warehouse

    Breen, K.J.; Dumouchelle, D.H.

    1991-01-01

    The hydrology and quality of ground water were evaluated for the surficial sand and carbonate aquifers in northwestern Ohio. A locally important surficial sand aquifer in western Lucas County was evaluated on the basis of data from 10 wells completed in undeveloped and developed areas. The carbonate aquifer in Silurian and Devonian bedrock at its northernmost extent on the Ohio mainland was evaluated on the basis of data from previous studies and data from 466 wells and 11 springs. Most data are for the period 1985-88. The unconfined surficial sand aquifer is less than 50 ft. (feet) thick. Clay-rich drift, which restricts vertical movement of water, underlines the aquifer. Recharge is from precipitation, and discharge is by evapotranspiration and by flow to local streams and drainage ditches. Water levels are generally 2 to 8 ft. below land surface and fluctuate a total of about 3.5 ft. seasonally in a forested area. Concentrations of iron and manganese in ground water are excessive in some areas. Waters from shallow drive-point wells in residential areas contained larger concentrations of dissolved solids, hardness, sodium, and chloride than did waters from identical wells in undeveloped areas. The presence of nitrate nitrogen an other selected constituents in ground water in residential areas, and the absence of these constituents in ground water in undeveloped areas, indicate that the surficial sand aquifer has been affected by development. In carbonate aquifer, fractures, bedding-plane joints, and other secondary openings are the principal water-bearing zones. These zones can be areally and stratigraphically separated by low-permeability rock. Leaky artesian or semiconfined conditions predominate beneath most of the 1,400-mi? study area. The aquifer is confined by relatively impermeable underlying shale of Silurian age and overlying clay-rich drift of Quaternary age. Unproductive strata, including evaporites, within the sequence of carbonate rocks also confine

  6. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  7. Geochemical and Sr isotopic variations in groundwaters of the Edwards aquifer, central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oetting, G.C.; Banner, J.L.; Sharp, J.M. Jr.

    1992-01-01

    The regionally-extensive Edwards aquifer of central Texas lies on the northwestern edge of the Gulf of Mexico Basin. The aquifer system is composed primarily of lower Cretaceous marine limestones and dolostones with minor evaporitic and siliciclastic confining units of the Edwards Group and associated formations. The eastern and southern boundaries of the freshwater aquifer are defined by an abrupt change in groundwater salinity that is known as the badwater line. Variation in the isotopic composition and concentration of Sr in the mineral phases and waters in this aquifer system provide means to examine groundwater evolution processes. Models of simultaneous variationsmore » in Sr isotopes and major and trace ions are used to constrain processes of groundwater-rock interaction and groundwater mixing. Geochemical variations were examined in Edwards carbonate host rocks and groundwaters in Williamson and Bell Counties. Groundwaters were sampled along and across the badwater line, and range in salinity from 320--2,630 mg/l total dissolved solids. Major ion distributions in the water samples demonstrate a hydrochemical facies transition from Ca-HCO[sub 3] freshwaters to Na-Cl-SO[sub 4]-HCO[sub 3] badwaters. Both water types show a wide range of [sup 87]Sr/[sup 86]Sr values: Ca-HCO[sub 3] waters range from values of 0.7078--0.7093, and Na-Cl-SO[sub 4]-HCO[sub 3] waters range from values of 0.7087--0.7097. The Sr isotope compositions for both water groups are significantly greater than their host marine carbonates ([approximately]0.7075). The high Sr isotopic compositions indicate an extraformational source of Sr in both hydrochemical facies. Fluid mixing processes involving a freshwater and at least two badwater endmembers are required to account for variations in elemental and isotopic compositions in the groundwaters. Mineral-solution reactions may operate during and/or subsequent to mixing to produce the compositional variability observed in some intermediate

  8. Functioning of the Primary Aquifer Relating to the Maider Basin, Morocco: Case of the Ordovician aquifer.

    NASA Astrophysics Data System (ADS)

    Ben-said, E.; Boukdir, A.; Mahboub, A.; Younsi, A.; Zitouni, A.; Alili, L.; Ikhmerdi, H.

    2018-05-01

    The basin of Maider is limited northly by the vast ensemble Oriental Saghro-Ougnate, from the east by the Tafilalet plain, from the west by the oriental Jbel Bani, finally from the south and south-east by the Cretaceous Hamada of Kern-Kem. During last decades, groundwater in the basin of Maider, is confronting degradation in both cases: Quantitative and qualitative, as a result of the drought, the overexploitation and the salinization. The aim of this action research is to understand the current state of water resources in the area of stady. At the end of this work, we can get the following conclusions: the general flow of the ordovician aquifer is always directed from the north to the south-east of the basin by following the principal axes of the wadis:Taghbalt, Hssiya and Fezzou. The recharge of the aquifer is primarily done, either by the underground flow, or by the surface runoff of torrential waters from the upstream of Jbel Saghro. The piezometric anomaly noticed at the level of Ait Saàdane, explained by overexploitation linked to the needs of irrigation water. The physicochemical approach for the Maider basin identifies two essential factors of the salinisation of groundwater: the dissolution of the aquifer which is rich in minerals with high temperature on the one hand, and the decrease of the piezometric surface due to the overexploitation and drought on the other hand.

  9. Geohydrology and water quality of stratified-drift aquifers in the middle Merrimack River basin, south-central New Hampshire

    USGS Publications Warehouse

    Ayotte, Joseph D.; Toppin, Kenneth W.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the State of New Hampshire, Department of Environmental Services, Water Resources Division has assessed the geohydrology and water quality of stratified-drift aquifers in the middle Merrimack River basin in south-central New Hampshire. The middle Merrimack River basin drains 469 square miles; 98 square miles is underlain by stratified-drift aquifers. Saturated thickness of stratified drift within the study area is generally less than 40 feet but locally greater than 100 feet. Transmissivity of stratified-drift aquifers is generally less than 2,000 feet squared per day but locally exceeds 6, 000 feet squared per day. At present (1990), ground-water withdrawals from stratified drift for public supply are about 0.4 million gallons per day within the basin. Many of the stratified-drift aquifers within the study area are not developed to their fullest potential. The geohydrology of stratified-drift aquifers was investigated by focusing on basic aquifer properties, including aquifer boundaries; recharge, discharge, and direction of ground-water flow; saturated thickness and storage; and transmissivity. Surficial geologic mapping assisted in the determination of aquifer boundaries. Data from 757 wells and test borings were used to produce maps of water-table altitude, saturated thickness, and transmissivity of stratified drift. More than 10 miles of seismic-refraction profiling and 14 miles of seismic-reflection profiling were also used to construct the water table and saturated-thickness maps. Stratified-drift aquifers in the southern, western, and central parts of the study area are typically small and discontinuous, whereas aquifers in the eastern part along the Merrimack River valley are continuous. The Merrimack River valley aquifers formed in glacial Lakes Merrimack and Hooksett. Many other smaller discontinuous aquifers formed in small temporary ponds during deglaciation. A stratified-drift aquifer in Goffstown was

  10. Hydrochemical and stable isotope evidence for the extent and nature of the effective Chalk aquifer of north Norfolk, UK

    NASA Astrophysics Data System (ADS)

    Hiscock, K. M.; Dennis, P. F.; Saynor, P. R.; Thomas, M. O.

    1996-05-01

    In eastern England the Chalk aquifer is covered by extensive Pleistocene deposits which influence the hydraulic conditions and hydrochemical nature of the underlying aquifer. In this study, the results of geophysical borehole logging of groundwater temperature and electrical conductivity and depth sampling for major ion concentrations and stable isotope compositions (δ 18O and δ 2H) are interpreted to reveal the extent and nature of the effective Chalk aquifer of north Norfolk. It is found that the Chalk aquifer can be divided into an upper region of fresh groundwater, with a Cl concentration of typically less than 100 mg l -1, and a lower region of increasingly saline water. The transition between the two regions is approximately 50 m below sea-level, and results in an effective aquifer thickness of 50-60 m in the west of the area, but less than 25 m where the Eocene London Clay boundary is met in the east of the area. Hydrochemical variations in the effective aquifer are related to different hydraulic conditions developed in the Chalk. Where the Chalk is confined by low-permeability Chalky Boulder Clay, isotopically depleted groundwater (δ 18O less than -7.5‰) is present, in contrast to those areas of unconfined Chalk where glacial deposits are thin or absent (δ 18O about -7.0‰). The isotopically depleted groundwater is evidence for groundwater recharge during the late Pleistocene under conditions when mean surface air temperatures are estimated to have been 4.5°C cooler than at the present day, and suggests long groundwater residence times in the confined aquifer. Elevated molar Mg:Ca ratios of more than 0.2 resulting from progressive rock-water interaction in the confined aquifer also indicate long residence times. A conceptual hydrochemical model for the present situation proposes that isotopically depleted groundwater, occupying areas where confined groundwater dates from the late Pleistocene, is being slowly modified by both diffusion and downward

  11. Hydrogeology and ground-water flow in the Memphis and Fort Pillow aquifers in the Memphis area, Tennessee

    USGS Publications Warehouse

    Brahana, J.V.; Broshears, R.E.

    2001-01-01

    On the basis of known hydrogeology of the Memphis and Fort Pillow aquifers in the Memphis area, a three-layer, finite-difference numerical model was constructed and calibrated as the primary tool to refine understanding of flow in the aquifers. The model was calibrated and tested for accuracy in simulating measured heads for nine periods of transient flow from 1886-1985. Testing and sensitivity analyses indicated that the model accurately simulated observed heads areally as well as through time. The study indicates that the flow system is currently dominated by the distribution of pumping in relation to the distribution of areally variable confining units. Current withdrawal of about 200 million gallons per day has altered the prepumping flow paths, and effectively captured most of the water flowing through the aquifers. Ground-water flow is controlled by the altitude and location of sources of recharge and discharge, and by the hydraulic characteristics of the hydrogeologic units. Leakage between the Fort Pillow aquifer and Memphis aquifer, and between the Memphis aquifer and the water-table aquifers (alluvium and fluvial deposits) is a major component of the hydrologic budget. The study indicates that more than 50 percent of the water withdrawn from the Memphis aquifer in 1980 is derived from vertical leakage across confining units, and the leakage from the shallow aquifer (potential source of contamination) is not uniformly distributed. Simulated leakage was concentrated along the upper reaches of the Wolf and Loosahatchie Rivers, along the upper reaches of Nonconnah Creek, and the surficial aquifer of the Mississippi River alluvial plain. These simulations are supported by the geologic and geophysical evidence suggesting relatively thin or sandy confining units in these general locations. Because water from surficial aquifers is inferior in quality and more susceptible to contamination than water in the deeper aquifers, high rates of leakage to the Memphis

  12. Ground-water resources in New Hampshire; stratified-drift aquifers

    USGS Publications Warehouse

    Medalie, Laura; Moore, R.B.

    1995-01-01

    Stratified-drift aquifers underlie about 14 percent of the land surface in New Hampshire and are an important source of ground water for commercial, industrial, domestic, and public-water supplies in the State. This report introduces terms and concepts relevant to ground-water resources, summarizes some of the important information derived from a statewide stratified-drift-aquifer investigation, and provides examples of how the findings are used . The purpose of this report is to provide an overview of the stratified-drift aquifer assessment program, thus making summary information accessible to a broad audience, including legislators, State and local officials, and the public. Different audiences will use the report in different ways . To accommodate the varied audiences, some data are summarized statewide, some are presented by major river basin, and some are provided by town. During data collection, care was taken to use consistent methods for each of the 13 study areas (fig. 1) so that results would be comparable throughout the State . If more specific or detailed information about a particular area of interest is needed, the reader is directed to one or more of the technical reports listed in the Selected References section of this report.

  13. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    USGS Publications Warehouse

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  14. Hydrogeologic and water-quality characteristics of the Upper Carbonate aquifer, Southeast Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.; Wolf, R.J.

    1983-01-01

    The quality of water in the Upper Carbonate aquifer is suitable for most uses. However, the water is susceptible to contamination in karst areas because sinkholes and disappearing streams provide direct passageways for entry of contaminants into the aquifer. Calcium magnesium bicarbonate type waters are most common. Concentrations of dissolved solids and some major ions, specifically magnesium, sodium, bicarbonate, and sulfate, are generally highest in the southwestern part of the study area.

  15. Ground-water hydrology, historical water use, and simulated ground-water flow in Cretaceous-age Coastal Plain aquifers near Charleston and Florence, South Carolina

    USGS Publications Warehouse

    Campbell, B.G.; van Heeswijk, Marijke

    1996-01-01

    A quasi-three-dimensional, transient, digital, ground-water flow model representing the Coastal Plain aquifers of South Carolina, has been constructed to assist in defining the ground- water-flow system of Cretaceous aquifers near Charleston and Florence, S.C. Both cities are near the centers of large (greater than 150 feet) potentiometric declines in the Middendorf aquifer. In 1989, the diameter of the depressions was approximately 40 miles at Charleston and 15 miles at Florence. The potentiometric decline occurred between predevelopment (1926) and 1982 near Florence, and between predevelopment (1879) and 1989 near Charleston. The city of Charleston does not withdraw water from these aquifers; however, some of the small communities in the area use these aquifers for a potable water supply. The model simulates flow in and between four aquifer systems. The model has a variable-cell-size grid, and spans the Coastal Plain from the Savannah River in the southwest to the Cape Fear Arch in the northeast, and from the Fall Line in the northwest to approximately 30 miles offshore to the southeast. Model-grid cell size is 1 by 1 mile in a 48 by 48 mile area centered in Charleston, and in a 36 by 48 mile area centered in Florence. The model cell size gradually increases to a maximum of 4 by 4 miles outside the two study areas. The entire grid consists of 115 by 127 cells and covers an area of 39,936 square miles. The model was calibrated to historical water-level data. The calibration relied on three techniques: (1) matching simulated and observed potentiometric map surfaces, (2) statistical comparison of observed and simulated heads, and (3) comparison of observed and simulated well hydrographs. Systematic changes in model parameters showed that simulated heads are most sensitive to changes in aquifer transmissivity. Eight predictive ground-water-use scenarios were simulated for the Mount Pleasant area, which presently (1993) uses the Middendorf aquifer as a sole-source of

  16. Modeling the Effects of Storm Surge from Hurricane Jeanne on Saltwater Intrusion into the Surficial Aquifer, East-Central Florida (USA)

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Hall, C. R.

    2017-12-01

    Saltwater intrusion (SWI) that has been widely recognized as a detrimental issue causing the deterioration of coastal aquifer water quality and degradation of coastal ecosystems. While it is widely recognized that SWI is exacerbated worldwide due to global sea-level rise, we show that increased SWI from tropical cyclones under climate change is also a concern. In the Cape Canaveral Barrier Island Complex (CCBIC) located in east-central Florida, the salinity level of the surficial aquifer is of great importance to maintain a bio-diverse ecosystem and to support the survival of various vegetation species. Climate change induced SWI into the surficial aquifer can lead to reduction of freshwater storage and alteration of the distribution and productivity of vegetation communities. In this study, a three-dimensional variable-density SEAWAT model is developed and calibrated to investigate the spatial and temporal variation of salinity level in the surficial aquifer of CCBIC. We link the SEAWAT model to surge model data to examine the effects of storm surge from Hurricane Jeanne. Simulation results indicate that the surficial aquifer salinity level increases significantly right after the occurrence of storm surge because of high aquifer permeability and rapid infiltration and diffusion of the overtopping saltwater, while the surficial aquifer salinity level begins to decrease after the fresh groundwater recharge from the storm's rainfall. The tropical storm precipitation generates an effective hydraulic barrier further impeding SWI and providing seaward freshwater discharge for saltwater dilution and flushing. To counteract the catastrophic effects of storm surge, this natural remediation process may take at least 15-20 years or even several decades. These simulation results contribute to ongoing research focusing on forecasting regional vegetation community responses to climate change, and are expected to provide a useful reference for climate change adaptation planning

  17. Water-level and storage changes in the High Plains aquifer, predevelopment to 2011 and 2009-11

    USGS Publications Warehouse

    McGuire, Virginia L.

