Sample records for saline drainage water

  1. Performance of Subsurface Tube Drainage System in Saline Soils: A Case Study

    NASA Astrophysics Data System (ADS)

    Pali, A. K.

    2015-06-01

    In order to improve the saline and water logged soils caused due to groundwater table rise, installation of subsurface drainage system is considered as one of the best remedies. However, the design of the drainage system has to be accurate so that the field performance results conform to the designed results. In this investigation, the field performance of subsurface tube drainage system installed at the study area was evaluated. The performance was evaluated on the basis of comparison of the designed value of water table drop as 30 cm after 2 days of drainage and predicted and field measured hydraulic heads for a consecutive drainage period of 14 days. The investigation revealed that the actual drop of water table after 2 days of drainage was 25 cm, about 17 % less than the designed value of 30 cm after 2 days of drainage. The comparison of hydraulic heads predicted by Van Schilfgaarde equation of unsteady drainage with the field-measured hydraulic heads showed that the deviation of predicted hydraulic heads varied within a range of ±8 % indicating high acceptability of Van Schlifgaarde equation for designing subsurface drainage system in saline and water logged soils resembling to that of the study area.

  2. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    NASA Astrophysics Data System (ADS)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  3. An overview of impact of subsurface drainage project studies on salinity management in developing countries

    NASA Astrophysics Data System (ADS)

    Tiwari, Priyanka; Goel, Arun

    2017-05-01

    Subsurface drainage has been used for more than a century to keep water table at a desired level of salinity and waterlogging control. This paper has been focused on the impact assessment of pilot studies in India and some other countries from 1969 to 2014 . This review article may prove quite useful in deciding the installation of subsurface drainage project depending on main design parameters, such as drain depth and drain spacing, installation area and type of used outlet. A number of pilot studies have been taken up in past to solve the problems of soil salinity and waterlogging in India. The general guidelines that arise on the behalf of this review paper are to adapt drain depth >1.2 m and spacing depending on soil texture classification, i.e., 100-150 m for light-textured soils, 50-100 m for medium-textured soils and 30-50 m heavy-textured soils, for better result obtained from the problem areas in Indian soil and climatic conditions. An attempt has been made in the manner of literature survey to highlight the salient features of these studies, and it is hopeful to go a long way in selecting design parameters for subsurface drainage problems in the future with similar soil, water table and climatic conditions.

  4. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Young, R. R.; Huth, N.

    2012-04-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr-1 rainfall, potential evapotranspiration >2000 mm yr-1) such as parts of Australia's Murray-Darling Basin (MDB). In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditions after changes in land use and a

  5. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  6. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Young, R. R.; Huth, N.

    2011-11-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr-1 rainfall), such as parts of Australia's Murray-Darling Basin (MDB). In this unique study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥10 m depth that is not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditionsafter changes in land use and a thick clay dominated vadose zone. This is in contrast to regional

  7. Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes

    USGS Publications Warehouse

    Kharaka, Y.K.; Ambats, G.; Presser, T.S.; Davis, R.A.

    1996-01-01

    Seleniferous agricultural drainage wastewater has become a new major source of pollution in the world. In the USA, large areas of farmland in 17 western states, generate contaminated salinized drainage with Se concentrations much higher than 5 ??g/l, the US Environmental Protection Agency water-quality criterion for the protection of aquatic life; Se values locally reach 4200 ??g/l in western San Joaquin Valley, California. Wetland habitats receiving this drainage have generally shown Se toxicosis in aquatic birds causing high rates of embryonic deformity and mortality, or have indicated potential ecological damage. Results of our laboratory flow experiments indicate that nanofiltration, the latest membrane separation technology, can selectively remove > 95% of Se and other multivalent anions from > 90% of highly contaminated water from the San Joaquin Valley, California. Such membranes yield greater water output and require lower pressures and less pretreatment, and therefore, are more cost effective than traditional reverse osmosis membranes. Nanofiltration membranes offer a potential breakthrough for the management of Se contaminated wastes not only from agricultural drainage, but from other sources also.

  8. Drainage water management

    USDA-ARS?s Scientific Manuscript database

    This article introduces a series of papers that report results of field studies to determine the effectiveness of drainage water management (DWM) on conserving drainage water and reducing losses of nitrogen (N) to surface waters. The series is focused on the performance of the DWM (also called contr...

  9. Hydrologic and water-quality data in selected agricultural drainages in Beaufort and Hyde Counties, North Carolina, 1990-92

    USGS Publications Warehouse

    Treece, M.W.

    1993-01-01

    An investigation was begun in 1988 to: (1) quantify nutrient, sediment, and freshwater loadings in canals that collect drainage from cropland field ditches; (2) determine the effects of tide gates and flashboard risers on these loadings and on receiving water quality; and (3) characterize the effects of drainage on the salinity regime of a tidal creek. Data were collected in three canals in Hyde County, two canals in Beaufort County, and in Campbell Creek, which receives drainage directly from the Beaufort County canals. A tide gate was placed in one of the Hyde County canals near the beginning of the investigation. In August 1990 following more than 2 years of data collection, control structures were placed in the remaining two Hyde County canals. Flashboard risers were installed in the Beaufort County canals in April 1991. Hydrologic and water quality data are presented for each of the study sites for the period of October 1990 through May 1992. Following a description of the study sites and data collection methods, data are presented for the five drainage canals and Campbell Creek. The data collected included: (1) daily values of accumulated precipitation; (2) water level statistics; (3) daily mean values of discharge in the canals; (4) biweekly water quality measurements and sample analyses; (5) storm-event water quality measurements and sample analyses; (6) continuous records of specific conductance in the canals; (7) vertical profiles of salinity in Campbell Creek; and (8) daily mean values of salinity at five sites at Campbell Creek.

  10. Reuse/disposal of agricultural drainage water with high levels of salinity and toxic trace elements in central California.

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage waters in the western San Joaquin Valley of Central California contain high levels of salts, boron (B) and selenium (Se). Discharge of the drainage water directly into the Kesterson Reservoir in 1980's was hazardous to plants and wildlife. To investigate the plausibility of usi...

  11. Assessment of Nitrate-N Load in Subsurface Drainage Water from the Agricultural Fields in the Fergana Valley, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Kenjabaev, S.; Forkutsa, I.; Dukhovny, V.; Frede, H. G.

    2012-04-01

    Leaching of nitrate-N (NO3-) from irrigated agricultural land and water contamination have become a worldwide concern. This study was conducted to investigate amount of nitrate-N leached to groundwater and surface water from irrigated cotton, winter wheat and maize fields in the Fergana Valley (Uzbekistan). Therefore at two sites ("Akbarabad" and "Azizbek") equipped with closed horizontal drainage system during 2010-2011 vegetation seasons we monitored water flow, nutrient concentrations and salinity at surface and subsurface drains, at irrigation canals and groundwater. We also applied stable isotopes (δ2H and δ18O) method in order to investigate the source of drainage water runoff. Discussed are results of 2010. Farmers fertilized cotton fields with ammonium nitrate of 350-450 kg ha-1 in "Akbarabad" and 700 kg ha-1 in "Azizbek" sites. In winter wheat and maize fields (in "Akbarabad") about 500 kg ha-1 of ammonium nitrate were applied. Cotton fields were irrigated with 2700 m3 ha-1 ("Akbarabad") and 3500 m3 ha-1 ("Azizbek"). In winter wheat and maize fields applied irrigation water amounted to 3900 m3 ha-1 and 723 m3 ha-1, respectively. Frequent groundwater and subsurface drainage water sampling revealed that nitrate leaching occurred mostly during and right after the irrigation events. The estimated average nitrate-N concentration in subsurface drainage water in "Akbarabad" was slightly higher (9 mg l-1) than in "Azizbek" (8 mg l-1). During July-November (2010), in average, nitrate-N losses through subsurface drainage amounted to 24 kg ha-1 in "Akbarabad" and 18 kg ha-1 in "Azizbek". The salinity of drainage water at both sites was similar and varied between 2.3-2.7 dS m-1. Preliminary results of isotope signals of studied water (precipitation, drainage, irrigation and ground water) indicate that the source of drainage water runoff comes from the irrigation water, while the contribution of rainfall is negligible. It is planned to run simulations with DRAINMOD

  12. Illinois drainage water management demonstration project

    USGS Publications Warehouse

    Pitts, D.J.; Cooke, R.; Terrio, P.J.; ,

    2004-01-01

    Due to naturally high water tables and flat topography, there are approximately 4 million ha (10 million ac) of farmland artificially drained with subsurface (tile) systems in Illinois. Subsurface drainage is practiced to insure trafficable field conditions for farm equipment and to reduce crop stress from excess water within the root zone. Although drainage is essential for economic crop production, there have been some significant environmental costs. Tile drainage systems tend to intercept nutrient (nitrate) rich soil-water and shunt it to surface water. Data from numerous monitoring studies have shown that a significant amount of the total nitrate load in Illinois is being delivered to surface water from tile drainage systems. In Illinois, these drainage systems are typically installed without control mechanisms and allow the soil to drain whenever the water table is above the elevation of the tile outlet. An assessment of water quality in the tile drained areas of Illinois showed that approximately 50 percent of the nitrate load was being delivered through the tile systems during the fallow period when there was no production need for drainage to occur. In 1998, a demonstration project to introduce drainage water management to producers in Illinois was initiated by NRCS4 An initial aspect of the project was to identify producers that were willing to manage their drainage system to create a raised water table during the fallow (November-March) period. Financial assistance from two federal programs was used to assist producers in retrofitting the existing drainage systems with control structures. Growers were also provided guidance on the management of the structures for both water quality and production benefits. Some of the retrofitted systems were monitored to determine the effect of the practice on water quality. This paper provides background on the water quality impacts of tile drainage in Illinois, the status of the demonstration project, preliminary

  13. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    NASA Astrophysics Data System (ADS)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  14. An analytical solution for predicting the transient seepage from a subsurface drainage system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Dan, Han-Cheng; Zhou, Tingzhang; Lu, Chunhui; Kong, Jun; Li, Ling

    2016-05-01

    Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.

  15. Saline-water resources of Texas

    USGS Publications Warehouse

    Winslow, Allen George; Kister, Lester Ray

    1956-01-01

    Most of the aquifers in Texas contain saline water in some parts, and a few are capable of producing large quantities of saline water. Of the early Paleozoic formations, the Hickory sandstone member of the Riley formation of Cambrian age and the Ellenburger group of Ordovician age are potential sources of small to moderate supplies of saline water in parts of central and west-central Texas.

  16. Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization.

    PubMed

    Lin, Z Q; Cervinka, V; Pickering, I J; Zayed, A; Terry, N

    2002-07-01

    The Integrated on-Farm Drainage Management (IFDM) system was designed to dispose of selenium (Se)-contaminated agricultural irrigation drainage water through the sequential reuse of saline drainage water to grow crops having different salt tolerance. This study quantified the extent of biological volatilization in Se removal from the IFDM system located in the western San Joaquin Valley, California. Selenium volatilization from selected treatment areas, including pickleweed (Salicornia bigelovii Torr.), saltgrass (Distichlis spicata L.), bare soil, and the solar evaporator, was monitored biweekly using an open-flow sampling chamber system during the pickleweed growing season from February to September 1997, and monthly from September 1997 to January 1998. Biological volatilization from the pickleweed section removed 62.0 +/- 3.6 mg Se m(-2) y(-1) to the atmosphere, which was 5.5-fold greater than the Se accumulated in pickleweed tissues (i.e., phytoextraction). The total Se removed by volatilization from the bare soil, saltgrass, and the solar evaporator was 16.7 +/- 1.1, 4.8 +/- 0.3, and 4.3 +/- 0.9mg Se m(-2) y(-1), respectively. Selenium removal by volatilization accounted for 6.5% of the annual total Se input (957.7mg Sem(-2) y(-1)) in the pickleweed field, and about 1% of the total Se input (432.7 mg Se m(-2) y(-1)) in the solar evaporator. We concluded that Se volatilization under naturally occurring field conditions represented a relatively minor, but environmentally important pathway of Se removal from the IFDM system.

  17. Application of BIM Technology in Building Water Supply and Drainage Design

    NASA Astrophysics Data System (ADS)

    Wei, Tianyun; Chen, Guiqing; Wang, Junde

    2017-12-01

    Through the application of BIM technology, the idea of building water supply and drainage designers can be related to the model, the various influencing factors to affect water supply and drainage design can be considered more comprehensively. BIM(Building information model) technology assist in improving the design process of building water supply and drainage, promoting the building water supply and drainage planning, enriching the building water supply and drainage design method, improving the water supply and drainage system design level and building quality. Combined with fuzzy comprehensive evaluation method to analyze the advantages of BIM technology in building water supply and drainage design. Therefore, application prospects of BIM technology are very worthy of promotion.

  18. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA

    USDA-ARS?s Scientific Manuscript database

    One of the main contributors to poor water quality in the Mississippi River and aeral increase in the hypoxic zone in the Gulf of Mexico is intensive drainage of the cropland within the watershed. Controlled drainage has been demonstrated as an approach to curb totla drainage outflow and nutrient di...

  19. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    , such as treated wastewater and agricultural drainage water. Two anthropogenic salinization cycles are introduced - the agricultural and the domestic cycles. Some useful geochemical fingerprinting tracers are also included for defining the sources of salinity. Finally, the chemical composition of future water resources is predicted, based on the chemical and isotopic fractionation associated with remediation and desalination.

  20. A synthesis and comparative evaluation of drainage water management

    USDA-ARS?s Scientific Manuscript database

    Viable large-scale crop production in the United States requires artificial drainage in humid and poorly drained agricultural regions. Excess water removal is generally achieved by installing tile drains that export water to open ditches that eventually flow into streams. Drainage water management...

  1. Salinity history of the northern Atlantic during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Broecker, Wallace S.

    1990-08-01

    The claim has been made (see Broecker et al., 1988) that production of North Atlantic Deep Water terminated during Younger Dryas time and that the onset of this termination occurred about 11,000 years ago when the flow of meltwater from a large segment of the southern margin of the Laurentide ice sheet was diverted from the Mississippi to the St. Lawrence drainage. Fairbanks [1989] points out a serious weakness in this argument. Based on a sea level curve derived from radiocarbon dates on coral obtained from borings made off the Barbados coast, he suggests that a lull in the melting of the ice caps during Younger Dryas time may have more than compensated for the impact of the diversion. The purpose of this paper is to reassess the situation regarding the origin of the Younger Dryas in light of this new evidence. Currently the salinity of surface waters in the northern Atlantic is influenced by three fluxes. Water vapor transport from the Atlantic drainage basin to the Pacific-Indian basin tends to raise the salinity of the entire Atlantic. The excess over evaporation of precipitation and runoff poleward of 40°N tends to reduce the salinity of waters in this region relative to the Atlantic average. The conveyor circulation of the Atlantic trades more salty waters of the Atlantic with less salty waters outside the Atlantic tending to drive down the Atlantic's salinity. The conveyor circulation also flushes the northern Atlantic, pushing its salinity toward the mean for the Atlantic. During the period of deglaciation meltwater emanating from the Laurentide and Scandinavian ice sheets was also important. This flux tended to lower not only the salinity of the entire Atlantic but also the salinity of surface waters in the northern Atlantic relative to the Atlantic's mean. As deepwater formation in the northern Atlantic depends critically on the salinity of surface waters, the interactions among these fluxes can change the strength of the conveyor.

  2. Salinity control in a clay soil beneath an orchard irrigated with treated waste water in the presence of a high water table: A numerical study

    NASA Astrophysics Data System (ADS)

    Russo, David; Laufer, Asher; Bardhan, Gopali; Levy, Guy J.

    2015-12-01

    A citrus orchard planted on a structured, clay soil associated with a high water table, irrigated by drip irrigation system using treated waste water (TWW) and local well water (LWW) was considered here. The scope of the present study was to analyze transport of mixed-ion, interacting salts in a combined vadose zone-groundwater flow system focusing on the following issues: (i) long-term effects of irrigation with TWW on the response of the flow system, identifying the main factors (e.g., soil salinity, soil sodicity) that control these effects, and (ii) salinity control aiming at improving both crop productivity and groundwater quality. To pursue this two-fold goal, 3-D numerical simulations of field-scale flow and transport were performed for an extended period of time, considering realistic features of the soil, water table, crop, weather and irrigation, and the coupling between the flow and the transport through the dependence of the soil hydraulic functions, K(ψ) and θ(ψ), on soil solution concentration C, and sodium adsorption ratio, SAR. Results of the analyses suggest that in the case studied, the long-term effect of irrigation with TWW on the response of the flow system is attributed to the enhanced salinity of the TWW, and not to the increase in soil sodicity. The latter findings are attributed to: (i) the negative effect of soil salinity on water uptake, and the tradeoff between water uptake and drainage flux, and, concurrently, solute discharge below the root zone; and, (ii) the tradeoff between the effects of C and SAR on K(ψ) and θ(ψ). Furthermore, it was demonstrated that a data-driven protocol for soil salinity control, based on alternating irrigation water quality between TWW and desalinized water, guided by the soil solution salinity at the centroid of the soil volume active in water uptake, may lead to a substantial increase in crop yield, and to a substantial decrease in the salinity load in the groundwater.

  3. Wetland Flow and Salinity Budgets and Elements of a Decision Support System toward Implementation of Real-Time Seasonal Wetland Salinity Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, N.W.T.; Ortega, R.; Rahilly, P.

    2011-12-17

    The project has provided science-based tools for the long-term management of salinity in drainage discharges from wetlands to the San Joaquin River. The results of the project are being used to develop best management practices (BMP) and a decision support system to assist wetland managers adjust the timing of salt loads delivered to the San Joaquin River during spring drawdown. Adaptive drainage management scheduling has the potential to improve environmental compliance with salinity objectives in the Lower San Joaquin River by reducing the frequency of violation of Vernalis salinity standards, especially in dry and critically dry years. The paired approachmore » to project implementation whereby adaptively managed and traditional practices were monitored in a side-by-side fashion has provided a quantitative measure of the impacts of the project on the timing of salt loading to the San Joaquin River. The most significant accomplishments of the project has been the technology transfer to wetland biologists, ditch tenders and water managers within the Grasslands Ecological Area. This “learning by doing” has build local community capacity within the Grassland Water District and California Department of Fish and Game providing these institutions with new capability to assess and effectively manage salinity within their wetlands while simultaneously providing benefits to salinity management of the San Joaquin River.« less

  4. Effect of irrigation water salinity and sodicity and water table position on water table chemistry beneath Atriplex lentiformis and Hordeum marinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, L.S.; Bauder, J.W.; Phelps, S.D.

    2006-04-15

    Coal bed methane (CBM) extraction in Montana and Wyoming's Powder River Basin (PRB) produces large quantities of modestly saline-sodic water. This study assessed effects of irrigation water quality and water table position on water chemistry of closed columns, simulating a perched or a shallow water table. The experiment assessed the potential salt loading in areas where shallow or perched water tables prevent leaching or where artificial drainage is not possible. Water tables were established in sand filled PVC columns at 0.38, 0.76, and1.14 m below the surface, after which columns were planted to one of three species, two halophytic Atriplexmore » spp. and Hordeum marinum Huds. (maritime barley), a glycophyte. As results for the two Atriplex ssp. did not differ much, only results from Atriplex lentiformis (Torn) S. Wats. (big saltbush) and H. marinum are presented. Irrigation water representing one of two irrigation sources was used: Powder River (PR) (electrolytic conductivity (EC) = 0.19 Sm{sup -1}, sodium adsorption ratio (SAR) = 3.5) or CBM water (EC = 0.35 Sm-1, SAR = 10.5). Continuous irrigation with CBM and PR water led to salt loading over time, the extent being proportional to the salinity and sodicity of applied water. Water in columns planted to A. lentiformis with water tables maintained at 0.38 m depth had greater EC and SAR values than those with 0.76 and 1.14 m water table positions. Elevated EC and SAR values most likely reflect the shallow rooted nature of A. lentiformis, which resulted in enhanced ET with the water table close to the soil surface.« less

  5. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China.

    PubMed

    Wu, Jingwei; Vincent, Bernard; Yang, Jinzhong; Bouarfa, Sami; Vidal, Alain

    2008-11-07

    This study used archived remote sensing images to depict the history of changes in soil salinity in the Hetao Irrigation District in Inner Mongolia, China, with the purpose of linking these changes with land and water management practices and to draw lessons for salinity control. Most data came from LANDSAT satellite images taken in 1973, 1977, 1988, 1991, 1996, 2001, and 2006. In these years salt-affected areas were detected using a normal supervised classification method. Corresponding cropped areas were detected from NVDI (Normalized Difference Vegetation Index) values using an unsupervised method. Field samples and agricultural statistics were used to estimate the accuracy of the classification. Historical data concerning irrigation/drainage and the groundwater table were used to analyze the relation between changes in soil salinity and land and water management practices. Results showed that: (1) the overall accuracy of remote sensing in detecting soil salinity was 90.2%, and in detecting cropped area, 98%; (2) the installation/innovation of the drainage system did help to control salinity; and (3) a low ratio of cropped land helped control salinity in the Hetao Irrigation District. These findings suggest that remote sensing is a useful tool to detect soil salinity and has potential in evaluating and improving land and water management practices.

  6. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    USGS Publications Warehouse

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  7. [VC and DCE in groundwater and drainage channel water].

    PubMed

    Ackermann, A

    2004-12-01

    In an area used merely for gardening in a downland moor, which is partly transformed to an industrial estate, accidentally a contamination of a drainage channel with VOC's - predominantly chloroethylene (vinyl chloride [VC]) and 1.2-cis-dichloroethylene (DCE) - was found. The ascending ground water leaks into the drainage channels. The dissolved harmful substances (water solubility of VC is 1.6 g/l) can reach the radix range of plants and fruit bosks and can theoretically be incorporated with the water influx. Additionally the water from the drainage channels can be used to water the crops. Six gardens and a housing were involved. In the groundwater of the mainly concerned region max. 5,000 microg/l VOC's (quite predominantly VC and DCE) was measured from 147 samples. In the drainage channel water max. 2,500 microg/l was measured from 52 samples (limit value according to the drinking water ordinance is 10 microg/l). In the sediment of the channel with approximately 60,000 microg/kg VOC was found in dry matter (6 samples). We describe, how the consumer protection dept. dealt with this unexpected situation and what measures were taken. The impact on human health by the contaminated ground and channel water or by means of contaminated plants are determined for tree fruits, potatoes, bulbs and carrots. The soil air was contaminated, but in buildings no harmful compounds were detectioned.

  8. Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota

    USGS Publications Warehouse

    Maderak, Marion L.

    1966-01-01

    The Heart River drainage basin of southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.

  9. Fate and movement of selenium from drainage sediments disposed onto soil with and without vegetation.

    PubMed

    Bañuelos, G S; Bitterli, C; Schulin, R

    2013-09-01

    Disposal options for salty and selenium-laden agricultural drainage sediments are needed to protect the agricultural ecosystem in Central California. Thus, a 7-year pilot-scale field study evaluated the effects of disposing Se-laden drainage sediment onto soil that was planted with either salado grass (Sporobolus airoides 'salado') or cordgrass (Spartina patens 'Flageo'), or on soil left bare with and without irrigation. Significant decreases in salinity and water-extractable and total soil Se concentrations were observed in all treatments to a depth 30 cm, while water extractable Se and salinity increased most significantly between 30 and 60 cm. Total yields increased over time for both species, while plant Se concentrations were ≈10 and 12 mg kg(-1) DM for salado and cordgrass, respectively. The results show that Se and soluble salts disposed of as Se-laden drainage sediment onto light textured soils will significantly migrate to lower depths with or without vegetation. Published by Elsevier Ltd.

  10. Irrigation salinity hazard assessment and risk mapping in the lower Macintyre Valley, Australia.

    PubMed

    Huang, Jingyi; Prochazka, Melissa J; Triantafilis, John

    2016-05-01

    In the Murray-Darling Basin of Australia, secondary soil salinization occurs due to excessive deep drainage and the presence of shallow saline water tables. In order to understand the cause and best management, soil and vadose zone information is necessary. This type of information has been generated in the Toobeah district but owing to the state border an inconsistent methodology was used. This has led to much confusion from stakeholders who are unable to understand the ambiguity of the results in terms of final overall risk of salinization. In this research, a digital soil mapping method that employs various ancillary data is presented. Firstly, an electromagnetic induction survey using a Geonics EM34 and EM38 was used to characterise soil and vadose zone stratigraphy. From the apparent electrical conductivity (ECa) collected, soil sampling locations were selected and with laboratory analysis carried out to determine average (2-12m) clay and EC of a saturated soil-paste extract (ECe). EM34 ECa, land surface parameters derived from a digital elevation model and measured soil data were used to establish multiple linear regression models, which allowed for mapping of various hazard factors, including clay and ECe. EM38 ECa data were calibrated to deep drainage obtained from Salt and Leaching Fraction (SaLF) modelling of soil data. Expert knowledge and indicator kriging were used to determine critical values where the salinity hazard factors were likely to contribute to a shallow saline water table (i.e., clay ≤35%; ECe>2.5dS/m, and deep drainage >100mm/year). This information was combined to produce an overall salinity risk map for the Toobeah district using indicator kriging. The risk map shows potential salinization areas and where detailed information is required and where targeted research can be conducted to monitor soil conditions and water table heights and determine best management strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Use of saline water in energy development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israelsen, C.E.; Adams, V.D.; Batty, J.C.

    1980-06-01

    Maps were made of the Upper Colorado River Basin showing locations of coal deposits, oil and gas, oil shale, uranium, and tar sand, in relationship to cities and towns in the area. Superimposed on these are locations of wells showing four ranges of water quality; 1000 to 3000 mg/l, 3000 to 10,000 mg/l, 10,000 to 35,000 mg/l, and over 35,000 mg/l. Information was assembled relative to future energy-related projects in the upper basin, and estimates were made of their anticipated water needs. Using computer models, various options were tested for using saline water for coal-fired power plant cooling. Both coolingmore » towers and brine evaporation ponds were included. Information is presented of several proven water treatment technologies, and comparisons are made of their cost effectiveness when placed in various combinations in the power plant makeup and blowdown water systems. A relative value scale was developed which compares graphically the relative values of waters of different salinities based on three different water treatment options and predetermined upper limits of cooling tower circulating salinities. Coal from several different mines was slurried in waters of different salinities. Samples were analyzed in the laboratory to determine which constituents had been leached from or absorbed by the coal, and what possible deleterious effects this might have on the burning properties of the coal, or on the water for culinary use or irrigation.« less

  12. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use

    NASA Astrophysics Data System (ADS)

    Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida

    2014-05-01

    In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.

  13. National water-quality assessment program : the Albemarle- Pamlico drainage

    USGS Publications Warehouse

    Lloyd, O.B.; Barnes, C.R.; Woodside, M.D.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. Long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water quality information that will be useful to policy makers and managers at the national, State, and local levels. Study-unit investigations constitute a major component of the NAWQA program, forming the principal building blocks on which national-level assessment activities are based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Albemarle-Pamlico drainage was among the first 20 NAWQA study units selected for study under the full-scale implementation plan. The Albemarle-Pamlico drainage study will examine the physical, chemical, and biological aspects of water quality issues in a coordinated investigation of surface water and ground water in the Albemarle-Pamlico drainage basin. The quantity and quality of discharge from the Albemarle-Pamlico drainage basin contribute to some water quality problems in the biologically sensitive waters of Albemarle and Pamlico Sounds. A retrospective analysis of existing water quality data will precede a 3-year period of intensive data-collection and analysis activities. The data resulting from this study and the improved understanding of important processes and issues in the upstream part of the study unit will enhance understanding of the quality of

  14. Study of hydro-saline characteristics of soils a palm grove in basin of Ouargla (Northern Algerian Sahara)

    NASA Astrophysics Data System (ADS)

    Rezagui, D.; Bouhoun, M. Daddi; Boutoutaou, D.; Djaghoubi, A.

    2016-07-01

    Saharan soils are often faced with several problems of development, taking account the hydro-edaphic constraints, mainly of hydric types by water table, mechanical by gypso-calcareous crusts and saline by irrigation waters and upwelling of water table. Our work consists in doing a soil characterization of a palm grove in Ouargla in order to study the constraints hydro-halomorphes. The results show that irrigation water by two plies of Senonian and Mioplcène had a high salinity with a value of 2.83 and 5.10 dS.m-1 respectively. The conduct of irrigation is traditional random of submersion type. The palm grove has a poor drainage with a level of water table 156.67±15.71 cm and salinity of 31.37±34.04 dS.m-1. The drains are open type and their maintenance is not regular. This situation of management of irrigation-drainage promotes the upwelling of water table and the waterlogging in soils. The study of soil profiles shows the existence of mechanical obstruction of gypso-calcareous crusts which limit the entrenchment of the date palms and the leaching of salts. Soil salinity is excessive in profiles with a range of 8.98 ± 4.58 dS.m-1. This accumulation of salts is due to the dynamic ascending and descending of salts respectively under the effect of upwelling of water table and leaching by irrigation. The salinization, the upwelling of water table and the presence of gypso-calcareous crusts recorded in Ouargla testify to a degradation hydro-halomorphe and mechanic of soil which constitute the major constraints in the management of system irrigation-drainage and sustainable agricultural development of the palm groves of the basin of Ouargla. Some hydro-agricultural planning are necessary to apply in the oasis to improve the hydro-mechanical properties of soils in order to reduce their degradation.

  15. Phosphate removal from agricultural drainage water using an iron oxyhydroxide filter material

    USDA-ARS?s Scientific Manuscript database

    Phosphate discharged with agricultural drainage causes water quality degradation on local, regional, and national scales. Iron oxyhydroxide filter materials can potentially remove the soluble phosphate present in drainage waters. Laboratory saturated column experiments and preliminary small-scale ...

  16. Constraining Greenland basal water extent and drainage morphology from radar reflectivity and specularity analysis

    NASA Astrophysics Data System (ADS)

    Chu, W.; Schroeder, D. M.; Seroussi, H. L.; Creyts, T. T.; Bell, R. E.; Paden, J. D.

    2017-12-01

    Subglacial water has been observed and theorized to cause changes in basal sliding. Across Greenland, water drainage can produce massive speed-ups, or conversely, very little responses from the ice sheet. While distinct modes of subglacial drainage have been proposed to cause these different responses, the absence of Greenland-wide hydrological observations makes it difficult to examine where shifts in drainage occur and what controls them. By using routing models and the reflectivity and specularity of radar bed echoes from NASA IceBridge, we provide insight into the character of the subglacial water systems and their variability across Greenland. Specifically, we examine Russell Glacier as a southern Greenland example and Petermann Glacier as a northern example. In the south at Russell Glacier, the distribution of subglacial water varies seasonally depending on the surface melt supply. In winter, water is stored on bedrock ridges but is absent in the sediment-filled troughs. In the summer, water drains to the troughs that focus this water, flooding the bed to intensify sliding locally. The topography and material properties of the bed strongly determine the degree to which subglacial drainage focuses at Russell. Conversely, the drainage systems in northern Greenland are vastly different. In Petermann, radar reflectivity indicates a persistent water distribution beneath the fast moving ice trunk. We observe a widespread water distribution with only a weak drainage focusing along the shear margin. Contrasted to Russell, topography and bed materials exert minor roles in determining Petermann's drainage behavior. Instead, local heat production and heat transfer with the neighboring glaciers strongly determine the water distribution in Petermann. We also interpret the radar reflectivity and routing model results in the context of basal roughness and drainage morphology, which we estimate from a more detailed analysis of the specularity of the bed echoes. Together, our

  17. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production

    USDA-ARS?s Scientific Manuscript database

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol product...

  18. Enzymatic saccharization of dilute acid pretreated saline crops for fermentable sugar production

    USDA-ARS?s Scientific Manuscript database

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol product...

  19. Automated Passive Capillary Lysimeters for Estimating Water Drainage in the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Jabro, J.; Evans, R.

    2009-04-01

    In this study, we demonstrated and evaluated the performance and accuracy of an automated PCAP lysimeters that we designed for in-situ continuous measuring and estimating of drainage water below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with sampling surface dimensions of 31 cm width * 91 cm long and 87 cm in height were placed 90 cm below the soil surface in a Lihen sandy loam. Our state-of-the-art design incorporated Bluetooth wireless technology to enable an automated datalogger to transmit drainage water data simultaneously every 15 minutes to a remote host and had a greater efficiency than other types of lysimeters. It also offered a significantly larger coverage area (2700 cm2) than similarly designed vadose zone lysimeters. The cumulative manually extracted drainage water was compared with the cumulative volume of drainage water recorded by the datalogger from the tipping bucket using several statistical methods. Our results indicated that our automated PCAPs are accurate and provided convenient means for estimating water drainage in the vadose zone without the need for costly and manually time-consuming supportive systems.

  20. Use of saline water in energy development. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israelsen, C.E.; Adams, V.D.; Batty, J.C.

    1980-06-01

    Information was assembled relative to future energy-related projects in the upper basin, and estimates were made of their anticipated water needs. Using computer models, various options were tested for using saline water for coal-fired power plant cooling. Both cooling towers and brine evaporation ponds were included. Information is presented of several proven water treatment technologies, and comparisons are made of their cost effectiveness when placed in various combinations in the power plant makeup and blowdown water systems. A relative value scale was developed which compares graphically the relative values of waters of different salinities based on three different water treatmentmore » options and predetermined upper limits of cooling tower circulating salinities. Coal from several different mines was slurried in waters of different salinities. Samples were analyzed in the laboratory to determine which constituents had been leached from or absorbed by the coal, and what possible deleterious effects this might have on the burning properties of the coal, or on the water for culinary use or irrigation.« less

  1. Capturing Flow-weighted Water and Suspended Particulates from Agricultural Canals During Drainage Events.

    PubMed

    Bhadha, Jehangir H; Sexton, Anne; Lang, Timothy A; Daroub, Samira H

    2017-11-07

    The purpose of this study is to describe the methods used to capture flow-weighted water and suspended particulates from farm canals during drainage discharge events. Farm canals can be enriched by nutrients such as phosphorus (P) that are susceptible to transport. Phosphorus in the form of suspended particulates can significantly contribute to the overall P loads in drainage water. A settling tank experiment was conducted to capture suspended particulates during discrete drainage events. Farm canal discharge water was collected in a series of two 200 L settling tanks over the entire duration of the drainage event, so as to represent a composite subsample of the water being discharged. Imhoff settling cones are ultimately used to settle out the suspended particulates. This is achieved by siphoning water from the settling tanks via the cones. The particulates are then collected for physico-chemical analyses.

  2. Surface water discharge and salinity monitoring of coastal estuaries in Everglades National Park, USA, in support of the Comprehensive Everglades Restoration Plan

    USGS Publications Warehouse

    Woods, Jeff

    2010-01-01

    Discharge and salinity were measured along the southwest and the southeast coast of Florida in Everglades National Park (ENP) within several rivers and creeks from 1996 through 2008. Data were collected using hydro-acoustic instruments and continuous water-quality monitors at fixed monitoring stations. Water flowed through ENP within two distinct drainage basins; specifically, Shark Slough and Taylor Slough. Discharge to the southwest coast through Shark Slough was substantially larger than discharge to the southeast coast through Taylor Slough. Correlation analysis between coastal flows and regulated flows at water-management structures upstream from ENP suggests rainfall has a larger impact on discharge through Shark Slough than releases from the S-12 water management structures. In contrast, flow releases from water management structures upstream from Taylor Slough appear to be more closely related to discharge along the southeast coast. Salinity varied within a wide range (0 to 50 parts per thousand) along both coastlines. Periods of hypersalinity were greater along the southeast coast due to shallow compartmentalized basins within Florida Bay, which restrict circulation.

  3. Water quality in irrigation and drainage networks of Thessaloniki plain in Greece related to land use, water management, and agroecosystem protection.

    PubMed

    Litskas, Vassilis D; Aschonitis, Vassilis G; Antonopoulos, Vassilis Z

    2010-04-01

    A representative agricultural area of 150 ha located in a protected ecosystem (Axios River Delta, Thermaikos Gulf-N. Aegean, Greece) was selected in order to investigate water quality parameters [pH, electrical conductivity (EC(w)), NO(3)-N, NH(4)-N, total phosphorus (TP)] in irrigation and drainage water. In the study area, the cultivated crops are mainly rice, maize, cotton, and fodder. Surface irrigation methods are applied using open channels network, and irrigation water is supplied by Axios River, which is facing pollution problems. The return flow from surface runoff and the surplus of irrigation water are collected to drainage network and disposed to Thermaikos Gulf. A 2-year study (2006-2007) was conducted in order to evaluate the effects of land use and irrigation water management on the drainage water quality. The average pH and NO(3)-N concentration was higher in the irrigation water (8.0 and 1.3 mg/L, respectively) than that in the drainage water (7.6 and 1.0 mg/L, respectively). The average EC(W), NH(4)-N, and TP concentration was higher in the drainage water (1,754 muS/cm, 90.3 microg/L, and 0.2 mg/L, respectively) than that in the irrigation water (477.1 muS/cm, 46.7 microg/L, and 0.1 mg/L, respectively). Average irrigation efficiency was estimated at 47% and 51% in 2006 and 2007 growing seasons (April-October), respectively. The loads of NO(3)-N in both seasons were higher in the irrigation water (35.1 kg/ha in 2006 and 24.9 kg/ha in 2007) than those in the drainage water (8.1 kg/ha in 2006 and 7.6 kg/ha in 2007). The load of TP was higher in the irrigation water in season 2006 (2.8 kg/ha) than that in the drainage water (1.1 kg/ha). Total phosphorus load in 2007 was equal in irrigation and drainage water (1.2 kg/ha). Wetland conditions, due to rice irrigation regime, drainage network characteristics, and the crop distribution in the study area, affect the drainage water ending in the protected ecosystem of Thermaikos Gulf.

  4. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    PubMed

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  5. Effects of saline drinking water on early gosling development

    USGS Publications Warehouse

    Stolley, D.S.; Bissonette, J.A.; Kadlec, J.A.; Coster, D.

    1999-01-01

    Relatively high levels of saline drinking water may adversely affect the growth, development, and survival of young waterfowl. Saline drinking water was suspect in the low survival rate of Canada goose (Branta canadensis) goslings at Fish Springs National Wildlife Refuge (FSNWR) in western Utah. Hence, we investigated the effects of saline drinking water on the survival and growth of captive, wild-strain goslings from day 1-28 following hatch. We compared survival and growth (as measured by body mass, wing length, and culmen length) between a control group on tap water with a mean specific conductivity of 650 ??S/cm, and 2 saline water treatments: (1) intermediate level (12,000 ??S/cm), and (2) high level (18,000 ??S/cm). Gosling mortality occurred only in the 18,000 ??S/cm treatment group (33%; n = 9). Slopes of regressions of mean body mass, wing length, and culmen length on age were different from each other (P < 0.05), except for culmen length for the intermediate and high treatment levels. We predict that free-ranging wild goslings will experience mortality at even lower salinity levels than captive goslings because of the combined effects of depressed growth and environmental stresses, including hot desert temperatures and variable food quality over summer.

  6. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  7. Streamflow and water-quality data for Lake Purdy and its tributaries, Jefferson and Shelby Counties, Alabama, water years 1987-91

    USGS Publications Warehouse

    Stricklin, V.E.

    1993-01-01

    An investigation was begun in North Carolina in 1988 to: (1) quantify nutrient, sediment, and freshwater loadings in canals that collect drainage from cropland field ditches; (2) determine the effects of tide gates and flashboard risers on these loadings and on receiving-water quality; and (3) characterize the effects of drainage on the salinity regime of a tidal creek. Data were collected in three canals in Hyde County, three canals in Beaufort County, and in Campbell Creek, which receives drainage directly from two of the Beaufort County canals. Water-control structures were placed on two of the six canals near the beginning of the investigation. Following about 2 years of data collection, control structures were placed on the remaining four canals. Hydrologic and water-quality data are presented for each of the study sites for the period of October 1990 through May 1992. Data presented in this report cover the second phase of the investigation after the installation of water-control structures in the six drainage canals. Following a description of the study sites and data-collection methods, data are presented for five of the drainage canals and Campbell Creek. Data collection was discontinued at one of the Beaufort County sites after the first phase of the investigation. The data collected include: (1) daily values of accumulated precipitation; (2) water-level statistics; (3) daily mean values of discharge in the canals; (4) biweekly water-quality measurements and sample analyses; (5) storm-event water-quality measurements and sample analyses; (6) continuous records of specific conductance in the canals; (7) vertical profiles of salinity in Campbell Creek; and (8) daily mean values of salinity at five sites in Campbell Creek.

  8. Polymer tensiometers in a saline environment.

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Gooren, H. P. A.; Bakker, G.; Russell, W.; Hoogendam, C. W.; Huiskes, C.; Shouse, P.; de Rooij, G. H.

    2010-05-01

    It is estimated that 20% of all cultivated land and nearly half of the irrigated land is salt-affected, which pose major economic and environmental problems. Salinity may be the result of two processes; dryland and irrigation salinity. Dryland salinity is caused by a rise in the groundwater table, which occurs as a result of the replacement of deep-rooted, perennial native vegetation by shallow-rooted annual species meant for production. Irrigation salinity may occur as a result of poor water quality, poor drainage, or inefficient use of water. Consequently, new strategies to enhance crop yield stability on saline soils represent a major research priority (Botella et al. 2005). At the same time, native vegetation is capable of thriving under saline and/or dry conditions. The plant physiology of such vegetation has been investigated thoroughly, but the relation with in situ soil properties (soil moisture and salinity) may be more difficult to unravel as soil moisture sensors are less sensitive in dry soil, and the signal of most soil moisture content sensors is strongly attenuated by soil salinity. Recently, polymer tensiometer were developed that are able to measure matric potentials (closely related to a soil's moisture status) in dry soils. Polymer tensiometers consist of a solid ceramic, a stainless steel cup and a pressure transducer. The ceramic consist of a support layer and a membrane with 2 nm pore-size to prevent polymer leakage. Between the ceramic membrane and the pressure transducer a tiny chamber is located, which contains the polymer solution. The polymer's osmotic potential strongly reduces the total water potential inside the polymer tensiometer, which causes build-up of osmotic pressure. Polymer tensiometers would thus be an ideal instrument to measure in dry soil, if the polymer inside the tensiometer is not affected by the salts in the soil solution. We will address some key issues regarding the use of POTs in saline environments by showing

  9. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    PubMed

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis

    PubMed Central

    Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.

    1996-01-01

    This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

  11. Thermodynamics of saline and fresh water mixing in estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  12. Modelling Regional Hotspots of Water Pollution Induced by Salinization

    NASA Astrophysics Data System (ADS)

    Malsy, M.; Floerke, M.

    2014-12-01

    Insufficient water quality is one of the main global topics causing risk to human health, biodiversity, and food security. At this, salinization of water and land resources is widely spread especially in arid to semi-arid climates, where salinization, often induced by irrigation agriculture, is a fundamental aspect of land degradation. High salinity is crucial to water use for drinking, irrigation, and industrial purposes, and therefore poses a risk to human health and ecosystem status. However, salinization is also an economic problem, in particular in those regions where agriculture makes a significant contribution to the economy and/or where agriculture is mainly based on irrigation. Agricultural production is exposed to high salinity of irrigation water resulting in lower yields. Hence, not only the quantity of irrigation water is of importance for growing cops but also its quality, which may further reduce the available resources. Thereby a major concern for food production and security persists, as irrigated agriculture accounts for over 30% of the total agricultural production. In this study, the large scale water quality model WorldQual was applied to simulate recent total dissolved solids (TDS) loadings and in-stream concentrations from point and diffuse sources to get an insight on potential environmental impacts as well as risks to food security. Regional focus in this study is on developing countries, as these are most threatened by water pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use were examined, indicating limitations to crop production. For this purpose, model simulations were conducted for the year 2010 to show the recent status of surface water quality and to identify hotspots and main causes of pollution. Our results show that salinity hotspots mainly occur in peak irrigation regions as irrigated agriculture is by far the dominant sector contributing to water abstractions as

  13. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    PubMed

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  14. Ocean Salinity Variance and the Global Water Cycle.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. W.

    2012-12-01

    Ocean salinity variance is increasing and appears to be an indicator of rapid change in the global water cycle. While the small terrestrial water cycle does not reveal distinct trends, in part due to strong manipulation by civilization, the much larger oceanic water cycle seems to have an excellent proxy for its intensity in the contrasts in sea surface salinity (SSS). Change in the water cycle is arguably the most important challenge facing mankind. But how well do we understand the oceanic response? Does the ocean amplify SSS change to make it a hyper-sensitive indicator of change in the global water cycle? An overview of the research challenges to the oceanographic community for understanding the dominant component of the global water cycle is provided.

  15. Hydrogeochemistry and microbiology of mine drainage: An update

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Blowes, D.W; Ptacek, C.J.

    2015-01-01

    The extraction of mineral resources requires access through underground workings, or open pit operations, or through drillholes for solution mining. Additionally, mineral processing can generate large quantities of waste, including mill tailings, waste rock and refinery wastes, heap leach pads, and slag. Thus, through mining and mineral processing activities, large surface areas of sulfide minerals can be exposed to oxygen, water, and microbes, resulting in accelerated oxidation of sulfide and other minerals and the potential for the generation of low-quality drainage. The oxidation of sulfide minerals in mine wastes is accelerated by microbial catalysis of the oxidation of aqueous ferrous iron and sulfide. These reactions, particularly when combined with evaporation, can lead to extremely acidic drainage and very high concentrations of dissolved constituents. Although acid mine drainage is the most prevalent and damaging environmental concern associated with mining activities, generation of saline, basic and neutral drainage containing elevated concentrations of dissolved metals, non-metals, and metalloids has recently been recognized as a potential environmental concern. Acid neutralization reactions through the dissolution of carbonate, hydroxide, and silicate minerals and formation of secondary aluminum and ferric hydroxide phases can moderate the effects of acid generation and enhance the formation of secondary hydrated iron and aluminum minerals which may lessen the concentration of dissolved metals. Numerical models provide powerful tools for assessing impacts of these reactions on water quality.

  16. Comparative analysis of the outflow water quality of two sustainable linear drainage systems.

    PubMed

    Andrés-Valeri, V C; Castro-Fresno, D; Sañudo-Fontaneda, L A; Rodriguez-Hernandez, J

    2014-01-01

    Three different drainage systems were built in a roadside car park located on the outskirts of Oviedo (Spain): two sustainable urban drainage systems (SUDS), a swale and a filter drain; and one conventional drainage system, a concrete ditch, which is representative of the most frequently used roadside drainage system in Spain. The concentrations of pollutants were analyzed in the outflow of all three systems in order to compare their capacity to improve water quality. Physicochemical water quality parameters such as dissolved oxygen, total suspended solids, pH, electrical conductivity, turbidity and total petroleum hydrocarbons were monitored and analyzed for 25 months. Results are presented in detail showing significantly smaller amounts of outflow pollutants in SUDS than in conventional drainage systems, especially in the filter drain which provided the best performance.

  17. Saline-water intrusion related to well construction in Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride

  18. Mediterranean sea water budget long-term trend inferred from salinity observations

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Zika, J. D.; Herold, L.; Josey, S. A.; Marsh, R.

    2018-01-01

    Changes in the Mediterranean water cycle since 1950 are investigated using salinity and reanalysis based air-sea freshwater flux datasets. Salinity observations indicate a strong basin-scale multi-decadal salinification, particularly in the intermediate and deep layers. Evaporation, precipitation and river runoff variations are all shown to contribute to a very strong increase in net evaporation of order 20-30%. While large temporal uncertainties and discrepancies are found between E-P multi-decadal trend patterns in the reanalysis datasets, a more robust and spatially coherent structure of multi-decadal change is obtained for the salinity field. Salinity change implies an increase in net evaporation of 8 to 12% over 1950-2010, which is considerably lower than that suggested by air-sea freshwater flux products, but still largely exceeding estimates of global water cycle amplification. A new method based on water mass transformation theory is used to link changes in net evaporation over the Mediterranean Sea with changes in the volumetric distribution of salinity. The water mass transformation distribution in salinity coordinates suggests that the Mediterranean basin salinification is driven by changes in the regional water cycle rather than changes in salt transports at the straits.

  19. Isotopic mixing model for quantifying contributions of soil water and groundwater in subsurface ('tile') drainage

    NASA Astrophysics Data System (ADS)

    Kennedy, C. D.; Gall, H.; Jafvert, C. T.; Bowen, G. J.

    2010-12-01

    Subsurface (‘tile’) drainage, consisting of buried grids of perforated pipe, has provided a means of converting millions of acres of poorly drained soils in the Midwestern U.S. into fertile cropland. However, by altering pathways and rates of soil water and groundwater movement through agricultural lands, this practice may accelerate the loss of nitrate and other agrochemicals. To better understand the hydrological controls on nitrogen dynamics in artificially drained agricultural watersheds, a field sampling program has been established at the Animal Science Research and Education Center (ASREC) at Purdue University (West Lafayette, Indiana) to (1) measure precipitation amount, tile flow, and water-table elevation, and (2) collect water samples for analysis of nitrate, major ions, and oxygen isotope ratios in precipitation, tile drainage, shallow (1 m) and deep (3 m) groundwater, and soil water during storm events. Preliminary physical, chemical, and isotopic data collected at the ASREC show a coincident timing of peak storm ‘event water’ and peak nitrate flux in tile drainage, suggesting significant routing of infiltrating event water. In this work, we aim to refine our understanding of tile drainage at the ASREC by developing a mixing model for partitioning contributions of soil water and groundwater in tile drainage during several storm runoff events ranging in precipitation intensity and coinciding with varying antecedent soil moisture conditions. The results of our model will describe tile drainage in terms of its hydrological components, soil water and groundwater, which in turn will provide a means of incorporating the effects of tile drainage in surface/subsurface hydrological transport models.

