Sample records for saline pore water

  1. Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341)

    NASA Astrophysics Data System (ADS)

    März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah

    2014-05-01

    Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening

  2. Pore fluids and the LGM ocean salinity-Reconsidered

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2016-03-01

    Pore fluid chlorinity/salinity data from deep-sea cores related to the salinity maximum of the last glacial maximum (LGM) are analyzed using estimation methods deriving from linear control theory. With conventional diffusion coefficient values and no vertical advection, results show a very strong dependence upon initial conditions at -100 ky. Earlier inferences that the abyssal Southern Ocean was strongly salt-stratified in the LGM with a relatively fresh North Atlantic Ocean are found to be consistent within uncertainties of the salinity determination, which remain of order ±1 g/kg. However, an LGM Southern Ocean abyss with an important relative excess of salt is an assumption, one not required by existing core data. None of the present results show statistically significant abyssal salinity values above the global average, and results remain consistent, apart from a general increase owing to diminished sea level, with a more conventional salinity distribution having deep values lower than the global mean. The Southern Ocean core does show a higher salinity than the North Atlantic one on the Bermuda Rise at different water depths. Although much more sophisticated models of the pore-fluid salinity can be used, they will only increase the resulting uncertainties, unless considerably more data can be obtained. Results are consistent with complex regional variations in abyssal salinity during deglaciation, but none are statistically significant.

  3. A pore-scale numerical method for simulating low-salinity waterflooding in porous media

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Yang, J.; Tsuji, T.

    2017-12-01

    Low-salinity (LS)water injection has been attracting attention as a practical oil recovery technique because of its low cost and high efficiency in recent years. Many researchers conducted laboratory and observed its significant benefits compared to conventional high-salinity (HS) waterflooding. However, the fundamental mechanisms remain poorly understood. Different mechanisms such as fine migration, wettability alteration have been proposed to explain this low-salinity effect. Here, we aim to focus on investigating the effect of wettability alteration on the recovery efficiency. For this purpose, we proposed a pore scale numerical method to quantitatively evaluate the impact of salinity concentration on the sweep efficiency. We first developed the pore scale model by coupling the convection-diffusion model for tracking the concentration change and the lattice Boltzmann model for two-phase flow behavior, and assuming that a reduction of water salinity leads to localised wettability alteration. The model is then validated by simulating the contact angle change of an oil droplet attached to a clay substrate. Finally, the method was applied on a real rock geometry extracted from the micro-CT images of Berea sandstone. The results indicate that the initial wettability state of the system and the extent of wettability alteration are important in predicting the improvement of oil recovery due to LS brine injection. This work was supported by JSPS KAKENHI Grant Numbers 16K18331.

  4. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    USGS Publications Warehouse

    Pohlman, J.W.; Ruppel, C.; Hutchinson, D.R.; Downer, R.; Coffin, R.B.

    2008-01-01

    Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum ??13C dissolved inorganic carbon (DIC) values of -55.9??? to -64.8??? at the sulfate-methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the ??13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.

  5. Pore-water and epibenthic exposures in contaminated sediments using embryos of two estuarine fish species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinski, J.A.; Anderson, S.L.

    1995-12-31

    The authors` objectives were to determine the feasibility of using embryos of two fish species, Menidia beryllina and Atherinops affinis, in estuarine sediment toxicity tests at ambient temperatures and salinities, and to compare pore-water and sediment water interface corer (SWIC) exposure techniques using these same species. The ultimate goal is to determine whether these pore-water and SWIC methods can be used in in situ exposure studies. Sediment samples were collected at both a reference and contaminated site at the Mare Island Naval Shipyard in San Francisco Bay. Pore-water testes were conducted using methods developed in the laboratory, and SWIC testsmore » were conducted using a modification of B. Anderson et al. Salinity and temperature tolerance experiments revealed that M. beryllina embryos can tolerate temperatures between 160 C and 240 C and salinities of 10 ppt to 25 ppt, whereas A. affinis has a temperature range between 160 C and 200 C. Comparisons between pore-water and SWIC exposures at a reference site within MINSY showed no significant difference in hatching success. However, hatching success in SWIC exposures was significantly lower than pore-water exposures at a previously characterized contaminated site. In conclusion, both M. beryllina and A. affinis embryos may be useful for sediment and in situ toxicity testing in estuarine environments. Their wide temperature and salinity tolerances allow for minimal test manipulations, and M. beryllina showed excellent hatching success in reference sediments for both types of exposures.« less

  6. Unstable Pore-Water Flow in Intertidal Wetlands

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Shen, C.; Li, L.

    2014-12-01

    Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and

  7. Impact of the water salinity on the hydraulic conductivity of fen peat

    NASA Astrophysics Data System (ADS)

    Gosch, Lennart; Janssen, Manon; Lennartz, Bernd

    2017-04-01

    Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this ongoing study, we are aiming at quantifying the impact of higher salinities (up to 3.5 %) on Ks of fen peat to get a better understanding of the water and solute exchange between coastal peatlands and the adjacent sea. Two approaches differing in measurement duration employing a constant-head upward-flow permeameter were conducted. At first, Ks was measured at an initial salinity for several hours before the salinity was abruptly increased and the measurement continued. In the second approach, Ks was measured for 15 min at the salt content observed during sampling. Then, samples were completely (de)salinized via diffusion for several days/weeks before a comparison measurement was carried out. The results for degraded fen peats show a decrease of Ks during long-term measurements which does not depend on the water salinity. A slow, diffusion-controlled change in salinity does not modify the overall outcome that the duration of measurements has a stronger impact on Ks than the salinity. Further experiments will show if fen peat soils differing in their state of degradation exhibit a different behavior. A preliminary conclusion is that salinity might have a less important effect on hydraulic properties of fen peat than it was observed for bog peat.

  8. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    NASA Astrophysics Data System (ADS)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  9. Novel water filtration of saline water in the outermost layer of mangrove roots.

    PubMed

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  10. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    PubMed

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    NASA Astrophysics Data System (ADS)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  12. The cost of meeting increased cooling-water demands for CO2 capture and storage utilizing non-traditional waters from geologic saline formations

    NASA Astrophysics Data System (ADS)

    Klise, Geoffrey T.; Roach, Jesse D.; Kobos, Peter H.; Heath, Jason E.; Gutierrez, Karen A.

    2013-05-01

    Deep (> ˜800 m) saline water-bearing formations in the United States have substantial pore volume that is targeted for storage of carbon dioxide (CO2) and the associated saline water can be extracted to increase CO2 storage efficiency, manage pressure build up, and create a new water source that, once treated, can be used for power-plant cooling or other purposes. Extraction, treatment and disposal costs of saline formation water to meet added water demands from CO2 capture and storage (CCS) are discussed. This underutilized water source may be important in meeting new water demand associated with CCS. For a representative natural gas combined-cycle (NGCC) power plant, simultaneous extraction of brine from the storage formation could provide enough water to meet all CCS-related cooling demands for 177 out of the 185 (96 %) saline formations analyzed in this study. Calculated total cost of water extraction, treatment and disposal is less than 4.00 US Dollars (USD) m-3 for 93 % of the 185 formations considered. In 90 % of 185 formations, treated water costs are less than 10.00 USD tonne-1 of CO2 injected. On average, this represents approximately 6 % of the total CO2 capture and injection costs for the NGCC scenario.

  13. Saline-water resources of Texas

    USGS Publications Warehouse

    Winslow, Allen George; Kister, Lester Ray

    1956-01-01

    Most of the aquifers in Texas contain saline water in some parts, and a few are capable of producing large quantities of saline water. Of the early Paleozoic formations, the Hickory sandstone member of the Riley formation of Cambrian age and the Ellenburger group of Ordovician age are potential sources of small to moderate supplies of saline water in parts of central and west-central Texas.

  14. Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains

    DOE PAGES

    Bailey, Vanessa L.; Smith, A. P.; Tfaily, Malak; ...

    2017-01-11

    Spatial isolation of soil organic carbon (SOC) in different sized pores may be a mechanism by which otherwise labile carbon (C) could be protected in soils. When soil water content increases, the hydrologic connectivity of soil pores also increases, allowing greater transport of SOC and other resources from protected locations, to microbially colonized locations more favorable to decomposition. The heterogeneous distribution of specialized decomposers, C, and other resources throughout the soil indicates that the metabolism or persistence of soil C compounds is highly dependent on short-distance transport processes. The objective of this research was to characterize the complexity of Cmore » in pore waters held at weak and strong water tensions (effectively soil solution held behind coarse- and fine-pore throats, respectively) and evaluate the microbial decomposability of these pore waters. We saturated intact soil cores and extracted pore waters with increasing suction pressures to sequentially sample pore waters from increasingly fine pore domains. Ultrahigh resolution mass spectrometry of the SOC was used to profile the major biochemical classes (i.e., lipids, proteins, lignin, carbohydrates, and condensed aromatics) of compounds present in the pore waters; some of these samples were then used as substrates for growth of Cellvibrio japonicus (DSMZ 16018), Streptomyces cellulosae (ATCC ® 25439™), and Trichoderma reseei (QM6a) in 7 day incubations. The soluble C in finer pores was more complex than the soluble C in coarser pores, and the incubations revealed that the more complex C in these fine pores is not recalcitrant. The decomposition of this complex C led to greater losses of C through respiration than the simpler C from coarser pore waters. Our research suggests that soils that experience repeated cycles of drying and wetting may be accompanied by repeated cycles of increased CO 2 fluxes that are driven by i) the transport of C from protected pools

  15. Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Vanessa L.; Smith, A. P.; Tfaily, Malak

    Spatial isolation of soil organic carbon (SOC) in different sized pores may be a mechanism by which otherwise labile carbon (C) could be protected in soils. When soil water content increases, the hydrologic connectivity of soil pores also increases, allowing greater transport of SOC and other resources from protected locations, to microbially colonized locations more favorable to decomposition. The heterogeneous distribution of specialized decomposers, C, and other resources throughout the soil indicates that the metabolism or persistence of soil C compounds is highly dependent on short-distance transport processes. The objective of this research was to characterize the complexity of Cmore » in pore waters held at weak and strong water tensions (effectively soil solution held behind coarse- and fine-pore throats, respectively) and evaluate the microbial decomposability of these pore waters. We saturated intact soil cores and extracted pore waters with increasing suction pressures to sequentially sample pore waters from increasingly fine pore domains. Ultrahigh resolution mass spectrometry of the SOC was used to profile the major biochemical classes (i.e., lipids, proteins, lignin, carbohydrates, and condensed aromatics) of compounds present in the pore waters; some of these samples were then used as substrates for growth of Cellvibrio japonicus (DSMZ 16018), Streptomyces cellulosae (ATCC ® 25439™), and Trichoderma reseei (QM6a) in 7 day incubations. The soluble C in finer pores was more complex than the soluble C in coarser pores, and the incubations revealed that the more complex C in these fine pores is not recalcitrant. The decomposition of this complex C led to greater losses of C through respiration than the simpler C from coarser pore waters. Our research suggests that soils that experience repeated cycles of drying and wetting may be accompanied by repeated cycles of increased CO 2 fluxes that are driven by i) the transport of C from protected pools

  16. Uranium distribution in the coastal waters and pore waters of Tampa Bay, Florida

    USGS Publications Warehouse

    Swarzenski, P.W.; Baskaran, M.

    2006-01-01

    The geochemical reactivity of uranium (238U) and dissolved organic carbon (DOC), Fe, Mn, Ba, and V was investigated in the water column, pore waters, and across a river/estuarine mixing zone in Tampa Bay, Florida. This large estuary is impacted both by diverse anthropogenic activity and by extensive U-rich phosphatic deposits. Thus, the estuarine behavior of uranium may be examined relative to such known U enrichments and anthropogenic perturbations. Dissolved (< 0.45??m) uranium exhibited both removal and enrichment processes across the Alafia River/estuarine mixing zone relative to conservative mixing. Such non-conservative U behavior may be attributed to: i) physical mixing processes within the river; ii) U carrier phase reactivity; and/or iii) fluid exchange processes across sediment/water interface. In the bay proper, U concentrations were ?????2 to 3 times greater than those reported for other estuarine systems and are likely a result of erosional inputs from the extensive, underlying U-rich phosphatic deposits. Whereas dissolved U concentrations generally did not approach seawater values (13.6??nM) along the Alafia River salinity transect, water column U concentrations exceeded 16??nM in select regions of the bay. Within the hydrogeological framework of the bay, such enriched U may also be derived from advective fluid transport processes across the sediment/water interface, such as submarine groundwater discharge (SGD) or hyporheic exchange within coastal rivers. Pore water profiles of U in Tampa Bay show both a flux into and out of bottom sediments, and average, diffusive U pore water fluxes (Jdiff) ranged from - 82.0 to 116.6??mol d- 1. It is likely that negative U fluxes imply seawater entrainment or infiltration (i.e., submarine groundwater recharge), which may contribute to the removal of water column uranium. For comparison, a bay-wide, Ra-derived submarine groundwater discharge estimate for Tampa Bay (8??L m- 2 d- 1) yielded an average, advective

  17. Early cements versus pore-water chemical composition in the subsurface of the sabkha of Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Paul, Andreas; Yuan, Peng; Court, Wesley M.; Lokier, Stephen W.; Dutton, Kirsten E.; Van der Land, Cees; Lessa Andrade, Luiza; Sherry, Angela; Head, Ian M.

    2017-04-01

    The coastal sabkha of Abu Dhabi is a complex depositional system in an extremely arid climate. This depositional system is marked by the formation of primary carbonate and microbial deposits, and by the development of secondary evaporite and cement phases. A number of earlier studies have assessed the formation of these secondary phases, yet no research has established a relationship between lateral and vertical variations in the chemical composition of pore water and the nature of, in particular, the precipitating pore-filling cements, re-crystallisation features and dissolution. This study aims to establish an understanding of the environmental and sedimentary factors that control early post-depositional changes to sediment composition as a result of sediment - pore water interactions. A particular focus is to characterise changes in the chemistry of the pore water throughout a tidal cycle, aiming at understanding how the influx of 'fresh' lagoonal sea water influences the chemistry of the pore water, and which elements are replenished on a daily basis. The initial data presented here is based upon the relationship between the petrographic analysis of sediment samples and lateral and vertical variations in the chemistry of in-situ sampled pore water. The pore water is characterised with respect to pH, salinity, alkalinity, dissolved organic carbon, and the concentrations of a variety of common metallic and non-metallic elements, including (but not limited to) Ca, Fe, Mg, P, S and Sr. Initial results show that concentrations of Mg, P, and V, and the ratios Mg/Ca and Sr/Ca are highest at the seaward sampling locations. Contrastingly, individual concentrations for Ca, Sr, Fe, Si, and Cu are highest at the most landward locality. In particular the higher concentrations for Ca and Sr might indicate diagenetic processes and are thus enriched as a result of e.g. aragonite dissolution. A striking pattern in Mg concentrations show the highest values for this element

  18. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins

    USGS Publications Warehouse

    Hesse, R.; Harrison, W.E.

    1981-01-01

    The occurrence of gas hydrates in deep-water sections of the continental margins predicted from anomalous acoustic reflectors on seismic profiles has been confirmed by recent deep-sea drilling results. On the Pacific continental slope off Guatemala gas hydrates were brought up for the first time from two holes (497, 498A) drilled during Leg 67 of the DSDP in water depths of 2360 and 5500 m, respectively. The hydrates occur in organic matter-rich Pleistocene to Miocene terrigenous sediments. In the hydrate-bearing zone a marked decrease in interstitial water chlorinities was observed starting at about 10-20 m subbottom depth. Pore waters at the bottom of the holes (near 400 m subbottom) have as little as half the chlorinity of seawater (i.e. 9???). Similar, but less pronounced, trends were observed during previous legs of the DSDP in other hydrate-prone segments of the continental margins where recharge of fresh water from the continent can be excluded (e.g. Leg 11). The crystallization of hydrates, like ice, excludes salt ions from the crystal structure. During burial the dissolved salts are separated from the solids. Subsidence results in a downward motion of the solids (including hydrates) relative to the pore fluids. Thawing of hydrates during recovery releases fresh water which is remixed with the pore fluid not involved in hydrate formation. The volume of the latter decreases downhole thus causing downward decreasing salinity (chlorinity). Hydrate formation is responsible for oxygen isotope fractionation with 18O-enrichment in the hydrate explaining increasingly more positive ??18O values in the pore fluids recovered (after hydrate dissociation) with depth. ?? 1981.

  19. Pore Water Pumping by Upside-Down Jellyfish

    NASA Astrophysics Data System (ADS)

    Gaddam, Manikantam; Santhanakrishnan, Arvind

    2016-11-01

    Patchy aggregations of Cassiopea medusae, commonly called upside-down jellyfish, are found in sheltered marine environments with low-speed ambient flows. These medusae exhibit a sessile, non-swimming lifestyle, and are oriented such that their bells are attached to the substrate and oral arms point towards sunlight. Pulsations of their bells are used to generate currents for suspension feeding. Their pulsations have also been proposed to generate forces that can release sediment locked nutrients into the surrounding water. The goal of this study is to examine pore water pumping by Cassiopea individuals in laboratory aquaria, as a model for understanding pore water pumping in unsteady flows. Planar laser-induced fluorescence (PLIF) measurements were conducted to visualize the release of pore water via bell motion, using fluorescent dye introduced underneath the substrate. 2D particle image velocimetry (PIV) measurements were conducted on the same individuals to correlate PLIF-based concentration profiles with the jets generated by pulsing of medusae. The effects of varying bell diameter on pore water release and pumping currents will be discussed.

  20. Freezing and melting of water in a single cylindrical pore: The pore-size dependence of freezing and melting behavior

    NASA Astrophysics Data System (ADS)

    Morishige, Kunimitsu; Kawano, Keiji

    1999-03-01

    In order to clarify the origin of the hysteresis between freezing and melting of pore water, we performed x-ray diffraction measurements of water confined inside the cylindrical pores of seven kinds of siliceous MCM-41 (a member of ordered mesoporous materials denoted by Mobil Oil researchers) with different pore radii (1.2-2.9 nm) and the interconnected pores of Vycor glass as a function of temperature. The hysteresis effect depends markedly on the size of the cylindrical pores: the hysteresis is negligibly small in smaller pores and becomes remarkable in larger pores. This strongly suggests that the hysteresis is arisen from size-dependent supercooling of water confined to the mesopores. For the water confined to the mesopores with pore radius of 1.2 nm, a continuous transition between a liquid and a solid precedes the first-order freezing transition of the pore water which would occur by the same mechanism as in bulk water.

  1. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  2. Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Scofield, K.M.

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.

  3. Mechanics of water pore formation in lipid membrane under electric field

    NASA Astrophysics Data System (ADS)

    Bu, Bing; Li, Dechang; Diao, Jiajie; Ji, Baohua

    2017-04-01

    Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the process of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diameter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Following the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.

  4. Pore-water chemistry explains zinc phytotoxicity in soil.

    PubMed

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Pore-water chemistry from the ICDP-USGS coer hole in the Chesapeake Bay impact structure--Implications for paleohydrology, microbial habitat, and water resources

    USGS Publications Warehouse

    Sanford, Ward E.; Voytek, Mary A.; Powars, David S.; Jones, Blair F.; Cozzarelli, Isabelle M.; Eganhouse, Robert P.; Cockell, Charles S.

    2009-01-01

    We investigated the groundwater system of the Chesapeake Bay impact structure by analyzing the pore-water chemistry in cores taken from a 1766-m-deep drill hole 10 km north of Cape Charles, Virginia. Pore water was extracted using high-speed centrifuges from over 100 cores sampled from a 1300 m section of the drill hole. The pore-water samples were analyzed for major cations and anions, stable isotopes of water and sulfate, dissolved and total carbon, and bioavailable iron. The results reveal a broad transition between fresh and saline water from 100 to 500 m depth in the post-impact sediment section, and an underlying syn-impact section that is almost entirely filled with brine. The presence of brine in the lowermost post-impact section and the trend in the dissolved chloride with depth suggest a transport process dominated by molecular diffusion and slow, compaction-driven, upward flow. Major ion results indicate residual effects of diagenesis from heating, and a pre-impact origin for the brine. High levels of dissolved organic carbon (6-95 mg/L) and the distribution of electron acceptors indicate an environment that may be favorable for microbial activity throughout the drilled section. The concentration and extent of the brine is much greater than had previously been observed, suggesting its occurrence may be common in the inner crater. However, groundwater flow conditions in the structure may reduce the salt-water-intrusion hazard associated with the brine.

  6. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary

    NASA Astrophysics Data System (ADS)

    Du Laing, G.; De Vos, R.; Vandecasteele, B.; Lesage, E.; Tack, F. M. G.; Verloo, M. G.

    2008-05-01

    The effect of the flood water salinity on the mobility of heavy metals was studied for intertidal sediments of the Scheldt estuary (Belgium). Soils and sediments of 4 sampling sites were flooded with water of different salinities (0.5, 2.5, and 5 g NaCl L -1). Metal concentrations were monitored in pore water and surface water. To study the potential effects of flood water salinity on metal bioavailability, duckweed ( Lemna minor) was grown in the surface water. The salinity was found to primarily enhance the mobility of Cd and its uptake by duckweed. Cadmium concentrations in pore water of soils and sediments and surrounding surface waters significantly exceeded sanitation thresholds and quality standards during flooding of initially oxidized sediments. Moreover, the effect was observed already at lower salinities of 0.5 g NaCl L -1. This implies that risks related to Cd uptake by organisms and Cd leaching to ground water are relevant when constructing flooding areas in the brackish zones of estuaries. These risks can be reduced by inducing sulphide precipitation because Cd is then immobilised as sulphide and its mobility becomes independent of flood water salinity. This could be achieved by permanently flooding the polluted sediments, because sulphates are sufficiently available in the river water of the brackish part of the estuary.

  7. Effect of seawater salinity on pore-size distribution on a poly(styrene)-based HP20 resin and its adsorption of diarrhetic shellfish toxins.

    PubMed

    Fan, Lin; Sun, Geng; Qiu, Jiangbing; Ma, Qimin; Hess, Philipp; Li, Aifeng

    2014-12-19

    In the present study, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were spiked into artificial seawater at low, medium and high estuarine salinities (9‰, 13.5‰ and 27‰). Passive samplers (HP20 resin) used for solid phase adsorption toxin tracking (SPATT) technology were exposed in these seawaters for 12-h periods. Adsorption curves well fitted a pseudo-secondary kinetics model. The highest initial sorption rates of both toxins occurred in the seawater of medium salinity, followed by seawater of low and high estuarine salinity. Pore volumes of micropores (<2 nm) and small mesopores (2 nmsalinity but not in seawater at medium salinity, which demonstrated that the toxin molecules entered into micropores and mesopores (below 10nm in size) in seawaters of high and low salinity. More toxin or other matrix agglomerates were displayed on the surface of resin deployed in the seawater of medium salinity. Taking into consideration the pore-size distribution and surface images, it appears that intra-particle diffusion governs toxin adsorption in seawater at high salinity while film diffusion mainly controls the adsorption process in seawater at medium salinity. This is the first study to confirm that molecules of OA and DTX1 are able to enter into micropores (<2nm) and small mesopores (2-10nm) of HP20 resin in estuarine seawater with high salinity (∼27‰). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Pore-water chemistry from the ICDP-USGS core hole in the Chesapeake Bay impact structure-Implications for paleohydrology, microbial habitat, and water resources

    USGS Publications Warehouse

    Sanford, W.E.; Voytek, M.A.; Powars, D.S.; Jones, B.F.; Cozzarelli, I.M.; Cockell, C.S.; Eganhouse, R.P.