    2013-01-01

    The High Plains aquifer underlies 111.8 million acres (175,000 square miles) in parts of eight States--Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area. This report presents water-level changes in the High Plains aquifer from the time before substantial groundwater irrigation development began (generally before 1950, and termed "predevelopment" in this report) to 2011 and from 2009-11. The report also presents total water in storage, 2011, and change in water in storage in the aquifer from predevelopment to 2011. The methods to calculate area-weighted, average water-level changes; change in water in storage; and total water in storage for this report used geospatial data layers organized as rasters with a cell size of about 62 acres. These methods were modified from methods used in previous reports in an attempt to improve estimates of water-level changes and change in water in storage.Water-level changes from predevelopment to 2011, by well, ranged from a rise of 85 feet to a decline of 242 feet. The area-weighted, average water-level changes in the aquifer were an overall decline of 14.2 feet from predevelopment to 2011, and a decline of 0.1 foot from 2009-11. Total water in storage in the aquifer in 2011 was about 2.96 billion acre-feet, which was a decline of about 246 million acre-feet since predevelopment.

  18. Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline.

    PubMed

    Yager, R M; Fountain, J C

    2001-01-01

    The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.

  19. Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline

    USGS Publications Warehouse

    Yager, R.M.; Fountain, J.C.

    2001-01-01

    The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.

  20. Chemical quality of surface waters and sedimentation in the Saline River basin, Kansas

    USGS Publications Warehouse

    Jordan, Paul Robert; Jones, B.F.; Petri, Lester R.

    1964-01-01

    This report gives the results of an investigation of the sediment and dissolved minerals that are transported by the Saline River and its tributaries. The Saline River basin is in western and central Kansas; it is long and narrow and covers 3,420 square miles of rolling plains, which is broken in some places by escarpments and small areas of badlands. In the western part the uppermost bedrock consists predominantly of calcareous elastic sedimentary rocks of continental origin of Pliocene age and in most places is covered by eolian deposits of Pleistocene and Recent age. In the central part the ex posed bedrock consists predominantly of calcareous marine sedimentary rocks of Late Cretaceous age. In the eastern part the exposed bedrock consists mainly of noncalcareous continental and littoral elastic sedimentary rocks of Early Cretaceous and Permian age. Fluvial deposits are in the valleys, and eolian materials are present over much of the uplands. Average precipitation increases rather uniformly from about 18 inches per year in the west to almost 28 inches per year in the east. Runoff is not affected by irrigation nor regulated by large structures, but it is closely related to precipitation. Average runoff increases from less than 0.2 inch per year in the west to more than 1.5 inches per year in the east. Aquifers of the flood-plain and terrace deposits and of the Cretaceous Dakota Sandstone are the major sources of ground-water accretion to the streams. In the upper reaches of the Saline River, the water is only slightly mineralized; during the period of record the specific conductance near Wakeeney never exceeded 750 micromhos per centimeter. In the lower reaches, however, the water is slightly mineralized during periods of high flow and is highly mineralized during periods of low flow; the specific conductance near Russell exceeded 1,500 micromhos per centimeter more than 80 percent of the time. Near Russell, near Wilson, and at Tescott the water is of the

  1. Thermodynamics of saline and fresh water mixing in estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  2. Transition from confined to phreatic conditions as the factor controlling salinization and change in redox state, Upper subaquifer of the Judea Group, Israel

    NASA Astrophysics Data System (ADS)

    Gavrieli, Ittai; Burg, Avi; Guttman, Joseph

    2002-08-01

    An increase in salinity and change from oxic to anoxic conditions are observed in the Upper subaquifer of the Judea Group in the Kefar Uriyya pumping field at the western foothills of the Judea Mountains, Israel. Hydrogeological data indicate that the change, which occurs over a distance of only a few kilometers, coincides with a transition from confined to phreatic conditions in the aquifer. The deterioration in the water quality is explained as a result of seepage of more saline, organic-rich water from above, into the phreatic "roofed" part of the aquifer. The latter is derived from the bituminous chalky rocks of the Mount Scopus Group, which confine the aquifer in its southeastern part. In this confined part, water in perched horizons within the Mount Scopus Group cannot leak down and flow westward while leaching organic matter and accumulating salts. However, upon reaching the transition area from confined to phreatic conditions, seepage to the Judea Upper subaquifer is possible, thereby allowing it to be defined as a leaky aquifer. The incoming organic matter consumes the dissolved oxygen and allows bacterial sulfate reduction. The latter accounts for the H2S in the aquifer, as indicated by sulfur isotopic analyses of coexisting sulfate and sulfide. Thus, from an aquifer management point of view, in order to maintain the high quality of the water in the confined southeastern part of the Kefar Uriyya field, care should be taken not to draw the confined-roofed transition area further east by over pumping.

  3. Hydrogeologic and water-quality characteristics of the Red River-Winnipeg aquifer northwestern Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.; Adolphson, D.G.

    1986-01-01

    Ground water generally flows eastward through the aquifer from North Dakota and discharges upward to wells and to overlying deposits. Yields of wells open to the full thickness of the aquifer range from 100 t 250 gallons per minute. The water is unsuitable for most uses because of the high mineral content. Dissolved-solids concentrations range from about 3,000 milligrams per liter in the eastern part of the aquifer to about 60,000 milligrams per liter in the northwestern corner of Minnesota.

  4. Geologic structure, hydrology, and water quality of the Laramie-Fox Hills aquifer in the Denver Basin, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    1981-01-01

    The Denver ground-water basin underlies a 6,700-square-mile area extending from Greeley in the north to Colorado Springs in the south, and from the Front Range in the west to near Limon in the east.  The four major bedrock aquifers that occur in the basin are the Laramie-Fox Hills aquifer (the deepest aquifer), the Arapahoe aquifer, the Denver aquifer, and the Dawson aquifer (the uppermost aquifer).  The Laramie-Fox Hills aquifer, which is the subject of this report, underlies the entire area of the basin in east-central Colorado (index map, fig. 1) and is an important source of water for residents in the northern Denver suburban area and in the rural areas of eastern Jefferson, Arapahoe, and Elbert Counties, Adams County, and southern Weld and El Paso Counties.  About 90 percent of the estimated 1,700 wells completed in the aquifer supply water to residents and livestock.  The remaining wells supply water for commercial and industrial use and limited irrigation of commercial crops.

  5. Geohydrology and water quality of the North Platte River alluvial aquifer, Garden County, Western Nebraska

    USGS Publications Warehouse

    Steele, Gregory V.; Cannia, James C.

    1995-01-01

    In 1993, a 3-year study was begun to describe the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The study's objectives are to evaluate the geohydrologic characteristics of the alluvial aquifer and to establish a network of observation wells for long-term monitoring of temporal variations and spatial distributions of nitrate and major-ion concentrations. Monitor wells were installed at 11 sites near Oshkosh. The geohydrology of the aquifer was characterized based on water-level measurements and two short-term aquifer tests. Bimonthly water samples were collected and analyzed for pH, specific conductivity, water temperature, dissolved oxygen, and nutrients that included dissolved nitrate. Concentrations of major ions were defined from analyses of semiannual water samples. Analyses of the geohydrologic and water-quality data indicate that the aquifer is vulnerable to nitrate contamination. These data also show that nitrate concentrations in ground water flowing into and out of the study area are less than the U.S. Environmental Protection Agency's Maximum Concentration Level of 10 milligrams per liter for drinking water. Ground water from Lost Creek Valley may be mixing with ground water in the North Platte River Valley, somewhat moderating nitrate concentrations near Oshkosh.

  6. Modelling Regional Hotspots of Water Pollution Induced by Salinization

    NASA Astrophysics Data System (ADS)

    Malsy, M.; Floerke, M.

    2014-12-01

    Insufficient water quality is one of the main global topics causing risk to human health, biodiversity, and food security. At this, salinization of water and land resources is widely spread especially in arid to semi-arid climates, where salinization, often induced by irrigation agriculture, is a fundamental aspect of land degradation. High salinity is crucial to water use for drinking, irrigation, and industrial purposes, and therefore poses a risk to human health and ecosystem status. However, salinization is also an economic problem, in particular in those regions where agriculture makes a significant contribution to the economy and/or where agriculture is mainly based on irrigation. Agricultural production is exposed to high salinity of irrigation water resulting in lower yields. Hence, not only the quantity of irrigation water is of importance for growing cops but also its quality, which may further reduce the available resources. Thereby a major concern for food production and security persists, as irrigated agriculture accounts for over 30% of the total agricultural production. In this study, the large scale water quality model WorldQual was applied to simulate recent total dissolved solids (TDS) loadings and in-stream concentrations from point and diffuse sources to get an insight on potential environmental impacts as well as risks to food security. Regional focus in this study is on developing countries, as these are most threatened by water pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use were examined, indicating limitations to crop production. For this purpose, model simulations were conducted for the year 2010 to show the recent status of surface water quality and to identify hotspots and main causes of pollution. Our results show that salinity hotspots mainly occur in peak irrigation regions as irrigated agriculture is by far the dominant sector contributing to water abstractions as

  7. Monitoring CO2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time-lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Lu, C.; Zhang, C.; Huang, H.; Johnson, T.

    2012-12-01

    Geological sequestration of carbon dioxide (CO2) into the subsurface has been considered as one solution to reduce greenhouse emission to the atmosphere. Successful sequestration process requires efficient and adequate monitoring of injected fluids as they migrate into the aquifer to evaluate flow path, leakage, and geochemical interactions between CO2 and geologic media. In this synthetic field scale study, we have integrated 3D multiphase flow modeling code PFLOTRAN with 3D time-laps electrical resistivity tomography (ERT) to gain insight into the supercritical (SC) CO2 plumes movement in the deep saline aquifer and associated brine intrusion into shallower fresh water aquifer. A parallel ERT forward and inverse modeling package was introduced, and related algorithms are briefly described. The capabilities and limitations of ERT in monitoring CO2 migration are assessed by comparing the results from PFLOTRAN simulations with the ERT inversion results. In general, our study shows the ERT inversion results compare well with PFLOTRAN with reasonable discrepancies, indicating that the ERT can capture the actual CO2 plume dynamics and brine intrusion. Detailed comparisons on the location, size and volume of CO2 plume show the ERT method underestimated area review and overestimated total plume volume in the predictions of SC CO2 movements. These comparisons also show the ERT method constantly overestimate salt intrusion area and underestimated total solute amount in the predictions of brine filtration. Our study shows that together with other geochemical and geophysical methods, ERT is a potentially useful monitoring tool in detecting the SC CO2 and formation fluid migrations.

  8. Hydrologic evaluation of salinity control and reclamation projects in the Indus Plain, Pakistan--A summary

    USGS Publications Warehouse

    Mundorff, Maurice John; Carrigan, P.H.; Steele, T.D.; Randall, A.D.

    1976-01-01

    This report summarizes the observations and findings of a team of four specialists from the U.S. Geological Survey assigned to Pakistan under the auspices of the U.S. Agency for International Development during May to August 1972 for a hydrologic evaluation of Salinity Control and Reclamation Projects in the Indus Plain Individual members of the team undertook comprehensive studies related to climatology, surface-water hydrology, and the canal system; streamflow and sediment yields of the rivers; computer applications to hydrologic data; aquifer characteristics; hydrologic evaluation of Salinity Control and Reclamation Projects (SCARPs); tubewell performance; hydrology of shallow versus deep tubewells; well and well-screen design in the Indus Plain; evaluation of observed and anticipated trends in both private and public tubewell development; evaluation of water-quality programs, data analysis, and records, and computer coding of special water-quality data; and evaluation of water-level data, well discharge and specific-capacity tests and aquifer tests. The reclamation program, by pumping from tubewells, has been notably successful in lowering the water table, in providing supplemental water for irrigation and for leaching of salinized soils, and in improving crop production. Some changes in water quality have been observed in SCARP-I and the Mona Scheme of SCARP-II, but these have not as yet (1972) significantly affected the utility of the water for irrigation. Problems associated with reclamation include control of deterioration in performance of tubewells and their rehabilitation, local brackish or saline-water encroachment, and maintenance of a favorable salt balance in the ground-water system. Rapid and as yet (1972) unregulated growth of shallow private tubewell development in the past decade has introduced complicating factors to the reclamation planning of the early 1960's which had emphasized public tubewell development through the SCARP program. In

  9. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from

  10. Water-table and potentiometric-surface altitudes in the upper glacial, Magothy, and Lloyd aquifers of Long Island, New York, April–May 2016

    USGS Publications Warehouse

    Como, Michael D.; Finkelstein, Jason S.; Rivera, Simonette L.; Monti, Jack; Busciolano, Ronald J.

    2018-06-06

    The U.S. Geological Survey, in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the U.S. Geological Survey completes a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers—and the hydraulically connected Jameco and North Shore aquifers. These data and the maps constructed from them are commonly used in studies of the hydrology of Long Island and are used by water managers and suppliers for aquifer management and planning purposes.Water-level measurements made in 424 monitoring wells (observation and supply wells), 13 streamgages, and 2 lake gages across Long Island during April–May 2016 were used to prepare the maps in this report. Groundwater measurements were made by the wetted-tape or electric-tape method to the nearest hundredth of a foot. Contours of water-table and potentiometric-surface altitudes were created using the groundwater measurements. The water-table contours were interpreted using water-level data collected from 275 observation wells and 1 supply well screened in the upper glacial aquifer and the shallow Magothy aquifer and 13 streamgages and 2 lake gages. The potentiometric-surface contours of the Magothy aquifer were interpreted from measurements at 88 wells (61 observation wells and 27 supply wells) screened in the middle to deep Magothy aquifer and the contiguous and hydraulically connected Jameco aquifer. The potentiometric-surface contours of the Lloyd aquifer were interpreted from measurements at 60 wells (55 observation wells and 5 supply wells) screened in the Lloyd aquifer and the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and

  11. Modeling radium distribution in coastal aquifers during sea level changes: The Dead Sea case

    USGS Publications Warehouse

    Kiro, Yael; Yechieli, Yoseph; Voss, Clifford I.; Starinsky, Abraham; Weinstein, Yishai

    2012-01-01

    We present a new approach to studying the behavior of radium isotopes in a coastal aquifer. In order to simulate radium isotope distributions in the dynamic flow field of the Dead Sea aquifer, a multi-species density dependent flow model (SUTRA-MS) was used. Field data show that the activity of 226Ra decreases from 140 to 60 dpm/L upon entering the aquifer from the Dead Sea, and then further decreases linearly due to mixing with Ra-poor fresh water. On the other hand, an increase is observed in the activity of the shorter-lived isotopes (up to 52 dpm/L 224Ra and 31 dpm/L 223Ra), which are relatively low in Dead Sea water (up to 2.5 dpm/L 224Ra and 0.5 dpm/L 223Ra). The activities of the short lived radium isotopes also decrease with decreasing salinity, which is due to the effect of salinity on the adsorption of radium. The relationship between 224Ra and salinity suggests that the adsorption partition coefficient (K) is linearly related to salinity. Simulations of the steady-state conditions, show that the distance where equilibrium activity is attained for each radium isotope is affected by the isotope half-life, K and the groundwater velocity, resulting in a longer distance for the long-lived radium isotopes. K affects the radium distribution in transient conditions, especially that of the long-lived radium isotopes. The transient conditions in the Dead Sea system, with a 1 m/yr lake level drop, together with the radium field data, constrains K to be relatively low (226Ra cannot be explained by adsorption, and it is better explained by removal via coprecipitation, probably with barite or celestine.