  20. Linking water and carbon cycles through salinity observed from space

    NASA Astrophysics Data System (ADS)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  1. A Geology-Based Estimate of Connate Water Salinity Distribution

    DTIC Science & Technology

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  2. Impacts of drainage water management on subsurface drain flow, nitrate concentration, and nitrate loads in Indiana

    EPA Science Inventory

    Drainage water management is a conservation practice that has the potential to reduce drainage outflow and nitrate (NO3) loss from agricultural fields while maintaining or improving crop yields. The goal of this study was to quantify the impact of drainage water management on dra...

  3. Salinity controls on plant transpiration and soil water balance

    NASA Astrophysics Data System (ADS)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  4. Batch test screening of industrial product/byproduct filter materials for agricultural drainage water treatment

    USDA-ARS?s Scientific Manuscript database

    Filter treatment may be a viable means for removing the nitrate, phosphate, and pesticides discharged with agricultural drainage waters that cause adverse environmental impacts within the U.S. on local, regional, and national scales. Laboratory batch test screening for agricultural drainage water ...

  5. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    PubMed

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  6. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  7. Modeling as a tool for management of saline soils and irrigation waters

    USDA-ARS?s Scientific Manuscript database

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  8. The effects of salinity in the soil water balance: A Budyko's approach

    NASA Astrophysics Data System (ADS)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  9. Saline water in the Little Arkansas River Basin area, south-central Kansas

    USGS Publications Warehouse

    Leonard, Robert B.; Kleinschmidt, Melvin K.

    1976-01-01

    Ground water in unconsolidated deposits of Pleistocene age in part of the Little Arkansas River basin has been polluted by the influx of saline water. The source of the saline water generally is oil-field brine that leaked from disposal ponds on the land surface. Locally, pollution by saline water also has been caused by upwelling of oil-field brine injected under pressure into the "lost-circulation zone" of the Lower Permian Wellington Formation and, possibly, by leakage of brine from corroded or improperly cased disposal wells. Anomalously high concentrations of chloride ion in some reaches of the Little Arkansas River probably can be attributed to pollution by municipal wastes rather than from inflow of saline ground water. Hydraulic connection exists between the "lost-circulation zone" and unconsolidated deposits, as evidenced by the continuing development of sinkholes, by the continuing discharge of saline water through springs and seeps along the Arkansas River south of the Little Arkansas River basin and by changes in the chloride concentration in water pumped from wells in the "lost-circulation zone." The hydraulic head in the "lost-circulation zone" is below the base of the unconsolidated deposits, and much below the potentiometric surface of the aquifer in those deposits. Any movement of water, therefore, would be downward from the "fresh-water" aquifer to the saline "lost-circulation zone."

  10. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  11. Fresh-water discharge salinity relations in the tidal Delaware River

    USGS Publications Warehouse

    Keighton, Walter B.

    1966-01-01

    Sustained flows of fresh water greater than 3,500, 4,400, and 5,300 cubic feet per second into the Delaware River estuary at Trenton, NJ assure low salinity at League Island, Eddystone, and Marcus Hook, respectively. When the discharge at Trenton is less than these critical values, salinity is very sensitive to change in discharge, so that a relatively small decrease in fresh-water discharge results in a relatively great increase in salinity. Comparison of the discharge-salinity relations observed for the 14-year period August 1949-December 1963 with relations proposed by other workers but based on other time periods indicate that such relations change with time and that salinity is affected not only by discharge but also by dredging; construction of breakwater, dikes, and tidal barriers; changing sea level; tidal elevation; tidal range; and wind intensity and direction.

  12. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    NASA Astrophysics Data System (ADS)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  13. Effects of temperature and salinity on light scattering by water

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  14. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; Scudiero, E.

    2017-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minnesota's Red River Valley (RRV). Climate change has impacted water availability with an under or over abundance, which subsequently has impacted soil salinity levels in the root zone primarily from the upward movement of salts from shallow water tables. Inventorying and monitoring the impact of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation, drainage, and crop management strategies that will sustain the agricultural productivity of the SJV and RRV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for SJV and RRV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Decision makers in state and federal agencies, irrigation and drainage district managers, soil and water resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  15. Spinach biomass yield and physiological response to interactive salinity and water stress

    USDA-ARS?s Scientific Manuscript database

    Critical shortages of fresh water throughout arid regions means that growers must face the choice of applying insufficient fresh water, applying saline water, or consider the option of combined water and salt stress. The best approach to manage drought and salinity is evaluation of the impact of wat...

  16. Salinity in the Colorado River in the Grand Valley, western Colorado, 1994-95

    USGS Publications Warehouse

    Butler, David L.; von Guerard, Paul B.

    1996-01-01

    Salinity, or the dissolved-solids concentration, is the measure of salts such as sodium chloride, calcium bicarbonate, and calcium sulfate that are dissolved in water. About one-half of the salinity in the Colorado River Basin is from natural sources (U.S. Department of the Interior, 1995), such as thermal springs in the Glenwood-Dotsero area, located about 90 miles upstream from Grand Junction (fig. 1). Effects of human activities, such as irrigation, reservoir evaporation, and transbasin diversions, have increased the levels of salinity in the Colorado River. High salinity can affect industrial and municipal water users by causing increased water-treatment costs, increased deterioration of plumbing and appliances, increased soap needs, and undesirable taste of drinking water. High salinity also can cause lower crop yields by reducing water and nutrient uptake by plants and can increase agricultural production costs because of higher leaching and drainage requirements. Agricultural losses might occur when salinity reaches about 700?850 milligrams per liter (U.S Department of the Interior, 1994). Figure 1. Irrigated area in the Grand Valley and locations of sampling sites for the 1994?95 salinity study of the Colorado River. The Colorado River is the major source of irrigation water to the Grand Valley (fig. 1) and also is one source of water for the Clifton Water District, which supplies domestic water to part of the eastern Grand Valley. During spring and early summer in 1994, the Colorado River in the Grand Valley had lower than average streamflow. There was concern by water users about the effect of this low streamflow on salinity in the river. In 1994, the U.S. Geological Survey (USGS), in cooperation with the Colorado River Water Conservation District, began a study to evaluate salinity in the Colorado River. This fact sheet describes results of that study. The specific objectives of the fact sheet are to (1) compare salinity in the Colorado River among

  17. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    PubMed

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  18. Freshwater salinization syndrome on a continental scale

    PubMed Central

    Likens, Gene E.; Pace, Michael L.; Utz, Ryan M.; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-01

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. PMID:29311318

  19. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    PubMed

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  20. Speciation of Cu and Zn in drainage water from agricultural soils.

    PubMed

    Aldrich, Annette P; Kistler, David; Sigg, Laura

    2002-11-15

    Inputs of copper and zinc from agricultural soils into the aquatic system were investigated in this study, because of their heavy agricultural usage as feed additives and components of fertilizers and fungicides. As the mobility and bioavailability of these metals are affected by their speciation, the lipophilic, colloidal and organic fractions were determined in drainage water from a loamy and a humic soil treated with fungicides or manure. This study therefore investigates the impact of agricultural activity on a natural environment and furthers our understanding of the mobility of metals in agricultural soils and aquatic pollution in rural areas. Marked increases in the total dissolved metal concentrations were observed in the drainage water during rain events with up to 0.3 microM Cu and 0.26 microM Zn depending on the intensity of the rainfall and soil type. The mobile metal fractions were of a small molecular size (<10 kD) and mainly hydrophilic. Lipophilic complexes originating from a dithiocarbamate (DTC) fungicide could not be observed in the drainage water; however, small amounts of lipophilic metal complexes may be of natural origin. Cu was organically complexed to > 99.9% by abundant organic ligands (log K 10.5-11.0). About 50% of dissolved Zn were electrochemically labile, and the other 50% were complexed by strong organic ligands (log K 8.2-8.6). Therefore very little free metal species were found suggesting a low bioavailability of these metals in the drainage water even at elevated metal concentrations.

  1. The long-term resistance mechanisms, critical irrigation threshold and relief capacity shown by Eugenia myrtifolia plants in response to saline reclaimed water.

    PubMed

    Acosta-Motos, José Ramón; Hernández, José Antonio; Álvarez, Sara; Barba-Espín, Gregorio; Sánchez-Blanco, María Jesús

    2017-02-01

    Salts present in irrigation water are serious problems for commercial horticulture, particularly in semi-arid regions. Reclaimed water (RW) typically contains, among others elements, high levels of salts, boron and heavy metal. Phytotoxic ion accumulation in the substrate has been linked to different electric conductivities of the treatments. Based on these premises, we studied the long-term effect of three reclaimed water treatments with different saline concentrations on Eugenia myrtifolia plants. We also looked at the ability of these plants to recover when no drainage was applied. The RW with the highest electric conductivity (RW3, EC = 6.96 dS m -1 ) provoked a number of responses to salinity in these plants, including: 1) accumulation and extrusion of phytotoxic ions in roots; 2) a decrease in the shoot/root ratio, leaf area, number of leaves; 3) a decrease in root hydraulic conductivity, leaf water potential, the relative water content of leaves, leaf stomatal conductance, the leaf photosynthetic rate, water-use efficiency and accumulated evapotranspiration in order to limit water loss; and 4) changes in the antioxidant defence mechanisms. These different responses induced oxidative stress, which can explain the damage caused in the membranes, leading to the death of RW3 plants during the relief period. The behaviour observed in RW2 plants was slightly better compared with RW3 plants, although at the end of the experiment about 55% of the RW2 plants also died, however RW containing low salinity level (RW1, EC = 2.97 dS m -1 ) can be effective for plant irrigation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    NASA Astrophysics Data System (ADS)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  3. Stormwater Drainage Wells

    EPA Pesticide Factsheets

    Provides information for identifying stormwater drainage wells, learn how to comply with regulations for storm water drainage wells, and how to reduce the threat to ground water from stormwater injection wells.

  4. Water-quality and sediment-chemistry data of drain water and evaporation ponds from Tulare Lake Drainage District, Kings County, California March 1985 to March 1986

    USGS Publications Warehouse

    Fujii, Roger

    1988-01-01

    Trace element and major ion concentrations were measured in water samples collected monthly between March 1985 and March 1986 at the MD-1 pumping station at the Tulare Lake Drainage District evaporation ponds, Kings County, California. Samples were analyzed for selected pesticides several times during the year. Salinity, as measured by specific conductance, ranged from 11,500 to 37,600 microsiemens/centimeter; total recoverable boron ranged from 4,000 to 16,000 micrg/L; and total recoverable molybdenum ranged from 630 to 2,600 microg/L. Median concentrations of total arsenic and total selenium were 97 and 2 microg/L. Atrazine, prometone, propazine, and simazine were the only pesticides detected in water samples collected at the MD-1 pumping station. Major ions, trace elements, and selected pesticides also were analyzed in water and bottom-sediment samples from five of the southern evaporation ponds at Tulare Lake Drainage District. Water enters the ponds from the MD-1 pumping station at pond 1 and flows through the system terminating at pond 10. The water samples increased in specific conductance (21,700 to 90,200 microsiemens/centimeter) and concentrations of total arsenic (110 to 420 microg/L), total recoverable boron (12,000 to 80,000 microg/L) and total recoverable molybdenum (1,200 to 5,500 microg/L) going from pond 1 to pond 10, respectively. Pesticides were not detected in water from any of the ponds sampled. Median concentrations of total arsenic and total selenium in the bottom sediments were 4.0 and 0.9 microg/g, respectively. The only pesticides detected in bottom sediment samples from the evaporation ponds were DDD and DDE, with maximum concentration of 0.8 microg/kilogram. (Author 's abstract)

  5. Impact of the water salinity on the hydraulic conductivity of fen peat

    NASA Astrophysics Data System (ADS)

    Gosch, Lennart; Janssen, Manon; Lennartz, Bernd

    2017-04-01

    Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this ongoing study, we are aiming at quantifying the impact of higher salinities (up to 3.5 %) on Ks of fen peat to get a better understanding of the water and solute exchange between coastal peatlands and the adjacent sea. Two approaches differing in measurement duration employing a constant-head upward-flow permeameter were conducted. At first, Ks was measured at an initial salinity for several hours before the salinity was abruptly increased and the measurement continued. In the second approach, Ks was measured for 15 min at the salt content observed during sampling. Then, samples were completely (de)salinized via diffusion for several days/weeks before a comparison measurement was carried out. The results for degraded fen peats show a decrease of Ks during long-term measurements which does not depend on the water salinity. A slow, diffusion-controlled change in salinity does not modify the overall outcome that the duration of measurements has a stronger impact on Ks than the salinity. Further experiments will show if fen peat soils differing in their state of degradation exhibit a different behavior. A preliminary conclusion is that salinity might have a less important effect on hydraulic properties of fen peat than it was observed for bog peat.

  6. Drainage of the maxillary sinus: a comparative anatomy study in humans and goats.

    PubMed

    Ford, Rebecca L; Barsam, Alon; Velusami, Prabhu; Ellis, Harold

    2011-02-01

    The maxillary sinuses are the most frequently infected paranasal sinuses in humans. It has been suggested that infection occurs relatively commonly in the maxillary sinuses owing to the position of their ostia high on their superomedial walls, which may be suboptimal for natural drainage. This may represent evolutionary lag, whereby the ostia remained in a quadrupedal position as bipedal humans evolved from their primate ancestors. This study examined the hypothesis that drainage of the maxillary sinus is optimal in the quadrupedal position. The drainage of the human maxillary sinus and an analogous quadruped, the goat, was examined and compared in the upright, quadrupedal, and intermediate positions. Department of Anatomy, King's College London. Cadaveric human and goat maxillary sinuses were filled with saline in each position and the volume at which saline overflowed through the ostia was noted. Volume at which spontaneous drainage occurred through ostia. The volume of saline instilled before drainage was maximal in the upright position and reduced with each increase in anterior tilt, with drainage occurring most easily at 90° for both human and goat sinuses. Drainage was significantly better in the quadrupedal head position than upright in both species (p < .01). This study demonstrated that human maxillary sinuses exhibit better passive drainage through their ostia when tilted anteriorly to mimic a quadrupedal head position. This may be an example of an evolutionary lag phenomenon and could be one etiologic factor in the prevalence of maxillary sinusitis in humans.

  7. Re-engineering the urban drainage system for resource recovery and protection of drinking water supplies.

    PubMed

    Gumbo, B

    2000-01-01

    The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.

  8. Freshwater salinization syndrome on a continental scale.

    PubMed

    Kaushal, Sujay S; Likens, Gene E; Pace, Michael L; Utz, Ryan M; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-23

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. Copyright © 2018 the Author(s). Published by PNAS.

  9. Slime coating of kaolinite on chalcopyrite in saline water flotation

    NASA Astrophysics Data System (ADS)

    Li, Zhi-li; Rao, Feng; Song, Shao-xian; Li, Yan-mei; Liu, Wen-biao

    2018-05-01

    In saline water flotation, the salinity can cause a distinguishable slime coating of clay minerals on chalcopyrite particles through its effect on their electrical double layers in aqueous solutions. In this work, kaolinite was used as a representative clay mineral for studying slime coating during chalcopyrite flotation. The flotation of chalcopyrite in the presence and absence of kaolinite in tap water, seawater, and gypsum-saturated water and the stability of chalcopyrite and kaolinite particles in slurries are presented. Zeta-potential distributions and scanning electron microscopy images were used to characterize and explain the different slime coating degrees and the different flotation performances. Kaolinite particles induced slime coating on chalcopyrite surfaces and reduced chalcopyrite floatability to the greatest extent when the pH value was in the alkaline range. At 0.24wt% of kaolinite, the chalcopyrite floatability was depressed by more than 10% at alkaline pH levels in tap water. Salinity in seawater and gypsum-saturated water compressed the electrical double layers and resulted in extensive slime coating.

  10. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Water-Quality Conditions and Constituent Loads, Water Years 1996-2002, and Water-Quality Trends, Water Years 1983-2002, in the Scituate Reservoir Drainage Area, Rhode Island

    USGS Publications Warehouse

    Nimiroski, Mark T.; DeSimone, Leslie A.; Waldron, Marcus C.

    2008-01-01

    The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. Water-quality data and streamflow data collected at 37 surface-water monitoring stations in the Scituate Reservoir drainage area, Rhode Island, from October 1, 1995 through September 30, 2002, (water years (WY) 1996-2002) were analyzed to determine water-quality conditions and constituent loads in the drainage area. Trends in water quality, including physical properties and concentrations of constituents, were investigated for the same period and for a longer period from October 1, 1982 through September 30, 2002 (WY 1983-2002). Water samples were collected and analyzed by Providence Water Supply Board, the agency that manages the Scituate Reservoir. Streamflow data were collected by the U.S. Geological Survey. Median values and other summary statistics were calculated for WY 1996-2002 for all 37 monitoring stations for pH, color, turbidity, alkalinity, chloride, nitrite, nitrate, total coliform bacteria, Escherichia coli (E. coli) bacteria, orthophosphate, iron, and manganese. Instantaneous loads and yields (loads per unit area) of total coliform and E. coli bacteria (indicator bacteria), chloride, nitrite, nitrate, orthophosphate, iron, and manganese were calculated for all sampling dates during WY 1996-2002 for the 23 stations with streamflow data. Values of physical properties and concentrations of constituents were compared to State and Federal water-quality standards and guidelines, and were related to streamflow, land-use characteristics, and road density. Tributary stream water in the Scituate Reservoir drainage area for WY 1996-2002 was slightly acidic (median pH of all stations equal to 6.1) and contained low concentrations of chloride (median 13 milligrams per liter (mg/L)), nitrate (median 0.04 mg/L as N), and orthophosphate (median 0.04 mg/L as P). Turbidity and alkalinity values also were low with median values of 0

  12. Relationships between groundwater, surface water, and soil salinity in Polder 32, Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Fry, D. C.; Ayers, J. C.

    2014-12-01

    In the coastal areas of Southwest Bangladesh polders are surrounded by tidal channels filled with brackish water. In the wet season, farmers create openings in the embankments to irrigate rice paddies. In the dry season, farmers do the same to create saline shrimp ponds. Residents on Polder 32, located within the Ganges-Brahmaputra-Meghna delta system, practice these seasonal farming techniques. Soils in the area are entisols, being sediment recently deposited, and contain mostly silt-sized particles. Brackish water in brine shrimp ponds may deposit salt in the soil, causing soil salinization. However, saline connate groundwater could also be contributing to soil salinization. Groundwater, surface water (fresh water pond, rice paddy and tidal channel water) and soil samples have been analyzed via inductively coupled plasma optical emission spectroscopy, inductively coupled plasma mass spectroscopy and ion chromatography in an attempt to correlate salinity measurements with each other in order to determine major sources of soil salinity. Multiple parameters, including distances of samples from tidal channels, inland streams, shrimp ponds and tube wells were measured to see if spatial correlations exist. Similarly, values from wet and dry seasons were compared to quantify temporal variations. Salt content in many soil samples were found to be high enough to significantly decrease rice yields. Continued soil salinization can decrease these yields even more, leading to farmers not producing enough food to sustain their families.

  13. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    NASA Astrophysics Data System (ADS)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  14. Discussion on Construction Technology of Prestressed Reinforced Concrete Pipeline of Municipal Water Supply and Drainage

    NASA Astrophysics Data System (ADS)

    Li, Chunyan

    2017-11-01

    Prestressed reinforced concrete pipe has the advantages of good bending resistance, good anti-corrosion, anti-seepage, low price and so on. It is very common in municipal water supply and drainage engineering. This paper mainly explore the analyze the construction technology of the prestressed reinforced concrete pipe in municipal water supply and drainage engineering.

  15. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    NASA Astrophysics Data System (ADS)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  16. Heavy metal displacement in salt-water-irrigated soil during phytoremediation.

    PubMed

    Wahla, Intkhab Hazoor; Kirkham, M B

    2008-09-01

    In regions where phytoremediation is carried out, brackish water must often be used. However, no information exists concerning the consequences of saline-water irrigation on the mobility of heavy metals in sludge applied to soil during phytoremediation. The purpose of this experiment was to determine the effect of NaCl irrigation on displacement of seven heavy metals in sludge (Cd, Cu, Fe, Mn, Ni, Pb, Zn) applied to the surface of soil columns containing barley plants. Half the columns received NaCl irrigation (10,000 mg L(-1)) and half the columns received tap-water irrigation. Half the columns were treated with the chelating agent EDTA. With no EDTA, irrigation with the NaCl solution increased the concentrations of Cd, Fe, Mn, and Pb in the drainage water above drinking-water standards. Irrigation of sludge farms with brackish water is not recommended, because saline water increased the mobility of the heavy metals and they polluted the drainage water.

  17. Interactive effects of salinity and N on pepper (Capsicum annuum L.) yield, water use efficiency and root zone and drainage salinity

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to determine the salt tolerance of pepper (Capsicum annuum L.) under greenhouse conditions and to examine the interactive effects of salinity and nitrogen (N) fertilizer levels on yield. The present study shows the effects of optimal and suboptimal N fertilizer levels (270 ...

  18. Effects of coal mine drainage on the water quality of small receiving streams in Washington, 1975-77

    USGS Publications Warehouse

    Packard, F.A.; Skinner, E.L.; Fuste, L.A.

    1988-01-01

    Drainage from abandoned coal mines in western and central Washington has minimal environmental impact. Water quality characteristics that have the most significant environmental impact are suspended sediment and turbidity. Water quality data from 51 abandoned coal mines representing 11 major coal bearing areas indicate that less than 1% of the mine drainage has a pH of 4.5 or less. Fifty percent of the drainage is alkaline and has pH 7.0 and greater, and about 95% of the drainage has pH 6.0 and greater. Less than 2% is acidified to a pH of 5.6, a point where water and free (atmospheric) carbon dioxide are in equilibrium. The area where pH 5.6 or less is most likely to occur is in the Centralia/Chehalis mine district. No significant difference in diversity of benthic organisms was found between stations above and below the mine drainage. However, within the 50-ft downstream reach ostracods were more abundant than above the mine drainage and mayflies, stoneflies, and caddisflies were less abundant than at the control site. Correlations to water quality measurements show that these faunal changes are closely associated with iron and sulfate concentrations. (USGS)

  19. Surface-water salinity in the Gunnison River Basin, Colorado, water years 1989 through 2007

    USGS Publications Warehouse

    Schaffrath, Keelin R.

    2012-01-01

    Elevated levels of dissolved solids in water (salinity) can result in numerous and costly issues for agricultural, industrial, and municipal water users. The Colorado River Basin Salinity Control Act of 1974 (Public Law 93-320) authorized planning and construction of salinity-control projects in the Colorado River Basin. One of the first projects was the Lower Gunnison Unit, a project to mitigate salinity in the Lower Gunnison and Uncompahgre River Basins. In cooperation with the Bureau of Reclamation (USBR), the U.S. Geological Survey conducted a study to quantify changes in salinity in the Gunnison River Basin. Trends in salinity concentration and load during the period water years (WY) 1989 through 2004 (1989-2004) were determined for 15 selected streamflow-gaging stations in the Gunnison River Basin. Additionally, trends in salinity concentration and load during the period WY1989 through 2007 (1989-2007) were determined for 5 of the 15 sites for which sufficient data were available. Trend results also were used to identify regions in the Lower Gunnison River Basin (downstream from the Gunnison Tunnel) where the largest changes in salinity loads occur. Additional sources of salinity, including residential development (urbanization), changes in land cover, and natural sources, were estimated within the context of the trend results. The trend results and salinity loads estimated from trends testing also were compared to USBR and Natural Resources Conservation Service (NRCS) estimates of off-farm and on-farm salinity reduction from salinity-control projects in the basin. Finally, salinity from six additional sites in basins that are not affected by irrigated agriculture or urbanization was monitored from WY 2008 to 2010 to quantify what portion of salinity may be from nonagricultural or natural sources. In the Upper Gunnison area, which refers to Gunnison River Basin above the site located on the Gunnison River below the Gunnison Tunnel, estimated mean annual

  20. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J. C.; Visser, A.; Borren, W.; Winegram, M.; van der Velde, Y.; Klein, J.; Broers, H. P.

    2016-01-01

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P

  2. Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yongqiang; Xie, Quan; Sari, Ahmad

    Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less

  3. Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs

    DOE PAGES

    Chen, Yongqiang; Xie, Quan; Sari, Ahmad; ...

    2017-11-21

    Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less

  4. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching.

    PubMed

    Wang, Shutao; Feng, Qian; Zhou, Yapeng; Mao, Xiaoxi; Chen, Yaheng; Xu, Hao

    2017-01-01

    Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG), the pH decreased from 8.21-8.35 to 7.71-7.88, the conductivity decreased from 0.95-1.14 ms/cm to 0.45-0.68 ms/cm, and the total soluble salt content decreased from 2.63-2.81 g/kg to 2.28-2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ), the pH decreased from 8.36-8.54 to 7.73-7.96, the conductivity decreased from 1.58-1.68 ms/cm to 1.45-1.54 ms/cm, and the total soluble salt decreased from 2.81-4.03 g/kg to 2.56-3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils.

  5. Drainage water management combined with cover crop enhances reduction of soil phosphorus loss.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T; Wang, Y T

    2017-05-15

    Integrating multiple practices for mitigation of phosphorus (P) loss from soils may enhance the reduction efficiency, but this has not been studied as much as individual ones. A four-year study was conducted to determine the effects of cover crop (CC) (CC vs. no CC, NCC) and drainage water management (DWM) (controlled drainage with sub-irrigation, CDS, vs. regular free tile drainage, RFD) and their interaction on P loss through both surface runoff (SR) and tile drainage (TD) water in a clay loam soil of the Lake Erie region. Cover crop reduced SR flow volume by 32% relative to NCC, regardless of DWM treatment. In contrast, CC increased TD flow volume by 57 and 9.4% with CDS and RFD, respectively, compared to the corresponding DWM treatment with NCC. The total (SR+TD) field water discharge volumes were comparable amongst all the treatments. Cover crop reduced flow-weighted mean (FWM) concentrations of particulate P (PP) by 26% and total P (TP) by 12% in SR, while it didn't affect the FWM dissolved reactive P (DRP) concentration, regardless of DWM treatments. Compared with RFD, CDS reduced FWM DRP concentration in TD water by 19%, while CC reduced FWM PP and TP concentrations in TD by 21 and 17%, respectively. Total (SR+TD) soil TP loss was the least with CDS-CC followed by RFD-CC, CDS-NCC, and RFD-NCC. Compared with RFD-NCC, currently popular practice in the region, total TP loss was reduced by 23% with CDS-CC. The CDS-CC system can be an effective practice to ultimately mitigate soil P loading to water resource. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    PubMed

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Saline water in southeastern New Mexico

    USGS Publications Warehouse

    Hiss, W.L.; Peterson, J.B.; Ramsey, T.R.

    1969-01-01

    Saline waters from formations of several geologic ages are being studied in a seven-county area in southeastern New Mexico and western Texas, where more than 30,000 oil and gas tests have been drilled in the past 40 years. This area of 7,500 sq. miles, which is stratigraphically complex, includes the northern and eastern margins of the Delaware Basin between the Guadalupe and Glass Mountains. Chloride-ion concentrations in water produced from rocks of various ages and depths have been mapped in Lea County, New Mexico, using machine map-plotting techniques and trend analyses. Anomalously low chloride concentrations (1,000-3,000 mg/l) were found along the western margin of the Central Basin platform in the San Andres and Capitan Limestone Formations of Permian age. These low chloride-ion concentrations may be due to preferential circulation of ground water through the more porous and permeable rocks. Data being used in the study were obtained principally from oil companies and from related service companies. The P.B.W.D.S. (Permian Basin Well Data System) scout-record magnetic-tape file was used as a framework in all computer operations. Shallow or non-oil-field water analyses acquired from state, municipal, or federal agencies were added to these data utilizing P.B.W.D.S.-compatible reference numbers and decimal latitude-longitude coordinates. Approximately 20,000 water analyses collected from over 65 sources were coded, recorded on punch cards and stored on magnetic tape for computer operations. Extensive manual and computer error checks for duplication and accuracy were made to eliminate data errors resulting from poorly located or identified samples; non-representative or contaminated samples; mistakes in coding, reproducing or key-punching; laboratory errors; and inconsistent reporting. The original 20,000 analyses considered were reduced to 6,000 representative analyses which are being used in the saline water studies. ?? 1969.

  8. Selenium stable isotope ratios in California agricultural drainage water management systems

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Tanji, K.K.; Gao, S.; Bullen, T.D.

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%o) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(O), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%o) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%o) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  9. Coordinating management of water, salinity and trace elements for cotton under mulched drip irrigation with brackish water

    NASA Astrophysics Data System (ADS)

    Jin, M.; Chen, W.; Liang, X.

    2016-12-01

    Rational irrigation with brackish water can increase crop production, but irrational use may cause soil salinization. In order to understand the relationships among water, salt, and nutrient (including trace elements) and find rational schemes to manage water, salinity and nutrient in cotton fields, field and pot experiments were conducted in an arid area of southern Xinjiang, northwest China. Field experiments were performed from 2008 to 2015, and involved mulched drip irrigation during the growing season and flood irrigation afterwards. The average cotton yield of seven years varied between 3,575 and 5,095 kg/ha, and the irrigation water productivity between 0.91 and 1.16 kg/m3. With the progress of brackish water irrigation, Cu, Fe, Mn, and Na showed strong aggregation in topsoil at the narrow row, whereas the contents of Ca and K decreased in the order of inter-mulch gap, the wide inter row, and the narrow row. The contents of Cu, Fe, Mn, Ca and K in root soil reduced with cotton growth, whereas Na increased. Although mulched drip irrigation during the growing season resulted in an increase in salinity in the root zone, flood irrigation after harvesting leached the accumulated salts below background levels. Based on experiments a scheme for coordinating management of soil water, salt, and nutrient is proposed, that is, under the planting pattern of one mulch, two drip lines and four rows, the alternative irrigation plus a flood irrigation after harvesting or before seeding was the ideal scheme. Numerical simulations using solute transport model coupled with the root solute uptake based on the experiments and extended by another 20 years, suggest that the mulched drip irrigation using alternatively fresh and brackish water during the growing season and flood irrigation with fresh water after harvesting, is a sustainable irrigation practice that should not lead to soil salinization. Pot experiments with trace elements and different saline water showed

  10. Biotic variation in coastal water bodies in Sussex, England: Implications for saline lagoons

    NASA Astrophysics Data System (ADS)

    Joyce, Chris B.; Vina-Herbon, Cristina; Metcalfe, Daniel J.

    2005-12-01

    Coastal water bodies are a heterogeneous resource typified by high spatial and temporal variability and threatened by anthropogenic impacts. This includes saline lagoons, which support a specialist biota and are a priority habitat for nature conservation. This paper describes the biotic variation in coastal water bodies in Sussex, England, in order to characterise the distinctiveness of the saline lagoon community and elucidate environmental factors that determine its distribution. Twenty-eight coastal water bodies were surveyed for their aquatic flora and invertebrate fauna and a suite of exploratory environmental variables compiled. Ordination and cluster analyses were used to examine patterns in community composition and relate these to environmental parameters. Biotic variation in the coastal water body resource was high. Salinity was the main environmental parameter explaining the regional distribution of taxa; freshwater and saline assemblages were evident and related to sea water ingress. Freshwater sites were indicated by the plant Myriophyllum spicatum and gastropod mollusc Lymnaea peregra, while more saline communities supported marine and brackish water taxa, notably a range of chlorophytic algae and the bivalve mollusc Cerastoderma glaucum. Site community differences were also related to bank slope and parameters describing habitat heterogeneity. A saline lagoon community was discerned within the matrix of biotic variation consisting of specialist lagoonal species with associated typically euryhaline taxa. For fauna, the latter were the molluscs Abra tenuis and Hydrobia ulvae, and the crustaceans Corophium volutator and Palaemonetes varians, and for flora they were the algae Ulva lactuca, Chaetomorpha mediterranea, Cladophora spp. and Enteromorpha intestinalis. One non-native polychaete species, Ficopomatus enigmaticus, also strongly influenced community structure within the lagoonal resource. The community was not well defined as specialist and

  11. Salinization may attack you from behind: upconing and related long-term downstream salinization in the Amsterdam Water Supply Dunes (Invited)

    NASA Astrophysics Data System (ADS)

    Olsthoorn, T.

    2010-12-01

    Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more

  12. Drainage Water Filtration

    USDA-ARS?s Scientific Manuscript database

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  13. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  14. Reducing phosphorus loss in tile water with managed drainage in a claypan soil.

    PubMed

    Nash, Patrick R; Nelson, Kelly A; Motavalli, Peter P; Nathan, Manjula; Dudenhoeffer, Chris

    2015-03-01

    Installing subsurface tile drain systems in poorly drained claypan soils to improve corn ( L.) yields could potentially increase environmental phosphorus (P) loss through the tile drainage system. The objectives of the study were to quantify the average concentration and loss of ortho-P in tile drain water from a claypan soil and to determine whether managed subsurface drainage (MD) could reduce ortho-P loss in tile water compared with free subsurface drainage (FD). Flow-weighted ortho-P concentration in the tile water was significantly lower with MD (0.09 mg L) compared with that of FD (0.15 mg L). Ortho-P loss in the tile water of this study was reduced with MD (36 g ha) by 80% compared with FD (180 g ha). Contrary to previous research, reduced ortho-P loss observed over the 4-yr study was not solely due to the reduced amount of water drained annually (63%) with MD compared with FD. During the spring period, when flow was similar between MD and FD, the concentration of ortho-P in the tile water generally was lower with MD compared with FD, which resulted in significantly less ortho-P loss with MD. We speculate that MD's ability to conserve water during the dry summer months increased corn's uptake of water and P, which reduced the amount of P available for leaching loss in the subsequent springs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    PubMed

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  16. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diameter piping shall be required for water closets. (f) Wet-vented drainage system. Plumbing fixture traps... connected to the drainage system shall be installed with a water seal trap (§ 3280.606(a)). (2) The drainage... to which it is connected and shall be equipped with a water-tight cap or plug matching the drain...

  17. Numerical Simulation of Ground-Water Salinization in the Arkansas River Corridor, Southwest Kansas

    NASA Astrophysics Data System (ADS)

    Whittemore, D. O.; Perkins, S.; Tsou, M.; McElwee, C. D.; Zhan, X.; Young, D. P.

    2001-12-01

    The salinity of ground water in the High Plains aquifer underlying the upper Arkansas River corridor in southwest Kansas has greatly increased during the last few decades. The source of the salinization is infiltration of Arkansas River water along the river channel and in areas irrigated with diverted river water. The saline river water is derived from southeastern Colorado where consumptive losses of water in irrigation systems substantially concentrate dissolved solids in the residual water. Before development of surface- and ground-water resources, the Arkansas River gained flow along nearly all of its length in southwest Kansas. Since the 1970's, ground-water levels have declined in the High Plains aquifer from consumptive use of ground water. The water-level declines have now changed the river to a generally losing rather than gaining system. We simulated ground-water flow in the aquifers underlying 126 miles of the river corridor using MODFLOW integrated with the GIS software ArcView (Tsou and Whittemore, 2001). There are two layers in the model, one for the Quaternary alluvial aquifer and the other for the underlying High Plains aquifer. We prepared a simulation for circa 1940 that represented conditions prior to substantial ground-water development, and simulations for 40 years into the future that were based on holding constant either average water use or average ground-water levels for the 1990's. Streamflows along the river computed from the model results illustrated the flow gains from ground-water discharge for circa 1940 and losses during the 1990's. We modeled the movement of salinity as particle tracks generated by MODPATH based on the MODFLOW solutions. The results indicate that during the next 40 years, saline water will move a substantial distance in the High Plains aquifer on the south side of the central portion of the river valley. The differences between the circa 1940 and 1990's simulations fit the observed data that show large increases in

  18. Fifty Years of Water Cycle Change expressed in Ocean Salinity

    NASA Astrophysics Data System (ADS)

    Durack, P. J.; Wijffels, S.

    2010-12-01

    Using over 1.6 million profiles of salinity, potential temperature and density from historical archives and Argo, we derive the global field of linear change for ocean state properties over the period 1950-2008, taking care to minimise aliasing associated with seasonal and El Nino Southern Oscillation modes. We find large, robust and spatially coherent multi-decadal linear trends in ocean surface salinities. Increases are found in evaporation-dominated regions and freshening in precipitation-dominated regions. The spatial patterns of surface change strongly resemble the climatological mean surface salinity field, consistent with an amplification of the global water cycle. A robust amplification of the mean salinity pattern of 8% (to 200m depth) is found globally and 5-9% is found in each of the 3 key ocean basins. 20th century runs from the CMIP3 model suite support the relationship between amplified patterns of freshwater flux driving an amplified pattern of ocean surface salinity only in models that warm substantially. Models with volcanic aerosols show a diminished warming response and a corresponding weak response in ocean surface salinity change, which implies dampened changes to the global water cycle. The warming response represented in realistic (when compared to observations) 20th century simulations appear quite similar in their broad zonal patterns to those of the projected 21st century simulations, these projected runs being strongly forced by greenhouse gases. This pattern amplification is mostly absent from 20th century simulations which include volcanic forcing. While we confirm that global mean precipitation only weakly change with surface warming (2-3% K-1), the pattern amplification rate in both the freshwater flux and ocean salinity fields indicate larger responses. Our new observed salinity estimates suggest a change of between 8-16% K-1, close to, or greater than, the theoretical response described by the Clausius-Clapeyron relation. The

  19. The origin and mechanisms of salinization of the Lower Jordan River

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2004-01-01

    The chemical and isotopic (87Sr/86Sr, ??11B, ??34Ssulfate, ??18Owater, ??15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river: (1) A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), ??34Ssulfate (-2???), high ??11B (???36???), ??15Nnitrate (???15???) and high ??18Owater (-2 to-3???) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow. (2) A central zone (20-50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows. (3) A southern section (50-100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70-80 km) and summer (80-100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr???0.70865; ??11B???25???) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31-180 mM; SO4/Cl???0.2-0.5; Br/Cl???2-3??10-3; 87Sr/86Sr???0.70805; ??11B???30???; ??15Nnitrate ???17???, ??34Ssulfate=4-10???), and Ca-chloride Rift valley brines (Cl-=846-1500 mM; Br/Cl???6-8??10-3; 87Sr/86Sr???0

  20. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching

    PubMed Central

    Feng, Qian; Mao, Xiaoxi

    2017-01-01

    Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG), the pH decreased from 8.21–8.35 to 7.71–7.88, the conductivity decreased from 0.95–1.14 ms/cm to 0.45–0.68 ms/cm, and the total soluble salt content decreased from 2.63–2.81 g/kg to 2.28–2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ), the pH decreased from 8.36–8.54 to 7.73–7.96, the conductivity decreased from 1.58–1.68 ms/cm to 1.45–1.54 ms/cm, and the total soluble salt decreased from 2.81–4.03 g/kg to 2.56–3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils. PMID:29091963

  1. Salinity acclimation enhances salinity tolerance in tadpoles living in brackish water through increased Na⁺ , K⁺ -ATPase expression.

    PubMed

    Wu, Chi-Shiun; Yang, Wen-Kai; Lee, Tsung-Han; Gomez-Mestre, Ivan; Kam, Yeong-Choy

    2014-01-01

    Amphibians are highly susceptible to osmotic stress but, nonetheless, some species can adapt locally to withstand moderately high levels of salinity. Maintaining the homeostasis of body fluids by efficient osmoregulation is thus critical for larval survival in saline environments. We studied the role of acclimation in increased physiological tolerance to elevated water salinity in the Indian rice frog (Fejervarya limnocharis) tadpoles exposed to brackish water. We quantified the effects of salinity acclimation on tadpole survival, osmolality, water content, and gill Na⁺ , K⁺ -ATPase (NKA) expression. Tadpoles did not survive over 12 hr if directly transferred to 11 ppt (parts per thousand) whereas tadpoles previously acclimated for 48 hr in 7  ppt survived at least 48 hr. We reared tadpoles in 3 ppt and then we transferred them to one of (a) 3 ppt, (b) 11  ppt, and (c) 7  ppt for 48 hr and then 11 ppt. In the first 6 hr after transfer to 11 ppt, tadpole osmolality sharply increased and tadpole water content decreased. Tadpoles pre-acclimated for 48 hr in 7 ppt were able to maintain lower and more stable osmolality within the first 3 hr after transfer. These tadpoles initially lost water content, but over the next 6 hr gradually regained water and stabilized. In addition, they had a higher relative abundance of NKA proteins than tadpoles in other treatments. Pre-acclimation to 7 ppt for 48 hr was hence sufficient to activate NKA expression, resulting in increased survivorship and reduced dehydration upon later transfer to 11 ppt. J © 2013 Wiley Periodicals, Inc.

  2. Metal speciation and potential bioavailability changes during discharge and neutralisation of acidic drainage water.

    PubMed

    Simpson, Stuart L; Vardanega, Christopher R; Jarolimek, Chad; Jolley, Dianne F; Angel, Brad M; Mosley, Luke M

    2014-05-01

    The discharge of acid drainage from the farm irrigation areas to the Murray River in South Australia represents a potential risk to water quality. The drainage waters have low pH (2.9-5.7), high acidity (up to 1190 mg L(-1) CaCO3), high dissolved organic carbon (10-40 mg L(-1)), and high dissolved Al, Co, Ni and Zn (up to 55, 1.25, 1.30 and 1.10 mg L(-1), respectively) that represent the greatest concern relative to water quality guidelines (WQGs). To provide information on bioavailability, changes in metal speciation were assessed during mixing experiments using filtration (colloidal metals) and Chelex-lability (free metal ions and weak inorganic metal complexes) methods. Following mixing of drainage and river water, much of the dissolved aluminium and iron precipitated. The concentrations of other metals generally decreased conservatively in proportion to the dilution initially, but longer mixing periods caused increased precipitation or adsorption to particulate phases. Dissolved Co, Mn and Zn were typically 95-100% present in Chelex-labile forms, whereas 40-70% of the dissolved nickel was Chelex-labile and the remaining non-labile fraction of dissolved nickel was associated with fine colloids or complexed by organic ligands that increased with time. Despite the different kinetics of precipitation, adsorption and complexation reactions, the dissolved metal concentrations were generally highly correlated for the pooled data sets, indicating that the major factors controlling the concentrations were similar for each metal (pH, dilution, and time following mixing). For dilutions of the drainage waters of less than 1% with Murray River water, none of the metals should exceed the WQGs. However, the high concentrations of metals associated with fine precipitates within the receiving waters may represent a risk to some aquatic organisms. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Modelling soil salinity in Oued El Abid watershed, Morocco

    NASA Astrophysics Data System (ADS)

    Mouatassime Sabri, El; Boukdir, Ahmed; Karaoui, Ismail; Arioua, Abdelkrim; Messlouhi, Rachid; El Amrani Idrissi, Abdelkhalek

    2018-05-01

    Soil salinisation is a phenomenon considered to be a real threat to natural resources in semi-arid climates. The phenomenon is controlled by soil (texture, depth, slope etc.), anthropogenic factors (drainage system, irrigation, crops types, etc.), and climate factors. This study was conducted in the watershed of Oued El Abid in the region of Beni Mellal-Khenifra, aimed at localising saline soil using remote sensing and a regression model. The spectral indices were extracted from Landsat imagery (30 m resolution). A linear correlation of electrical conductivity, which was calculated based on soil samples (ECs), and the values extracted based on spectral bands showed a high accuracy with an R2 (Root square) of 0.80. This study proposes a new spectral salinity index using Landsat bands B1 and B4. This hydro-chemical and statistical study, based on a yearlong survey, showed a moderate amount of salinity, which threatens dam water quality. The results present an improved ability to use remote sensing and regression model integration to detect soil salinity with high accuracy and low cost, and permit intervention at an early stage of salinisation.

  4. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    PubMed

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone

    USDA-ARS?s Scientific Manuscript database

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  6. Impact of saline water sources on hypertension and cardiovascular disease risk in coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Butler, Adrian; Hoque, Mohammad; Mathewson, Eleanor; Ahmed, Kazi; Rahman, Moshuir; Vineis, Paolo; Scheelbeek, Pauline

    2016-04-01

    Southern Bangladesh is periodically affected by tropical cyclone induced storm surges. Such events can result in the inundation of large areas of the coastal plain by sea water. Over time these episodic influxes of saline water have led to the build-up of a high of salinities (e.g. > 1,000 mg/l) in the shallow (up to ca. 150 m depth) groundwater. Owing to the highly saline groundwater, local communities have developed alternative surface water sources by constructing artificial drinking water ponds, which collect monsoonal rainwater. These have far greater storage than traditional rainwater harvesting systems, which typically use 40 litre storage containers that are quickly depleted during the dry season. Unfortunately, the ponds can also become salinised during storm surge events, the impacts of which can last for a number of years. A combined hydrological and epidemiological research programme over the past two years has been undertaken to understand the potential health risks associated with these saline water sources, as excessive intake of sodium can lead to hypertension and an increased risk of cardiovascular disease (such as stroke and heart attack). An important aspect of the selected research sites was the variety of drinking water sources available. These included the presence of managed aquifer recharge sites where monsoonal rainwater is stored in near-surface (semi-)confined aquifers for abstraction during the dry season. This provided an opportunity for the effects of interventions with lower salinity sources to be assessed. Adjusting for confounding factors such as age, gender and diet, the results show a significant association between salinity and blood pressure. Furthermore, the results also showed such impacts are reversible. In order to evaluate the costs and benefits of such interventions, a water salinity - dose impact model is being developed to assess the effectiveness of alternative drinking water sources, such as enhanced rainwater

  7. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2007-12-01

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products

  8. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater.

    PubMed

    Sanford, Ward E; Doughten, Michael W; Coplen, Tyler B; Hunt, Andrew G; Bullen, Thomas D

    2013-11-14

    High-salinity groundwater more than 1,000 metres deep in the Atlantic coastal plain of the USA has been documented in several locations, most recently within the 35-million-year-old Chesapeake Bay impact crater. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution, osmosis and evaporation from heating associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) sea water. We find that the sea water is probably 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern sea water and consistent with the nearly closed ECNA basin. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and palaeontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient sea water in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA sea water persist in deep sediments at many locations along the Atlantic margin.

  9. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching

    PubMed Central

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China. PMID:27806098

  10. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    PubMed

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  11. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  12. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozemeijer, J. C.; Visser, A.; Borren, W.

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution

  13. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    DOE PAGES

    Rozemeijer, J. C.; Visser, A.; Borren, W.; ...

    2016-01-19

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution

  14. A proposal for a separative network to evacuate drainage waters and pluvial waters of stagnation in arid zones (Ain Sahra locality, Touggourt, Algeria)

    NASA Astrophysics Data System (ADS)

    Nettari, Kamel; Boutoutaou, Djamel; Rezagui, Djihed

    2018-05-01

    Many agglomerations of the Algerian Sahara, are currently affected by a rise of waters of the superficial aquifer. This rise is due to discharges of drainage water and urban wastewater. In addition, the rare stormy rains that occur in these areas cause very high material damage. To avoid this damage, it is essential to propose a separative network to evacuate the drainage andpluvial stagnant waters and propose some adequate solutions to avoid potential flooding.

  15. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  16. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  17. Novel water filtration of saline water in the outermost layer of mangrove roots.

    PubMed

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  18. A broadband helical saline water liquid antenna for wearable systems

    NASA Astrophysics Data System (ADS)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  19. Acute Toxicity of Ammonia, Nitrite and Nitrate to Shrimp Litopenaeus vannamei Postlarvae in Low-Salinity Water.

    PubMed

    Valencia-Castañeda, Gladys; Frías-Espericueta, Martin G; Vanegas-Pérez, Ruth C; Pérez-Ramírez, Jesús A; Chávez-Sánchez, María C; Páez-Osuna, Federico

    2018-05-12

    Shrimp farming in low salinities waters is an alternative to increasing production, and counteracting disease problems in brackish and marine waters. However, in low-salinity waters, toxicity of nitrogen compounds increases, and there is no available data of its acute toxicity in shrimp postlarvae. This study determined the acute toxicity of ammonia, nitrite and nitrate in Litopenaeus vannamei postlarvae in 1 and 3 g/L salinity, as well as the safety levels. The LC 50 confirms that nitrite is more toxic than ammonia and nitrate in low salinity waters, and that its toxicity increases with a decrease in salinity. The safe levels estimated for salinities of 1 and 3 g/L were 0.54 and 0.81 mg/L for total ammonia-N, 0.17 and 0.25 mg/L for NO 2 -N, and 5.6 and 21.5 mg/L for NO 3 -N, respectively.

  20. Effects of recharge from drainage wells on quality of water in the Floridan Aquifer in the Orlando area, central Florida

    USGS Publications Warehouse

    Schiner, G.R.; German, E.R.