    2009-01-01

    We investigated the groundwater system of the Chesapeake Bay impact structure by analyzing the pore-water chemistry in cores taken from a 1766-m-deep drill hole 10 km north of Cape Charles, Virginia. Pore water was extracted using high-speed centrifuges from over 100 cores sampled from a 1300 m section of the drill hole. The pore-water samples were analyzed for major cations and anions, stable isotopes of water and sulfate, dissolved and total carbon, and bioavailable iron. The results reveal a broad transition between freshwater and saline water from 100 to 500 m depth in the postimpact sediment section, and an underlying synimpact section that is almost entirely filled with brine. The presence of brine in the lowermost postimpact section and the trend in dissolved chloride with depth suggest a transport process dominated by molecular diffusion and slow, compaction-driven, upward flow. Major ion results indicate residual effects of diagenesis from heating, and a pre-impact origin for the brine. High levels of dissolved organic carbon (6-95 mg/L) and the distribution of electron acceptors indicate an environment that may be favorable for microbial activity throughout the drilled section. The concentration and extent of the brine is much greater than had previously been observed, suggesting that its occurrence may be common in the inner crater. However, groundwater-flow conditions in the structure may reduce the saltwater-intrusion hazard associated with the brine. ?? 2009 The Geological Society of America.

  9. A vacuum-operated pore-water extractor for estuarine and freshwater sediments

    USGS Publications Warehouse

    Winger, Parley V.; Lasier, Peter J.

    1991-01-01

    A vacuum-operated pore-water extractor for estuarine and freshwater sediments was developed and constructed from a fused-glass air stone attached with aquarium airline tubing to a 30 or 60 cc polypropylene syringe. Pore water is extracted by inserting the air stone into the sediment and creating a vacuum by retracting and bracing the syringe plunger. A hand-operated vacuum pump attached to a filtration flask was also evaluated as an alternative vacuum source. The volume and time to extract pore water varies with the number of devices and the sediment particle size. Extraction time is longer for fine sediments than for sandy sediments. Four liters of sediment generally yield between 500 and 1,500 mL of pore water. The sediment that surrounds and accumulates on the air stone acts as a filter, and, except for the first few milliliters, the collected pore water is clear. Because there is no exposure to air or avenue for escape, volatile compounds andin situ characteristics are retained in the extracted pore water.

  10. Transformation of chlorpyrifos and chlorpyrifos-methyl in prairie pothole pore waters.

    PubMed

    Adams, Rachel M; McAdams, Brandon C; Arnold, William A; Chin, Yu-Ping

    2016-11-09

    Non-point source pesticide pollution is a concern for wetlands in the prairie pothole region (PPR). Recent studies have demonstrated that reduced sulfur species (e.g., bisulfide and polysulfides) in PPR wetland pore waters directly undergo reactions with chloroacetanilide and dinitroaniline compounds. In this paper, the abiotic transformation of two organophosphate compounds, chlorpyrifos and chlorpyrifos-methyl, was studied in PPR wetland pore waters. Chlorpyrifos-methyl reacted significantly faster (up to 4 times) in pore water with reduced sulfur species relative to hydrolysis. No rate enhancement was observed in the transformation of chlorpyrifos in pore water with reduced sulfur species. The lack of reactivity was most likely caused by steric hindrance from the ethyl groups and partitioning to dissolved organic matter (DOM), thereby shielding chlorpyrifos from nucleophilic attack. Significant decreases in reaction rates were observed for chlorpyrifos in pore water with high concentrations of DOM. Rate enhancement due to other reactive species (e.g., organo-sulfur compounds) in pore water was minor for both compounds relative to the influence of bisulfide and DOM.

  11. Effects of a Storm-Surge Related Salinity Decrease on Greenhouse Gas Emissions in Tidal Salt Marsh Mesocosms

    NASA Astrophysics Data System (ADS)

    Capooci, M.; Barba, J.; Seyfferth, A.; Vargas, R.

    2017-12-01

    Salt marshes, along with mangrove forests and seagrass beds, are capable of sequestering large quantities of carbon. Additionally, salt marshes are resilient ecosystems, capable of quickly recovering from disturbances. However, very little is known about how carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ammonia (NH3) fluxes from wetland soils, in addition to pore water chemistry, change with a disturbance event such as a storm surge. Using soil mesocosms from St. Jones Reserve, a National Estuarine Research Reserve, and site-specific water salinity data, we conducted a laboratory experiment that recreated the changes in salinity associated with a storm event and compared them to soils flooded with the mean annual salinity of the St. Jones River. Control and treatment were done in triplicate. We controlled for variations in temperature (set at 21°C) and all cores maintained similar flooded conditions. Treatment included a decrease in salinity based on historic values during storm events (i.e. Hurricane Joaquin). Greenhouse gas (GHG; CO2, CH4, N2O, NH3) emissions were measured hourly using automated chambers. Pore water was collected every day to every other day and analyzed for a variety of parameters, including Fe2+, S2-, SO42-, and NO3-. Auxiliary measurements, such as soil temperature, moisture, and oxygen levels, in addition to pore water salinity, were also taken to ensure that proper conditions were maintained. We found significant increases in CO2, CH4, and N2O emissions when comparing the treatment (lowered salinity) to the control. We found also differences in pore water chemistry between treatment phases, particularly in Fe2+. The results of this experiment have implications for GHG dynamics in salt marsh ecosystems, showcasing the need to measure GHG emissions during and after storm events. This study provides insights into how changes in salinity affect GHG emissions in salt marshes, as well as how ecosystem dynamics respond to a

  12. Displacement of soil pore water by trichloroethylene

    USGS Publications Warehouse

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  13. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  14. Transport of water molecules through noncylindrical pores in multilayer nanoporous graphene.

    PubMed

    Shahbabaei, Majid; Kim, Daejoong

    2017-08-09

    In this study, molecular dynamics (MD) simulations are used to examine the water transport properties through asymmetric hourglass-shaped pores in multilayer nanoporous graphene with a constant interlayer separation of 6 Å. The properties of the tested asymmetric hourglass-shaped pores [with the models having long cone (l 1 , -P) and short cone (l 2 , +P) entrances] are compared to a symmetric pore model. The study findings indicate that the water occupancy increases across the asymmetric pore (l 1 , -P) compared to (l 2 , +P), because of the length effect. The asymmetric pore, (l 1 , -P), yields higher flux compared to (l 2 , +P) and even the symmetric model, which can be attributed to the increase in the hydrogen bonds. In addition, the single-file water molecules across the narrowest pore diameter inside the (l 2 , +P) pore exhibit higher viscosity compared to those in the (l 1 , -P) pore because of the increase in the water layering effect. Moreover, it is found that the permeability inside the multilayer hourglass-shaped pore depends on the length of the flow path of the water molecules before approaching the layer with the smallest pore diameter. The probability of dipole orientation exhibits wider distribution inside the (l 1 , -P) system compared to (l 2 , +P), implying an enhanced formation of hydrogen bonding of water molecules. This results in the fast flow of water molecules. The MD trajectory shows that the dipole orientation across the single-layer graphene has frequently flipped compared to the dipole orientation across the pores in multilayer graphene, which is maintained during the whole simulation time (although the dipole orientation has flipped for a few picoseconds at the beginning of the simulation). This can be attributed to the energy barrier induced by the individual layer. The diffusion coefficient of water molecules inside the (l 2 , +P) system increases with pressure difference, however, it decreases inside the (l 1 , -P) system because

  15. Invariance of single-file water mobility in gramicidin-like peptidic pores as function of pore length.

    PubMed

    Portella, Guillem; Pohl, Peter; de Groot, Bert L

    2007-06-01

    We investigated the structural and energetic determinants underlying water permeation through peptidic nanopores, motivated by recent experimental findings that indicate that water mobility in single-file water channels displays nonlinear length dependence. To address the molecular mechanism determining the observed length dependence, we studied water permeability in a series of designed gramicidin-like channels of different length using atomistic molecular dynamics simulations. We found that within the studied range of length the osmotic water permeability is independent of pore length. This result is at variance with textbook models, where the relationship is assumed to be linear. Energetic analysis shows that loss of solvation rather than specific water binding sites in the pore form the main energetic barrier for water permeation, consistent with our dynamics results. For this situation, we propose a modified expression for osmotic permeability that fully takes into account water motion collectivity and does not depend on the pore length. Different schematic barrier profiles are discussed that explain both experimental and computational interpretations, and we propose a set of experiments aimed at validation of the presented results. Implications of the results for the design of peptidic channels with desired permeation characteristics are discussed.

  16. Pore Water Transport of Enterococci out of Beach Sediments

    PubMed Central

    Phillips, Matthew C.; Solo-Gabriele, Helena M.; Reniers, Adrianus J. H. M.; Wang, John D.; Kiger, Russell T.; Abdel-Mottaleb, Noha

    2011-01-01

    Enterococci are used to evaluate the safety of beach waters and studies have identified beach sands as a source of these bacteria. In order to study and quantify the release of microbes from beach sediments, flow column systems were built to evaluate flow of pore water out of beach sediments. Results show a peak in enterococci (average of 10% of the total microbes in core) released from the sand core within one pore water volume followed by a marked decline to below detection. These results indicate that few enterococci are easily removed and that factors other than simple pore water flow control the release of the majority of enterococci within beach sediments. A significantly larger quantity and release of enterococci were observed in cores collected after a significant rain event suggesting the influx of fresh water can alter the release pattern as compared to cores with no antecedent rainfall. PMID:21945015

  17. Use of saline water in energy development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israelsen, C.E.; Adams, V.D.; Batty, J.C.

    1980-06-01

    Maps were made of the Upper Colorado River Basin showing locations of coal deposits, oil and gas, oil shale, uranium, and tar sand, in relationship to cities and towns in the area. Superimposed on these are locations of wells showing four ranges of water quality; 1000 to 3000 mg/l, 3000 to 10,000 mg/l, 10,000 to 35,000 mg/l, and over 35,000 mg/l. Information was assembled relative to future energy-related projects in the upper basin, and estimates were made of their anticipated water needs. Using computer models, various options were tested for using saline water for coal-fired power plant cooling. Both coolingmore » towers and brine evaporation ponds were included. Information is presented of several proven water treatment technologies, and comparisons are made of their cost effectiveness when placed in various combinations in the power plant makeup and blowdown water systems. A relative value scale was developed which compares graphically the relative values of waters of different salinities based on three different water treatment options and predetermined upper limits of cooling tower circulating salinities. Coal from several different mines was slurried in waters of different salinities. Samples were analyzed in the laboratory to determine which constituents had been leached from or absorbed by the coal, and what possible deleterious effects this might have on the burning properties of the coal, or on the water for culinary use or irrigation.« less

  18. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    DOE PAGES

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less

  19. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use

    NASA Astrophysics Data System (ADS)

    Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida

    2014-05-01

    In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.

  20. The influence of extraction procedure on ion concentrations in sediment pore water

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1998-01-01

    Sediment pore water has the potential to yield important information on sediment quality, but the influence of isolation procedures on the chemistry and toxicity are not completely known and consensus on methods used for the isolation from sediment has not been reached. To provide additional insight into the influence of collection procedures on pore water chemistry, anion (filtered only) and cation concentrations were measured in filtered and unfiltered pore water isolated from four sediments using three different procedures: dialysis, centrifugation and vacuum. Peepers were constructed using 24-cell culture plates and cellulose membranes, and vacuum extractors consisted of fused-glass air stones attached with airline tubing to 60cc syringes. Centrifugation was accomplished at two speeds (2,500 and 10,000 x g) for 30 min in a refrigerated centrifuge maintained at 4?C. Only minor differences in chemical characteristics and cation and anion concentrations were found among the different collecting methods with differences being sediment specific. Filtering of the pore water did not appreciably reduce major cation concentrations, but trace metals (Cu and Pb) were markedly reduced. Although the extraction methods evaluated produced pore waters of similar chemistries, the vacuum extractor provided the following advantages over the other methods: (1) ease of extraction, (2) volumes of pore water isolated, (3) minimal preparation time and (4) least time required for extraction of pore water from multiple samples at one time.

  1. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1986-01-01

    Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.

  2. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Gorelick, Steven M.

    2016-03-01

    Physical, chemical, and biological factors influence vegetation zonation in salt marshes and other wetlands, but connections among these factors could be better understood. If salt marsh vegetation and marsh pore water geochemistry coorganize, e.g., via continuous plant water uptake and persistently unsaturated sediments controlling vegetation zone-specific pore water geochemistry, this could complement known physical mechanisms of marsh self-organization. A high-resolution survey of pore water geochemistry was conducted among five salt marsh vegetation zones at the same intertidal elevation. Sampling transects were arrayed both parallel and perpendicular to tidal channels. Pore water geochemistry patterns were both horizontally differentiated, corresponding to vegetation zonation, and vertically differentiated, relating to root influences. The geochemical patterns across the site were less broadly related to marsh hydrology than to vegetation zonation. Mechanisms contributing to geochemical differentiation included: root-induced oxidation and nutrient (P) depletion, surface and creek-bank sediment flushing by rainfall or tides, evapotranspiration creating aerated pore space for partial sediment flushing in some areas while persistently saturated conditions hindered pore water renewal in others, and evapoconcentration of pore water solutes overall. The concentrated pore waters draining to the tidal creeks accounted for 41% of ebb tide solutes (median of 14 elements), including being a potentially toxic source of Ni but a slight sink for Zn, at least during the short, winter study period in southern San Francisco Bay. Heterogeneous vegetation effects on pore water geochemistry are not only significant locally within the marsh but may broadly influence marsh-estuary solute exchange and ecology.

  3. Pore-scale dynamics of salt transport in drying porous media

    NASA Astrophysics Data System (ADS)

    Shokri, N.

    2013-12-01

    Understanding the physics of water evaporation from saline porous media is important in many hydrological processes such as land-atmosphere interactions, water management, vegetation, soil salinity, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 microns and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron X-rays energies immediately above (33.2690 keV) and below (33.0690 keV) the K-edge value of Iodine (33.1694 keV). Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. The experiment was continued for 12 hours. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. The Peclet number (describing the competition between convection and diffusion) was greater than one in our experiment resulting in higher salt concentrations closer to the evaporation surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and

  4. Claudin-2-mediated cation and water transport share a common pore

    PubMed Central

    Rosenthal, Rita; Günzel, Dorothee; Krug, Susanne M.; Schulzke, Jörg-Dieter; Fromm, Michael; Yu, Alan S.L.

    2016-01-01

    Aim Claudin-2 is a tight junction protein typically located in “leaky” epithelia exhibiting large paracellular permeabilities like small intestine and proximal kidney tubule. Former studies revealed that claudin-2 forms paracellular channels for small cations like sodium and potassium and also paracellular channels for water. This study analyzes whether the diffusive transport of sodium and water occurs through a common pore of the claudin-2 channel. Methods Wild-type claudin-2 and different claudin-2 mutants were expressed in MDCK I kidney tubule cells using an inducible system. Ion and water permeability and the effect of blocking reagents on both were investigated on different clones of the mutants. Results Neutralization of a negatively charged cation interaction site in the pore with the mutation, D65N, decreased both, sodium permeability and water permeability. Claudin-2 mutants (I66C and S68C) with substitution of the pore-lining amino acids with cysteine were used to test the effect of steric blocking of the claudin-2 pore by thiol-reactive reagents. Addition of thiol-reactive reagents to these mutants simultaneously decreased conductance and water permeability. Remarkably, all experimental perturbations caused parallel changes in ion conductance and water permeability, disproving different or independent passage pathways. Conclusion Our results indicate that claudin-2-mediated cation and water transport are frictionally coupled and share a common pore. This pore is lined and determined in permeability by amino acid residues of the first extracellular loop of claudin-2. PMID:27359349

  5. Use of saline water in energy development. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israelsen, C.E.; Adams, V.D.; Batty, J.C.

    1980-06-01

    Information was assembled relative to future energy-related projects in the upper basin, and estimates were made of their anticipated water needs. Using computer models, various options were tested for using saline water for coal-fired power plant cooling. Both cooling towers and brine evaporation ponds were included. Information is presented of several proven water treatment technologies, and comparisons are made of their cost effectiveness when placed in various combinations in the power plant makeup and blowdown water systems. A relative value scale was developed which compares graphically the relative values of waters of different salinities based on three different water treatmentmore » options and predetermined upper limits of cooling tower circulating salinities. Coal from several different mines was slurried in waters of different salinities. Samples were analyzed in the laboratory to determine which constituents had been leached from or absorbed by the coal, and what possible deleterious effects this might have on the burning properties of the coal, or on the water for culinary use or irrigation.« less

  6. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model

    NASA Astrophysics Data System (ADS)

    Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.

    2017-10-01

    We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.

  7. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  8. Density profile of water confined in cylindrical pores in MCM-41 silica.

    PubMed

    Soper, Alan K

    2012-02-15

    Recently, water absorbed in the porous silica material MCM-41-S15 has been used to demonstrate an apparent fragile to strong dynamical crossover on cooling below ∼220 K, and also to claim that the density of confined water reaches a minimum at a temperature around 200 K. Both of these behaviours are purported to arise from the crossing of a Widom line above a conjectured liquid-liquid critical point in bulk water. Here it is shown that traditional estimates of the pore diameter in this porous silica material (of order 15 Å) are too small to allow the amount of water that is observed to be absorbed by these materials (around 0.5 g H(2)O/g substrate) to be absorbed only inside the pore. Either the additional water is absorbed on the surface of the silica particles and outside the pores, or else the pores are larger than the traditional estimates. In addition the low Q Bragg intensities from a sample of MCM-41-S15 porous silica under different dry and wet conditions and with different hydrogen isotopes are simulated using a simple model of the water and silica density profile across the pore. It is found the best agreement of these intensities with experimental data is shown by assuming the much larger pore diameter of 25 Å (radius 12.5 Å). Qualitative agreement is found between these simulated density profiles and those found in recent empirical potential structure refinement simulations of the same data, even though the latter data did not specifically include the Bragg peaks in the structure refinement. It is shown that the change in the (100) peak intensity on cooling from 300 to 210 K, which previously has been ascribed to a change in density of the confined water on cooling, can equally be ascribed to a change in density profile at constant average density. It is further pointed out that, independent of whether the pore diameter really is as large as 25 Å or whether a significant amount of water is absorbed outside the pore, the earlier reports of a

  9. Rapid Shifts in Oxygen and Hydrogen Isotopes, and Chemical Components in Pore Waters During mid-Oligocene in Sediments from IODP 351drilling

    NASA Astrophysics Data System (ADS)

    Zhang, Z.

    2017-12-01

    A total of 65 pore water samples were obtained from a sediment sequence in the Amami-Sankaku Basin during the IODP 351 Expedition, which consists of a 160 m thick section of terrestrial origin and underlying 1.3 km thick volcaniclastic section sampled at site U1438. Downcore variations of chemical compositions are characterized by increasing salinity/pH, increasing concentrations of Cl and Ca, and decreasing concentrations of Mg, K and Na, as well as decreasing d18O and dD. The rapid changes in those chemical components and isotopic composition occurred deeper than the lithology boundary between Unit III and Unit II, most likely as a result of substantial difference in extent of alteration above and below this boundary. The strong alterations of volcanicalstic minerals below the boundary not only result in diminishment of K, Mg, Si, and Mn, and an increase of Ca and Cl, but also depleted d18O in pore water. However, hydrogen fractionation factors between pore water and secondary minerals are less 1, and depleted dD values in pore water most likely reflect the signal of paleo-seawater. As a result, samples below the boundary are all plotted on the left side of the meteorite water line (MWL) on the dD vs. d18O plot. Above the boundary, they are placed to the right side of MWL due to substantially weakened alteration, reflecting an evolving trend in sediment setting from the predominance of alterated volcaniclasts to terrestrial pelagic sediments.

  10. A multi-level pore-water sampler for permeable sediments

    USGS Publications Warehouse

    Martin, J.B.; Hartl, K.M.; Corbett, D.R.; Swarzenski, P.W.; Cable, J.E.

    2003-01-01

    The construction and operation of a multi-level piezometer (multisampler) designed to collect pore water from permeable sediments up to 230 cm below the sediment-water interface is described. Multisamplers are constructed from 1 1/2 inch schedule 80 PVC pipe. One-quarter-inch flexible PVC tubing leads from eight ports at variable depths to a 1 1/2 inch tee fitting at the top of the PVC pipe. Multisamplers are driven into the sediments using standard fence-post drivers. Water is pumped from the PVC tubing with a peristaltic pump. Field tests in Banana River Lagoon, Florida, demonstrate the utility of multisamplers. These tests include collection of multiple samples from the permeable sediments and reveal mixing between shallow pore water and overlying lagoon water.

  11. Two innovative pore pressure calculation methods for shallow deep-water formations

    NASA Astrophysics Data System (ADS)

    Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei

    2017-11-01

    There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.

  12. Sedimentary and pore water geochemistry linked to deglaciation and postglacial development of Lake Vättern, Sweden

    NASA Astrophysics Data System (ADS)

    Swärd, Henrik; O´Regan, Matt; Kylander, Malin; Greenwood, Sarah; Mörth, Magnus; Jakobsson, Martin

    2017-04-01

    Lake Vättern, in south central Sweden, underwent profound environmental changes during the Late Weichselian deglaciation of Fennoscandia. It evolved from (i) a sub/proglacial lake situated at the westernmost rim of the Baltic Ice Lake (BIL) into (ii) a brackish to marine phase where the Vättern basin was a part of the Yoldia Sea connecting the North and Baltic Seas, and finally to (iii) a freshwater basin as isostatic rebound following deglaciation led to its isolation. The sedimentary and pore water geochemical signatures associated with these dramatic environmental changes were investigated in a 74 m composite sediment core from southern Lake Vättern. This was accomplished using high-resolution X-ray fluorescence measurements of elemental data along with discrete measurements of total organic carbon (TOC), δ13C, mineralogical composition (XRD) and pore water chemistry. Proglacial sediments in Lake Vättern are devoid of organic matter, and show cyclic trends in elemental data, grain size and mineralogy. These are interpreted as varved sediments whose thickness decreases upcore from decimeters to millimeters. The coarse grained varves are enriched in Ca, Si, Zr and Sr and contain calcite while the fine grained varves are enriched in K, Rb, Ti and Fe and lack calcite. Overall, the presence of calcite is limited to the proglacial sediments and reflected in the elemental data by an abrupt decrease of Ca at the (i)/(ii) transition. This suggests a glacial/glaciofluvial origin for the calcite, likely eroded from local limestones that borders the lake basin in the northeast. The saline incursion at the beginning of phase (ii) is evident in pore water chemistry by a significant increase of the major sea water species (Cl, Na, Mg, K and Ca) but is not clearly seen in the sedimentary geochemistry. Increased biological production in and around the lake during stage (iii) is strongly reflected in sedimentary geochemistry showing decreasing detrital inputs, increasing TOC

  13. Molecular Dynamic Simulation of Water Vapor and Determination of Diffusion Characteristics in the Pore

    NASA Astrophysics Data System (ADS)

    Nikonov, Eduard G.; Pavluš, Miron; Popovičová, Mária

    2018-02-01

    One of the varieties of pores, often found in natural or artificial building materials, are the so-called blind pores of dead-end or saccate type. Three-dimensional model of such kind of pore has been developed in this work. This model has been used for simulation of water vapor interaction with individual pore by molecular dynamics in combination with the diffusion equation method. Special investigations have been done to find dependencies between thermostats implementations and conservation of thermodynamic and statistical values of water vapor - pore system. The two types of evolution of water - pore system have been investigated: drying and wetting of the pore. Full research of diffusion coefficient, diffusion velocity and other diffusion parameters has been made.

  14. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    PubMed

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  15. Effects of saline drinking water on early gosling development

    USGS Publications Warehouse

    Stolley, D.S.; Bissonette, J.A.; Kadlec, J.A.; Coster, D.