  12. An Analysis of the Energy, Water, and Salt Balance of a Saline Lake in the Sandhills Region of Semi-Arid Western Nebraska (USA)

    NASA Astrophysics Data System (ADS)

    Ong, J.; Lenters, J. D.; Zlotnik, V. A.; Jones, S.

    2009-12-01

    The Sandhills region of western Nebraska comprises the largest stabilized dune field in the western hemisphere. Although situated in a semi-arid climate, the sandy soils allow a significant fraction of the ambient precipitation to drain through and recharge the underlying Ogallala aquifer. As part of the larger High Plains aquifer that extends from South Dakota down to Texas, the Sandhills region provides an abundant groundwater resource for the surrounding area and is heavily utilized for irrigation. Located within a semi-arid climate, fluctuations in groundwater recharge in the Sandhills are likely to be highly sensitive to changes in climate and the regional water balance. Important to this water balance are the numerous seepage lakes which exist throughout the region. Where present, however, these lakes evaporate rapidly as a result of the warm, dry, sunny, and windy conditions. Many of the lakes are highly saline and often support a diverse wetland ecosystem. A field study of one of these lakes was initiated in 2007 to examine the effects of climate variability on the energy and water balance of the lake. In particular, we measured incoming and outgoing solar and longwave radiation over the surface of the lake, as well as lake and sediment temperatures, salinity, water levels, and ancillary meteorological variables. The lake is shallow, with a depth of roughly 30 cm, but is observed to undergo significant variations in water level relative to its mean depth and is almost completely drying up during some periods. Salinity values undergo similarly large variations and are found to respond relatively rapidly to precipitation and evaporation “events.” Energy balance estimates of lake evaporation yield values that are well in excess of the ambient precipitation, suggesting significant inputs from groundwater. These evaporation measurements correspond closely with mass-transfer estimates, except during periods when the lake becomes dry enough to elevate surface

  13. Borehole Geophysical, Water-Level, and Water-Quality Investigation of a Monitoring Well Completed in the St. Francois Aquifer in Oregon County, Missouri, 2005-08

    USGS Publications Warehouse

    Schumacher, John G.; Kleeschulte, Michael J.

    2010-01-01

    A deep (more than 2,000 feet) monitoring well was installed in an area being explored for lead and zinc deposits within the Mark Twain National Forest in southern Missouri. The area is a mature karst terrain where rocks of the Ozark aquifer, a primary source of water for private and public supplies and major springs in the nearby Eleven Point National Wild and Scenic River and the Ozark National Scenic Riverways, are exposed at the surface. The potential lead deposits lie about 2,000 feet below the surface within a deeper aquifer, called the St. Francois aquifer. The two aquifers are separated by the St. Francois confining unit. The monitoring well was installed as part of a series of investigations to examine potentiometric head relations and water-quality differences between the two aquifers. Results of borehole flowmeter measurements in the open borehole and water-level measurements from the completed monitoring well USGS-D1 indicate that a seasonal upward gradient exists between the St. Francois aquifer and the overlying Ozark aquifer from about September through February. The upward potentiometric heads across the St. Francois confining unit that separates the two aquifers averaged 13.40 feet. Large reversals in this upward gradient occurred during the late winter through summer (about February through August) when water levels in the Ozark aquifer were as much as 138.47 feet higher (average of 53.84 feet) than water levels in the St. Francois aquifer. Most of the fluctuation of potentiometric gradient is caused by precipitation and rapid recharge that cause large and rapid increases in water levels in the Ozark aquifer. Analysis of water-quality samples collected from the St. Francois aquifer interval of the monitoring well indicated a sodium-chloride type water containing dissolved-solids concentrations as large as 1,300 milligrams per liter and large concentrations of sodium, chloride, sulfate, boron, and lithium. In contrast, water in the overlying Ozark

  14. Natural attenuation processes of nitrate in a saline lake-aquifer system: Pétrola Basin (Central Spain)

    NASA Astrophysics Data System (ADS)

    Valiente, Nicolas; Menchen, Alfonso; Jirsa, Franz; Hein, Thomas; Wanek, Wolfgang; Gomez-Alday, Juan Jose

    2016-04-01

    Saline wetlands associated with intense agricultural activities in semi-arid to arid climates are among the most vulnerable environments to NO3- pollution. The endorheic Pétrola Basin (High Segura River Basin, Central Spain) was declared vulnerable to NO3- pollution by the Regional Government of Castilla-La Mancha in 1998. The hypersaline lake was classified as a heavily modified waterbody, due to the inputs of pollutants from agricultural sources and urban waste waters, the latest are discharged directly into the lake without proper treatment. Previous studies showed that the aquifer system has two main flow components: regional groundwater flow from recharge areas into the lake, and a density-driven flow from the lake to the underlying aquifer. The NO3- inputs derived from agriculture originate from nitrification of synthetic ammonium fertilizers, and afterwards, NO3- is expected to be attenuated by denitrification (up to 60%) in the saltwater-freshwater interface around the lake. However, the spatial and temporal pattern of nitrate reduction in lake sediments is not known. In this study, an isotope pairing technique was used in order to clarify the main pathways for the NO3- attenuation linked to the sediment-water interface. For that purpose mesocosm experiments were performed: organic-rich lake sediment (up to 23% organic carbon content) was incubated for 96 hours with the addition of 15N nitrate tracer. During the experiments two factors were modified: light and oxic conditions. Analyzing inorganic N-species (n=20) over time (72 hours) showed that NO3- attenuation was coupled with an increment in the NH4+ concentration (from 0.8 mg/L up to 5.3 mg/L) and a decrease in redox values (from 135.1 mV up to -422 mV) in the water column. The main outcome of this study was to elucidate the importance of different microbial pathways denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (Anammox), in controlling the fate

  15. Ocean Salinity Variance and the Global Water Cycle.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. W.

    2012-12-01

    Ocean salinity variance is increasing and appears to be an indicator of rapid change in the global water cycle. While the small terrestrial water cycle does not reveal distinct trends, in part due to strong manipulation by civilization, the much larger oceanic water cycle seems to have an excellent proxy for its intensity in the contrasts in sea surface salinity (SSS). Change in the water cycle is arguably the most important challenge facing mankind. But how well do we understand the oceanic response? Does the ocean amplify SSS change to make it a hyper-sensitive indicator of change in the global water cycle? An overview of the research challenges to the oceanographic community for understanding the dominant component of the global water cycle is provided.

  16. Analytical Analyses of Spatial and Temporal Characteristics of Infiltrated Water for Managed Aquifer Recharge

    NASA Astrophysics Data System (ADS)

    Zlotnik, V. A.; Ledder, G.; Kacimov, A. R.

    2014-12-01

    Disposal of excessive runoff or treated sewage into wadis and ephemeral streams is a common practice and an important hydrological problem in many Middle Eastern countries. While chemical and biological properties of the injected treated wastewater may be different from those of the receiving aquifer, the density contrast between the two fluids can be small. Therefore, studies of the fluid interface for variable density fluids or water intrusion are not directly relevant in many Managed Aquifer Recharge (MAR) problems. Other factors, such as the transient nature of injection and lack of detailed aquifer information must be considered. The disposed water reaching the water table through the vadose zone creates groundwater mounds, deforms the original water table, and develops finite-size convex-concave lenses of treated water over receiving water. After cessation of infiltration, these mounds flatten, water levels become horizontal, and infiltrated water becomes fully embedded in the receiving aquifer. The shape of the treated water body is controlled by the aquifer parameters, the magnitude of ambient flow, and the duration, rate, and cyclicity of infiltration. In case of limited aquifer data, advective transport modeling offers the most appropriate tools for predicting plume shapes over time, but surprisingly little work has been done on this important 3D flow problem. We investigate the lateral and vertical spreading of infiltrated water combining techniques of spatial velocity analyses by Zlotnik and Ledder (1992, 1993) with particle tracking. This approach allows for evaluating the geometry of the plume and the protection zone, the flow development phases, and other temporal and spatial effects and results can be used in conditions of limited data availability and quality. (Funding was provided by the USAID, DAI Subcontract 1001624-12S-19745)

  17. Current (2004-07) Conditions and Changes in Ground-Water Levels from Predevelopment to 2007, Southern High Plains Aquifer, Southeast New Mexico-Lea County Underground Water Basin

    USGS Publications Warehouse

    Tillery, Anne

    2008-01-01

    The Southern High Plains aquifer is the principal aquifer and primary source of water in southeastern New Mexico. The Lea County portion of the aquifer covers approximately the northern two thirds of the 4,393-square-mile county. Successful water-supply planning for New Mexico's Southern High Plains requires knowledge of the current aquifer conditions and a context from which to estimate future trends given current aquifer-management policy. Maps representing water-level declines, current (2007) water levels, aquifer saturated thickness, and depth to water accompanied by hydrographs from representative wells for the Southern High Plains aquifer in the Lea County Underground Water Basin were prepared in cooperation with the New Mexico Office of the State Engineer. Results of this mapping effort show the water level has declined as much as 97 feet in the Lea County Underground Water Basin from predevelopment (1914-54) to 2007 with rates as high as 0.88 feet per year.

  18. Water budget of the Calera Aquifer in Zacatecas, Mexico

    USDA-ARS?s Scientific Manuscript database

    In the Calera Aquifer Region of the State of Zacatecas, Mexico, limited rainfall and low agricultural water use efficiency in combination with fast growing industrial and urban water demand are contributing to groundwater depletion at an unsustainable rate. Limited data and planning tools were avail...

  19. Outdoor water use and water conservation opportunities in Virginia Beach, Virginia

    USGS Publications Warehouse

    Eggleston, John R.

    2010-01-01

    The amount of seasonal water use is important to the City of Virginia Beach because the primary source of this water is a fragile, shallow aquifer that is the only fresh groundwater source available within the city. Residents in the mostly rural southern half of Virginia Beach rely solely on this aquifer, not only for outdoor water uses but also for indoor domestic uses such as drinking and bathing. Groundwater that is close to the land surface in Virginia Beach is mostly fresh, whereas water 200 feet or more below the land surface is mostly saline and generally too salty to drink or use for irrigating lawns and gardens.

  20. Water-level trends and potentiometric surfaces in the Nacatoch Aquifer in northeastern and southwestern Arkansas and in the Tokio Aquifer in southwestern Arkansas, 2014–15

    USGS Publications Warehouse

    Rodgers, Kirk D.

    2017-09-20

    The Nacatoch Sand in northeastern and southwestern Arkansas and the Tokio Formation in southwestern Arkansas are sources of groundwater for agricultural, domestic, industrial, and public use. Water-level altitudes measured in 51 wells completed in the Nacatoch Sand and 42 wells completed in the Tokio Formation during 2014 and 2015 were used to create potentiometric-surface maps of the two areas. Aquifers in the Nacatoch Sand and Tokio Formation are hereafter referred to as the Nacatoch aquifer and the Tokio aquifer, respectively.Potentiometric surfaces show that groundwater in the Nacatoch aquifer flows southeast toward the Mississippi River in northeastern Arkansas. Groundwater flow direction is towards the south and southeast in Hempstead, Little River, and Nevada Counties in southwestern Arkansas. An apparent cone of depression exists in southern Clark County and likely alters groundwater flow from a regional direction toward the depression.In southwestern Arkansas, potentiometric surfaces indicate that groundwater flow in the Tokio aquifer is towards the city of Hope. Northwest of Hope, an apparent cone of depression exists. In southwestern Pike, northwestern Nevada, and northeastern Hempstead Counties, an area of artesian flow (water levels are at or above land surface) exists.Water-level changes in wells were identified using two methods: (1) linear regression analysis of hydrographs from select wells with a minimum of 20 years of water-level data, and (2) a direct comparison between water-level measurements from 2008 and 2014–15 at each well. Of the six hydrographs analyzed in the Nacatoch aquifer, four indicated a decline in water levels. Compared to 2008 measurements, the largest rise in water levels was 35.14 feet (ft) in a well in Clark County, whereas the largest decline was 14.76 ft in a well in Nevada County, both located in southwestern Arkansas.Of the four hydrographs analyzed in the Tokio aquifer, one indicated a decline in water levels, while

  1. Recalibration and predictive reliability of a solute-transport model of an irrigated stream-aquifer system

    USGS Publications Warehouse

    Person, M.; Konikow, Leonard F.

    1986-01-01

    A solute-transport model of an irrigated stream-aquifer system was recalibrated because of discrepancies between prior predictions of ground-water salinity trends during 1971-1982 and the observed outcome in February 1982. The original model was calibrated with a 1-year record of data collected during 1971-1972 in an 18-km reach of the Arkansas River Valley in southeastern Colorado. The model is improved by incorporating additional hydrologic processes (salt transport through the unsaturated zone) and through reexamination of the reliability of some input data (regression relationship used to estimate salinity from specific conductance data). Extended simulations using the recalibrated model are made to investigate the usefulness of the model for predicting long-term trends of salinity and water levels within the study area. Predicted ground-water levels during 1971-1982 are in good agreement with the observed, indicating that the original 1971-1972 study period was sufficient to calibrate the flow model. However, long-term simulations using the recalibrated model based on recycling the 1971-1972 data alone yield an average ground-water salinity for 1982 that is too low by about 10%. Simulations that incorporate observed surface-water salinity variations yield better results, in that the calculated average ground-water salinity for 1982 is within 3% of the observed value. Statistical analysis of temporal salinity variations of the applied surface water indicates that at least a 4-year sampling period is needed to accurately calibrate the transport model. ?? 1986.

  2. Analysis of ground-water flow in the Catahoula aquifer system in the vicinity of Laurel and Hattiesburg, Mississippi

    USGS Publications Warehouse

    Halford, K.J.; Barber, N.L.

    1995-01-01

    The upper, middle, and lower Catahoula aquifers in the vicinity of the cites of Laurel and Hattiesburg in southern Mississippi are made up of irregular, discontinuous sand zones in the Catahoula Formation of Miocene age. In places thee three aquifers may be hydraulically well connected, and are referred to as the Catahoula aquifer system. Withdrawal from the Catahoula aquifers increased from 28 million gallons per day (Mgal/d) to 41 Mgal/d during 1970 to 1985, and decreased to 38 Mgal/d during 1990. Most withdrawal in the Laurel area is from the lower and middle Catahoula, and most withdrawal in the Hattiesburg area is from the middle and upper Catahoula aquifers. In the Laurel area, water levels in selected wells in the lower Catahoula aquifer declined at rates ranging from about 1 to 3.6 feet/ year until the late 1980's in response to the increase in pumping. A three-dimensional model was developed to represent ground-water flow in the Catahoula aquifers. Simulated water levels in the lower Catahoula aquifer, the layer most affected by pumping, were lowered from predevelopment levels as much as 130 feet in the Laurel area and 100 feet in the Hattiesburg area, according to the model analysis of 1992 conditions. Three scenarios of increased pumpage, for the period 1992-2020, were simulated. Under the low-growth scenario, water- level declines would be 20 feet or less below 1992 water levels in the middle and upper Catahoula aquifer in the Hattiesburg area, and about 60 feet in the lower Catahoula aquifer in the Laurel area. Under the moderate-growth scenario, water-level declines would be 40 feet or less below 1992 water levels in the middle Catahoula aquifer in the Hattiesburg area. Water-level declines would be about 110 feet in the lower Catahoula aquifer in the Laurel area, and water levels would approach the top of the aquifer. Under the high-growth scenario, water-level declines would be 40 feet or less in the upper Catahoula aquifer and about 80 feet in the

  3. Hydrogeology and water quality of the Nanticoke Creek stratified-drift aquifer, near Endicott, New York

    USGS Publications Warehouse

    Kreitinger, Elizabeth A.; Kappel, William M.