    1983-01-01

    Approximately 400 drainage wells in the Orlando area inject, by gravity, large quantities of stormwater runoff that may or may not be suitable for most purposes without treatment into the same freshwater zones of the Floridan aquifer tapped for public supply. The wells are used mostly to control lake levels and dispose of urban storm runoff. Recharge from drainage wells compensates for heavy withdrawals from the Floridan aquifer and helps maintain aquifer pressures that retard upward saltwater encroachment. Sixty-five supply wells and 21 drainage wells within a 16-mile radius of Orlando were sampled from September 1977 to June 1979. Most constituent concentrations were slightly higher in water from drainage wells than in water from supply wells. The most notable differences were in bacteria colony count and total nitrogen concentrations. With the exception of bacteria, water from drainage wells would generally meet the maximum contaminant levels established by the National Interim Primary and Proposed Secondary Drinking Water Regulations. (USGS)

  1. Detection of water bodies in Saline County, Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A total of 2,272 water bodies were mapped in Saline County, Kansas in 1972 using ERTS-1 imagery. A topographic map of 1955 shows 1,056 water bodies in the county. The major increase took place in farm ponds. Preliminary comparison of image and maps indicates that water bodies larger than ten acres in area proved consistently detectable. Most water areas between four and ten acres are also detectable, although occasionally image context prevents detection. Water areas less than four acres in extent are sometimes detected, but the number varies greatly depending on image context and the individual interpretor.

  2. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  3. The use of short rotation willows and poplars for the recycling of saline waste waters

    Treesearch

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  4. Geoelectric imaging for saline water intrusion in Geopark zone of Ciletuh Bay, Indonesia

    NASA Astrophysics Data System (ADS)

    Ardi, N. D.; Iryanti, M.; Asmoro, C. P.; Yusuf, A.; Sundana, A. N. A.; Safura, H. Y.; Fitri, M.; Anggraeni, M.; Kurniawan, R.; Afrianti, R.; Sumarni

    2018-05-01

    Saline water intrusion in estuary is an urgent ecological encounter across the world. The Ciletuh Bay, located in the southern Sukabumi district, is an area with high cultivated potential becoming one of the most important geology tourism zones in Indonesia. However, salt water intrusion along the creek is a natural spectacle that disturbs the economic growth of the whole region. This research was intended at plotting the subsurface level of saltwater interventions into aquifers at the northern part of Ciletuh creek, Indonesia. The study implemented geoelectric imaging methods. 37 imaging datum were acquired using Wenner array configuration. The saline water were identified across the study area. The result of two dimensional cross-sectional resistivity shows that there is an indication of sea content in our measured soil, i.e. the smallest resistivity value is 0.579 Ωm found at a depth of 12.4 m to 19.8 m at a track length of 35 m to 60 m is categorized in the clayey which shows low groundwater quality. However, when compared with the results of direct observation of groundwater from the wells of residents, the water obtained is brackish water. A water chemistry test is conducted to ascertain the initial results of this method so that a potential sea intrusion potential map can be interpreted more clearly. This can consequently help as an extrapolative model to define depth to saline water at any site within the saline water zone in the study area.

  5. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff

    PubMed Central

    Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684

  6. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    PubMed

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  7. Landscape scale assessment of soil and water salinization processes in agricultural coastal area.

    NASA Astrophysics Data System (ADS)

    Elen Bless, Aplena; Follain, Stéphane; Coiln, François; Crabit, Armand

    2017-04-01

    Soil salinization is among main land degradation process around the globe. It reduces soil quality, disturbs soil function, and has harmful impacts on plant growth that would threaten agricultural sustainability, particularly in coastal areas where mostly susceptible on land degradation because of pressure from anthropogenic activities and at the same time need to preserve soil quality for supporting food production. In this presentation, we present a landscape scale analysis aiming to assess salinization process affecting wine production. This study was carried out at Serignan estuary delta in South of France (Languadoc Roussillon Region, 43˚ 28'N and 3˚ 31'E). It is a sedimentary basin near coastline of Mediterranean Sea. Field survey was design to characterize both space and time variability of soil and water salinity through water electrical conductivity (ECw) and soil 1/5 electrical conductivity (EC1/5). For water measurements, Orb River and groundwater salinity (piezometers) were determined and for soil 1737 samples were randomly collected from different soil depths (20, 50, 80, and 120 cm) between year 2012 and 2016 and measured. In order to connect with agricultural practices observations and interviews with farmers were conducted. We found that some areas combining specific criteria presents higher electrical conductivity: positions with lower elevation (a.s.l), Cambisols (Calcaric) / Fluvisols soil type (WRB) and dominated clay textures. These observations combined with geochemical determination and spatial analysis confirm our first hypothesis of sea salt intrusion as the main driven factor of soil salinity in this region. In this context, identification of salinization process, fine determination of pedological specificities and fine understanding of agricultural practices allowed us to proposed adaptation strategies to restore soil production function. Please fill in your abstract text. Key Words: Salinity, Coastal Agriculture, Landscape, Soil, Water

  8. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources.

    PubMed

    Nguyen, Hoa T; Meir, Patrick; Sack, Lawren; Evans, John R; Oliveira, Rafael S; Ball, Marilyn C

    2017-08-01

    Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m -2  s -1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity. © 2017 John Wiley & Sons Ltd.

  9. North Atlantic near-surface salinity contrasts and intra-basin water vapor transfer

    NASA Astrophysics Data System (ADS)

    Reagan, J. R.; Seidov, D.; Boyer, T.

    2017-12-01

    The geographic distribution of near-surface salinity (NSS) in the North Atlantic is characterized by a very salty (>37) subtropical region contrasting with a much fresher (<35) subpolar area. Multiple studies have shown that preserving this salinity contrast is important for maintaining the Atlantic Meridional Overturning Circulation (AMOC), and that changes to this salinity balance may reduce the strength of the AMOC. High subtropical salinity is primarily due to evaporation (E) dominating precipitation (P), whereas low subpolar salinity is at least partly due to precipitation dominating evaporation. Present-day understanding of the fate of water vapor in the atmosphere over the extratropical North Atlantic is that the precipitation which falls in the subpolar region primarily originates from the water vapor produced through evaporation in the subtropical North Atlantic. With this knowledge and in conjunction with a basic understanding of North Atlantic storm tracks—the main meridional transport conduits in mid and high latitudes— a preliminary time and spatial correlation analysis was completed to relate the North Atlantic decadal climatological salinity between 1985 and 2012 to the evaporation and precipitation climatologies for the same period. Preliminary results indicate that there is a clear connection between subtropical E-P and subpolar NSS. Additional results and potential implications will be presented and discussed.

  10. Geohydrologic reconnaissance of drainage wells in Florida

    USGS Publications Warehouse

    Kimrey, J.O.; Fayard, L.D.

    1984-01-01

    Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) surface-water injection wells, and (2) interaquifer connector wells. Drainage wells of the first type are further categorized as either Floridan aquifer drainage wells or Biscayne aquifer drainage wells. Floridan aquifer drainage wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Biscayne aquifer drainage wells are used locally to dispose of stormwater runoff and other surplus water in southeast Florida, where large numbers of these wells have been permitted in Dade and Broward Counties. The majority of these wells are used to dispose of water from swimming pools or to dispose of heated water from air-conditioning units. The use of Biscayne aquifer drainage wells may have minimal effect on aquifer potability so long as injection of runoff and industrial wates is restricted to zones where chloride concentrations exceed 1,500 milligrams per liter. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mines and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed

  11. Effects of irrigation water salinity on evapotranspiration modified by leaching fractions in hot pepper plants.

    PubMed

    Qiu, Rangjian; Liu, Chunwei; Wang, Zhenchang; Yang, Zaiqiang; Jing, Yuanshu

    2017-08-03

    We investigated whether leaching fraction (LF) is able to modify the effects of irrigation water salinity (EC iw ) on evapotranspiration (ET). We conducted an experiment with a completely randomized block design using five levels of EC iw and two LFs. Results showed that the electrical conductivity of drainage water (EC dw ) in an LF of 0.29 was considerably higher during the 21-36 days after transplanting (DAT), and considerably lower after 50 DAT than in an LF of 0.17. The hourly, nighttime, daily, cumulative and seasonal ET all decreased considerably as a result of an increase in the EC iw . The daily ET started to be considerably higher in the LF of 0.29 than in the LF of 0.17 from 65 DAT. Compared with the LF of 0.17, the seasonal ET in the LF of 0.29 under various EC iw levels increased by 4.8%-8.7%. The Maas and Hoffman and van Genuchten and Hoffman models both corresponded well with the measured relative seasonal ET and the LF had no marked effects on these model parameters. Collectively, an increase in the level of EC iw always decreased the ET substantially. An increase in the LF increased the ET considerably, but there was a time lag.

  12. Hydrogeologic conditions and saline-water intrusion, Cape Coral, Florida, 1978-81

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1986-01-01

    The upper limestone unit of the intermediate aquifer system, locally called the upper Hawthorn aquifer, is the principal source of freshwater for Cape Coral, Florida. The aquifer has been contaminated with saline water by downward intrusion from the surficial aquifer system and by upward intrusion from the Floridan aquifer system. Much of the intrusion has occurred through open wellbores where steel casings are short or where casings have collapsed because of corrosion. Saline-water contamination of the upper limestone unit due to downward intrusion from the surficial aquifer is most severe in the southern and eastern parts of Cape Coral; contamination due to upward intrusion has occurred in many areas throughout Cape Coral. Intrusion is amplified in areas of heavy water withdrawals and large water-level declines. (USGS)

  13. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    PubMed

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  14. Effect of Water Surface Salinity on Evaporation: The Case of a Diluted Buoyant Plume Over the Dead Sea

    NASA Astrophysics Data System (ADS)

    Mor, Z.; Assouline, S.; Tanny, J.; Lensky, I. M.; Lensky, N. G.

    2018-03-01

    Evaporation from water bodies strongly depends on surface water salinity. Spatial variation of surface salinity of saline water bodies commonly occurs across diluted buoyant plumes fed by freshwater inflows. Although mainly studied at the pan evaporation scale, the effect of surface water salinity on evaporation has not yet been investigated by means of direct measurement at the scale of natural water bodies. The Dead Sea, a large hypersaline lake, is fed by onshore freshwater springs that form local diluted buoyant plumes, offering a unique opportunity to explore this effect. Surface heat fluxes, micrometeorological variables, and water temperature and salinity profiles were measured simultaneously and directly over the salty lake and over a region of diluted buoyant plume. Relatively close meteorological conditions prevailed in the two regions; however, surface water salinity was significantly different. Evaporation rate from the diluted plume was occasionally 3 times larger than that of the main salty lake. In the open lake, where salinity was uniform with depth, increased wind speed resulted in increased evaporation rate, as expected. However, in the buoyant plume where diluted brine floats over the hypersaline brine, wind speed above a threshold value (˜4 m s-1) caused a sharp decrease in evaporation probably due to mixing of the stratified plume and a consequent increase in the surface water salinity.

  15. Advances in drainage: Selected works from the Tenth International Drainage Symposium

    USGS Publications Warehouse

    Strock, Jeffrey S.; Hay, Christopher; Helmers, Matthew; Nelson, Kelly A.; Sands, Gary R.; Skaggs, R. Wayne; Douglas-Mankin, Kyle R.

    2018-01-01

    This article introduces a special collection of fourteen articles accepted from among the 140 technical presentations, posters, and meeting papers presented at the 10th International ASABE Drainage Symposium. The symposium continued in the tradition of previous symposia that began in 1965 as a forum for presenting and assessing the progress of drainage research and implementation throughout the world. The articles in this collection address a wide range of topics grouped into five broad categories: (1) crop response, (2) design and management, (3) hydrology and scale, (4) modeling, and (5) water quality. The collection provides valuable information for scientists, engineers, planners, and others working on crop production, water quality, and water quantity issues affected by agricultural drainage. The collection also provides perspectives on the challenges of increasing agricultural production in a changing climate, with ever-greater attention to water quality and quantity concerns that will require integrated technical, economic, and social solutions.

  16. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  17. Increased salinization of fresh water in the northeastern United States

    PubMed Central

    Kaushal, Sujay S.; Groffman, Peter M.; Likens, Gene E.; Belt, Kenneth T.; Stack, William P.; Kelly, Victoria R.; Band, Lawrence E.; Fisher, Gary T.

    2005-01-01

    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. PMID:16157871

  18. Indicators: Salinity

    EPA Pesticide Factsheets

    Salinity is the dissolved salt content of a body of water. Excess salinity, due to evaporation, water withdrawal, wastewater discharge, and other sources, is a chemical sterssor that can be toxic for aquatic environments.

  19. 4R Water Quality Impacts: An Assessment and Synthesis of Forty Years of Drainage Nitrogen Losses.

    PubMed

    Christianson, L E; Harmel, R D

    2015-11-01

    The intersection of agricultural drainage and nutrient mobility in the environment has led to multiscale water quality concerns. This work reviewed and quantitatively analyzed nearly 1,000 site-years of subsurface tile drainage nitrogen (N) load data to develop a more comprehensive understanding of the impacts of 4R practices (application of the right source of nutrients, at the right rate and time, and in the right place) within drained landscapes across North America. Using drainage data newly compiled in the "Measured Annual Nutrient loads from AGricultural Environments" (MANAGE) database, relationships were developed across N application rates for nitrate N drainage loads and corn ( L.) yields. The lack of significant differences between N application timing or application method was inconsistent with the current emphasis placed on application timing, in particular, as a water quality improvement strategy ( = 0.934 and 0.916, respectively). Broad-scale analyses such as this can help identify major trends for water quality, but accurate implementation of the 4R approach will require site-specific knowledge to balance agronomic and environmental goals. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  1. Effects of salinity on growth and ion regulation of juvenile alligator gar Atractosteus spatula.

    PubMed

    Schwarz, Daniel E; Allen, Peter J

    2014-03-01

    The alligator gar (Atractosteus spatula) is a primitive euryhaline fish, found primarily in estuaries and freshwater drainages associated with the northern Gulf of Mexico. The extent of its hypo-osmotic regulatory abilities is not well understood. In order to determine how salinity affects growth rates and ionic and osmoregulation, juvenile alligator gar (330 days after hatch; 185 g) were exposed to 4 different salinities (0, 8, 16, and 24 ppt) for a 30-day period. Specific growth rate, plasma osmolality and ion concentrations, gill and gastrointestinal tract Na(+), K(+)-ATPase activities, and drinking rate were compared. Juvenile alligator gar were able to tolerate hyperosmotic salinities up to 24 ppt for a 30 day period, albeit with decreased growth resulting largely from decreased food consumption. Plasma osmolality and ionic concentrations were elevated in hyperosmotic salinities, and drinking rates and gastrointestinal tract Na(+), K(+)-ATPase activities increased, particularly in the pyloric caeca, presumably the primary location of water absorption. Therefore, juvenile alligator gar<1 year of age are capable of prolonged exposure to hyperosmotic salinities, but, based on the inference of these data, require access to lower salinities for long-term survival. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment.

    PubMed

    Meng, Qingpeng; Zhang, Jing; Zhang, Zhaoyu; Wu, Tairan

    2016-04-01

    Dissolved trace elements and heavy metals in the Dan River drainage basin, which is the drinking water source area of South-to-North Water Transfer Project (China), affect large numbers of people and should therefore be carefully monitored. To investigate the distribution, sources, and quality of river water, this study integrating catchment geology and multivariate statistical techniques was carried out in the Dan River drainage from 99 river water samples collected in 2013. The distribution of trace metal concentrations in the Dan River drainage was similar to that in the Danjiangkou Reservoir, indicating that the reservoir was significantly affected by the Dan River drainage. Moreover, our results suggested that As, Sb, Cd, Mn, and Ni were the major pollutants. We revealed extremely high concentrations of As and Sb in the Laoguan River, Cd in the Qingyou River, Mn, Ni, and Cd in the Yinhua River, As and Sb in the Laojun River, and Sb in the Dan River. According to the water quality index, water in the Dan River drainage was suitable for drinking; however, an exposure risk assessment model suggests that As and Sb in the Laojun and Laoguan rivers could pose a high risk to humans in terms of adverse health and potential non-carcinogenic effects.

  3. A risk assessment of water salinization during the initial impounding period of a proposed reservoir in Tianjin, China.

    PubMed

    Zhu, Liqin; Jiang, Cuiling; Wang, Youheng; Peng, Yanmei; Zhang, Peng

    2013-09-01

    Water salinization of coastal reservoirs seriously threatens the safety of their water supply. To elucidate the mechanism of salinization and to quantitatively analyze the risk in the initial period of the impoundment of a proposed reservoir in Tianjin Binhai New Area, laboratory and field simulation experiments were implemented and integrated with the actual operation of Beitang Reservoir, which is located in the same region and has been operational for many years. The results suggested that water salinization of the proposed reservoir was mainly governed by soil saline release, evaporation and leakage. Saline release was the prevailing factor in the earlier stage of the impoundment, then the evaporation and leakage effects gradually became notable over time. By referring to the actual case of Beitang Reservoir, it was predicted that the chloride ion (Cl(-)) concentration of the water during the initial impounding period of the proposed reservoir would exceed the standard for quality of drinking water from surface water sources (250 mg L(-1)), and that the proposed reservoir had a high risk of water salinization.

  4. Determining sources of elevated salinity in pre-hydraulic fracturing water quality data using a multivariate discriminant analysis model

    NASA Astrophysics Data System (ADS)

    Lautz, L. K.; Hoke, G. D.; Lu, Z.; Siegel, D. I.

    2013-12-01

    Hydraulic fracturing has the potential to introduce saline water into the environment due to migration of deep formation water to shallow aquifers and/or discharge of flowback water to the environment during transport and disposal. It is challenging to definitively identify whether elevated salinity is associated with hydraulic fracturing, in part, due to the real possibility of other anthropogenic sources of salinity in the human-impacted watersheds in which drilling is taking place and some formation water present naturally in shallow groundwater aquifers. We combined new and published chemistry data for private drinking water wells sampled across five southern New York (NY) counties overlying the Marcellus Shale (Broome, Chemung, Chenango, Steuben, and Tioga). Measurements include Cl, Na, Br, I, Ca, Mg, Ba, SO4, and Sr. We compared this baseline groundwater quality data in NY, now under a moratorium on hydraulic fracturing, with published chemistry data for 6 different potential sources of elevated salinity in shallow groundwater, including Appalachian Basin formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. A multivariate random number generator was used to create a synthetic, low salinity (< 20 mg/L Cl) groundwater data set (n=1000) based on the statistical properties of the observed low salinity groundwater. The synthetic, low salinity groundwater was then artificially mixed with variable proportions of different potential sources of salinity to explore chemical differences between groundwater impacted by formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. We then trained a multivariate, discriminant analysis model on the resulting data set to classify observed high salinity groundwater (> 20 mg/L Cl) as being affected by formation water, road salt, septic effluent, landfill leachate, animal waste, or water softeners. Single elements or pairs of

  5. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    PubMed

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Flux of low salinity water from Aniva Bay (Sakhalin Island) to the southern Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Oguma, Sachiko; Ono, Tsuneo; Watanabe, Yutaka W.; Kasai, Hiromi; Watanabe, Shuichi; Nomura, Daiki; Mitsudera, Humio

    2011-01-01

    In this study, we examined the relationship between the low salinity water in the shelf region of the southern Okhotsk Sea which was seasonally sampled (0-200 m), and fluxes of low salinity water from Aniva Bay. To express the source of freshwater mixing in the surface layer, we applied normalized total alkalinity (NTA) and stable isotopes of seawater as chemical tracers. NTA-S diagrams indicate that NTA of low salinity water in the upper 30 m layer just off the Soya Warm Current is clearly higher than in the far offshore region in summer and autumn. Using NTA-S regression lines, we could deduce that the low salinity and high NTA water in the upper layer originates from Aniva Bay. For convenience, we defined this water as the Aniva Surface Water (ASW) with values S < 32, NTA > 2450 μmol kg -1. Formation and transport processes of ASW are discussed using historical data. The interaction between the maximum core of high NTA water on the bottom slope of eastern Aniva Bay and an anticyclonic eddy at the mouth of Aniva Bay are concluded to control ASW formation. Upwelling of the Cold Water Belt water at the tip of Cape Krillion is considered to cause ASW outflow from Aniva Bay.

  7. Evaluation of available saline water resources in New Mexico for the production of microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansford, R.; Hernandez, J.; Enis, P.

    Researchers evaluated saline water resources in New Mexico for their suitability as sites for large-scale microalgae production facilities. Production of microalgae could provide a renewable source of fuel, chemicals, and food. In addition, making use of the unused saline water resources would increase the economic activity in the state. After analyzing the 15 billion acre-ft of unused saline water resources in the state, scientists narrowed the locations down to six sites with the most potential. With further analysis, they chose the Tularosa Basin in southern New Mexico as the best-suited area for 100-hectare microalgae production facility. 34 refs., 38 figs.,more » 14 tabs.« less

  8. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    NASA Astrophysics Data System (ADS)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials < -30 MPa, which are far below values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results

  9. EVALUATION OF HYBRID POPLAR TREE TOLERANCE TO IRRIGATION WITH HIGH SALINITY AND BORON WATERS UNDER MICRO-PLOT CONDITIONS

    USDA-ARS?s Scientific Manuscript database

    The concept of reusing salt-laden drainage water in agricultural systems was developed as part of the integrated on-farm drainage management system. The successful adoption of a practical water reuse strategy in Central California requires the selection of salt and boron tolerant crops for use with ...

  10. Integral Analysis of Field Work and Laboratory Electrical Resistivity Imaging for Saline Water Intrusion Prediction in Groundwater

    NASA Astrophysics Data System (ADS)

    Zawawi, M. H.; Zahar, M. F.; Hashim, M. M. M.; Hazreek, Z. A. M.; Zahari, N. M.; Kamaruddin, M. A.

    2018-04-01

    Saline water intrusion is a serious threat to the groundwater as many part of the world utilize groundwater as their main source of fresh water supply. The usage of high salinity level of water as drinking water can lead to a very serious health hazard towards human. Saline water intrusion is a process by which induced flow of seawater into freshwater aquifer along the coastal area. It might happen due to human action and/or by natural event. The climate change and rise up of sea level may speed up the saline water intrusion process. The conventional method for distinguishing and checking saltwater interference to groundwater along the coast aquifers is to gather and test the groundwater from series of observation wells (borehole) with an end goal to give the important information about the hydrochemistry data to conclude whether the water in the well are safe to consume or not. An integrated approach of field and laboratory electrical resistivity investigation is proposed for indicating the contact region between saline and fresh groundwater. It was found that correlation for both soilbox produced almost identical curvilinear trends for 2% increment of seawater tested using sand sample. This project contributes towards predicting the saline water intrusion to the groundwater by non-destructive test that can replaced the conventional method of groundwater monitoring using series of boreholes in the coastal area

  11. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    PubMed

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  12. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil.

    PubMed

    Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson

    2014-05-14

    Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

  13. Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)?

    NASA Astrophysics Data System (ADS)

    El-Shabrawy, Gamal M.; Anufriieva, Elena V.; Germoush, Mousa O.; Goher, Mohamed E.; Shadrin, Nickolai V.

    2015-11-01

    Zooplankton and 14 abiotic variables were studied during August 2011 at 10 stations in Lake Qarun, Egypt. Stations with the lowest salinity and highest nutrient concentrations and turbidity were close to the discharge of waters from the El-Bats and El-Wadi drainage systems. A total of 15 holozooplankton species were identified. The salinity in Lake Qarun increased and fluctuated since 1901: 12 g/L in 1901; 8.5 g/L in 1905; 12.0 g/L in 1922; 30.0 g/L in 1985; 38.7 g/L in 1994; 35.3 g/L in 2006, and 33.4 g/L in 2011. The mean concentration of nutrients (nitrate, nitrite and orthophosphate) gradually increased from 35, 0.16 and 0.38 µg/L, respectively, in 1953-1955 to 113, 16.4, and 30.26 µg/L in 2011. From 1999-2003 some decrease of species diversity occurred. Average total zooplankton density was 30 000 ind./m3 in 1974-1977; 356 125 ind./m3 in 1989; 534 000 ind./m3 in 1994-1995; from 965 000 to 1 452 000 ind./m3 in 2006, and 595 000 ind./m3 in 2011. A range of long-term summer salinity variability during the last decades was very similar to a range of salinity spatial variability in summer 2011. There is no significant correlation between zooplankton abundance and salinity in spatial and long-term changes. We conclude that salinity fluctuations since at least 1955 did not directly drive the changes of composition and abundance of zooplankton in the lake. A marine community had formed in the lake, and it continues to change. One of the main drivers of this change is a regular introduction and a pressure of alien species on the existent community. Eutrophication also plays an important role. The introduction of Mnemiopsis leidyi, first reported in 2014, may lead to a start of a new stage of the biotic changes in Lake Qarun, when eutrophication and the population dynamics of this ctenophore will be main drivers of the ecosystem change.

  14. Simulation of ground-water flow and the movement of saline water in the Hueco Bolson aquifer, El Paso, Texas, and adjacent areas

    USGS Publications Warehouse

    Groschen, George E.

    1994-01-01

    Results of the projected withdrawal simulations from 1984-2000 indicate that the general historical trend of saline-water movement probably will continue. The saline water in the Rio Grande alluvium is the major source of saline-water intrusion into the freshwater zone throughout the historical period and into the future on the basis of simulation results. Some saline water probably will continue to move downward from the Rio Grande alluvium to the freshwater below. Injection of treated sewage effluent into some wells will create a small zone of freshwater containing slightly increased amounts of dissolved solids in the northern area of the Texas part of the Hueco bolson aquifer. Many factors, such as well interference, pumping schedules, and other factors not specifically represented in the regional simulation, can substantially affect dissolved-solids concentrations at individual wells.

  15. Increased salinization of fresh water in the Northeastern United States

    USGS Publications Warehouse

    Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T.

    2005-01-01

    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. ?? 2005 by The National Academy of Sciences of the USA.

  16. Hydrological Modeling of Storm Water Drainage System due to Frequent and Intense Precipitation of Dhaka city using Storm Water Management Model (SWMM)

    NASA Astrophysics Data System (ADS)

    Hossain, S., Jr.

    2015-12-01

    Rainfall induced flooding during rainy season is a regular phenomenon in Dhaka City. Almost every year a significant part of the city suffers badly with drainage congestion. There are some highly dense areas with lower ground elevation which submerge under water even with an intense precipitation of few hours. The higher areas also suffer with the drainage problem due to inadequate maintenance of the system and encroachment or illegal filling up of the drainage canals and lakes. Most part of the city suffered from long term urban flooding during historical extreme rainfall events in September 2004, 2007 and July 2009. The situation is likely to worsen in the future due to Climate Change, which may lead to more frequent and intense precipitation. To assess the major and minor drainage systems and elements of the urban basins using the hydrodynamic modelling and, through this, identifying the flooding events and areas, taking into account the current situation and future flood or drainage scenarios. Stormwater modeling has a major role in preventing issues such as flash floods and urban water-quality problems. Stormwater models of a lowered spatial resolution would thus appear valuable if only their ability to provide realistic results could be proved. The present scenario of urban morphology of Dhaka city and existing drainage system is complex for hydrological and hydrodynamic modeling. Furthermore limitations of background data and uncertain future urban scenarios may confine the potential outputs of a model. Although several studies were carried out including modeling for drainage master planning, a detail model for whole DAP (Detaile Area Plan) of Dhaka city area is not available. The model developed under this study is covering the existing drainage system in the study area as well as natural flows in the fringe area. A good number of models are available for hydrological and hydraulic analysis of urban areas. These are MIKE 11, MOUSE, HEC-RAS, HEC HMS and EPA

  17. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    PubMed

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  18. The cost of meeting increased cooling-water demands for CO2 capture and storage utilizing non-traditional waters from geologic saline formations

    NASA Astrophysics Data System (ADS)

    Klise, Geoffrey T.; Roach, Jesse D.; Kobos, Peter H.; Heath, Jason E.; Gutierrez, Karen A.

    2013-05-01

    Deep (> ˜800 m) saline water-bearing formations in the United States have substantial pore volume that is targeted for storage of carbon dioxide (CO2) and the associated saline water can be extracted to increase CO2 storage efficiency, manage pressure build up, and create a new water source that, once treated, can be used for power-plant cooling or other purposes. Extraction, treatment and disposal costs of saline formation water to meet added water demands from CO2 capture and storage (CCS) are discussed. This underutilized water source may be important in meeting new water demand associated with CCS. For a representative natural gas combined-cycle (NGCC) power plant, simultaneous extraction of brine from the storage formation could provide enough water to meet all CCS-related cooling demands for 177 out of the 185 (96 %) saline formations analyzed in this study. Calculated total cost of water extraction, treatment and disposal is less than 4.00 US Dollars (USD) m-3 for 93 % of the 185 formations considered. In 90 % of 185 formations, treated water costs are less than 10.00 USD tonne-1 of CO2 injected. On average, this represents approximately 6 % of the total CO2 capture and injection costs for the NGCC scenario.

  19. Effects of application timing of saline irrigation water on broccoli production and quality

    USDA-ARS?s Scientific Manuscript database

    Irrigation with moderately saline water is a necessity in many semi-arid areas of the Mediterranean Basin, and requires adequate irrigation management strategies. Broccoli (Brassica oleracea var. italica), a crop moderately tolerant to salinity stress, was used to evaluate the effects of the applica...

  20. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    NASA Astrophysics Data System (ADS)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  1. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  2. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; La Peyre, M.K.; Caldwell, A.; Piazza, S.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable. ?? 2009 Elsevier B.V.

  3. Appraisal of ground water in the vicinity of the Leadville drainage tunnel, Lake County, Colorado

    USGS Publications Warehouse

    Turk, John T.; Taylor, O. James

    1979-01-01

    Ground water in the Leadville mining district occurs in granite, quartzite, limestone, sandstone, porphyry dikes, and unconsolidated material. These rocks form a single aquifer system because the formations are hydraulically connected through contact, mine workings, faulting, and fracturing. The aquifer is recharged by precipitation and water moves toward California Gulch and probably toward Evans Gulch, in the drainage basin of the Arkansas River. The Leadville drainage tunnel was constructed from 1943 to 1945 and later extended during 1950 to 1952, in order to drain the mine workings. Discharge from the tunnel lowered water levels 30 to 96 feet in mine shafts from 1944 to 1951. Installation of an impervious plug in the tunnel has been proposed in order to reduce the discharge of water containing objectionable concentrations of trace metals into the East Fork Arkansas River. The proposed plug would reduce the discharge from the tunnel, cause water levels east of the town of Leadville to rise, flood some mine workings, and increase ground-water discharge to California Gulch. However, the proposed plug is not expected to cause water levels in Leadville to rise substantially, but more current and detailed data are needed to verify this. Discharge from the Leadville drainage tunnel is probably a mixture of water in equilibrium with carbonate aquifer materials from the mineralized zone, water acidified by the localized oxidation of pyrite from the mineralized zone, and water nearly saturated with calcite from the glacial mantle. Based on limited data, water from the carbonate mineral deposits has a pH of about 7.0 and concentrations of manganese of about 1,800 micrograms per liter and zinc concentrations of about 13,000 micrograms per liter. (USGS)

  4. Evaluation of pore-water samplers at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used innovative sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report evaluates a new type of pore-water sampler developed for this investigation to examine the subsurface contamination beneath the drainage ditch. The new type of pore-water sampler appears to be an effective approach for long-term monitoring of ground water in the sand and organic-rich mud beneath the drainage ditch.

  5. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    NASA Astrophysics Data System (ADS)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  6. Simulation-based optimization framework for reuse of agricultural drainage water in irrigation.

    PubMed

    Allam, A; Tawfik, A; Yoshimura, C; Fleifle, A

    2016-05-01

    A simulation-based optimization framework for agricultural drainage water (ADW) reuse has been developed through the integration of a water quality model (QUAL2Kw) and a genetic algorithm. This framework was applied to the Gharbia drain in the Nile Delta, Egypt, in summer and winter 2012. First, the water quantity and quality of the drain was simulated using the QUAL2Kw model. Second, uncertainty analysis and sensitivity analysis based on Monte Carlo simulation were performed to assess QUAL2Kw's performance and to identify the most critical variables for determination of water quality, respectively. Finally, a genetic algorithm was applied to maximize the total reuse quantity from seven reuse locations with the condition not to violate the standards for using mixed water in irrigation. The water quality simulations showed that organic matter concentrations are critical management variables in the Gharbia drain. The uncertainty analysis showed the reliability of QUAL2Kw to simulate water quality and quantity along the drain. Furthermore, the sensitivity analysis showed that the 5-day biochemical oxygen demand, chemical oxygen demand, total dissolved solids, total nitrogen and total phosphorous are highly sensitive to point source flow and quality. Additionally, the optimization results revealed that the reuse quantities of ADW can reach 36.3% and 40.4% of the available ADW in the drain during summer and winter, respectively. These quantities meet 30.8% and 29.1% of the drainage basin requirements for fresh irrigation water in the respective seasons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage.

    PubMed

    Arribas, Paula; Andújar, Carmelo; Abellán, Pedro; Velasco, Josefa; Millán, Andrés; Ribera, Ignacio

    2014-02-01

    Salinity is one of the most important drivers of the distribution, abundance and diversity of organisms. Previous studies on the evolution of saline tolerance have been mainly centred on marine and terrestrial organisms, while lineages inhabiting inland waters remain largely unexplored. This is despite the fact that these systems include a much broader range of salinities, going from freshwater to more than six times the salinity of the sea (i.e. >200 g/L). Here, we study the pattern and timing of the evolution of the tolerance to salinity in an inland aquatic lineage of water beetles (Enochrus species of the subgenus Lumetus, family Hydrophilidae), with the general aim of understanding the mechanisms by which it was achieved. Using a time-calibrated phylogeny built from five mitochondrial and two nuclear genes and information about the salinity tolerance and geographical distribution of the species, we found that salinity tolerance appeared multiple times associated with periods of global aridification. We found evidence of some accelerated transitions from freshwater directly to high salinities, as reconstructed with extant lineages. This, together with the strong positive correlation found between salinity tolerance and aridity of the habitats in which species are found, suggests that tolerance to salinity may be based on a co-opted mechanism developed originally for drought resistance. © 2013 John Wiley & Sons Ltd.

  8. Water Quality in the Acadian-Pontchartrain Drainages; Louisiana and Mississippi, 1999-2001

    USGS Publications Warehouse

    Demcheck, Dennis K.; Tollett, Roland W.; Mize, Scott V.; Skrobialowski, Stanley C.; Fendick, Robert B.; Swarzenski, Christopher M.; Porter, Stephen

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Acadian-Pontchartrain Drainages Study Unit. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report also is for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to other areas across the Nation. The water-quality conditions in the Acadian-Pontchartrain Drainages Study Unit summarized in this report are discussed in detail in other reports that can be accessed from (http://la.water.usgs.gov/nawqa/default.htm). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to other reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  9. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    NASA Astrophysics Data System (ADS)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  10. Wetting behavior and drainage of water droplets on microgrooved brass surfaces.

    PubMed

    Rahman, M Ashiqur; Jacobi, Anthony M

    2012-09-18

    In the present study, contact angle hysteresis and sliding behavior of water droplets on parallel, periodic microgrooved brass surfaces are investigated experimentally for enhancement of water drainage and compared to that on flat baseline surfaces. The surfaces (a total of 17 microgrooved samples, with a range of groove depth of 22 to 109 μm, pillar width of 26 to 190 μm, and groove width of 103 and 127 μm) are fabricated using a mechanical micromachining process. The wetting state and shape/elongation of deposited water droplets, anisotropy of the contact angle hysteresis, and the drainage behavior of water droplets on the microgrooved surfaces are found to be strongly dependent on the topography of the groove geometry, which is analyzed in detail. The wetting state is found to be Wenzel for microgrooved surfaces with very low aspect ratio (<0.2) and narrow pillars (pillar width to groove width ratio of ≈0.2), and also for the two deepest grooved surfaces of two different sample series, all of which exhibit high contact angle hysteresis. Mechanisms of the advancing and receding motions are identified. The critical sliding angle (the angle from horizontal at incipient motion of the advancing confluence) for the microgrooved surfaces is found to be significantly smaller than for flat surfaces. The sliding angle exhibits significant groove geometry dependence and is found to increase with pillar width and decrease with groove depth. The findings of this study may be useful in a broad range of applications where water retention plays an important role.

  11. Use of biochar amendments for removing bacteria from simulated tile-drainage waters

    USDA-ARS?s Scientific Manuscript database

    The addition of biochar has been shown to increase bacterial removal rates by several orders of magnitude in sand-packed columns, suggesting that biochar may be a suitable amendment for use in end-of-tile filter systems to remove indicator and pathogenic microorganisms in tile-drainage waters. Addit...

  12. Combined effect of boron and salinity on water transport: The role of aquaporins.

    PubMed

    Del Carmen Martínez-Ballesta, Maria; Bastías, Elizabeth; Carvajal, Micaela

    2008-10-01

    Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.

  13. Sorghum response to foliar application of phosphorus and potassium with saline water irrigation

    USDA-ARS?s Scientific Manuscript database

    Increasing demand for fresh water resources for urban and industrial uses is leading to limited availability of better quality water for crop irrigation. Therefore, crop response to poor quality irrigation water (ex: saline water), and strategies to mitigate the negative effects of poor quality irri...

  14. Water quality in the Western Lake Michigan Drainages, Wisconsin and Michigan, 1992-95

    USGS Publications Warehouse

    Peters, Charles A.; Robertson, Dale M.; Saad, David A.; Sullivan, Daniel J.; Scudder, Barbara C.; Fitzpatrick, Faith A.; Richards, Kevin D.; Stewart, Jana S.; Fitzgerald, Sharon A.; Lenz, Bernard N.

    1998-01-01

    This report is intended to summarize major findings that emerged between 1992 and 1995 from the water-quality assessment of the Western Lake Michigan Drainages Study Unit and torelate these findings to water-quality issues of regional and national concern. The information in primarily intended for those who are involved in water-resource management. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live.

  15. Resistance to drainage of cerebrospinal fluid: clinical measurement and significance1

    PubMed Central

    Martins, Albert N.

    1973-01-01

    By infusing saline intrathecally at a constant rate until a new steady-state cerebrospinal fluid (CSF) pressure is attained, one can estimate clinically the apparent resistance (Ra) to drainage of CSF in mm saline/ml./minute. This intrathecal saline infusion test (ITSIT) was performed 36 times on 29 patients with diverse intracranial problems, and the results were analysed and, in most cases, compared with the pneumoencephalogram and the isotope cisternogram. The ITSIT is a safe, simple test to estimate Ra, but factors which are difficult to control (occult leaks from the subarachnoid space; independent fluctuations of CSF pressure) limit its reliability and clinical usefulness. If closely correlated with the clinical syndrome, the pneumoencephalogram, and the isotope cisternogram, an ITSIT may identify decisively the patient who needs a shunt. In addition the ITSIT offers another method by which to investigate the pathophysiological mechanisms of the various states of intracranial hypertension. Results from the test performed on four patients with intracranial hypertension of unknown cause (pseudotumor cerebri) suggest that the underlying mechanism in this condition is probably an impediment to normal CSF drainage. PMID:4541080

  16. USGS Research on Saline Waters Co-Produced with Energy Resources

    USGS Publications Warehouse

    ,

    1997-01-01

    The United States energy industry faces the challenge of satisfying our expanding thirst for energy while protecting the environment. This challenge is magnified by the increasing volumes of saline water produced with oil and gas in the Nation's aging petroleum fields. Ultimately, energy-producing companies are responsible for disposing of these waters. USGS research provides basic information, for use by regulators, industry, and the public, about the chemistry of co-produced waters and environmentally acceptable ways of handling them.

  17. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region.

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Ra was measured in deep saline formation waters produced from a variety of US Gulf Coast subsurface environments, including oil and gas reservoirs, and water-producing geopressured aquifers. A strong positive correlation was found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th on and within the solid matrix. The processes believed to be primarily responsible for transfering Ra from matrix to formation water are chemical leaching and alpha -particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following: 1) ion exchange; 2) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of re-equilibration of silica between solution and quartz grains; and 3) the equilibration of Ra in solution with detrital baryte within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs.-P.Br.

  18. Soil phosphorus loss in tile drainage water from long-term conventional- and non-tillage soils of Ontario with and without compost addition.

    PubMed

    Zhang, T Q; Tan, C S; Wang, Y T; Ma, B L; Welacky, T

    2017-02-15

    Recent ascertainment of tile drainage a predominant pathway of soil phosphorus (P) loss, along with the rise in concentration of soluble P in the Lake Erie, has led to a need to re-examine the impacts of agricultural practices. A three-year on-farm study was conducted to assess P loss in tile drainage water under long-term conventional- (CT) and non-tillage (NT) as influenced by yard waste leaf compost (LC) application in a Brookston clay loam soil. The effects of LC addition on soil P loss in tile drainage water varied depending on P forms and tillage systems. Under CT, dissolved reactive P (DRP) loss with LC addition over the study period was 765g P ha -1 , 2.9 times higher than CT without LC application, due to both a 50% increase in tile drainage flow volume and a 165% increase in DRP concentration. Under NT, DRP loss in tile drainage water with LC addition was 1447gPha -1 , 5.3 times greater than that for NT without LC application; this was solely caused by a 564% increase in DRP concentration. However, particulate P loads in tile drainage water with LC application remained unchanged, relative to non-LC application, regardless of tillage systems. Consequently, LC addition led to an increase in total P loads in tile drainage water by 57 and 69% under CT and NT, respectively. The results indicate that LC application may become an environmental concern due to increased DRP loss, particularly under NT. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  19. Development and application of a conceptual hydrologic model to predict soil salinity within modern Tunisian oases

    NASA Astrophysics Data System (ADS)

    Askri, Brahim; Bouhlila, Rachida; Job, Jean Olivier

    2010-01-01

    SummaryIn modern oases situated in the south of Tunisia, secondary salination of irrigated lands is a crucial problem. The visible salt deposits and soil salination processes are the consequence of several factors including the excessive use of saline irrigation water, seepage from earthen canal systems, inefficient irrigation practices and inadequate drainage. Understanding the mechanism of the secondary salination is of interest in order to maintain existing oases, and thus ensure the sustainability of date production in this part of the country. Therefore, a conceptual, daily, semi-distributed hydrologic model (OASIS_MOD) was developed to analyse the impact of irrigation management on the water table fluctuation, soil salinity and drain discharge, and to evaluate measures to control salinity within an oasis ecosystem. The basic processes incorporated in the model are irrigation, infiltration, percolation to the shallow groundwater, soil evaporation, crop transpiration, groundwater flow, capillary rise flux, and drain discharge. OASIS_MOD was tested with data collected in a parcel of farmland situated in the Segdoud oasis, in the south-west of Tunisia. The calibration results showed that groundwater levels were simulated with acceptable accuracy, since the differences between the simulated and measured values are less than 0.22 m. However, the model under-predicted some water table peaks when irrigation occurs due to inconsistencies in the irrigation water data. The validation results showed that deviations between observed and simulated groundwater levels have increased to about 0.5 m due to under-estimation of groundwater inflow from an upstream palm plantation. A long-term simulation scenario revealed that the soil salinity and groundwater level have three types of variability in time: a daily variability due to irrigation practices, seasonal fluctuation due to climatic conditions and annual variability explained by the increase in cultivated areas. The

  20. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte

    PubMed Central

    Hameed, Abdul; Gulzar, Salman; Aziz, Irfan; Hussain, Tabassum; Gul, Bilquees; Khan, M. Ajmal

    2015-01-01

    Salinity causes oxidative stress in plants by enhancing production of reactive oxygen species, so that an efficient antioxidant system, of which ascorbic acid (AsA) is a key component, is an essential requirement of tolerance. However, antioxidant responses of plants to salinity vary considerably among species. Limonium stocksii is a sub-tropical halophyte found in the coastal marshes from Gujarat (India) to Karachi (Pakistan) but little information exists on its salt resistance. In order to investigate the role of AsA in tolerance, 2-month-old plants were treated with 0 (control), 300 (moderate) and 600 (high) mM NaCl for 30 days with or without exogenous application of AsA (20 mM) or distilled water. Shoot growth of unsprayed plants at moderate salinity was similar to that of controls while at high salinity growth was inhibited substantially. Sap osmolality, AsA concentrations and activities of AsA-dependant antioxidant enzymes increased with increasing salinity. Water spray resulted in some improvement in growth, indicating that the growth promotion by exogenous treatments could partly be attributed to water. However, exogenous application of AsA on plants grown under saline conditions improved growth and AsA dependent antioxidant enzymes more than the water control treatment. Our data show that AsA-dependent antioxidant enzymes play an important role in salinity tolerance of L. stocksii. PMID:25603966

  1. Drainage-return, surface-water withdrawal, and land-use data for the Sacramento-San Joaquin Delta, with emphasis on Twitchell Island, California

    USGS Publications Warehouse

    Templin, William E.; Cherry, Daniel E.

    1997-01-01

    Partial data on drainage returns and surface-water withdrawals are presented for areas of the Sacramento-San Joaquin Delta, California, for March 1994 through February 1996. These areas cover most of the delta. Data are also presented for all drainage returns and some surface-water withdrawals for Twitchell Island, which is in the western part of the delta. Changes in land use between 1968 and 1991 are also presented for the delta. Measurements of monthly drainage returns and surface-water withdrawals were made using flowmeters installed in siphons and drain pipes on Twitchell Island. Estimates of monthly returns throughout the delta were made using electric power-consumption data with pump-efficiency-test data. For Twitchell Island, monthly measured drainage returns for the 1995 calendar year totaled about 11,200 acre-feet, whereas drainage returns estimated from power-consumption data totaled 5 percent less at about 10,600 acre-feet. Monthly surface-water withdrawals onto Twitchell Island through 12 of the 21 siphons totaled about 2,400 acre-feet for 1995. For most of the delta, the monthly estimated drainage returns for 1995 totaled about 430,000 acre-feet. The area consisting of Bouldin, Brannan, Staten, Tyler, and Venice Islands had the largest estimated drainage returns for calendar year 1995. Between 1968 and 1991, native vegetation in the delta decreased by 25 percent (about 40,000 acres), and grain and hay crops increased by 340 percent (about 71,000 acres). For Twitchell Island, native vegetation decreased about 77 percent (about 850 acres), while field crop acreage increased by about 44 percent (about 780 acres).

  2. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    NASA Astrophysics Data System (ADS)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  3. Soil- and plant- water uptake in saline environments and their consequences to plant adaptation in fluctuating climates

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Albertson, J. D.; Katul, G. G.; Marani, M.

    2010-12-01

    Ecological processes determining plant colonization are quite peculiar and competition among different species is governed by a set of unique adaptations to stress conditions caused by drought, hypoxic or hyper-saline conditions. These adaptations and possible positive feedbacks often lead to the formation of patterns of vegetation colonization and spatial heterogeneity (zonation), and play a primary role in the stabilization of sediments. It is these issues that frame the scope of this study. The main objective of this work is to track one of the fundamental pathways between plant adaptation (quantified in terms of physiological and ecological attributes such as leaf area or root density profile) and feedbacks (quantified by plant-mediated alterations to water availability and salinity levels): root water uptake. Because root-water uptake is the main conduit connecting transpiring leaves to reservoirs of soil water, the means by which salinity modifies the processes governing its two end-points and any two-way interactions between them serves as a logical starting point. Salinity effects on leaf transpiration and photosynthesis are first explored via stomatal optimization principles that maximize carbon gain at a given water loss for autonomous leaves. Salinity directly affects leaf physiological attributes such as mesophyll conductance and photosynthetic parameters and hence over-all conductance to transpiration as well as different strategies to cope with the high salinity (e.g. through salt seclusion, compartmentation and osmotic adjustments). A coupled model of subsurface flow based on a modified Richards’ equation that accounts for the effects of increasing salinity, anaerobic conditions, water stress and compensation factors is developed. Plant water uptake is considered as a soil moisture sink term with a potential rate dictated by the carbon demands of the leaves, and an actual rate that accounts for both - hydraulic and salinity limitations. Using this

  4. Using the Electromagnetic Induction Method to Connect Spatial Vegetation Distributions with Soil Water and Salinity Dynamics on Steppe Grassland

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Li, X.; Wu, H.

    2014-12-01

    In arid and semi-arid areas, plant growth and productivity are obviously affected by soil water and salinity. But it is not easy to acquire the spatial and temporal dynamics of soil water and salinity by traditional field methods because of the heterogeneity in their patterns. Electromagnetic induction (EMI), for its rapid character, can provide a useful way to solve this problem. Grassland dominated by Achnatherum splendens is an important ecosystem near the Qinghai-Lake watershed on the Qinghai-Tibet Plateau in northwestern China. EMI surveys were conducted for electrical conductivity (ECa) at an intermediate habitat scale (a 60×60 m experimental area) of A. splendens steppe for 18 times (one day only for one time) during the 2013 growing season. And twenty sampling points were established for the collection of soil samples for soil water and salinity, which were used for calibration of ECa. In addition, plant species, biomass and spatial patterns of vegetation were also sampled. The results showed that ECa maps exhibited distinctly spatial differences because of variations in soil moisture. And soil water was the main factor to drive salinity patterns, which in turn affected ECa values. Moreover, soil water and salinity could explain 82.8% of ECa changes due to there was a significant correlation (P<0.01) between ECa, soil water and salinity. Furthermore, with higher ECa values closer to A. splendens patches at the experimental site, patterns of ECa images showed clearly temporal stability, which were extremely corresponding with the spatial pattern of vegetation. A. splendens patches that accumulated infiltrating water and salinity and thus changed long-term soil properties, which were considered as "reservoirs" and were deemed responsible for the temporal stability of ECa images. Hence, EMI could be an indicator to locate areas of decreasing or increasing of water and to reveal soil water and salinity dynamics through repeated ECa surveys.