    1999-01-01

    Relatively high levels of saline drinking water may adversely affect the growth, development, and survival of young waterfowl. Saline drinking water was suspect in the low survival rate of Canada goose (Branta canadensis) goslings at Fish Springs National Wildlife Refuge (FSNWR) in western Utah. Hence, we investigated the effects of saline drinking water on the survival and growth of captive, wild-strain goslings from day 1-28 following hatch. We compared survival and growth (as measured by body mass, wing length, and culmen length) between a control group on tap water with a mean specific conductivity of 650 ??S/cm, and 2 saline water treatments: (1) intermediate level (12,000 ??S/cm), and (2) high level (18,000 ??S/cm). Gosling mortality occurred only in the 18,000 ??S/cm treatment group (33%; n = 9). Slopes of regressions of mean body mass, wing length, and culmen length on age were different from each other (P < 0.05), except for culmen length for the intermediate and high treatment levels. We predict that free-ranging wild goslings will experience mortality at even lower salinity levels than captive goslings because of the combined effects of depressed growth and environmental stresses, including hot desert temperatures and variable food quality over summer.

  16. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  17. Porewater salinity reveals past lake-level changes in Lake Van, the Earth's largest soda lake.

    PubMed

    Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Kwiecien, Olga; Randlett, Marie-Ève; Stockhecke, Mona; Unwin, Katie; Anselmetti, Flavio S; Beer, Jürg; Haug, Gerald H; Schubert, Carsten J; Sturm, Mike; Kipfer, Rolf

    2017-03-22

    In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about -200 m at about 30 ka BP during the last ice age.

  18. High-performance ionic diode membrane for salinity gradient power generation.

    PubMed

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  19. Direct pore-scale reactive transport modelling of dynamic wettability changes induced by surface complexation

    NASA Astrophysics Data System (ADS)

    Maes, Julien; Geiger, Sebastian

    2018-01-01

    Laboratory experiments have shown that oil production from sandstone and carbonate reservoirs by waterflooding could be significantly increased by manipulating the composition of the injected water (e.g. by lowering the ionic strength). Recent studies suggest that a change of wettability induced by a change in surface charge is likely to be one of the driving mechanism of the so-called low-salinity effect. In this case, the potential increase of oil recovery during waterflooding at low ionic strength would be strongly impacted by the inter-relations between flow, transport and chemical reaction at the pore-scale. Hence, a new numerical model that includes two-phase flow, solute reactive transport and wettability alteration is implemented based on the Direct Numerical Simulation of the Navier-Stokes equations and surface complexation modelling. Our model is first used to match experimental results of oil droplet detachment from clay patches. We then study the effect of wettability change on the pore-scale displacement for simple 2D calcite micro-models and evaluate the impact of several parameters such as water composition and injected velocity. Finally, we repeat the simulation experiments on a larger and more complex pore geometry representing a carbonate rock. Our simulations highlight two different effects of low-salinity on oil production from carbonate rocks: a smaller number of oil clusters left in the pores after invasion, and a greater number of pores invaded.

  20. Dynamics of water in the amphiphilic pore of amyloid β fibrils

    NASA Astrophysics Data System (ADS)

    GhattyVenkataKrishna, Pavan K.; Mostofian, Barmak

    2013-09-01

    Alzheimers disease related amyloid peptide, Aβ, forms a fibrillar structure through aggregation. The aggregate is stabilized by a salt bridge that is responsible for the formation of an amphiphilic pore that can accommodate water molecules. None of the reported structures of Aβ, however, contain water. We present results from molecular dynamics simulations on dimeric Aβ fibrils solvated in water. Water penetrates and fills the amphiphilic pore increasing its volume. We observe a thick wire of water that is translationally and rotationally stiff in comparison to bulk water and may be essential for the stabilization of the amyloid Aβ protein.

  1. Thermodynamics of saline and fresh water mixing in estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  2. Modelling Regional Hotspots of Water Pollution Induced by Salinization

    NASA Astrophysics Data System (ADS)

    Malsy, M.; Floerke, M.

    2014-12-01

    Insufficient water quality is one of the main global topics causing risk to human health, biodiversity, and food security. At this, salinization of water and land resources is widely spread especially in arid to semi-arid climates, where salinization, often induced by irrigation agriculture, is a fundamental aspect of land degradation. High salinity is crucial to water use for drinking, irrigation, and industrial purposes, and therefore poses a risk to human health and ecosystem status. However, salinization is also an economic problem, in particular in those regions where agriculture makes a significant contribution to the economy and/or where agriculture is mainly based on irrigation. Agricultural production is exposed to high salinity of irrigation water resulting in lower yields. Hence, not only the quantity of irrigation water is of importance for growing cops but also its quality, which may further reduce the available resources. Thereby a major concern for food production and security persists, as irrigated agriculture accounts for over 30% of the total agricultural production. In this study, the large scale water quality model WorldQual was applied to simulate recent total dissolved solids (TDS) loadings and in-stream concentrations from point and diffuse sources to get an insight on potential environmental impacts as well as risks to food security. Regional focus in this study is on developing countries, as these are most threatened by water pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use were examined, indicating limitations to crop production. For this purpose, model simulations were conducted for the year 2010 to show the recent status of surface water quality and to identify hotspots and main causes of pollution. Our results show that salinity hotspots mainly occur in peak irrigation regions as irrigated agriculture is by far the dominant sector contributing to water abstractions as

  3. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    PubMed

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  4. Ocean Salinity Variance and the Global Water Cycle.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. W.

    2012-12-01

    Ocean salinity variance is increasing and appears to be an indicator of rapid change in the global water cycle. While the small terrestrial water cycle does not reveal distinct trends, in part due to strong manipulation by civilization, the much larger oceanic water cycle seems to have an excellent proxy for its intensity in the contrasts in sea surface salinity (SSS). Change in the water cycle is arguably the most important challenge facing mankind. But how well do we understand the oceanic response? Does the ocean amplify SSS change to make it a hyper-sensitive indicator of change in the global water cycle? An overview of the research challenges to the oceanographic community for understanding the dominant component of the global water cycle is provided.

  5. Water permeability in hydrate-bearing sediments: A pore-scale study

    NASA Astrophysics Data System (ADS)

    Dai, Sheng; Seol, Yongkoo

    2014-06-01

    Permeability is a critical parameter governing methane flux and fluid flow in hydrate-bearing sediments; however, limited valid data are available due to experimental challenges. Here we investigate the relationship between apparent water permeability (k') and hydrate saturation (Sh), accounting for hydrate pore-scale growth habit and meso-scale heterogeneity. Results from capillary tube models rely on cross-sectional tube shapes and hydrate pore habits, thus are appropriate only for sediments with uniform hydrate distribution and known hydrate pore character. Given our pore network modeling results showing that accumulating hydrate in sediments decreases sediment porosity and increases hydraulic tortuosity, we propose a modified Kozeny-Carman model to characterize water permeability in hydrate-bearing sediments. This model agrees well with experimental results and can be easily implemented in reservoir simulators with no empirical variables other than Sh. Results are also relevant to flow through other natural sediments that undergo diagenesis, salt precipitation, or bio-clogging.

  6. Multi-isotope (C - O - S - H - B - Mg - Ca - Ba) and trace element variations along a vertical pore water profile across a brackish-fresh water transition, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Böttcher, Michael E.; Lapham, Laura; Gussone, Nikolaus; Struck, Ulrich; Buhl, Dieter; Immenhauser, Adrian; Moeller, Kirsten; Pretet, Chloé; Nägler, Thomas F.; Dellwig, Olaf; Schnetger, Bernhard; Huckriede, Hermann; Halas, Stan; Samankassou, Elias

    2013-04-01

    The Holocene Baltic Sea has been switched several times between fresh water and brackish water modes. Modern linear sedimentation rates, based on 210-Pb, 137-Cs, and Hg dating of surface sediments, are between 0.1 and 0.2 mm per year. The change in paleo-environmental conditions caused downcore gradients in the concentrations of dissolved species from modern brackish waters towards fresh paleo-pore waters, interrupted by the brief brackish Yoldia stage. These strong physico-chemical changes had consequences for e.g., microbial activity and further physical and chemical water-solid interactions associated with multiple stable isotope fractionation processes, and, in turn, have strong implications for isotope and trace element partitioning upon early diagenetic mineral (trans)formations. In this communication, we present the results from the first integrated multi-isotope and trace element investigation conducted in this type of salinity-gradient system. It is found that concentrations of conservative elements (e.g., Na, Cl) decrease with depth due to diffusion of ions from brackish waters into underlying fresh waters. This is associated with pronounced depletions in H-2 and O-18 of pore water with depth. Covariations of both isotope systems are close to the meteoric water line as defined by modern Baltic Sea surface waters. A downward increase and decrease of Ca and Mg concentrations, respectively, is associated with decreasing Ca-44 and Mg-26 isotope values. B-11 isotope values decrease in the limnic part of the sediments, too. On the other hand, an increase in Ba concentrations with depth is associated with an increase in Ba-137/134 isotope values. Microbial sulfate reduction and organic matter oxidation lead to an increase in DIC, but a decrease in sulfate concentrations and in C-13 contents of DIC with depth. Suess (1981) was probably the first to propose, that desorption of Ca and Ba from glacial sediments due to downward diffusing ions may be responsible for a

  7. Saline-water intrusion related to well construction in Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride

  8. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    PubMed

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  9. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    NASA Astrophysics Data System (ADS)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  10. Pore-scale distribution of mucilage affecting water repellency in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Zarebanadkouki, Mohsen; Hedwig, Clemens; Holz, Maire; Ahmed, Mutez; Carminati, Andrea

    2017-04-01

    The hydraulic properties of the rhizosphere are altered by plants, fungi and microorganism. Plant roots release different compounds into the soil. One of these substances is mucilage, a gel which turns water repellent upon drying. We introduce a conceptual model of mucilage deposition during soil drying and its impact on the soil wettability. As the soil dries, water menisci recede and draw mucilage towards the contact region between particles where it is deposited. At high mucilage content, mucilage deposits expand into the open pore space and finally block water infiltration when a critical fraction of the pore space is blocked. To test this hypothesis, we mixed mucilage and particles of different grain size, we let them dry and measured the contact angle using the sessile drop method. Mucilage deposition was visualized by light microscopy imaging. Contact angle measurements showed a distinct threshold-like behavior with a sudden increase in apparent contact angle at high mucilage concentrations. Particle roughness induced a more uniform distribution of mucilage. The observed threshold corresponds to the concentration when mucilage deposition occupies a critical fraction of the pore space, as visualized with the microscope images. In conclusion, water repellency is critically affected by the distribution of mucilage on the pore-scale. This microscopic heterogeneity has to be taken into account in the description of macroscopic processes, like water infiltration or rewetting of water repellent soil.

  11. Mediterranean sea water budget long-term trend inferred from salinity observations

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Zika, J. D.; Herold, L.; Josey, S. A.; Marsh, R.

    2018-01-01

    Changes in the Mediterranean water cycle since 1950 are investigated using salinity and reanalysis based air-sea freshwater flux datasets. Salinity observations indicate a strong basin-scale multi-decadal salinification, particularly in the intermediate and deep layers. Evaporation, precipitation and river runoff variations are all shown to contribute to a very strong increase in net evaporation of order 20-30%. While large temporal uncertainties and discrepancies are found between E-P multi-decadal trend patterns in the reanalysis datasets, a more robust and spatially coherent structure of multi-decadal change is obtained for the salinity field. Salinity change implies an increase in net evaporation of 8 to 12% over 1950-2010, which is considerably lower than that suggested by air-sea freshwater flux products, but still largely exceeding estimates of global water cycle amplification. A new method based on water mass transformation theory is used to link changes in net evaporation over the Mediterranean Sea with changes in the volumetric distribution of salinity. The water mass transformation distribution in salinity coordinates suggests that the Mediterranean basin salinification is driven by changes in the regional water cycle rather than changes in salt transports at the straits.

  12. Polymer tensiometers in a saline environment.

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Gooren, H. P. A.; Bakker, G.; Russell, W.; Hoogendam, C. W.; Huiskes, C.; Shouse, P.; de Rooij, G. H.

    2010-05-01

    It is estimated that 20% of all cultivated land and nearly half of the irrigated land is salt-affected, which pose major economic and environmental problems. Salinity may be the result of two processes; dryland and irrigation salinity. Dryland salinity is caused by a rise in the groundwater table, which occurs as a result of the replacement of deep-rooted, perennial native vegetation by shallow-rooted annual species meant for production. Irrigation salinity may occur as a result of poor water quality, poor drainage, or inefficient use of water. Consequently, new strategies to enhance crop yield stability on saline soils represent a major research priority (Botella et al. 2005). At the same time, native vegetation is capable of thriving under saline and/or dry conditions. The plant physiology of such vegetation has been investigated thoroughly, but the relation with in situ soil properties (soil moisture and salinity) may be more difficult to unravel as soil moisture sensors are less sensitive in dry soil, and the signal of most soil moisture content sensors is strongly attenuated by soil salinity. Recently, polymer tensiometer were developed that are able to measure matric potentials (closely related to a soil's moisture status) in dry soils. Polymer tensiometers consist of a solid ceramic, a stainless steel cup and a pressure transducer. The ceramic consist of a support layer and a membrane with 2 nm pore-size to prevent polymer leakage. Between the ceramic membrane and the pressure transducer a tiny chamber is located, which contains the polymer solution. The polymer's osmotic potential strongly reduces the total water potential inside the polymer tensiometer, which causes build-up of osmotic pressure. Polymer tensiometers would thus be an ideal instrument to measure in dry soil, if the polymer inside the tensiometer is not affected by the salts in the soil solution. We will address some key issues regarding the use of POTs in saline environments by showing

  13. Linking water and carbon cycles through salinity observed from space

    NASA Astrophysics Data System (ADS)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  14. A Geology-Based Estimate of Connate Water Salinity Distribution

    DTIC Science & Technology

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  15. Extrusion of transmitter, water and ions generates forces to close fusion pore.

    PubMed

    Tajparast, M; Glavinović, M I

    2009-05-01

    During exocytosis the fusion pore opens rapidly, then dilates gradually, and may subsequently close completely, but what controls its dynamics is not well understood. In this study we focus our attention on forces acting on the pore wall, and which are generated solely by the passage of transmitter, ions and water through the open fusion pore. The transport through the charged cylindrical nano-size pore is simulated using a coupled system of Poisson-Nernst-Planck and Navier-Stokes equations and the forces that act radially on the wall of the fusion pore are then estimated. Four forces are considered: a) inertial force, b) pressure, c) viscotic force, and d) electrostatic force. The inertial and viscotic forces are small, but the electrostatic force and the pressure are typically significant. High vesicular pressure tends to open the fusion pore, but the pressure induced by the transport of charged particles (glutamate, ions), which is predominant when the pore wall charge density is high tends to close the pore. The electrostatic force, which also depends on the charge density on the pore wall, is weakly repulsive before the pore dilates, but becomes attractive and pronounced as the pore dilates. Given that the vesicular concentration of free transmitter can change rapidly due to the release, or owing to the dissociation from the gel matrix, we evaluated how much and how rapidly a change of the vesicular K(+)-glutamate(-) concentration affects the concentration of glutamate(-) and ions in the pore and how such changes alter the radial force on the wall of the fusion pore. A step-like rise of the vesicular K(+)-glutamate(-) concentration leads to a chain of events. Pore concentration (and efflux) of both K(+) and glutamate(-) rise reaching their new steady-state values in less than 100 ns. Interestingly within a similar time interval the pore concentration of Na(+) also rises, whereas that of Cl(-) diminishes, although their extra-cellular concentration does not

  16. Tidally driven pore water exchange within offshore intertidal sandbanks: Part II numerical simulations

    NASA Astrophysics Data System (ADS)

    Gibbes, B.; Robinson, C.; Li, L.; Lockington, D.; Li, H.

    2008-12-01

    Field measurements presented by [Gibbes, B., Robinson, C., Li, L., Lockington, D.A., Carey, H., 2008. Tidally driven pore water exchange within offshore intertidal sandbanks: Part I Field measurements. Estuarine, Coastal and Shelf Science 79, pp. 121-132.] revealed a tidally driven pore water flow system within an offshore intertidal sandbank in Moreton Bay, Australia. The field data suggested that this flow system might be capable of delivering nutrients, and in particular bio-available iron, across the sediment-water interface. Bio-available iron has been implicated as a key nutrient in the growth of the toxic marine cyanobacteria Lyngbya majuscula and therefore this pore water exchange process is of interest at sites where L. majuscula blooms have been observed. In this study two-dimensional numerical simulations were used in conjunction with hydraulic data from field measurements to further investigate the tidally induced pore water flow patterns. Simulation results generally showed good agreement with the field data and revealed a more complex residual pore water flow system in the sandbank than shown by the field data. The flow system, strongly influenced by the geometry of the sandbank, was characterized by two circulation cells which resulted in pore water discharge at the bank edge and also to a permanently ponded area within the sandbank interior. Simulated discharge volumes in these two zones were in the order of 0.813 m 3 and 0.143 m 3 per meter width (along shore) of sandbank per tidal cycle at the bank edge and sandbank interior respectively. Transit times of pore water circulating through these cells were found to range from ≈ 17 days to > 60 years with an average time of 780 days. The results suggest that the tidally driven flow systems might provide a mechanism for transport of bio-available iron across the sediment-water interface. This flow could constitute a previously unrecognized source of bio-available iron for L. majuscula blooms in the

  17. Bottom sediments and pore waters near a hydrothermal vent in Lake Baikal (Frolikha Bay)

    USGS Publications Warehouse

    Granina, L.Z.; Klerkx, J.; Callender, E.; Leermakers, M.; Golobokova, L.P.

    2007-01-01

    We discuss the redox environments and the compositions of bottom sediments and sedimentary pore waters in the region of a hydrothermal vent in Frolikha Bay, Lake Baikal. According to our results, the submarine vent and its companion nearby spring on land originate from a common source. The most convincing evidence for their relation comes from the proximity of stable oxygen and hydrogen isotope compositions in pore waters and in the spring water. The isotope composition indicates a meteoric origin of pore waters, but their major- and minor-element chemistry bears imprint of deep water which may seep through permeable faulted crust. Although pore waters near the submarine vent have a specific enrichment in major and minor constituents, hydrothermal discharge at the Baikal bottom causes a minor impact on the lake water chemistry, unlike the case of freshwater geothermal lakes in the East-African Rift and North America. ?? 2007.

  18. Salinity controls on plant transpiration and soil water balance

    NASA Astrophysics Data System (ADS)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  19. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    PubMed

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  20. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  1. Modeling as a tool for management of saline soils and irrigation waters

    USDA-ARS?s Scientific Manuscript database

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  2. Comparison of Two Methods for Determination of Strontium Isotopes in Pore Water at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Futa, K.; Scofield, K. M.

    2002-12-01

    The proposed radioactive waste repository at Yucca Mountain, Nevada would be constructed in the high-silica rhyolite member of the Topopah Spring Tuff, an ash-flow tuff within the ~500-m-thick unsaturated zone. Dry-drilled rock cores from this unit have been packaged to preserve their water content. Two methods have been used to extract the strontium contained in the pore water for isotopic measurements. In the first method, samples of dried core were crushed, and the 0.25 to 2.4 mm size fractions were leached with ultra-pure water for about 1 hour to dissolve the salts left behind by the evaporated pore water. Concentrations of strontium in the pore water were calculated from determinations of porosity and saturation on adjacent core and the measured strontium concentration in the leachate. In the second method, pore water was extracted from sealed core using an ultracentrifuge, minimizing evaporation of water from the core at all steps in the process. The centrifugation of 150 to 200 g of welded tuff at 15,000 rpm for 6 hours typically results in the recovery of as much as 3 ml of pore water for analysis. Strontium isotope compositions were determined by thermal ionization mass spectrometry; 87Sr /86Sr ratios have a reproducibility of 0.00005. The ranges of 87Sr/86Sr ratios determined by the two methods are identical: 0.71215 to 0.71267 in the leachates (n = 35) and 0.71214 to 0.71266 in the extracted pore waters (n = 21). However, the calculated strontium concentrations in the leachates average 300 μg/L, whereas those in the extracted pore water average 1440 μg/L, indicating that a substantial portion of the pore-water salts remain in the crushed rock after leaching. The strontium data determined on extracted pore water shows that the leaching of pore-water salts results in accurate 87Sr/86Sr, but that a substantial correction to the strontium concentration is required due to the inefficiency of the leaching procedure and the small pore sizes in the welded

  3. The effects of salinity in the soil water balance: A Budyko's approach

    NASA Astrophysics Data System (ADS)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  4. [Effects of biochar and PAM application on saline soil hydraulic properties of coastal reclamation region].

    PubMed

    Cao, Yu Tong; She, Dong Li

    2017-11-01

    Disc infiltration tests were carried out to study the soil infiltration characteristics under different rates of soil amendments application, and to investigate the effects of biochar and polyacrylamide (PAM) application on saline soil hydraulic properties, pore characteristics and contribution of each pore to soil water flow in coastal reclamation region. The results showed that soil satura-ted hydraulic conductivity increased by 46.4% when biochar was applied at 2% compared with the control, and decreased with increasing PAM application. The total effective soil porosity and r>100 μm pores were increased by 8.3% and 10.2% (P<0.05) with the application of 2% biochar alone. The total effective soil porosity and different radius pores decreased with the PAM application. Particularly, the total effective soil porosity decreased markedly when PAM was applied at 1‰ and the reduction was up to 88%. With the application of biochar and PAM, the contribution of r<100 μm pores to water flow decreased and the pores with r>500 μm played a major role in determining water flows.

  5. Saline water in the Little Arkansas River Basin area, south-central Kansas

    USGS Publications Warehouse

    Leonard, Robert B.; Kleinschmidt, Melvin K.

    1976-01-01

    Ground water in unconsolidated deposits of Pleistocene age in part of the Little Arkansas River basin has been polluted by the influx of saline water. The source of the saline water generally is oil-field brine that leaked from disposal ponds on the land surface. Locally, pollution by saline water also has been caused by upwelling of oil-field brine injected under pressure into the "lost-circulation zone" of the Lower Permian Wellington Formation and, possibly, by leakage of brine from corroded or improperly cased disposal wells. Anomalously high concentrations of chloride ion in some reaches of the Little Arkansas River probably can be attributed to pollution by municipal wastes rather than from inflow of saline ground water. Hydraulic connection exists between the "lost-circulation zone" and unconsolidated deposits, as evidenced by the continuing development of sinkholes, by the continuing discharge of saline water through springs and seeps along the Arkansas River south of the Little Arkansas River basin and by changes in the chloride concentration in water pumped from wells in the "lost-circulation zone." The hydraulic head in the "lost-circulation zone" is below the base of the unconsolidated deposits, and much below the potentiometric surface of the aquifer in those deposits. Any movement of water, therefore, would be downward from the "fresh-water" aquifer to the saline "lost-circulation zone."

  6. Relating soil pore geometry to soil water content dynamics decomposed at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Soil structure is a critical factor determining the response of soil water content to meteorological inputs such as precipitation. Wavelet analysis can be used to filter a signal into several wavelet components, each characterizing a given frequency. The purpose of this research was to investigate relationships between the geometry of soil pore systems and the various wavelet components derived from soil water content dynamics. The two study sites investigated were located in the state of São Paulo, Brazil. Each site was comprised of five soil profiles, the first site was situated along a 300-meter transect with about 10% slope in a tropical semi-deciduous forest, while the second one spanned 230-meter over a Brazilian savanna with a slope of about 6%. For each profile, between two to four Water Content Reflectometer CS615 (Campbell Scientific, Inc.) probes were installed according to horizonation at depths varying between 0.1 m and 2.3 m. Bulk soil, three soil cores, and one undisturbed soil block were sampled from selected horizons for determining particle size distributions, water retention curves, and pore geometry, respectively. Pore shape and size were determined from binary images obtained from resin-impregnated blocks and used to characterize pore geometry. Soil water contents were recorded at a 20-minute interval over a 4-month period. The Mexican hat wavelet was used to decompose soil water content measurements into wavelet components. The responses of wavelet components to wetting and drying cycles were characterized by the median height of the peaks in each wavelet component and were correlated with particular pore shapes and sizes. For instance, large elongated and irregular pores, largely responsible for the transmission of water, were significantly correlated with wavelet components at high frequencies (40 minutes to 48 hours) while rounded pores, typically associated to water retention, were only significantly correlated to lower frequency ranges

  7. Pore-scale dynamics of salt transport and distribution in drying porous media

    NASA Astrophysics Data System (ADS)

    Shokri, Nima

    2014-01-01

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.