    2014-01-01

    The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal

  4. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  5. Ground-water quality and geochemistry, Carson Desert, western Nevada

    USGS Publications Warehouse

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  6. Mediterranean sea water budget long-term trend inferred from salinity observations

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Zika, J. D.; Herold, L.; Josey, S. A.; Marsh, R.

    2018-01-01

    Changes in the Mediterranean water cycle since 1950 are investigated using salinity and reanalysis based air-sea freshwater flux datasets. Salinity observations indicate a strong basin-scale multi-decadal salinification, particularly in the intermediate and deep layers. Evaporation, precipitation and river runoff variations are all shown to contribute to a very strong increase in net evaporation of order 20-30%. While large temporal uncertainties and discrepancies are found between E-P multi-decadal trend patterns in the reanalysis datasets, a more robust and spatially coherent structure of multi-decadal change is obtained for the salinity field. Salinity change implies an increase in net evaporation of 8 to 12% over 1950-2010, which is considerably lower than that suggested by air-sea freshwater flux products, but still largely exceeding estimates of global water cycle amplification. A new method based on water mass transformation theory is used to link changes in net evaporation over the Mediterranean Sea with changes in the volumetric distribution of salinity. The water mass transformation distribution in salinity coordinates suggests that the Mediterranean basin salinification is driven by changes in the regional water cycle rather than changes in salt transports at the straits.

  7. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    PubMed

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  8. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments

    PubMed Central

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-01-01

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring. PMID:26343653

  9. Results of test drilling in the Basalt aquifer near Fallon, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.

    2002-01-01

    inflow of more saline water from aquifers surrounding or underlying the basalt, or from greater depths within the basalt itself. Prior to the drilling on August 14, 2001, few wells penetrated the basalt more than 70 feet below its upper surface (Maurer and Welch, 2001, p. 34). This prevented monitoring changes in water quality deeper in the aquifer that might be moving upward with continued pumping. Purposes of drilling were to fully penetrate the basalt, determine its hydrogeological character, the distribution of water quality in the basalt and in the underlying sedimentary aquifer, install monitoring wells.

  10. Designation of principal water-supply aquifers in Minnesota

    USGS Publications Warehouse

    Adolphson, D.G.; Ruhl, J.F.; Wolf, R.J.

    1981-01-01

    The State's ground water generally contains less than 1,000 milligrams per liter of dissolved solids, except in the extreme southwest, northeast, and western areas. Mineralized water is present at depth throughout the State. Freshwater extends to depths of about 1,000 feet in the center of the Hollandale embayment and in the Twin Cities basin. Six principal water-quality types are present in the .aquifers. Calcium magnesium bicarbonate type water, the most common, is generally present throughout the upper part of the ground-water system.

  11. Inventory and review of aquifer storage and recovery in southern Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    2002-01-01

    publications > water resources investigations > report 02-4036 US Department of the Interior US Geological Survey WRI 02-4036Inventory and Review of Aquifer Storage and Recovery in Southern Florida By Ronald S. ReeseTallahassee, Florida 2002 prepared as part of the U.S. Geological Survey Place-Based Studies Program ABSTRACT Abstract Introduction Inventory of Data Case Studies Summary References Tables Aquifer storage and recovery in southern Florida has been proposed on an unprecedented scale as part of the Comprehensive Everglades Restoration Plan. Aquifer storage and recovery wells were constructed or are under construction at 27 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The Upper Floridan aquifer, the principal storage zone of interest to the restoration plan, is the aquifer being used at 22 of the sites. The aquifer is brackish to saline in southern Florida, which can greatly affect the recovery of the freshwater recharged and stored.Well data were inventoried and compiled for all wells at most of the 27 sites. Construction and testing data were compiled into four main categories: (1) well identification, location, and construction data; (2) hydraulic test data; (3) ambient formation water-quality data; and (4) cycle testing data. Each cycle during testing or operation includes periods of recharge of freshwater, storage, and recovery that each last days or months. Cycle testing data include calculations of recovery efficiency, which is the percentage of the total amount of potable water recharged for each cycle that is recovered.Calculated cycle test data include potable water recovery efficiencies for 16 of the 27 sites. However, the number of cycles at most sites was limited; except for two sites, the highest number of cycles was five. Only nine sites had a recovery efficiency above 10 percent for the first cycle, and 10 sites achieved a recovery efficiency above 30 percent during at least one cycle. The

  12. Resistivity-Chemistry Integrated Approaches for Investigating Groundwater Salinity of Water Supply and Agricultural Activity at Island Coastal Area

    NASA Astrophysics Data System (ADS)

    Baharuddin, M. F. T.; Masirin, M. I. M.; Hazreek, Z. A. M.; Azman, M. A. A.; Madun, A.

    2018-04-01

    Groundwater suitability for water supply and agriculture in an island coastal area may easily be influenced by seawater intrusion. The aim of this study was to investigate seawater intrusion to the suitability of the groundwater for water supply and oil palm cultivation on Carey Island in Malaysia. This is the first study that used integrated method of geo-electrical resistivity and hydrogeochemical methods to investigate seawater intrusion to the suitability of groundwater for water supply and oil palm cultivation at two different surface elevation and land cover. The relationship between earth resistivity, total dissolved solids and earth conductivity was derived with water type classifications and crop suitability classification according to salinity, used to identify water types and also oil palm tolerance to salinity. Results from the contour resistivity and conductivity maps showed that the area facing severe coastal erosion (east area) exhibited unsuitable groundwater condition for water supply and oil palm at the unconfined aquifer thickness of 7.8 m and 14.1 m, respectively. Comparing to the area that are still intact with mangrove (west area), at the same depth, groundwater condition exhibits suitable usage for both socioeconomic activities. Different characteristics of surface elevation and land cover are paramount factors influencing saltwater distribution at the west and east area. By the end of the twenty-first century there will no longer be suitable water for supply and oil palm plantation based on the local sea-level rise prediction and Ghyben–Herzberg assumption (sharp interface), focusing on the severe erosion area of the study site.

  13. Hydrogeology and water quality of five principal aquifers in the Lower Platte South Natural Resources District, eastern Nebraska, 1994

    USGS Publications Warehouse

    Druliner, A.D.; Mason, J.P.

    2001-01-01

    The U.S. Geological Survey, in cooperation with the Lower Platte South Natural Resources District, conducted a hydrogeologic and water-quality reconnaissance study of the five principal aquifers in deposits of Quaternary age in the Natural Resources District. The purpose of the study was to delineate the approximate extent of the aquifers, to estimate volumes of drainable water in three aquifers, to provide information that could be useful in designing future ground-water-quality monitoring, and to determine baseline water-quality conditions in the aquifers, focusing on nitrate concentrations. The approximate lateral boundaries of the Dwight-Valparaiso, Crete-Princeton-Adams, and Waverly aquifers were defined as areas in which the thickness of continuous sand and gravel deposits was less than 40 feet. The three aquifers were determined to contain about 1,340,000; 1,540,000; and 172,000 acre-feet of drainable water, respectively, assuming a specific yield of 0.20. During the summer of 1994, ground-water samples were collected from 46 wells in the five aquifers and analyzed for nitrate and screened for triazine herbicides. Additionally, water samples from 39 of these wells were analyzed for major ions, iron, and manganese, and 35 were analyzed for radon. Water-quality analyses revealed that the water in the five aquifers had specific conductances that ranged from 399 to 2,040 micro-siemens per centimeter and was a calcium-carbonate to calcium-magnesium-sodium carbonate type. The most mineralized water samples were from the Crete-Princeton-Adams aquifer, which contained a median concentration of dissolved solids of 520 milligrams per liter. Concentrations of nitrate in water samples from the aquifers ranged from less than 0.05 to 23 milligrams per liter as nitrogen, and only six water samples exceeded the Maximum Contaminant Level established by the U.S. Environmental Protection Agency of 10 milligrams per liter. The median concentration of radon for water samples

  14. Linking water and carbon cycles through salinity observed from space

    NASA Astrophysics Data System (ADS)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  15. Flow dynamics and salt transport in a coastal aquifer driven by a stratified saltwater body: Lab experiment and numerical modeling

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Shalev, Eyal; Yechieli, Yoseph; Gavrieli, Ittai; Gvirtzman, Haim

    2014-04-01

    This paper examines the transient development and the steady-state configuration of groundwater within a coastal aquifer adjacent to a stratified saltwater body. Such systems consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. The dynamics, location and the geometry of the interfaces and the density-driven circulation flows that develop in the aquifer are examined using laboratory experiments and numerical modeling at the same scale. The results show that the transient intrusion of the different water bodies into the aquifer takes place at different rates, and that the locations of the interfaces between them change with time, before reaching steady-state. Under steady-state conditions both the model and the experiments show the existence of three interfaces between the three water types. The numerical model, which is calibrated against the salinity distribution and groundwater discharge rate in the laboratory experiments, allows the quantification of the flow rates and flow patterns within the aquifer. These flow patterns, which cannot be derived from laboratory experiments, show the transient development of three circulation cells which are confined between the three interfaces. These results confirm the hypothesis that has been previously suggested based solely on a steady-state numerical modeling defined by a conceptual understanding. Parametric analysis shows that the creation of three circulation cells and three interfaces is limited to certain conditions and defines the ranges for the creation of this unique system.

  16. Hydrogeology at Air Force Plant 4 and vicinity and water quality of the Paluxy Aquifer, Fort Worth, Texas

    USGS Publications Warehouse

    Kuniansky, Eve L.; Jones, Sonya A.; Brock, Robert D.; Williams, M.D.

    1996-01-01

    Ground water in the surficial terrace alluvial aquifer is contaminated at Air Force Plant 4, Fort Worth, Texas, and at the adjacent Naval Air Station. Some of the contaminated water has leaked from the terrace alluvial aquifer to an uppermost interval of the Paluxy Formation (the Paluxy "upper sand") beneath the east parking lot, east of the assembly building, and to the upper and middle zones of the Paluxy aquifer near Bomber Road, west of the assembly building. Citizens are concerned that contaminants from the plant, principally trichloroethylene and chromium might enter nearby municipal and domestic wells that pump water from the middle and lower zones of the Paluxy aquifer. Geologic formations that crop out in the study area, from oldest to youngest, are the Paluxy Formation (aquifer), Walnut Formation (confining unit), and Goodland Limestone (confining unit). Beneath the Paluxy Formation is the Glen Rose Formation (confining unit) and Twin Mountains Formation (aquifer). The terrace alluvial deposits overlie these Cretaceous rocks. The terrace alluvial aquifer, which is not used for municipal water supply, is separated from the Paluxy aquifer by the Goodland-Walnut confining unit. The confining unit restricts the flow of ground water between these aquifers in most places; however, downward leakage to the Paluxy aquifer might occur through the "window," where the confining unit is thin or absent. The Paluxy aquifer is divided into upper, middle, and lower zones. The Paluxy "upper sand" underlying the "window" is an apparently isolated, mostly unsaturated, sandy lens within the uppermost part of the upper zone. The Paluxy aquifer is recharged by leakage from Lake Worth and by precipitation on the outcrop area. Discharge from the aquifer primarily occurs as pumpage from municipal and domestic wells. The Paluxy aquifer is separated from the underlying Twin Mountains aquifer by the Glen Rose confining unit. Water-level maps indicate that (1) ground water in the

  17. Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.

    2015-06-01

    Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.

  18. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  19. U.S. Geological Survey Georgia Water Science Center and City of Brunswick- Glynn County Cooperative Water Program-Summary of Activities, July 2005 through June 2006

    USGS Publications Warehouse

    Cherry, Gregory S.

    2007-01-01

    Since 1959, the U.S. Geological Survey has conducted a cooperative water resources program (CWP) with the City of Brunswick and Glynn County in the Brunswick, Georgia, area. Since the late 1950s, the salinity of ground water in the Upper Floridan aquifer near downtown Brunswick, Georgia, has been increasing, and its occurrence has been detected across an area of increasing size. Pumping of the Upper Floridan aquifer near downtown Brunswick has lowered water levels in the aquifer and resulted in an upward hydraulic gradient between the highly saline parts of the Lower Floridan aquifer and the normally fresh Upper Floridan aquifer. Saltwater likely enters the Upper Floridan aquifer through localized, vertically oriented conduits of relatively high permeability and moves laterally in response to the distribution of stresses within the aquifer. The Brunswick-Glynn County CWP for fiscal year 2006 includes the operation and maintenance of 12 continuous water-level recorders. In addition, water-level data were collected from 52 wells and water from 70 wells was analyzed for chloride concentration during June 2005. Geophysical logs were obtained from one well to assess whether the cause of elevated chloride concentration could be due to leaky well casing. A summary of the Georgia Department of Natural Resources, Environmental Protection Division (GaEPD) Georgia Coastal Sound Science Initiative (CSSI) activities that directly benefit the CWP-Brunswick-Glynn County is included in this report. The GaEPD CSSI is a program of scientific and feasibility studies to support development of a final strategy to protect the Upper Floridan aquifer from saltwater contamination. These data presented in this report are needed by State and local authorities to manage water resources effectively in the coastal area of Georgia.

  20. WTAQ: A Computer Program for Calculating Drawdowns and Estimating Hydraulic Properties for Confined and Water-Table Aquifers

    USGS Publications Warehouse

    Barlow, Paul M.; Moench, Allen F.

    1999-01-01

    The computer program WTAQ calculates hydraulic-head drawdowns in a confined or water-table aquifer that result from pumping at a well of finite or infinitesimal diameter. The program is based on an analytical model of axial-symmetric ground-water flow in a homogeneous and anisotropic aquifer. The program allows for well-bore storage and well-bore skin at the pumped well and for delayed drawdown response at an observation well; by including these factors, it is possible to accurately evaluate the specific storage of a water-table aquifer from early-time drawdown data in observation wells and piezometers. For water-table aquifers, the program allows for either delayed or instantaneous drainage from the unsaturated zone. WTAQ calculates dimensionless or dimensional theoretical drawdowns that can be used with measured drawdowns at observation points to estimate the hydraulic properties of confined and water-table aquifers. Three sample problems illustrate use of WTAQ for estimating horizontal and vertical hydraulic conductivity, specific storage, and specific yield of a water-table aquifer by type-curve methods and by an automatic parameter-estimation method.

  1. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA

    USGS Publications Warehouse

    Plummer, Niel; Sprinkle, C.L.

    2001-01-01

    Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in ??18O of approximately 2.0%o.

  2. Digital simulation of ground-water flow in the Warwick Aquifer, Fort Totten Indian Reservation, North Dakota

    USGS Publications Warehouse

    Reed, Thomas B.

    1997-01-01

    The demand for water from the Warwick aquifer, which underlies the Fort Totten Indian Reservation in northeastern North Dakota, has been increasing during recent years. Therefore, the Spirit Lake Sioux Nation is interested in resolving questions about the quantity and quality of water in the aquifer and in developing a water-management plan for future water use. A study was conducted to evaluate the surface-water and ground-water resources of the Fort Totten Indian Reservation and, in particular, the ground-water resources in the area of the Warwick aquifer. A major component of the study, addressed by this report, was to define the ground-water flow system of the aquifer. The Warwick aquifer consists of outwash deposits of the Warwick outwash plain that are as much as 30 feet thick and buried-valley deposits beneath the outwash plain that are as much as 200 feet thick. The aquifer is bounded on the north and west by end-moraine deposits and Devils Lake, on the south by the Sheyenne River Valley, and on the east by outwash deposits and ravines. The aquifer is underlain by Pierre Shale or by glacial till, clay, or silt. Ground-water gradients generally are small and rarely are more than 3 or 4 feet per mile. From 1982 to 1993, withdrawals from the Devils Lake well field averaged 1.5 cubic feet per second, and withdrawals from irrigation wells averaged 1.29 cubic feet per second. The combined discharge from springs may be about 3 cubic feet per second. During the early 1990s, the Warwick aquifer probably was in a steady-state condition with regard to storage change in the aquifer. A finite-difference, three-dimensional, ground-water flow model provided a reasonable simulation of ground-water flow in the Warwick aquifer. The aquifer was divided vertically into two layers and horizontally into a grid of 83 by 109 cells, each measuring 656 feet (200 meters) per side. The steady-state simulation was conducted using 1992 pumpage rates and October 1992 water levels. The

  3. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    PubMed

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Salinity controls on plant transpiration and soil water balance

    NASA Astrophysics Data System (ADS)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  5. The effects of ground-water development on the water supply in the Post Headquarters area, White Sands Missile Range, New Mexico

    USGS Publications Warehouse

    Kelly, T.E.; Hearne, Glenn A.