  5. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    PubMed

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000.

    PubMed

    Durack, Paul J; Wijffels, Susan E; Matear, Richard J

    2012-04-27

    Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle. Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 ± 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world.

  7. Agricultural drainage pipe detection using ground penetrating radar: Effects of antenna orientation relative to drainage pipe directional trend

    USDA-ARS?s Scientific Manuscript database

    Locating buried agricultural drainage pipes is a difficult problem confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal ...

  8. A new automated passive capillary lysimeter for logging real-time drainage water fluxes

    USDA-ARS?s Scientific Manuscript database

    Effective monitoring of chemical transport through the soil profile requires accurate and appropriate instrumentation to measure drainage water fluxes below the root zone of cropping system. The objectives of this study were to methodically describe in detail the construction and installation of a n...

  9. Potential of combined Water Sensitive Urban Design systems for salinity treatment in urban environments.

    PubMed

    Kazemi, Fatemeh; Golzarian, Mahmood Reza; Myers, Baden

    2018-03-01

    Water sensitive urban design and similar concepts often recommend a 'treatment train' is employed to improve stormwater quality. In this study, the capability of a combined permeable pavement and bioretention basin was examined with a view to developing a permeable pavement reservoir that can supplement the irrigation needs of a bioretention system in semi-arid climates. Salinity was a key study parameter due to published data on salinity in permeable pavement storage, and the potential to harvest water contaminated with de-icing salts. To conduct experiments, roofwater was collected from a roof in Adelaide, South Australia. Water was amended with NaCl to produce a control runoff (no added salt), a medium (500 mg/l) and a high (1500 mg/l) salinity runoff. Water was then run through the pavement into the storage reservoir and used to irrigate the bioretention system. Samples were collected from the roof, the pavement reservoir and the bioretention system outflow to determine whether significant water quality impacts occurred. Results show that while salinity levels increased significantly as water passed through the pavement and through the bioretention system, the increase was beneficial for irrigation purposes as it was from Ca and Mg ions thus reducing the sodium absorption ratio to levels considered 'good' for irrigation in accordance with several guidelines. Permeable paving increased pH of water and this effect was prominent when the initial salt concentration increased. The study shows that permeable pavements with underlying storage can be used to provide supplementary irrigation for bioretention systems, but high initial salt concentrations may present constraints on beneficial use of stormwater. Copyright © 2017. Published by Elsevier Ltd.

  10. Acclimation of CO2 Assimilation in Cotton Leaves to Water Stress and Salinity 1

    PubMed Central

    Plaut, Zvi; Federman, Evelyn

    1991-01-01

    Cotton (Gossypium hirsutum L. cv Acala SJ2) plants were exposed to three levels of osmotic or matric potentials. The first was obtained by salt and the latter by withholding irrigation water. Plants were acclimated to the two stress types by reducing the rate of stress development by a factor of 4 to 7. CO2 assimilation was then determined on acclimated and nonacclimated plants. The decrease of CO2 assimilation in salinity-exposed plants was significantly less in acclimated as compared with nonacclimated plants. Such a difference was not found under water stress at ambient CO2 partial pressure. The slopes of net CO2 assimilation versus intercellular CO2 partial pressure, for the initial linear portion of this relationship, were increased in plants acclimated to salinity of −0.3 and −0.6 megapascal but not in nonacclimated plants. In plants acclimated to water stress, this change in slopes was not significant. Leaf osmotic potential was reduced much more in acclimated than in nonacclimated plants, resulting in turgor maintenance even at −0.9 megapascal. In nonacclimated plants, turgor pressure reached zero at approximately −0.5 megapascal. The accumulation of Cl− and Na+ in the salinity-acclimated plants fully accounted for the decrease in leaf osmotic potential. The rise in concentration of organic solutes comprised only 5% of the total increase in solutes in salinity-acclimated and 10 to 20% in water-stress-acclimated plants. This acclimation was interpreted in light of the higher protein content per unit leaf area and the enhanced ribulose bisphosphate carboxylase activity. At saturating CO2 partial pressure, the declined inhibition in CO2 assimilation of stress-acclimated plants was found for both salinity and water stress. ImagesFigure 2 PMID:16668429

  11. Bacterial contamination of tile drainage water and shallow groundwater under different application methods of liquid swine manure.

    PubMed

    Samarajeewa, A D; Glasauer, S M; Lauzon, J D; O'Halloran, I P; Parkin, Gary W; Dunfield, K E

    2012-05-01

    A 2 year field experiment evaluated liquid manure application methods on the movement of manure-borne pathogens (Salmonella sp.) and indicator bacteria (Escherichia coli and Clostridium perfringens) to subsurface water. A combination of application methods including surface application, pre-application tillage, and post-application incorporation were applied in a randomized complete block design on an instrumented field site in spring 2007 and 2008. Tile and shallow groundwater were sampled immediately after manure application and after rainfall events. Bacterial enumeration from water samples showed that the surface-applied manure resulted in the highest concentration of E. coli in tile drainage water. Pre-tillage significantly (p < 0.05) reduced the movement of manure-based E. coli and C. perfringens to tile water and to shallow groundwater within 3 days after manure application (DAM) in 2008 and within 10 DAM in 2007. Pre-tillage also decreased the occurrence of Salmonella sp. in tile water samples. Indicator bacteria and pathogens reached nondetectable levels within 50 DAM. The results suggest that tillage before application of liquid swine manure can minimize the movement of bacteria to tile and groundwater, but is effective only for the drainage events immediately after manure application or initial rainfall-associated drainage flows. Furthermore, the study highlights the strong association between bacterial concentrations in subsurface waters and rainfall timing and volume after manure application.

  12. Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation.

    PubMed

    Shao, Hongbo; Ray, Jessica R; Jun, Young-Shin

    2011-02-15

    To ensure the viability of geologic CO2 sequestration (GCS), we need a holistic understanding of reactions at supercritical CO2 (scCO2)-saline water-rock interfaces and the environmental factors affecting these interactions. This research investigated the effects of salinity and the extent of water on the dissolution and surface morphological changes of phlogopite [KMg2.87Si3.07Al1.23O10(F,OH)2], a model clay mineral in potential GCS sites. Salinity enhanced the dissolution of phlogopite and affected the location, shape, size, and phase of secondary minerals. In low salinity solutions, nanoscale particles of secondary minerals formed much faster, and there were more nanoparticles than in high salinity solutions. The effect of water extent was investigated by comparing scCO2-H2O(g)-phlogopite and scCO2-H2O(l)-phlogopite interactions. Experimental results suggested that the presence of a thin water film adsorbed on the phlogopite surface caused the formation of dissolution pits and a surface coating of secondary mineral phases that could change the physical properties of rocks. These results provide new information for understanding reactions at scCO2-saline water-rock interfaces in deep saline aquifers and will help design secure and environmentally sustainable CO2 sequestration projects.

  13. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Radium has been measured in deep saline formation waters produced from a variety of U.S. Gulf Coast subsurface environments, including oil reservoirs, gas reservoirs and water-producing geopressured aquifers. A strong positive correlation has been found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th, which are located at sites on and within the solid matrix. Processes that are belived to be primarily responsible for transferring Ra from matrix to formation water are chemical leaching and alpha-particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following factors: (a) ion exchange; (b) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of reequilibration of silica between solution and quartz grains; and (c) the equilibration of Ra in solution with detrial barite within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs. ?? 1984.

  14. Estimated water use and availability in the South Coastal Drainage Basin, southern Rhode Island, 1995-99

    USGS Publications Warehouse

    Wild, Emily C.; Nimiroski, Mark T.

    2005-01-01

    The South Coastal Drainage Basin includes approximately 59.14 square miles in southern Rhode Island. The basin was divided into three subbasins to assess the water use and availability: the Saugatucket, Point Judith Pond, and the Southwestern Coastal Drainage subbasins. Because there is limited information on the ground-water system in this basin, the water use and availability evaluations for these subbasins were derived from delineated surface-water drainage areas. An assessment was completed to estimate water withdrawals, use, and return flow over a 5-year study period from 1995 through 1999 in the basin. During the study period, one major water supplier in the basin withdrew an average of 0.389 million gallons per day from the sand and gravel deposits. Most of the potable water is imported (about 2.152 million gallons per day) from the adjacent Pawcatuck Basin to the northwest. The estimated water withdrawals from the minor water suppliers, which are all in Charlestown, during the study period were 0.064 million gallons per day. The self-supplied domestic, industrial, commercial, and agricultural withdrawals from the basin were 0.574 million gallons per day. Water use in the basin was 2.874 million gallons per day. The average return flow in the basin was 1.190 million gallons per day, which was entirely from self-disposed water users. In this basin, wastewater from service collection areas was exported (about 1.139 million gallons per day) to the Narragansett Bay Drainage Basin for treatment and discharge. During times of little to no recharge, in the form of precipitation, the surface- and ground-water system flows are from storage primarily in the stratified sand and gravel deposits, although there is flow moving through the till deposits at a slower rate. The ground water discharging to the streams, during times of little to no precipitation, is referred to as base flow. The PART program, a computerized hydrograph-separation application, was used at the

  15. A GPR agricultural drainage pipe detection case study: Effects of antenna orientation relative to drainage pipe directional trend

    USDA-ARS?s Scientific Manuscript database

    Locating buried drainage pipes is a difficult task confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal on land containi...

  16. Influence of drinking water salinity on carcass characteristics and meat quality of Santa Inês lambs.

    PubMed

    Castro, Daniela P V; Yamamoto, Sandra M; Araújo, Gherman G L; Pinheiro, Rafael S B; Queiroz, Mario A A; Albuquerque, Ítalo R R; Moura, José H A

    2017-08-01

    This study aimed to evaluate the effects of different salinity levels in drinking water on the quantitative and qualitative characteristics of lamb carcass and meat. Ram lambs (n = 32) were distributed in a completely randomized design with four levels of salinity in the drinking water (640 mg of total dissolved solids (TDS)/L of water, 3188 mg TDS/L water, 5740 mg TDS/L water, and 8326 mg TDS/L water). After slaughter, blending, gutting, and skinning the carcass, hot and biological carcass yields were obtained. Then, the carcasses were cooled at 5 °C for 24 h, and then, the morphometric measurements and the cold carcass yield were determined and the commercial cuts made. In the Longissimus lumborum muscle color, water holding capacity, cooking loss, shear force, and chemical composition were determined. The yields of hot and cold carcass (46.10 and 44.90%), as well as losses to cooling (2.40%) were not affected (P > 0.05) by the salinity levels in the water ingested by the lambs. The meat shear force was 3.47 kg/cm 2 and moisture, crude protein, ether extract, and ash were 73.62, 22.77, 2.5, and 4.3%, respectively. It is possible to supply water with salinity levels of up to 8326 mg TDS/L, because it did not affect the carcass and meat characteristics of Santa Inês lambs.

  17. Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release.

    PubMed

    Dang, Tan; Mosley, Luke M; Fitzpatrick, Rob; Marschner, Petra

    2016-12-01

    When previously oxidised acid sulphate soils are leached, they can release large amounts of protons and metals, which threaten the surrounding environment. To minimise the impact of the acidic leachate, protons and metals have to be retained before the drainage water reaches surrounding waterways. One possible amelioration strategy is to pass drainage water through permeable reactive barriers. The suitability of organic materials for such barriers was tested. Eight organic materials including two plant residues, compost and five biochars differing in feedstock and production temperature were finely ground and filled into PVC cores at 3.5 g dry wt/core. Field-collected acidic drainage water (pH 3, Al 22 mg L -1 and Fe 48 mg L -1 ) was applied in six leaching events followed by six leaching events with reverse osmosis (RO) water (45 mL/event). Compost and biochars increased the leachate pH by up to 4.5 units and had a high retention capacity for metals. The metal and proton release during subsequent leaching with RO water was very small, cumulatively only 0.05-0.8 % of retained metals and protons. Retention was lower in the two plant residues, particularly wheat straw, which raised leachate pH by 2 units only in the first leaching event with drainage water, but had little effect on leachate pH in the following leaching events. It can be concluded that organic materials and particularly biochars and compost have the potential to be used in acid drainage treatment to remove and retain protons and metals.

  18. Testing of a technique for remotely measuring water salinity in an estuarine environment

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    An aircraft experiment was flown on November 7, 1973 to test a technique for remote water salinity measurement. Apparent temperatures at 21 cm and 8-14 micron wavelengths were recorded on eight runs over a line along which the salinity varied from 5 to 30%. Boat measurements were used for calibration and accuracy calculations. Overall RMS accuracy over the complete range of salinities was 3.6%. Overall RMS accuracy for salinities greater than 10%, where the technique is more sensitive, was 2.6%. Much of this error is believed to be due to inability to exactly locate boat and aircraft positions. The standard deviation over the eight runs for salinities or = 10% is 1.4%; this error contains a component due to mislocation of the aircraft also. It is believed that operational use of the technique is possible with accuracies of 1-2%.

  19. Simulating the effect of water management decisions on groundwater flow and quality in the Kyzylkum Irrigation Scheme, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Naudascher, R. M.; Marti, B. S.; Siegfried, T.; Wolfgang, K.; Anselm, K.

    2017-12-01

    The Kyzylkum Irrigation Scheme lies north of the Chardara reservoir on the banks of the river Syr Darya in South Kazakhstan. It was designed as a model Scheme and developed to a size of 74'000 ha during Soviet times for rice and cotton production. However, since the 1990s only very limited funds were available for maintenance and as a result, problems like water logging and salinization of soils and groundwater are now omnipresent in the scheme. The aim of this study was to develop a numerical groundwater flow model for the region in Modflow and to evaluate the effect of various infrastructure investments on phreatic evaporation (a major driver for soil salinization). Decadal groundwater observation data from 2011 to 2015 were used to calibrate the annual model and to validate the monthly model. Scenarios simulated were (partial) lining of main and/or secondary and tertiary canal system, improvement of drainage via horizontal canals or pumps, combinations of these and a joint groundwater-surface-water use scenario. Although the annual average model is sufficient to evaluate the yearly water balance, the transient model is a prerequisite for analysing measures against water logging and salinization, both of which feature strong seasonality. The transient simulation shows that a combination of leakage reduction (lining of canals) and drainage improvement measures is needed to lower the groundwater levels enough to avoid phreatic evaporation. To save water, joint surface water and groundwater irrigation can be applied in areas where groundwater salinity is low enough but without proper lining of canals, it is not sufficient to mitigate the ongoing soil degradation due to salinization and water logging.

  20. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water.

    PubMed

    Teakle, Natasha Lea; Colmer, Timothy David; Pedersen, Ole

    2014-10-01

    A combination of flooding and salinity is detrimental to most plants. We studied tolerance of complete submergence in saline water for Melilotus siculus, an annual legume with superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived complete submergence of 1 week at low salinity (up to 50 mol m(-3) NaCl), but did not recover following de-submergence from 100 mol m(-3) NaCl. The leaf gas films protected against direct salt ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even after 3 d of complete submergence. By contrast, leaves with the gas films experimentally removed suffered from substantial Na(+) and Cl(-) intrusion and lost the capacity for underwater photosynthesis. Similarly, plants in saline water and without gas films lost more K(+) than those with intact gas films. This study has demonstrated that leaf gas films reduce Na(+) and Cl(-) ingress into leaves when submerged by saline water - the thin gas layer physically separates the floodwater from the leaf surface. This feature aids survival of plants exposed to short-term saline submergence, as well as the previously recognized beneficial effects of gas exchange under water. © 2014 John Wiley & Sons Ltd.

  1. A Tiered Approach to Evaluating Salinity Sources in Water at Oil and Gas Production Sites.

    PubMed

    Paquette, Shawn M; Molofsky, Lisa J; Connor, John A; Walker, Kenneth L; Hopkins, Harley; Chakraborty, Ayan

    2017-09-01

    A suspected increase in the salinity of fresh water resources can trigger a site investigation to identify the source(s) of salinity and the extent of any impacts. These investigations can be complicated by the presence of naturally elevated total dissolved solids or chlorides concentrations, multiple potential sources of salinity, and incomplete data and information on both naturally occurring conditions and the characteristics of potential sources. As a result, data evaluation techniques that are effective at one site may not be effective at another. In order to match the complexity of the evaluation effort to the complexity of the specific site, this paper presents a strategic tiered approach that utilizes established techniques for evaluating and identifying the source(s) of salinity in an efficient step-by-step manner. The tiered approach includes: (1) a simple screening process to evaluate whether an impact has occurred and if the source is readily apparent; (2) basic geochemical characterization of the impacted water resource(s) and potential salinity sources coupled with simple visual and statistical data evaluation methods to determine the source(s); and (3) advanced laboratory analyses (e.g., isotopes) and data evaluation methods to identify the source(s) and the extent of salinity impacts where it was not otherwise conclusive. A case study from the U.S. Gulf Coast is presented to illustrate the application of this tiered approach. © 2017, National Ground Water Association.

  2. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  3. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mode...

  4. Contributions of groundwater conditions to soil and water salinization

    NASA Astrophysics Data System (ADS)

    Salama, Ramsis B.; Otto, Claus J.; Fitzpatrick, Robert W.

    Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Résumé La salinisation est le processus par lequel la

  5. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    PubMed

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  6. Salinity Remote Sensing and the Study of the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, G. S. E.; LeVine, David M.; Chao, Y.; Colomb, F. Raul; Font, J.

    2007-01-01

    The SMOS and AquariusISAC-D satellite missions will begin a new era to map the global sea surface salinity (SSS) field and its variability from space within the next twothree years. They will provide critical data needed to study the interactions between the ocean circulation, global water cycle and climate. Key scientific issues to address are (1) mapping large expanses of the ocean where conventional SSS data do not yet exist, (2) understanding the seasonal and interannual SSS variations and the link to precipitation, evaporation and sea-ice patterns, (3) links between SSS and variations in the oceanic overturning circulation, (4) air-sea coupling processes in the tropics that influence El Nino, and (4) closing the marine freshwater budget. There is a growing body of oceanographic evidence in the form of salinity trends that portend significant changes in the hydrologic cycle. Over the past several decades, highlatitude oceans have become fresher while the subtropical oceans have become saltier. This change is slowly spreading into the subsurface ocean layers and may be affecting the strength of the ocean's therrnohaline overturning circulation. Salinity is directly linked to the ocean dynamics through the density distribution, and provides an important signature of the global water cycle. The distribution and variation of oceanic salinity is therefore attracting increasing scientific attention due to the relationship to the global water cycle and its influence on circulation, mixing, and climate processes. The oceans dominate the water cycle by providing 86% of global surface evaporation (E) and receiving 78% of global precipitation (P). Regional differences in E-P, land runoff, and the melting or freezing of ice affect the salinity of surface water. Direct observations of E-P over the ocean have large uncertainty, with discrepancies between the various state-of-the-art precipitation analyses of a factor of two or more in many regions. Quantifying the climatic

  7. Water-quality conditions and relation to drainage-basin characteristics in the Scituate Reservoir Basin, Rhode Island, 1982-95

    USGS Publications Warehouse

    Breault, Robert F.; Waldron, Marcus C.; Barlow, Lora K.; Dickerman, David C.

    2000-01-01

    The Scituate Reservoir Basin covers about 94 square miles in north central Rhode Island and supplies more than 60 percent of the State of Rhode Island's drinking water. The basin includes the Scituate Reservoir Basin and six smaller tributary reservoirs with a combined capacity of about 40 billion gallons. Most of the basin is forested and undeveloped. However, because of its proximity to the Providence, Rhode Island, metropolitan area, the basin is subject to increasing development pressure and there is concern that this may lead to the degradation of the water supply. Selected water-quality constituent concentrations, loads, and trends in the Scituate Reservoir Basin, Rhode Island, were investigated locate parts of the basin likely responsible for exporting disproportionately large amounts of water-quality constituents to streams, rivers, and tributary reservoirs, and to determine whether water quality in the basin has been changing with time. Water-quality data collected between 1982 and 1995 by the Providence Water Supply Board PWSB) in 34 subbasins of the Scituate Reservoir Basin were analyzed. Subbasin loads and yields of total coliform bacteria, chloride, nitrate, iron, and manganese, estimated from constituent concentrations and estimated mean daily discharge records for the 1995 water year, were used to determine which subbasins contributed disproportionately large amounts of these constituents. Measurements of pH, color, turbidity, and concentrations of total coliform bacteria, sodium, alkalinity, chloride, nitrate, orthophosphate, iron, and manganese made between 1982 and 1995 by the PWSB were evaluated for trends. To determine the potential effects of human-induced changes in drainage- basin characteristics on water quality in the basin, relations between drainage-basin characteristics and concentrations of selected water-quality constituents also were investigated. Median values for pH, turbidity, total coliform bacteria, sodium, alkalinity, chloride

  8. Performance of dentrification beds for removing nitrate from drainage water at cold temperatures

    USDA-ARS?s Scientific Manuscript database

    Transport of soluble nitrogen and phosphorus to water bodies has been a concern for many years due to human health issues, and is a major contributor to the formation of oxygen deficiency in aquatic ecosystems. Agricultural subsurface drainage is one pathway for transport of excess nutrients to surf...

  9. Modeling of subglacial hydrological development following rapid supraglacial lake drainage.

    PubMed

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-06-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Model for subglacial hydrological analysis of rapid lake drainage eventsLimited subglacial channel growth during and following rapid lake drainagePersistence of distributed drainage in inland areas where channel growth is limited.

  10. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    PubMed Central

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746

  11. Water-use information for California

    USGS Publications Warehouse

    Templin, W.E.

    1986-01-01

    This pamphlet reports on the availability of water use information to and for the state of California, through the development of the State Water-Use Data System (SWUDS). SWUDS is currently organized into 12 water use categories: Agricultural non-irrigation; Commercial; Domestic; Industrial; Irrigation; Mining; Power generation--fossil fuel, geothermal, hydroelectric , nuclear; Sewage treatment; and Water supply. The information needs of this system include type of water use (by category); name of water user; location of water use (latitude/longitude, county, and hydrologic unit--drainage basin); sources of water supply and return (fresh, saline, or reclaimed surface or groundwater); volume of water withdrawn, delivered, consumed, released, and returned; and period of water use (month, year). (Lantz-PTT)

  12. 75 FR 15453 - Central Valley Project Improvement Act, Westlands Water District Drainage Repayment Contract

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Westlands Water District Drainage Repayment Contract AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of Proposed Repayment Contract. SUMMARY: The Bureau of Reclamation will be initiating negotiations with the...

  13. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    NASA Astrophysics Data System (ADS)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  14. Subduction of a low-salinity water mass around the Xisha Islands in the South China Sea.

    PubMed

    Huang, Zhida; Zhuang, Wei; Liu, Hailong; Hu, Jianyu

    2018-02-15

    Based on three climatologically observed temperature and salinity datasets (i.e., GDEM-V3, SCSPOD14 and WOA13), this paper reports a low-salinity (~34.32) water mass in the subsurface-to-intermediate layer around the Xisha Islands in the South China Sea. This water mass mainly subducts from the surface layer into the intermediate layer, characterized by a relatively low potential vorticity tongue extending from the bottom of mixed layer to the thermocline, and accompanied by a thermocline ventilation in spring (especially in April). The potential dynamics are the joint effects of negative wind stress curl, and an anticyclonic eddy triggered by the inherent topographic effect of the Xisha Islands, reflecting that downward vertical motion dominates the subduction. Despite lacking of the homogenous temperature and density, the low-salinity water mass is to some extent similar to the classic mode water and can be regarded as a deformed mode water in the South China Sea.

  15. Estimation of solar energy resources for low salinity water desalination in several regions of Russia

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. B.; Kiseleva, S. V.; Shakun, V. P.; Gabderakhmanova, T. S.

    2018-01-01

    This paper focuses on estimation of demanded photovoltaic (PV) array areas and capital expenses to feed a reverse osmosis desalination unit (1 m3/day fresh water production rate). The investigation have been made for different climatic conditions of Russia using regional data on ground water salinity from different sources and empirical dependence of specific energy consumption on salinity and temperature. The most optimal results were obtained for Krasnodar, Volgograd, Crimea Republic and some other southern regions. Combination of salinity, temperature and solar radiation level there makes reverse osmosis coupled with photovoltaics very attractive to solve infrastructure problems in rural areas. Estimation results are represented as maps showing PV array areas and capital expenses for selected regions.

  16. Digital database architecture and delineation methodology for deriving drainage basins, and a comparison of digitally and non-digitally derived numeric drainage areas

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    The drainage basin is a fundamental hydrologic entity used for studies of surface-water resources and during planning of water-related projects. Numeric drainage areas published by the U.S. Geological Survey water science centers in Annual Water Data Reports and on the National Water Information Systems (NWIS) Web site are still primarily derived from hard-copy sources and by manual delineation of polygonal basin areas on paper topographic map sheets. To expedite numeric drainage area determinations, the Colorado Water Science Center developed a digital database structure and a delineation methodology based on the hydrologic unit boundaries in the National Watershed Boundary Dataset. This report describes the digital database architecture and delineation methodology and also presents the results of a comparison of the numeric drainage areas derived using this digital methodology with those derived using traditional, non-digital methods. (Please see report for full Abstract)

  17. Chemical quality of surface waters and sedimentation in the Saline River basin, Kansas

    USGS Publications Warehouse

    Jordan, Paul Robert; Jones, B.F.; Petri, Lester R.

    1964-01-01

    This report gives the results of an investigation of the sediment and dissolved minerals that are transported by the Saline River and its tributaries. The Saline River basin is in western and central Kansas; it is long and narrow and covers 3,420 square miles of rolling plains, which is broken in some places by escarpments and small areas of badlands. In the western part the uppermost bedrock consists predominantly of calcareous elastic sedimentary rocks of continental origin of Pliocene age and in most places is covered by eolian deposits of Pleistocene and Recent age. In the central part the ex posed bedrock consists predominantly of calcareous marine sedimentary rocks of Late Cretaceous age. In the eastern part the exposed bedrock consists mainly of noncalcareous continental and littoral elastic sedimentary rocks of Early Cretaceous and Permian age. Fluvial deposits are in the valleys, and eolian materials are present over much of the uplands. Average precipitation increases rather uniformly from about 18 inches per year in the west to almost 28 inches per year in the east. Runoff is not affected by irrigation nor regulated by large structures, but it is closely related to precipitation. Average runoff increases from less than 0.2 inch per year in the west to more than 1.5 inches per year in the east. Aquifers of the flood-plain and terrace deposits and of the Cretaceous Dakota Sandstone are the major sources of ground-water accretion to the streams. In the upper reaches of the Saline River, the water is only slightly mineralized; during the period of record the specific conductance near Wakeeney never exceeded 750 micromhos per centimeter. In the lower reaches, however, the water is slightly mineralized during periods of high flow and is highly mineralized during periods of low flow; the specific conductance near Russell exceeded 1,500 micromhos per centimeter more than 80 percent of the time. Near Russell, near Wilson, and at Tescott the water is of the

  18. Salinity of the Delaware Estuary

    USGS Publications Warehouse

    Cohen, Bernard; McCarthy, Leo T.

    1962-01-01

    The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.

  19. ASSESSING MINE DRAINAGE WATER QUALITY FROM THE COLOR AND SPECTRAL REFLECTANCE OF CHEMICAL PRECIPITATES

    EPA Science Inventory


    The pH and dissolved sulfate concentrations of mine impacted waters were estimated on the basis of the spectral reflectance of resident sediments composed mostly of chemical precipitates. Mine drainage sediments were collected from sites in the Anthracite Region of eastern Pe...

  20. National Water-Quality Assessment Program - Western Lake Michigan Drainage Basin

    USGS Publications Warehouse

    Setmire, J.O.

    1991-01-01

    A major component of the program is study-unit investigations, which comprise the princ ipal bui lding blocks of the program on which national-level asses ment activities a re based . The 60 study-unit in vestigations that make up the program are hydrologic systems that include parts of most major river bas ins and a qui fer systems. These study units cover areas of I ,200 to more than 65 ,000 square mi les and incorporate about 60 to 70 percent of the Nation's water use and popul ation e rved by public water supply. In 1991 , the Western Lake Michigan drainage basin was among the fir st 20 NA WQA study unit selected for study under the full -scale implementation plan.

  1. Compositions of surface layers formed on amalgams in air, water, and saline.

    PubMed

    Hanawa, T; Gnade, B E; Ferracane, J L; Okabe, T; Watari, F

    1993-12-01

    The surface layers formed on both a zinc-free and a zinc-containing dental amalgam after polishing and aging in air, water, or saline, were characterized using x-ray photoelectron spectroscopy (XPS) to determine the compositions of the surface layers which might govern the release of mercury from amalgam. The XPS data revealed that the formation of the surface layer on the zinc-containing amalgam was affected by the environment in which the amalgam was polished and aged, whereas that on the zinc-free amalgam was not affected. In addition, among the elements contained in amalgam, zinc was the most reactive with the environment, and was preferentially dissolved from amalgam into water or saline. Mercury atoms existed in the metallic state in the surface layer.

  2. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    USGS Publications Warehouse

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  3. ARSENIC DETERMINATION IN SALINE WATERS BY HYDRIDE GENERATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY.

    EPA Science Inventory

    The determination of arsenic in estuarine waters usually involves a matrix removal and/or pre-concentration prior to analysis because of the high salt content in these waters. The salinity also produces analytical challenges in terms of interferences and instrument stability. A...

  4. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water.

    PubMed

    Olufemi, Olukemi Temiloluwa; Adeyeye, Adeolu Ikechukwu

    2017-01-01

    Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS) or the distilled water (DW) group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Forty-one (42.3%) of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315). The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389). It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities. © The Authors, published by EDP Sciences, 2017.

  5. The results of the electrochemical clearning of drainage waters

    NASA Astrophysics Data System (ADS)

    Kabannik, Vasilina; Saeva, Olga

    2010-05-01

    There is a problem of industrial drains clearing in various branches, but especially sharply in a metal manufacture that is caused by great volumes of the wastewater containing high residual concentration of heavy metals. It is necessary to pay attention to solids in wastes. In a long-term interaction with oxygen of air and natural deposits the acid drainage is often formed and takes out a number of elements with different classes of toxicity to superficial and underground waters. Therefore search of an extraction possibilities for toxic components for a eliminate of their further migration is the big deal. Belov Zink Plant located in the Kemerovo region. During sixty years the factory stably made up to 10 000 tons of zinc annually and in passing up to 30 000 tons H2SO4 processing a blende concentrate. Now the factory has stopped the activity, however, in territory have remained uncontrolledly stored about one million tons of the wastes, presented by slags and ashes. Visually clinker represent coarse-grained sands of the typical slag containing 0.7-15% Zn, 0.3-8.5% Cu, 0.03-0.7% Pb and 2-400 g/t Cd. Besides in tailings the sub-standard sulfuric acid [Bortnikova, etc., 2006] are merged. Acid (рН=3.5) and highsaline waters of a drainage stream with significant concentration sulfate-ion (up to 20 g/l), copper (up to 6 g/l) and zinc (up to 4 g/l), that allows to consider as macrocomponents. A wide number of microcells in drains exceeds maximum concentration limit (MPC) of chemical substances in objects of drinking and community use. The basic chemical forms of present metals (Al, Mn, Zn, Fe, Co, Ni, Pb, Cu) are aquo-ions and sulphatic complexes. Earlier in our laboratory searching of a way of a toxic components concentration downturn in drains of Belov plant - sorptive clearing by natural clays [Gaskova, Kabannik, 2009] and sedimentation of toxic elements on carbonate barrier [Yurkevich, etc., 2008] were done, however the desirable result by virtue of that this

  6. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    USDA-ARS?s Scientific Manuscript database

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  7. The effect of drainage reorganization on paleoaltimetry studies: An example from the Paleogene Laramide foreland

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Wiegand, Bettina A.; Carroll, Alan R.; Chamberlain, C. Page

    2008-11-01

    Using multiple isotope systems, we examine the complex effects of drainage reorganization in the Laramide Foreland in the context of stable isotope paleoaltimetry. Strontium, oxygen and carbon isotopic data from lacustrine carbonates formed in the southwestern Uinta Basin, Utah between the Late Cretaceous and late Middle Eocene reveal a two stage expansion in the drainage basin of Lake Uinta beginning at ~ 53 Ma culminating in the Mahogany highstand at 48.6 Ma. A marked increase in 87Sr/ 86Sr ratios of samples from the Main Body of the Green River Formation is interpreted as the result of water overflowing the Greater Green River Basin in Wyoming and entering Lake Uinta from the east via the Piceance Creek Basin of northwestern Colorado. This large new source of water caused a rapid expansion of Lake Uinta and was accompanied by a significant and rapid increase in the O isotope record of carbonate samples by ~ 6‰. The periodic overspilling of Lake Gosiute probably became continuous at ~ 49 Ma, when the lake captured low- δ18O water from the Challis and Absaroka Volcanic Fields to the north. However, evaporation in the Greater Green River and Piceance Creek Basins meant that the waters entering Lake Uinta were still enriched in 18O. By ~ 46 Ma, inflows from the Greater Green River Basin ceased, resulting in a lowstand of Lake Uinta and the deposition of bedded evaporites in the Saline Facies of the Green River Formation. We thus show that basin development and lake hydrology in the Laramide foreland were characterized by large-scale changes in Cordilleran drainage patterns, capable of confounding paleoaltimetry studies premised on too few isotopic systems, samples or localities. In the case of the North American Cordillera of the Paleogene, we further demonstrate the likelihood that (1) topographic evolution of distal source areas strongly influenced the isotopic records of intraforeland basins and (2) a pattern of drainage integration between the hinterland and

  8. Geohydrology and potential for upward movement of saline water in the Cocoa well field, East Orange County, Florida

    USGS Publications Warehouse

    Phelps, G.G.; Schiffer, D.M.

    1996-01-01

    The Floridan aquifer system, an approximately 2,000-foot thick sequence of Eocene-age limestone and dolomite, is the main source of water supply in central Florida. Hydraulic conductivity is different in strata of different lithology and is the basis for separating the aquifer system into the Upper Floridan aquifer, a middle semi- confining unit, and the Lower Floridan aquifer. The coastal city of Cocoa withdraws about 26 million gallons of water per day from the Upper Floridan aquifer from a well field in east Orange County, about 25 miles inland. About 60 million gallons per day are withdrawn from the Upper Floridan aquifer and 56 million gallons per day from the Lower Floridan aquifer in the Orlando area, about 15 miles west of the Cocoa well field. Wells drilled in the Cocoa well field from 1955-61 yielded water with chloride concentrations ranging from 25-55 milligrams per liter. Soon after the wells were put in service, chloride concentrations increased; therefore, new wells were drilled further inland. Chloride concen- trations in water from many of the new wells also have increased. Possible sources of saline water are lateral movement of relict seawater in the Upper Floridan aquifer from the east, regional upconing of saline water from the Lower Floridan aquifer or underlying older rocks, or localized upward movement of saline water through fractures. Several test wells were drilled to provide information about chloride concentration changes with depth and to monitor changes with time, including a multi-zone well drilled in 1965 (well C) and two wells drilled in the 1990's (wells R and S). Chloride concentrations have increased in the zone pumped by the supply wells (the upper 500 feet of the aquifer) and in the 1,351-1,357-foot deep zone of well C, but not in the two intervening zones. This indicates that the source of saline water is located laterally, rather than vertically, from the pumped zone in the area of well C. The potential for upward movement

  9. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton

    PubMed Central

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A. Egrinya

    2012-01-01

    A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na+ concentrations in leaves. The [Na+] in the ‘0’ side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the ‘0’ side phloem was girdled, suggesting that the increased [Na+] in the ‘0’ side roots was possibly due to transportation of foliar Na+ to roots through phloem. Plants under non-uniform salinity extruded more Na+ from the root than those under uniform salinity. Root Na+ efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na+ efflux and H+ influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na+ extrusion was probably due to active Na+/H+ antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na+ concentration, transport of excessive foliar Na+ to the low salinity side, and enhanced Na+ efflux from the low salinity root. PMID:22200663

  10. Effects of salinity on freshwater fishes in coastal plain drainages in the southeastern U.S.

    USGS Publications Warehouse

    Peterson, Mark S.; Meador, Michael R.

    1994-01-01

    This review focuses on the influence of salinity on freshwater fishes in coastal rivers and estuaries of the southeastern U.S. Influences of salinity on freshwater fish species can be explained partly through responses evidenced by behavior, physiology, growth, reproduction, and food habits during all aspects of life history. Factors influencing the rate of salinity change affect the community structure and dynamics of freshwater fishes in brackish environments. Our understanding of the relation between salinity and the life history of freshwater fishes is limited because little ecological research has been conducted in low-salinity habitats that we consider an “interface” between freshwater streams and the estuary proper. Much of the available data are descriptive in nature and describe best general patterns, but more specific studies are required to better determine the influence of salinity on freshwater fishes. Improved understanding of the influence of human-induced changes on the productivity and viability of these important systems will require a new research focus.

  11. Efficacy of passive capillary samplers for estimating soil water drainage in the vadose zone

    USDA-ARS?s Scientific Manuscript database

    The efficacy and accuracy of PCAP samplers were evaluated for continuous estimating of soil water drainage and fluxes below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with outside sampling surface dimensions of 91 cm length x 31 cm wid...

  12. Relative insignificance of virus inactivation during aluminum electrocoagulation of saline waters.

    PubMed

    Tanneru, Charan Tej; Jothikumar, N; Hill, Vincent R; Chellam, Shankararaman

    2014-12-16

    Combined removal and inactivation of the MS2 bacteriophage from model saline (0-100 mM NaCl) waters by electrochemical treatment using a sacrificial aluminum anode was evaluated. Both chemical and electrodissolution contributed to coagulant dosing since measured aluminum concentrations were statistically higher than purely electrochemical predictions using Faraday's law. Electrocoagulation generated only small amounts of free chlorine in situ but effectively destabilized viruses and incorporated them into Al(OH)3(s) flocs during electrolysis. Low chlorine concentrations combined with virus shielding and aggregation within flocs resulted in very slow disinfection rates necessitating extended flocculation/contact times to achieve significant log-inactivation. Therefore, the dominant virus control mechanism during aluminum electrocoagulation of saline waters is "physical" removal by uptake onto flocs rather than "chemical" inactivation by chlorine. Attenuated total reflectance-Fourier transform infrared spectroscopy provided evidence for oxidative transformations of capsid proteins including formation of oxyacids, aldehydes, and ketones. Electrocoagulation significantly altered protein secondary structures decreasing peak areas associated with turns, bends, α-helices, β-structures, and random coils for inactivated viruses compared with the MS2 stock. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) measurements showed rapid initial RNA damage following a similar trend as plaque assay measurements of infectious viruses. However, ssRNA cleavage measured by qRT-PCR underestimated inactivation over longer durations. Although aluminum electrocoagulation of saline waters disorders virus capsids and damages RNA, inactivation occurs at a sufficiently low rate so as to only play a secondary role to floc-encapsulation during residence times typical of electrochemical treatment.

  13. Drinking Water Salinity and Maternal Health in Coastal Bangladesh: Implications of Climate Change

    PubMed Central

    Ireson, Andrew; Kovats, Sari; Mojumder, Sontosh Kumar; Khusru, Amirul; Rahman, Atiq; Vineis, Paolo

    2011-01-01

    Background: Drinking water from natural sources in coastal Bangladesh has become contaminated by varying degrees of salinity due to saltwater intrusion from rising sea levels, cyclone and storm surges, and upstream withdrawal of freshwater. Objective: Our objective was to estimate salt intake from drinking water sources and examine environmental factors that may explain a seasonal excess of hypertension in pregnancy. Methods: Water salinity data (1998–2000) for Dacope, in rural coastal Bangladesh, were obtained from the Centre for Environment and Geographic Information System in Bangladesh. Information on drinking water sources, 24-hr urine samples, and blood pressure was obtained from 343 pregnant Dacope women during the dry season (October 2009 through March 2010). The hospital-based prevalence of hypertension in pregnancy was determined for 969 pregnant women (July 2008 through March 2010). Results: Average estimated sodium intakes from drinking water ranged from 5 to 16 g/day in the dry season, compared with 0.6–1.2 g/day in the rainy season. Average daily sodium excretion in urine was 3.4 g/day (range, 0.4–7.7 g/day). Women who drank shallow tube-well water were more likely to have urine sodium > 100 mmol/day than women who drank rainwater [odds ratio (OR) = 2.05; 95% confidence interval (CI), 1.11–3.80]. The annual hospital prevalence of hypertension in pregnancy was higher in the dry season (OR = 12.2%; 95% CI, 9.5–14.8) than in the rainy season (OR = 5.1%; 95% CI, 2.91–7.26). Conclusions: The estimated salt intake from drinking water in this population exceeded recommended limits. The problem of saline intrusion into drinking water has multiple causes and is likely to be exacerbated by climate change–induced sea-level rise. PMID:21486720

  14. Coastal circulation and sediment dynamics along West Maui, Hawaii; PART IV: measurements of waves, currents, temperature, salinity and turbidity in Honolua Bay, Northwest Maui: 2003-2004

    USGS Publications Warehouse

    Storlazzi, Curt D.; Presto, M. Kathy

    2005-01-01

    High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Honolua Bay, northwest Maui, Hawaii, during 2003 and 2004 to better understand coastal dynamics in coral reef habitats. Measurements were acquired through two different collection methods. Two hydrographic survey cruises were conducted to acquire spatially-extensive, but temporally-limited, three-dimensional measurements of currents, temperature, salinity and turbidity in the winter and summer of 2003. From mid 2003 through early 2004, a bottom-mounted instrument package was deployed in a water depth of 10 m to collect long-term, single-point high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties such as water temperature, salinity and turbidity vary spatially and temporally in a near-shore coral reef system adjacent to a major stream drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the final part in a series, describes data acquisition, processing and analysis. Previous reports provided data and results on: Long-term measurements of currents, temperature, salinity and turbidity off Kahana (PART I), the spatial structure of currents, temperature, salinity and suspended sediment along West Maui (PART II), and flow and coral larvae and sediment dynamics during the 2003 summer spawning season (PART III).

  15. An application of the AHP in water resources management: a case study on urban drainage rehabilitation in Medan City

    NASA Astrophysics Data System (ADS)

    Tarigan, A. P. M.; Rahmad, D.; Sembiring, R. A.; Iskandar, R.

    2018-02-01

    This paper illustrates an application of Analytical Hierarchy Process (AHP) as a potential decision-making method in water resource management related to drainage rehabilitation. The prioritization problem of urban drainage rehabilitation in Medan City due to limited budget is used as a study case. A hierarchical structure is formed for the prioritization criteria and the alternative drainages to be rehabilitated. Based on the AHP, the prioritization criteria are ranked and a descending-order list of drainage is made in order to select the most favorable drainages to have rehabilitation. A sensitivity analysis is then conducted to check the consistency of the final decisions in case of minor changes in judgements. The results of AHP computed manually are compared with that using the software Expert Choice. It is observed that the top three ranked drainages are consistent, and both results of the AHP methods, calculated manually and performed using Expert Choice, are in agreement. It is hoped that the application of the AHP will help the decision-making process by the city government in the problem of urban drainage rehabilitation.

  16. Salinity minima, water masses and surface circulation in the Eastern Tropical Pacific off Mexico and surrounding areas

    NASA Astrophysics Data System (ADS)

    Portela, Esther; Beier, Emilio; Godínez, Victor; Castro, Rubén; Desmond Barton, Eric

    2016-04-01

    The seasonal variations of the water masses and their interactions are analyzed in the Tropical Pacific off Mexico (TPOM) and four contiguous areas of on the basis of new extensive hydrographic database. The regional water masses intervals are redefined in terms of Absolute Salinity (SA) in g kg-1 and Conservative Temperature (Θ) according to TEOS - 10. The California Current System Water (CCSW) mass is introduced as an improved description of the former California Current Water (CCW) together with the Subarctic Water (SAW) to describe better the characteristics of the components of the California Current System. Hydrographic data, Precipitation-Evaporation balance and geostrophic currents were used to investigate the origin and seasonality of two salinity minima in the area. The shallow salinity minimum of around 33.5 g kg-1 originated in the California Current System and became saltier but less dense water as it traveled to the southeast. It can be identified as a mixture of CCSW and tropical waters. The surface salinity minimum of 32 - 33 g kg-1 was seen as a sharp surface feature in the TPOM from August to November. It was produced by the arrival of tropical waters from the south in combination with the net precipitation in the area during these months. This result provides new evidence of the presence of the poleward-flowing Mexican Coastal Current and, for the first time, of its seasonal pattern of variation.

  17. Characterization and geostatistical mapping of water salinity: A case study of terminal complex in the Oued Righ Valley (southern Algeria)

    NASA Astrophysics Data System (ADS)

    Belkesier, Mohamed Saleh; Zeddouri, Aziez; Halassa, Younes; Kechiched, Rabah

    2018-05-01

    The region of Oued Righ contains large quantities of groundwater hosted by the three aquifers: the Terminal Complex (CT), the Continental Intercalary (CI) and the phreatic aquifer. The present study is focused on the water from CT aquifer in order to characterize their salinity using geostatistical tool for maping. Indeed, water in this aquifer show a high mineralization exceeding the OMS standards. The main hydro-chemical facies of this water is Chloride-Sodium and Sulfate-Sodium. The elementary statistics have been performed on the physico-chemical analysis from 97 wells whereas 766 wells were analyzed on salinity and are used for the geostatistical mapping. The obtained results show a spatial evolution of the salinity toward the direction South to the North. The salinity is locally strong in the central part of Oued Righ valley. The non-parametric geostatistic of indicator kriging was performed on the salinity data using a cut-off of 5230 mg/l which represents the average value in the studied area. The indicator Kriging allows the estimation of salinity probabilities I (5230 mg / l) in the water of the CT aquifer using bloc model (500 x 500 m). The automatic mapping is used to visualize the distribution of the kriged probabilities of salinity. These results can help to ensure a rational and a selective exploitation of groundwater according the salinity contents.

  18. Remote sensing of salinity

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances.

  19. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA

    USGS Publications Warehouse

    Huff, G.F.

    2006-01-01

    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  20. Responses of Baltic Sea Ice and Open-Water Natural Bacterial Communities to Salinity Change

    PubMed Central

    Kaartokallio, Hermanni; Laamanen, Maria; Sivonen, Kaarina

    2005-01-01

    To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure. PMID:16085826

  1. Economic and Policy Drivers of Agricultural Water Desalination in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Welle, P.; Medellin-Azuara, J.; Viers, J. H.; Mauter, M.

    2016-12-01

    Agriculture in arid regions is threatened by the twin stresses of soil salinity and uncertain water availability. Recently, water desalination has been a proposed solution for mitigating the effects of drought, soil salinization, and the ecological impacts of agricultural drainage. In this study, we combine data from earth observing systems with auxiliary information on prices, yields, and farmer behavior in order to create a decision framework which assesses the public and private costs and benefits of distributed desalination in the Central Valley (CV) of California. The use of remotely sensed crop classifiers allows us to resolve our analysis at the 30m pixel scale across the CV, a feature that allows us to characterize regional differences in technology effectiveness. We employ environmental and economic modeling to estimate the value of lower salinity irrigation water; the value of augmented water supply under present and future climate scenarios; and the human health, environmental, and climate change damages associated with generating power to desalinate water. We find that water desalination is only likely to be profitable in 4% of the CV during periods of severe drought, and that current costs would need to decrease by 70-90% for adoption to occur on the median acre. Fossil-fuel powered desalination technologies also generate air emissions that impose significant public costs in the form of human health and climate change damages, although these damages vary greatly depending on technology. The ecosystem service benefits of reduced agricultural drainage would need to be valued between 800 and 1200 per acre-foot, or nearly the full capital and operational costs of water desalination, for the net benefits of water desalination to be positive from a societal perspective.

  2. Preliminary survey of the saline-water resources of the United States

    USGS Publications Warehouse

    Krieger, Robert A.; Hatchett, J.L.; Poole, J.L.

    1957-01-01

    Basic hydrologic data available in the field offices of the U. S. Geological Survey and reports issued by the Survey furnish evidence that saline water (defined in this report as water containing more than 1,000 parts per million of dissolved solids) is available under diverse geologic and hydrologic conditions throughout the United States.The number of areas in which undeveloped supplies of fresh water are available has diminished considerably with the rapid growth of industries and population in the past decade. Many areas previously considered to have relatively unlimited water resources have reached the point at which water-supply shortages exist or are threatened.