  8. Fresh-water discharge salinity relations in the tidal Delaware River

    USGS Publications Warehouse

    Keighton, Walter B.

    1966-01-01

    Sustained flows of fresh water greater than 3,500, 4,400, and 5,300 cubic feet per second into the Delaware River estuary at Trenton, NJ assure low salinity at League Island, Eddystone, and Marcus Hook, respectively. When the discharge at Trenton is less than these critical values, salinity is very sensitive to change in discharge, so that a relatively small decrease in fresh-water discharge results in a relatively great increase in salinity. Comparison of the discharge-salinity relations observed for the 14-year period August 1949-December 1963 with relations proposed by other workers but based on other time periods indicate that such relations change with time and that salinity is affected not only by discharge but also by dredging; construction of breakwater, dikes, and tidal barriers; changing sea level; tidal elevation; tidal range; and wind intensity and direction.

  9. Effects of temperature and salinity on light scattering by water

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  10. The effects of pore structure on the behavior of water in lignite coal and activated carbon.

    PubMed

    Nwaka, Daniel; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-09-01

    The effects of physical structure (pore structure) on behavior of water in lignite coal and activated carbon (AC) samples were investigated by using Differential Scanning Calorimetry (DSC) and low-temperature X-ray diffraction (XRD) techniques. AC samples with different pore structures were prepared at 800°C in steam and the results were compared with that of parent lignite coal. The DSC results confirmed the presence of two types of freezable water that freeze at -8°C (free water) and -42°C (freezable bound water). A shift in peak position of free water (FW) towards lower temperature was observed in AC samples compared to the lignite coal with decreasing water loading. The amount of free water (FW) increased with increasing gasification conversion. The amounts of free and freezable bound water (FBW) in AC samples were calculated and correlated to pore volume and average pore size. The amount of FW in AC samples is well correlated to the pore volume and average pore size of the samples, while an opposite trend was observed for FBW. The low-temperature XRD analysis confirmed the existence of non-freezable water (NFW) in coal and AC with the boundary between the freezable and non-freezable water (NFW) determined. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Spinach biomass yield and physiological response to interactive salinity and water stress

    USDA-ARS?s Scientific Manuscript database

    Critical shortages of fresh water throughout arid regions means that growers must face the choice of applying insufficient fresh water, applying saline water, or consider the option of combined water and salt stress. The best approach to manage drought and salinity is evaluation of the impact of wat...

  12. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    PubMed

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  13. Understanding the role of pore size homogeneity in the water transport through graphene layers.

    PubMed

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang

    2018-06-01

    Graphene is a versatile 2D material and attracts an increasing amount of attention from a broad scientific community, including novel nanofluidic devices. In this work, we use molecular dynamics simulations to study the pressure driven water transport through graphene layers, focusing on the pore size homogeneity, realized by the arrangement of two pore sizes. For a given layer number, we find that water flux exhibits an excellent linear behavior with pressure, in agreement with the prediction of the Hagen-Poiseuille equation. Interestingly, the flux for concentrated pore size distribution is around two times larger than that of a uniform distribution. More surprisingly, under a given pressure, the water flux changes in an opposite way for these two distributions, where the flux ratio almost increases linearly with the layer number. For the largest layer number, more distributions suggest the same conclusion that higher water flux can be attained for more concentrated pore size distributions. Similar differences for the water translocation time and occupancy are also identified. The major reason for these results should clearly be due to the hydrogen bond and density profile distributions. Our results are helpful to delineate the exquisite role of pore size homogeneity, and should have great implications for the design of high flux nanofluidic devices and inversely the detection of pore structures.

  14. Understanding the role of pore size homogeneity in the water transport through graphene layers

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang

    2018-06-01

    Graphene is a versatile 2D material and attracts an increasing amount of attention from a broad scientific community, including novel nanofluidic devices. In this work, we use molecular dynamics simulations to study the pressure driven water transport through graphene layers, focusing on the pore size homogeneity, realized by the arrangement of two pore sizes. For a given layer number, we find that water flux exhibits an excellent linear behavior with pressure, in agreement with the prediction of the Hagen–Poiseuille equation. Interestingly, the flux for concentrated pore size distribution is around two times larger than that of a uniform distribution. More surprisingly, under a given pressure, the water flux changes in an opposite way for these two distributions, where the flux ratio almost increases linearly with the layer number. For the largest layer number, more distributions suggest the same conclusion that higher water flux can be attained for more concentrated pore size distributions. Similar differences for the water translocation time and occupancy are also identified. The major reason for these results should clearly be due to the hydrogen bond and density profile distributions. Our results are helpful to delineate the exquisite role of pore size homogeneity, and should have great implications for the design of high flux nanofluidic devices and inversely the detection of pore structures.

  15. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    NASA Astrophysics Data System (ADS)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  16. Dissolved sulfide distributions in the water column and sediment pore waters of the Santa Barbara Basin

    USGS Publications Warehouse

    Kuwabara, J.S.; VanGeen, A.; McCorkle, D.C.; Bernhard, J.M.

    1999-01-01

    Dissolved sulfide concentrations in the water column and in sediment pore waters were measured by square-wave voltammetry (nanomolar detection limit) during three cruises to the Santa Barbara Basin in February 1995, November-December 1995, and April 1997. In the water column, sulfide concentrations measured outside the basin averaged 3 ?? 1 nM (n = 28) in the 0 to 600 m depth range. Inside the basin, dissolved sulfides increased to reach values of up to 15 nM at depths >400 m. A suite of box cores and multicores collected at four sites along the northeastern flank of the basin showed considerable range in surficial (400 ??M at 10 cm. Decreases in water-column nitrate below the sill depth indicate nitrate consumption (-55 to -137 ??mole m-2 h-1) similar to nearby Santa Monica Basin. Peaks in pore-water iron concentrations were generally observed between 2 and 5 cm depth with shallowest peaks at the 590 m site. These observations, including observations of the benthic microfauna, suggest that the extent to which the sulfide flux, sustained by elevated pore-water concentrations, reaches the water column may be modulated by the abundance of sulfide-oxidizing bacteria in addition to iron redox and precipitation reactions.

  17. The salinity, temperature, and delta18O of the glacial deep ocean.

    PubMed

    Adkins, Jess F; McIntyre, Katherine; Schrag, Daniel P

    2002-11-29

    We use pore fluid measurements of the chloride concentration and the oxygen isotopic composition from Ocean Drilling Program cores to reconstruct salinity and temperature of the deep ocean during the Last Glacial Maximum (LGM). Our data show that the temperatures of the deep Pacific, Southern, and Atlantic oceans during the LGM were relatively homogeneous and within error of the freezing point of seawater at the ocean's surface. Our chloride data show that the glacial stratification was dominated by salinity variations, in contrast with the modern ocean, for which temperature plays a primary role. During the LGM the Southern Ocean contained the saltiest water in the deep ocean. This reversal of the modern salinity contrast between the North and South Atlantic implies that the freshwater budget at the poles must have been quite different. A strict conversion of mean salinity at the LGM to equivalent sea-level change yields a value in excess of 140 meters. However, the storage of fresh water in ice shelves and/or groundwater reserves implies that glacial salinity is a poor predictor of mean sea level.

  18. Electrically induced displacement transport of immiscible oil in saline sediments.

    PubMed

    Pamukcu, Sibel; Shrestha, Reena A; Ribeiro, Alexandra B; Mateus, Eduardo P

    2016-08-05

    Electrically assisted mitigation of coastal sediment oil pollution was simulated in floor-scale laboratory experiments using light crude oil and saline water at approximately 1/10 oil/water (O/W) mass ratio in pore fluid. The mass transport of the immiscible liquid phases was induced under constant direct current density of 2A/m(2), without water flooding. The transient pore water pressures (PWP) and the voltage differences (V) at and in between consecutive ports lined along the test specimen cell were measured over 90days. The oil phase transport occurred towards the anode half of the test specimen where the O/W volume ratio increased by 50% over its initial value within that half-length of the specimen. In contrast, the O/W ratio decreased within the cathode side half of the specimen. During this time, the PWP decreased systematically at the anode side with oil bank accumulation. PWP increased at the cathode side of the specimen, signaling increased concentration of water there as it replaced oil in the pore space. Electrically induced transport of the non-polar, non-conductive oil was accomplished in the opposing direction of flow by displacement in absence of viscous coupling of oil-water phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.

    1994-01-01

    Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7

  20. Pore-scale simulation of CO2-water-rock interactions

    NASA Astrophysics Data System (ADS)

    Deng, H.; Molins, S.; Steefel, C. I.; DePaolo, D. J.

    2017-12-01

    In Geologic Carbon Storage (GCS) systems, the migration of scCO2 versus CO2-acidifed brine ultimately determines the extent of mineral trapping and caprock integrity, i.e. the long-term storage efficiency and security. While continuum scale multiphase reactive transport models are valuable for large scale investigations, they typically (over-)simplify pore-scale dynamics and cannot capture local heterogeneities that may be important. Therefore, pore-scale models are needed in order to provide mechanistic understanding of how fine scale structural variations and heterogeneous processes influence the transport and geochemistry in the context of multiphase flow, and to inform parameterization of continuum scale modeling. In this study, we investigate the interplay of different processes at pore scale (e.g. diffusion, reactions, and multiphase flow) through the coupling of a well-developed multiphase flow simulator with a sophisticated reactive transport code. The objectives are to understand where brine displaced by scCO2 will reside in a rough pore/fracture, and how the CO2-water-rock interactions may affect the redistribution of different phases. In addition, the coupled code will provide a platform for model testing in pore-scale multiphase reactive transport problems.

  1. Influence of anoxic pore water dissolved organic matter on the fate and transport of hydrophobic organic pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunchak-Kariouk, K.

    1992-01-01

    Pore water dissolved organic matter is an overlooked pool of organic matter important to the environmental fate of hydrophobic organic pollutants. The association of polychlorinated biphenyls, polyaromatic hydrocarbons and chlorinated pesticides with pore water dissolved organic matter influences their distribution and mobility within the bottom sediment environment. Steep physical, biological and chemical gradients at the sediment/water interface isolate the pore water and create unique conditions within the sediment. This study indicates that any disturbance of this environment will alter the distribution and mobility of organic pollutants by changing their association to the pore water dissolved organic matter. A small volumemore » closed equilibration method was developed to measure the solubility enhancement of 2,2' 4,4'-tetrachlorobiphenyl (TeCB) by natural dissolved organic matter. Chemical coated micro-glass beads were equilibrated with anoxic and laboratory aerated (oxic) pore water samples in flame sealed ampules. The TeCB enhanced solubilities were used to determine the pore water dissolved organic matter partition coefficient, K[sub pwdom]. The measured TeCB solubility and K[sub pwdom] were much smaller for anoxic than oxic pore waters. The dissolved organic matter sorptive capacity for the TeCB increased as the water was aerated. This change is attributed to coagulative fractionation and structural changes of the pore water dissolved organic matter during aeration and was characterized by differences in the dissolved organic matter concentration, UV absorption at 254 nm, interfacial surface tension, and sorption capacity of molecular weight fractions of anoxic and oxic pore water dissolved organic matter. The increase in partitioning indicates that there will be an increase in the mobility of the TeCB as an anoxic bottom sediment environment is disturbed and aerated.« less

  2. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  3. Transport of water and ions in partially water-saturated porous media. Part 2. Filtration effects

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2017-05-01

    A new set of constitutive equations describing the transport of the ions and water through charged porous media and considering the effect of ion filtration is applied to the problem of reverse osmosis and diffusion of a salt. Starting with the constitutive equations derived in Paper 1, I first determine specific formula for the osmotic coefficient and effective diffusion coefficient of a binary symmetric 1:1 salt (such as KCl or NaCl) as a function of a dimensionless number Θ corresponding to the ratio between the cation exchange capacity (CEC) and the salinity. The modeling is first carried with the Donnan model used to describe the concentrations of the charge carriers in the pore water phase. Then a new model is developed in the thin double layer approximation to determine these concentrations. These models provide explicit relationships between the concentration of the ionic species in the pore space and those in a neutral reservoir in local equilibrium with the pore space and the CEC. The case of reverse osmosis and diffusion coefficient are analyzed in details for the case of saturated and partially saturated porous materials. Comparisons are done with experimental data from the literature obtained on bentonite. The model predicts correctly the influence of salinity (including membrane behavior at high salinities), porosity, cation type (K+ versus Na+), and water saturation on the osmotic coefficient. It also correctly predicts the dependence of the diffusion coefficient of the salt with the salinity.

  4. Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size

    DOE PAGES

    Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; ...

    2015-03-23

    Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionallymore » high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.« less

  5. Slime coating of kaolinite on chalcopyrite in saline water flotation

    NASA Astrophysics Data System (ADS)

    Li, Zhi-li; Rao, Feng; Song, Shao-xian; Li, Yan-mei; Liu, Wen-biao

    2018-05-01

    In saline water flotation, the salinity can cause a distinguishable slime coating of clay minerals on chalcopyrite particles through its effect on their electrical double layers in aqueous solutions. In this work, kaolinite was used as a representative clay mineral for studying slime coating during chalcopyrite flotation. The flotation of chalcopyrite in the presence and absence of kaolinite in tap water, seawater, and gypsum-saturated water and the stability of chalcopyrite and kaolinite particles in slurries are presented. Zeta-potential distributions and scanning electron microscopy images were used to characterize and explain the different slime coating degrees and the different flotation performances. Kaolinite particles induced slime coating on chalcopyrite surfaces and reduced chalcopyrite floatability to the greatest extent when the pH value was in the alkaline range. At 0.24wt% of kaolinite, the chalcopyrite floatability was depressed by more than 10% at alkaline pH levels in tap water. Salinity in seawater and gypsum-saturated water compressed the electrical double layers and resulted in extensive slime coating.

  6. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Pore water evolution in sandstones of the Groundhog Coalfield, northern Bowser Basin, British Columbia

    NASA Astrophysics Data System (ADS)

    Cookenboo, H. O.; Bustin, R. M.

    1999-01-01

    The succession of sandstone cements in chert and volcanic lithic arenites and wackes from the northern Bowser Basin of British Columbia comprises a record of diagenesis in shallow marine, deltaic, and coastal plain siliciclastic sediments that pass through the oil window and reach temperatures near the onset of metamorphism. The succession of cements is consistent with seawater in the sandstones mixing with acid waters derived from dewatering of interbedded organic rich muds. Sandstone cement paragenesis includes seven discrete cement stages. From earliest to latest the cement stages are: (1) pore-lining chlorite; (2) pore-lining to pore-filling illite; (3) pore-filling kaolinite; (4) oil migration through some of the remaining connected pores; (5) chlorite dissolution; (6) quartz cement; and (7) calcite cement. These seven cement stages are interpreted as a record of the evolution of pore waters circulating through the sandstones after burial. The earliest cement stages, as well as the depositional environments, are compatible with seawater as the initial pore fluid. Seawater composition changed during transport through the sandstones, first by loss of Mg 2+ and Fe 2+ during chlorite precipitation (stage 1). Dewatering of interbedded organic-rich mudstones probably added Mg 2+ and Fe 2+ to partially buffer the loss of these cations to chlorite. Acids produced during breakdown of organic matter are presumed to have mixed into sandstone pore fluids due to further compaction of the muds, leading to reduction of initial alkalinity. Reduction in alkalinity, in turn, favours change from chlorite to illite precipitation (stage 2), and finally to kaolinite (stage 3). Pore waters likely reached their peak acidity at the time of oil migration (stage 4). Chlorite dissolution (stage 5) and quartz precipitation (stage 6) occurred when pores were filled by these hydrocarbon-bearing and presumably acidic fluids. Fluid inclusions in fracture-filling quartz cements contain

  8. Insight into the wetting of a graphene-mica slit pore with a monolayer of water

    NASA Astrophysics Data System (ADS)

    Lin, Hu; Schilo, Andre; Kamoka, A. Rauf; Severin, Nikolai; Sokolov, Igor M.; Rabe, Jürgen P.

    2017-05-01

    Scanning force microscopy (SFM) and Raman spectroscopy allow the unraveling of charge doping and strain effects upon wetting and dewetting of a graphene-mica slit pore with water. SFM reveals a wetting monolayer of water, slightly thinner than a single layer of graphene. The Raman spectrum of the dry pore exhibits the D' peak of graphene, which practically disappears upon wetting, and recurs when the water layer dewets the pore. Based on the 2 D - and G -peak positions, the corresponding peak intensities, and the widths, we conclude that graphene on dry mica is charge-doped and variably strained. A monolayer of water in between graphene and mica removes the doping and reduces the strain. We attribute the D' peak to direct contact of the graphene with the ionic mica surface in dry conditions, and we conclude that a complete monolayer of water wetting the slit pore decouples the graphene from the mica substrate both mechanically and electronically.

  9. Relationships between groundwater, surface water, and soil salinity in Polder 32, Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Fry, D. C.; Ayers, J. C.

    2014-12-01

    In the coastal areas of Southwest Bangladesh polders are surrounded by tidal channels filled with brackish water. In the wet season, farmers create openings in the embankments to irrigate rice paddies. In the dry season, farmers do the same to create saline shrimp ponds. Residents on Polder 32, located within the Ganges-Brahmaputra-Meghna delta system, practice these seasonal farming techniques. Soils in the area are entisols, being sediment recently deposited, and contain mostly silt-sized particles. Brackish water in brine shrimp ponds may deposit salt in the soil, causing soil salinization. However, saline connate groundwater could also be contributing to soil salinization. Groundwater, surface water (fresh water pond, rice paddy and tidal channel water) and soil samples have been analyzed via inductively coupled plasma optical emission spectroscopy, inductively coupled plasma mass spectroscopy and ion chromatography in an attempt to correlate salinity measurements with each other in order to determine major sources of soil salinity. Multiple parameters, including distances of samples from tidal channels, inland streams, shrimp ponds and tube wells were measured to see if spatial correlations exist. Similarly, values from wet and dry seasons were compared to quantify temporal variations. Salt content in many soil samples were found to be high enough to significantly decrease rice yields. Continued soil salinization can decrease these yields even more, leading to farmers not producing enough food to sustain their families.

  10. Three-Dimensional Quantification of Pore Space in Flocculated Sediments

    NASA Astrophysics Data System (ADS)

    Lawrence, Tom; Spencer, Kate; Bushby, Andy; Manning, Andrew

    2017-04-01

    Flocculated sediment structure plays a vital role in determining sediment dynamics within the water column in fresh and saline water bodies. The porosity of flocs contributes to their specific density and therefore their settling characteristics, and can also affect settling characteristics via through-flow. The process of settling and resuspension of flocculated material causes the formation of larger and more complex individual flocs, about which little is known quantitatively of the internal micro-structure and therefore porosity. Hydrological and sedimentological modelling software currently uses estimations of porosity, because it is difficult to capture and analyse flocs. To combat this, we use a novel microscopy method usually performed on biological material to scan the flocs, the output of which can be used to quantify the dimensions and arrangement of pores. This involves capturing flocculated sediment, staining the sample with heavy metal elements to highlight organic content in the Scanning Electron Microscope later, and finally setting the sample in resin. The overall research aim is to quantitatively characterise the dimensions and distribution of pore space in flocs in three dimensions. In order to gather data, Scanning Electron Microscopy and micro-Computed Tomography have been utilised to produce the necessary images to identify and quantify the pore space. The first objective is to determine the dimensional limits of pores in the structure (i.e. what area do they encapsulate? Are they interconnected or discreet?). This requires a repeatable definition to be established, so that all floc pore spaces can be quantified using the same parameters. The LabSFLOC settling column and dyes will be used as one possible method of determining the outer limits of the discreet pore space. LabSFLOC is a sediment settling column that uses a camera to record the flocs, enabling analysis of settling characteristics. The second objective is to develop a reliable

  11. Evaluation of δ2H and δ18O of water in pores extracted by compression method-effects of closed pores and comparison to direct vapor equilibration and laser spectrometry method

    NASA Astrophysics Data System (ADS)

    Nakata, Kotaro; Hasegawa, Takuma; Oyama, Takahiro; Miyakawa, Kazuya

    2018-06-01

    Stable isotopes (δ2H and δ18O) of water can help our understanding of origin, mixing and migration of groundwater. In the formation with low permeability, it provides information about migration mechanism of ion such as diffusion and/or advection. Thus it has been realized as very important information to understand the migration of water and ions in it. However, in formation with low permeability it is difficult to obtain the ground water sample as liquid and water in pores needs to be extracted to estimate it. Compressing rock is the most common and widely used method of extracting water in pores. However, changes in δ2H and δ18O may take place during compression because changes in ion concentration have been reported in previous studies. In this study, two natural rocks were compressed, and the changes in the δ2H and δ18O with compression pressure were investigated. Mechanisms for the changes in water isotopes observed during the compression were then discussed. In addition, δ2H and δ18O of water in pores were also evaluated by direct vapor equilibration and laser spectrometry (DVE-LS) and δ2H and δ18O were compared with those obtained by compression. δ2H was found to change during the compression and a part of this change was found to be explained by the effect of water from closed pores extracted by compression. In addition, water isotopes in both open and closed pores were estimated by combining the results of 2 kinds of compression experiments. Water isotopes evaluated by compression that not be affected by water from closed pores showed good agreements with those obtained by DVE-LS indicating compression could show the mixed information of water from open and closed pores, while DVE-LS could show the information only for open pores. Thus, the comparison of water isotopes obtained by compression and DVE-LS could provide the information about water isotopes in closed and open pores.

  12. Comparison of solid-phase and pore-water approaches for assessing the quality of marine and estuarine sediments

    USGS Publications Warehouse

    Carr, Robert Scott; Chapman, Duane C.

    1992-01-01

    As part of our continuing evaluation of the pore-water approach for assessing sediment quality, we made a series of side-by-side comparisons between the standard 10-day amphipod whole sediment test with the corophiid Grandidierella japonica and a suite of tests using pore water extracted from the same sediments. the pore-water tests evaluated were the sea urchin (Arbacia punctulata) sperm cell test and morphological development assay, the life-cycle test with the polychaete Dinophilus gyrociliatus, and acute exposures of red drum (Sciaenops ocellatus) embryo-larval stages. Sediment and surface microlayer samples were collected from contaminated sites. Whole-sediment, pore-water, and surface microlayer toxicity tests were performed. Pore-water toxicity tests were considerably more sensitive than the whole-sediment amphipod test, which is currently the most sensitive toxicity test now recommended for determining the acceptability of dredged material for open ocean disposal.

  13. Pore-scale dynamics of salt transport and distribution in drying porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shokri, Nima, E-mail: nima.shokri@manchester.ac.uk

    2014-01-15

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI{sub 2} solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sandmore » column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI{sub 2} concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and

  14. Size effects of pore density and solute size on water osmosis through nanoporous membrane.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2012-11-15

    Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior.