    1976-01-01

    Water-level declines in the Post Headquarters area, White Sands Missile Range, N. Mex., have been accompanied by slight but progressive increases in the concentration of dissolved solids in water withdrawn from the aquifer. Projected water-level declines through 1996 are estimated from a digital simulation model to not exceed 200 feet (61 metres). A conceptual model of water quality provides three potential sources for water that is relatively high in dissolved solids: brine from the Tularosa Basin to the east, slightly saline water beneath the subjacent aquatard, and very slightly saline water from the less permeable units within the aquifer itself. Management of the well field to minimize drawdown and spread the cone of depression would minimize the rate of water-quality deterioration. A well designed monitoring network may provide advance warning of severe or rapid water-quality deterioration.. The Soledad Canyon area 10 miles (16.1 kilometres) south of the Post Headquarters offers the greatest potential for development of additional water supplies.

  6. Bibliography on ground water in glacial-aquifer systems in the Northeastern United States

    USGS Publications Warehouse

    Wiltshire, Denise A.; Lyford, Forest P.; Cohen, A.J.

    1986-01-01

    The U.S. Geological Survey established the Regional Aquifer-System Analysis (RASA) program to evaluate major interconnected aquifers or groups of aquifers that share similar characteristics within a region. One of the objectives of the Northeastern Glacial RASA is to provide information on the occurrence and quality of ground water in glacial deposits in ten States: Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, Ohio, Pennsylvania, and New Jersey. To help meet the objectives of the RASA program, an automated bibliographic data base was developed. The data base contains references to ground-water resources of glacial-aquifer systems in the ten States listed above. This bibliography contains more than 700 ground-water related references that date from 1839 through 1984. The bibliography lists books, journal articles, conference proceedings, government and other technical reports, theses, and maps. Unpublished manuscripts, publications in press, newspaper articles, and book reviews are omitted from the bibliography.

  7. Geohydrology and evaluation of water-resource potential of the upper Floridan Aquifer in the Albany area, southwestern Georgia

    USGS Publications Warehouse

    Torak, L.J.; Davis, G.S.; Strain, G.A.; Herndon, J.G.

    1993-01-01

    In the Albany area of southwestern Georgia, the Upper Floridan aquifer lies entirely within the Dougherty Plain district of the Coastal Plain physiographic province, and consists of the Ocala Limestone of late Eocene age. The aquifer is divided throughout most of the study area into an upper and a lower lithologic unit, which creates an upper and a lower water-bearing zone. The lower waterbearing zone consists of alternating layers of sandy limestone and medium-brown, recrystallized dolomitic limestone, and ranges in thickness from about 50 ft to 100 ft. It is highly fractured and exhibits well-developed permeability by solution features that are responsible for transmitting most of the ground water in the aquifer. Transmissivity of the lower water-bearing zone ranges from about 90,000 to 178,000 ft2/d. The upper water-bearing zone is a finely crystallized-to-oolitic, locally dolomitic limestone having an average thickness of about 60 ft. Transmissivities are considerably less in the upper water-bearing zone than in the lower water-bearing zone. The Upper Floridan aquifer is overlain by about 20-120 ft of undifferentiated overburden consisting of fine-to-coarse quartz sand and noncalcareous clay. A clay zone about 10-30 ft thick may be continuous throughout the southwestern part of the Albany area and, where present, causes confinement of the Upper Floridan aquifer and creates perched ground water after periods of heavy rainfall. The Upper Floridan aquifer is confined below by the Lisbon Formation, a mostly dolomitic limestone that contains trace amounts of glauconite. The Lisbon Formation is at least 50 ft thick in the study area and acts as an impermeable base to the Upper Floridan aquifer. The quality of ground water in the Upper Floridan aquifer is suitable for most uses; wells generally yield water of the hard, calcium-bicarbonate type that meets the U.S. Environmental Protection Agency's Primary or Secondary Drinking-Water Regulations. The water

  8. Hydrogeology and ground-water quality of glacial-drift aquifers, Leech Lake Indian Reservation, north-central Minnesota

    USGS Publications Warehouse

    Lindgren, R.J.

    1996-01-01

    Water collected from wells completed in the unconfined aquifer in residential and recreational land-use areas had concentrations of arsenic, cadmium, chromium, copper, lead, mercury, and cyanide equal to or less than 6 micrograms per liter. Concentrations of organic-acid herbicides in water from three wells screened in the unconfined aquifer in managed-forest land-use areas were all below detection levels. Concentrations of U.S. Environmental Protection Agency priority pollutants in water from three wells screened in the unconfined aquifer and from one well screened in the uppermost confined aquifer were also all below detection levels.

  9. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    USGS Publications Warehouse

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Results of detailed water-quality analyses, ground-waterage dating, and dissolved-gas analyses indicated the vulnerability of ground water to specific types of contamination, the sequence of contaminant introduction to the aquifer relative to greenfield development, and processes that may mitigate the contamination. Concentrations of chloride and sodium and chloride/bromide weight ratios in sampled water from five wells indicated the vulnerability of the upper aquifer to roaddeicer contamination. Ground-water-age estimates from these wells indicated the onset of upgradient road-deicer use within the previous 25 years. Nitrate in the upper aquifer predates the post-1972 development, based on a ground-water-age date (30 years) and the nitrate concentration (5.12 milligrams per liter as nitrogen) in water from a deep well. Vulnerability of the aquifer to nitrate contamination is limited partially by denitrification. Detection of one to four atrazine transformation products in water samples from the upper aquifer indicated biological and hydrochemical processes that may limit the vulnerability of the ground water to atrazine contamination. Microbial processes also may limit the aquifer vulnerability to small inputs of halogenated aliphatic compounds, as indicated by microbial transformations of trichlorofluoromethane and trichlorotrifluoroethane relative to dichlorodifluoromethane. The vulnerability of ground water to contamination in other parts of the aquifer system also may be mitigated by hydrodynamic dispersion and biologically mediated transformations of nitrate, pesticides, and some organic compounds. Identification of the sequence of contamination and processes affecting the vulnerability of ground water to contamination would have been unlikely with conventional assessment methods.

  10. Potentiometric surface of the Upper Floridan aquifer in Florida and parts of Georgia, South Carolina, and Alabama, May – June 2010

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2011-01-01

    The Floridan aquifer system covers nearly 100,000 square miles in the southeastern United States throughout Florida and in parts of Georgia, South Carolina, and Alabama, and is one of the most productive aquifers in the world (Miller, 1990). This sequence of carbonate rocks is hydraulically connected and is over 300 feet thick in south Florida and thins toward the north. Typically, this sequence is subdivided into the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. The majority of freshwater is contained in the Upper Floridan aquifer and is used for water supply (Miller, 1986). The Lower Floridan aquifer contains fresh to brackish water in northeastern Florida and Georgia, while in south Florida it is saline. The potentiometric surface of the Upper Floridan aquifer in May–June 2010 shown on this map was constructed as part of the U.S. Geological Survey Floridan Aquifer System Groundwater Availability Study (U.S. Geological Survey database, 2011). Previous synoptic measurements and regional potentiometric maps of the Upper Floridan aquifer were prepared for May 1980 (Johnston and others, 1981) and May 1985 (Bush and others, 1986) as part of the Floridan Regional Aquifer System Analysis.

  11. Ground-water-quality assessment of the Central Oklahoma Aquifer, Oklahoma: geochemical and geohydrologic investigations

    USGS Publications Warehouse

    Parkhurst, David L.; Christenson, Scott C.; Breit, George N.

    1993-01-01

    The National Water-Quality Assessment pilot project for the Central Oklahoma aquifer examined the chemical and isotopic composition of ground water, the abundances and textures of minerals in core samples, and water levels and hydraulic properties in the flow system to identify geochemical reactions occurring in the aquifer and rates and directions of ground-water flow. The aquifer underlies 3,000 square miles of central Oklahoma and consists of Permian red beds, including parts of the Permian Garber Sandstone, Wellington Formation, and Chase, Council Grove, and Admire Groups, and Quaternary alluvium and terrace deposits.In the part of the Garber Sandstone and Wellington Formation that is not confined by the Permian Hennessey Group, calcium, magnesium, and bicarbonate are the dominant ions in ground water; in the confined part of the Garber Sandstone and Wellington Formation and in the Chase, Council Grove, and Admire Groups, sodium and bicarbonate are the dominant ions in ground water. Nearly all of the Central Oklahoma aquifer has an oxic or post-oxic environment as indicated by the large dissolved concentrations of oxygen, nitrate, arsenic(V), chromium(VI), selenium(VI), vanadium, and uranium. Sulfidic and methanic environments are virtually absent.Petrographic textures indicate dolomite, calcite, sodic plagioclase, potassium feldspars, chlorite, rock fragments, and micas are dissolving, and iron oxides, manganese oxides, kaolinite, and quartz are precipitating. Variations in the quantity of exchangeable sodium in clays indicate that cation exchange is occurring within the aquifer. Gypsum may dissolve locally within the aquifer, as indicated by ground water with large concentra-tions of sulfate, but gypsum was not observed in core samples. Rainwater is not a major source for most elements in ground water, but evapotranspiration could cause rainwater to be a significant source of potassium, sulfate, phosphate and nitrogen species. Brines derived from seawater are

  12. Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: Seaside Groundwater Basin, California

    USGS Publications Warehouse

    Nenna, Vanessa; Herckenrather, Daan; Knight, Rosemary; Odlum, Nick; McPhee, Darcy

    2013-01-01

    Developing effective resource management strategies to limit or prevent saltwater intrusion as a result of increasing demands on coastal groundwater resources requires reliable information about the geologic structure and hydrologic state of an aquifer system. A common strategy for acquiring such information is to drill sentinel wells near the coast to monitor changes in water salinity with time. However, installation and operation of sentinel wells is costly and provides limited spatial coverage. We studied the use of noninvasive electromagnetic (EM) geophysical methods as an alternative to installation of monitoring wells for characterizing coastal aquifers. We tested the feasibility of using EM methods at a field site in northern California to identify the potential for and/or presence of hydraulic communication between an unconfined saline aquifer and a confined freshwater aquifer. One-dimensional soundings were acquired using the time-domain electromagnetic (TDEM) and audiomagnetotelluric (AMT) methods. We compared inverted resistivity models of TDEM and AMT data obtained from several inversion algorithms. We found that multiple interpretations of inverted models can be supported by the same data set, but that there were consistencies between all data sets and inversion algorithms. Results from all collected data sets suggested that EM methods are capable of reliably identifying a saltwater-saturated zone in the unconfined aquifer. Geophysical data indicated that the impermeable clay between aquifers may be more continuous than is supported by current models.

  13. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    PubMed

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  14. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  15. Water type and concentration of dissolved solids, chloride, and sulfate in water from the Ozark aquifer in Missouri, Arkansas, Kansas, and Oklahoma

    USGS Publications Warehouse

    Imes, Jeffrey L.; Davis, J.V.

    1991-01-01

    The Ozark aquifer is a thick sequence of water-bearing dolostone, limestone, and sandstone of latest Cambrian through Middle Devonian age that is widely used as a source of water throughout the Ozark Plateaus province (index map). The Ozark aquifer is the largest of three aquifers that form part of the Ozark Plateaus aquifer system. The aquifer was studied as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA; Jorgensen and Signor, 1981), a study of regional aquifer systems in the midcontinent United States that includes parts of 10States. Because of its significance as a source of freshwater in parts of Missouri, Arkansas, Kansas, and Oklahoma, a subregional project was established to investigate the Ozark Plateaus aquifer system in more detail than the regional study could provide.The geologic and hydrologic relation between the Ozark Plateaus aquifer system and other regional aquifer systems of the Midwest is presented in Jorgensen and others (in press). The relation of the Ozark aquifer to the Ozark Plateaus aquifer system is explained in Imes [in press (a)]. A companion publication, Imes [1990 (b)], contains contour maps of the altitude of the top, thickness, and potentiometric surface of the Ozark aquifer. This report contains maps that show water type and concentrations of dissolved solids, chloride, and sulfate in water from the Ozark aquifer. Most of the data from which these maps are compiled is stored in the CMRASA hydrochemical data base (R.B. Leonard, U.S. Geological Survey, written commun., 1986). Data for Oklahoma were also taken from data published by Havens (1978). The maps in this report on the Ozark subregion may contain small differences from maps in other CMRASA publications because the criteria for data selection may be different and the subregional maps may contain additional data. However, regional trends in these maps are consistent with other maps published as part of the regional project.

  16. Potentiometric surface and water-level difference maps of selected confined aquifers in Southern Maryland and Maryland’s Eastern Shore, 1975-2015

    USGS Publications Warehouse

    Curtin, Stephen E.; Staley, Andrew W.; Andreasen, David C.

    2016-01-01

    Key Results This report presents potentiometric-surface maps of the Aquia and Magothy aquifers and the Upper Patapsco, Lower Patapsco, and Patuxent aquifer systems using water levels measured during September 2015. Water-level difference maps are also presented for these aquifers. The water-level differences in the Aquia aquifer are shown using groundwater-level data from 1982 and 2015, while the water-level differences are shown for the Magothy aquifer using data from 1975 and 2015. Water-level difference maps for both the Upper Patapsco and Lower Patapsco aquifer systems are shown using data from 1990 and 2015. The water-level differences in the Patuxent aquifer system are shown using groundwater-level data from 2007 and 2015. The potentiometric surface maps show water levels ranging from 53 feet above sea level to 164 feet below sea level in the Aquia aquifer, from 86 feet above sea level to 106 feet below sea level in the Magothy aquifer, from 115 feet above sea level to 115 feet below sea level in the Upper Patapsco aquifer system, from 106 feet above sea level to 194 feet below sea level in the Lower Patapsco aquifer system, and from 165 feet above sea level to 171 feet below sea level in the Patuxent aquifer system. Water levels have declined by as much as 116 feet in the Aquia aquifer since 1982, 99 feet in the Magothy aquifer since 1975, 66 and 83 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990, and 80 feet in the Patuxent aquifer system since 2007.

  17. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    USGS Publications Warehouse

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  18. Two-dimensional ground-water flow model of the Cretaceous aquifer system of Lee County and vicinity, Mississippi

    USGS Publications Warehouse

    Kernodle, John Michael

    1981-01-01

    A two-dimensional ground-water flow model of the Eutaw-McShan and Gordo aquifers in the area of Lee County, Miss., was successfully calibrated and verified using data from six long-term observation wells and two intensive studies of areal water levels. The water levels computed by the model were found to be most sensitive to changes in simulated aquifer hydraulic conductivity and to changes in head in the overlying Coffee Sand aquifer. The two-dimensional model performed reasonably well in simulating the aquifer system except possibly in southern Lee County and southward where a clay bed at the top of the Gordo Formation partially isolated the Gordo from the overlying Eutaw-McShan aquifer. The verified model was used to determine theoretical aquifer response to increased ground-water withdrawal to the year 2000. Two estimated rates of increase and five possible well field locations were examined. (USGS)

  19. System Dynamics to Climate-Driven Water Budget Analysis in the Eastern Snake Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Contor, B.; Wylie, A.; Johnson, G.; Allen, R. G.