  3. Groundwater-saline lakes interaction - The contribution of saline groundwater circulation to solute budget of saline lakes: a lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Weinstein, Yishai; Starinsky, Abraham; Yechieli, Yoseph

    2013-04-01

    Saline lakes act as base level for both surface water and groundwater. Thus, a change in lake levels is expected to result in changes in the hydrogeological system in its vicinity, exhibited in groundwater levels, location of the fresh-saline water interface, sub-lacustrine groundwater discharge (SGD) and saline water circulation. All these processes were observed in the declining Dead Sea system, whose water level dropped by ~35 meters in the last 50 years. This work focuses mainly on the effect of circulation of Dead Sea water in the aquifer, which continues even in this very rapid base level drop. In general, seawater circulation in coastal aquifers is now recognized as a major process affecting trace element mass balances in coastal areas. Estimates of submarine groundwater discharge (SGD) vary over several orders of magnitude (1-1000000 m3/yr per meter shoreline). These estimates are sensitive to fresh-saline SGD ratios and to the temporal and spatial scales of the circulation. The Dead Sea system is an excellent natural field lab for studying seawater-groundwater interaction and large-scale circulation due to the absence of tides and to the minor role played by waves. During Dead Sea water circulation in the aquifer several geochemical reactions occur, ranging from short-term adsorption-desorption reactions and up to long-term precipitation and dissolution reactions. These processes affect the trace element distribution in the saline groundwater. Barite and celestine, which are supersaturated in the lake water, precipitate during circulation in the aquifer, reducing barium (from 5 to 1.5 mg/L), strontium (from 350 to 300 mg/L) and the long-lived 226Ra (from 145 to 60 dpm/L) in the saline groundwater. Redox-controlled reactions cause a decrease in uranium from 2.4 to 0.1 μg/L, and an increase in iron from 1 to 13 mg/L. 228Ra (t1/2=5.75 yr) activity in the Dead Sea is ~1 dpm/L and increase gradually as the saline water flows further inland until reaching

  4. Salinity trends in the Ebro River (Spain)

    NASA Astrophysics Data System (ADS)

    Lorenzo-Gonzalez, M.° Angeles; Isidoro, Daniel; Quilez, Dolores

    2016-04-01

    flows and salinity in 1973-2012 and can only be extrapolated into the future if the drivers of this evolution (climate and land use changes) remain unchanged in the following years, what is uncertain. A more comprehensive methodology to estimate the effects of irrigation on water salinity has been developed based on a mass balance approach. Using actual data on volumes and concentrations of return flows observed in the basin (dependent on the actual salinity of soils and waters and the irrigation systems, among other factors), the return flows of the irrigated areas are aggregated to match the actual flows and loads observed in the Ebro River. Once this balance is satisfied, the effect of new irrigated areas, drainage water reuse, irrigation modernization, or climate change would be incorporated to the balance yielding salinity forecasts based on planned irrigation developments and modernization or climate change predictions. A priori, irrigation modernization would produce lower, more concentrated volumes of return flows with lower salt loads that would result in lower TDS concentrations in the Ebro River.

  5. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water

    USDA-ARS?s Scientific Manuscript database

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or “tiles”. Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concent...

  6. Effects of subsurface drainage systems on water and nitrogen footprints simulated with RZWQM2

    USDA-ARS?s Scientific Manuscript database

    When considering the use of drainage water management (DWM) in the Midwest to reduce nutrient contributions to the Northern Gulf of Mexico Hypoxic Zone, it is essential to understand the long-term performance of these systems. Few studies have evaluated long-term impacts of DWM and the simulation of...

  7. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    NASA Astrophysics Data System (ADS)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity

  8. Field-scale monitoring of the long-term impact and sustainability of drainage water reuse using ECa-directed soil sampling

    USDA-ARS?s Scientific Manuscript database

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustainability of it...

  9. Water withdrawal and use in Maryland, 1986

    USGS Publications Warehouse

    Wheeler, J.C.

    1990-01-01

    During 1986, about 1,460 million gallons per day of freshwater was withdrawn from the surface-, and groundwater resources of Maryland. In addition, more than 6,240 million gallons per day of saline surface water was withdrawn and used primarily for cooling purposes in the generation of electricity. Most freshwater withdrawals (84%) were from surface water sources and were withdrawn and used in the Potomac drainage basin, whereas most groundwater was withdrawn and used in the Upper Chesapeake drainage basin. The Potomac Group aquifers provided the most groundwater (56 million gallons per day). Ten water use categories comprise the major demands on the surface and groundwater resources of the State: public supply, domestic, commercial, industrial, mining, thermoelectric power generation, hydroelectric power generation, agricultural (non-irrigation), irrigation, and aquaculture. Public-supply systems withdrew the most water in the State (801 million gallon/day) for use by residents, commercial establishments, and industries. Baltimore City had the largest public-supply use in 1986 (about 151 million gallons/day). (USGS)

  10. Investigation of ground-water contamination at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used newly developed sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report uses data from a new type of pore-water sampler developed for this investigation and other methods to examine the subsurface contamination beneath the drainage ditch. Analysis of ground water from the samplers indicated that chlorobenzenes (maximum detected concentration of 160 micrograms per liter) are present in the ground water beneath the ditch. The concentrations of dissolved oxygen in the samples (less than 0.05-0.4 milligram per liter) showed that the ground water beneath and near the ditch is anaerobic, indicating that substantial chlorobenzene biodegradation in the aquifer beneath the ditch is unlikely. Probable alternative mechanisms of chlorobenzene removal in the ground water beneath the drainage ditch include sorption onto the organic-rich sediment and contaminant depletion by cattails through uptake, sorption, and localized soil aeration.

  11. Streamflow distribution maps for the Cannon River drainage basin, southeast Minnesota, and the St. Louis River drainage basin, northeast Minnesota

    USGS Publications Warehouse

    Smith, Erik A.; Sanocki, Chris A.; Lorenz, David L.; Jacobsen, Katrin E.

    2017-12-27

    Streamflow distribution maps for the Cannon River and St. Louis River drainage basins were developed by the U.S. Geological Survey, in cooperation with the Legislative-Citizen Commission on Minnesota Resources, to illustrate relative and cumulative streamflow distributions. The Cannon River was selected to provide baseline data to assess the effects of potential surficial sand mining, and the St. Louis River was selected to determine the effects of ongoing Mesabi Iron Range mining. Each drainage basin (Cannon, St. Louis) was subdivided into nested drainage basins: the Cannon River was subdivided into 152 nested drainage basins, and the St. Louis River was subdivided into 353 nested drainage basins. For each smaller drainage basin, the estimated volumes of groundwater discharge (as base flow) and surface runoff flowing into all surface-water features were displayed under the following conditions: (1) extreme low-flow conditions, comparable to an exceedance-probability quantile of 0.95; (2) low-flow conditions, comparable to an exceedance-probability quantile of 0.90; (3) a median condition, comparable to an exceedance-probability quantile of 0.50; and (4) a high-flow condition, comparable to an exceedance-probability quantile of 0.02.Streamflow distribution maps were developed using flow-duration curve exceedance-probability quantiles in conjunction with Soil-Water-Balance model outputs; both the flow-duration curve and Soil-Water-Balance models were built upon previously published U.S. Geological Survey reports. The selected streamflow distribution maps provide a proactive water management tool for State cooperators by illustrating flow rates during a range of hydraulic conditions. Furthermore, after the nested drainage basins are highlighted in terms of surface-water flows, the streamflows can be evaluated in the context of meeting specific ecological flows under different flow regimes and potentially assist with decisions regarding groundwater and surface-water

  12. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    NASA Astrophysics Data System (ADS)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  13. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    PubMed

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  14. 9 CFR 354.223 - Drainage and plumbing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... approved traps and vents. The drainage and plumbing system must permit the quick runoff of all water from... covers. (3) Toilet soil lines shall be separate from house drainage lines to a point outside the...

  15. Acid mine drainage

    USGS Publications Warehouse

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  16. Infections may select for filial cannibalism by impacting egg survival in interactions with water salinity and egg density.

    PubMed

    Lehtonen, Topi K; Kvarnemo, Charlotta

    2015-07-01

    In aquatic environments, externally developing eggs are in constant contact with the surrounding water, highlighting the significance of water parameters and pathogens for egg survival. In this study we tested the impact of water salinity, egg density and infection potential of the environment on egg viability in the sand goby (Pomatoschistus minutus), a small fish that exhibits paternal egg care and has a marine origin, but which in the Baltic Sea lives in brackish water. To manipulate the infection potential of the environment, we added either a Saprolegnia infection vector into UV-filtered water or a fungicide into natural Baltic Sea water. Saprolegnia are widely spread water moulds that are a key cause of egg mortality in aquatic organisms in fresh- and brackish water. We found that increased water salinity indeed decreased the egg infection rate and had a positive effect on egg viability, while high egg density tended to have the opposite effect. However, the different factors influenced egg viability interactively, with a higher egg density having negative effects at low, but not in high, salinity. Thus, the challenges facing marine organisms adapting to lower salinity levels can be amplified by Saprolegnia infections that reduce egg survival in interaction with other environmental factors. Our results support the hypothesis that suppressing egg infections is an important aspect of parental care that can select for filial cannibalism, a common but poorly understood behaviour, especially in fish with parental care.

  17. Water beetle tolerance to salinity and anionic composition and its relationship to habitat occupancy.

    PubMed

    Céspedes, V; Pallarés, S; Arribas, P; Millán, A; Velasco, J

    2013-10-01

    Water salinity and ionic composition are among the main environmental variables that constrain the fundamental niches of aquatic species, and accordingly, physiological tolerance to these factors constitutes a crucial part of the evolution, ecology, and biogeography of these organisms. The present study experimentally estimated the fundamental saline and anionic niches of adults of two pairs of congeneric saline beetle species that differ in habitat preference (lotic and lentic) in order to test the habitat constraint hypothesis. Osmotic and anionic realised niches were also estimated based on the field occurrences of adult beetle species using Outlying Mean Index analysis and their relationship with experimental tolerances. In the laboratory, all of the studied species showed a threshold response to increased salinity, displaying high survival times when exposed to low and intermediate conductivity levels. These results suggest that these species are not strictly halophilic, but that they are able to regulate both hyperosmotically and hypoosmotically. Anionic water composition had a significant effect on salinity tolerance at conductivity levels near their upper tolerance limits, with decreased species survival at elevated sulphate concentrations. Species occupying lentic habitats demonstrated higher salinity tolerance than their lotic congeners in agreement with the habitat constraint hypothesis. As expected, realised salinity niches were narrower than fundamental niches and corresponded to conditions near the upper tolerance limits of the species. These species are uncommon on freshwater-low conductivity habitats despite the fact that these conditions might be physiologically suitable for the adult life stage. Other factors, such as biotic interactions, could prevent their establishment at low salinities. Differences in the realised anionic niches of congeneric species could be partially explained by the varying habitat availability in the study area. Combining

  18. Capture and characterization of particulate phosphorus from farm drainage waters in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T.; Daroub, S.

    2012-12-01

    The buildup of highly labile, organic, phosphorus (P)-enriched sediments in farms canals within the Everglades Agricultural Area (EAA) has been associated with the production of floating aquatic vegetation. During drainage events, these sediments are susceptible to transport and contribute to the overall P load. In order to evaluate the total P load exiting the farm canals, a settling tank experiment was conducted to capture the sediments during drainage events from eight farms. Drainage water was channelized through two 200L polypropylene collection tanks which allowed sediments to settle at the bottom based on its particle size. Water was carefully siphoned out of the tanks and the sediments collected for analyses. A five step P-fractionation process was used to distinguish organic (o) and inorganic (i) forms of P: KCl extractable P, NaOH extractable P, HCl extractable P, and residual P. The KCl-Pi fraction represents the labile Pi that is water soluble and exchangeable (loosely adsorbed); NaOH extractable P represents Fe- and Al- bound inorganic P (NaOH-Pi) and organic P associated with humic and fulvic acids (NaOH-Po). The HCl-Pi fraction includes Ca- and Mg- bound P, while Residue-P represents recalcitrant organic P compounds and P bound to minerals. The sediments were also used to conduct a P-flux study under both aerobic and anaerobic conditions. Our goal is to provide growers with vital information and insight into P loading that will help them in their efforts to reduce off-farm P loads in the EAA.

  19. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes

    PubMed Central

    Lechthaler, Silvia; Robert, Elisabeth M. R.; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W.

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0–5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  20. Inverse modeling of surface-water discharge to achieve restoration salinity performance measures in Florida Bay, Florida

    USGS Publications Warehouse

    Swain, E.D.; James, D.E.

    2008-01-01

    The use of numerical modeling to evaluate regional water-management practices involves the simulation of various alternative water-delivery scenarios, which typically are designed intuitively rather than analytically. These scenario simulations are used to analyze how specific water-management practices affect factors such as water levels, flows, and salinities. In lieu of testing a variety of scenario simulations in a trial-and-error manner, an optimization technique may be used to more precisely and directly define good water-management alternatives. A numerical model application in the coastal regions of Florida Bay and Everglades National Park (ENP), representing the surface- and ground-water hydrology for the region, is a good example of a tool used to evaluate restoration scenarios. The Southern Inland and Coastal System (SICS) model simulates this area with a two-dimensional hydrodynamic surface-water model and a three-dimensional ground-water model, linked to represent the interaction of the two systems with salinity transport. This coastal wetland environment is of great interest in restoration efforts, and the SICS model is used to analyze the effects of alternative water-management scenarios. The SICS model is run within an inverse modeling program called UCODE. In this application, UCODE adjusts the regulated inflows to ENP while SICS is run iteratively. UCODE creates parameters that define inflow within an allowable range for the SICS model based on SICS model output statistics, with the objective of matching user-defined target salinities that meet ecosystem restoration criteria. Preliminary results obtained using two different parameterization methods illustrate the ability of the model to achieve the goals of adjusting the range and reducing the variance of salinity values in the target area. The salinity variance in the primary zone of interest was reduced from an original value of 0.509 psu2 to values 0.418 psu2 and 0.342 psu2 using different

  1. Dynamic changes in the accumulation of metabolites in brackish water clam Corbicula japonica associated with alternation of salinity.

    PubMed

    Koyama, Hiroki; Okamoto, Seiji; Watanabe, Naoki; Hoshino, Naoshige; Jimbo, Mitsuru; Yasumoto, Ko; Watabe, Shugo

    2015-03-01

    The brackish water clam Corbicula japonica inhabits rivers and brackish waters throughout Japan where the major fishing grounds in the Ibaraki Prefecture, Japan, are located at the Hinuma Lake and Hinuma River. Water salinity in the Lake Hinuma is low and stable due to the long distance from the Pacific Ocean, whereas that in the downstream of the river varies daily due to a strong effect of tidal waters. In the present study, we dissected the gill and foot muscle of brackish water clam collected from these areas, and subjected them to metabolome analysis by capillary electrophoresis-time-of-flight mass spectrometry. More than 200 metabolites including free amino acids, peptides and organic acids were identified, and their amounts from the foot muscle tend to be higher than those from the gill. The principal component analysis revealed that the amount of each metabolite was different among sampling areas and between the gill and foot muscle, whereas no apparent differences were observed between male and female specimens. When the metabolites in the female clam at high salinity were compared with those at low salinity, concentrations of β-alanine, choline, γ-aminobutyric acid, ornithine and glycine betaine were found to be changed in association with salinity. We also compared various metabolites in relation to metabolic pathways, suggesting that many enzymes were involved in their changes depending on salinity. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Comparison of water immersion and saline infusion as a means of inducing volume expansion in man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Pins, D. S.; Arrington, R.; Denunzio, A. G.; Engstrom, R.

    1975-01-01

    The study compares the natriuresis induced by head-out water immersion to that of a standard saline infusion and assesses the relative effectiveness of these two techniques as volume determinants of renal sodium and water handling in humans in a seated posture. The data obtained show that the volume stimulus of immersion is identical to that of standard saline-induced extracellular fluid volume expansion (ECVE) in normal seated subjects. The ability of head-out water immersion to induce a natriuresis without a concomitant increase in total blood volume and with a decrease in body weight suggests that water immersion may be preferred as an investigative tool for assessing the effects of ECVE in man.

  3. Salinity-dependent toxicity of water-dispersible, single-walled carbon nanotubes to Japanese medaka embryos.

    PubMed

    Kataoka, Chisato; Nakahara, Kousuke; Shimizu, Kaori; Kowase, Shinsuke; Nagasaka, Seiji; Ifuku, Shinsuke; Kashiwada, Shosaku

    2017-04-01

    To investigate the effects of salinity on the behavior and toxicity of functionalized single-walled carbon nanotubes (SWCNTs), which are chemical modified nanotube to increase dispersibility, medaka embryos were exposed to non-functionalized single-walled carbon nanotubes (N-SWCNTs), water-dispersible, cationic, plastic-polymer-coated, single-walled carbon nanotubes (W-SWCNTs), or hydrophobic polyethylene glycol-functionalized, single-walled carbon nanotubes (PEG-SWCNTs) at different salinities, from freshwater to seawater. As reference nanomaterials, we tested dispersible chitin nanofiber (CNF), chitosan-chitin nanofiber (CCNF) and chitin nanocrystal (CNC, i.e. shortened CNF). Under freshwater conditions, with exposure to 10 mg l -1  W-SWCNTs, the yolk sacks of 57.8% of embryos shrank, and the remaining embryos had a reduced heart rate, eye diameter and hatching rate. Larvae had severe defects of the spinal cord, membranous fin and tail formation. These toxic effects increased with increasing salinity. Survival rates declined with increasing salinity and reached 0.0% in seawater. In scanning electron microscope images, W-SWCNTs, CNF, CCNF and CNC were adsorbed densely over the egg chorion surface; however, because of chitin's biologically harmless properties, only W-SWCNTs had toxic effects on the medaka eggs. No toxicity was observed from N-SWCNT and PEG-SWCNT exposure. We demonstrated that water dispersibility, surface chemistry, biomedical properties and salinity were important factors in assessing the aquatic toxicity of nanomaterials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Characteristics of streams and aquifers and processes affecting the salinity of water in the upper Colorado River basin, Texas

    USGS Publications Warehouse

    Slade, R.M.; Buszka, P.M.

    1994-01-01

    The chemical characteristics of the saline water in streams and shallow aquifers in the study area were compared to characteristics of water that would result from the probable processes affecting the salinity of water, such as evapotranspiration, mineral dissolution, and mixing of water from streams and shallow-aquifer water with brines from deep aquifers. Dissolution of halite or mixing with deep-aquifer water was the most common cause of increased salinity in 48.0 percent of 77 water samples from shallow aquifers, as classified using salt-norm analysis; the second most common cause was the weathering and dissolution of sulfur-bearing minerals. Mixing with water from soil-mineral dissolution was classified as the principal source of chloride in 28.4 percent of 67 water samples from shallow aquifers with nitrate determinations. Trace-species/chloride ratios indicated that mixing with water from deep aquifers in rocks of the Pennsylvanian System was the principal source of chloride in 24.4 percent of 45 shallow-aquifer samples lacking nitrate determinations.

  5. Impact of seasonality on artificial drainage discharge under temperate climate conditions

    Treesearch

    Ulrike Hirt; Annett Wetzig; Devandra Amatya; Marisa Matranga

    2011-01-01

    Artificial drainage systems affect all components of the water and matter balance. For the proper simulation of water and solute fluxes, information is needed about artificial drainage discharge rates and their response times. However, there is relatively little information available about the response of artificial drainage systems to precipitation. To address this...

  6. Effects of salinity on baldcypress seedlings: Physiological responses and their relation to salinity tolerance

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; Pezeshki, S.R.

    1997-01-01

    Growth and physiological responses of 15 open-pollinated families of baldcypress (Taxodium distichum var. distichum) subjected to flooding with saline water were evaluated in this study. Ten of the families were from coastal sites in Louisiana and Alabama, USA that have elevated levels of soil-water salinity. The other five families were from inland, freshwater sites in Louisiana. Seedlings from all families tolerated flooding with water of low (2 g l-1) salinity. Differences in biomass among families became most apparent at the highest salinity levels (6 and 8 g l-1). Overall, increasing salinity reduced leaf biomass more than root biomass, which in turn was reduced more than stem biomass. A subset of seedlings from the main greenhouse experiment was periodically placed indoors under artificial light, and measurements were made of gas exchange and leaf water potential. Also, tissue concentrations of Cl-, Na+, K+, and Ca2+ were determined at the end of the greenhouse experiment. Significant intraspecific variation was found for nearly all the physiological parameters evaluated, but only leaf concentrations of Na+ and Cl- were correlated with an index of family-level differences in salt tolerance.

  7. Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.

    PubMed

    He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan

    2017-01-01

    One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Performance evaluation and accuracy of passive capillary samplers (PCAPs) for estimating real-time drainage water fluxes

    USDA-ARS?s Scientific Manuscript database

    Successful monitoring of pollutant transport through the soil profile requires accurate, reliable, and appropriate instrumentation to measure amount of drainage water or flux within the vadose layer. We evaluated the performance and accuracy of automated passive capillary wick samplers (PCAPs) for ...

  9. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application

    NASA Astrophysics Data System (ADS)

    Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele

    2017-08-01

    Many simulation models focus on simulating a single physical process and do not constitute balanced representations of the physical, social and economic components of a system. The present study addresses this challenge by integrating a physical (P) model (SAHYSMOD) with a group (stakeholder) built system dynamics model (GBSDM) through a component modeling approach based on widely applied tools such as MS Excel, Python and Visual Basic for Applications (VBA). The coupled model (P-GBSDM) was applied to test soil salinity management scenarios (proposed by stakeholders) for the Haveli region of the Rechna Doab Basin in Pakistan. Scenarios such as water banking, vertical drainage, canal lining, and irrigation water reallocation were simulated with the integrated model. Spatiotemporal maps and economic and environmental trade-off criteria were used to examine the effectiveness of the selected management scenarios. After 20 years of simulation, canal lining reduced soil salinity by 22% but caused an initial reduction of 18% in farm income, which requires an initial investment from the government. The government-sponsored Salinity Control and Reclamation Project (SCARP) is a short-term policy that resulted in a 37% increase in water availability with a 12% increase in farmer income. However, it showed detrimental effects on soil salinity in the long term, with a 21% increase in soil salinity due to secondary salinization. The new P-GBSDM was shown to be an effective platform for engaging stakeholders and simulating their proposed management policies while taking into account socioeconomic considerations. This was not possible using the physically based SAHYSMOD model alone.

  10. Rotifers from selected inland saline waters in the Chihuahuan Desert of México

    PubMed Central

    Walsh, Elizabeth J; Schröder, Thomas; Wallace, Robert L; Ríos-Arana, Judith V; Rico-Martínez, Roberto

    2008-01-01

    Background In spite of considerable efforts over past decades we still know relatively little regarding the biogeography of rotifers of inland waters in México. To help rectify this we undertook an extensive survey of the rotifer fauna of 48 water bodies in the Chihuahuan Desert of México. Results Of the sites surveyed, 21 had salinities ≥ 2000 μS cm-1 and in these we found 57 species of monogonont rotifers and several bdelloids. Species richness in the saline sites varied widely, with a range in species richness of 1 to 27 and a mean (± 1SD) = 8.8 (± 6.2). Collectively all sites possess relatively high percent single- and doubletons, 33.3 and 21.7%, respectively. Simpson's Asymmetric Index indicated that similarity in rotifer species composition varied widely among a set of 10 sites. These were selected because they were sampled more frequently or represent unusual habitats. These SAI values ranged from 0.00 (complete dissimilarity) to 1.00 (complete similarity). The Jaccard Index varied between 0.00 and 0.35. This observation probably reflects similarities and differences in water chemistry among these sites. Inland saline systems differed in their chemical composition by region. Conductivity was related to hardness and alkalinity. In addition, hardness was positively associated with chloride and sulfate. RDA showed that several species were positively associated with chloride concentration. Other factors that were significantly associated with rotifer species included the presence of macrophytes, nitrate content, oxygen concentration, TDS, latitude and whether the habitat was a large lake or reservoir. Conclusion This study illustrates the diversity of the rotiferan fauna of inland saline systems and the uniqueness among waterbodies. Conservation of these systems is needed to preserve these unique sources of biodiversity that include rotifers and the other endemic species found in association with them. PMID:18533042

  11. The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles.

    PubMed

    Pallarés, Susana; Arribas, Paula; Bilton, David T; Millán, Andrés; Velasco, Josefa; Ribera, Ignacio

    2017-10-01

    Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso- and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation-resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso- and hypersaline habitats. © 2017 John Wiley & Sons Ltd.

  12. [Adaptability of abnormal tadpole (Rana chensinensis) to water pH, salinity and alkalinity in Changbai Mountain of China].

    PubMed

    Yang, Fuyi; Shao, Qingchun; Li, Jinglin; Chen, Guoshuang

    2004-08-01

    Under field condition with 16-18 degree C water temperature, single-factor acute toxicity test was used to study the toxicity effects of water pH, salinity and carbonate-alkalinity on abnormal tadpole (R. chensinensis). The results showed that when the water salinity was 0.18 g x L(-1), carbonate-alkalinity was 1.41 mmol x L(-1), and water pH was 4.3-9.7, the survival rate of abnormal tadpole within 96 hours was not affected. The upper limit of LC50 for the pH within 24, 48, 72 and 96 hours was 10.33, 10.18, 10.08 and 10.02, and the prescribed minimum was 3.92, 4.07, 4.11 and 4.16, respectively. The upper limit of LC0 was 9.95, 9.80, 9.70 and 9.70, and the prescribed minimum was 4.23, 4.45, 4.30 and 4.30, and that of LC100 was 10.70, 10.55, 10.45 and 10.33, and the prescribed minimum was 3.55, 3.70, 3.92 and 4.03, respectively. The survival rate of abnormal tadpole within 96 hours was not affected in the water salinity between 2.0-3.0 g x L(-1). When water pH was 7.0-8.5 and carbonate-alkalinity was 1.41 mmol x L(-1), the LC50 of the salinity within 24, 48, 72 and 96 hours was 8.21, 7.25, 5.17 and 3.70 g x L(-1), the LC0 was 7.14, 6.00, 2.67 and 2.20 g x L(-1), and the LC100 was 9.98, 9.00, 7.67 and 5.20 g x L(-1), respectively, while the SC was 1.70 g x L(-1). Under the same water pH and when the water salinity was 0.18 g x L(-1), the LC50 of carbonate-alkalinity within 24, 48, 72 and 96 hours was 14.36, 11.83, 10.35, and 7.68 mmol x L(-1), the LC0 was 8.76, 8.51, 4.65 and 3.88 mmol x L(-1), and the LC100 was 19.96, 15.14, 16.05 and 11.48 mmol x L(-1), respectively, while the SC was 1.70 mmol x L(-1). The survival rate of abnormal tadpole (R. chensinensis) was decreased with increasing water pH, salinity and carbonate-alkalinity. The optimum water salinity and carbonate-alkalinity to the survival and the growth of abnormal tadpole (R. chensinensis) were below 2.0 g x L(-1) and 3.0 mmol x L(-1), respectively, and water pH was between 6.0 and 9.0.

  13. Ranking the Potential Yield of Salinity and Selenium from Subbasins in the Lower Gunnison River Basin Using Seasonal, Multi-parameter Regression Models

    NASA Astrophysics Data System (ADS)

    Linard, J.; Leib, K.; Colorado Water Science Center

    2010-12-01

    Elevated levels of salinity and dissolved selenium can detrimentally effect the quality of water where anthropogenic and natural uses are concerned. In areas, such as the lower Gunnison Basin of western Colorado, salinity and selenium are such a concern that control projects are implemented to limit their mobilization. To prioritize the locations in which control projects are implemented, multi-parameter regression models were developed to identify subbasins in the lower Gunnison River Basin that were most likely to have elevated salinity and dissolved selenium levels. The drainage area is about 5,900 mi2 and is underlain by Cretaceous marine shale, which is the most common source of salinity and dissolved selenium. To characterize the complex hydrologic and chemical processes governing constituent mobilization, geospatial variables representing 70 different environmental characteristics were correlated to mean seasonal (irrigation and nonirrigation seasons) salinity and selenium yields estimated at 154 sampling sites. The variables generally represented characteristics of the physical basin, precipitation, soil, geology, land use, and irrigation water delivery systems. Irrigation and nonirrigation seasons were selected due to documented effects of irrigation on constituent mobilization. Following a stepwise approach, combinations of the geospatial variables were used to develop four multi-parameter regression models. These models predicted salinity and selenium yield, within a 95 percent confidence range, at individual points in the Lower Gunnison Basin for irrigation and non-irrigation seasons. The corresponding subbasins were ranked according to their potential to yield salinity and selenium and rankings were used to prioritize areas that would most benefit from control projects.

  14. Measuring Salinity by Conductivity.

    ERIC Educational Resources Information Center

    Lapworth, C. J.

    1981-01-01

    Outlines procedures for constructing an instrument which uses an electrode and calibration methods to measure the salinity of waters in environments close to and affected by a saline estuary. (Author/DC)

  15. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms.

    PubMed

    Watling, Helen R; Collinson, David M; Corbett, Melissa K; Shiers, Denis W; Kaksonen, Anna H; Watkin, Elizabeth L J

    2016-09-01

    The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water. Copyright © 2016. Published by Elsevier Masson SAS.

  16. A 2D fluid motion model of the estuarine water circulation: Physical analysis of the salinity stratification in the Sebou estuary

    NASA Astrophysics Data System (ADS)

    Haddout, Soufiane; Maslouhi, Abdellatif; Magrane, Bouchaib

    2018-02-01

    Estuaries, which are coastal bodies of water connecting the riverine and marine environment, are among the most important ecosystems in the world. Saltwater intrusion is the movement of coastal saline water into an estuary, which makes up-estuary water, that becomes salty due to the mixing of freshwater with saltwater. It has become a serious environmental problem in the Sebou estuary (Morocco) during wet and dry seasons, which have a considerable impact on residential water supply, agricultural water supply as well as urban industrial production. The variations of salt intrusion, and the vertical stratification under different river flow conditions in the Sebou estuary were investigated in this paper using a two-dimensional numerical model. The model was calibrated and verified against water level variation, and salinity variation during 2016, respectively. Additionally, the model validation process showed that the model results fit the observed data fairly well ( R2 > 0.85, NSC > 0.89 and RMSE = 0.26 m). Model results show that freshwater is a dominant influencing factor to the saltwater intrusion and controlled salinity structure, vertical stratification and length of the saltwater intrusion. Additionally, the extent of salinity intrusion depends on the balance between fresh water discharges and saltwater flow from the sea. This phenomenon can be reasonably predicted recurring to mathematical models supported by monitored data. These tools can be used to quantify how much fresh water is required to counterbalance salinity intrusion at the upstream water intakes.

  17. Net acidity indicates the whole effluent toxicity of pH and dissolved metals in metalliferous saline waters.

    PubMed

    Degens, Bradley P; Krassoi, Rick; Galvin, Lynette; Reynolds, Brad; Micevska, Tina

    2018-05-01

    Measurements of potential acidity in water are used to manage aquatic toxicity risks of discharge from acid sulfate soils or acid mine drainage. Net acidity calculated from pH, dissolved metals and alkalinity is a common measurement of potential acidity but the relevance of current risk thresholds to aquatic organisms are unclear. Aquatic toxicity testing was carried out using four halophytic organisms with water from four saline sources in southern Western Australia (3 acidic drains and one alkaline river; 39-40 g TDS/L) where acidity was varied by adjusting pH to 4.5-6.5. The test species were brine shrimps (Artemia salina), locally sourced ostracods (Platycypris baueri), microalgae (Dunaliella salina) and amphipods (Allorchestes compressa). Testing found the EC 10 and IC 10 of net acidity ranged from -7.8 to 10.5 mg CaCO 3 /L with no survival or growth of any species at >47 mg CaCO 3 /L. Reduced net acidity indicated reduced whole effluent toxicity more reliably than increased pH alone with organisms tolerating pH up to 1.1 units lower in the absence of dissolved metals. Variation in toxicity indicated by net acidity was mostly attributed to reduced concentrations of dissolved Al and Fe combined with higher pH and alkalinity and some changes in speciation of Al and Fe with pH. These results indicate that rapid in-field assessments of net acidity in acidic, Al dominated waters may be an indicator of potential acute and sub-chronic impacts on aquatic organisms. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  18. Effects of salinity on baldcypress seedlings: responses and their relation to salinity tolerance physiological

    Treesearch

    James A. Allen; Jim L. Chambers; S. Reza Pezeshki

    1997-01-01

    Taxodium distichum var.distichum) subjected to flooding with saline water were evaluated in this study. Ten of the families were from coastal sites in Louisiana and Alabama, USA that have elevated levels of soil-water salinity. The other five families were from inland, freshwater sites in Louisiana. Seedlings from all families...

  19. 24 CFR 3285.203 - Site Drainage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Purpose. Drainage must be provided to direct surface water away from the home to protect against erosion... home. (c) All drainage must be diverted away from the home and must slope a minimum of one-half inch per foot away from the foundation for the first ten feet. Where property lines, walls, slopes, or...

  20. Phytosynthetic bacteria (PSB) as a water quality improvement mechanism in saline-alkali wetland ponds.

    PubMed

    Liu, Fu-jun; Hu, Weng-Ying; Li, Quan-Yi

    2002-07-01

    The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline-alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO3-(-)N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH4-(-)N (NH3-N), NO2-(-)N; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect-exerting speed of PSB was slower, but the effect-sustaining time was longer; (6) the appropriate concentration of PSB application in saline-alkali wetland ponds was 10 x 10(-6) mg/L, one-time effective period was more than 15 days. So PSB was an efficient water quality improver in saline-alkali ponds.

  1. Drainage hydraulics of permeable friction courses

    NASA Astrophysics Data System (ADS)

    Charbeneau, Randall J.; Barrett, Michael E.

    2008-04-01

    This paper describes solutions to the hydraulic equations that govern flow in permeable friction courses (PFC). PFC is a layer of porous asphalt approximately 50 mm thick that is placed as an overlay on top of an existing conventional concrete or asphalt road surface to help control splash and hydroplaning, reduce noise, and enhance quality of storm water runoff. The primary objective of this manuscript is to present an analytical system of equations that can be used in design and analysis of PFC systems. The primary assumptions used in this analysis are that the flow can be modeled as one-dimensional, steady state Darcy-type flow and that slopes are sufficiently small so that the Dupuit-Forchheimer assumptions apply. Solutions are derived for cases where storm water drainage is confined to the PFC bed and for conditions where the PFC drainage capacity is exceeded and ponded sheet flow occurs across the pavement surface. The mathematical solutions provide the drainage characteristics (depth and residence time) as a function of rainfall intensity, PFC hydraulic conductivity, pavement slope, and maximum drainage path length.

  2. Determination of the Thermal Properties of Sands as Affected by Water Content, Drainage/Wetting, and Porosity Conditions for Sands With Different Grain Sizes

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-05-01

    It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.

  3. Batteries for efficient energy extraction from a water salinity difference.

    PubMed

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D; Logan, Bruce E; Cui, Yi

    2011-04-13

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na(2-x)Mn(5)O(10) nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future.

  4. Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water.

    PubMed

    Yang, Rong; Goktekin, Esma; Gleason, Karen K

    2015-11-03

    Fouling refers to the undesirable attachment of organic molecules and microorganisms to submerged surfaces. It is an obstacle to the purification of shale gas produced water and is currently without an effective solution due to the highly contaminated nature of produced water. Here, we demonstrate the direct vapor application of a robust zwitterionic coating to a variety of substrates. The coating remains unprecedentedly hydrophilic, smooth, and effectively antifouling in extremely high salinity solutions (with salt concentration of 200,000 ppm). The fouling resistance is assessed rapidly and quantitatively with a molecular force spectroscopy-based method and corroborated using quartz crystal microbalance system with dissipation monitoring. Grazing angle attenuated total reflectance Fourier transform infrared is used in combination with X-ray photoelectron spectroscopy, atomic force microscope, and in situ spectroscopic ellipsometry to lend insight into the underlying mechanism for the exceptional stability and effectiveness of the zwitterionic coating under high-salinity conditions. A unique coating architecture, where the surface is concentrated with mobile zwitterionic moieties while the bulk is cross-linked to enhance coating durability, was discovered to be the origin of its stable fouling resistance under high salinity. Combined with previously reported exceptional stability in highly oxidative environments and strong fouling resistance to oil and grease, the zwitterionic surface here has the potential to enable low-cost, membrane-based techniques for the purification of produced water and to eventually balance the favorable economics and the concerning environmental impacts of the hydraulic fracturing industry.

  5. Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341)

    NASA Astrophysics Data System (ADS)

    März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah

    2014-05-01

    Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening

  6. Tile Drainage Management Influences on Surface-Water and Groundwater Quality following Liquid Manure Application.

    PubMed

    Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R

    2013-01-01

    This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Living on the Edge of Stagnant Water: An Assessment of Environmental Impacts of Construction-Phase Drainage Congestion Along Dhaka City Flood Control Embankment, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rasid, Harun; Mallsk, Azim U.

    1996-01-01

    Environmental impacts of the construction-phase drainage congestion along the Dhaka City Flood Control Embankment were assessed by a pilot questionnaire survey (in 1991) among the target population adjacent to the embankment. The results of the survey indicated that, despite significant alleviation of river flooding, the majority of the respondents experienced a new type of flood problem in the form of stagnant water inside the embankment, immediately following its construction. Not only had this stagnant water flooded and damaged their property, it had exposed them to a number of other environmental problems, such as accumulation of municipal sewage, foul odors, mosquitoes, and growth of water hyacinth. The study found that the respondents’ assessments of these environmental problems differed significantly according to the magnitude of the impact of stagnant water upon two subgroups within the target population. A postsurvey follow-up in 1994 indicated that this problem of drainage congestion had largely been alleviated by completing the construction of a number of drainage regulators. The study concludes by stressing the importance of synchronizing the construction of drainage structures with that of the embankment systems and by underlining policy implications for flood-vulnerable land use adjacent to embankments.

  8. Water-quality assessment of the Smith River drainage basin, California and Oregon

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  9. Hydrological problems of water resources in irrigated agriculture: A management perspective

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2016-10-01

    The development of irrigated agriculture is necessary for fulfilling the rising food requirements of the burgeoning global population. However, the intensification of irrigated agriculture causes the twin menace of waterlogging and soil salinization in arid and semiarid regions where more than 75% of the world's population lives. These problems can be managed by either adopting preventive measures which decrease the inflow of water and salt or by employing remedial measures which increase the outflow. This paper presents an overview of various measures used for the management of waterlogging and salinity problems. The background, processes involved, and severity of waterlogging and salinity problems are provided. The role of drainage systems, conjunctive use of different water sources, use of computer-based mathematical models, and the use of remote sensing and GIS techniques in managing the problems are discussed. Conclusions are provided which could be useful for all the stakeholders.

  10. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.

    PubMed

    Bazihizina, Nadia; Colmer, Timothy D; Barrett-Lennard, Edward G

    2009-09-01

    Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na(+) and Cl(-) concentrations were 1.9- to 2.3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K(+) concentrations were 1.2- to 2.0-fold higher in the non-uniform treatment. Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments.

  11. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations

    PubMed Central

    Bazihizina, Nadia; Colmer, Timothy D.; Barrett-Lennard, Edward G.

    2009-01-01

    Background and Aims Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Methods Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Key Results Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na+ and Cl− concentrations were 1·9- to 2·3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K+ concentrations were 1·2- to 2·0-fold higher in the non-uniform treatment. Conclusions Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments. PMID:19556265

  12. Are Low Salinity Waters the Remedy to Noctiluca scintillans Blooms in the Arabian Sea?

    NASA Astrophysics Data System (ADS)

    Gibson, J.

    2017-12-01

    Noctiluca scintillans (Noctiluca) is a mixotrophic, green dinoflagellate that for the past two decades has been producing problematic algal blooms in the Arabian Sea (AS). As a mixotroph, Noctiluca obtains energy from both consumption of phytoplankton as well as its intracellular photosynthesizing endosymbionts named, Pedinomonas noctilucae. It is this autotrophic and heterotrophic dual capability that has largely enabled Noctiluca to be a highly dominant species at the planktonic trophic layer in the AS. Exacerbated by non-point source/point-source pollution in the AS, ocean acidification, and intensified monsoons, Noctiluca currently algal blooms can be as big as three times the size of Texas. By depleting the AS of oxygen, clogging the gills of fish, and altering the AS food web, these algal blooms result in mass fish die offs. In turn this propagates financial and food insecurity issues in countless coastal communities. However, through satellite imaging over the years, it has been observed that the proliferation of Noctiluca is precluded or encounters a "wall" about mid-way along the west coast of India. It is theorized that this "wall" is due to a significant change in salinity. Snow from atop the Himalayan Mountains melts and adds fresh water to the Bay of Bengal (BB), and in winter the East Indian Coastal Current (EICC) carries this fresher water around the southern tip of India and towards the AS. It is believed that this dilution effect impedes the growth of Noctiluca further south. Ultimately, in this study the salinity gradient from the Bay of Bengal (BB) around the horn of India into the AS was replicated in six pairs of culture bottles. Noctiluca was grown in six different salinities including 26, 28, 30, 32, 34, and 38 psu. Algae grown in the 34 and 38 psu bottles, were healthier and 38 psu treated Noctiluca provided optimal conditions for its photosynthesizing endosymbionts. Noctiluca does not grow well at lower salinities, thus applications of low

  13. The economic pre-treatment of coal mine drainage water with caustic and ozone.

    PubMed

    Boyden, B H; Nador, L; Addleman, S; Jeston, L

    2017-09-01

    Coal mine drainage waters are low in pH with varying amounts of iron and manganese and are generally brackish. The Austar Coal Mine in NSW, Australia, sought alternatives to their current lime dosing as the pre-treatment before the downstream reverse osmosis plant. Undesirable operating aspects of the current system include manganese and gypsum scaling/fouling, the need for anti-scalants and reduced water recovery. Thirteen processes for acid mine drainage were initially considered. The preferred process of caustic and ozone for Mn(II) oxidation was pilot tested at up to 0.74 kL/hr at the mine site. Under proper conditions and no aeration, about 81 per cent of the Fe could be removed (initially at 156 mg/L) as green rust. Supplemental aeration followed first-order kinetics and allowed 99.9 per cent Fe(II) oxidation and removal but only with a hydraulic residence time of about 47 minutes. The addition of supplemental Cu catalyst improved Fe removal. Ozone applied after caustic was effective in stoichiometrically oxidising recalcitrant Mn(II) and any remaining Fe(II). Control of the ozonation was achieved using the oxidation reduction potential during oxidation of the Mn(II) species. The use of caustic, followed by ozone, proved economically comparable to the current lime pre-treatment.

  14. Coastal circulation and sediment dynamics in Hanalei Bay, Kauai. Part I: Measurements of waves, currents, temperature, salinity and turbidity : June - August, 2005

    USGS Publications Warehouse

    Storlazzi, Curt D.; Presto, M. Kathy; Logan, Joshua B.; Field, Michael E.

    2006-01-01

    Introduction: High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Hanalei Bay, northern Kauai, Hawaii, during the summer of 2005 to better understand coastal circulation and sediment dynamics in coral reef habitats. A series of bottom-mounted instrument packages were deployed in water depths of 10 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. These data were supplemented with a series of vertical instrument casts to characterize the vertical and spatial variability in water column properties within the bay. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties vary spatially and temporally in an embayment that hosts a nearshore coral reef ecosystem adjacent to a major river drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the first part in a series, describes data acquisition, processing and analysis.

  15. Irrigation and drainage management strategies to enhance cranberry production and optimize water use in North America

    USDA-ARS?s Scientific Manuscript database

    Recent funding, as well as technological and management changes, have led to important advances in irrigation and drainage strategies for the North American cranberry industry. This paper represents a synthesis of water management research on cranberry, as well as an introduction to a special issue ...

  16. Ground-water hydrology of the San Pitch River drainage basin, Sanpete County, Utah

    USGS Publications Warehouse

    Robinson, Gerald B.

    1971-01-01

    The San Pitch River drainage basin in central Utah comprises an area of about 850 square miles; however, the investigation was concerned primarily with the Sanpete and Arapien Valleys, which comprise about 250 square miles and contain the principal ground-water reservoirs in the basin. Sanpete Valley is about 40 miles long and has a maximum width of 13 miles, and Arapien Valley is about 8 miles long and 1 mile wide. The valleys are bordered by mountains and plateaus that range in altitude from 5,200 to 11,000 feet above mean sea level.The average annual precipitation on the valleys is about 12 inches, but precipitation on the surrounding mountains reaches a maximum of about 40 inches per year. Most of the precipitation on the mountains falls as snow, and runoff from snowmelt during the spring and summer is conveyed to the valleys by numerous tributaries of the San Pitch River. Seepage from the tributary channels and underflow beneath the channels are the major sources of recharge to the ground-water reservoir in the valleys.Unconsolidated valley fill constitutes the main ground-water reservoir in Sanpete and Arapien Valleys. The fill, which consists mostly of coalescing alluvial fans and flood deposits of the San Pitch River, ranges in particle size from clay to boulders. Where they are well sorted, these deposits yield large quantities of water to wells.Numerous springs discharge from consolidated rocks in the mountains adjacent to the valleys and along the west margin of Sanpete Valley, which is marked by the Sevier fault. The Green River Formation of Tertiary age and several other consolidated formations yield small to large quantities of water to wells in many parts of Sanpete Valley. Most water in the bedrock underlying the valley is under artesian pressure, and some of this water discharges upward into the overlying valley fill.The water in the valley fill in Sanpete Valley moves toward the center of the valley and thence downstream. The depth to water along

  17. Evaluation of the sustainability of road drainage systems

    NASA Astrophysics Data System (ADS)

    García-Diez, Iván; Palencia, Covadonga; Fernández Raga, María

    2017-04-01

    Water is the most erosive agent that exists on the linear structures, because they are constantly subjected to outdoor condition like irregular infiltration, frosts and different rain intensities. Another variables that highly influence in the entire lifetime of a natural drainage system are the spatial and temporal variability of the rainfall, the soil, the vegetation cover and the design. All this factors are affecting the vulnerability of the clearings and embankments, by wearing away the weakest materials which surround the roads or train rails, producing erosion and very bumpy surfaces. The result is that the original pattern, developped to disminished the lost of soil, is not properly working and it cannot eliminate water, with the consequence destruction of the linear structure after several rainfall periods, and the accumulation of material down slope. The propose of this research focuses on analysing the drainage systems used in spanish roads and railways lines. For this purpose, a revision of the literature has been done, and the main drainage solutions have been recovered, carrying out an evaluation of them from an environmental point of view. This procedure has been requested by several authors in the past (Nwa, E.U. & Twocock, J.G., 1969; Goulter, I.C., 1992), together with the need of designing a more sustainable drainage system. The final objective of this complete revision is to compare objetively the designs to valuate them in order to develop a new drainage patter which minimize the erosion, increasing the durability and effectiveness of the drainage system. For this purpose, it is neccesary to assure that all the systems will be compare under similar parameters of flow rate, vegetation, substrate, lenght, slope and total section. Only the channels pattern and water distribution will change. The analysis has been done following Liu, H. & Zhu, X.B., (2012), who pointed out that the main parameters to take into account to select a road drainage

  18. Exploring Agricultural Drainage's Influence on Wetland and ...

    EPA Pesticide Factsheets

    Artificial agricultural drainage (i.e. surface ditches or subsurface tile) is an important agricultural management tool. Artificial drainage allows for timely fieldwork and adequate root aeration, resulting in greater crop yields for farmers. This practice is widespread throughout many regions of the United States and the network of artificial drainage is especially extensive in flat, poorly-drained regions like the glaciated Midwest. While beneficial for crop yields, agricultural drains often empty into streams within the natural drainage system. The increased network connectivity may lead to greater contributing area for watersheds, altered hydrology and increased conveyance of pollutants into natural water bodies. While studies and models at broader scales have implicated artificial drainage as an important driver of hydrological shifts and eutrophication, the actual spatial extent of artificial drainage is poorly known. Consequently, metrics of wetland and watershed connectivity within agricultural regions often fail to explicitly include artificial drainage. We use recent agricultural census data, soil drainage data, and land cover data to create estimates of potential agricultural drainage across the United States. We estimate that agricultural drainage in the US is greater than 31 million hectares and is concentrated in the upper Midwest Corn Belt, covering greater than 50% of available land for 114 counties. Estimated drainage values for numerous countie

  19. Review of Knowledge on the Occurrence, Chemical Composition, and Potential Use for Desalination of Saline Ground Water in Arizona, New Mexico, and Texas with a Discussion of Potential Future Study Needs

    USGS Publications Warehouse

    Huff, G.F.

    2004-01-01

    Increasing demand on the limited supplies of freshwater in the desert Southwest, as well as other parts of the United States, has increased the level of interest in saline-water resources. Saline ground water has long been recognized as a potentially important contributor to water supply in the Southwest, as demonstrated by the number of hydrologic, geologic, and engineering studies on the distribution of saline water and the feasibility of desalination. Potential future study needs include investigating and documenting the three-dimensional distribution of salinity and chemical composition of saline-water resources and the hydraulic properties of aquifers containing these saline-water resources, assessing the chemical suitability of saline water for use with existing and anticipated desalination technologies, simulating the effect of withdrawal of saline ground water on water levels and water composition in saline and adjoining or overlying freshwater aquifers, and determining the suitability of target geologic formations for injection of desalination-generated waste.

  20. Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water

    USDA-ARS?s Scientific Manuscript database

    Irrigation with high salinity water influences plant growth, production of photosynthetic pigments and total phenols, leading to reduction in crop yield and quality. Foliar application of macro- and/or micro-nutrients can, to some extent, mitigate negative effects of high salinity irrigation water o...