  15. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    NASA Astrophysics Data System (ADS)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore

  16. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    USGS Publications Warehouse

    Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  17. Silicon Isotopes of Marine Pore Water: Tracking the Destiny of Marine Biogenic Opal

    NASA Astrophysics Data System (ADS)

    Cassarino, L.; Hendry, K. R.

    2017-12-01

    Silicon isotopes (δ30Si) are a powerful tool for the studying of the past and present silicon cycles, which is closely linked to the carbon cycle. Siliceous phytoplankton, such as diatoms, as one of the major conveyors of carbon to marine sediments. δ30Si from fossil diatoms has been shown to represent past silicic acid (DSi) utilization in the photic zone, since the lighter isotope is preferentially incorporated in their skeleton, the frustule. This assumes that species in the sediments depict past blooms and that frustules are preserved in their initial state during burial. Here we present new silicon isotopes data of sea water and pore water of deep marine sediments from two contrasted environments, the Equatorial Atlantic and West Antarctic Peninsula. δ30Si and DSi concentration, of both sea water and pore water, are negatively correlated. Marine biogenic opal dissolution can be tracked using δ30Si signature of pore water as lighter signals and high DSi concentrations are associated with the biogenic silica. Our data enhances post depositional and diagenesis processes during burial with a clear highlight on the sediment water interface exchanges.

  18. Pore Water Chemistry as Sensitive Indicators for Fluid Flow in Brazos-Trinity Basin #4 and Ursa Basin, Northeast Gulf of Mexico (IODP Expedition 308)

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Gilhooly, W.; Takano, Y.; Flemings, P.; Behrmann, J.; John, C.

    2005-12-01

    Rapid sediment loading drives overpressure in marine sedimentary basins around the world. During IODP Expedition 308, two basins (Brazos-Trinity Basin #4 and Ursa Basin) with large different sedimentary loading of turbidite and hemipelagic sediments in the northeast Gulf of Mexico, were investigated to characterize in-situ spatial variations in temperature, pressure, and rock and fluid physical properties and chemistry. Pore water chemical compositions including alkalinity, salinity, pH, anions (Cl, SO4, PO4, H4SiO4), cations (Na, K, Ca, Mg), trace metals (Li, B, Sr, Ba, Fe, Mn), were analyzed in four drill holes at sites U1319, U1320, U1322, and U1324, in the Brazos-Trinity Basin #4 and Ursa Basin. At all sites, pore water chemistry shows great variability at shallow depths with maximam or miminum values corresponding well to seismic reflectors and lithostratigraphic units. The sulfate profile shows a dramatic decrease in SO4 content with a sulfate-methane interface (SMI) of 15 mbsf at Site 1319 and 22 mbsf at Site 1320 in the Brazos-Trinity Basin #4 Basin. In contrast, the sulfate- methane interfaces (SMI) are much deeper in Ursa Basin, i.e., 74 mbsf at Site 1322, and 94 mbsf at Site 2324. The deep SMI in Ursa Basin suggest relatively slow anaerobic degradation of organic matter considering the location of drilling site though we do not determine sulfate reducing rate with organic matter or methane as substrate at this leg. The downhole consumption of sulfate coincides with a concomitant increase in alkalinity and a decrease of Mn, Ca, Mg, Sr, and Li. Furthermore, initial pore water chemistry results appear to be influence by hydrogeologic fluid flow in both basins. Coincidence between pore water profile concentration maxima and parallel seismic reflectors may suggest that these seismic surfaces occur along specific stratigraphic units, which serve as channels for lateral fluid flow. Overall, the downhole variations in interstitial water chemistry may reflect a

  19. Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides

    PubMed Central

    Liu, Jun; Tang, Kaifeng; Qiu, Qiwen; Pan, Dong; Lei, Zongru; Xing, Feng

    2014-01-01

    In this paper, the pore structure characterization of concrete exposed to deionised water and 5% NaCl solution was evaluated using mercury intrusion porosity (MIP), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of calcium leaching, fly ash incorporation, and chloride ions on the evolution of pore structure characteristics were investigated. The results demonstrate that: (i) in ordinary concrete without any fly ash, the leaching effect of the cement products is more evident than the cement hydration effect. From the experimental data, Ca(OH)2 is leached considerably with the increase in immersion time. The pore structure of concrete can also be affected by the formation of an oriented structure of water in concrete materials; (ii) incorporation of fly ash makes a difference for the performance of concrete submersed in solutions as the total porosity and the pore connectivity can be lower. Especially when the dosage of fly ash is up to 30%, the pores with the diameter of larger than 100 nm show significant decrease. It demonstrates that the pore properties are improved by fly ash, which enhances the resistance against the calcium leaching; (iii) chlorides have a significant impact on microstructure of concrete materials because of the chemical interactions between the chlorides and cement hydrates. PMID:28788204

  20. Surface-water salinity in the Gunnison River Basin, Colorado, water years 1989 through 2007

    USGS Publications Warehouse

    Schaffrath, Keelin R.

    2012-01-01

    Elevated levels of dissolved solids in water (salinity) can result in numerous and costly issues for agricultural, industrial, and municipal water users. The Colorado River Basin Salinity Control Act of 1974 (Public Law 93-320) authorized planning and construction of salinity-control projects in the Colorado River Basin. One of the first projects was the Lower Gunnison Unit, a project to mitigate salinity in the Lower Gunnison and Uncompahgre River Basins. In cooperation with the Bureau of Reclamation (USBR), the U.S. Geological Survey conducted a study to quantify changes in salinity in the Gunnison River Basin. Trends in salinity concentration and load during the period water years (WY) 1989 through 2004 (1989-2004) were determined for 15 selected streamflow-gaging stations in the Gunnison River Basin. Additionally, trends in salinity concentration and load during the period WY1989 through 2007 (1989-2007) were determined for 5 of the 15 sites for which sufficient data were available. Trend results also were used to identify regions in the Lower Gunnison River Basin (downstream from the Gunnison Tunnel) where the largest changes in salinity loads occur. Additional sources of salinity, including residential development (urbanization), changes in land cover, and natural sources, were estimated within the context of the trend results. The trend results and salinity loads estimated from trends testing also were compared to USBR and Natural Resources Conservation Service (NRCS) estimates of off-farm and on-farm salinity reduction from salinity-control projects in the basin. Finally, salinity from six additional sites in basins that are not affected by irrigated agriculture or urbanization was monitored from WY 2008 to 2010 to quantify what portion of salinity may be from nonagricultural or natural sources. In the Upper Gunnison area, which refers to Gunnison River Basin above the site located on the Gunnison River below the Gunnison Tunnel, estimated mean annual

  1. Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil.

    PubMed

    Lamb, Dane T; Kader, Mohammed; Wang, Liang; Choppala, Girish; Rahman, Mohammad Mahmudur; Megharaj, Mallavarapu; Naidu, Ravi

    2016-12-06

    Phytotoxicity of inorganic contaminants is influenced by the presence of competing ions at the site of uptake. In this study, interaction of soil pore-water constituents with arsenate toxicity was investigated in cucumber (Cucumis sativa L) using 10 contrasting soils. Arsenate phytotoxicity was shown to be related to soluble carbonate and phosphate. The data indicated that dissolved phosphate and carbonate had an antagonistic impact on arsenate toxicity to cucumber. To predict arsenate phytotoxicity in soils with a diverse range of soil solution properties, both carbonate and phosphate were required. The relationship between arsenic and pore-water toxicity parameters was established initially using multiple regression. In addition, based on the relationship with carbonate and phosphate we successively applied a terrestrial biotic ligand-like model (BLM) including carbonate and phosphate. Estimated effective concentrations from the BLM-like parametrization were strongly correlated to measured arsenate values in pore-water (R 2 = 0.76, P < 0.001). The data indicates that an ion interaction model similar to the BLM for arsenate is possible, potentially improving current risk assessments at arsenic and co-contaminated soils.

  2. Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yongqiang; Xie, Quan; Sari, Ahmad

    Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less

  3. Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs

    DOE PAGES

    Chen, Yongqiang; Xie, Quan; Sari, Ahmad; ...

    2017-11-21

    Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less

  4. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching.

    PubMed

    Wang, Shutao; Feng, Qian; Zhou, Yapeng; Mao, Xiaoxi; Chen, Yaheng; Xu, Hao

    2017-01-01

    Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG), the pH decreased from 8.21-8.35 to 7.71-7.88, the conductivity decreased from 0.95-1.14 ms/cm to 0.45-0.68 ms/cm, and the total soluble salt content decreased from 2.63-2.81 g/kg to 2.28-2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ), the pH decreased from 8.36-8.54 to 7.73-7.96, the conductivity decreased from 1.58-1.68 ms/cm to 1.45-1.54 ms/cm, and the total soluble salt decreased from 2.81-4.03 g/kg to 2.56-3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils.

  5. Saline water in southeastern New Mexico

    USGS Publications Warehouse

    Hiss, W.L.; Peterson, J.B.; Ramsey, T.R.

    1969-01-01

    Saline waters from formations of several geologic ages are being studied in a seven-county area in southeastern New Mexico and western Texas, where more than 30,000 oil and gas tests have been drilled in the past 40 years. This area of 7,500 sq. miles, which is stratigraphically complex, includes the northern and eastern margins of the Delaware Basin between the Guadalupe and Glass Mountains. Chloride-ion concentrations in water produced from rocks of various ages and depths have been mapped in Lea County, New Mexico, using machine map-plotting techniques and trend analyses. Anomalously low chloride concentrations (1,000-3,000 mg/l) were found along the western margin of the Central Basin platform in the San Andres and Capitan Limestone Formations of Permian age. These low chloride-ion concentrations may be due to preferential circulation of ground water through the more porous and permeable rocks. Data being used in the study were obtained principally from oil companies and from related service companies. The P.B.W.D.S. (Permian Basin Well Data System) scout-record magnetic-tape file was used as a framework in all computer operations. Shallow or non-oil-field water analyses acquired from state, municipal, or federal agencies were added to these data utilizing P.B.W.D.S.-compatible reference numbers and decimal latitude-longitude coordinates. Approximately 20,000 water analyses collected from over 65 sources were coded, recorded on punch cards and stored on magnetic tape for computer operations. Extensive manual and computer error checks for duplication and accuracy were made to eliminate data errors resulting from poorly located or identified samples; non-representative or contaminated samples; mistakes in coding, reproducing or key-punching; laboratory errors; and inconsistent reporting. The original 20,000 analyses considered were reduced to 6,000 representative analyses which are being used in the saline water studies. ?? 1969.

  6. Geochemistry of surface and pore water at USGS coring sites in wetlands of South Florida, 1994 and 1995

    USGS Publications Warehouse

    Orem, William H.; Lerch, Harry E.; Rawlik, Peter

    2002-01-01

    In this report, we present preliminary data on surface and pore water geochemistry from 22 sites in south Florida sampled during 1994 and 1995. These results are part of a larger study designed to evaluate the role of biogeochemical processes in sediments in the cycling of carbon, nitrogen, phosphorus, and sulfur in the south Florida ecosystem. The data are briefly discussed in regard to regional trends in the concentrations of chemical species, and general diagenetic processes in sediments. These results are part of a larger study designed to evaluate the role of biogeochemical processes in sediments in the cycling of carbon, nitrogen, phosphorus, and sulfur in the south Florida ecosystem. These elements play a crucial role in regulating organic sedimentation, nutrient dynamics, redox conditions, and the biogeochemistry of mercury in the threatened wetlands of south Florida. Pore water samples for chemical analyis were obtained using a piston corer/squeezer designed to avoid compression of the sediment and avoid oxidation and contamination of the pore water samples. Results show distinct regional trends in both surface water and pore water geochemistry. Most chemical species in surface and pore water show peak concentrations in Water Conservation Area 2A, with diminishing concentrations to the south and west into Water Conservation Area 3A, and Everglades National Park. The largest differences observed were for phosphate and sulfide, with concentrations in pore waters in Water Conservation Area 2A up to 500x higher than concentrations observed in freshwater marsh areas of Water Conservation Area 3A and Everglades National Park. Sites near the Hillsboro Canal in Water Conservation Area 2A are heavily contaminated with both phosphorus and sulfur. Pore water profiles for dissolved reactive phosphate suggest that recycling of phosphorus at these contaminated sites occurs primarily in the upper 20 cm of sediment. High levels of sulfide in pore water in Water

  7. Coordinating management of water, salinity and trace elements for cotton under mulched drip irrigation with brackish water

    NASA Astrophysics Data System (ADS)

    Jin, M.; Chen, W.; Liang, X.

    2016-12-01

    Rational irrigation with brackish water can increase crop production, but irrational use may cause soil salinization. In order to understand the relationships among water, salt, and nutrient (including trace elements) and find rational schemes to manage water, salinity and nutrient in cotton fields, field and pot experiments were conducted in an arid area of southern Xinjiang, northwest China. Field experiments were performed from 2008 to 2015, and involved mulched drip irrigation during the growing season and flood irrigation afterwards. The average cotton yield of seven years varied between 3,575 and 5,095 kg/ha, and the irrigation water productivity between 0.91 and 1.16 kg/m3. With the progress of brackish water irrigation, Cu, Fe, Mn, and Na showed strong aggregation in topsoil at the narrow row, whereas the contents of Ca and K decreased in the order of inter-mulch gap, the wide inter row, and the narrow row. The contents of Cu, Fe, Mn, Ca and K in root soil reduced with cotton growth, whereas Na increased. Although mulched drip irrigation during the growing season resulted in an increase in salinity in the root zone, flood irrigation after harvesting leached the accumulated salts below background levels. Based on experiments a scheme for coordinating management of soil water, salt, and nutrient is proposed, that is, under the planting pattern of one mulch, two drip lines and four rows, the alternative irrigation plus a flood irrigation after harvesting or before seeding was the ideal scheme. Numerical simulations using solute transport model coupled with the root solute uptake based on the experiments and extended by another 20 years, suggest that the mulched drip irrigation using alternatively fresh and brackish water during the growing season and flood irrigation with fresh water after harvesting, is a sustainable irrigation practice that should not lead to soil salinization. Pot experiments with trace elements and different saline water showed

  8. Biotic variation in coastal water bodies in Sussex, England: Implications for saline lagoons

    NASA Astrophysics Data System (ADS)

    Joyce, Chris B.; Vina-Herbon, Cristina; Metcalfe, Daniel J.

    2005-12-01

    Coastal water bodies are a heterogeneous resource typified by high spatial and temporal variability and threatened by anthropogenic impacts. This includes saline lagoons, which support a specialist biota and are a priority habitat for nature conservation. This paper describes the biotic variation in coastal water bodies in Sussex, England, in order to characterise the distinctiveness of the saline lagoon community and elucidate environmental factors that determine its distribution. Twenty-eight coastal water bodies were surveyed for their aquatic flora and invertebrate fauna and a suite of exploratory environmental variables compiled. Ordination and cluster analyses were used to examine patterns in community composition and relate these to environmental parameters. Biotic variation in the coastal water body resource was high. Salinity was the main environmental parameter explaining the regional distribution of taxa; freshwater and saline assemblages were evident and related to sea water ingress. Freshwater sites were indicated by the plant Myriophyllum spicatum and gastropod mollusc Lymnaea peregra, while more saline communities supported marine and brackish water taxa, notably a range of chlorophytic algae and the bivalve mollusc Cerastoderma glaucum. Site community differences were also related to bank slope and parameters describing habitat heterogeneity. A saline lagoon community was discerned within the matrix of biotic variation consisting of specialist lagoonal species with associated typically euryhaline taxa. For fauna, the latter were the molluscs Abra tenuis and Hydrobia ulvae, and the crustaceans Corophium volutator and Palaemonetes varians, and for flora they were the algae Ulva lactuca, Chaetomorpha mediterranea, Cladophora spp. and Enteromorpha intestinalis. One non-native polychaete species, Ficopomatus enigmaticus, also strongly influenced community structure within the lagoonal resource. The community was not well defined as specialist and

  9. Salinization may attack you from behind: upconing and related long-term downstream salinization in the Amsterdam Water Supply Dunes (Invited)

    NASA Astrophysics Data System (ADS)

    Olsthoorn, T.

    2010-12-01

    Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more

  10. A new approximation for pore pressure accumulation in marine sediment due to water waves

    NASA Astrophysics Data System (ADS)

    Jeng, D.-S.; Seymour, B. R.; Li, J.

    2007-01-01

    The residual mechanism of wave-induced pore water pressure accumulation in marine sediments is re-examined. An analytical approximation is derived using a linear relation for pore pressure generation in cyclic loading, and mistakes in previous solutions (Int. J. Numer. Anal. Methods Geomech. 2001; 25:885-907; J. Offshore Mech. Arctic Eng. (ASME) 1989; 111(1):1-11) are corrected. A numerical scheme is then employed to solve the case with a non-linear relation for pore pressure generation. Both analytical and numerical solutions are verified with experimental data (Laboratory and field investigation of wave-sediment interaction. Joseph H. Defrees Hydraulics Laboratory, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 1983), and provide a better prediction of pore pressure accumulation than the previous solution (J. Offshore Mech. Arctic Eng. (ASME) 1989; 111(1):1-11). The parametric study concludes that the pore pressure accumulation and use of full non-linear relation of pore pressure become more important under the following conditions: (1) large wave amplitude, (2) longer wave period, (3) shallow water, (4) shallow soil and (5) softer soils with a low consolidation coefficient. Copyright

  11. Water imbibition by mica pores: what happens when capillary flow is suppressed?

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Qiao, Rui

    2017-11-01

    The imbibition of liquids into porous media plays a critical role in numerous applications. Most prior studies focused on imbibition driven by capillary flows. In this work, we study the imbibition of water into slit-shaped mica pores filled with pressurized methane using molecular simulations. Despite that capillary flow is suppressed by the high gas pressure, water is imbibed into the pore as monolayer liquid films. Since the classical hydrodynamic flow is not readily applicable for the monolayer water film propagating on the mica wall and the imbibition is driven by the strong affinity of water molecules to the mica walls, the observed imbibition is best taken as surface hydration. We show that the dynamics of water's imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the mica walls. Using a molecular theory originally developed for the spreading of monolayer films on solid substrates, we clarify the mechanism underlying the rapid water imbibition observed here.

  12. Comparison of pore water samplers and cryogenic distillation under laboratory and field conditions for soil water stable isotope analysis.

    PubMed

    Thoma, Michael; Frentress, Jay; Tagliavini, Massimo; Scandellari, Francesca

    2018-02-15

    We used pore water samplers (PWS) to sample for isotope analysis (1) only water, (2) soil under laboratory conditions, and (3) soil in the field comparing the results with cryogenic extraction (CE). In (1) and (2), no significant differences between source and water extracted with PWS were detected with a mean absolute difference (MAD) always lower than 2 ‰ for δ 2 H and 1 ‰ for δ 18 O. In (2), CE water was more enriched than PWS-extracted water, with a MAD respect to source water of roughly 8 ‰ for δ 2 H and 4 ‰ for δ 18 O. In (3), PWS water was enriched relative to CE water by 3 ‰ for δ 2 H and 0.9 ‰ for δ 18 O. The latter result may be due to the distinct water portions sampled by the two methods. Large pores, easily sampled by PWS, likely retain recent, and enriched, summer precipitation while small pores, only sampled by CE, possibly retain isotopically depleted water from previous winter precipitation or irrigation inputs. Accuracy and precision were greater for PWS relative to CE. PWS is therefore suggested as viable tool to extract soil water for stable isotope analysis, particularly for soils used in this study (sandy and silty loams).

  13. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  14. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.

    PubMed

    Ulanowski, T A; Branfireun, B A

    2013-06-01

    The Hudson Bay Lowland (HBL) of northern Ontario, Manitoba and Quebec, Canada is the second largest contiguous peatland complex in the world, currently containing more than half of Canada's soil carbon. Recent concerns about the ecohydrological impacts to these large northern peatlands resulting from climate change and resource extraction have catalyzed a resurgence in scientific research into this ecologically important region. However, the sheer size, heterogeneity and elaborate landscape arrangements of this ecosystem raise important questions concerning representative sampling of environmental media for chemical or physical characterization. To begin to quantify such variability, this study assessed the small-scale spatial (1m) and short temporal (21 day) variability of surface pore-water biogeochemistry (pH, dissolved organic carbon, and major ions) in a Sphagnum spp.-dominated, ombrotrophic raised bog, and a Carex spp.-dominated intermediate fen in the HBL. In general, pore-water pH and concentrations of dissolved solutes were similar to previously reported literature values from this region. However, systematic sampling revealed consistent statistically significant differences in pore-water chemistries between the bog and fen peatland types, and large within-site spatiotemporal variability. We found that microtopography in the bog was associated with consistent differences in most biogeochemical variables. Temporal changes in dissolved solute chemistry, particularly base cations (Na(+), Ca(2+) and Mg(2+)), were statistically significant in the intermediate fen, likely a result of a dynamic connection between surficial waters and mineral-rich deep groundwater. In both the bog and fen, concentrations of SO4(2-) showed considerable spatial variability, and a significant decrease in concentrations over the study period. The observed variability in peatland pore-water biogeochemistry over such small spatial and temporal scales suggests that under-sampling in

  15. Potential linkage between sediment oxygen demand and pore water chemistry in weir-impounded rivers.

    PubMed

    Lee, Mi-Hee; Jung, Heon-Jae; Kim, Sung-Han; An, Sung-Uk; Choi, Jung Hyun; Lee, Hyo-Jin; Huh, In-Ae; Hur, Jin

    2018-04-01

    Due to recent weir construction on four major rivers in South Korea, sediment has accumulated in the river bottom near the weirs, which has in turn raised concerns over the quality of overlying water. In this study, the seasonal and spatial variations of sediment oxygen demand (SOD) and the influencing factors were explored using pore water chemistry for the weir-impounded rivers. Muddy and sandy sediment samples were taken from 24 different sites along the four major rivers in summer and autumn, 2016. The SOD was measured in a laboratory based on 10-hour incubation at in situ temperature. The measured pore water chemistry included the concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), inorganic nitrogen (NH 3 -N, NO 3 -N, NO 2 -N), and phosphate phosphorous (PO 4 -P), and the optical properties from UV absorption spectra and fluorescence excitation-emission matrixes coupled with parallel factor analysis (EEM-PARAFAC). Significant differences in SOD values between muddy and sandy sediments were found only in summer (p=0.047). The higher SOD in summer versus autumn (p=0.015) was attributed to seasonal temperature differences. The higher NH 3 -N and the lower NO 3 -N of the pore water samples in summer versus autumn suggested that organic nitrogen decomposition via an ammonification and nitrification process could operate as an important factor for the SOD variations in summer and autumn, respectively. Principal component analysis revealed the mutual contributions of nitrogen-associated processes and the organic composition in pore water to increasing SOD levels. NH 3 -N in sediment pore water alone could be a good predictor for SOD. However, multiple regression analysis using NH 3 -N, fluorescence index and terrestrial humic-like components improved the estimation capability for SOD variations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    PubMed

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  17. Numerical Simulation of Ground-Water Salinization in the Arkansas River Corridor, Southwest Kansas

    NASA Astrophysics Data System (ADS)

    Whittemore, D. O.; Perkins, S.; Tsou, M.; McElwee, C. D.; Zhan, X.; Young, D. P.