    2010-12-01

    Climate variability, weather extremes and climate change continue to threaten the sustainability of water resources in the western United States. Given current climate change projections, increasing temperature is likely to modify the timing, form, and intensity of precipitation events, which consequently affect regional and local hydrologic cycles. As a result, drought, water shortage, and subsequent water conflicts may become an increasing threat in monotone hydrologic systems in arid lands, such as the Eastern Snake Plain Aquifer (ESPA). The ESPA, in particular, is a critical asset in the state of Idaho. It is known as the economic lifeblood for more than half of Idaho’s population so that water resources availability and aquifer management due to climate change is of great interest, especially over the next few decades. In this study, we apply system dynamics as a methodology with which to address dynamically complex problems in ESPA’s water resources management. Aquifer recharge and discharge dynamics are coded in STELLA modeling system as input and output, respectively to identify long-term behavior of aquifer responses to climate-driven hydrological changes.

  20. Modeling as a tool for management of saline soils and irrigation waters

    USDA-ARS?s Scientific Manuscript database

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  1. Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of karst aquifers in southern mediterranean basin (Teboursouk area, NW Tunisia)

    NASA Astrophysics Data System (ADS)

    Ayadi, Yosra; Mokadem, Naziha; Besser, Houda; Khelifi, Faten; Harabi, Samia; Hamad, Amor; Boyce, Adrian; Laouar, Rabah; Hamed, Younes

    2018-01-01

    Karst aquifers receive increasing attention in Mediterranean countries as they provide large supplies water used for drinkable and irrigation purposes as well as for electricity production. In Teboursouk basin, Northwestern Tunisia, characterized by a typical karst landscape, the water hosted in the carbonates aquifers provides large parts of water supply for drinkable water and agriculture purposes. Groundwater circulation in karst aquifers is characterized by short residence time and low water-rock interaction caused by high karstification processes in the study area. Ion exchange process, rock dissolution and rainfall infiltration are the principal factors of water mineralization and spatial distribution of groundwater chemistry. The present work attempted to study karstic groundwater in Teboursouk region using hydrochemistry and stable isotopes (δ18O and δ2H) tools. Karst aquifers have good water quality with low salinity levels expressed by TDS values largely below 1.5 g/l with Ca-SO4-Cl water type prevailing in the study area. The aquifers have been recharged by rainfall originating from a mixture of Atlantic and Mediterranean vapor masses.

  2. Radium Isotopes in Nubian Aquifer Groundwater, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Sherif, M. I.; Sturchio, N. C.

    2016-12-01

    The purpose of this study is to investigate the extent of natural radioactivity from Ra isotopes in groundwater from the Nubian Sandstone Aquifer System (NSAS) in northeast Africa. Activities of long-lived Ra isotopes (226Ra and 228Ra) were analyzed in 40 groundwater samples from the NSAS in the Western Desert of Egypt; including Baharyia, Farafra, Dakhla, and Kharga Oases. The activities of 226Ra and 228Ra ranged from 0.012 Bq/L to 1.512 Bq/L and from 0.012 Bq/L to 2.136 Bq/L, respectively. High activities of Ra isotopes, up to 2000% higher than the USEPA maximum contaminant level (MCL) of 0.185 Bq/L (combined 226Ra + 228Ra) for drinking water were measured in groundwater from some locations. Groundwater samples from Bahariya Oasis had the highest activities of Ra isotopes among the samples collected. No correlation between salinity and Ra activities was observed. The two radium isotopes are highly correlated in most samples with a 228Ra/226Ra activity ratio ranging from 1.04 to 3.12 and a median of 2.08; this indicates a high Th/U ratio in the aquifer materials. The weak correlation between Ra activities and salinity indicates that adsorption/desorption processes are not the primary mechanism of Ra release to groundwater. Recoil input of Ra from the aquifer rocks may be the dominant input mechanism. These results indicate that groundwater within the Western Desert must be used with caution for domestic and agricultural purposes, and radium removal may be necessary before water is used for human consumption.

  3. The effects of salinity in the soil water balance: A Budyko's approach

    NASA Astrophysics Data System (ADS)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  4. Uncertainty Quantification and Assessment of CO2 Leakage in Groundwater Aquifers

    NASA Astrophysics Data System (ADS)

    Carroll, S.; Mansoor, K.; Sun, Y.; Jones, E.

    2011-12-01

    Complexity of subsurface aquifers and the geochemical reactions that control drinking water compositions complicate our ability to estimate the impact of leaking CO2 on groundwater quality. We combined lithologic field data from the High Plains Aquifer, numerical simulations, and uncertainty quantification analysis to assess the role of aquifer heterogeneity and physical transport on the extent of CO2 impacted plume over a 100-year period. The High Plains aquifer is a major aquifer over much of the central United States where CO2 may be sequestered in depleted oil and gas reservoirs or deep saline formations. Input parameters considered included, aquifer heterogeneity, permeability, porosity, regional groundwater flow, CO2 and TDS leakage rates over time, and the number of leakage source points. Sensitivity analysis suggest that variations in sand and clay permeability, correlation lengths, van Genuchten parameters, and CO2 leakage rate have the greatest impact on impacted volume or maximum distance from the leak source. A key finding is that relative sensitivity of the parameters changes over the 100-year period. Reduced order models developed from regression of the numerical simulations show that volume of the CO2-impacted aquifer increases over time with 2 order of magnitude variance.

  5. Water-quality assessment of the Trinity River basin, Texas : ground-water quality of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers, February-August 1994

    USGS Publications Warehouse

    Reutter, David C.; Dunn, David D.

    2000-01-01

    Ground-water samples were collected from wells in the outcrops of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers during February-August 1994 to determine the quality of ground water in the three major aquifers in the Trinity River Basin study unit, Texas. These samples were collected and analyzed for selected properties, nutrients, major inorganic constituents, trace elements, pesticides, dissolved organic carbon, total phenols, methylene blue active substances, and volatile organic compounds as part of the U.S. Geological Survey National Water-Quality Assessment Program. Quality-control practices included the collection and analysis of blank, duplicate, and spiked samples. Samples were collected from 12 shallow wells (150 feet or less) and from 12 deep wells (greater than 150 feet) in the Trinity aquifer, 11 shallow wells and 12 deep wells in the Carrizo-Wilcox aquifer, and 14 shallow wells and 10 deep wells in the Gulf Coast aquifer. The three aquifers had similar water chemistries-calcium was the dominant cation and bicarbonate the dominant anion. Statistical tests relating well depths to concentrations of nutrients and major inorganic constituents indicated correlations between well depth and concentrations of ammonia nitrogen, nitrite plus nitrate nitrogen, bicarbonate, sodium, and dissolved solids in the Carrizo-Wilcox aquifer and between well depth and concentrations of sulfate in the Gulf Coast aquifer. The tests indicated no significant correlations for the Trinity aquifer. Concentrations of dissolved solids were larger than the secondary maximum contaminant level of 500 milligrams per liter established for drinking water by the U.S. Environmental Protection Agency in 12 wells in the Trinity aquifer, 4 wells in the Carrizo-Wilcox aquifer, and 6 wells in the Gulf Coast aquifer. Iron concentrations were larger than the secondary maximum contaminant level of 300 micrograms per liter in at least 3 samples from each aquifer, and manganese concentrations

  6. Water-level, recharge, discharge, specific-capacity, well-yield, and aquifer-test data for the Edwards aquifer in the San Antonio area, Texas

    USGS Publications Warehouse

    Maclay, R.W.; Small, T.A.; Rettman, P.L.

    1980-01-01

    This report presents data and informat ion, and indicates other sources of data, on water level s, recharge, discharge, spec ifi c capacity, well yields, and aquifer tests for the Edwards aquifer in the Sa n Antonio area, Texas.

  7. Altitude and configuration of the 1980 water table in the High Plains regional aquifer, northwestern Oklahoma

    USGS Publications Warehouse

    Havens, John S.

    1982-01-01

    The High Plains aquifer in Oklahoma is part of a regional aquifer system extending from South Dakota on the north through Wyoming, Colorado Nebraska Kansas, and Oklahoma to Texas and New Mexico on the south (index map) . The principal aquifer, the Ogallala Formation of Tertiary age, is hydraulically connected with other unconsolidated . deposits, principally of Quaternary age . Alluvium and terrace deposits in hydrologic continuity with the Qgallala are included in the High Plains aquifer in Oklahoma. Parts of the underlying bedrock also are hydraulically connected with the Ogallala. The High Plains aquifer in Oklahoma has been eroded on the west, exposing underlying rocks of Cretaceous age, and on the east, exposing rocks of Permian age.During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. The altitude and configuration of the water table are shown for the eastern area, consisting of Harper, Ellis, Woodward, Dewey, and Roger Mills Counties (sheet 1), and for the Panhandle area, consisting of Cimarron, Texas, and Beaver Counties (sheet 2). Water levels were measured in January, February, and March 1980 by the Oklahoma Water Resources Board.

  8. Water-quality observations of the San Antonio segment of the Edwards aquifer, Texas, with an emphasis on processes influencing nutrient and pesticide geochemistry and factors affecting aquifer vulnerability, 2010–16

    USGS Publications Warehouse

    Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.

    2018-06-07

    As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide

  9. Modeling stream-groundwater interactions and associated groundwater salinization in an urban floodplain

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Lautz, L.

    2014-12-01

    The salinization of freshwater in the Northeastern United States from road salt application is well documented by the observed long-term increases in chloride concentrations in groundwater over the last fifty years. However, the processes controlling exchange of chloride between surface water and groundwater have not been fully investigated, particularly in urban streams where stream-groundwater interactions can be reduced due to bank armoring and channelization. Our research builds on previous findings that showed the potential for an urban riparian floodplain to buffer seasonal changes in chloride concentrations in an urban stream, resulting in smaller annual ranges of chloride in areas with intact riparian floodplains. A reach of Meadowbrook Creek, in Syracuse, New York, that is disconnected from the groundwater had large seasonal shifts in chloride concentration, varying from 2173 mg/L Cl- in the winter to 161.2 mg/L Cl- in the summer. This is in contrast to a downstream reach of the stream that receives groundwater discharge from a riparian floodplain, where chloride concentrations ranged from 657.0 mg/L in the winter to 252.0 mg/L in the summer. We originally hypothesized that winter snowmelt events caused overbank flooding of saline surface water, which recharged the floodplain groundwater, causing salinization. This saline water was then slowly discharged as baseflow throughout the year and was replaced with freshwater overbank events in the summer. However, a three dimensional model of the floodplain created using Visual MODFLOW indicates that surface water-groundwater interactions, such as hyporheic exchange, may have a greater control on winter salt input than overbank events, while summer flooding recharges the aquifer with freshwater. The model was compared to riparian aquifer samples collected from May 2013 until June 2014 to qualitatively study the impact of different types of surface water-groundwater interactions (e.g. groundwater recharge and

  10. Potentiometric surface of the Floridan Aquifer and its use in management of water resources, St. Johns River Water Management District, Florida

    USGS Publications Warehouse

    Rodis, Harry George; Munch, D.A.

    1983-01-01

    The Floridan aquifer supplies most of the fresh groundwater for municipal, industrial, and agricultural uses within the 12,400 sq mi St. Johns River Water Management District. Because of the growing demand for water and the variation in rainfall, resource managers need timely information on short-term and long-term changes in the availability of fresh water. The purpose of this report is to explain potentiometric surface maps and their value in assessing the resource, particularly during drought conditions. The Floridan aquifer is recharged by rainfall falling directly on the outcrop of the aquifer, and, where the aquifer is overlain by the surficial aquifer with the water table above the potentiometric surface of the Floridan, by water infiltrating downward from the overlying surficial aquifer. Water is discharged by pumping and free-flowing wells, springflow, and upward leakage into overlying formations, streams, and lakes or into the ocean. Fluctuations in the potentiometric surface reflect net gains (recharge) or losses (discharge) of water stored in the aquifer. Net gains occur during the wet season (June through September) when recharge exceeds discharge and causes the potentiometric surface to rise in most places. Net losses in storage, and declines in the potentiometric surface, follow during the dry season (October through May) when discharge exceeds recharge. Seasonal changes in the potentiometric surface, based on a 2-yr average of water level measurements during May and September 1977, and May and September 1978, are illustrated. Two of the greater long-term declines in the potentiometric surface have occurred in the growing metropolitan areas of Jacksonville and Orlando-Winter Park, the two largest public suppliers of water in the Water Management District. Municipal pumpage increased in Jacksonville from 37 million gallons per day (mgd) in 1961 to 56 mgd in 1980. The increased pumpage and a deficiency in rainfall of 15.8 inches contributed to a

  11. Municipal water supplies in Lee County, Florida, 1974

    USGS Publications Warehouse

    O'Donnell, T. H.

    1977-01-01

    In 1974 the total pumpage for Lee County, Fla., municipal supplies reached 5,700 Mgal (million gallons annually), an increase of 54 percent over 1970 levels. Pumpage from individual sources included: Caloosahatchee River, 1,312 Mgal; water-table aquifer, 2,171 Mgal; the water-bearing zone in the Tamiami Formation, 340 Mgal; the water-bearing zone in the upper part of the Hawthorn Formation, 1,399 Mgal; the saline water zones in the lower part of the Hawthorn Formation and the Suwannee Limestone, 483 Mgal. Among the various sources, the water-table aquifer showed the greatest increase in municipal pumpage over 1970 levels (60 percent) while the saline zones in the lower part of the Hawthorn Formation and Suwannee Limestone showed the least (40 percent). Intensive pumpage from the water bearing zone in the upper part of the Hawthorn Formation has caused a progressive decline in water levels in wells tapping that zone. The quality of fresh ground water in areas unaffected by intrusion of saline water, generally meets all the recommended limits of the Environmental Protection Agency. The chemical treatment processes utilized by water plants in the county are generally effective in producing finished water that meets EPA preliminary drinking water standards. (Woodard-USGS)

  12. Water Quality in the Nation's Streams and Aquifers Overview of Selected Findings, 1991-2001

    USGS Publications Warehouse

    Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2004-01-01

    This report accompanies the publication of the last 15 of 51 river basin and aquifer assessments by the USGS National Water-Quality Assessment (NAWQA) Program during 1991?2001. It highlights selected water-quality findings of regional and national interest through examples from river basins and aquifer systems across the Nation. Forthcoming reports in the USGS series ?The Quality of Our Nation?s Waters? will present comprehensive national syntheses of information collected in the 51 study units on pesticides in water, sediment, and fish; volatile organic compounds in major aquifers used for domestic and public supply; nutrients and trace elements in streams and ground water; and aquatic ecology. This report, summaries of the 51 water-quality assessments, and a 1999 national synthesis of information on nutrients and pesticides, are available free of charge as USGS Circulars and on the World Wide Web at http://water.usgs.gov/nawqa/nawqa_sumr.html.

  13. Geohydrologic units and water-level conditions in the Terrace alluvial aquifer and Paluxy Aquifer, May 1993 and February 1994, near Air Force Plant 4, Fort Worth area, Texas

    USGS Publications Warehouse

    Rivers, Glen A.; Baker, Ernest T.; Coplin, L.S.