  1. PASSIVE TREATMENT OF ACID ROCK DRAINAGE FROM A SUBSURFACE MINE

    EPA Science Inventory

    Acidic, metal-contaminated drainages are a critical problem facing many areas of the world. Acid rock drainage results when metal sulfide minerals, particularly pyrite, are oxidized by exposure to oxygen and water. The deleterious effects of these drainages on receiving streams a...

  2. Transport of Salmonella spp. and indicator bacteria to drainage tile waters under cornfields receiving poultry manure

    USDA-ARS?s Scientific Manuscript database

    E. coli and enterococci are commonly used as pathogen indicators in surface water, however, the transport of these bacteria to drainage tiles from manure application fields and the correlation of these indicators to pathogens in this setting is poorly understood. Salmonella spp. is prevalent in poul...

  3. Modeling coastal plain drainage ditches with SWAT

    USDA-ARS?s Scientific Manuscript database

    In the low-relief Eastern Shore region of Maryland, extensive land areas used for crop production require drainage systems either as tile drains or open ditches. The prevalence of drainage ditches in the region is being linked to increased nutrient loading of the Chesapeake Bay. Process-based water ...

  4. Regulation of drainage canals on the groundwater level in a typical coastal wetlands

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Mou, Xia; Cui, Baoshan; Ping, Fan

    2017-12-01

    Activities related to reclamation alter wetland hydrological regimes and inevitably cause changes to groundwater level, which can result in the ecological degradation of coastal wetlands. Decreasing the groundwater level by the construction of drainage canals is an approach that has been widely used to control levels of root zone soil salinity as well as to protect freshwater wetlands or to expand agricultural land area in coastal wetlands. In this study, we assessed the influences of different drainage canal designs on the groundwater level using the Visual MODFLOW (VMOD) interface. We also provided an optimized drainage canal design suitable for the Yellow River Delta (YRD). Results showed that: (i) the groundwater level decreased in areas close to drainage canals, while only negligible effects were found on the groundwater level in areas with no drainage canals; (ii) the influence of drainage canals on the groundwater level decreased as distance increased; and (iii) a drainage canal network design of a depth of 5 m, with canal configuration of north-south direction and canal spacing of 1000 m was more effective in reducing the groundwater level in the study area. Our findings indicated that changes in groundwater level by the construction of drainage canals could help in our understanding of how groundwater influences freshwater wetlands and also aid in maintaining the integrity of coastal wetlands.

  5. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  6. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    PubMed

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  7. Sensitivity of drainage efficiency of cranberry fields to edaphic conditions

    NASA Astrophysics Data System (ADS)

    Periard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean; Hallema, Dennis W.

    2014-05-01

    Water management on a cranberry farm requires intelligent irrigation and drainage strategies to sustain strong productivity and minimize environmental impact. For example, to avoid propagation of disease and meet evapotranspiration demand, it is imperative to maintain optimal moisture conditions in the root zone, which depends on an efficient drainage system. However, several drainage problems have been identified in cranberry fields. Most of these drainage problems are due to the presence of a restrictive layer in the soil profile (Gumiere et al., 2014). The objective of this work is to evaluate the effects of a restrictive layer on the drainage efficiency by the bias of a multi-local sensitivity analysis. We have tested the sensitivity of the drainage efficiency to different input parameters set of soil hydraulic properties, geometrical parameters and climatic conditions. Soil water flux dynamic for every input parameters set was simulated with finite element model Hydrus 1D (Simanek et al., 2008). Multi-local sensitivity was calculated with the Gâteaux directional derivatives with the procedure described by Cheviron et al. (2010). Results indicate that drainage efficiency is more sensitive to soil hydraulic properties than geometrical parameters and climatic conditions. Then, the geometrical parameters of the depth are more sensitive than the thickness. The drainage efficiency was very insensitive to the climatic conditions. Understanding the sensitivity of drainage efficiency according to soil hydraulic properties, geometrical and climatic conditions are essential for diagnosis drainage problems. However, it becomes important to identify the mechanisms involved in the genesis of anthropogenic soils cranberry to identify conditions that may lead to the formation of a restrictive layer. References: Cheviron, B., S.J. Gumiere, Y. Le Bissonnais, R. Moussa and D. Raclot. 2010. Sensitivity analysis of distributed erosion models: Framework. Water Resources Research

  8. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  9. Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: Influence of tile drainage control.

    PubMed

    Frey, Steven K; Topp, Edward; Khan, Izhar U H; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Lapen, David R

    2015-11-01

    This work investigated chlortetracycline, tylosin, and tetracycline (plus transformation products), and DNA-based quantitative Campylobacter spp. and Campylobacter tetracycline antibiotic resistant genes (tet(O)) in tile drainage, groundwater, and soil before and following a liquid swine manure (LSM) application on clay loam plots under controlled (CD) and free (FD) tile drainage. Chlortetracycline/tetracycline was strongly bound to manure solids while tylosin dominated in the liquid portion of manure. The chlortetracycline transformation product isochlortetracycline was the most persistent analyte in water. Rhodamine WT (RWT) tracer was mixed with manure and monitored in tile and groundwater. RWT and veterinary antibiotic (VA) concentrations were strongly correlated in water which supported the use of RWT as a surrogate tracer. While CD reduced tile discharge and eliminated application-induced VA movement (via tile) to surface water, total VA mass loading to surface water was not affected by CD. At both CD and FD test plots, the biggest 'flush' of VA mass and highest VA concentrations occurred in response to precipitation received 2d after application, which strongly influenced the flow abatement capacity of CD on account of highly elevated water levels in field initiating overflow drainage for CD systems (when water level <0.3m below surface). VA concentrations in tile and groundwater became very low within 10d following application. Both Campylobacter spp. and Campylobacter tet(O) genes were present in groundwater and soil prior to application, and increased thereafter. Unlike the VA compounds, Campylobacter spp. and Campylobacter tet(O) gene loadings in tile drainage were reduced by CD, in relation to FD. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  10. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review.

    PubMed

    Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Zagury, Gérald J

    2017-01-01

    The treatment of mine drainage-impacted waters generates considerable amounts of sludge, which raises several concerns, such as storage and disposal, stability, and potential social and environmental impacts. To alleviate the storage and management costs, as well as to give the mine sludge a second life, recovery and reuse have recently become interesting options. In this review, different recovery and reuse options of sludge originating from active and passive treatment of mine drainage are identified and thoroughly discussed, based on available laboratory and field studies. The most valuable products presently recovered from the mine sludge are the iron oxy-hydroxides (ochre). Other by-products include metals, elemental sulfur, and calcium carbonate. Mine sludge reuse includes the removal of contaminants, such as As, P, dye, and rare earth elements. Mine sludge can also be reused as stabilizer for contaminated soil, as fertilizer in agriculture/horticulture, as substitute material in construction, as cover over tailings for acid mine drainage prevention and control, as material to sequester carbon dioxide, and in cement and pigment industries. The review also stresses out some of the current challenges and research needs. Finally, in order to move forward, studies are needed to better estimate the contribution of sludge recovery/reuse to the overall costs of mine water treatment.

  11. Spatial and temporal variability of water salinity in an ephemeral, arid-zone river, central Australia

    NASA Astrophysics Data System (ADS)

    Costelloe, Justin F.; Grayson, Rodger B.; McMahon, Thomas A.; Argent, Robert M.

    2005-10-01

    This study describes the spatial and temporal variability of water salinity of the Neales-Peake, an ephemeral river system in the arid Lake Eyre basin of central Australia. Saline to hypersaline waterholes occur in the lower reaches of the Neales-Peake catchment and lie downstream of subcatchments containing artesian mound springs. Flood pulses are fresh in the upper reaches of the rivers (<200 mg l-1). In the salt-affected reaches, flood pulses become increasingly saline during their recession. It is hypothesized that leakage from the Great Artesian Basin deposits salt at the surface. This salt is then transported by infrequent runoff events into the main river system over long periods of time. The bank/floodplain store downstream of salt-affected catchments contains high salt concentrations, and this salt is mobilized during the flow recession when bank/floodplain storage discharges into the channel. The salinity of the recession increases as the percentage of flow derived from this storage increases. A simple conceptual model was developed for investigating the salt movement processes during flow events. The model structure for transport of water and salt in the Neales-Peake catchment generated similar spatial and temporal patterns of salt distribution in the floodplain/bank storage and water flow as observed during flow events in 2000-02. However, more field-data collection and modelling are required for improved calibration and description of salt transport and storage processes, particularly with regard to the number of stores required to represent the salt distribution in the upper zone of the soil profile.

  12. Opportunities for Reducing Nitrate Export from Drainage Systems through In-field Nitrogen Management, Cropping Practices, and Drainage Design and Management

    NASA Astrophysics Data System (ADS)

    Helmers, M.; Zhou, X.; Qi, Z.; Christianson, R.; Pederson, C.

    2011-12-01

    Subsurface drainage systems are widely used throughout the upper Midwest corn-belt. While the use of these drainage systems has greatly increased crop production, they have also increased nitrate-nitrogen export to downstream waterbodies. As a result, there is a need to evaluate and implement management practices that have potential to reduce nitrate-nitrogen loss. A twenty year study in Iowa has shown that major factors in nitrate-nitrogen loss are land use and hydrology. Studies from north-central Iowa have also indicated that nitrogen application rate and to a lesser degree timing of nitrogen application important factors for nitrate-nitrogen loss. A four-year (2007-2010) drainage management study in southeast Iowa indicates that shallow and controlled drainage systems have potential to decrease subsurface drainage and thereby reduce nitrate-N loss from drain water but the level of implementation of controlled drainage may be limited by topography. Cropping practices through cover crops or perennial biomass crops have also been documented to have potential to reduce downstream nitrate-nitrogen export but the level of implementation may be limited by management and economic considerations. To achieve reduction goals for protection of local and regional water quality will require a combination of these practices at the landscape scale.

  13. Simplified continuous simulation model for investigating effects of controlled drainage on long-term soil moisture dynamics with a shallow groundwater table.

    PubMed

    Sun, Huaiwei; Tong, Juxiu; Luo, Wenbing; Wang, Xiugui; Yang, Jinzhong

    2016-08-01

    Accurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone.

  14. Water-quality data from two agricultural drainage basins in northwestern Indiana and northeastern Illinois: I. Lagrangian and synoptic data, 1999-2002

    USGS Publications Warehouse

    Antweiler, Ronald C.; Smith, Richard L.; Voytek, Mary A.; Bohlke, John Karl; Richards, Kevin D.

    2005-01-01

    Methods of data collection and results of analyses are presented for Lagrangian and synoptic water-quality data collected from two agricultural drainages, the Iroquois River in northwestern Indiana and Sugar Creek in northwestern Indiana and northeastern Illinois. During six separate sampling trips, in April, June and September 1999, May 2000, September 2001 and April 2002, 152 discrete water samples were collected to characterize the water chemistry over the course of 2 to 4 days on each of these drainages. Data were collected for nutrients, major inorganic constituents, dissolved organic carbon, trace elements, dissolved gases, total bacterial cell counts, chlorophyll-a concentrations, and suspended sediment concentrations. In addition, field measurements of streamflow, pH, specific conductance, water temperature, and dissolved oxygen concentration were made during all trips except April 1999.

  15. A coupled agronomic-economic model to consider allocation of brackish irrigation water

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon; Weikard, Hans-Peter; Shah, Syed Hamid Hussain; van der Zee, Sjoerd E. A. T. M.

    2013-05-01

    In arid and semiarid regions, irrigation water is scarce and often contains high concentrations of salts. To reduce negative effects on crop yields, the irrigated amounts must include water for leaching and therefore exceed evapotranspiration. The leachate (drainage) water returns to water sources such as rivers or groundwater aquifers and increases their level of salinity and the leaching requirement for irrigation water of any sequential user. We develop a conceptual sequential (upstream-downstream) model of irrigation that predicts crop yields and water consumption and tracks the water flow and level of salinity along a river dependent on irrigation management decisions. The model incorporates an agro-physical model of plant response to environmental conditions including feedbacks. For a system with limited water resources, the model examines the impacts of water scarcity, salinity and technically inefficient application on yields for specific crop, soil, and climate conditions. Moving beyond the formulation of a conceptual frame, we apply the model to the irrigation of Capsicum annum on Arava Sandy Loam soil. We show for this case how water application could be distributed between upstream and downstream plots or farms. We identify those situations where it is beneficial to trade water from upstream to downstream farms (assuming that the upstream farm holds the water rights). We find that water trade will improve efficiency except when loss levels are low. We compute the marginal value of water, i.e., the price water would command on a market, for different levels of water scarcity, salinity and levels of water loss.

  16. Solid Cattle Manure Less Prone to Phosphorus Loss in Tile Drainage Water.

    PubMed

    Wang, Y T; Zhang, T Q; Tan, C S; Qi, Z M; Welacky, T

    2018-03-01

    Forms (e.g., liquid and solid) of manure influence the risk of P loss after land application. The objective of this study was to investigate the effects of P-based application of various forms of cattle manure (liquid, LCM; or solid, SCM) or inorganic P as triple superphosphate (IP) on soil P losses in tile drainage water. A 4-yr field experiment was conducted in a clay loam soil with a corn ( L.)-soybean [ (L.) Merr.] rotation in the Lake Erie basin. Over the 4 yr, the dissolved reactive P (DRP) flow-weighted mean concentration (FWMC) in tile drainage water was greater under SCM fertilization than under either IP or LCM fertilization. Despite its lower value on an annual basis, DRP FWMC rose dramatically immediately after LCM application. However, the differences in DRP FWMC did not result in detectable differences in DRP loads. Regarding particulate P and total P losses during the 4 yr, they were 68 and 47%, respectively, lower in the soils amended with SCM than in those with IP, whereas both values were similar between IP and LCM treatments. Overall, the P contained in solid cattle manure was less prone to P loss after land application. Accordingly, the present results can provide a basis for manure storage and application of best management practices designed to reduce P losses and improve crop growth. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. The role of sea surface salinity in ENSO related water cycle anomaly

    NASA Astrophysics Data System (ADS)

    Tang, Wenqing; Yueh, Simon

    2017-04-01

    This study investigates the role of sea surface salinity (SSS) in the water cycle anomaly associated with El Niño Southern Oscillation (ENSO). The 2015-16 El Niño, one of the strongest ENSO events observed in centuries, coincident with unprecedented coverage of spacebased remote sensing of SSS over global oceans. We analyze three SSS data sets: from the NASA's missions of SMAP and Aquarius, and the ESA's Soil Moisture and Ocean Salinity (SMOS). One typical characteristics of an ENSO event is the zonal displacement of the Western equatorial Pacific Fresh Pool (WPFP). The edge of the pool extends eastward during El Niño, retreats westward during La Niña. For super El Niño, the eastern edge of WPFP extends much more east across the equatorial Pacific. Indeed, SSS from SMAP reveals much stronger eastward migration of WPFP starting in April 2015. The eastern edge of WPFP reached 140°W in March 2016, about 40° more eastward extension than Aquarius observed in previous years. In the following months from March to June 2016, WPFP retreated westward, coincident with the ending of this strong El Niño event [WMO, El Nino/La Nina update, 2016]. SMOS data shows similar feature, confirming that there is no systematic biases between SMAP and Aquarius retrievals. We examine the linkage between the observed SSS variation and ENSO related water cycle anomaly by integrated analysis of SSS data sets in conjunction with other satellite and in situ measurements on rain, wind, evaporation and ocean currents. Based on the governing equation of the mixed layer salt budget, the freshwater exchange between air-sea interfaces is estimated as residual of the mixed-layer salinity (MLS) temporal change and advection (Focean), as an alternative to evaporation minus precipitation (FE-P). We analyzed the spatial and temporal variation of Focean and FE-P to explore the anomalous signature in the oceanic and atmospheric branches of the water cycle associated with 2015/16 ENSO. The maximum

  18. Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean.

    PubMed

    Lambs, Luc; Mangion, Perrine; Mougin, Eric; Fromard, François

    2016-01-30

    The functioning of mangrove forests found on small coralline islands is characterized by limited freshwater inputs. Here, we present data on the water cycling of such systems located on Europa and Juan de Nova Islands, Mozambique Channel. In order to better understand the water cycle and mangrove growth conditions, we have analysed the hydrological and salinity dynamics of the systems by gauge pressure and isotopic tracing (δ18O and δ2H values). Both islands have important seawater intrusion as measured by the water level change and the high salinities in the karstic ponds. Europa Island displays higher salinity stress, with its inner lagoon, but presents a pluri-specific mangrove species formation ranging from shrub to forest stands. No freshwater signal could be detected around the mangrove trees. On Juan de Nova Island, the presence of sand and detrital sediment allows the storage of some amount of rainfall to form a brackish groundwater. The mangrove surface area is very limited with only small mono-specific stands being present in karstic depression. On the drier Europa Island, the salinity of all the water points is equal to or higher than that of the seawater, and on Juan de Nova the groundwater salinity is lower (5 to 20 PSU). This preliminary study shows that the karstic pothole mangroves exist due to the sea connection through the fractured coral and the high tidal dynamics.

  19. Reconstructing Past Ocean Salinity ((delta)18Owater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilderson, T P; Pak, D K

    2005-11-23

    Temperature and salinity are two of the key properties of ocean water masses. The distribution of these two independent but related characteristics reflects the interplay of incoming solar radiation (insolation) and the uneven distribution of heat loss and gain by the ocean, with that of precipitation, evaporation, and the freezing and melting of ice. Temperature and salinity to a large extent, determine the density of a parcel of water. Small differences in temperature and salinity can increase or decrease the density of a water parcel, which can lead to convection. Once removed from the surface of the ocean where 'local'more » changes in temperature and salinity can occur, the water parcel retains its distinct relationship between (potential) temperature and salinity. We can take advantage of this 'conservative' behavior where changes only occur as a result of mixing processes, to track the movement of water in the deep ocean (Figure 1). The distribution of density in the ocean is directly related to horizontal pressure gradients and thus (geostrophic) ocean currents. During the Quaternary when we have had systematic growth and decay of large land based ice sheets, salinity has had to change. A quick scaling argument following that of Broecker and Peng [1982] is: the modern ocean has a mean salinity of 34.7 psu and is on average 3500m deep. During glacial maxima sea level was on the order of {approx}120m lower than present. Simply scaling the loss of freshwater (3-4%) requires an average increase in salinity a similar percentage or to {approx}35.9psu. Because much of the deep ocean is of similar temperature, small changes in salinity have a large impact on density, yielding a potentially different distribution of water masses and control of the density driven (thermohaline) ocean circulation. It is partly for this reason that reconstructions of past salinity are of interest to paleoceanographers.« less

  20. Discharge, suspended sediment, and salinity in the Gulf Intracoastal Waterway and adjacent surface waters in South-Central Louisiana, 1997–2008

    USGS Publications Warehouse

    Swarzenski, Christopher M.; Perrien, Scott M.

    2015-10-19

    River water penetrates much of the Louisiana coast, as demonstrated by the large year-to-year fluctuations in salinity regimes of intradistributary basins in response to differences in flow regimes of the Mississippi and the Atchafalaya Rivers. This occurs directly through inflow along the GIWW and through controlled diversions and indirectly by transport into basin interiors after mixing with the Gulf of Mexico. The GIWW plays an important role in moderating salinity in intradistributary basins; for example, salinity in surface waters just south of the GIWW between Bayou Boeuf and the Houma Navigation Canal remained low even during a year with prolonged low water (2000).

  1. Saline aquifer mapping project in the southeastern United States

    USGS Publications Warehouse

    Williams, Lester J.; Spechler, Rick M.

    2011-01-01

    In 2009, the U.S. Geological Survey initiated a study of saline aquifers in the southeastern United States to evaluate the potential use of brackish or saline water from the deeper portions of the Floridan aquifer system and the underlying Coastal Plain aquifer system (Fig. 1). The objective of this study is to improve the overall understanding of the available saline water resources for potential future development. Specific tasks are to (1) develop a digital georeferenced database of borehole geophysical data to enable analysis and characterization of saline aquifers (see locations in Fig. 1), (2) identify and map the regional extent of saline aquifer systems and describe the thickness and character of hydrologic units that compose these systems, and (3) delineate salinity variations at key well sites and along section lines to provide a regional depiction of the freshwater-saltwater interfaces. Electrical resistivity and induction logs, coupled with a variety of different porosity logs (sonic, density, and neutron), are the primary types of borehole geophysical logs being used to estimate the water quality in brackish and saline formations. The results from the geophysical log calculations are being compared to available water-quality data obtained from water wells and from drill-stem water samples collected in test wells. Overall, the saline aquifer mapping project is helping to improve the understanding of saline water resources in the area. These aquifers may be sources of large quantities of water that could be treated by using reverse osmosis or similar technologies, or they could be used for aquifer storage and recovery systems.

  2. AGRICULTURAL DRAINAGE WELLS: IMPACT ON GROUND WATER

    EPA Science Inventory

    This document discusses agricultural drainage well practices, potential contamination problems that may occur, and possible management practices or regulatory solutions that could be used to alleviate those problems. The document has been written for use by state and Agency deci...

  3. Water-quality characteristics and trend analyses for the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins, Wyoming and Montana, for selected periods, water years 1991 through 2010

    USGS Publications Warehouse

    Clark, Melanie L.

    2012-01-01

    The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios

  4. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations

    USDA-ARS?s Scientific Manuscript database

    Scarcity of water of good quality for landscape irrigation is of outmost importance in arid and semiarid regions due to the competition with urban population. This is forcing the use of degraded waters with high levels of salinity and high pH, which may affect plant establishment and growth. The o...

  5. Groundwater flow and solute transport at the Mourquong saline-water disposal basin, Murray Basin, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Simmons, Craig; Narayan, Kumar; Woods, Juliette; Herczeg, Andrew

    2002-03-01

    Saline groundwater and drainage effluent from irrigation are commonly stored in some 200 natural and artificial saline-water disposal basins throughout the Murray-Darling Basin of Australia. Their impact on underlying aquifers and the River Murray, one of Australia's major water supplies, is of serious concern. In one such scheme, saline groundwater is pumped into Lake Mourquong, a natural groundwater discharge complex. The disposal basin is hydrodynamically restricted by low-permeability lacustrine clays, but there are vulnerable areas in the southeast where the clay is apparently missing. The extent of vertical and lateral leakage of basin brines and the processes controlling their migration are examined using (1) analyses of chloride and stable isotopes of water (2H/1H and 18O/16O) to infer mixing between regional groundwater and lake water, and (2) the variable-density groundwater flow and solute-transport code SUTRA. Hydrochemical results indicate that evaporated disposal water has moved at least 100 m in an easterly direction and that there is negligible movement of brines in a southerly direction towards the River Murray. The model is used to consider various management scenarios. Salt-load movement to the River Murray was highest in a "worst-case" scenario with irrigation employed between the basin and the River Murray. Present-day operating conditions lead to little, if any, direct movement of brine from the basin into the river. Résumé. Les eaux souterraines salées et les effluents de drainage de l'irrigation sont stockés dans environ 200 bassins naturels ou artificiels destinés à retenir les eaux salines dans tout le bassin de Murray-Darling, en Australie. Leur impact sur les aquifères sous-jacents et sur la rivière Murray, l'une des principales ressources en eau d'Australie, constitue un problème grave. Dans une telle situation, les eaux souterraines salines sont pompées dans le lac Mourquong, complexe dans lequel les nappes se d

  6. Configuration of freshwater/saline-water interface and geologic controls on distribution of freshwater in a regional aquifer system, central lower peninsula of Michigan

    USGS Publications Warehouse

    Westjohn, David B.; Weaver, T.L.

    1996-01-01

    Electrical-resistivity logs and water-quality data were used to delineate the fresh water/saline-water interface in a 22,000-square-mile area of the central Michigan Basin, where Mississippian and younger geologic units form a regional system of aquifers and confining units.Pleistocene glacial deposits in the central Lower Peninsula of Michigan contain freshwater, except in a 1,600-square-mile area within the Saginaw Lowlands, where these deposits typically contain saline water. Pennsylvanian and Mississippian sandstones are freshwater bearing where they subcrop below permeable Pleistocene glacial deposits. Down regional dip from subcrop areas, salinity of ground water progressively increases in Early Pennsylvanian and Mississippian sandstones, and these units contain brine in the central part of the basin. Freshwater is present in Late Pennsylvanian sandstones in the northern and southern parts of the aquifer system. Typically, saline water is present in Pennsylvanian sandstones in the eastern and western parts of the aquifer system.Relief on the freshwater/saline-water interface is about 500 feet. Altitudes of the interface are low (300 to 400 feet above sea level) along a north-south-trending corridor through the approximate center of the area mapped. In isolated areas in the northern and western parts of the aquifer system, the altitude of the base of freshwater is less than 400 feet, but altitude is typically more than 400 feet. In the southern and northern parts of the aquifer system where Pennsylvanian rocks are thin or absent, altitudes of the base of freshwater range from 700 to 800 feet and from 500 to 700 feet above sea level, respectively.Geologic controls on distribution of freshwater in the regional aquifer system are (1) direct hydraulic connection of sandstone aquifers and freshwater-bearing, permeable glacial deposits, (2) impedance of upward discharge of saline water from sandstones by lodgement tills, (3) impedance of recharge of freshwater to

  7. Geohydrologic reconnaissance of drainage wells in Florida; an interim report

    USGS Publications Warehouse

    Kimrey, Joel O.; Fayard, Larry D.

    1982-01-01

    Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) Surface-water injection wells, and (2) interaquifer connector wells. Surface-water injection wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mining operations and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed standards values for gross alpha concentrations. (USGS)

  8. Effects of saline-wastewater injection on water quality in the Altamont-Bluebell oil and gas field, Duchesne County, Utah, 1990-2005

    USGS Publications Warehouse

    Steiger, Judy I.

    2007-01-01

    The Altamont-Bluebell oil and gas field in the Uinta Basin in northeastern Utah has been an important oil and natural gas production area since the 1950s. Saline water is produced along with oil during the oil-well drilling and pumping process. The saline wastewater is disposed of by injection into wells completed in the Duchesne River Formation, Uinta Formation, and other underlying formations. There are concerns that the injected saline wastewater could migrate into the upper part of the Duchesne River and Uinta Formations and surficial deposits that are used for drinking-water supply and degrade the quality of the drinking water. The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Oil, Gas, and Mining, began a program in 1990 to monitor water quality in five wells in the Altamont-Bluebell oil and gas field. By 1996, water-quality samples had been collected from 20 wells. Ten of the 20 wells were sampled yearly during 1996-2005 and analyzed for bromide, chloride, and stable isotopes. Comparison of major chemical constituents, bromide-to-chloride ratios, trend analysis, and isotope ratios were used to assess if saline wastewater is migrating into parts of the formation that are developed for drinking-water supplies. Results of four different analyses all indicate that saline wastewater injected into the lower part of the Duchesne River and Uinta Formations and underlying formations is not migrating upward into the upper parts of the formations that are used for drinking-water supplies.

  9. Effects of water-control structures on hydrologic and water-quality characteristics in selected agricultural drainage canals in eastern North Carolina

    USGS Publications Warehouse

    Treece, M.W.; Jaynes, M.L.

    1994-01-01

    large increase of specific conductance in the tidal creek. Flashboard risers had no significant effect on concentrations of dissolved oxygen, suspended sediment, total ammonia plus organic nitrogen, or phosphorus. Maximum concentrations of ammonia nitrogen were smaller at both test sites after riser installation. In addition, concentrations of nitrite plus nitrate nitrogen exceeding 1.0 milligram per liter rarely occurred at the flashboard-riser test sites following installation of the risers. Median loadings of nitrite plus nitrate nitrogen and total nitrogen decreased at one riser test site following flashboard-riser installation. Tide gates and flashboard risers were associated with reductions in concentrations and export of nitrite plus nitrate nitrogen; however, these changes should be interpreted cautiously because reductions were not observed consistently at every site. The hydrology and baseline water-quality characteristics of the two study areas differ, making comparisons of the effectiveness of the two types of water-control structures difficult to interpret. The effects of water-control structures on the hydrology of the drainage canals are more meaningful than the changes in water quality. Tide gates and flashboard risers altered the hydrologic characteristics of the drainage canals and created an environment favorable for nutrient loss or transformation. Both structures retained agricultural drainage upstream, which increased potential storage for infiltration and reduced the potential for surface runoff, sediment, and nutrient transport, and higher peak outflow rates.

  10. Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Drury, C F

    2015-03-01

    Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Hydrogeologic processes in saline systems: Playas, sabkhas, and saline lakes

    USGS Publications Warehouse

    Yechieli, Y.; Wood, W.W.

    2002-01-01

    Pans, playas, sabkhas, salinas, saline lakes, and salt flats are hydrologically similar, varying only in their boundary conditions. Thus, in evaluating geochemical processes in these systems, a generic water and solute mass-balance approach can be utilized. A conceptual model of a coastal sabkha near the Arabian Gulf is used as an example to illustrate the various water and solute fluxes. Analysis of this model suggests that upward flux of ground water from underlying formations could be a major source of solutes in the sabkha, but contribute only a small volume of the water. Local rainfall is the main source of water in the modeled sabkha system with a surprisingly large recharge-to-rainfall ratio of more than 50%. The contribution of seawater to the solute budget depends on the ratio of the width of the supratidal zone to the total width and is generally confined to a narrow zone near the shoreline of a typical coastal sabkha. Because of a short residence time of water, steady-state flow is expected within a short time (50,000 years). The solute composition of the brine in a closed saline system depends largely on the original composition of the input water. The high total ion content in the brine limits the efficiency of water-rock interaction and absorption. Because most natural systems are hydrologically open, the chemistry of the brines and the associated evaporite deposits may be significantly different than that predicted for hydrologically closed systems. Seasonal changes in temperature of the unsaturated zone cause precipitation of minerals in saline systems undergoing evaporation. Thus, during the hot dry season months, minerals exhibit retrograde solubility so that gypsum, anhydrite and calcite precipitate. Evaporation near the surface is also a major process that causes mineral precipitation in the upper portion of the unsaturated zone (e.g. halite and carnallite), provided that the relative humidity of the atmosphere is less than the activity of water

  12. Base of moderately saline ground water in the Uinta Basin, Utah, with an introductory section describing the methods used in determining its position

    USGS Publications Warehouse

    Howells, Lewis; Longson, M.S.; Hunt, Gilbert L.

    1987-01-01

    The base of the moderately saline water (water that contains from 3,000 to 10,000 milligrams per liter of dissolved solids) was mapped by using available water-quality data and by determining formation-water resistivities from geophysical well logs based on the resistivity-porosity, spontaneous potential, and resistivity-ratio methods. The contour map developed from these data showed a mound of very saline and briny water, mostly of sodium chloride and sodium bicarbonate type, in most of that part of the Uinta Basin that is underlain by either the Green River or Wasatch Formations. Along its northern edge, the mound rises steeply from below sea level to within 2,000 feet of the land surface and, locally, to land surface. Along its southern edge, the mound rises less steeply and is more complex in outline. This body of very saline to briny water may be a lens; many wells or test holes drilled within the area underlain by the mound re-entered fresh to moderately saline water at depths of 8,000 to 15,000 feet below lam surface.

  13. Effect of Drainage and Management Practices on Hydrology of Pine Plantation

    Treesearch

    R. Wayne Skaggs; Devendra M. Amatya; G. M. Chescheir; C. D. Blanton; J. W. Gilliam

    2006-01-01

    This paper reviews results of long-term studies, initiated in the late 1980s, to determine the hydrologic and water quality impacts of drainage and related water and forest management practices on a poorly drained site in Carteret County, North Carolina. Three watersheds, each approximately 25 ha, were instrumented to measure and record drainage rate, water table depth...

  14. How internal drainage affects evaporation dynamics from soil surfaces ?

    NASA Astrophysics Data System (ADS)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  15. Geomorphic Drainage Capture Recorded by Oxygen Isotopes of Green River Formation Lacustrine Mudstone, Eocene, Wyoming

    NASA Astrophysics Data System (ADS)

    Doebbert, A. C.; Booth, A. L.; Carroll, A.; Chamberlain, C.; Rhodes, M.

    2005-12-01

    The isotopic composition of cement and other meteoric precipitates are increasingly being used to interpret orogenic uplift histories, based on the relationship between altitude and rainwater δ18O. However, other variables such as changing regional drainage patterns may also affect the downstream composition of surface waters, especially when multiple drainages commingle in a lake. The Green River Formation contains some of the best documented lacustrine deposits in the world, making it ideal for examining such issues. Carbonate mudstone in balanced-fill facies of the lower LaClede Bed averages 3.41‰ (PDB), and records a deep, saline to brackish lake that fluctuated near its sill. In contrast, overfilled facies of the upper LaClede Bed record a freshwater lake, and δ18O reaches values as low as -9.72‰. This transition occurred shortly after deposition of the Analcite Tuff at 48.94 ± 0.12 Ma (Smith et al., 2003), and was geologically abrupt. Based on 40Ar/39Ar-calibrated sediment accumulation rates it required no more than 200-300 ky. An almost identical transition occurs in two cores separated by about 30 km, making local diagenesis an unlikely cause. The magnitude of δ18O change is similar to that in some uplift studies, but its rapidity virtually excludes uplift as a controlling mechanism. Instead, we propose that both the change in sedimentation and the sharp decrease in δ18O are the result of a drainage capture event. The addition of a new drainage to the basin may have adjusted isotopic values in two ways: by introducing runoff with relatively low δ18O, and by decreasing residence time (and therefore evaporation) of lake water. Decreasing 87Sr/86Sr across the same transition suggests that the newly added waters may have been sourced from rising volcanic topography to the north in the Absaroka province. Although this rising topography allows for the possibility of some uplift component, the rate of change in lacustrine δ18O is consistent with

  16. Hydraulic redistribution: limitations for plants in saline soils.

    PubMed

    Bazihizina, Nadia; Veneklaas, Erik J; Barrett-Lennard, Edward G; Colmer, Timothy D

    2017-10-01

    Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. © 2017 John Wiley & Sons Ltd.

  17. Dynamic drainage of froth with wood fibers

    Treesearch

    J.Y. Zhu; Freya Tan

    2005-01-01

    Understanding froth drainage with fibers (or simply called fiber drainage in froth) is important for improving fiber yield in the flotation deinking operation. In this study, the data of water and fiber mass in foams collected at different froth heights were used to reconstruct the time dependent and spatially resolved froth density and fiber volumetric concentration...

  18. Implications of salinity pollution hotspots on agricultural production

    NASA Astrophysics Data System (ADS)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  19. Drinking Water Sodium and Elevated Blood Pressure of Healthy Pregnant Women in Salinity-Affected Coastal Areas.

    PubMed

    Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo

    2016-08-01

    Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies. © 2016 American Heart Association, Inc.

  20. Retrofitting for watershed drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, D.B.; Heaney, J.P.

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushingmore » in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.« less

  1. An In vitro Comparison of Coconut Water, Milk, and Saline in Maintaining Periodontal Ligament Cell Viability

    PubMed Central

    D’Costa, Vivian Flourish; Bangera, Madhu Keshava; Kini, Shravan; Kutty, Shakkira Moosa; Ragher, Mallikarjuna

    2017-01-01

    Background and Objectives: Two of the most critical factors affecting the prognosis of an avulsed tooth after replantation are extraoral dry time and the storage media in which the tooth is placed before treatment is rendered. The present study is undertaken to evaluate the periodontal ligament (PDL) cell viability after storage of teeth in different storage media, namely, coconut water, milk, and saline. Materials and Methods: Forty sound human premolars undergoing extraction for orthodontic purpose were selected. The teeth were allowed to lie dry on sand/mud for 30 min followed by which they were randomly divided and stored in three different media, i.e., coconut water, milk, and saline. After 45-min storage in their respective media, the root surface was then scraped for PDL tissue. Results: The ANOVA and Newman–Keuls post hoc procedure for statistical analysis of viable cell count under a light microscope using hemocytometer demonstrated that coconut water preserved significantly more PDL cells viable (P < 0.05) compared with milk and saline. Conclusion: Storage media help in preserving the viability of PDL cells when immediate replantation is not possible. This study evaluated the posttraumatic PDL cells’ viability following storage in three different storage media. Within the parameters of this study, it was found that coconut water is the most effective media for maintaining the viability of PDL. PMID:29284947

  2. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    PubMed

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  3. Runway drainage characteristics related to tire friction performance

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1991-01-01

    The capability of a runway pavement to rapidly drain water buildup during periods of precipitation is crucial to minimize tire hydroplaning potential and maintain adequate aircraft ground operational safety. Test results from instrumented aircraft, ground friction measuring vehicles, and NASA Langley's Aircraft Landing Dynamics Facility (ALDF) track have been summarized to indicate the adverse effects of pavement wetness conditions on tire friction performance. Water drainage measurements under a range of rainfall rates have been evaluated for several different runway surface treatments including the transversely grooved and longitudinally grinded concrete surfaces at the Space Shuttle Landing Facility (SLF) runway at NASA Kennedy Space Center in Florida. The major parameters influencing drainage rates and extent of flooding/drying conditions are identified. Existing drainage test data are compared to a previously derived empirical relationship and the need for some modification is indicated. The scope of future NASA Langley research directed toward improving empirical relationships to properly define runway drainage capability and consequently, enhance aircraft ground operational safety, is given.

  4. Flow characteristics and salinity patterns of tidal rivers within the northern Ten Thousand Islands, southwest Florida, water years 2007–14

    USGS Publications Warehouse

    Booth, Amanda C.; Soderqvist, Lars E.

    2016-12-12

    Freshwater flow to the Ten Thousand Islands estuary has been altered by the construction of the Tamiami Trail and the Southern Golden Gate Estates. The Picayune Strand Restoration Project, which is associated with the Comprehensive Everglades Restoration Plan, has been implemented to improve freshwater delivery to the Ten Thousand Islands estuary by removing hundreds of miles of roads, emplacing hundreds of canal plugs, removing exotic vegetation, and constructing three pump stations. Quantifying the tributary flows and salinity patterns prior to, during, and after the restoration is essential to assessing the effectiveness of upstream restoration efforts.Tributary flow and salinity patterns during preliminary restoration efforts and prior to the installation of pump stations were analyzed to provide baseline data and preliminary analysis of changes due to restoration efforts. The study assessed streamflow and salinity data for water years1 2007–2014 for the Faka Union River (canal flow included), East River, Little Wood River, Pumpkin River, and Blackwater River. Salinity data from the Palm River and Faka Union Boundary water-quality stations were also assessed.Faka Union River was the dominant contributor of freshwater during water years 2007–14 to the Ten Thousand Islands estuary, followed by Little Wood and East Rivers. Pumpkin River and Blackwater River were the least substantial contributors of freshwater flow. The lowest annual flow volumes, the highest annual mean salinities, and the highest percentage of salinity values greater than 35 parts per thousand (ppt) occurred in water year 2011 at all sites with available data, corresponding with the lowest annual rainfall during the study. The highest annual flow volumes and the lowest percentage of salinities greater than 35 ppt occurred in water year 2013 for all sites with available data, corresponding with the highest rainfall during the study.In water year 2014, the percentage of monitored annual flow

  5. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh

    PubMed Central

    Chowdhury, Muhammad A.H.; Haines, Andy; Alam, Dewan S.; Hoque, Mohammad A.; Butler, Adrian P.; Khan, Aneire E.; Mojumder, Sontosh K.; Blangiardo, Marta A.G.; Elliott, Paul; Vineis, Paolo

    2017-01-01

    Background: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. Objectives: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. Methods: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from “conventional” ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. Results: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. Conclusions: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in “real-life” salinity-affected settings. https://doi.org/10.1289/EHP659 PMID:28599268

  6. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    PubMed

    Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo

    2017-05-30

    Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.

  7. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  8. The construction technology of Chinese ancient city drainage facilities

    NASA Astrophysics Data System (ADS)

    Hequn, Li; Yufengyun

    2018-03-01

    In ancient china, according to the local natural environment, a variety of drainage facilities were built in order to excrete rainwater, domestic sewage, production wastewater and so on. These drainage facilities were mainly made of pottery, bricks, wood, stone, etc. For example, ceramic water pipelines, buried in the ground, connect together one by one, and there was a slight drop from one end to the other in favor of drainage. These measures can also be used for reference in today’s urban drainage and flood control.

  9. Factors controlling the configuration of the fresh-saline water interface in the Dead Sea coastal aquifers: Synthesis of TDEM surveys and numerical groundwater modeling

    USGS Publications Warehouse

    Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C.I.

    2001-01-01

    TDEM (time domain electromagnetic) traverses in the Dead Sea (DS) coastal aquifer help to delineate the configuration of the interrelated fresh-water and brine bodies and the interface in between. A good linear correlation exists between the logarithm of TDEM resistivity and the chloride concentration of groundwater, mostly in the higher salinity range, close to that of the DS brine. In this range, salinity is the most important factor controlling resistivity. The configuration of the fresh-saline water interface is dictated by the hydraulic gradient, which is controlled by a number of hydrological factors. Three types of irregularities in the configuration of fresh-water and saline-water bodies were observed in the study area: 1. Fresh-water aquifers underlying more saline ones ("Reversal") in a multi-aquifer system. 2. "Reversal" and irregular residual saline-water bodies related to historical, frequently fluctuating DS base level and respective interfaces, which have not undergone complete flushing. A rough estimate of flushing rates may be obtained based on knowledge of the above fluctuations. The occurrence of salt beds is also a factor affecting the interface configuration. 3. The interface steepens towards and adjacent to the DS Rift fault zone. Simulation analysis with a numerical, variable-density flow model, using the US Geological Survey's SUTRA code, indicates that interface steep- ening may result from a steep water-level gradient across the zone, possibly due to a low hydraulic conductivity in the immediate vicinity of the fault.

  10. Using high frequency CDOM hyperspectral absorption to fingerprint river water sources

    NASA Astrophysics Data System (ADS)

    Beckler, J. S.; Kirkpatrick, G. J.; Dixon, L. K.; Milbrandt, E. C.

    2016-12-01

    Quantifying riverine carbon transfer from land to sea is complicated by variability in dissolved organic carbon (DOC), closely-related dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) concentrations, as well as in the composition of the freshwater end members of multiple drainage basins and seasons. Discrete measurements in estuaries have difficulty resolving convoluted upstream watershed dynamics. Optical measurements, however, can provide more continuous data regarding the molecular composition and concentration of the CDOM as it relates to river flow, tidal mixing, and salinity and may be used to fingerprint source waters. For the first time, long-term, hyperspectral CDOM measurements were obtained on filtered Caloosahatchee River estuarine waters using an in situ, long-pathlength spectrophotometric instrument, the Optical Phytoplankton Discriminator (OPD). Through a collaborative monitoring effort among partners within the Gulf of Mexico Coastal Ocean Observing System (GCOOS), ancillary measurements of fluorescent DOM (FDOM) and water quality parameters were also obtained from co-located instrumentation at high frequency. Optical properties demonstrated both short-term (hourly) tidal variations and long-term (daily - weekly) variations corresponding to changes in riverine flow and salinity. The optical properties of the river waters are demonstrated to be a dilution-adjusted linear combination of the optical properties of the source waters comprising the overall composition (e.g. Lake Okeechobee, watershed drainage basins, Gulf of Mexico). Overall, these techniques are promising as a tool to more accurately constrain the carbon flux to the ocean and to predict the optical quality of coastal waters.

  11. Management of chest drainage tubes after lung surgery.

    PubMed

    Satoh, Yukitoshi

    2016-06-01

    Since chest tubes have been routinely used to drain the pleural space, particularly after lung surgery, the management of chest tubes is considered to be essential for the thoracic surgeon. The pleural drainage system requires effective drainage, suction, and water-sealing. Another key point of chest tube management is that a water seal is considered to be superior to suction for most air leaks. Nowadays, the most common pleural drainage device attached to the chest tube is the three-bottle system. An electronic chest drainage system has been developed that is effective in standardizing the postoperative management of chest tubes. More liberal use of digital drainage devices in the postoperative management of the pleural space is warranted. The removal of chest tubes is a common procedure occurring almost daily in hospitals throughout the world. Extraction of the tube is usually done at the end of full inspiration or at the end of full expiration. The tube removal technique is not as important as how it is done and the preparation for the procedure. The management of chest tubes must be based on careful observation, the patient's characteristics, and the operative procedures that had been performed.

  12. Decline of the world's saline lakes

    NASA Astrophysics Data System (ADS)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  13. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    NASA Astrophysics Data System (ADS)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  14. Development of optical laser balloon and drainage from radiation vulcanized natural rubber latex

    NASA Astrophysics Data System (ADS)

    Shimamura, Yoshiyuki

    Rubber film made of radiation vulcanized natural rubber latex (RVNRL) has better transparency and lower toxicity compared with sulfur-vulcanized latex film. Optical laser balloon (optical endoscopical balloon) and drainage were developed by using RVNRL. An endoscope was equipped with a saline-filled latex rubber balloon at its tip to displace contaminating blood, bile, or gastric contents during operative portoscopy, biliary endoscopy, or upper gastrointestinal endoscopy. The transmission of Nd-Yag laser through the balloon is 98%, higher than the sulfur-vulcanized latex rubber (75%). High transparency of the drainage bag facilitated easy observation of discharged fluids without detaching the bag from the tube.

  15. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral part...

  16. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral part...

  17. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral part...

  18. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral part...

  19. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral part...

  20. Detailed study of selenium and other constituents in water, bottom sediment, soil, alfalfa, and biota associated with irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-93

    USGS Publications Warehouse

    Butler, D.L.; Wright, W.G.; Stewart, K.C.; Osmundson, B.C.; Krueger, R.P.; Crabtree, D.W.

    1996-01-01

    transport to streams and irrigation drains that are tributary to the Gunnison, Uncompahgre, and Colorado Rivers. Selenium concentrations in about 64\\x11percent of water samples collected from the lower Gunnison River and about 50 percent of samples from the Colorado River near the Colorado-Utah State line exceeded the U.S.\\x11Environmental Protection Agency criterion of 5\\x11micrograms per liter for protection of aquatic life. Almost all selenium concentrations in samples collected during the nonirrigation season from Mancos Shale areas exceeded the aquatic-life criterion. The maximum selenium concentrations in surface-water samples were 600\\x11micrograms per liter in the Uncompahgre Project area and 380\\x11micrograms per liter in the Grand Valley. Irrigation drainage from the Uncompahgre Project and the Grand Valley might account for as much as 75 percent of the selenium load in the Colorado River near the Colorado-Utah State line. The primary source areas of selenium were the eastern side of the Uncompahgre Project and the western one-half of the Grand Valley, where there is extensive irrigation on soils derived from Mancos Shale. The largest mean selenium loads from tributary drainages were 14.0 pounds per day from Loutsenhizer Arroyo in the Uncompahgre Project and 12.8 pounds per day from Reed Wash in the Grand Valley. Positive correlations between selenium loads and dissolved-solids loads could indicate that salinity-control projects designed to decrease dissolved-solids loads also could decrease selenium loads from the irrigated areas. Selenium concentrations in irrigation drainage in the Grand Valley were much higher than concentrations predicted by simple evaporative concentration of irrigation source water. Selenium probably is removed from pond water by chemical and biological processes and incorporated into bottom sediment. The maximum selenium concentration in bottom sediment was 47 micrograms per gram from a pond on the eastern side of the

  1. Modes of supraglacial lake drainage and dynamic ice sheet response

    NASA Astrophysics Data System (ADS)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice

  2. Evaluation of the surface-water sampling design in the Western Lake Michigan Drainages in relation to environmental factors affecting water quality at base flow

    USGS Publications Warehouse

    Robertson, Dale M.

    1998-01-01

    The variability in water quality throughout the WMIC Study Unit during base-flow conditions could be described very well by subdividing the area into Relatively Homogeneous Units and sampling a few streams with drainage basins completely within these homogeneous units. This subdivision and sampling scheme enabled the differences in water quality to be directly related to the differences in the environmental characteristics that exist throughout the Study Unit.

  3. Geochemical assessments and classification of coal mine spoils for better understanding of potential salinity issues at closure.

    PubMed

    Park, Jin Hee; Li, Xiaofang; Edraki, Mansour; Baumgartl, Thomas; Kirsch, Bernie

    2013-06-01

    Coal mining wastes in the form of spoils, rejects and tailings deposited on a mine lease can cause various environmental issues including contamination by toxic metals, acid mine drainage and salinity. Dissolution of salt from saline mine spoil, in particular, during rainfall events may result in local or regional dispersion of salts through leaching or in the accumulation of dissolved salts in soil pore water and inhibition of plant growth. The salinity in coal mine environments is from the geogenic salt accumulations and weathering of spoils upon surface exposure. The salts are mainly sulfates and chlorides of calcium, magnesium and sodium. The objective of the research is to investigate and assess the source and mobility of salts and trace elements in various spoil types, thereby predicting the leaching behavior of the salts and trace elements from spoils which have similar geochemical properties. X-ray diffraction analysis, total digestion, sequential extraction and column experiments were conducted to achieve the objectives. Sodium and chloride concentrations best represented salinity of the spoils, which might originate from halite. Electrical conductivity, sodium and chloride concentrations in the leachate decreased sharply with increasing leaching cycles. Leaching of trace elements was not significant in the studied area. Geochemical classification of spoil/waste defined for rehabilitation purposes was useful to predict potential salinity, which corresponded with the classification from cluster analysis based on leaching data of major elements. Certain spoil groups showed high potential salinity by releasing high sodium and chloride concentrations. Therefore, the leaching characteristics of sites having saline susceptible spoils require monitoring, and suitable remediation technologies have to be applied.