    2001-12-01

    The salinity of ground water in the High Plains aquifer underlying the upper Arkansas River corridor in southwest Kansas has greatly increased during the last few decades. The source of the salinization is infiltration of Arkansas River water along the river channel and in areas irrigated with diverted river water. The saline river water is derived from southeastern Colorado where consumptive losses of water in irrigation systems substantially concentrate dissolved solids in the residual water. Before development of surface- and ground-water resources, the Arkansas River gained flow along nearly all of its length in southwest Kansas. Since the 1970's, ground-water levels have declined in the High Plains aquifer from consumptive use of ground water. The water-level declines have now changed the river to a generally losing rather than gaining system. We simulated ground-water flow in the aquifers underlying 126 miles of the river corridor using MODFLOW integrated with the GIS software ArcView (Tsou and Whittemore, 2001). There are two layers in the model, one for the Quaternary alluvial aquifer and the other for the underlying High Plains aquifer. We prepared a simulation for circa 1940 that represented conditions prior to substantial ground-water development, and simulations for 40 years into the future that were based on holding constant either average water use or average ground-water levels for the 1990's. Streamflows along the river computed from the model results illustrated the flow gains from ground-water discharge for circa 1940 and losses during the 1990's. We modeled the movement of salinity as particle tracks generated by MODPATH based on the MODFLOW solutions. The results indicate that during the next 40 years, saline water will move a substantial distance in the High Plains aquifer on the south side of the central portion of the river valley. The differences between the circa 1940 and 1990's simulations fit the observed data that show large increases in

  18. Fifty Years of Water Cycle Change expressed in Ocean Salinity

    NASA Astrophysics Data System (ADS)

    Durack, P. J.; Wijffels, S.

    2010-12-01

    Using over 1.6 million profiles of salinity, potential temperature and density from historical archives and Argo, we derive the global field of linear change for ocean state properties over the period 1950-2008, taking care to minimise aliasing associated with seasonal and El Nino Southern Oscillation modes. We find large, robust and spatially coherent multi-decadal linear trends in ocean surface salinities. Increases are found in evaporation-dominated regions and freshening in precipitation-dominated regions. The spatial patterns of surface change strongly resemble the climatological mean surface salinity field, consistent with an amplification of the global water cycle. A robust amplification of the mean salinity pattern of 8% (to 200m depth) is found globally and 5-9% is found in each of the 3 key ocean basins. 20th century runs from the CMIP3 model suite support the relationship between amplified patterns of freshwater flux driving an amplified pattern of ocean surface salinity only in models that warm substantially. Models with volcanic aerosols show a diminished warming response and a corresponding weak response in ocean surface salinity change, which implies dampened changes to the global water cycle. The warming response represented in realistic (when compared to observations) 20th century simulations appear quite similar in their broad zonal patterns to those of the projected 21st century simulations, these projected runs being strongly forced by greenhouse gases. This pattern amplification is mostly absent from 20th century simulations which include volcanic forcing. While we confirm that global mean precipitation only weakly change with surface warming (2-3% K-1), the pattern amplification rate in both the freshwater flux and ocean salinity fields indicate larger responses. Our new observed salinity estimates suggest a change of between 8-16% K-1, close to, or greater than, the theoretical response described by the Clausius-Clapeyron relation. The

  19. Sediment toxicity test results for the Urban Waters Study 2010, Bellingham Bay, Washington

    USGS Publications Warehouse

    Biedenbach, James M.

    2011-01-01

    The Washington Department of Ecology annually determines the quality of recently deposited sediments in Puget Sound as a part of Ecology's Urban Waters Initiative. The annual sediment quality studies use the Sediment Quality Triad (SQT) approach, thus relying on measures of chemical contamination, toxicity, and benthic in-faunal effects (Chapman, 1990). Since 2002, the studies followed a rotating sampling scheme, each year sampling a different region of the greater Puget Sound Basin. During the annual studies, samples are collected in locations selected with a stratified-random design, patterned after the designs previously used in baseline surveys completed during 1997-1999 (Long and others, 2003; Wilson and Partridge, 2007). Sediment samples were collected by personnel from the Washington Department of Ecology, in June of 2010 and shipped to the U. S. Geological Survey (USGS) laboratory in Corpus Christi, Texas (not shown), where the tests were performed. Sediment pore water was extracted with a pneumatic apparatus and was stored frozen. Just before testing, water-quality measurements were made and salinity adjusted, if necessary. Tests were performed on a dilution series of each sample consisting of 100-, 50-, and 25-percent pore-water concentrations. The specific objectives of this study were to: * Extract sediment pore water from a total of 30 sediment samples from the Bellingham Bay, Washington area within a day of receipt of the samples. * Measure water-quality parameters (salinity, dissolved oxygen, pH, sulfide, and ammonia) of thawed pore-water samples before testing and adjust salinity, temperature and dissolved oxygen, if necessary, to obtain optimal ranges for the test species. * Conduct the fertilization toxicity test with pore water using sea urchin (Stronylocentrotus purpuratus) (S. purpuratus) gametes. * Perform quality control assays with reference pore water, dilution blanks and a positive control dilution series with sodium dodecyl sulfate (SDS

  20. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching

    PubMed Central

    Feng, Qian; Mao, Xiaoxi

    2017-01-01

    Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG), the pH decreased from 8.21–8.35 to 7.71–7.88, the conductivity decreased from 0.95–1.14 ms/cm to 0.45–0.68 ms/cm, and the total soluble salt content decreased from 2.63–2.81 g/kg to 2.28–2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ), the pH decreased from 8.36–8.54 to 7.73–7.96, the conductivity decreased from 1.58–1.68 ms/cm to 1.45–1.54 ms/cm, and the total soluble salt decreased from 2.81–4.03 g/kg to 2.56–3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils. PMID:29091963

  1. Salinity acclimation enhances salinity tolerance in tadpoles living in brackish water through increased Na⁺ , K⁺ -ATPase expression.

    PubMed

    Wu, Chi-Shiun; Yang, Wen-Kai; Lee, Tsung-Han; Gomez-Mestre, Ivan; Kam, Yeong-Choy

    2014-01-01

    Amphibians are highly susceptible to osmotic stress but, nonetheless, some species can adapt locally to withstand moderately high levels of salinity. Maintaining the homeostasis of body fluids by efficient osmoregulation is thus critical for larval survival in saline environments. We studied the role of acclimation in increased physiological tolerance to elevated water salinity in the Indian rice frog (Fejervarya limnocharis) tadpoles exposed to brackish water. We quantified the effects of salinity acclimation on tadpole survival, osmolality, water content, and gill Na⁺ , K⁺ -ATPase (NKA) expression. Tadpoles did not survive over 12 hr if directly transferred to 11 ppt (parts per thousand) whereas tadpoles previously acclimated for 48 hr in 7  ppt survived at least 48 hr. We reared tadpoles in 3 ppt and then we transferred them to one of (a) 3 ppt, (b) 11  ppt, and (c) 7  ppt for 48 hr and then 11 ppt. In the first 6 hr after transfer to 11 ppt, tadpole osmolality sharply increased and tadpole water content decreased. Tadpoles pre-acclimated for 48 hr in 7 ppt were able to maintain lower and more stable osmolality within the first 3 hr after transfer. These tadpoles initially lost water content, but over the next 6 hr gradually regained water and stabilized. In addition, they had a higher relative abundance of NKA proteins than tadpoles in other treatments. Pre-acclimation to 7 ppt for 48 hr was hence sufficient to activate NKA expression, resulting in increased survivorship and reduced dehydration upon later transfer to 11 ppt. J © 2013 Wiley Periodicals, Inc.

  2. Critical Evaluation of Soil Pore Water Extraction Methods on a Natural Soil

    NASA Astrophysics Data System (ADS)

    Orlowski, Natalie; Pratt, Dyan; Breuer, Lutz; McDonnell, Jeffrey

    2017-04-01

    Soil pore water extraction is an important component in ecohydrological studies for the measurement of δ2H and δ18O. The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of commonly applied lab-based soil water extraction techniques on a natural soil: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and two types of cryogenic extraction systems. We applied these extraction methods to a natural summer-dry (gravimetric water contents ranging from 8% to 15%) glacio-lacustrine, moderately fine textured clayey soil; excavated in 10 cm sampling increments to a depth of 1 meter. Isotope results were analyzed via OA-ICOS and compared for each extraction technique that produced liquid water. From our previous intercomparison study among the same extraction techniques but with standard soils, we discovered that extraction methods are not comparable. We therefore tested the null hypothesis that all extraction techniques would be able to replicate the natural evaporation front in a comparable manner occurring in a summer-dry soil. Our results showed that the extraction technique utilized had a significant effect on the soil water isotopic composition. High pressure mechanical squeezing and vapor equilibration techniques produced similar results with similarly sloped evaporation lines. Due to the nature of soil properties and dryness, centrifugation was unsuccessful in obtaining pore water for isotopic analysis. Cryogenic extraction on both tested techniques produced similar results to each other on a similar sloping evaporation line, but dissimilar with depth.

  3. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    PubMed

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Impact of saline water sources on hypertension and cardiovascular disease risk in coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Butler, Adrian; Hoque, Mohammad; Mathewson, Eleanor; Ahmed, Kazi; Rahman, Moshuir; Vineis, Paolo; Scheelbeek, Pauline

    2016-04-01

    Southern Bangladesh is periodically affected by tropical cyclone induced storm surges. Such events can result in the inundation of large areas of the coastal plain by sea water. Over time these episodic influxes of saline water have led to the build-up of a high of salinities (e.g. > 1,000 mg/l) in the shallow (up to ca. 150 m depth) groundwater. Owing to the highly saline groundwater, local communities have developed alternative surface water sources by constructing artificial drinking water ponds, which collect monsoonal rainwater. These have far greater storage than traditional rainwater harvesting systems, which typically use 40 litre storage containers that are quickly depleted during the dry season. Unfortunately, the ponds can also become salinised during storm surge events, the impacts of which can last for a number of years. A combined hydrological and epidemiological research programme over the past two years has been undertaken to understand the potential health risks associated with these saline water sources, as excessive intake of sodium can lead to hypertension and an increased risk of cardiovascular disease (such as stroke and heart attack). An important aspect of the selected research sites was the variety of drinking water sources available. These included the presence of managed aquifer recharge sites where monsoonal rainwater is stored in near-surface (semi-)confined aquifers for abstraction during the dry season. This provided an opportunity for the effects of interventions with lower salinity sources to be assessed. Adjusting for confounding factors such as age, gender and diet, the results show a significant association between salinity and blood pressure. Furthermore, the results also showed such impacts are reversible. In order to evaluate the costs and benefits of such interventions, a water salinity - dose impact model is being developed to assess the effectiveness of alternative drinking water sources, such as enhanced rainwater

  5. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater.

    PubMed

    Sanford, Ward E; Doughten, Michael W; Coplen, Tyler B; Hunt, Andrew G; Bullen, Thomas D

    2013-11-14

    High-salinity groundwater more than 1,000 metres deep in the Atlantic coastal plain of the USA has been documented in several locations, most recently within the 35-million-year-old Chesapeake Bay impact crater. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution, osmosis and evaporation from heating associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) sea water. We find that the sea water is probably 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern sea water and consistent with the nearly closed ECNA basin. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and palaeontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient sea water in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA sea water persist in deep sediments at many locations along the Atlantic margin.

  6. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching

    PubMed Central

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China. PMID:27806098

  7. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    PubMed

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  8. Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments.

    PubMed

    Simpson, Stuart L; Batley, Graeme E

    2003-02-01

    Metal partitioning is altered when suboxic estuarine sediments containing Fe(II)-rich pore waters are disturbed during collection, preparation, and toxicity testing. Experiments with model Fe(II)-rich pore waters demonstrated the rates at which adsorptive losses of Cd, Cu, Ni, Mn, Pb, and Zn occur upon exposure to air. Experiments with Zn-contaminated estuarine sediments demonstrated large and often unpredictable changes to metal partitioning during sediment storage, removal of organisms, and homogenization before testing. Small modifications to conditions, such as aeration of overlying waters, caused large changes to the metal partitioning. Disturbances caused by sediment collection required many weeks for reestablishment of equilibrium. Bioturbation by benthic organisms led to oxidation of pore-water Fe(II) and lower Zn fluxes because of the formation of Fe hydroxide precipitates that adsorb pore-water Zn. For five weeks after the addition of organisms to sediments, Zn fluxes increased slowly as the organisms established themselves in the sediments, indicating that the establishment of equilibrium was not rapid. The results are discussed in terms of the dynamic nature of suboxic, Fe(II)-rich estuarine sediments, how organisms perturb their environment, and the importance of understanding chemistry in toxicity testing with whole sediments or pore water. Recommendations are provided for the handling of sediments for toxicity testing.

  9. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  10. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, I.C.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions ofmore » Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.« less

  11. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    USGS Publications Warehouse

    Hooten, Russell L.; Carr, R. Scott

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciatazoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH3) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH3than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH3 concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciatazoospore germination was not affected by samples with high NH3 concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH3 and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH3.

  12. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  13. Environmental characteristics and changes of sediment pore water dissolved organic matter in four Chinese lakes.

    PubMed

    Mostofa, Khan M G; Li, Wen; Wu, Fengchang; Liu, Cong-Qiang; Liao, Haiqing; Zeng, Li; Xiao, Min

    2018-01-01

    Sediment pore waters were examined in four Chinese lakes (Bosten, Qinghai, Chenghai and Dianchi) to characterise the sources of dissolved organic matter (DOM) and their microbial changes in the sediment depth profiles. Parallel factor (PARAFAC) modelling on the sample fluorescence spectra confirmed that the pore water DOM was mostly composed of two components with a mixture of both allochthonous and autochthonous fulvic acid-like substances in three lakes, except Lake Dianchi, and protein-like components in Lake Bosten. However, DOM in Lake Dianchi was composed of three components, including a fulvic acid-like, and two unidentified components, which could originate from mixed sources of either sewerage-impacted allochthonous or autochthonous organic matter (OM). Dissolved organic carbon (DOC) concentrations were typically high (583-7410 μM C) and fluctuated and increased vertically in the depth profile. The fluorescence intensity of the fulvic acid-like substance and absorbance at 254 nm increased vertically in the sediment pore waters of three lakes. A significant relationship between DOC and the fluorescence intensity of the fulvic acid-like component in the sediment pore waters of three lakes, except Lake Dianchi, suggested that the fulvic acid-like component could significantly contribute to total DOM and could originate via complex microbial processes in early diagenesis on OM (ca. phytoplankton, terrestrial plant material) in these lakes. Pore water DOM components could therefore be a useful indicator to assess the DOM sources of the lake sediment during sedimentation over the past several decades, which have been heavily affected by ambient terrestrial vegetation and human activities.

  14. Distribution, diffusive fluxes, and toxicity of heavy metals and PAHs in pore water profiles from the northern bays of Taihu Lake.

    PubMed

    Lei, Pei; Zhang, Hong; Shan, Baoqing; Zhang, Bozheng

    2016-11-01

    Pore water plays a more significant role than do sediments in pollutant cycling dynamics. Also, concentrations of pollutants in pore water provide important information about their bioavailability or eco-toxicity; however, very few studies have focused on this topic. In this study, four duplicate sediment cores from three typical northern bays as well as the central part of Taihu Lake were collected to investigate the distribution, diffusive fluxes, and toxicity of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in pore water profiles, which will be good in understanding the mobility and toxicity of these toxic pollutants and achieving better environmental management. The diffusive fluxes of heavy metals across the sediment-water interface was estimated through Fick's First Law, and the toxicity of heavy metals and PAHs in pore water was assessed by applying a water quality index (interstitial water toxicity criteria unit, IWCTU) and a hazard index (HI), respectively. The average concentrations of Cr, Cu, Ni, Pb, and Zn in surface pore water were 18.8, 23.4, 12.0, 13.5, and 42.5 μg L -1 , respectively. Also, concentrations of the selected heavy metals in both overlying water and pore water from Taihu Lake were all lower than the standard values of the environmental quality standards for surface water. The concentrations as the pore water depth increased, and the highest detected concentrations of heavy metals were recorded between 3 and 5 cm below the sediment surface. The average diffusive fluxes of these metals were 27.3, 24.8, 7.03, 7.81, and -3.32 μg (m 2 day) -1 , respectively, indicating export from sediment into overlying water, with the exception of Zn. There was a potential risk of toxicity, mainly from Pb and Cu, indicating that heavy metals in pore water had slight to moderate impact on sediment-dwelling organisms by values of the IWCTU and the Nemeraw index. The total PAH concentrations in pore water were higher than those in overlying

  15. A broadband helical saline water liquid antenna for wearable systems

    NASA Astrophysics Data System (ADS)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  16. Characterization and modeling of the stress and pore-fluid dependent acoustic properties of fractured porous rocks

    NASA Astrophysics Data System (ADS)

    Almrabat, Abdulhadi M.

    The thesis presents the results of a study of the characterization and modeling of the stress and pore-fluid dependent acoustic properties of fractured porous rocks. A new laboratory High Pressure and High Temperature (HPHT) triaxial testing system was developed to characterize the seismic properties of sandstone under different levels of effective stress confinement and changes in pore-fluid composition. An intact and fractured of Berea sandstones core samples were used in the experimental studies. The laboratory test results were used to develop analytical models for stress-level and pore-fluid dependent seismic velocity of sandstones. Models for stress-dependent P and S-wave seismic velocities of sandstone were then developed based on the assumption that stress-dependencies come from the nonlinear elastic response of micro-fractures contained in the sample under normal and shear loading. The contact shear stiffness was assumed to increase linearly with the normal stress across a micro-fracture, while the contact normal stiffness was assumed to vary as a power law with the micro-fracture normal stress. Both nonlinear fracture normal and shear contact models were validated by experimental data available in the literature. To test the dependency of seismic velocity of sandstone on changes in pore-fluid composition, another series of tests were conducted where P and S-wave velocities were monitored during injection of supercritical CO 2 in samples of Berea sandstone initially saturated with saline water and under constant confining stress. Changes in seismic wave velocity were measured at different levels of supercritical CO2 saturation as the initial saline water as pore-fluid was displaced by supercritical CO 2. It was found that the P- iv wave velocity significantly decreased while the S-wave velocity remained almost constant as the sample supercritical CO2 saturation increased. The dependency of the seismic velocity on changes on pore fluid composition during

  17. Acute Toxicity of Ammonia, Nitrite and Nitrate to Shrimp Litopenaeus vannamei Postlarvae in Low-Salinity Water.

    PubMed

    Valencia-Castañeda, Gladys; Frías-Espericueta, Martin G; Vanegas-Pérez, Ruth C; Pérez-Ramírez, Jesús A; Chávez-Sánchez, María C; Páez-Osuna, Federico

    2018-05-12

    Shrimp farming in low salinities waters is an alternative to increasing production, and counteracting disease problems in brackish and marine waters. However, in low-salinity waters, toxicity of nitrogen compounds increases, and there is no available data of its acute toxicity in shrimp postlarvae. This study determined the acute toxicity of ammonia, nitrite and nitrate in Litopenaeus vannamei postlarvae in 1 and 3 g/L salinity, as well as the safety levels. The LC 50 confirms that nitrite is more toxic than ammonia and nitrate in low salinity waters, and that its toxicity increases with a decrease in salinity. The safe levels estimated for salinities of 1 and 3 g/L were 0.54 and 0.81 mg/L for total ammonia-N, 0.17 and 0.25 mg/L for NO 2 -N, and 5.6 and 21.5 mg/L for NO 3 -N, respectively.

  18. Eddy covarianace measurements in a hyper-arid and hyper-saline mangroves ecosystem

    NASA Astrophysics Data System (ADS)

    Perri, S.; Marpu, P.; Molini, A.; Armstrong, P.

    2017-12-01

    The natural environment of mangroves provides a number of ecosystem services for improving water quality, supporting healthy fisheries, and protecting the coasts. Also, their carbon storage is larger than any other forest type. Several authors have recognized the importance of mangroves in global carbon cycles. However, energy, water and carbon exchanges between ecosystem and atmosphere are still not completely understood. Eddy covariance measurements are extremely valuable to understand the role of the unique stressors of costal ecosystems in gas exchange. In particular, periodic flooding and elevated soil pore water salinity influence land-atmosphere interactions. Despites the importance of flux measurements in mangroves forests, such in-situ observations are extremely rare. Our research team set up an eddy covariance tower in the Mangrove National Park of Abu Dhabi, UAE. The study site (24.4509° N, 54.4288° E) is located in a dwarf Avicennia marina ecosystem experiencing extremely high temperatures and salinity. CO2 and H2O exchanges are estimated and related to water level and salinity measurements. This unique dataset will shed some light on the net ecosystem exchange (NEE) of carbon dioxide, on energy fluxes and on evapotranspiration rates for a halophyte ecosystem under severe salt-stress and high temperature.

  19. Sea urchin fertilization assay: an evaluation of assumptions related to sample salinity adjustment and use of natural and synthetic marine waters for testing.

    PubMed

    Jonczyk, E; Gilron, G; Zajdlik, B

    2001-04-01

    Most industrial effluents discharged into the marine coastal environment are freshwater in nature and therefore require manipulation prior to testing with marine organisms. The sea urchin fertilization test is a common marine bioassay used for routine environmental monitoring, investigative evaluations, and/or regulatory testing of effluents and sediment pore waters. The existing Canadian and U.S. Environmental Protection Agencies test procedures using sea urchin (and sand dollar) gametes allow for sample salinity adjustment using either brine or dry salts. Moreover, these procedures also allow for the use of either natural or synthetic marine water for culturing/holding test organisms and for full-scale testing. At present, it is unclear to what extent these variables affect test results for whole effluents. The test methods simply state that there are no data available and that the use of artificial dry sea salts should be considered provisional. We conducted a series of concurrent experiments aimed at comparing the two different treatments of sample salinity adjustment and the use of natural versus synthetic seawater in order to test these assumptions and evaluate effects on the estimated end points generated by the sea urchin fertilization sublethal toxicity test. Results from these experiments indicated that there is no significant difference in test end points when dry salts or brine are used for sample salinity adjustment. Similarly, results obtained from parallel (split-sample) industrial effluent tests with natural and artificial seawater suggest that both dilution waters produce similar test results. However, data obtained from concurrent tests with the reference toxicant, copper sulfate, showed higher variability and greater sensitivity when using natural seawater as control/dilution water.

  20. Detection of water bodies in Saline County, Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A total of 2,272 water bodies were mapped in Saline County, Kansas in 1972 using ERTS-1 imagery. A topographic map of 1955 shows 1,056 water bodies in the county. The major increase took place in farm ponds. Preliminary comparison of image and maps indicates that water bodies larger than ten acres in area proved consistently detectable. Most water areas between four and ten acres are also detectable, although occasionally image context prevents detection. Water areas less than four acres in extent are sometimes detected, but the number varies greatly depending on image context and the individual interpretor.

  1. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  2. The use of short rotation willows and poplars for the recycling of saline waste waters

    Treesearch

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  3. Geoelectric imaging for saline water intrusion in Geopark zone of Ciletuh Bay, Indonesia

    NASA Astrophysics Data System (ADS)

    Ardi, N. D.; Iryanti, M.; Asmoro, C. P.; Yusuf, A.; Sundana, A. N. A.; Safura, H. Y.; Fitri, M.; Anggraeni, M.; Kurniawan, R.; Afrianti, R.; Sumarni

    2018-05-01

    Saline water intrusion in estuary is an urgent ecological encounter across the world. The Ciletuh Bay, located in the southern Sukabumi district, is an area with high cultivated potential becoming one of the most important geology tourism zones in Indonesia. However, salt water intrusion along the creek is a natural spectacle that disturbs the economic growth of the whole region. This research was intended at plotting the subsurface level of saltwater interventions into aquifers at the northern part of Ciletuh creek, Indonesia. The study implemented geoelectric imaging methods. 37 imaging datum were acquired using Wenner array configuration. The saline water were identified across the study area. The result of two dimensional cross-sectional resistivity shows that there is an indication of sea content in our measured soil, i.e. the smallest resistivity value is 0.579 Ωm found at a depth of 12.4 m to 19.8 m at a track length of 35 m to 60 m is categorized in the clayey which shows low groundwater quality. However, when compared with the results of direct observation of groundwater from the wells of residents, the water obtained is brackish water. A water chemistry test is conducted to ascertain the initial results of this method so that a potential sea intrusion potential map can be interpreted more clearly. This can consequently help as an extrapolative model to define depth to saline water at any site within the saline water zone in the study area.