    1996-01-01

    The terrace alluvial aquifer underlying Air Force Plant 4 and the adjacent Naval Air Station (formerly Carswell Air Force Base) in the Fort Worth area, Texas, is contaminated locally with organic and metal compounds. Residents south and west of Air Force Plant 4 and the Naval Air Station are concerned that contaminants might enter the underlying Paluxy aquifer, which provides water to the city of White Settlement, south of Air Force Plant 4, and to residents west of Air Force Plant 4. The U.S. Environmental Protection Agency has qualified Air Force Plant 4 for Superfund cleanup. The pertinent geologic units include -A~rom oldest to youngest the Glen Rose, Paluxy, and Walnut Formations, Goodland Limestone, and terrace alluvial deposits. Except for the Glen Rose Formation, all units crop out at or near Air Force Plant 4 and the Naval Air Station. The terrace alluvial deposits, which nearly everywhere form the land surface, range from 0 to about 60 feet thick. These deposits comprise a mostly unconsolidated mixture of gravel, sand, silt, and clay. Mudstone and sandstone of the Paluxy Formation crop out north, west, and southwest of Lake Worth and total between about 130 and about 175 feet thick. The terrace alluvial deposits and the Paluxy Formation comprise the terrace alluvial aquifer and the Paluxy aquifer, respectively. These aquifers are separated by the Goodland-Walnut confining unit, composed of the Goodland Limestone and (or) Walnut Formation. Below the Paluxy aquifer, the Glen Rose Formation forms the Glen Rose confining unit. Water-level measurements during May 1993 and February 1994 from wells in the terrace alluvial aquifer indicate that, regionally, ground water flows toward the east-southeast beneath Air Force Plant 4 and the Naval Air Station. Locally, water appears to flow outward from ground-water mounds maintained by the localized infiltration of precipitation and reportedly by leaking water pipes and sanitary and (or) storm sewer lines beneath the

  14. An integrated modeling framework for investigating water management practices in the ogallala aquifer region

    USDA-ARS?s Scientific Manuscript database

    The Ogallala aquifer region (OAR) currently accounts for 30% of total crop and animal production in the U.S. More than 90% of the water pumped from the Ogallala aquifer is used for irrigated agriculture in this region. Consequently, groundwater levels in the Ogallala aquifer are rapidly declining. H...

  15. Vertical Gradients in Water Chemistry and Age in the Southern High Plains Aquifer, Texas, 2002

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.; Lehman, T.M.

    2004-01-01

    The southern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of New Mexico and Texas. Despite the aquifer's importance to the overall economy of the southern High Plains, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the southern High Plains aquifer at two locations (Castro and Hale Counties, Texas) were analyzed for field parameters, major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, and dissolved gases to evaluate vertical gradients in water chemistry and age in the aquifer. Tritium measurements indicate that recent (post-1953) recharge was present near the water table and that deeper water was recharged before 1953. Concentrations of dissolved oxygen were largest (2.6 to 5.6 milligrams per liter) at the water table and decreased with depth below the water table. The smallest concentrations were less than 0.5 milligram per liter. The largest major-ion concentrations generally were detected at the water table because of the effects of overlying agricultural activities, as indicated by postbomb tritium concentrations and elevated nitrate and pesticide concentrations at the water table. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions and mixing with water from the underlying aquifer in rocks of Cretaceous age. The concentration increases primarily were accounted for by dissolved sodium, bicarbonate, chloride, and sulfate. Nitrite plus nitrate concentrations at the water table were 2.0 to 6.1 milligrams per liter as nitrogen, and concentrations substantially decreased with depth in the aquifer to a

  16. Artificial recharge to a freshwater-sensitive brackish-water sand aquifer, Norfolk, Virginia

    USGS Publications Warehouse

    Brown, Donald L.; Silvey, William Dudley

    1977-01-01

    Fresh water was injected into a brackish-water sand for storage and retrieval. The initial injection rate of 400 gpm decreased to 70 gpm during test 3. The specific capacity of the well decreased also, from 15.4 to 0.93 gpm. Current-meter surveys indicated uniform reduction in hydraulic conductivity of all contributing zones in the aquifer. Hydraulic and chemical data indicate this was caused by dispersion of the interstitial clay upon introduction of the calcium bicarbonate water into the sodium chloride bearing sand aquifer. The clay dispersion also caused particulate rearrangement and clogging of well screen. A pre-flush of 0.2 N calcium chloride solution injected in front of the fresh water at the start of test 4 stabilized the clay. However, it did not reverse the particulate clogging that permanently reduced permeability and caused sanding during redevelopment. Clogging can be prevented by stabilization of the clay using commercially available trivalent aluminum compounds. Test 1 and test 2 showed that 85 percent of the water injected can be recovered, and the water meets U.S. Public Health Standards. Storage of fresh water in a brackish-water aquifer appears feasible provided proper control measures are used. (Woodard-USGS)

  17. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    USGS Publications Warehouse

    Milby Dawson, Barbara J.

    2001-01-01

    processes and human activities are affecting ground-water quality in the upper part of the southeastern Sacramento Valley aquifer. The factors identified as having an influence on ground-water quality were redox condition in the aquifer, depth within the aquifer, and land use overlying the aquifer. Nitrate concentra-tions showed a statistical correlation with each of these factors. Detections of pesticides and volatile organic compounds were too few to compare concentrations with the various factors, but the types of synthetic compounds detected were consistent with the sur-rounding land use. Sixty-one percent of the wells sampled in this study showed the effect of human activities on ground-water quality in the form of a nitrate concentration over 3 milligrams per liter or a detection of a pesticide or volatile organic compound. In general, the water quality in the southeastern Sacramento Valley aquifer was found suitable for most uses.

  18. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    USGS Publications Warehouse

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  19. Resistivity method contribution in determining of fault zone and hydro-geophysical characteristics of carbonate aquifer, eastern desert, Egypt

    NASA Astrophysics Data System (ADS)

    Ammar, A. I.; Kamal, K. A.

    2018-03-01

    Determination of fault zone and hydro-geophysical characteristics of the fractured aquifers are complicated, because their fractures are controlled by different factors. Therefore, 60 VESs were carried out as well as 17 productive wells for determining the locations of the fault zones and the characteristics of the carbonate aquifer at the eastern desert, Egypt. The general curve type of the recorded rock units was QKH. These curves were used in delineating the zones of faults according to the application of the new assumptions. The main aquifer was included at end of the K-curve type and front of the H-curve type. The subsurface layers classified into seven different geoelectric layers. The fractured shaly limestone and fractured limestone layers were the main aquifer and their resistivity changed from low to medium (11-93 Ω m). The hydro-geophysical properties of this aquifer such as the areas of very high, high, and intermediate fracture densities of high groundwater accumulations, salinity, shale content, porosity distribution, and recharging and flowing of groundwater were determined. The statistical analysis appeared that depending of aquifer resistivity on the water salinities (T.D.S.) and water resistivities add to the fracture density and shale content. The T.D.S. increasing were controlled by Na+, Cl-, Ca2+, Mg2+, and then (SO4)2-, respectively. The porosity was calculated and its average value was 19%. The hydrochemical analysis of groundwater appeared that its type was brackish and the arrangements of cation concentrations were Na+ > Ca2+ > Mg2+ > K+ and anion concentrations were Cl- > (SO4)2- > HCO3 - > CO3 -. The groundwater was characterized by sodium-bicarbonate and sodium-sulfate genetic water types and meteoric in origin. Hence, it can use the DC-resistivity method in delineating the fault zone and determining the hydro-geophysical characteristics of the fractured aquifer with taking into account the quality of measurements and interpretation.

  20. Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water.

    PubMed

    Ginige, Maneesha P; Kaksonen, Anna H; Morris, Christina; Shackelton, Mark; Patterson, Bradley M

    2013-09-01

    Managed aquifer recharge offers the opportunity to manage groundwater resources by storing water in aquifers when in surplus and thus increase the amount of groundwater available for abstraction during high demand. The Water Corporation of Western Australia (WA) is undertaking a Groundwater Replenishment Trial to evaluate the effects of recharging aerobic recycled water (secondary treated wastewater subjected to ultrafiltration, reverse osmosis, and ultraviolet disinfection) into the anaerobic Leederville aquifer in Perth, WA. Using culture-independent methods, this study showed the presence of Actinobacteria, Alphaproteobacteria, Bacilli, Betaproteobacteria, Cytophaga, Flavobacteria, Gammaproteobacteria, and Sphingobacteria, and a decrease in microbial diversity with an increase in depth of aquifer. Assessment of physico-chemical and microbiological properties of groundwater before and after recharge revealed that recharging the aquifer with aerobic recycled water resulted in elevated redox potentials in the aquifer and increased bacterial numbers, but reduced microbial diversity. The increase in bacterial numbers and reduced microbial diversity in groundwater could be a reflection of an increased denitrifier and sulfur-oxidizing populations in the aquifer, as a result of the increased availability of nitrate, oxygen, and residual organic matter. This is consistent with the geochemical data that showed pyrite oxidation and denitrification within the aquifer after recycled water recharge commenced. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Saline contamination of soil and water on Pawnee tribal trust land, eastern Payne County, Oklahoma

    USGS Publications Warehouse

    Runkle, Donna L.; Abbott, Marvin M.; Lucius, Jeffrey E.

    2001-01-01

    The Bureau of Land Management reported evidence of saline contamination of soils and water in Payne County on Pawnee tribal trust land. Representatives of the Bureau of Land Management and U.S. Geological Survey inspected the site, in September 1997, and observed dead grass, small shrubs, and large trees near some abandoned oil production wells, a tank yard, an pit, and pipelines. Soil and bedrock slumps and large dead trees were observed near a repaired pipeline on the side of the steep slope dipping toward an unnamed tributary of Eagle Creek. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, initiated an investigation in March 1998 to examine soil conductance and water quality on 160 acres of Pawnee tribal trust land where there was evidence of saline contamination and concern about saline contamination of the Ada Group, the shallowest freshwater aquifer in the area. The proximity of high specific conductance in streams to areas containing pipeline spill, abandoned oil wells, the tank yard, and the pit indicates that surface-water quality is affected by production brines. Specific conductances measured in Eagle Creek and Eagle Creek tributary ranged from 1,187 to 10,230 microsiemens per centimeter, with the greatest specific conductance measured downgradient of a pipeline spill. Specific conductance in an unnamed tributary of Salt Creek ranged from 961 to 11,500 microsiemens per centimeter. Specific conductance in three ponds ranged from 295 to 967 microsiemens per centimeter, with the greatest specific conductance measured in a pond located downhill from the tank yard and the abandoned oil well. Specific conductance in water from two brine storage pits ranged from 9,840 to 100,000 microsiemens per centimeter, with water from the pit near a tank yard having the greater specific conductance. Bartlesville brine samples from the oil well and injection well have the greatest specific conductance, chloride concentration, and dissolved

  2. Water quality of surficial aquifers in the Georgia-Florida Coastal Plain

    USGS Publications Warehouse

    Crandall, C.A.; Berndt, M.P.

    1996-01-01

    The National Water Quality Assessment Program of the U.S. Geological Survey established the Georgia-Florida Coastal Plain study unit in 1991. The ground-water study-unit survey was conducted in 1993 to provide a broad over-view of water quality in surficial aquifers. Three land resource provinces were included in the Georgia-Florida Coastal Plain study-unit survey: the Central Florida Ridge, the Coastal Flatwoods, and the Southern Coastal Plain. The U.S. Geological Survey sampled 37 wells in surficial aquifers, 18 in the Coastal Flatwoods and 19 in the Southern Coastal Plain. The Florida Department of Environmental Protection sampled 27 wells tapping surficial aquifers in the Central Florida Ridge as part of the background ground-water quality monitoring network from 1985 through 1989. The data were used to characterize water quality in surficial aquifers of the Central Florida Ridge. Results of the study-unit survey indicated that dissolved solids concentrations in ground water were mostly less than 100 mg/L (milligrams per liter). Higher medians of pH, specific conductance, and concentrations of calcium, bicarbonate, and dissolved solids were measured in samples from the Central Florida Ridge compared to the Southern Coastal Plain and Coastal Flatwoods, probably because of a greater percentage of carbonate minerals in aquifer materials. The U.S. Environmental Protection Agency secondary maximum contaminant level for iron of 300 ug/L (micrograms per liter) in drinking water was exceeded in 15 of 45 samples. Concentrations of nitrate as nitrogen were less than 3.0 mg/L in most samples (74 percent), indicating little or no influence from human activity. Only five samples (9 percent) had concentrations above 10 mg/L, the U.S. Environmental Protection Agency maximum contaminant level for nitrate concentration in drinking water. Significantly lower median concentrations of nitrate were measured in samples from polyvinyl chloride monitoring wells with diameters less

  3. Evaluation of Soil Salinity Amelioration Technologies in Timpaki, Crete

    NASA Astrophysics Data System (ADS)

    Panagea, Ioanna; Daliakopoulos, Ioannis; Tsanis, Ioannis; Schwilch, Gudrun

    2015-04-01

    Salinization is a soil threat that adversely affects ecosystem services and diminishes soil functions in many arid and semi-arid regions. Soil salinity management depends on a range of factors, and can be complex expensive and time demanding. Besides taking no action, possible management strategies include amelioration and adaptation measures. The WOCAT Technologies Questionnaire is a standardized methodology for monitoring, evaluating and documenting sustainable land management practices through interaction with the stakeholders. Here we use WOCAT for the systematic analysis and evaluation of soil salinization amelioration measures, for the RECARE project Case Study in Greece, the Timpaki basin, a semi-arid region in south-central Crete where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinization due to irrigation with brackish water. Amelioration technologies that have already been applied in the case study by the stakeholders are examined and classified depending on the function they promote and/or improve. The documented technologies are evaluated for their impacts on ecosystem services, cost and input requirements. Preliminary results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity such as composting, mulching, rain water harvesting and seed biopriming are preferred by the stakeholders. Further work will include result validation using qualitative approaches. Keywords: soil salinity; salinization; evaluation of soil salinization amelioration techniques; WOCAT; RECARE FP7 project; Timpaki Crete

  4. A Microbiological Water Quality Evaluation of Ganges River Deltaic Aquifers

    NASA Astrophysics Data System (ADS)

    Yerby, C. J.; Gragg, S. E.; Page, J.; Leavens, J.; Bhattacharya, P.; Harrington, J.; Datta, S.

    2014-12-01

    Substantial natural contamination from trace elements (like arsenic) and pathogens make Ganges Deltaic aquifers an area of utmost concern. Following millions of cases of chronic arsenic poisoning from the groundwaters of the region, numerous residents are still knowingly ingesting water from shallow to intermediate accessible depth drinking water wells. Added to the calamity of arsenic is the prevalence of pathogenic bacteria in these waters. The increasing frequency of gastroenteritis signifies the need to quantify the magnitude and extensiveness of health degrading agents--bacterial pathogens (i.e. Salmonella) and non-pathogens (i.e. Enterobacteriaceae) --within the water supply in accessible Gangetic aquifers. To assess the dissolved microbiological quality in the region, present study sampling locations are along defined piezometer nests in an area in SE Asia (Bangladesh). Every nest contains samples from wells at varying depths covering shallow to deep aquifers. To date, 17 of the 76 water samples were analyzed for Salmonella, generic Escherichia coli (E. coli) and coliforms. Briefly, samples were plated in duplicate onto E. coli/Coliform petrifilm and incubated at 370C for 48 hours. Next, each sample was enriched in buffered peptone water and incubated at 370C for 18 hours. Bacterial DNA was extracted and amplified using a qPCR machine. Amplification plots were analyzed to determine presence/absence of microorganisms. All water samples (n=~76) are analyzed for Salmonella, Escherichia coli O157:H7, Listeria spp. and Shigella. Pathogen populations of PCR-positive water samples are enumerated using the agar direct plate method. Non-pathogenic bacterial indicator organisms (i.e. Enterobacteriaceae) will also be enumerated. Over the course of the experiment, we hypothesize that shallower wells will 1)have a higher pathogen prevalence and 2)harbor pathogens and nonpathogens at higher concentrations. While the 17 samples analyzed to date were negative for Salmonella

  5. Flow of river water into a karstic limestone aquifer - 2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.

    1998-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3H/3He age is independent of the extent of dilution with older (3H-free and 3He(trit)-free) water. The groundwater mixtures are designated as Type-I for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl- and ??18O data for water from the Upper Floridan aquifer at Valdosta, Georgia The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most allaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-I water. CFC-12 persists in both SO4-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg-1) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-I mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water sam pies obtained from the Upper Floridan aquifer have CFC-12-based ages of the young traction that are consistent with the 3H concentration of the groundwater. Because of uncertainties associated with very low 3H and 3He content in dilute mixtures, 3H/3He dating is limited to the river-water

  6. Chemical and isotopic constrains on the origin of brine and saline groundwater in Hetao plain, Inner Mongolia.

    PubMed

    Liu, Jun; Chen, Zongyu; Wang, Lijuan; Zhang, Yilong; Li, Zhenghong; Xu, Jiaming; Peng, Yurong

    2016-08-01

    The origin and evolution of brine and saline groundwater have always been a challenged work for geochemists and hydrogeologists. Chemical and isotopic data of brine and saline waters were used to trace the sources of salinity and therefore to understand the transport mechanisms of groundwater in Xishanzui, Inner Mongolia. Both Cl/Br (molar) versus Na/Br (molar) and Cl (meq/L) versus Na (meq/L) indicated that salinity was from halite dissolution or at least a significant impact by halite dissolution. The logarithmic plot of the concentration trends of Cl (mg/L) versus Br (mg/L) for the evaporation of seawater and the Qinghai Salt Lake showed that the terrestrial halite dissolution was the dominated contribution for the salinity of this brine. The stable isotope ratios of hydrogen and oxygen suggested that the origin of brine was from paleorecharge water which experienced mixing of modern water in shallow aquifer. δ(37)Cl values ranged from -0.02 to 3.43 ‰ (SMOC), and reflecting mixing of different sources. The Cl isotopic compositions suggest that the dissolution of halite by paleometeoric water had a great contribution to the salinity of brine, and the contributions of the residual seawater and the dissolution of halite by the Yellow River water could be excluded.