  4. Laboratory evaluation of dual-frequency multisensor capacitance probes to monitor soil water and salinity

    USDA-ARS?s Scientific Manuscript database

    Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available for sandy soils that simultaneously monitor volumetric soil water content (VWC, ') and sa...

  5. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    PubMed Central

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-01-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate. PMID:26869235

  6. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... individually vented. (iii) A 3-inch minimum diameter piping shall be required for water closets. (f) Wet-vented... water seal trap (§ 3280.606(a)). (2) The drainage system shall be designed to provide an adequate... equipped with a water-tight cap or plug matching the drain outlet. The cap or plug shall be permanently...

  7. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... individually vented. (iii) A 3-inch minimum diameter piping shall be required for water closets. (f) Wet-vented... water seal trap (§ 3280.606(a)). (2) The drainage system shall be designed to provide an adequate... equipped with a water-tight cap or plug matching the drain outlet. The cap or plug shall be permanently...

  8. GROUNDWATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    The generation and release of acidic, metal-rich water from mine wastes continues to be an intractable environmental problem. Although the effects of acid mine drainage (AMD) are most evident in surface waters, there is an obvious need for developing cost-effective approaches fo...

  9. Evidence for seasonal low salinity surface waters in the Gulf of Mexico over the last 16,000 years

    NASA Astrophysics Data System (ADS)

    Spero, Howard J.; Williams, Douglas F.

    1990-12-01

    Oxygen isotopic analyses of individual Orbulina universa from Orca Basin core EN32-PC6 document the presence of low salinity surface waters in the northern Gulf of Mexico over the past 16 kyr. Isotopic data from an interval immediately following the Younger Dryas Event indicate the rapid decrease in δ18O values at the conclusion of the Younger Dryas was due to a year-round return of meltwater to the Gulf of Mexico. Data indicate periodic or seasonal low-salinity waters existed over the region of the Orca Basin prior to the initiation of the meltwater spike. Estimates suggest O. universa grew its shell in salinities at least 4.5 ‰ below ambient. Since O. universa may have calcified deep in the mixed layer during periods of low salinity, surface salinities could have been even lower. Comparison of the average of individual O. universa oxygen isotopic values with data from multiple shell samples of white Gs. ruber from the same core samples demonstrates that the two species record similar values during the late Holocene. In contrast, O. universa records lower oxygen isotopic values during the late glacial/deglacial intervals, possibly due to differences in seasonal distribution or shell ontogeny between the two species.

  10. Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology

    USGS Publications Warehouse

    Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

    1996-01-01

    Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

  11. Antibiotic resistance and community analysis of surface and subsurface drainage waters in the South Fork Iowa River watershed

    USDA-ARS?s Scientific Manuscript database

    The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations w...

  12. Antibiotic resistance and community analysis of surface and subsurface drainage waters in the South Fork Iowa River watershed

    USDA-ARS?s Scientific Manuscript database

    The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations wh...

  13. Salinity Management in Agriculture

    USDA-ARS?s Scientific Manuscript database

    Existing guidelines and standards for reclamation of saline soils and management to control salinity exist but have not been updated for over 25 years. In the past few years a looming water scarcity has resulted in questioning of the long term future of irrigation projects in arid and semi arid regi...

  14. Long-Term Hydrologic Impacts of Controlled Drainage Using DRAINMOD

    NASA Astrophysics Data System (ADS)

    Saadat, S.; Bowling, L. C.; Frankenberger, J.

    2017-12-01

    Controlled drainage is a management strategy designed to mitigate water quality issues caused by subsurface drainage but it may increase surface ponding and runoff. To improve controlled drainage system management, a long-term and broader study is needed that goes beyond the experimental studies. Therefore, the goal of this study was to parametrize the DRAINMOD field-scale, hydrologic model for the Davis Purdue Agricultural Center located in Eastern Indiana and to predict the subsurface drain flow and surface runoff and ponding at this research site. The Green-Ampt equation was used to characterize the infiltration, and digital elevation models (DEMs) were used to estimate the maximum depressional storage as the surface ponding parameter inputs to DRAINMOD. Hydraulic conductivity was estimated using the Hooghoudt equation and the measured drain flow and water table depths. Other model inputs were either estimated or taken from the measurements. The DRAINMOD model was calibrated and validated by comparing model predictions of subsurface drainage and water table depths with field observations from 2012 to 2016. Simulations based on the DRAINMOD model can increase understanding of the environmental and hydrological effects over a broader temporal and spatial scale than is possible using field-scale data and this is useful for developing management recommendations for water resources at field and watershed scales.

  15. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    NASA Technical Reports Server (NTRS)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  16. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    PubMed

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  17. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    USGS Publications Warehouse

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  18. Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes

    NASA Astrophysics Data System (ADS)

    Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis

    2015-04-01

    Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic

  19. Salinity of deep groundwater in California: Water quantity, quality, and protection.

    PubMed

    Kang, Mary; Jackson, Robert B

    2016-07-12

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California's Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km(3), most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km(3) of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California's Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond.

  20. Salinity of deep groundwater in California: Water quantity, quality, and protection

    PubMed Central

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  1. Varying evapotranspiration and salinity level of irrigation water influence soil quality and performance of perennial ryegrass (lolium perenne l.)

    USDA-ARS?s Scientific Manuscript database

    Increasing use of recycled water that is often high in salinity warrants further examination of irrigation practices for turfgrass health and salinity management. A study was conducted during 2011-2012 in Riverside, CA to evaluate the response of perennial ryegrass (Lolium perenne L.) ‘SR 4550’ turf...

  2. Spatio-temporal impacts of dairy lagoon water reuse on soil: heavy metals and salinity.

    PubMed

    Corwin, Dennis L; Ahmad, Hamaad Raza

    2015-10-01

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. The spatial impact and sustainability of dairy lagoon water reuse from concentrated animal feeding operations (CAFOs) has not been evaluated at field scale. The objective of this study is to monitor the impact of dairy lagoon water blended with recycled water on a 32 ha field near San Jacinto, CA from 2007 to 2011. Spatial monitoring was based on soil samples collected at locations identified from apparent soil electrical conductivity (ECa) directed sampling. Soil samples were taken at depth increments of 0-0.15, 0.15-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, 1.2-1.5, and 1.5-1.8 m at 28 sample sites on 7-11 May 2007 and again on 31 May - 2 June 2011 after 4 years of irrigation with the blended waters. Chemical analyses included salinity (electrical conductivity of the saturation extract, ECe), pHe (pH of the saturation extract), SAR (sodium adsorption ratio), trace elements (As, B, Mo, Se), and heavy metals (Cd, Cu, Mn, Ni, Zn). Results indicate a decrease in mean values of pHe at all depth increments; a decrease in ECe and SAR above a depth of 0.15 m, but an increase below 0.15 m; a decrease in all trace elements except B, which increased throughout the 1.8 m profile; and the accumulation of Cd, Mn, and Ni at all depth increments, while Cu was readily leached from the 1.8 m profile. Zinc showed little change. The results focused concern on the potential long-term agronomic effect of salinity, SAR, and B, and the long-term environmental threat of salinity and Cu to detrimentally impact groundwater. The accumulation of Cd, Mn, and Ni in the soil profile raised concern since it provided a potential future source of metals for leaching. The long-term sustainability of dairy lagoon water reuse hinges on regular monitoring to provide spatial feedback for site-specific management.

  3. Evolution of anomalies of salinity of surface waters of Arctic Ocean and their possible influence on climate changes

    NASA Astrophysics Data System (ADS)

    Popov, A.; Rubchenia, A.

    2009-04-01

    Numerous of model simulations of ice extent in Arctic Ocean predict almost full disappearance of sea ice in Arctic regions by 2050. However, the nature, as against models, does not suffer the unidirectional processes. By means of various feedback responses system aspires to come in an equilibrium condition. In Arctic regions one of the most powerful generators of a negative feedback is the fresh-water stream to Greenland Sea and Northern Atlantic. Increasing or decreasing of a fresh-water volume from the Arctic basin to Greenland Sea and Northern Atlantic results in significant changes in climatic system. At the Oceanology department of Arctic and Antarctic Research Institute (AARI) (St-Petersburg, Russia) in 2007, on the basis of the incorporated Russian-American database of the oceanographic data, reconstruction of long-term time series of average salinity of ocean surface was executed. The received time series describes the period from 1950 to 1993. For allocation of the processes determining formation of changes of average salinity of surface waters in Arctic basin the correlation analysis of interrelation of the received time series and several physical parameters which could affect formation of changes of salinity was executed. We found counter-intuitive result: formation of long-term changes of average salinity of surface waters of Arctic basin in the winter period does not depend on changes of a Siberian rivers runoff. Factors of correlation do not exceed -0,31. At the same time, clear inverse relationship of salinity of surface waters from volumes of the ice formed in flaw lead polynyas of the Siberian shelf seas is revealed. In this case factors of correlation change from -0,56 to -0,7. The maximum factor of correlation is -0,7. It characterizes interrelation of total volume of the ice formed in flaw lead polynyas of all seas of the Siberian shelf and average salinity of surface waters of Arctic basin. Thus, at increase of volumes of the ice formed in

  4. The strategies of local farmers' water management and the eco-hydrological effects of irrigation-drainage engineering systems in world heritage of Honghe Hani Rice Terraces

    NASA Astrophysics Data System (ADS)

    Gao, Xuan

    2017-04-01

    Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally

  5. Environmental controls on drainage behavior of an ephemeral stream

    USGS Publications Warehouse

    Blasch, K.W.; Ferré, T.P.A.; Vrugt, J.A.

    2010-01-01

    Streambed drainage was measured at the cessation of 26 ephemeral streamflow events in Rillito Creek, Tucson, Arizona from August 2000 to June 2002 using buried time domain reflectometry (TDR) probes. An unusual drainage response was identified, which was characterized by sharp drainage from saturation to near field capacity at each depth with an increased delay between depths. We simulated the drainage response using a variably saturated numerical flow model representing a two-layer system with a high permeability layer overlying a lower permeability layer. Both the observed data and the numerical simulation show a strong correlation between the drainage velocity and the temperature of the stream water. A linear combination of temperature and the no-flow period preceding flow explained about 90% of the measured variations in drainage velocity. Evaluation of this correlative relationship with the one-dimensional numerical flow model showed that the observed temperature fluctuations could not reproduce the magnitude of variation in the observed drainage velocity. Instead, the model results indicated that flow duration exerts the most control on drainage velocity, with the drainage velocity decreasing nonlinearly with increasing flow duration. These findings suggest flow duration is a primary control of water availability for plant uptake in near surface sediments of an ephemeral stream, an important finding for estimating the ecological risk of natural or engineered changes to streamflow patterns. Correlative analyses of soil moisture data, although easy and widely used, can result in erroneous conclusions of hydrologic cause—effect relationships, and demonstrating the need for joint physically-based numerical modeling and data synthesis for hypothesis testing to support quantitative risk analysis.

  6. Influence of the stopcock on the efficiency of percutaneous drainage catheters: laboratory evaluation.

    PubMed

    D'Agostino, H B; Park, Y; Moyers, J P; vanSonnenberg, E; Sanchez, R B; Goodacre, B W; Kim, Y H; Vieira, M V

    1992-08-01

    The effects of stopcocks on percutaneous fluid drainage were tested in a laboratory model by using a standard stopcock (6-French inner diameter) and a prototype stopcock (9-French inner diameter) connected to 8-, 10-, 12-, 14-, and 16-French catheters. Catheters were immersed in water alone or in viscous fluid with particulate matter, and the system was connected to low wall suction or gravity drainage. The average volume of fluid aspirated in a given period with and without a stopcock was compared for each catheter. The standard stopcock decreased drainage efficiency for these catheters by 13-42%. This decreased drainage efficiency was worse with the larger catheters. Particulate fluid blocked the stopcock connection for all catheters. With the prototype stopcock, drainage of water alone was reduced by 0-9% for the catheters of different sizes. Particulate fluid did not obstruct the prototype stopcock with any size catheter. With gravity drainage, the volume of water aspirated was reduced by 12-42% with the standard stopcock and by 3-6% with the prototype stopcock. These data suggest that stopcock connections greatly influence the efficiency of the percutaneous drainage systems. Stopcocks with larger inner diameters may improve drainage over that achievable with the stopcocks that are currently available.

  7. Urbanization accelerates long-term salinization and alkalinization of fresh water

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R. M.; Newcomer Johnson, T. A.; Delaney Newcomb, K.; Gorman, J. K.; Bowman, N.; Mayer, P. M.; Wood, K. L.; Belt, K.; Stack, W.

    2017-12-01

    Human dominated land-use increases transport a major ions in streams due to anthropogenic salts and accelerated weathering. We show long-term trends in calcium, magnesium, sodium, alkalinity, and hardness over 50 years in the Baltimore metropolitan region and elsewhere. We also examine how major ion concentrations have increased significantly with impervious surface cover in watersheds across land use. Base cations show strong relationships with acid anions, which illustrates the coupling of major biogeochemical cycles in urban watersheds over time. Longitudinal patterns in major ions can also show increasing trends from headwaters to coastal waters, which suggests coupled biogeochemical cycles over space. We present new results from manipulative experiments and long-term monitoring across different urban regions regarding patterns and processes of salinization and alkalinization. Overall, our work demonstrates that urbanization dramatically increases major ions, ionic strength, and pH over decades from headwaters to coastal waters, which impacts the integrity of aquatic life, infrastructure, drinking water, and coastal ocean alkalinization.

  8. Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions

    PubMed Central

    Nguyen, Hoa T.; Stanton, Daniel E.; Schmitz, Nele; Farquhar, Graham D.; Ball, Marilyn C.

    2015-01-01

    Background and Aims Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions. Methods Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50 % seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth. Key Results Avicennia marina seedlings failed to grow in 0–5 % seawater, whereas maximal growth occurred in 50–75 % seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50–75 % seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity. Conclusions The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte

  9. Behavior of pure gallium in water and various saline solutions.

    PubMed

    Horasawa, N; Nakajima, H; Takahashi, S; Okabe, T

    1997-12-01

    This study investigated the chemical stability of pure gallium in water and saline solutions in order to obtain fundamental knowledge about the corrosion mechanism of gallium-based alloys. A pure gallium plate (99.999%) was suspended in 50 mL of deionized water, 0.01%, 0.1% or 1% NaCl solution at 24 +/- 2 degrees C for 1, 7, or 28 days. The amounts of gallium released into the solutions were determined by atomic absorption spectrophotometry. The surfaces of the specimens were examined after immersion by x-ray diffractometry (XRD) and x-ray photoelectron spectroscopy (XPS). In the solutions containing 0.1% or more NaCl, the release of gallium ions into the solution was lowered when compared to deionized water after 28-day immersion. Gallium oxide monohydroxide was found by XRD on the specimens immersed in deionized water after 28-day immersion. XPS indicated the formation of gallium oxide/hydroxide on the specimens immersed in water or 0.01% NaCl solution. The chemical stability of pure solid gallium was strongly affected by the presence of Cl- ions in the aqueous solution.

  10. Evaluation of Life Cycle Assessment (LCA) for Roadway Drainage Systems.

    PubMed

    Byrne, Diana M; Grabowski, Marta K; Benitez, Amy C B; Schmidt, Arthur R; Guest, Jeremy S

    2017-08-15

    Roadway drainage design has traditionally focused on cost-effectively managing water quantity; however, runoff carries pollutants, posing risks to the local environment and public health. Additionally, construction and maintenance incur costs and contribute to global environmental impacts. While life cycle assessment (LCA) can potentially capture local and global environmental impacts of roadway drainage and other stormwater systems, LCA methodology must be evaluated because stormwater systems differ from wastewater and drinking water systems to which LCA is more frequently applied. To this end, this research developed a comprehensive model linking roadway drainage design parameters to LCA and life cycle costing (LCC) under uncertainty. This framework was applied to 10 highway drainage projects to evaluate LCA methodological choices by characterizing environmental and economic impacts of drainage projects and individual components (basin, bioswale, culvert, grass swale, storm sewer, and pipe underdrain). The relative impacts of drainage components varied based on functional unit choice. LCA inventory cutoff criteria evaluation showed the potential for cost-based criteria, which performed better than mass-based criteria. Finally, the local aquatic benefits of grass swales and bioswales offset global environmental impacts for four impact categories, highlighting the need to explicitly consider local impacts (i.e., direct emissions) when evaluating drainage technologies.

  11. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    NASA Astrophysics Data System (ADS)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  12. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity

    PubMed Central

    Ozaslan, Cumali; Bukun, Bekir; Ozcan, Selcuk

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in

  13. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity.

    PubMed

    Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Bukun, Bekir; Ozcan, Selcuk; Gunal, Hikmet

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in

  14. Changes in the renal handling of urea in sheep on a low protein diet exposed to saline drinking water.

    PubMed

    Meintjes, R A; Engelbrecht, H

    2004-09-01

    Previous trials have demonstrated that sheep on a low protein diet and free access to water, and sheep dosed with boluses of NaCl intraruminally also with free access to water, showed decreases in urea loss via the urine compared to control animals. We monitored urea excretion in sheep on a relatively poor protein diet when they were exposed to saline drinking water, i.e. they were unable to vary their intake of NaCl:water. Sheep on isotonic saline drinking water (phase 3) excreted significantly more urea via the urine (284 mM/day) compared to phase 1 when they were on non-saline drinking water (urea excretion = 230 mM/day) and phase 2 when they were on half isotonic saline drinking water (urea excretion = 244 mM/day). This finding was explained by the high glomerular filtration rate (GFR) 91.9 l/day, compared to 82.4 l/day (phase 1) and 77.9 l/day (phase 2), together with a significantly raised fractional excretion of urea (FEurea) (51.1 %) during this phase, and was in spite of the significantly lower plasma concentrations of urea in phase 3 compared to phase 1. The FEurea probably results from the osmotic diuresis caused by the salt. There were indications of a raised plasma antidiuretic hormone (ADH) concentration and this would have opposed urea loss, as ADH promotes urea reabsorption. However, this ADH effect was probably counteracted to some extent by a low plasma angiotensin II concentration, for which again there were indications, inhibiting urea reabsorption during the phases of salt loading. As atrial natriuretic peptide both increases GFR and decrease sodium reabsorption from the tubule, it was probably instrumental in causing the increase in GFR and the increase in the fractional excretion of sodium (FE(Na)).

  15. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis.

    PubMed

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-02-15

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  17. Pre-Exercise Ingestion of Pickle Juice, Hypertonic Saline, or Water and Aerobic Performance and Thermoregulation

    PubMed Central

    Peikert, Jarett; Miller, Kevin C.; Albrecht, Jay; Tucker, Jared; Deal, James

    2014-01-01

    Context: Ingesting high-sodium drinks pre-exercise can improve thermoregulation and performance. Athletic trainers (19%) give athletes pickle juice (PJ) prophylactically for cramping. No data exist on whether this practice affects aerobic performance or thermoregulation. Objective: To determine if drinking 2 mL/kg body mass of PJ, hypertonic saline, or deionized water (DIW) pre-exercise affects aerobic performance or thermoregulation. Design: Crossover study. Setting: Controlled laboratory study. Patients or Other Participants: Nine euhydrated men (age = 22 ± 3 years, height = 184.0 ± 8.2 cm, mass = 82.6 ± 16.0 kg) completed testing. Intervention(s): Participants rested for 65 minutes. During this period, they ingested 2 mL/kg of PJ, hypertonic saline, or DIW. Next, they drank 5 mL/kg of DIW. Blood was collected before and after ingestion of all fluids. Participants were weighed and ran in the heat (temperature = 38.3°C ± 1°C, relative humidity = 21.1% ± 4.7%) at increasing increments of maximal heart rate (50%, 60%, 70%, 80%, 90%, 95%) until exhaustion or until rectal temperature exceeded 39.5°C. Participants were weighed postexercise so we could calculate sweat volume. Main Outcome Measure(s): Time to exhaustion, rectal temperature, changes in plasma volume, and sweat volume. Results: Time to exhaustion did not differ among drinks (PJ = 77.4 ± 5.9 minutes, hypertonic saline = 77.4 ± 4.0 minutes, DIW = 75.7 ± 3.2 minutes; F2,16 = 1.1, P = .40). Core temperature of participants was similar among drinks (PJ = 38.7°C ± 0.3°C, hypertonic saline = 38.7°C ± 0.4°C, DIW = 38.8°C ± 0.4°C; P = .74) but increased from pre-exercise (36.7°C ± 0.2°C) to postexercise (38.7°C ± 0.4°C) (P < .05). No differences were observed for changes in plasma volume or sweat volume among drinks (P > .05). Conclusions: Ingesting small amounts of PJ or hypertonic saline with water did not affect performance or select thermoregulatory measures. Drinking larger volumes of

  18. Pre-exercise ingestion of pickle juice, hypertonic saline, or water and aerobic performance and thermoregulation.

    PubMed

    Peikert, Jarett; Miller, Kevin C; Albrecht, Jay; Tucker, Jared; Deal, James

    2014-01-01

    Ingesting high-sodium drinks pre-exercise can improve thermoregulation and performance. Athletic trainers (19%) give athletes pickle juice (PJ) prophylactically for cramping. No data exist on whether this practice affects aerobic performance or thermoregulation. To determine if drinking 2 mL/kg body mass of PJ, hypertonic saline, or deionized water (DIW) pre-exercise affects aerobic performance or thermoregulation. Crossover study. Controlled laboratory study. Nine euhydrated men (age = 22 ± 3 years, height = 184.0 ± 8.2 cm, mass = 82.6 ± 16.0 kg) completed testing. Participants rested for 65 minutes. During this period, they ingested 2 mL/kg of PJ, hypertonic saline, or DIW. Next, they drank 5 mL/kg of DIW. Blood was collected before and after ingestion of all fluids. Participants were weighed and ran in the heat (temperature = 38.3°C ± 1°C, relative humidity = 21.1% ± 4.7%) at increasing increments of maximal heart rate (50%, 60%, 70%, 80%, 90%, 95%) until exhaustion or until rectal temperature exceeded 39.5°C. Participants were weighed postexercise so we could calculate sweat volume. Time to exhaustion, rectal temperature, changes in plasma volume, and sweat volume. Time to exhaustion did not differ among drinks (PJ = 77.4 ± 5.9 minutes, hypertonic saline = 77.4 ± 4.0 minutes, DIW = 75.7 ± 3.2 minutes; F2,16 = 1.1, P = .40). Core temperature of participants was similar among drinks (PJ = 38.7°C ± 0.3°C, hypertonic saline = 38.7°C ± 0.4°C, DIW = 38.8°C ± 0.4°C; P = .74) but increased from pre-exercise (36.7°C ± 0.2°C) to postexercise (38.7°C ± 0.4°C) (P < .05). No differences were observed for changes in plasma volume or sweat volume among drinks (P > .05). Ingesting small amounts of PJ or hypertonic saline with water did not affect performance or select thermoregulatory measures. Drinking larger volumes of PJ and water may be more effective at expanding the extracellular space.

  19. Estuarine Salinity Mapping From Airborne Radiometry

    NASA Astrophysics Data System (ADS)

    Walker, J. P.; Gao, Y.; Cook, P. L. M.; Ye, N.

    2016-12-01

    Estuaries are critical ecosystems providing both ecological habitat and human amenity including boating and recreational fishing. Salinity gradients, caused by the mixing of fresh and salt water, exert an overwhelming control on estuarine ecology and biogeochemistry as well as being a key tracer for model calibration. At present, salinity monitoring within estuaries typically uses point measurements or underway boat-based methods, which makes sensing of localised phenomena such as upwelling of saline bottom water difficult. This study has pioneered the use of airborne radiometry (passive microwave) sensing as a new method to remotely quantify estuarine salinity, allowing rapid production of high resolution surface salinity maps. The airborne radiometry mapping was conducted for the Gippsland Lakes, the largest estuary in Australia, in February, July, October and November of 2015, using the Polarimetric L-band Microwave Radiometer (PLMR). Salinity was retrieved from the brightness temperature collected by PLMR with results validated against boat sampling conducted concurrently with each flight. Results showed that the retrieval accuracy of the radiative transfer model was better than 5 ppt for most flights. The spatial, temporal and seasonal variations of salinity observed in this study are also analysed and discussed.

  20. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.

    PubMed

    Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M

    2010-07-15

    The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.

  1. Application of seepage flow models to a drainage project in fractured rock

    NASA Astrophysics Data System (ADS)

    Gmünder, Ch.; Arn, Th.

    1993-04-01

    Various theoretical approaches are used to model groundwater flow in fractured rock. This paper presents the application of several approaches to the restoration of the drainage of Rofla tunnel, Grisons, Switzerland. In this tunnel it became necessary to take measures against the washing out of calcium carbonates from the tunnel lining cement, because the calcium carbonate clogged up the existing drainage tubes leading to increased rock water pressures on the inside arch of the tunnel. Drainage boreholes were drilled on a section of the tunnel and their influence on the water pressures was monitored. On the basis of the geological survey different seepage flow models were established to reproduce the measured water pressures. The models were then used to predict the future water pressures acting on the tunnel lining after restoration. Thus, the efficacy of the different drainage proposals could be predicted and therefore optimised. Finally, the accuracy of the predictions is discussed and illustrated using the measurements in the test section.

  2. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  3. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  4. Last Glacial Maximum Salinity Reconstruction

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  5. The effects of saline water consumption on the ultrasonographic and histopathological appearance of the kidney and liver in Barki sheep.

    PubMed

    Ghanem, Mohamed; Zeineldin, Mohamed; Eissa, Attia; El Ebissy, Eman; Mohammed, Rasha; Abdelraof, Yassein

    2018-05-18

    The objective of this study was to evaluate the impact of varying degrees of water salinity on the ultrasonographical and histopathological appearance of the liver and kidneys in Barki sheep. Thirty Barki sheep (initial weight, 29.48 ± 0.81 kg) were allocated into three groups (n=10 per group) based on the type of drinking water for 9 months: the tap water (TW) group (350 ppm total dissolved solids [TDS]); the moderate saline water (MSW) group (4,557 ppm TDS); and the high saline water (HSW) group (8,934 ppm TDS). After 9 months, the body weight was significantly decreased in sheep subjected to MSW (P=0.0347) and HSW (P=0.0424). Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, and creatinine were significantly increased (P<0.05) in sheep subjected to MSW and HSW. Ultrasonographic examination of the right and left kidneys revealed an increased length of both kidneys with crystal formation, particularly in male sheep. Ultrasonographic examination of the liver showed hyperechogenic dots varying in size and number between males and females. Histopathological examination of kidney revealed significant changes in both MSW and HSW groups such as hyaline matrix formation, atrophied glomerular tufts, and intramedullary congestion. Histopathological examination of the liver revealed slight fatty liver changes, slight fibrosis around the bile duct, massive inflammatory cell infiltration and vacuolar changes of hepatocytes in both MSW and HSW groups. In conclusion, water salinity negatively affects the body weight, liver and kidney appearance of Barki sheep and thus sheep production.

  6. Subsurface low dissolved oxygen occurred at fresh- and saline-water intersection of the Pearl River estuary during the summer period.

    PubMed

    Li, Gang; Liu, Jiaxing; Diao, Zenghui; Jiang, Xin; Li, Jiajun; Ke, Zhixin; Shen, Pingping; Ren, Lijuan; Huang, Liangmin; Tan, Yehui

    2018-01-01

    Estuarine oxygen depletion is one of the worldwide problems, which is caused by the freshwater-input-derived severe stratification and high nutrients loading. In this study we presented the horizontal and vertical distributions of dissolved oxygen (DO) in the Pearl River estuary, together with temperature, salinity, chlorophyll a concentration and heterotrophic bacteria abundance obtained from two cruises during the summer (wet) and winter (dry) periods of 2015. In surface water, the DO level in the summer period was lower and varied greater, as compared to the winter period. The DO remained unsaturated in the summer period if salinity is <12 and saturated if salinity is >12; while in the winter period it remained saturated throughout the estuary. In subsurface (>5m) water, the DO level varied from 0.71 to 6.65mgL -1 and from 6.58 to 8.20mgL -1 in the summer and winter periods, respectively. Particularly, we observed an area of ~1500km 2 low DO zone in the subsurface water with a threshold of 4mgDOL -1 during this summer period, that located at the fresh- and saline-water intersection where is characterized with severe stratification and high heterotrophic bacteria abundance. In addition, our results indicate that spatial DO variability in surface water was contributed differently by biological and physio-chemical variables in the summer and winter periods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Priority Scale of Drainage Rehabilitation of Cilacap City

    NASA Astrophysics Data System (ADS)

    Rudiono, Jatmiko

    2018-03-01

    Characteristics of physical condition of Cilacap City is relatively flat and low to sea level (approximately 6 m above sea level). In the event of a relatively heavy rainfall resulting in inundation at several locations. The problem of inundation is a serious problem if there is in a dense residential area or occurs in publicly-used infrastructure, such as roads and settlements. These problems require improved management of which include how to plan a sustainable urban drainage system and environmentally friendly. The development of Cilacap City is increasing rapidly, this causes drainage system based on the Drainage Masterplan Cilacap made in 2006 has not been able to accommodate rain water, so, it is necessary to evaluate the drainage masterplan for subsequent rehabilitation. Priority scale rehabilitation of the drainage sections as a guideline is an urgent need of rehabilitation in the next time period.

  8. Field-scale monitoring of the long-term impact and sustainability of drainage water reuse on the west side of California’s San Joaquin Valley

    USDA-ARS?s Scientific Manuscript database

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a potential water resource rather than as a disposal problem. Drainage water from tile-drained, irrigated agricultural land is degraded water that is often in large supply, but the long-term impact and sustain...

  9. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  10. Nebulized Isotonic Saline versus Water following a Laryngeal Desiccation Challenge in Classically Trained Sopranos

    ERIC Educational Resources Information Center

    Tanner, Kristine; Roy, Nelson; Merrill, Ray M.; Muntz, Faye; Houtz, Daniel R.; Sauder, Cara; Elstad, Mark; Wright-Costa, Julie

    2010-01-01

    Purpose: To examine the effects of nebulized isotonic saline (IS) versus sterile water (SW) on self-perceived phonatory effort (PPE) and phonation threshold pressure (PTP) following a surface laryngeal dehydration challenge in classically trained sopranos. Method: In a double-blind, within-subject crossover design, 34 sopranos breathed dry air…

  11. Chemical analyses of ground water for saline-water resources studies in Texas Coastal Plain stored in National Water Data Storage and Retrieval System

    USGS Publications Warehouse

    Taylor, R.E.

    1975-01-01

    Chemical analyses of 4,269 water samples from wells in 66 counties in Texas have been processed into the National Water Data Storage and Retrieval System by the Gulf Coast Hydrogeology Project of the U. S. Geological Survey. More than 65,000 chemical analyses of saline waters produced by oil test and production wells have been contributed to the project by major oil companies. The computerized tabulation and the computer-drawn map of the locations of sampling sites are the initial release of oil company, State, and Federal data in Texas Coastal Plain from the data bank.

  12. Simulation of streamflow in small drainage basins in the southern Yampa River basin, Colorado

    USGS Publications Warehouse

    Parker, R.S.; Norris, J.M.

    1989-01-01

    Coal mining operations in northwestern Colorado commonly are located in areas that have minimal available water-resource information. Drainage-basin models can be a method for extending water-resource information to include periods for which there are no records or to transfer the information to areas that have no streamflow-gaging stations. To evaluate the magnitude and variability of the components of the water balance in the small drainage basins monitored, and to provide some method for transfer of hydrologic data, the U.S. Geological Survey 's Precipitation-Runoff Modeling System was used for small drainage basins in the southern Yampa River basin to simulate daily mean streamflow using daily precipitation and air-temperature data. The study area was divided into three hydrologic regions, and in each of these regions, three drainage basins were monitored. Two of the drainage basins in each region were used to calibrate the Precipitation-Runoff Modeling System. The model was not calibrated for the third drainage basin in each region; instead, parameter values were transferred from the model that was calibrated for the two drainage basins. For all of the drainage basins except one, period of record used for calibration and verification included water years 1976-81. Simulated annual volumes of streamflow for drainage basins used in calibration compared well with observed values; individual hydrographs indicated timing differences between the observed and simulated daily mean streamflow. Observed and simulated annual average streamflows compared well for the periods of record, but values of simulated high and low streamflows were different than observed values. Similar results were obtained when calibrated model parameter values were transferred to drainage basins that were uncalibrated. (USGS)

  13. Drainage estimation to aquifer and water use irrigation efficiency in semi-arid zone for a long period of time

    NASA Astrophysics Data System (ADS)

    Jiménez-Martínez, J.; Molinero-Huguet, J.; Candela, L.

    2009-04-01

    Water requirements for different crop types according to soil type and climate conditions play not only an important role in agricultural efficiency production, though also for water resources management and control of pollutants in drainage water. The key issue to attain these objectives is the irrigation efficiency. Application of computer codes for irrigation simulation constitutes a fast and inexpensive approach to study optimal agricultural management practices. To simulate daily water balance in the soil, vadose zone and aquifer the VisualBALAN V. 2.0 code was applied to an experimental area under irrigation characterized by its aridity. The test was carried out in three experimental plots for annual row crops (lettuce and melon), perennial vegetables (artichoke), and fruit trees (citrus) under common agricultural practices in open air for October 1999-September 2008. Drip irrigation was applied to crops production due to the scarcity of water resources and the need for water conservation. Water level change was monitored in the top unconfined aquifer for each experimental plot. Results of water balance modelling show a good agreement between observed and estimated water level values. For the study period, mean drainage obtained values were 343 mm, 261 mm and 205 mm for lettuce and melon, artichoke and citrus respectively. Assessment of water use efficiency was based on the IE indicator proposed by the ASCE Task Committee. For the modelled period, water use efficiency was estimated as 73, 71 and 78 % of the applied dose (irrigation + precipitation) for lettuce and melon, artichoke and citrus, respectively.

  14. Dosimetric effects of saline- versus water-filled balloon applicators for IORT using the model S700 electronic brachytherapy source.

    PubMed

    Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang

    The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff  = 7.56) versus water (Z eff  = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  16. Characterization of water reservoirs affected by acid mine drainage: geochemical, mineralogical, and biological (diatoms) properties of the water.

    PubMed

    Valente, T; Rivera, M J; Almeida, S F P; Delgado, C; Gomes, P; Grande, J A; de la Torre, M L; Santisteban, M

    2016-04-01

    This work presents a combination of geochemical, mineralogical, and biological data obtained in water reservoirs located in one of the most paradigmatic mining regions, suffering from acid mine drainage (AMD) problems: the Iberian Pyrite Belt (IPB). Four water reservoirs located in the Spanish sector of the IBP, storing water for different purposes, were selected to achieve an environmental classification based on the effects of AMD: two mining dams (Gossan and Águas Ácidas), a reservoir for industrial use (Sancho), and one with water used for human supply (Andévalo). The results indicated that the four reservoirs are subject to the effect of metallic loads from polluted rivers, although with different levels: Águas Ácidas > Gossan > Sancho ≥ Andévalo. In accordance, epipsammic diatom communities have differences in the respective composition and dominant taxa. The dominant diatoms in each reservoir indicated acid water: Pinnularia acidophila and Pinnularia aljustrelica were found in the most acidic dams (Gossan and Águas Ácidas, with pH <3), Pinnularia subcapitata in Sancho (pH 2.48-5.82), and Eunotia exigua in Andévalo (pH 2.34-6.15).

  17. The Role of County Surveyors and County Drainage Boards in Addressing Water Quality.

    PubMed

    Dunn, Mike; Mullendore, Nathan; de Jalon, Silvestre Garcia; Prokopy, Linda Stalker

    2016-06-01

    Water quality problems stemming from the Midwestern U.S. agricultural landscape have been widely recognized and documented. The Midwestern state of Indiana contains tens of thousands of miles of regulated drains that represent biotic communities that comprise the headwaters of the state's many rivers and creeks. Traditional management, however, reduces these waterways to their most basic function as conveyances, ignoring their role in the ecosystem as hosts for biotic and abiotic processes that actively regulate the fate and transport of nutrients and farm chemicals. Novel techniques and practices such as the two-stage ditch, denitrifying bioreactor, and constructed wetlands represent promising alternatives to traditional management approaches, yet many of these tools remain underutilized. To date, conservation efforts and research have focused on increasing the voluntary adoption of practices among agricultural producers. Comparatively little attention has been paid to the roles of the drainage professionals responsible for the management of waterways and regulated drains. To address this gap, we draw on survey responses from 39 county surveyors and 85 drainage board members operating in Indiana. By examining the backgrounds, attitudes, and actions of these individuals, we consider their role in advocating and implementing novel conservation practices.

  18. Specific Yield--Column drainage and centrifuge moisture content

    USGS Publications Warehouse

    Johnson, A.I.; Prill, R.C.; Morris, D.A.

    1963-01-01

    The specific yield of a rock or soil, with respect to water, is the ratio of (1) the volume of water which, after being saturated, it will yield by gravity to (2) its own volume. Specific retention represents the water retained against gravity drainage. The specific yield and retention when added together are equal to the total interconnected porosity of the rock or soil. Because specific retention is more easily determined than specific yield, most methods for obtaining yield first require the determination of specific retention. Recognizing the great need for developing improved methods of determining the specific yield of water-bearing materials, the U.S. Geological Survey and the California Department of Water Resources initiated a cooperative investigation of this subject. The major objectives of this research are (1) to review pertinent literature on specific yield and related subjects, (2) to increase basic knowledge of specific yield and rate of drainage and to determine the most practical methods of obtaining them, (3) to compare and to attempt to correlate the principal laboratory and field methods now commonly used to obtain specific yield, and (4) to obtain improved estimates of specific yield of water-bearing deposits in California. An open-file report, 'Specific yield of porous media, an annotated bibliography,' by A. I. Johnson, D. A. Morris, and R. C. Prill, was released in 1960 in partial fulfillment of the first objective. This report describes the second phase of the specific-yield study by the U.S. Geological Survey Hydrologic Laboratory at Denver, Colo. Laboratory research on column drainage and centrifuge moisture equivalent, two methods for estimating specific retention of porous media, is summarized. In the column-drainage study, a wide variety of materials was packed into plastic columns of 1- to 8-inch diameter, wetted with Denver tap water, and drained under controlled conditions of temperature and humidity. The effects of cleaning the

  19. Phase II modification of the Water Availability Tool for Environmental Resources (WATER) for Kentucky: The sinkhole-drainage process, point-and-click basin delineation, and results of karst test-basin simulations

    USGS Publications Warehouse

    Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.

    2012-01-01

    This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables

  20. Acid-base accounting to predict post-mining drainage quality on surface mines.

    PubMed

    Skousen, J; Simmons, J; McDonald, L M; Ziemkiewicz, P

    2002-01-01

    Acid-base accounting (ABA) is an analytical procedure that provides values to help assess the acid-producing and acid-neutralizing potential of overburden rocks prior to coal mining and other large-scale excavations. This procedure was developed by West Virginia University scientists during the 1960s. After the passage of laws requiring an assessment of surface mining on water quality, ABA became a preferred method to predict post-mining water quality, and permitting decisions for surface mines are largely based on the values determined by ABA. To predict the post-mining water quality, the amount of acid-producing rock is compared with the amount of acid-neutralizing rock, and a prediction of the water quality at the site (whether acid or alkaline) is obtained. We gathered geologic and geographic data for 56 mined sites in West Virginia, which allowed us to estimate total overburden amounts, and values were determined for maximum potential acidity (MPA), neutralization potential (NP), net neutralization potential (NNP), and NP to MPA ratios for each site based on ABA. These values were correlated to post-mining water quality from springs or seeps on the mined property. Overburden mass was determined by three methods, with the method used by Pennsylvania researchers showing the most accurate results for overburden mass. A poor relationship existed between MPA and post-mining water quality, NP was intermediate, and NNP and the NP to MPA ratio showed the best prediction accuracy. In this study, NNP and the NP to MPA ratio gave identical water quality prediction results. Therefore, with NP to MPA ratios, values were separated into categories: <1 should produce acid drainage, between 1 and 2 can produce either acid or alkaline water conditions, and >2 should produce alkaline water. On our 56 surface mined sites, NP to MPA ratios varied from 0.1 to 31, and six sites (11%) did not fit the expected pattern using this category approach. Two sites with ratios <1 did not

  1. Distribution of Glass Eel by the Water Surface Salinity Using Landsat TM at Pelabuhan Ratu Bay, West Java

    NASA Astrophysics Data System (ADS)

    Irianto, D. S.; Supriatna; Pin, TjiongGiok

    2016-11-01

    Eel (Anguilla spp.) is consumed fish that has an important economic value, either for local or international market. Pelabuhanratu Bay is an area with big potential for supplying eel seed. One of important factor, which affect an eel existence, is salinity, because eel migrate from fresh water, brackish, and sea naturally although the otherwise so that need ways to describe the distribution of glass eel by the salinity. To find out the percentage of salinity, it obtained from Landsat 8 Imagery in year 2015 using salinity prediction of Algorithm Cimandiri. The research has been conducted at Cimandiri Estuary, Citepus Estuary, and Cimaja Estuary based on wet and dry months. The existence of glass eel which is obtained from the catch was occurs on dry month when the most catch was occurs at the edge of estuary. The catch is reduced if it's farther from the edge of estuary, at the beach towards the sea and the inside of the river mouth with the percentage of salinity towards the sea is increase while the percentage of salinity towards the river is decrease.

  2. Selected hydrologic data, San Pitch River drainage basin, Utah

    USGS Publications Warehouse

    Robinson, G.B. Jr.

    1968-01-01

    The u.s. Geological Survey investigated the ground-water resources of the San Pitch River drainage basin during the period 1964- 67. The investigation was a cooperative project, financed equally by the Utah Department of Natural Resources, Division of Water Rights, and the Federal Government, and was a part of an investigation of the groundwater resources of the entire Sevier River drainage system.This report is intended to serve two purposes: (1) To make available to the public basic water-resources data useful in planning and studying development of water resources and (2) to supplement an interpretive report that will be published later. Included in the release are data collected by the Geological Survey since 1930.

  3. National Water-Quality Assessment (NAWQA) Program, Long Island-New Jersey (LINJ) Coastal Drainages Study Unit : Scope of the Long Island-New Jersey Coastal Drainages Study-Unit investigation

    USGS Publications Warehouse

    Ayers, Mark A.

    1994-01-01

    Scope of the Long Island-New Jersey Coastal Drainages Study-Unit InvestigationIn 1991, the U.S. Geological Survey (USGS) began a National Water-Quality Assessment (NAWQA) Program to document the status of and trends in quality of a large representative part of the Nation's water resources and to provide a sound scientific understanding of the primary natural and human factors that affect the quality of these resources. The program is designed to produce long-term, consistent water-quality information that will be useful to policymakers and managers at national, State, and local levels.Investigations of 60 hydrologic systems (study units), which include parts of most major river basins and aquifer systems in the United States, are the building blocks of NAWQA. A framework has been established to ensure nationwide consistency in the approach to each study--in field and laboratory methods, in water-quality measurements, and in the supporting data requirements. Twenty studies were started in 1991, 20 more have begun in 1994, and 20 are scheduled to begin in 1997.A major design feature of the program that will facilitate integration of water-quality information at national, regional, and local scales is coordination between the individual study-unit teams and the national synthesis effort at all stages of the investigations. Thus, results that relate to various topics addressed in the study-unit investigations will be integrated smoothly into NAWQA's national synthesis component. Teams have been developed to address the following topics of national importance: pesticides, nutrients, and volatile organic compounds. These teams are investigating the specific issues by means of comparative studies of a large set of hydrologic systems distributed over a wide range of environmental settings found in the 60 study-units.The information below summarizes the goals and scope of the NAWQA Program and the Long Island-New Jersey Coastal Drainages study, which began in 1994.

  4. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in and near Walker River Indian Reservation, Nevada 1994-95

    USGS Publications Warehouse

    Thodal, Carl E.; Tuttle, Peter L.

    1996-01-01

    A study was begun in 1994 to determine whether the quality of irrigation drainage from the Walker River Indian Reservation, Nevada, has caused or has potential to cause harmful effects on human health or on fish and wildlife, or may adversely affect the suitability of the Walker River for other beneficial uses. Samples of water, bottom sediment, and biota were collected during June-August 1994 (during a drought year) from sites upstream from and on the Walker River Indian Reservation for analyses of trace elements. Other analyses included physical characteristics, major dissolved constituents, selected species of water-soluble nitrogen and phosphorus, and selected pesticides in bottom sediment. Water samples were collected again from four sites on the Reservation in August 1995 (during a wetterthan- average year) to provide data for comparing extreme climatic conditions. Water samples collected from the Walker River Indian Reservation in 1994 equaled or exceeded the Nevada water-quality standard or level of concern for at least one of the following: water temperature, pH, dissolved solids, unionized ammonia, phosphate, arsenic, boron, chromium, lead, and molybdenum; in 1995, only a single sample from one site exceeded a Nevada water-quality standard for molybdenum. Levels of concern for trace elements in bottom sediment collected in 1994 were equaled or exceeded for arsenic, iron, manganese, and zinc. Concentrations of organochiorine pesticide residues in bottom sediment were below analytical reporting limits. Levels of concern for trace-elements in samples of biota were equaled or exceeded for arsenic, boron, copper, and mercury. Results of toxicity testing indicate that only water samples from Walker Lake caused a toxic response in test bacteria. Arsenic and boron concentrations in water, bottom sediment, and biological tissue exceeded levels of concern throughout the Walker River Basin, but most commonly in the lower Walker River Basin. Mercury also was elevated

  5. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions - the role of runoff components.

    PubMed

    Zajíček, Antonín; Fučík, Petr; Kaplická, Markéta; Liška, Marek; Maxová, Jana; Dobiáš, Jakub

    2018-04-01

    Dynamics of pesticides and their metabolites in drainage waters during baseflow periods and rainfall-runoff events (RREs) were studied from 2014 to 2016 at three small, tile-drained agricultural catchments in Bohemian-Moravian Highlands, Czech Republic. Drainage systems in this region are typically built in slopes with considerable proportion of drainage runoff originating outside the drained area itself. Continuous monitoring was performed by automated samplers, and the event hydrograph was separated using 18 O and 2 H isotopes and drainage water temperature. Results showed that drainage systems represent a significant source for pesticides leaching from agricultural land. Leaching of pesticide metabolites was mainly associated with baseflow and shallow interflow. Water from causal precipitation diluted their concentrations. The prerequisites for the leaching of parental compounds were a rainfall-runoff event occurring shortly after spraying, and the presence of event water in the runoff. When such situations happened consequently, pesticides concentrations in drainage water were high and the pesticide load reached several grams in a few hours. Presented results introduce new insights into the processes of pesticides movement in small, tile-drained catchments and emphasizes the need to incorporate drainage hydrology and flow-triggered sampling into monitoring programmes in larger catchments as well as in environment-conservation policy.

  6. Salinity: Electrical conductivity and total dissolved solids

    USDA-ARS?s Scientific Manuscript database

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  7. Insights into the Groundwater Salinization Processes in Manas River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Jin, M.; Liu, Y.; Liang, X.

    2017-12-01

    Manas River Basin (MRB) is a typical mountains-oasis-desert inland basin in northwest China, where groundwater salinization is threatening the local water use and the environment, but the groundwater salinization process is not clear. Based on groundwater flow system analysis by integrating flow fields, hydrochemical and isotopic characteristics, a deuterium excess analytical method was used to quantitatively assess salinization mechanism and calculate the contribution ratios of evapoconcentration effect to the salinities. 73 groundwater samples and 11 surface water samples were collected from the basin. Hydrochemical diagrams and δD and δ18O compositions indicated that evapoconcentration, mineral dissolution and transpiration, increased the groundwater salinities (i.e. total dissolved solids). The results showed that the average contribution ratios of evapoconcentration effect to the increased salinities were 5.8% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the evapoconcentration effect increased the average groundwater loss from 7% to 29%. However, it only increased slight salinity (0 - 0.27 g/L), as determined from the deuterium excess signals. Minerals dissolution and anthropogenic activities are the major cause of groundwater salinization problem. The results revealed that fresh water in the rivers directly and quickly infiltrated the aquifers in the piedmont area with evapoconcentration affected weakly, and the fresh water interacted with the sediments and dissolved soluble minerals, subsequently increasing the salinities. Combined with the groundwater stable isotopic compositions and hydrochemical evolution, the relationships between δ18O and Cl and salinities reveal the soil evaporites leaching by the vertical recharge (irrigation return flow and channels leakage) mainly affect the groundwater salinization processes in the middle alluvial-diluvial plain and the desert land. The saline water

  8. Adopting adequate leaching requirement for practical response models of basil to salinity

    NASA Astrophysics Data System (ADS)

    Babazadeh, Hossein; Tabrizi, Mahdi Sarai; Darvishi, Hossein Hassanpour

    2016-07-01

    Several mathematical models are being used for assessing plant response to salinity of the root zone. Objectives of this study included quantifying the yield salinity threshold value of basil plants to irrigation water salinity and investigating the possibilities of using irrigation water salinity instead of saturated extract salinity in the available mathematical models for estimating yield. To achieve the above objectives, an extensive greenhouse experiment was conducted with 13 irrigation water salinity levels, namely 1.175 dS m-1 (control treatment) and 1.8 to 10 dS m-1. The result indicated that, among these models, the modified discount model (one of the most famous root water uptake model which is based on statistics) produced more accurate results in simulating the basil yield reduction function using irrigation water salinities. Overall the statistical model of Steppuhn et al. on the modified discount model and the math-empirical model of van Genuchten and Hoffman provided the best results. In general, all of the statistical models produced very similar results and their results were better than math-empirical models. It was also concluded that if enough leaching was present, there was no significant difference between the soil salinity saturated extract models and the models using irrigation water salinity.