  4. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE PAGES

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; ...

    2018-01-29

    Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore

  5. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.

    Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore

  6. Evaluation of methods to sample fecal indicator bacteria in foreshore sand and pore water at freshwater beaches.

    PubMed

    Vogel, Laura J; Edge, Thomas A; O'Carroll, Denis M; Solo-Gabriele, Helena M; Kushnir, Caitlin S E; Robinson, Clare E

    2017-09-15

    Fecal indicator bacteria (FIB) are known to accumulate in foreshore beach sand and pore water (referred to as foreshore reservoir) where they act as a non-point source for contaminating adjacent surface waters. While guidelines exist for sampling surface waters at recreational beaches, there is no widely-accepted method to collect sand/sediment or pore water samples for FIB enumeration. The effect of different sampling strategies in quantifying the abundance of FIB in the foreshore reservoir is unclear. Sampling was conducted at six freshwater beaches with different sand types to evaluate sampling methods for characterizing the abundance of E. coli in the foreshore reservoir as well as the partitioning of E. coli between different components in the foreshore reservoir (pore water, saturated sand, unsaturated sand). Methods were evaluated for collection of pore water (drive point, shovel, and careful excavation), unsaturated sand (top 1 cm, top 5 cm), and saturated sand (sediment core, shovel, and careful excavation). Ankle-depth surface water samples were also collected for comparison. Pore water sampled with a shovel resulted in the highest observed E. coli concentrations (only statistically significant at fine sand beaches) and lowest variability compared to other sampling methods. Collection of the top 1 cm of unsaturated sand resulted in higher and more variable concentrations than the top 5 cm of sand. There were no statistical differences in E. coli concentrations when using different methods to sample the saturated sand. Overall, the unsaturated sand had the highest amount of E. coli when compared to saturated sand and pore water (considered on a bulk volumetric basis). The findings presented will help determine the appropriate sampling strategy for characterizing FIB abundance in the foreshore reservoir as a means of predicting its potential impact on nearshore surface water quality and public health risk. Copyright © 2017 Elsevier Ltd. All rights

  7. Landscape scale assessment of soil and water salinization processes in agricultural coastal area.

    NASA Astrophysics Data System (ADS)

    Elen Bless, Aplena; Follain, Stéphane; Coiln, François; Crabit, Armand

    2017-04-01

    Soil salinization is among main land degradation process around the globe. It reduces soil quality, disturbs soil function, and has harmful impacts on plant growth that would threaten agricultural sustainability, particularly in coastal areas where mostly susceptible on land degradation because of pressure from anthropogenic activities and at the same time need to preserve soil quality for supporting food production. In this presentation, we present a landscape scale analysis aiming to assess salinization process affecting wine production. This study was carried out at Serignan estuary delta in South of France (Languadoc Roussillon Region, 43˚ 28'N and 3˚ 31'E). It is a sedimentary basin near coastline of Mediterranean Sea. Field survey was design to characterize both space and time variability of soil and water salinity through water electrical conductivity (ECw) and soil 1/5 electrical conductivity (EC1/5). For water measurements, Orb River and groundwater salinity (piezometers) were determined and for soil 1737 samples were randomly collected from different soil depths (20, 50, 80, and 120 cm) between year 2012 and 2016 and measured. In order to connect with agricultural practices observations and interviews with farmers were conducted. We found that some areas combining specific criteria presents higher electrical conductivity: positions with lower elevation (a.s.l), Cambisols (Calcaric) / Fluvisols soil type (WRB) and dominated clay textures. These observations combined with geochemical determination and spatial analysis confirm our first hypothesis of sea salt intrusion as the main driven factor of soil salinity in this region. In this context, identification of salinization process, fine determination of pedological specificities and fine understanding of agricultural practices allowed us to proposed adaptation strategies to restore soil production function. Please fill in your abstract text. Key Words: Salinity, Coastal Agriculture, Landscape, Soil, Water

  8. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources.

    PubMed

    Nguyen, Hoa T; Meir, Patrick; Sack, Lawren; Evans, John R; Oliveira, Rafael S; Ball, Marilyn C

    2017-08-01

    Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m -2  s -1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity. © 2017 John Wiley & Sons Ltd.

  9. North Atlantic near-surface salinity contrasts and intra-basin water vapor transfer

    NASA Astrophysics Data System (ADS)

    Reagan, J. R.; Seidov, D.; Boyer, T.

    2017-12-01

    The geographic distribution of near-surface salinity (NSS) in the North Atlantic is characterized by a very salty (>37) subtropical region contrasting with a much fresher (<35) subpolar area. Multiple studies have shown that preserving this salinity contrast is important for maintaining the Atlantic Meridional Overturning Circulation (AMOC), and that changes to this salinity balance may reduce the strength of the AMOC. High subtropical salinity is primarily due to evaporation (E) dominating precipitation (P), whereas low subpolar salinity is at least partly due to precipitation dominating evaporation. Present-day understanding of the fate of water vapor in the atmosphere over the extratropical North Atlantic is that the precipitation which falls in the subpolar region primarily originates from the water vapor produced through evaporation in the subtropical North Atlantic. With this knowledge and in conjunction with a basic understanding of North Atlantic storm tracks—the main meridional transport conduits in mid and high latitudes— a preliminary time and spatial correlation analysis was completed to relate the North Atlantic decadal climatological salinity between 1985 and 2012 to the evaporation and precipitation climatologies for the same period. Preliminary results indicate that there is a clear connection between subtropical E-P and subpolar NSS. Additional results and potential implications will be presented and discussed.

  10. Hydrogeologic conditions and saline-water intrusion, Cape Coral, Florida, 1978-81

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1986-01-01

    The upper limestone unit of the intermediate aquifer system, locally called the upper Hawthorn aquifer, is the principal source of freshwater for Cape Coral, Florida. The aquifer has been contaminated with saline water by downward intrusion from the surficial aquifer system and by upward intrusion from the Floridan aquifer system. Much of the intrusion has occurred through open wellbores where steel casings are short or where casings have collapsed because of corrosion. Saline-water contamination of the upper limestone unit due to downward intrusion from the surficial aquifer is most severe in the southern and eastern parts of Cape Coral; contamination due to upward intrusion has occurred in many areas throughout Cape Coral. Intrusion is amplified in areas of heavy water withdrawals and large water-level declines. (USGS)

  11. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    PubMed

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  12. Effect of Water Surface Salinity on Evaporation: The Case of a Diluted Buoyant Plume Over the Dead Sea

    NASA Astrophysics Data System (ADS)

    Mor, Z.; Assouline, S.; Tanny, J.; Lensky, I. M.; Lensky, N. G.

    2018-03-01

    Evaporation from water bodies strongly depends on surface water salinity. Spatial variation of surface salinity of saline water bodies commonly occurs across diluted buoyant plumes fed by freshwater inflows. Although mainly studied at the pan evaporation scale, the effect of surface water salinity on evaporation has not yet been investigated by means of direct measurement at the scale of natural water bodies. The Dead Sea, a large hypersaline lake, is fed by onshore freshwater springs that form local diluted buoyant plumes, offering a unique opportunity to explore this effect. Surface heat fluxes, micrometeorological variables, and water temperature and salinity profiles were measured simultaneously and directly over the salty lake and over a region of diluted buoyant plume. Relatively close meteorological conditions prevailed in the two regions; however, surface water salinity was significantly different. Evaporation rate from the diluted plume was occasionally 3 times larger than that of the main salty lake. In the open lake, where salinity was uniform with depth, increased wind speed resulted in increased evaporation rate, as expected. However, in the buoyant plume where diluted brine floats over the hypersaline brine, wind speed above a threshold value (˜4 m s-1) caused a sharp decrease in evaporation probably due to mixing of the stratified plume and a consequent increase in the surface water salinity.

  13. MONITORING OF PORE WATER PRESSURE AND WATER CONTENT AROUND A HORIZONTAL DRIFT THROUGH EXCAVATION - MEASUREMENT AT THE 140m GALLERY IN THE HORONOBE URL -

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Satoshi; Kunimaru, Takanori; Kishi, Atsuyasu; Komatsu, Mitsuru

    Japan Atomic Energy Agency has been conducting the Horonobe Underground Research Laboratory (URL) project in Horonobe, Hokkaido, as a part of the research and development program on geological disposal of high-level radioactive waste. Pore water pressure and water content around a horizontal drift in the URL have been monitored for over 18 months since before the drift excavation was started. During the drift excavation, both pore water pressure and water content were decreasing. Pore water pressure has been still positive though it continued to decrease with its gradient gradually smaller after excavation, while water content turned to increase about 6 months after the completion of the excavation. It turned to fall again about 5 months later. An unsaturated zone containing gases which were dissolved in groundwater may have been formed around the horizontal drift.

  14. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  15. Increased salinization of fresh water in the northeastern United States

    PubMed Central

    Kaushal, Sujay S.; Groffman, Peter M.; Likens, Gene E.; Belt, Kenneth T.; Stack, William P.; Kelly, Victoria R.; Band, Lawrence E.; Fisher, Gary T.

    2005-01-01

    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. PMID:16157871

  16. Indicators: Salinity

    EPA Pesticide Factsheets

    Salinity is the dissolved salt content of a body of water. Excess salinity, due to evaporation, water withdrawal, wastewater discharge, and other sources, is a chemical sterssor that can be toxic for aquatic environments.

  17. Effects of Salinity and Confining Pressure on Hydration-Induced Fracture Propagation and Permeability of Mancos Shale

    NASA Astrophysics Data System (ADS)

    Zhang, Shifeng; Sheng, James J.

    2017-11-01

    Low-salinity water imbibition was considered an enhanced recovery method in shale oil/gas reservoirs due to the resulting hydration-induced fractures, as observed at ambient conditions. To study the effect of confining pressure and salinity on hydration-induced fractures, time-elapsed computerized tomography (CT) was used to obtain cross-sectional images of shale cores. Based on the CT data of these cross-sectional images, cut faces parallel to the core axial in the middle of the core and 3D fracture images were also reconstructed. To study the effects of confining pressure and salinity on shale pore fluid flowing, shale permeability was measured with Nitrogen (N2), distilled water, 4% KCl solution, and 8% KCl solution. With confining pressures increased to 2 MPa or more, either in distilled water or in KCl solutions of different salinities, fractures were observed to close instead to propagate at the end of the tests. The intrinsic permeabilities of #1 and #2 Mancos shale cores were 60.0 and 7000 nD, respectively. When tested with distilled water, the permeability of #1 shale sample with 20.0 MPa confining pressure loaded, and #2 shale sample with 2.5 MPa confining pressure loaded, decreased to 0.45 and 15 nD, respectively. Using KCl can partly mitigate shale permeability degradation. Compared to 4% KCl, 8% KCl can decrease more permeability damage. From this point of view, high salinity KCl solution should be required for the water-based fracturing fluid.

  18. Data Qualification Report: Pore Water Data for Use on the Yucca Mountain Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Miller; R. Monks; C. Warren

    Pore water data associated with Data Tracking Number (DTN) No.LL990702804244.100 are referenced in the Analysis and Model Reports (AMRs) prepared to support the Site Recommendation in determining the suitability of the Yucca Mountain, Nevada as a repository for high-level nuclear waste. It has been determined, in accordance with procedure AP-3.15Q Rev. 1, ICN 1, ''Managing Technical Product Inputs'', Attachment 6 , that the DTN-referenced data are used in AMRs that provide a direct calculation of ''Principal Factors'' for the Post-closure Safety Case or Potentially Disruptive Processes or Events. Therefore, in accordance with the requirements of procedure AP-SIII.2Q, Rev 0, ICNmore » 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', Section 5.3.1 .a, a Data Qualification Report has been prepared for submittal to the Assistant Manager, Office of Project Execution for concurrence. This report summarizes the findings of the Data Qualification Team assembled to evaluate unqualified ''pore water data'' represented by DTN No. LL990702804244.100. This DTN is currently used in the following AMRs: Drift-Scale Coupled Processes (DST and THC Seepage) Models (CRWMS M&O 2000a), Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier (CRWMS M&O 2000b), and Engineered Barrier System: Physical and Chemical Environment Model (CRWMS M&O 2000c). Mineral composition of pore water submitted to the Technical Data Management System (TDMS) using the subject DTN were acquired data from the analysis pore water samples sent to Lawrence Livermore National Laboratory's (LLNL) by UFA Ventures, Inc. and analyzed by LLNL's Analytical Sciences/Analytical and Nuclear Chemistry Division (ASD). The purpose and scope of the AMRs that reference the subject DTN and the potential application of pore water data is described below. These AMRs use only that data associated with the specific samples: ESF-HD-PERM-1, ESF-HD-PERM-2, and ESF

  19. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment-pore water partitioning.

    PubMed

    Marvin-Dipasquale, Mark; Lutz, Michelle A; Brigham, Mark E; Krabbenhoft, David P; Aiken, George R; Orem, William H; Hall, Britt D

    2009-04-15

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment-pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 microm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 +/- 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd's) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd's for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from

  20. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment - Pore water partitioning

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Lutz, Michelle A; Brigham, Mark E.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.

    2009-01-01

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment−pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 μm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 ± 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd’s) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd’s for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily

  1. Revealing the influence of water-cement ratio on the pore size distribution in hydrated cement paste by using cyclohexane

    NASA Astrophysics Data System (ADS)

    Bede, Andrea; Ardelean, Ioan

    2017-12-01

    Varying the amount of water in a concrete mix will influence its final properties considerably due to the changes in the capillary porosity. That is why a non-destructive technique is necessary for revealing the capillary pore distribution inside hydrated cement based materials and linking the capillary porosity with the macroscopic properties of these materials. In the present work, we demonstrate a simple approach for revealing the differences in capillary pore size distributions introduced by the preparation of cement paste with different water-to-cement ratios. The approach relies on monitoring the nuclear magnetic resonance transverse relaxation distribution of cyclohexane molecules confined inside the cement paste pores. The technique reveals the whole spectrum of pores inside the hydrated cement pastes, allowing a qualitative and quantitative analysis of different pore sizes. The cement pastes with higher water-to-cement ratios show an increase in capillary porosity, while for all the samples the intra-C-S-H and inter-C-S-H pores (also known as gel pores) remain unchanged. The technique can be applied to various porous materials with internal mineral surfaces.

  2. A risk assessment of water salinization during the initial impounding period of a proposed reservoir in Tianjin, China.

    PubMed

    Zhu, Liqin; Jiang, Cuiling; Wang, Youheng; Peng, Yanmei; Zhang, Peng

    2013-09-01

    Water salinization of coastal reservoirs seriously threatens the safety of their water supply. To elucidate the mechanism of salinization and to quantitatively analyze the risk in the initial period of the impoundment of a proposed reservoir in Tianjin Binhai New Area, laboratory and field simulation experiments were implemented and integrated with the actual operation of Beitang Reservoir, which is located in the same region and has been operational for many years. The results suggested that water salinization of the proposed reservoir was mainly governed by soil saline release, evaporation and leakage. Saline release was the prevailing factor in the earlier stage of the impoundment, then the evaporation and leakage effects gradually became notable over time. By referring to the actual case of Beitang Reservoir, it was predicted that the chloride ion (Cl(-)) concentration of the water during the initial impounding period of the proposed reservoir would exceed the standard for quality of drinking water from surface water sources (250 mg L(-1)), and that the proposed reservoir had a high risk of water salinization.

  3. Determining sources of elevated salinity in pre-hydraulic fracturing water quality data using a multivariate discriminant analysis model

    NASA Astrophysics Data System (ADS)

    Lautz, L. K.; Hoke, G. D.; Lu, Z.; Siegel, D. I.

    2013-12-01

    Hydraulic fracturing has the potential to introduce saline water into the environment due to migration of deep formation water to shallow aquifers and/or discharge of flowback water to the environment during transport and disposal. It is challenging to definitively identify whether elevated salinity is associated with hydraulic fracturing, in part, due to the real possibility of other anthropogenic sources of salinity in the human-impacted watersheds in which drilling is taking place and some formation water present naturally in shallow groundwater aquifers. We combined new and published chemistry data for private drinking water wells sampled across five southern New York (NY) counties overlying the Marcellus Shale (Broome, Chemung, Chenango, Steuben, and Tioga). Measurements include Cl, Na, Br, I, Ca, Mg, Ba, SO4, and Sr. We compared this baseline groundwater quality data in NY, now under a moratorium on hydraulic fracturing, with published chemistry data for 6 different potential sources of elevated salinity in shallow groundwater, including Appalachian Basin formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. A multivariate random number generator was used to create a synthetic, low salinity (< 20 mg/L Cl) groundwater data set (n=1000) based on the statistical properties of the observed low salinity groundwater. The synthetic, low salinity groundwater was then artificially mixed with variable proportions of different potential sources of salinity to explore chemical differences between groundwater impacted by formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. We then trained a multivariate, discriminant analysis model on the resulting data set to classify observed high salinity groundwater (> 20 mg/L Cl) as being affected by formation water, road salt, septic effluent, landfill leachate, animal waste, or water softeners. Single elements or pairs of

  4. Flux of low salinity water from Aniva Bay (Sakhalin Island) to the southern Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Oguma, Sachiko; Ono, Tsuneo; Watanabe, Yutaka W.; Kasai, Hiromi; Watanabe, Shuichi; Nomura, Daiki; Mitsudera, Humio

    2011-01-01

    In this study, we examined the relationship between the low salinity water in the shelf region of the southern Okhotsk Sea which was seasonally sampled (0-200 m), and fluxes of low salinity water from Aniva Bay. To express the source of freshwater mixing in the surface layer, we applied normalized total alkalinity (NTA) and stable isotopes of seawater as chemical tracers. NTA-S diagrams indicate that NTA of low salinity water in the upper 30 m layer just off the Soya Warm Current is clearly higher than in the far offshore region in summer and autumn. Using NTA-S regression lines, we could deduce that the low salinity and high NTA water in the upper layer originates from Aniva Bay. For convenience, we defined this water as the Aniva Surface Water (ASW) with values S < 32, NTA > 2450 μmol kg -1. Formation and transport processes of ASW are discussed using historical data. The interaction between the maximum core of high NTA water on the bottom slope of eastern Aniva Bay and an anticyclonic eddy at the mouth of Aniva Bay are concluded to control ASW formation. Upwelling of the Cold Water Belt water at the tip of Cape Krillion is considered to cause ASW outflow from Aniva Bay.

  5. Evaluation of available saline water resources in New Mexico for the production of microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansford, R.; Hernandez, J.; Enis, P.

    Researchers evaluated saline water resources in New Mexico for their suitability as sites for large-scale microalgae production facilities. Production of microalgae could provide a renewable source of fuel, chemicals, and food. In addition, making use of the unused saline water resources would increase the economic activity in the state. After analyzing the 15 billion acre-ft of unused saline water resources in the state, scientists narrowed the locations down to six sites with the most potential. With further analysis, they chose the Tularosa Basin in southern New Mexico as the best-suited area for 100-hectare microalgae production facility. 34 refs., 38 figs.,more » 14 tabs.« less

  6. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    NASA Astrophysics Data System (ADS)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials < -30 MPa, which are far below values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results

  7. Effects of Wood Pollution on Pore-Water Sulfide Levels and Eelgrass Germination

    NASA Astrophysics Data System (ADS)

    Ekelem, C.

    2016-02-01

    Historically, sawmills released wood waste onto coastal shorelines throughout the Pacific Northwest of the USA, enriching marine sediments with organic material. The increase in organic carbon boosts the bacterial reduction of sulfate and results in the production of a toxic metabolite, hydrogen sulfide. Hydrogen sulfide is a phytotoxin and can decrease the growth and survival of eelgrass. This is a critical issue since eelgrass, Zostera marina, forms habitat for many species, stabilizes sediment, and plays a role in nutrient cycling and sediment chemistry. The objective of our study was to determine the effects of wood debris on sediment pore-water hydrogen sulfide concentrations and eelgrass germination. To test the impact of wood inputs on sulfide production and seed germination, we conducted a laboratory mesocosm experiment, adding sawdust to marine sediments and measuring the sulfide levels weekly. We subsequently planted seeds in the mesocosms and measured germination rates. Higher concentrations of sawdust led to higher levels of pore-water hydrogen sulfide and drastically slower eelgrass germination rates. Treatments with greater than 10% wood enrichment developed free sulfide concentrations of 0.815 (± 0.427) mM after 118 days, suggesting sediments with greater than 10% wood pollution may have threateningly high pore-water hydrogen sulfide levels. These results can be used to set thresholds for remediation efforts and guide seed distribution in wood polluted areas.

  8. Seasonal Effects on the Relationships Between Soil Water Content, Pore Water Pressure and Shear Strength and Their Implications for Slope Stability

    NASA Astrophysics Data System (ADS)

    Hughes, P. N.

    2015-12-01

    A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.

  9. Integral Analysis of Field Work and Laboratory Electrical Resistivity Imaging for Saline Water Intrusion Prediction in Groundwater

    NASA Astrophysics Data System (ADS)

    Zawawi, M. H.; Zahar, M. F.; Hashim, M. M. M.; Hazreek, Z. A. M.; Zahari, N. M.; Kamaruddin, M. A.

    2018-04-01

    Saline water intrusion is a serious threat to the groundwater as many part of the world utilize groundwater as their main source of fresh water supply. The usage of high salinity level of water as drinking water can lead to a very serious health hazard towards human. Saline water intrusion is a process by which induced flow of seawater into freshwater aquifer along the coastal area. It might happen due to human action and/or by natural event. The climate change and rise up of sea level may speed up the saline water intrusion process. The conventional method for distinguishing and checking saltwater interference to groundwater along the coast aquifers is to gather and test the groundwater from series of observation wells (borehole) with an end goal to give the important information about the hydrochemistry data to conclude whether the water in the well are safe to consume or not. An integrated approach of field and laboratory electrical resistivity investigation is proposed for indicating the contact region between saline and fresh groundwater. It was found that correlation for both soilbox produced almost identical curvilinear trends for 2% increment of seawater tested using sand sample. This project contributes towards predicting the saline water intrusion to the groundwater by non-destructive test that can replaced the conventional method of groundwater monitoring using series of boreholes in the coastal area

  10. Sediment pore-water toxicity test results and preliminary toxicity identification of post-landfall pore-water samples collected following the Deepwater Horizon oil release, Gulf of Mexico, 2010

    USGS Publications Warehouse

    Biedenbach, James M.; Carr, Robert S.

    2011-01-01

    Pore water from coastal beach and marsh sediments from the northern Gulf of Mexico, pre- and post-landfall of the Deepwater Horizon oil release, were collected and evaluated for toxicity with the sea urchin fertilization and embryological development assays. There were 17 pre-landfall samples and 49 post-landfall samples tested using both assays. Toxicity was determined in four pre-landfall sites and in seven post-landfall sites in one or both assays as compared to a known reference sediment pore-water sample collected in Aransas Bay, Texas. Further analysis and testing of five of the post-landfall toxic samples utilizing Toxicity Identification Evaluation techniques indicated that ammonia, and to a lesser extent metals, contributed to most, if not all, of the observed toxicity in four of the five samples. Results of one sample (MS-39) indicated evidence that ammonia, metals, and non-ionic organics were contributing to the observed toxicity.

  11. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    PubMed

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  12. Penetration Barrier of Water through Graphynes' Pores: First-Principles Predictions and Force Field Optimization.