  7. Summary of ground-water hydrology of the Cambrian-Ordovician aquifer system in the northern Midwest, United States: A in Regional aquifer system analysis

    USGS Publications Warehouse

    Young, H.L.

    1992-01-01

    Development of the aquifer system began in various parts of the northern Midwest in the 1860's and 1870's with the drilling of deep, generally flowing artesian wells near Lake Michigan in eastern Wisconsin and northeastern Illinois and along the valleys of the Mississippi River and its tributaries. Initial heads of 186 and 130 feet above Lake Michigan at Milwaukee and Chicago, respectively, have been reported. Large-scale pumping has produced cones of depression in these two areas, with respective head declines of as much as 375 and 900 feet. Other major pumping centers generally have had much smaller declines. The largest withdrawals from the aquifer system were about 180 million gallons per day in each of the major metropolitan areas of Chicago and Minneapolis-St. Paul (Twin Cities). However, the total decline in head in the St. Peter-Prairie du Chien-Jordan aquifer in the Twin Cities by 1980 was only 90 feet because the aquifer is unconfined. Most of the eastern two-thirds of Iowa, where the aquifer system is tightly confined, is characterized by more than 50 feet of head decline, with 200 feet or more at Mason City and the Quad Cities. Pumpage from the Cambrian-Ordovician aquifer system throughout the study area averaged 683 million gallons per day for the period 1976-80. Results of a transient-model simulation show that recharge increased over predevelopment recharge by 447 million gallons per day. Natural discharge decreased by 99 million gallons per day, and 137 million gallons per day was released from aquifer storage. Mineralization of ground water in the aquifer system increases from slightly mineralized calcium magnesium bicarbonate water in the northern recharge areas, through more mineralized, mixed water types with increased sodium and sulfate, to highly mineralized sodium chloride brines in the deeper parts of the structural basins.

  8. Generalized thickness of the Floridan aquifer, Southwest Florida Water Management District

    USGS Publications Warehouse

    Wolansky, R.M.; Garbade, J.M.

    1981-01-01

    This map report presents the thickness of the Floridan aquifer in the Southwest Florida Water Management District. The Floridan aquifer ranges in thickness from 600 feet in the northern part of the District to 2,400 feet in the southern part. It is composed chiefly of limestone and dolomite beds that range in age from early Miocene to middle Eocene. For this investigation, the formations considered to be part of the Floridan aquifer are: Lake City and Avon Park Limestones of middle Eocene age; Ocala Limestone of late Eocene age; Suwannee Limestone of Oligocene age; and permeable parts of the Tampa Limestone and Hawthorn Formation of Miocene age that are in hydrologic contact with the rest of the aquifer. (USGS)

  9. Fresh-water discharge salinity relations in the tidal Delaware River

    USGS Publications Warehouse

    Keighton, Walter B.

    1966-01-01

    Sustained flows of fresh water greater than 3,500, 4,400, and 5,300 cubic feet per second into the Delaware River estuary at Trenton, NJ assure low salinity at League Island, Eddystone, and Marcus Hook, respectively. When the discharge at Trenton is less than these critical values, salinity is very sensitive to change in discharge, so that a relatively small decrease in fresh-water discharge results in a relatively great increase in salinity. Comparison of the discharge-salinity relations observed for the 14-year period August 1949-December 1963 with relations proposed by other workers but based on other time periods indicate that such relations change with time and that salinity is affected not only by discharge but also by dredging; construction of breakwater, dikes, and tidal barriers; changing sea level; tidal elevation; tidal range; and wind intensity and direction.

  10. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    USGS Publications Warehouse

    Reppe, Thomas H.C.

    2005-01-01

    On the basis of data and methods presented to evaluate ground-water availability, the Otter Tail and Pineland Sands surficial aquifers and Pelican River sand-plain aquifer have the greatest potential for additional development of ground-water resources in the study area.

  11. Effects of storm-water runoff on water quality of the Edwards Aquifer near Austin, Texas

    USGS Publications Warehouse

    Andrews, Freeman L.; Schertz, Terry L.; Slade, Raymond M.; Rawson, Jack

    1984-01-01

    Bacteriological data for Barton Springs and selected wells indicate that the ground water in the aquifer is susceptible to bacterial pollution, especially during storm runoff. The water may require disinfection if used for drinking or culinary purposes.

  12. Geochemical analyses of ground-water ages, recharge rates, and hydraulic conductivity of the N aquifer, Black Mesa area, Arizona

    USGS Publications Warehouse

    Lopes, Thomas J.; Hoffmann, John P.

    1997-01-01

    The Navajo Nation and Hopi Tribe of the Black Mesa area, Arizona, depend on ground water from the N aquifer to meet most tribal and industrial needs. Increasing use of this aquifer is creating concerns about possible adverse effects of increased ground-water withdrawals on the water resources of the region. A thorough understanding of the N aquifer is necessary to assess the aquifer's response to ground-water withdrawals. This study used geochemical techniques as an independent means of improving the conceptual model of ground-water flow in the N aquifer and to estimate recharge rates and hydraulic conductivity. Ground water flows in a south-southeastward direction from the recharge area around Shonto into the confined part of the N aquifer underneath Black Mesa. Ground-water flow paths diverge in the confined part of the aquifer to the northeast and south. The N aquifer thins to extinction south of Black Mesa. This discontinuity could force ground water to diverge along paths of least resistance. Ground water discharges from the confined part of the aquifer into Laguna Creek and Moenkopi Wash and from springs southwest of Kykotsmovi and southeast of Rough Rock after a residence time of about 35,000 years or more. Recent recharge along the periphery of Black Mesa mixes with older ground water that discharges from the confined part of the aquifer and flows away from Black Mesa. Dissolved-ion concentrations, ratios of dissolved ions, dissolved-gas concentrations, tritium, carbon-13, and chlorine-36 data indicate that water in the overlying D aquifer could be leaking into the confined part of the N aquifer in the southeastern part of Black Mesa. The boundary between the leaky and nonleaky zones is defined roughly by a line from Rough Rock to Second Mesa and separates ground waters that have significantly different chemistries. The Dakota Sandstone and Entrada Formation of the D aquifer could be the sources of leakage. Adjusted radiocarbon ground-water ages and data on

  13. Sulfur isotope evidence for regional recharge of saline water during continental glaciation, north-central United States

    NASA Astrophysics Data System (ADS)

    Siegel, D. I.

    1990-11-01

    Sulfate concentrations in ground water from the Cambrian-Ordovician aquifer of southeastern Wisconsin and northern Illinois increase up to hundreds of times where the aquifer is confined beneath the Maquoketa Shale. There is no sulfate source in the aquifer or overlying rocks except for minor amounts of finely disseminated pyrite. Coinciding with increasing sulfate concentrations, δ34S of the dissolved sulfate increases from less than -5‰ in the unconfined part of the aquifer to a nearly constant value of +20‰ where the aquifer is confined and where sulfate reduction is minimal. The most likely source for this isotopically heavy sulfate is ground water associated with Silurian evaporites under Lake Michigan. It is uncertain if the sulfate-rich water was emplaced in pulses or mostly during the last glaciation.

  14. Fate of parabens and 4-hydroxybenzoic acid in aquifer materials columns during step experiments with fresh and sea waters

    NASA Astrophysics Data System (ADS)

    López-Ortiz, C. M.; Boluda-Botella, N.; Prats-Rico, D.; Sentana-Gadea, I.

    2018-02-01

    Coastal areas submitted to seawater intrusion and with discharges from urban and industrial wastewaters, municipal landfill leachates, rivers, recreational waters and other sources are sensitive to be polluted with parabens. Understanding the fate of these compounds in environmental studies, it requires previously the knowledge of the reactive processes in controlled conditions. In this research, laboratory columns experiments were carried out with a group of parabens (methyl-, ethyl-, propyl- and butylparaben) and their main degradation compound (4-hydroxybenzoic acid) to study mainly the dynamic sorption processes in different aquifer materials (100% sand and heterogeneous: 81% sand, 9% silt and 10% clay) and with fresh and sea waters, the end members of seawater intrusions. To the column hydrodynamic characterization, tracer assays with increase and decrease of salinity were performed, to obtain the mean residence time of each column and other transport parameters which allow us to compare parabens' sorption in different conditions. The results of the adsorption and desorption of parabens in the sand column demonstrated be fast and simultaneous, with a short delay and without influence of the water salinity. Very different results were found in the column experiments with heterogeneous material, where the presence of clay and organic matter increase the time of adsorption/desorption as the length of the alkyl chain paraben increased, according with their hydrophobicity. It should be noted that despite the quick desorption of the major quantities of parabens, the elution of their trace concentrations was very slow (for the seawater, the buthylparaben required a dimensionless time of 800). Planning the restoration of a coastal aquifer with freshwater, and in the conditions of the studied sand column experiment, it will need a dimensionless time of 160. However, it is necessary to take into account that the studied parabens and 4-hydroxybenzoic acid are

  15. Water-level conditions in the confined aquifers of the New Jersey Coastal Plain, 2008

    USGS Publications Warehouse

    Depaul, Vincent T.; Rosman, Robert

    2015-01-01

    From 1998 to 2008, downward water-level trends were observed at 22 wells (29 percent), upward trends were observed at 21 wells (27 percent), and insubstantial trends at 34 wells (44 percent). Downward trends were detected most often at wells open to the Piney Point aquifer and the Atlantic City 800-foot sand. Upward water-level trends were most frequent in wells open to the Englishtown aquifer system in Critical Area 1 and in wells within the Potomac-Raritan-Magothy aquifer system in southern New Jersey.

  16. Effects of temperature and salinity on light scattering by water

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  17. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China

    NASA Astrophysics Data System (ADS)

    Gao, Xubo; Wang, Yanxin; Li, Yilian; Guo, Qinghai

    2007-12-01

    Long-term intake of high-fluoride groundwater causes endemic fluorosis. This study, for the first time, discovered that the salt lake water intrusion into neighboring shallow aquifers might result in elevation of fluoride content of the groundwater. Two cross-sections along the groundwater flow paths were selected to study the geochemical processes controlling fluoride concentration in Yuncheng basin, northern China. There are two major reasons for the observed elevation of fluoride content: one is the direct contribution of the saline water; the other is the undersaturation of the groundwater with respect to fluorite due to salt water intrusion, which appears to be more important reason. The processes of the fluorine activity reduction and the change of Na/Ca ratio in groundwater induced by the intrusion of saline water favor further dissolution of fluorine-bearing mineral, and it was modeled using PHREEQC. With the increase in Na concentration (by adding NaCl or Na2SO4 as Na source, calcium content kept invariable), the increase of NaF concentration was rapid at first and then became slower; and the concentrations of HF, HF{2/-}, CaF+, and MgF+ were continuously decreasing. The geochemical conditions in the study area are advantageous to the complexation of F- with Na+ and the decline of saturation index of CaF2, regardless of the water type (Cl-Na or SO4-Na type water).

  18. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California

    USGS Publications Warehouse

    Sneed, Michelle

    2001-01-01

    This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.

  19. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma

    USGS Publications Warehouse

    Abbott, Marvin M.; Runkle, D.L.; Rea, Alan

    1997-01-01

    Nonproprietary format files This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important source of water that underlies about 2,320-square miles of parts of Osage, Pawnee, Payne, Creek, Lincoln, Okfuskee, and Seminole Counties. Approximately 75 percent of the water withdrawn from the Vamoosa-Ada aquifer is for municipal use. Rural domestic use and water for stock animals account for most of the remaining water withdrawn. The Vamoosa-Ada aquifer is defined in a ground-water report as consisting principally of the rocks of the Late Pennsylvanian-age Vamoosa Formation and overlying Ada Group. The Vamoosa-Ada aquifer consists of a complex sequence of fine- to very fine-grained sandstone, siltstone, shale, and conglomerate interbedded with very thin limestones. The water-yielding capabilities of the aquifer are generally controlled by lateral and vertical distribution of the sandstone beds and their physical characteristics. The Vamoosa-Ada aquifer is unconfined where it outcrops in about an 1,700-square-mile area. Most of the lines in the aquifer boundary, hydraulic conductivity, and recharge data sets were extracted from published digital surficial geology data sets based on a scale of 1:250,000, and represent geologic contacts. Some of lines in the data sets were interpolated in areas where the Vamoosa-Ada aquifer is overlain by alluvial and terrace deposits near streams and rivers. These data sets include only the outcrop area of the Vamoosa-Ada aquifer and where the aquifer is overlain by alluvial and terrace deposits. The hydraulic conductivity value and recharge rate are from a ground-water report about the Vamoosa-Ada aquifer. The water-level elevation contours were digitized from a mylar map, at a scale of 1:250,000, used to publish a plate in a ground-water report about the Vamoosa

  20. Hydrologic data from monitoring of saline-water intrusion in the Cape Coral area, Lee County, Florida

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1982-01-01

    As a result of declining water levels and saltwater intrusion in the Cape Coral area, the U.S. Geological Survey, in cooperation with the City of Cape Coral, established a monitor well network in Cape Coral and adjacent areas in 1978. The network was designed to monitor water levels and water quality, to collect background data from water-bearing zones in the upper and lower parts of the Hawthorn Formation, the upper part of the Tampa Formation, and the surficial aquifer. A network of 34 wells tapping the artesian freshwater-bearing aquifer in the upper part of the Hawthorn Formation was established, and water-quality samples were collected and analyzed semiannually from 1978-80. Water levels in selected wells were monitored continuously or measured monthly, bimonthly, or semiannually for general trends. Thirty-six wells tapping the surficial and six wells tapping the artesian aquifer in the lower part of the Hawthorn Formation were constructed. Selected wells in these aquifers have also been monitored for water levels continuously, or at monthly, bimonthly, or semiannual intervals. Water-quality data were collected from selected wells for background information. Lithologic logs were prepared for 18 wells penetrating one or more of the three aquifers. (USGS)