  9. Design and hydrologic performance of a tile drainage treatment wetland in Minnesota, USA

    USDA-ARS?s Scientific Manuscript database

    Treatment wetlands are increasingly needed to remove nitrate from agricultural drainage water to protect downstream waters such as the Gulf of Mexico. A 0.10 ha wetland was designed,installed and monitored to treat subsurface drainage flow from farmland in Minnesota, USA. This project sought to deve...

  10. Numerical Analysis of Ground-Water Flow and Salinity in the Ewa Area, Oahu, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Souza, William R.; Bolke, Edward I.; Bauer, Glenn R.

    1996-01-01

    The coastal plain in the Ewa area of southwestern Oahu, Hawaii, is part of a larger, nearly continuous sedimentary coastal plain along Oahu's southern coast. The coastal sediments are collectively known as caprock because they impede the free discharge of ground water from the underlying volcanic aquifers. The caprock is a layered sedimentary system consisting of interbedded marine and terrestrial sediments of both high and low permeability. Before sugarcane cultivation ended in late 1994, shallow ground water from the upper limestone unit, which is about 60 to 200 feet thick, was used primarily for irrigation of sugarcane. A cross-sectional ground-water flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in the Ewa area. Controls considered were: (1) overall caprock hydraulic conductivity, (2) stratigraphic variations of hydraulic conductivity in the caprock, and (3) recharge. In addition, the effects of a marina excavation were evaluated. Within the caprock, variations in hydraulic conductivity, caused by caprock stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of ground-water flow and the distribution of water levels and salinity. Model results also show that a reduction of recharge will result in increased salinity throughout the caprock with the greatest change in the upper limestone layer. In addition, the model indicates that excavation of an ocean marina will lower water levels in the upper limestone layer. Results of cross-sectional modeling confirm the general ground-water flow pattern that would be expected in the layered sedimentary system in the Ewa caprock. Ground-water flow is: (1) predominantly upward in the low-permeability sedimentary units, and (2) predominantly horizontal in the high-permeability sedimentary units.

  11. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    PubMed

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Treating nahcolite containing formations and saline zones

    DOEpatents

    Vinegar, Harold J

    2013-06-11

    A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.

  13. Metal uptake of tomato and alfalfa plants as affected by water source, salinity, and Cd and Zn levels under greenhouse conditions.

    PubMed

    Gharaibeh, Mamoun A; Marschner, Bernd; Heinze, Stefanie

    2015-12-01

    Irrigation with wastewater is a promising option to improve crop yields and to reduce pressure on freshwater sources. However, heavy metal concentrations in wastewater may cause health concerns. A greenhouse pot experiment was conducted in order to determine cadmium (Cd) and zinc (Zn) concentrations in sandy soil and plant tissues of tomato (Lycopersicon esculentum L.) and alfalfa (Medicago sativa L.). A 2 × 2 × 4 × 2 factorial treatment arrangement was utilized. Two water sources, fresh (FW) or treated wastewater (TWW), at two salinity levels (1 and 3 dS m(-1)) containing different levels of Cd and Zn were used. Samples were collected after a 90-day growth period. It was observed that the growth of both plants was depressed at the highest metal level (L3). Metal accumulation in plant parts increased with the increase of metal concentration and salinity in irrigation water. At low salinity, water source was the main factor which controlled metal accumulation, whereas, at high salinity, chloride appeared to be the principal factor controlling metal uptake regardless of water source. Metal translocation from roots to shoots increased in TWW-irrigated plants, even in the controls. Tomatoes accumulated Cd up to and above critical levels safe for human consumption, even though Cd concentration in irrigation water did not exceed the current recommended values. Therefore, food production in sandy soils may well pose a health hazard when irrigated with TWW containing heavy metals. Complexation with dissolved organic compounds (DOC) in TWW may be to be the principal factor responsible for increased metal uptake and transfer at low salinity, thereby increasing the risk of heavy metal contamination of food and forage crops.

  14. The drainage information and control system of smart city

    NASA Astrophysics Data System (ADS)

    Mao, Tonglei; Li, Lei; Liu, JiChang; Cheng, Liang; Zhang, Jing; Song, Zengzhong; Liu, Lianhai; Hu, Zichen

    2018-03-01

    At present, due to the continuous expansion of city and the increase of the municipal drainage facilities, which leads to a serious lack of management and operation personnel, the existing production management pattern already can't adapt to the new requirements. In this paper, according to river drainage management, flood control, water management, auditing, administrative license, etc. different business management requirement, an information management system for water planning and design of smart city based on WebGIS in Linyi was introduced, which can collect the various information of gate dam, water pump, bridge sensor and traffic guide terminal nodes etc. together. The practical application show that the system can not only implement the sharing, resources integration and collaborative application for the regional water information, but also improve the level of the integrated water management.

  15. The effectiveness of simple drainage technique in improvement of cerebral blood flow in patients with chronic subdural hemorrhage.

    PubMed

    Kaplan, Metin; Erol, Fatih Serhat; Bozgeyik, Zülküf; Koparan, Mehmet

    2007-07-01

    In the present study, the clinical effectiveness of a surgical procedure in which no draining tubes are installed following simple burr hole drainage and saline irrigation is investigated. 10 patients, having undergone operative intervention for unilateral chronic subdural hemorrhage, having a clinical grade of 2 and a hemorrhage thickness of 2 cm, were included in the study. The cerebral blood flow rates of middle cerebral artery were evaluated bilaterally with Doppler before and after the surgery. All the cases underwent the operation using the simple burr hole drainage technique without the drain and consequent saline irrigation. Statistical analysis was performed by Wilcoxon signed rank test (p<0.05). There was a pronounced decrease in the preoperative MCA blood flow in the hemisphere the hemorrhage had occurred (p=0.008). An increased PI value on the side of the hemorrhage drew our attention (p=0.005). Postoperative MCA blood flow measurements showed a statistically significant improvement (p=0.005). Furthermore, the PI value showed normalization (p<0.05). The paresis and the level of consciousness improved in all cases. Simple burr hole drainage technique is sufficient for the improvement of cerebral blood flow and clinical recovery in patients with chronic subdural hemorrhage.

  16. Widespread surface meltwater drainage in Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Ely, J.; Das, I.; Bell, R. E.

    2016-12-01

    Surface meltwater is thought to cause ice-shelf disintegration, which accelerates the contribution of ice sheets to sea-level rise. Antarctic surface melting is predicted to increase and trigger further ice-shelf disintegration during this century. These climate-change impacts could be modulated by an active hydrological network analogous to the one in operation in Greenland. Despite some observations of Antarctic surface and sub-surface hydrological systems, large-scale active surface drainage in Antarctica has rarely been studied. We use satellite imagery and aerial photography to reveal widespread active hydrology on the surface of the Antarctic Ice Sheet as far south as 85o and as high as 1800 m a.s.l., often near mountain peaks that protrude through the ice (nunataks) and relatively low-albedo `blue-ice areas'. Despite predominantly sub-zero regional air temperatures, as simulated by a regional climate model, Antarctic active drainage has persisted for decades, transporting water through surface streams and feeding vast melt ponds up to 80 km long. Drainage networks (the largest are over 100 km in length) form on flat ice shelves, steep outlet glaciers and ice-sheet flanks across the West and East Antarctica Ice Sheets. Motivated by the proximity of many drainage systems to low-albedo rock and blue-ice areas, we hypothesize a positive feedback between exposed-rock extent, BIA formation, melting and ice-sheet thinning. This feedback relies on drainage moving water long distances from areas near exposed rock, across the grounding line onto and across ice shelves - a process we observe, but had previously thought to be unlikely in Antarctica. This work highlights previously-overlooked processes, not captured by current regional-scale models, which may accelerate the retreat of the Antarctic Ice Sheet.

  17. Estimation of Tile Drainage Contribution to Streamflow and Nutrient Export Loads

    NASA Astrophysics Data System (ADS)

    Schilling, K. E.; Arenas Amado, A.; Jones, C. S.; Weber, L. J.

    2015-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.

  18. Influence of salinity on the larval development of the fiddler crab Uca vocator (Ocypodidae) as an indicator of ontogenetic migration towards offshore waters

    NASA Astrophysics Data System (ADS)

    de Jesus de Brito Simith, Darlan; de Souza, Adelson Silva; Maciel, Cristiana Ramalho; Abrunhosa, Fernando Araújo; Diele, Karen

    2012-03-01

    Larvae of many marine decapod crustaceans are released in unpredictable habitats with strong salinity fluctuations during the breeding season. In an experimental laboratory study, we investigated the influence of seven different salinities (0, 5, 10, 15, 20, 25 and 30) on the survival and development time of fiddler crab zoea larvae, Uca vocator, from northern Brazilian mangroves. The species reproduces during the rainy season when estuarine salinity strongly fluctuates and often reaches values below 10 and even 5. Salinity significantly affected the survival rate and development period from hatching to megalopa, while the number of zoeal stages remained constant. In salinities 0 and 5, no larvae reached the second zoeal stage, but they managed to survive for up to 3 (average of 2.3 days) and 7 days (average of 5.1 days), respectively. From salinity 10 onwards, the larvae developed to the megalopal stage. However, the survival rate was significantly lower (5-15%) and development took more time (average of 13.5 days) in salinity 10 than in the remaining salinities (15-30). In the latter, survival ranged from 80-95% and development took 10-11 days. Given the 100% larval mortality in extremely low salinities and their increased survival in intermediate and higher salinities, we conclude that U. vocator has a larval `export' strategy with its larvae developing in offshore waters where salinity conditions are more stable and higher than in mangrove estuaries. Thus, by means of ontogenetic migration, osmotic stress and resulting mortality in estuarine waters can be avoided.

  19. Salinity Tolerance Turfgrass: History and Prospects

    PubMed Central

    Uddin, Md. Kamal; Juraimi, Abdul Shukor

    2013-01-01

    Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses. PMID:24222734

  20. Hydrological and geochemical processes constraining groundwater salinity in wetland areas related to evaporitic (karst) systems. A case study from Southern Spain

    NASA Astrophysics Data System (ADS)

    Gil-Márquez, J. M.; Barberá, J. A.; Andreo, B.; Mudarra, M.

    2017-01-01

    Chemical and isotopic evolution of groundwater in an evaporite karst plateau (including wetland areas and saline to hyper-saline springs) located at S Spain was studied. Physicochemical parameters, major ions and stable isotopes were analyzed in rain, brine spring, wetland and leakage water samples, from which the most common mineral saturation indexes were computed and geochemical and isotopic modelling were performed. Results show an apparent relationship between the elevation of brine springs and their water mineralization, indicating that drainage at higher altitude may be associated to gravity-driven flows, since brackish groundwater is isotopically fractionated due to evaporation. On the other hand, the lower altitude springs could drain deeper flows with longer residence time, resulting in highly mineralized and warmer (briny) groundwater. The dissolution of halite and gypsum has proved to be the main geochemical processes, which are favored by the great ionic strength of groundwater. Calcite precipitation occurs in brackish waters draining wetlands, being boosted by common ion effect (when CaSO4 waters are present) and solute concentration caused by evaporation. Modelling results strongly support the hypothesis that most of the selected springs geochemically evolve in a common (S-N) flowpath. The methods used in this research contribute to a better understanding of the hydrogeological processes occurring in the studied evaporitic system, but also in equivalent hydrological environments worldwide.

  1. Salinization of groundwater in arid and semi-arid zones: an example from Tajarak, western Iran

    NASA Astrophysics Data System (ADS)

    Jalali, Mohsen

    2007-06-01

    Study of the groundwater samples from Tajarak area, western Iran, was carried out in order to assess their chemical compositions and suitability for agricultural purposes. All of the groundwaters are grouped into two categories: relatively low mineralized of Ca-HCO3 and Na-HCO3 types and high mineralized waters of Na-SO4 and Na-Cl types. The chemical evolution of groundwater is primarily controlled by water-rock interactions mainly weathering of aluminosilicates, dissolution of carbonate minerals and cation exchange reactions. Calculated values of pCO2 for the groundwater samples range from 2.34 × 10-4 to 1.07 × 10-1 with a mean value of 1.41 × 10-2 (atm), which is above the pCO2 of the earth’s atmosphere (10-3.5). The groundwater is oversaturated with respect to calcite, aragonite and dolomite and undersaturated with respect to gypsum, anhydrite and halite. According to the EC and SAR the most dominant classes (C3-S1, C4-S1 and C4-S2) were found. With respect to adjusted SAR (adj SAR), the sodium (Na+) content in 90% of water samples in group A is regarded as low and can be used for irrigation in almost all soils with little danger of the development of harmful levels of exchangeable Na+, while in 40 and 37% of water samples in group B the intensity of problem is moderate and high, respectively. Such water, when used for irrigation will lead to cation exchange and Na+ is adsorbed on clay minerals while calcium (Ca2+) and magnesium (Mg2+) are released to the liquid phase. The salinity hazard is regarded as medium to high and special management for salinity control is required. Thus, the water quality for irrigation is low, providing the necessary drainage to avoid the build-up of toxic salt concentrations.

  2. Observing a catastrophic thermokarst lake drainage in northern Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  3. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    PubMed Central

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields. PMID:23990758

  4. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    NASA Astrophysics Data System (ADS)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  5. Management scenarios for the Jordan River salinity crisis

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2005-01-01

    Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.

  6. Spectral Discrimination of Salinity and Fertilizer Stress in Wheat (Triticum Sativa L.) using Photosynthesis Parameters and Hpyerspectral Data

    NASA Astrophysics Data System (ADS)

    Shah, S. H.; Houborg, R.; Tester, M.; McCabe, M. F.

    2014-12-01

    Multidisciplinary research has long sought the ability to estimate the parameters of plant functions such as photosynthetic capacity under stress conditions from remotely sensed data. Yet, the main goal has not been fully elucidated. In this study, we investigated the effects of saline water irrigation and the rate of fertilizer application on the photosynthetic response of wheat in a greenhouse based experiment. After two weeks of germination, the plants were subjected to irrigation with sea water blended with high quality reverse osmosis (RO) water. Three levels of water salinity having electrical conductivities (EC) of 0.3, 7.0, 14.0 dSm-1 were obtained by mixing sea water with RO water and plants were irrigated to approximately 70% of field capacity without excess drainage. Three levels of NPK fertilizer at the rate of null, half and full recommended doses were also employed in the experiment. The two key determinants of photosynthetic capacity, the maximum rates of RuBP carboxylation (Vcmax) and the maximum rate of photosynthetic electron transport based on NADPH requirement (Jmax), were obtained through standard gas exchange technique.CO2 response curves of net CO2 assimilation (An) against variable CO2 concentrations in the intracellular spaces (Ci) at constant environmental conditions were drawn and a Sharkey model was fit to the obtained data. Hyperspectral reflectance (λ = 350-2500 nm) of fresh leaves were obtained and the hyperspectral characteristics and their correlations with the photosynthetic parameters were drawn. Unique contributions from different spectral regions of the hyperspectral data were analyzed. Our results revealed that saline irrigation adversely affects some of the biochemical photosynthetic parameters while favors others and it can be reflected in shifts in patterns at various regions of the hyperspectral data. These results suggest a promising strategy for developing remote sensing methods to characterize photosynthetic activity of

  7. Water and mineral relations of Atriplex canescens and A. cuneata on saline processed oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, S.G.

    1979-01-01

    Growth, mineral uptake and water relations of Atriplex canescens and A. cuneata, both native to the arid oil shale region of northeastern Utah, were studied in the greenhouse and laboratory as affected by various salinity levels and specific ions in processed oil shale. Salinity of the shale was manipulated by moistening leached processed oil shale to near field capacity (20% H/sub 2/O by weight) with solutions of shale leachate, sodium sulfate, magnesium sulfate or sodium chloride at equiosmotic concentrations ranging from 0 to -30 bars. Although shale salinity did not affect osmotic adjustment, zero turgor points of A. canescens becamemore » more negative with reductions in shale moisture percentage. Differences in plant growth due to differet ions in the soil solution could not be explained by effects on osmotic adjustment. However, greater growth of A. canescens in Na/sub 2/SO/sub 4/ treated than MgSO/sub 4/ treated leached shale was associated with greater leaf succulence, greater lamina lengths and lamina widths and lower diffusive leaf resistances. Potassium added to leached and unleached processed oil shale increased shoot and root biomass production, shoot/root ratio, leaf K content, and water use efficiency of a sodium-excluding Atriplex canescens biotype but did not increase growth of a sodium-accumulating biotype.« less

  8. Ecosystem Services and Community-Based Approaches to Wastewater and Saline Soils Reclamation in the Drylands of Uzbekistan

    NASA Astrophysics Data System (ADS)

    Toderich, Kristina; Khujanazarov, Timur; Aralova, Dildora; Shuyskaya, Elena; Gismatulina, Liliya; Boboev, Hasan

    2017-04-01

    The working hypothesis of this article support an indication of declining water quality, increasing soils salinity and higher production costs in the Bukhara oasis- a borderline lands between the sandy Kyzylkum Desert and irrigated zone in the lower stream of Zarafshan River Basin. The pollution of waters and soils with toxic metals is the major environmental problem in these agro-ecological zones. Conventional remediation approaches usually do not ensure adequate results. The mobility of toxic pollutants can be highly facilitated by the chemical properties of soils and the aridity of the climate. The impact of these factors of land degradation induces reduction in biodiversity and yields losses of agricultural crops and wild desert plant communities. A recent survey showed that the chemical composition of the drainage effluents is sulfate-chloride-hydrocarbonate - magnesium-sodium-calcium with high level of mineralization 4200 - 18800 ppm. Concentration of chloride and sulfate, detected both in drainage effluents and ground water, is 10 times higher than maximum allowable concentration (MAC); and traces of heavy metals, such as strontium, selenium, arsenic, lead, zinc, uranium are 2 times higher than MAC. Distribution of boron showed a strong correlation with those of arsenic and antimony. Aluminum has a significant correlation with arsenic and lead distribution. Antimony correlates significantly with zinc and arsenic, while copper and iron (Fe57) also well correlate with each other. Because these metals rarely exist in natural environment, it is presumed that they are caused both by the usage of some chemicals at the agricultural field in harvest season and by the discharge of some technogenic chemicals from industry. The desalinated/treated wastewater were used to irrigate high value crops and the waste brine is transformed into a resource that was used to grow aquatic species (fish, algae) and irrigate halophytic species with benefits for livestock, farmers and

  9. Salinity management in the Rio Grande Bosque

    Treesearch

    Jan M. H. Hendrickx; J. Bruce J. Harrison; Jelle Beekma; Graciela Rodriguez-Marin

    1999-01-01

    This paper discusses management options for salinity control in the Rio Grande Bosque. First, salt sources are identified and quantified. Capillary rise of ground water is the most important cause for soil salinization in the bosque. Next, a riparian salt balance is presented to explain the different mechanisms for soil salinization. Finally, the advantages and...

  10. Salinity of the ground water in western Pinal County, Arizona

    USGS Publications Warehouse

    Kister, Lester Ray; Hardt, W.F.

    1966-01-01

    The chemical quality of the ground water in western Pinal County is nonuniform areally and stratigraphically. The main areas of highly mineralized water are near Casa Grande and near Coolidge. Striking differences have been noted in the quality of water from different depths in the same well. Water from one well, (D-6-7) 25cdd, showed an increase in chloride content from 248 ppm (parts per million) at 350 feet below the land surface to 6,580 ppm at 375 feet; the concentration of chloride increased to 10,400 ppm at 550 feet below the land surface. This change was accompanied by an increase in the total dissolved solids as indicated by conductivity measurements. The change in water quality can be correlated with sediment types. The upper and lower sand and gravel units seem to yield water of better quality than the intermediate silt and clay unit. In places the silt and clay unit contains zones of gypsum and common table salt. These zones yield water that contains large amounts of the dissolved minerals usually associated with water from playa deposits. Highly mineralized ground water in an area near Casa Grande has moved southward and westward as much as 4 miles. Similar water near Coolidge has moved a lesser distance. Good management practices and proper use of soil amendments have made possible the use of water that is high in salinity and alkali hazard for agricultural purposes in western Pinal County. The fluoride content of the ground water in western Pinal County is usually low; however, water from wells that penetrate either the bedrock or unconsolidated sediments that contain certain volcanic rocks may have as much as 9 ppm of fluoride.

  11. WTAQ version 2-A computer program for analysis of aquifer tests in confined and water-table aquifers with alternative representations of drainage from the unsaturated zone

    USGS Publications Warehouse

    Barlow, Paul M.; Moench, Allen F.

    2011-01-01

    The computer program WTAQ simulates axial-symmetric flow to a well pumping from a confined or unconfined (water-table) aquifer. WTAQ calculates dimensionless or dimensional drawdowns that can be used with measured drawdown data from aquifer tests to estimate aquifer hydraulic properties. Version 2 of the program, which is described in this report, provides an alternative analytical representation of drainage to water-table aquifers from the unsaturated zone than that which was available in the initial versions of the code. The revised drainage model explicitly accounts for hydraulic characteristics of the unsaturated zone, specifically, the moisture retention and relative hydraulic conductivity of the soil. The revised program also retains the original conceptualizations of drainage from the unsaturated zone that were available with version 1 of the program to provide alternative approaches to simulate the drainage process. Version 2 of the program includes all other simulation capabilities of the first versions, including partial penetration of the pumped well and of observation wells and piezometers, well-bore storage and skin effects at the pumped well, and delayed drawdown response of observation wells and piezometers.

  12. Local and synoptic controls on rapid supraglacial lake drainage in West Greenland

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew; Banwell, Alison; Arnold, Neil; Willis, Ian

    2016-04-01

    Many supraglacial lakes within the ablation zone of the Greenland Ice Sheet (GrIS) are known to drain rapidly (in <1 day) in the mid- to late melt season, delivering large meltwater pulses to the subglacial drainage system, thus affecting basal water pressures and ice-sheet dynamics. Although it is now generally recognised that rapid lake drainage is caused by hydrofracture, the precise controls on hydrofracture initiation remain poorly understood: they may be linked to a local critical water-volume threshold, or they may be associated with synoptic-scale factors, such as ice thickness, driving stresses, ice velocities and strain rates. A combination of the local water-volume threshold and one or more synoptic-scale factors may explain the overall patterns of rapid lake drainage, but this requires verification using targeted field- and remotely-based studies that cover large areas of the GrIS and span long timescales. Here, we investigate a range of potential controls on rapid supraglacial lake drainage in the land-terminating Paakitsoq region of the ice sheet, northeast of Jakobshavn Isbræ, for the 2014 melt season. We have analysed daily 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in order to calculate lake areas, depths and volumes, and have developed an automatic lake-tracking algorithm to determine the dates on which all rapid lake drainage events occur. For each rapidly draining lake, the water volumes immediately prior to drainage are compared with other local factors, notably lake-filling rate and ice thickness, and with a variety of synoptic-scale features, such as slope angles, driving stresses, surface velocities, surface strain rates and the incidence of nearby lake-drainage events. We present the outcomes of our statistical analysis to elicit the statistically significant controls on hydrofracture beneath supraglacial lakes.

  13. Saline contamination of soil and water on Pawnee tribal trust land, eastern Payne County, Oklahoma

    USGS Publications Warehouse

    Runkle, Donna L.; Abbott, Marvin M.; Lucius, Jeffrey E.

    2001-01-01

    The Bureau of Land Management reported evidence of saline contamination of soils and water in Payne County on Pawnee tribal trust land. Representatives of the Bureau of Land Management and U.S. Geological Survey inspected the site, in September 1997, and observed dead grass, small shrubs, and large trees near some abandoned oil production wells, a tank yard, an pit, and pipelines. Soil and bedrock slumps and large dead trees were observed near a repaired pipeline on the side of the steep slope dipping toward an unnamed tributary of Eagle Creek. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, initiated an investigation in March 1998 to examine soil conductance and water quality on 160 acres of Pawnee tribal trust land where there was evidence of saline contamination and concern about saline contamination of the Ada Group, the shallowest freshwater aquifer in the area. The proximity of high specific conductance in streams to areas containing pipeline spill, abandoned oil wells, the tank yard, and the pit indicates that surface-water quality is affected by production brines. Specific conductances measured in Eagle Creek and Eagle Creek tributary ranged from 1,187 to 10,230 microsiemens per centimeter, with the greatest specific conductance measured downgradient of a pipeline spill. Specific conductance in an unnamed tributary of Salt Creek ranged from 961 to 11,500 microsiemens per centimeter. Specific conductance in three ponds ranged from 295 to 967 microsiemens per centimeter, with the greatest specific conductance measured in a pond located downhill from the tank yard and the abandoned oil well. Specific conductance in water from two brine storage pits ranged from 9,840 to 100,000 microsiemens per centimeter, with water from the pit near a tank yard having the greater specific conductance. Bartlesville brine samples from the oil well and injection well have the greatest specific conductance, chloride concentration, and dissolved

  14. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.

  15. Geomorphologic Analysis of Drainage Basins in Damavand Volcano Cone, Iran

    NASA Astrophysics Data System (ADS)

    Zareinejad, M.

    2011-12-01

    Damavand volcanic cone is located in the center of the Alborz chain, in the southern Caspian Sea in Iran. Damavand is a dormant volcano in Iran. It is not only the country's highest peak but also the highest mountain on the Middle East; its elevation is 5619 m. The main purpose of this paper is recognition and appraisement of drainage basins in Damavand cone from geomorphic point of view. Water causes erosion in nature in different forms and creates diverse forms on the earth surface depending on the manner of its appearance in nature. Although water is itself a former factor, it flows under morphological effect of earth surface. The difference of earth surface topography and as a result water movement on it, cause the formation of sub-basins. Identification of region drainage basins is considered as one of the requirements for Damavand cone morphometric. Thereupon, five drainage basins were identified in this research by relying on main criteria including topographic contours with 10 m intervals, drainage system, DEM map, slope map, aspect map and satellite images. (Fig 1) Area, perimeter, height classification for classifying morphological landforms in different levels, hypsometric calculations, drainage density, etc. were then calculated by using ArcGIS software. (Table 1) Damavand cone, with a height more than 5,000 meters from the sea surface, has very hard pass slopes and our purpose in this paper is to identify the effect of drainage basins conditions in the region on erosion and the formation of morphological landforms by using SPOT, ASTER, satellite images as well as papering of data in GIS environment.

  16. Low salinity hydrocarbon water disposal through deep subsurface drip irrigation: leaching of native selenium

    USGS Publications Warehouse

    Bern, Carleton R.; Engle, Mark A.; Boehlke, Adam R.; Zupancic, John W.; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    A subsurface drip irrigation system is being used in Wyoming’s Powder River Basin that treats high sodium, low salinity, coal bed methane (CBM) produced water with sulfuric acid and injects it into cropped fields at a depth of 0.92 m. Dissolution of native gypsum releases calcium that combats soil degradation that would otherwise result from high sodium water. Native selenium is leached from soil by application of the CBM water and traces native salt mobilization to groundwater. Resulting selenium concentrations in groundwater at this alluvial site were generally low (0.5–23 μg/L) compared to Wyoming’s agricultural use suitability standard (20 μg/L).

  17. Corrosion control when using passively treated abandoned mine drainage as alternative makeup water for cooling systems.

    PubMed

    Hsieh, Ming-Kai; Chien, Shih-Hsiang; Li, Heng; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-09-01

    Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y).

  18. Jerusalem artichoke (Helianthus tuberosus, L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters

    USDA-ARS?s Scientific Manuscript database

    The scarcity of good quality water in semiarid regions of the world is the main limiting factor for increased irrigated agriculture in those regions. Saline water is generally widely available in arid regions at reduced costs, and can be a viable alternative for crop irrigation. However, the literat...

  19. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    NASA Astrophysics Data System (ADS)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  20. Geohydrology and Potential for Upward Movement of Saline Water in the Cocoa Well Field, East Orange County, Florida

    DTIC Science & Technology

    1996-01-01

    11 8. Map showing chloride concentration in water from the Upper...not move upward. Upconing of saline water probably is not taking place in the center and western part of the well field, based on the low vertical...zone of low hydraulic conductivity, based on the geophysical logs of well R (fig. 5). Chloride concentrations increase sharply in water from both

  1. Effect of tile effluent on nutrient concentration and retention efficiency in agricultural drainage ditches

    USDA-ARS?s Scientific Manuscript database

    Tile drainage is a common water management practice in many agricultural landscapes in the Midwestern United States. Drainage ditches regularly receive water from agricultural fields through these tile drains. This field-scale study was conducted to determine the impact of tile discharge on ambient ...

  2. Liquid redistribution behind a drainage front in porous media imaged by neutron radiography

    NASA Astrophysics Data System (ADS)

    Hoogland, Frouke; Lehmann, Peter; Moebius, Franziska; Vontobel, Peter; Or, Dani

    2013-04-01

    Drainage from porous media is a highly dynamic process involving the motion of a displacement front with rapid pore scale interfacial jumps and phase entrapment, but also a more gradual host of liquid redistribution processes in the unsaturated region behind the front. Depending on the velocity of the drainage process, liquid properties and the permeability of the porous medium, redistribution lingers long after the main drainage process is stopped, until gravity and capillary forces regain equilibrium. The rapid and often highly inertial Haines jumps at the drainage front challenge the validity of Buckingham-Darcy law and thus representation of the process based on the foundation of Richards equation. To quantify front displacement and liquid reconfiguration and to test validity of Richards equation with respect to fast drainage dynamics, we carried out drainage experiments by withdrawing water from the bottom of initially saturated sand-filled Hele-Shaw cells at constant water flux (2.6 or 13.1 mm/minute). Water content distribution and evolution of drainage front were measured with neutron radiography at spatial and temporal resolutions of 0.1 mm and 3 seconds, respectively. Water pressure was measured above and below the front using pressure transducers and a tensiometer. After the pump was stopped (at a front depth around 100 mm), capillary pressure values in the unsaturated region (above the front) gradually converged to a new equilibrium. The pressure signal in the saturated region below the front reflected viscous losses during flow that were relaxed when the pump stopped. During pressure relaxation water was redistributed primarily downward in the unsaturated region. Pressure signals and dynamics of water content profiles for fast process (13.6 mm/minute) could not be reproduced with Richards equation based on hydraulic functions determined in preceding laboratory experiments. To explore if the deviations stem from inappropriate hydraulic functions we

  3. Indigenous Halomonas spp., the Potential Nitrifying Bacteria for Saline Ammonium Waste Water Treatment.

    PubMed

    Sangnoi, Yutthapong; Chankaew, Sunipa; O-Thong, Sompong

    2017-01-01

    Toxic nitrogen compounds are one cause decreasing of shrimp production and water pollution. Indigenous Halomonas spp., isolated from Pacific white shrimp farm are benefitted for saline ammonium waste water treatment. This study aimed to isolate the heterotrophic-halophilic Halomonas spp. and investigate their ammonium removal efficiency. Halomonas spp., were isolated by culturing of samples collected from shrimp farm into modified Pep-Beef-AOM medium. Ammonium converting ability was tested and monitored by nitrite reagent. Ammonium removal efficiency was measured by the standard colorimetric method. Identification and classification of Halomonas spp., were studied by morphological, physiological and biochemical characteristics as well as molecular information. There were 5 strains of heterotrophic-halophilic nitrifying bacteria including SKNB2, SKNB4, SKNB17, SKNB20 and SKNB22 were isolated. The identification result based on 16S rRNA sequence analysis indicated that all 5 strains were Halomonas spp., with sequence similarity values of 91-99 %. Ammonium removal efficiency of all strains showed a range of 23-71%. The production of nitrite was low detected of 0.01-0.15 mg-N L-1, while the amount of nitrate was almost undetectable. This might suggest that the indigenous Halomonas spp., as nitrifying bacteria involved biological nitrification process for decreasing and transforming of ammonia. Due to being heterotrophic, halophilic and ammonium removing bacteria, these Halomonas spp., could be developed for use in treatment of saline ammonium waste water.

  4. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    USGS Publications Warehouse

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  5. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stan E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  6. MiniSipper: a new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring.

    PubMed

    Chapin, Thomas P; Todd, Andrew S

    2012-11-15

    Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7-8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R(2)>0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed. Published by Elsevier B.V.

  7. MiniSipper: A new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring

    USGS Publications Warehouse

    Chapin, Thomas P.; Todd, Andrew S.

    2012-01-01

    Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7–8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R2 > 0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed.

  8. Number and location of drainage catheter side holes: in vitro evaluation.

    PubMed

    Ballard, D H; Alexander, J S; Weisman, J A; Orchard, M A; Williams, J T; D'Agostino, H B

    2015-09-01

    To evaluate the influence of number and location of catheter shaft side holes regarding drainage efficiency in an in vitro model. Three different drainage catheter models were constructed: open-ended model with no side holes (one catheter), unilateral side hole model (six catheters with one to six unilateral side holes), and bilateral side hole model (six catheters with one to six bilateral side holes). Catheters were inserted into a drainage output-measuring device with a constant-pressure reservoir of water. The volume of water evacuated by each of the catheters at 10-second intervals was measured. A total of five trials were performed for each catheter. Data were analysed using one-way analysis of variance. The open-ended catheter had a mean drainage volume comparable to the unilateral model catheters with three, four, and five side holes. Unilateral model catheters had significant drainage volume increases up to three side holes; unilateral model catheters with more than three side holes had no significant improvement in drainage volume. All bilateral model catheters had significantly higher mean drainage volumes than their unilateral counterparts. There was no significant difference between the mean drainage volume with one, two, or three pairs of bilateral side holes. Further, there was no drainage improvement by adding additional bilateral side holes. The present in vitro study suggests that beyond a critical side hole number threshold, adding more distal side holes does not improve catheter drainage efficiency. These results may be used to enhance catheter design towards improving their drainage efficiency. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Mercury mine drainage and processes that control its environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2000-01-01

    Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the p

  10. Salinity impact on yield, water use, mineral and essential oil content of fennel (Foeniculum vulgare Mill.)

    USDA-ARS?s Scientific Manuscript database

    The experimental study was carried out to determine the effects of salinity on water consumption, plant height, fresh and seed yields, biomass production, ion accumulation and essential oil content of fennel (Foeniculum vulgare Mill.) under greenhouse conditions. The experiment was conducted with a ...

  11. Responses of the brackish-water amphipod Gammarus duebeni (crustacea) to saline sewage

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Johnson, I.

    Soon after the openiing of the Looe sewage treatment works (Cornwall, southwest England) in 1973, it became colonized by the brackish-water amphipod Gammarus duebeni Liljeborg. The works is unusual as it operates with saline sewage and has a tidally-based pattern of salinity fluctuation (S=13 to 34). Various responses of this unique amphipod population (sewage amphipods) have been compared with G. duebeni from the adjacent Looe River estuary (estuarine amphipods) in an attempt to identify long-term responses to sewage. Sewage amphipods were significantly smaller than their estuarine equivalents; the sewage population was biased significantly to males, whereas the sex ratio of the estuarine population significantly favours females. Compared with the estuary, the consistently lower oxygen levels in the works were reflected in significant differences in metabolism. Sewage amphipods maintained high levels of activity under hypoxia ( e.g. swimming), and the higher survival and lower rates of lactic acid accumulation under anoxia than estuarine individuals. In addition, sewage amphipods recovered more rapidly from anoxia and had a lower critical oxygen tension (p c) than estuarine amphipods. Sewage amphipods are exposed to higher levels of heavy metals associated with the domestic sewage and zinc concentrations are particularly elevated in the works. Exposure to elevated zinc concentrations resulted in similar patterns of body zinc uptake for sewage and estuarine Gammarus at high (30) and low (10) salinity, with zinc regulation apparently occuring to an external threshold of 200 γmgZn·dm -3. No consistent interpopulational differences in the effect ofzinc on zinc uptake or on osmoregulation have been identified. However, sewage amphipods had higher survival at all zinc/salinity combinations compared with estuarine individuals. These indicate that sewage amphipods are adapted to the unusual combination of conditions prevailing in the treatment works and, if reproductive

  12. Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments

    NASA Astrophysics Data System (ADS)

    Hammond, J. C.; Harpold, A. A.; Kampf, S. K.

    2017-12-01

    Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers

  13. Effect of Saline Water Irrigation on Growth and Physiological Responses of Three Rose Rootstocks

    PubMed Central

    Niu, Genhua; Rodriguez, Denise S.; Aguiniga, Lissie

    2009-01-01

    Salt-tolerant landscape plants are needed for arid and semiarid regions where the supply of quality water is limited and soil salinization often occurs. This study evaluated growth, chloride (Cl) and sodium (Na) uptake, relative chlorophyll content, and chlorophyll fluorescence of three rose rootstocks [Rosa ×fortuniana Lindl., R. multiflora Thunb., and R. odorata (Andr.) Sweet] irrigated with saline solutions at 1.6 (control), 3.0, 6.0, or 9.0 dS·m −1 electrical conductivity in a greenhouse. After 15 weeks, most plants in 9.0 dS·m −1 treatment died regardless of rootstock. Significant growth reduction was observed in all rootstocks at 6.0 dS·m −1 compared with the control and 3.0 dS·m −1, but the reduction in R. ×fortuniana was smaller than in the other two rootstocks. The visual scores of R. multiflora at 3.0 and 6.0 dS·m−1 were slightly lower than those of the other rootstocks. Rosa odorata had the highest shoot Na concentration followed by R. multiflora; however, R. multiflora had the highest root Na concentration followed by R. odorata. All rootstocks had higher Cl accumulation in all plant parts at elevated salinities, and no substantial differences in Cl concentrations in all plant parts existed among the rootstocks, except for leaf Cl concentration in R. multiflora, which was higher than those in the other two rootstocks. The elevated salinities of irrigation water reduced the relative chlorophyll concentration, measured as leaf SPAD readings, and maximal photochemical efficiency of photosystem II (PSII) and minimal fluorescence (F0)/maximum fluorescence (Fv/Fm), but the largest reduction in Fv/Fm was only 2.4%. Based on growth and visual quality, R. ×fortuniana was relatively more salt-tolerant than the other two rootstocks and R. odorata was slightly more salt-tolerant than R. multiflora. PMID:20148186

  14. An Optimal Balance between Efficiency and Safety of Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Seo, Y.

    2014-12-01

    Urban drainage networks have been developed to promote the efficiency of a system in terms of drainage time so far. Typically, a drainage system is designed to drain water from developed areas promptly as much as possible during floods. In this regard, an artificial drainage system have been considered to be more efficient compared to river networks in nature. This study examined artificial drainage networks and the results indicate they can be less efficient in terms of network configuration compared with river networks, which is counter-intuitive. The case study of 20 catchments in Seoul, South Korea shows that they have wide range of efficiency in terms of network configuration and consequently, drainage time. This study also demonstrates that efficient drainage networks are more sensitive to spatial and temporal rainfall variation such as rainstorm movement. Peak flows increase more than two times greater in effective drainage networks compared with inefficient and highly sinuous drainage networks. Combining these results, this study implies that the layout of a drainage network is an important factor in terms of efficient drainage and also safety in urban catchments. Design of an optimal layout of the drainage network can be an alternative non-structural measures that mitigate potential risks and it is crucial for the sustainability of urban environments.

  15. On the brine drainage and algal uptake controls of the nutrient supply to the sea ice interior

    NASA Astrophysics Data System (ADS)

    Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tison, J.-L.

    2009-04-01

    Sea ice ecosystems are important components of the biogeochemical cycles (including carbon) and hence have a potential impact on climate. They are characterized by large stocks of micro-algae. Those algae (mostly diatoms) live in liquid inclusions of saline brine, which are encased within the solid ice matrix and require sustained nutrient supply to grow. In this study, we investigate the interactions between nutrients, brine motion and algal growth, using a one-dimensional (1D) sea ice model. The model includes (i) a classical formulation for snow and ice thermodynamics with explicit, reformulated brine physics and (ii) an idealized sea ice biological component, characterized by one single nutrient, namely dissolved silica (DSi), which stocks are reduced by a prescribed primary production. DSi is considered as a passive tracer dissolved within brine following fluid motion. The brine flow regime (advective, diffusive or turbulent) is computed as a function of environmental ice conditions. In winter, a Rayleigh number proposed by Notz and Worster (2008) is used to differentiate diffusion and convection. Ice salinity and DSi concentrations within the ice are solutions of 1D advection-diffusion equations over the variable volume brine network domain. The model is configured for a typical year of seasonal Weddell Sea ice. The simulated vertical salinity and tracer profiles as well as ice-ocean salt fluxes realistically agree with observations. Complex bio-physical interactions are simulated by the model. Analysis highlights the role of convection in the lowermost 5-10 cm of ice (gravity drainage), mixing highly saline, nutrient-depleted brine with comparatively fresh, nutrient-rich seawater. Hence, gravity drainage rejects salt to the ocean and provides nutrients to the ice interior. In turn, primary production and brine convection act synergetically to form a nutrient pump, which enhances the net ocean-to-ice DSi flux by 20-115%, compared to an abiotic situation. The

  16. [Vacuum sealing drainage for infection wound in earthquake].

    PubMed

    Liao, Dengbin; Ning, Ning; Liu, Xiaoyan; Gan, Chunlan

    2009-10-01

    To investigate the effect of vacuum sealing drainage (VSD) technology on prevention and treatment of infection wound and to repair the infectious fracture wound in earthquake. Twenty-two patients with limb fractures and open infection wound received VSD from May 12, 2008 to June 19, 2008 in West China Hospital of Sichuan University. Before the VSD, we debrided all wounds and gave effective systemic antibiotics. A -18 ~ -14 kPa pressure was exerted to the wound, and the VSD was used for 8-10 days. We took a germiculture regularly. The capacity, color, and nature of negative pressure drainage, the regression of limb swelling, and systemic inflammatory responses were observed. There was no active bleeding wound or transparent film off in all patients. Three patients had drainage clogging, and were kept flowing freely using the sterile saline pipe to remove the blockage of necrotic tissues. During the VSD, granulation tissues grew well in the 13 patients with bone exposure of the wounded. Two patients whose symptom of inflammatory was not obviously eased had another debridement to completely remove the necrosis, and the symptom was relieved. After 3-5 days of VSD, swelling and fever in the other 20 patients significantly subsided. VSD can alleviate the wound inflammation, facilitate the growth of the fresh granulation tissue from the surrounding to the center, and reduce the flap transfer area for the Stage II coverage of the exposed bone.

  17. Salinity increases in the navajo aquifer in southeastern Utah

    USGS Publications Warehouse

    Naftz, D.L.; Spangler, L.E.

    1994-01-01

    Salinity increases in water in some parts of the Navajo aquifer in southeastern Utah have been documented previously. The purpose of this paper is to use bromide, iodide, and chloride concentrations and del oxygen-18 and deuterium values in water from the study area to determine if oil-field brines (OFB) could be the source of increased salinity. Mixing-model results indicate that the bromide-to-chloride X 10,000 weight ratio characteristic of OFB in and outside the study area could not be causing the bromide depletion with increasing salinity in the Navajo aquifer. Mixing-model results indicate that a mixture of one percent OFB with 99 percent Navajo aquifer water would more than double the bromide-to-chloride weight ratio, instead of the observed decrease in the weight ratio with increasing chloride concentration. The trend of the mixing line representing the isotopically enriched samples from the Navajo aquifer does not indicate OFB as the source of isotopically enriched water; however, the simulated isotopic composition of injection water could be a salinity source. The lighter isotopic composition of OFB samples from the Aneth, Ratherford, White Mesa Unit, and McElmo Creek injection sites relative to the Ismay site is a result of continued recycling of injection water mixed with various proportions of isotopically lighter make-up water from the alluvial aquifer along the San Juan River. A mixing model using the isotopic composition of the simulated injection water suggests that enriched samples from the Navajo aquifer are composed of 36 to 75 percent of the simulated injection water. However, chloride concentrations predicted by the isotopic mixing model are up to 13.4 times larger than the measured chloride concentrations in isotopically enriched samples from the Navajo aquifer, indicating that injection water is not the source of increased salinity. Geochemical data consistently show that OFB and associated injection water from the Greater Aneth Oil Field

  18. Salinity and hydrology of closed lakes

    USGS Publications Warehouse

    Langbein, Walter Basil

    1961-01-01

    Lakes without outlets, called closed lakes, are exclusively features of the arid and semiarid zones where annual evaporation exceeds rainfall. The number of closed lakes increases with aridity, so there are relatively few perennial closed lakes, but "dry" lakes that rarely contain water are numerous.Closed lakes fluctuate in level to a much greater degree than the open lakes of the humid zone, because variations in inflow can be compensated only by changes in surface area. Since the variability of inflow increases with aridity, it is possible to derive an approximate relationship for the coefficient of variation of lake area in terms of data on rates of evaporation, lake area, lake depth, and drainage area.The salinity of closed lakes is highly variable, ranging from less than 1 percent to over 25 percent by weight of salts. Some evidence suggests that the tonnage of salts in a lake solution is substantially less than the total input of salts into the lake over the period of existence of the closed lake. This evidence suggests further that the salts in a lake solution represent a kind of long-term balance between factors of gain and loss of salts from the solution.Possible mechanisms for the loss of salts dissolved in the lake include deposition in marginal bays, entrapment in sediments, and removal by wind. Transport of salt from the lake surface in wind spray is also a contributing, but seemingly not major, factor.The hypothesis of a long-term balance between input to and losses from the lake solution is checked by deriving a formula for the equilibrium concentration and comparing the results with the salinity data. The results indicate that the reported salinities seemingly can be explained in terms of their geometric properties and hydrologic environment.The time for accumulation of salts in the lake solution the ratio between mass of salts in the solution and the annual input may also be estimated from the geometric and hydrologic factors, in the absence of

  19. Salinity tolerance ecophysiology of Equisetum giganteum in South America: a study of 11 sites providing a natural gradient of salinity stress

    PubMed Central

    Husby, Chad E.; Delatorre, José; Oreste, Vittorio; Oberbauer, Steven F.; Palow, Danielle T.; Novara, Lázaro; Grau, Alfredo

    2011-01-01

    Background and aims The basic set of adaptations necessary for salinity tolerance in vascular plants remains unknown. Although much has been published on salinity stress, almost all studies deal with spermatophytes. Studies of salinity tolerance in pteridophytes are relatively rare but hold promise for revealing the fundamental adaptations that all salt-tolerant vascular plants may share. The most basal pteridophytes to exhibit salinity tolerance are members of the genus Equisetum, including the giant horsetail, Equisetum giganteum, the only pteridophyte to occur in salinity-affected regions of the Atacama Desert valleys of northern Chile. Here it can constitute a significant vegetation component, forming dense stands of shoots >4 m high. Methodology Physiological parameters (stomatal conductances; efficiency of photosystem II; sap osmotic potential) were measured in E. giganteum populations in northern Chile across a range of groundwater salinities at 11 sites. In addition, Na, K, electrical conductivity and total plant water potential were measured in the plants and groundwater from each site. Principal results Equisetum giganteum exhibits similar stomatal conductances and photochemical efficiencies of photosystem II across a wide range of groundwater salinities. It lowers cell sap osmotic potential with increasing salinity and produces positive root pressure, as evidenced by guttation, at the full range of salinities experienced in the Atacama Desert. Equisetum giganteum maintains low Na concentrations in its xylem fluid and cell sap when soil water Na is high. It also maintains high K/Na ratios in xylem fluid and cell sap when soil water has low K/Na ratios. Conclusions Equisetum giganteum is well adapted to salinity stress. Efficient K uptake and Na exclusion are important adaptations and closely similar to those of the facultative halophyte fern Acrostichum aureum. PMID:22476492

  20. ESA's Soil Moisture dnd Ocean Salinity Mission - Contributing to Water Resource Management

    NASA Astrophysics Data System (ADS)

    Mecklenburg, S.; Kerr, Y. H.

    2015-12-01

    The Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables used in predictive hydrological, oceanographic and atmospheric models. SMOS observations also provide information on the characterisation of ice and snow covered surfaces and the sea ice effect on ocean-atmosphere heat fluxes and dynamics, which affects large-scale processes of the Earth's climate system. The focus of this paper will be on SMOS's contribution to support water resource management: SMOS surface soil moisture provides the input to derive root-zone soil moisture, which in turn provides the input for the drought index, an important monitoring prediction tool for plant available water. In addition to surface soil moisture, SMOS also provides observations on vegetation optical depth. Both parameters aid agricultural applications such as crop growth, yield forecasting and drought monitoring, and provide input for carbon and land surface modelling. SMOS data products are used in data assimilation and forecasting systems. Over land, assimilating SMOS derived information has shown to have a positive impact on applications such as NWP, stream flow forecasting and the analysis of net ecosystem exchange. Over ocean, both sea surface salinity and severe wind speed have the potential to increase the predictive skill on the seasonal and short- to medium-range forecast range. Operational users in particular in Numerical Weather Prediction and operational hydrology have put forward a requirement for soil moisture data to be available in near-real time (NRT). This has been addressed by developing a fast retrieval for a NRT level 2 soil moisture product based on Neural Networks, which will be available by autumn 2015. This paper will focus on presenting the