    PubMed

    Bartolomei, Massimiliano; Carmona-Novillo, Estela; Hernández, Marta I; Campos-Martínez, José; Pirani, Fernando; Giorgi, Giacomo; Yamashita, Koichi

    2014-02-20

    Graphynes are novel two-dimensional carbon-based materials that have been proposed as molecular filters, especially for water purification technologies. We carry out first-principles electronic structure calculations at the MP2C level of theory to assess the interaction between water and graphyne, graphdiyne, and graphtriyne pores. The computed penetration barriers suggest that water transport is unfeasible through graphyne while being unimpeded for graphtriyne. For graphdiyne, with a pore size almost matching that of water, a low barrier is found that in turn disappears if an active hydrogen bond with an additional water molecule on the opposite side of the opening is considered. Thus, in contrast with previous determinations, our results do not exclude graphdiyne as a promising membrane for water filtration. In fact, present calculations lead to water permeation probabilities that are 2 orders of magnitude larger than estimations based on common force fields. A new pair potential for the water-carbon noncovalent component of the interaction is proposed for molecular dynamics simulations involving graphdiyne and water.

  13. Solid-state 13C NMR studies of dissolved organic matter in pore waters from different depositional environments

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.

    1987-01-01

    Dissolved organic matter (DOM) in pore waters from sediments of a number of different depositional environments was isolated by ultrafiltration using membranes with a nominal molecular weight cutoff of 500. This > 500 molecular weight DOM represents 70-98% of the total DOM in these pore waters. We determined the gross chemical structure of this material using both solid-state 13C nuclear magnetic resonance spectroscopy and elemental analysis. Our results show that the DOM in these pore waters appears to exist as two major types: one type dominated by carbohydrates and paraffinic structures and the second dominated by paraffinic and aromatic structures. We suggest that the dominance of one or the other structural type of DOM in the pore water depends on the relative oxidizing/reducing nature of the sediments as well as the source of the detrital organic matter. Under dominantly anaerobic conditions carbohydrates in the sediments are degraded by bacteria and accumulate in the pore water as DOM. However, little or no degradation of lignin occurs under these conditions. In contrast, sediments thought to be predominantly aerobic in character have DOM with diminished carbohydrate and enhanced aromatic character. The aromatic structures in the DOM from these sediments are thought to arise from the degradation of lignin. The large amounts of paraffinic structures in both types of DOM may be due to the degradation of unidentified paraffinic materials in algal or bacterial remains. ?? 1987.

  14. Secondary water pore formation for proton transport in a ClC exchanger revealed by an atomistic molecular-dynamics simulation.

    PubMed

    Ko, Youn Jo; Jo, Won Ho

    2010-05-19

    Several prokaryotic ClC proteins have been demonstrated to function as exchangers that transport both chloride ions and protons simultaneously in opposite directions. However, the path of the proton through the ClC exchanger, and how the protein brings about the coupled movement of both ions are still unknown. In this work, we use an atomistic molecular dynamics (MD) simulation to demonstrate that a previously unknown secondary water pore is formed inside an Escherichia coli ClC exchanger. The secondary water pore is bifurcated from the chloride ion pathway at E148. From the systematic simulations, we determined that the glutamate residue exposed to the intracellular solution, E203, plays an important role as a trigger for the formation of the secondary water pore, and that the highly conserved tyrosine residue Y445 functions as a barrier that separates the proton from the chloride ion pathways. Based on our simulation results, we conclude that protons in the ClC exchanger are conducted via a water network through the secondary water pore, and we propose a new mechanism for the coupled transport of chloride ions and protons. It has been reported that several members of ClC proteins are not just channels that simply transport chloride ions across lipid bilayers; rather, they are exchangers that transport both the chloride ion and proton in opposite directions. However, the ion transit pathways and the mechanism of the coupled movement of these two ions have not yet been unveiled. In this article, we report a new finding (to our knowledge) of a water pore inside a prokaryotic ClC protein as revealed by computer simulation. This water pore is bifurcated from the putative chloride ion, and water molecules inside the new pore connect two glutamate residues that are known to be key residues for proton transport. On the basis of our simulation results, we conclude that the water wire that is formed inside the newly found pore acts as a proton pathway, which enables us to

  15. Simulation of ground-water flow and the movement of saline water in the Hueco Bolson aquifer, El Paso, Texas, and adjacent areas

    USGS Publications Warehouse

    Groschen, George E.

    1994-01-01

    Results of the projected withdrawal simulations from 1984-2000 indicate that the general historical trend of saline-water movement probably will continue. The saline water in the Rio Grande alluvium is the major source of saline-water intrusion into the freshwater zone throughout the historical period and into the future on the basis of simulation results. Some saline water probably will continue to move downward from the Rio Grande alluvium to the freshwater below. Injection of treated sewage effluent into some wells will create a small zone of freshwater containing slightly increased amounts of dissolved solids in the northern area of the Texas part of the Hueco bolson aquifer. Many factors, such as well interference, pumping schedules, and other factors not specifically represented in the regional simulation, can substantially affect dissolved-solids concentrations at individual wells.

  16. Changes in Pore Water Quality After Peatland Restoration: Assessment of a Large-Scale, Replicated Before-After-Control-Impact Study in Finland

    NASA Astrophysics Data System (ADS)

    Menberu, Meseret Walle; Marttila, Hannu; Tahvanainen, Teemu; Kotiaho, Janne S.; Hokkanen, Reijo; Kløve, Bjørn; Ronkanen, Anna-Kaisa

    2017-10-01

    Drainage is known to affect peatland natural hydrology and water quality, but peatland restoration is considered to ameliorate peatland degradation. Using a replicated BACIPS (Before-After-Control-Impact Paired Series) design, we investigated 24 peatlands, all drained for forestry and subsequently restored, and 19 pristine control boreal peatlands with high temporal and spatial resolution data on hydroclimate and pore water quality. In drained conditions, total nitrogen (Ntot), total phosphorus (Ptot), and dissolved organic carbon (DOC) in pore water were several-fold higher than observed at pristine control sites, highlighting the impacts of long-term drainage on pore water quality. In general, pore water DOC and Ntot decreased after restoration measures but still remained significantly higher than at pristine control sites, indicating long time lags in restoration effects. Different peatland classes and trophic levels (vegetation gradient) responded differently to restoration, primarily due to altered hydrology and varying acidity levels. Sites that were hydrologically overrestored (inundated) showed higher Ptot, Ntot, and DOC than well-restored or insufficiently restored sites, indicating the need to optimize natural-like hydrological regimes when restoring peatlands drained for forestry. Rich fens (median pH 6.2-6.6) showed lower pore water Ptot, Ntot, and DOC than intermediate and poor peats (pH 4.0-4.6) both before and after restoration. Nutrients and DOC in pore water increased in the first year postrestoration but decreased thereafter. The most important variables related to pore water quality were trophic level, peatland class, water table level, and soil and air temperature.

  17. Increased salinization of fresh water in the Northeastern United States

    USGS Publications Warehouse

    Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T.

    2005-01-01

    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. ?? 2005 by The National Academy of Sciences of the USA.

  18. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    PubMed

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  19. Study of phosphate release from Bogor botanical gardens’ sediment into pore water using diffusive gradient in thin film (DGT)

    NASA Astrophysics Data System (ADS)

    Tirta, A. P.; Saefumillah, A.; Foliatini

    2017-04-01

    Eutrophication is one of the environmental problems caused by the excessive nutrients in aquatic ecosystems. In most lakes, phosphate is a limiting nutrient for algae photosynthesis. Even though the concentration of phosphate from external loading into the water body has been reduced, eutrophication could still be occured due to internal mobilization of phosphate from the sediment pore water into the overlying water. Therefore, the released phosphate from sediments and their interaction in the pore water must be included in the monitoring of phosphate concentration in aquatic system. The released phosphate from sediment into pore water has been studied by DGT device with ferrihydrite as binding gel and N-N‧-methylenebisacrylamide as crosslinker. The results showed that DGT with 15% acrylamide; 0.1 % N-N‧-methylenebisacrylamide and ferrihydrite as binding gel was suitable for the measurement of the released phosphate from sediment into pore water. The result of the deployed DGT in oxic and anoxic conditions in seven days incubation showed the released phosphate process from the sediment into pore water was affected by incubation time and the existence of oxygen in the environment. The released phosphate from the sediment into pore water in anoxic condition has a higher value than oxic condition. The experimental results of the deployed DGT in natural sediment core at a depth of 1 to 15 cm from the surface of the water for 7 days showed that the sediment has a different phosphate mass profile based on depth. The concentration of phosphate tends to be increased with depth. The maximum CDGT of phosphate released in oxic and anoxic conditions at 7th day period of incubation are 29.23 μg/L at 14 cm depth and 30.19 μg/L at 8 cm depth, respectively.

  20. Effects of application timing of saline irrigation water on broccoli production and quality

    USDA-ARS?s Scientific Manuscript database

    Irrigation with moderately saline water is a necessity in many semi-arid areas of the Mediterranean Basin, and requires adequate irrigation management strategies. Broccoli (Brassica oleracea var. italica), a crop moderately tolerant to salinity stress, was used to evaluate the effects of the applica...

  1. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  2. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; La Peyre, M.K.; Caldwell, A.; Piazza, S.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable. ?? 2009 Elsevier B.V.

  3. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    NASA Astrophysics Data System (ADS)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  4. Pore Water PAH Transport in Amended Sediment Caps

    NASA Astrophysics Data System (ADS)

    Gidley, P. T.; Kwon, S.; Ghosh, U.

    2009-05-01

    Capping is a common remediation strategy for contaminated sediments that creates a physical barrier between contaminated sediments and the water column. Diffusive flux of contaminants through a sediment cap is small. However, under certain hydrodynamic conditions such as groundwater potential and tidal pumping, groundwater advection can accelerate contaminant transport. Hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) could be transported through the cap under advective conditions. To better understand PAH migration under these conditions, physical models of sediment caps were evaluated in the laboratory through direct measurement of pore water using solid phase micro-extraction with gas chromatography and mass spectrometry. Contaminated sediment and capping material was obtained from an existing Superfund site that was capped at Eagle Harbor, Washington. A PAH dissolution model linked to an advection-dispersion equation with retardation using published organic carbon-water partitioning coefficients (Koc) was compared to measured PAHs in the sediment and cap porewater of the physical model.

  5. Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage.

    PubMed

    Arribas, Paula; Andújar, Carmelo; Abellán, Pedro; Velasco, Josefa; Millán, Andrés; Ribera, Ignacio

    2014-02-01

    Salinity is one of the most important drivers of the distribution, abundance and diversity of organisms. Previous studies on the evolution of saline tolerance have been mainly centred on marine and terrestrial organisms, while lineages inhabiting inland waters remain largely unexplored. This is despite the fact that these systems include a much broader range of salinities, going from freshwater to more than six times the salinity of the sea (i.e. >200 g/L). Here, we study the pattern and timing of the evolution of the tolerance to salinity in an inland aquatic lineage of water beetles (Enochrus species of the subgenus Lumetus, family Hydrophilidae), with the general aim of understanding the mechanisms by which it was achieved. Using a time-calibrated phylogeny built from five mitochondrial and two nuclear genes and information about the salinity tolerance and geographical distribution of the species, we found that salinity tolerance appeared multiple times associated with periods of global aridification. We found evidence of some accelerated transitions from freshwater directly to high salinities, as reconstructed with extant lineages. This, together with the strong positive correlation found between salinity tolerance and aridity of the habitats in which species are found, suggests that tolerance to salinity may be based on a co-opted mechanism developed originally for drought resistance. © 2013 John Wiley & Sons Ltd.

  6. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin

    USGS Publications Warehouse

    Zheng, Yen; Anderson, Robert F.; VanGeen, A.; Kuwabara, J.

    2000-01-01

    Pore water and sediment Mo concentrations were measured in a suite of multicores collected at four sites along the northeastern flank of the Santa Barbara Basin to examine the connection between authigenic Mo formation and pore water sulfide concentration. Only at the deepest site (580 m), where pore water sulfide concentrations rise to >0.1 ??M right below the sediment water interface, was there active authigenic Mo formation. At shallower sites (550,430, and 340 m), where pore water sulfide concentrations were consistently <0.05 ??M, Mo precipitation was not occuring at the time of sampling. A sulfide concentration of ???0.1 ??M appears to be a threshold for the onset of Mo-Fe-S co-precipitation. A second threshold sulfide concentration of ???100 ??M is required for Mo precipitation without Fe, possibly as Mo-S or as particle-bound Mo. Mass budgets for Mo were constructed by combining pore water and sediment results for Mo with analyses of sediment trap material from Santa Barbara Basin as well as sediment accumulation rates derived from 210Pb. The calculations show that most of the authigenic Mo in the sediment at the deepest site is supplied by diffusion from overlying bottom waters. There is, however, a non-lithogenic particulate Mo associated with sinking particles that contributes ???15% to the total authigenic Mo accumulation. Analysis of sediment trap samples and supernant brine solutions indicates the presence of non-lithogenic particulate Mo, a large fraction of which is easily remobilized and, perhaps, associated with Mn-oxides. Our observations show that even with the very high flux of organic carbon reaching the sediment of Santa Barbara Basin, active formation of sedimentary authigenic Mo requires a bottom water oxygen concentration below 3 ??M. However, small but measurable rates of authigenic Mo accumulation were observed at sites where bottom water oxygen ranged between 5 and 23 ??M, indicating that the formation of authigenic Mo occured in the

  7. Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Koch, Boris P.; Goldhammer, Tobias; Elvert, Marcus; Witt, Matthias; Lin, Yu-Shih; Wendt, Jenny; Zabel, Matthias; Heuer, Verena B.; Hinrichs, Kai-Uwe

    2017-06-01

    Dissolved organic matter (DOM) in marine sediment pore waters derives largely from decomposition of particulate organic matter and its composition is influenced by various biogeochemical and oceanographic processes in yet undetermined ways. Here, we determine the molecular inventory of pore water DOM in marine sediments of contrasting depositional regimes with ultrahigh-resolution mass spectrometry and complementary bulk chemical analyses in order to elucidate the factors that shape DOM composition. Our sample sets from the Mediterranean, Marmara and Black Seas covered different sediment depths, ages and a range of marine environments with different (i) organic matter sources, (ii) balances of organic matter production and preservation, and (iii) geochemical conditions in sediment and water column including anoxic, sulfidic and hypersaline conditions. Pore water DOM had a higher molecular formula richness than overlying water with up to 11,295 vs. 2114 different molecular formulas in the mass range of 299-600 Da and covered a broader range of element ratios (H/C = 0.35-2.19, O/C = 0.03-1.19 vs. H/C = 0.56-2.13, O/C = 0.15-1.14). Formula richness was independent of concentrations of DOC and TOC. Near-surface pore water DOM was more similar to water column DOM than to deep pore water DOM from the same core with respect to formula richness and the molecular composition, suggesting exchange at the sediment-water interface. The DOM composition in the deeper sediments was controlled by organic matter source, selective decomposition of specific DOM fractions and early diagenetic molecule transformations. Compounds in pelagic sediment pore waters were predominantly highly unsaturated and N-bearing formulas, whereas oxygen-rich CHO-formulas and aromatic compounds were more abundant in pore water DOM from terrigenous sediments. The increase of S-bearing molecular formulas in the water column and pore waters of the Black Sea and the Mediterranean Discovery Basin was

  8. A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water

    USGS Publications Warehouse

    Ruppert, Leslie F.; Sakurovs, Richard; Blach, Tomasz P.; He, Lilin; Melnichenko, Yuri B.; Mildner, David F.; Alcantar-Lopez, Leo

    2013-01-01

    Shale is an increasingly important source of natural gas in the United States. The gas is held in fine pores that need to be accessed by horizontal drilling and hydrofracturing techniques. Understanding the nature of the pores may provide clues to making gas extraction more efficient. We have investigated two Mississippian Barnett Shale samples, combining small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) to determine the pore size distribution of the shale over the size range 10 nm to 10 μm. By adding deuterated methane (CD4) and, separately, deuterated water (D2O) to the shale, we have identified the fraction of pores that are accessible to these compounds over this size range. The total pore size distribution is essentially identical for the two samples. At pore sizes >250 nm, >85% of the pores in both samples are accessible to both CD4 and D2O. However, differences in accessibility to CD4 are observed in the smaller pore sizes (~25 nm). In one sample, CD4 penetrated the smallest pores as effectively as it did the larger ones. In the other sample, less than 70% of the smallest pores (4, but they were still largely penetrable by water, suggesting that small-scale heterogeneities in methane accessibility occur in the shale samples even though the total porosity does not differ. An additional study investigating the dependence of scattered intensity with pressure of CD4 allows for an accurate estimation of the pressure at which the scattered intensity is at a minimum. This study provides information about the composition of the material immediately surrounding the pores. Most of the accessible (open) pores in the 25 nm size range can be associated with either mineral matter or high reflectance organic material. However, a complementary scanning electron microscopy investigation shows that most of the pores in these shale samples are contained in the organic components. The neutron scattering results indicate that the pores are

  9. Combined effect of boron and salinity on water transport: The role of aquaporins.

    PubMed

    Del Carmen Martínez-Ballesta, Maria; Bastías, Elizabeth; Carvajal, Micaela

    2008-10-01

    Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.

  10. Sorghum response to foliar application of phosphorus and potassium with saline water irrigation

    USDA-ARS?s Scientific Manuscript database

    Increasing demand for fresh water resources for urban and industrial uses is leading to limited availability of better quality water for crop irrigation. Therefore, crop response to poor quality irrigation water (ex: saline water), and strategies to mitigate the negative effects of poor quality irri...

  11. USGS Research on Saline Waters Co-Produced with Energy Resources

    USGS Publications Warehouse

    ,

    1997-01-01

    The United States energy industry faces the challenge of satisfying our expanding thirst for energy while protecting the environment. This challenge is magnified by the increasing volumes of saline water produced with oil and gas in the Nation's aging petroleum fields. Ultimately, energy-producing companies are responsible for disposing of these waters. USGS research provides basic information, for use by regulators, industry, and the public, about the chemistry of co-produced waters and environmentally acceptable ways of handling them.

  12. Dynamic pore-scale network model (PNM) of water imbibition in porous media

    NASA Astrophysics Data System (ADS)

    Li, J.; McDougall, S. R.; Sorbie, K. S.

    2017-09-01

    A dynamic pore-scale network model is presented which simulates 2-phase oil/water displacement during water imbibition by explicitly modelling intra-pore dynamic bulk and film flows using a simple local model. A new dynamic switching parameter, λ, is proposed within this model which is able to simulate the competition between local capillary forces and viscous forces over a very wide range of flow conditions. This quantity (λ) determines the primary pore filling mechanism during imbibition; i.e. whether the dominant force is (i) piston-like displacement under viscous forces, (ii) film swelling/collapse and snap-off due to capillary forces, or (iii) some intermediate local combination of both mechanisms. A series of 2D dynamic pore network simulations is presented which shows that the λ-model can satisfactorily reproduce and explain different filling regimes of water imbibition over a wide range of capillary numbers (Ca) and viscosity ratios (M). These imbibition regimes are more complex than those presented under drainage by (Lenormand et al. (1983)), since they are determined by a wider group of control parameters. Our simulations show that there is a coupling between viscous and capillary forces that is much less important in drainage. The effects of viscosity ratio during imbibition are apparent even under conditions of very slow flow (low Ca)-displacements that would normally be expected to be completely capillary dominated. This occurs as a result of the wetting films having a much greater relative mobility in the higher M cases (e.g. M = 10) thus leading to a higher level of film swelling/snap-off, resulting in local oil cluster bypassing and trapping, and hence a poorer oil recovery. This deeper coupled viscous mechanism is the underlying reason why the microscopic displacement efficiency is lower for higher M cases in water imbibition processes. Additional results are presented from the dynamic model on the corresponding effluent fractional flows (fw

  13. Tidally driven pore water exchange in offshore intertidal sandbanks: Part I. Field measurements

    NASA Astrophysics Data System (ADS)

    Gibbes, B.; Robinson, C.; Carey, H.; Li, L.; Lockington, D.

    2008-08-01

    In recent years blooms of the toxic marine cyanobacteria Lyngbya majuscula have been frequently observed in a system of offshore intertidal sandbanks in Moreton Bay, Australia. Past research suggests that these blooms are linked to the presence of bio-available forms of iron. Using hydraulic and pore water chemistry data collected from a shore normal transect at an offshore bloom site, the role of tidally driven exchange as a potential mechanism for delivery of bio-available iron across the sediment-water interface was examined. Field data revealed a residual pore water flow system in the sandbank, with seawater entering the upper sandbank platform and discharging through the bank edge. Upward flow and elevated near-surface dissolved Fe(II) concentrations (>20 μM Fe(II) at -0.05 m depth) were measured simultaneously in the discharge zones at the sandbank edge. The measured concentrations were more than four times greater than concentrations previously shown to stimulate L. majuscula growth. These results suggest that the tidally driven exchange mechanism might be capable of delivering dissolved Fe(II) to sites within offshore intertidal sandbanks where blooms of L. majuscula have been observed. While the source of the iron was not identified, potential candidates are discussed. These findings have implications for the current conceptual model for L. majuscula blooms in offshore intertidal sandbanks within Moreton Bay. Further investigations are required to fully understand the role of tidally driven exchange in controlling the export of bio-available iron to coastal waters at the field site. In particular there is a need to better assess the link between the pore water flows and the geochemical reactions that might occur along the flow path.

  14. Pore-scale water dynamics during drying and the impacts of structure and surface wettability

    NASA Astrophysics Data System (ADS)

    Cruz, Brian C.; Furrer, Jessica M.; Guo, Yi-Syuan; Dougherty, Daniel; Hinestroza, Hector F.; Hernandez, Jhoan S.; Gage, Daniel J.; Cho, Yong Ku; Shor, Leslie M.

    2017-07-01

    Plants and microbes secrete mucilage into soil during dry conditions, which can alter soil structure and increase contact angle. Structured soils exhibit a broad pore size distribution with many small and many large pores, and strong capillary forces in narrow pores can retain moisture in soil aggregates. Meanwhile, contact angle determines the water repellency of soils, which can result in suppressed evaporation rates. Although they are often studied independently, both structure and contact angle influence water movement, distribution, and retention in soils. Here drying experiments were conducted using soil micromodels patterned to emulate different aggregation states of a sandy loam soil. Micromodels were treated to exhibit contact angles representative of those in bulk soil (8.4° ± 1.9°) and the rhizosphere (65° ± 9.2°). Drying was simulated using a lattice Boltzmann single-component, multiphase model. In our experiments, micromodels with higher contact angle surfaces took 4 times longer to completely dry versus micromodels with lower contact angle surfaces. Microstructure influenced drying rate as a function of saturation and controlled the spatial distribution of moisture within micromodels. Lattice Boltzmann simulations accurately predicted pore-scale moisture retention patterns within micromodels with different structures and contact angles.

  15. Temporal and Spatial Pore Water Pressure Distribution Surrounding a Vertical Landfill Leachate Recirculation Well

    PubMed Central

    Kadambala, Ravi; Townsend, Timothy G.; Jain, Pradeep; Singh, Karamjit

    2011-01-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth. PMID:21655145

  16. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region.

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Ra was measured in deep saline formation waters produced from a variety of US Gulf Coast subsurface environments, including oil and gas reservoirs, and water-producing geopressured aquifers. A strong positive correlation was found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th on and within the solid matrix. The processes believed to be primarily responsible for transfering Ra from matrix to formation water are chemical leaching and alpha -particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following: 1) ion exchange; 2) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of re-equilibration of silica between solution and quartz grains; and 3) the equilibration of Ra in solution with detrital baryte within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs.-P.Br.

  17. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    USGS Publications Warehouse

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  18. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte

    PubMed Central

    Hameed, Abdul; Gulzar, Salman; Aziz, Irfan; Hussain, Tabassum; Gul, Bilquees; Khan, M. Ajmal

    2015-01-01

    Salinity causes oxidative stress in plants by enhancing production of reactive oxygen species, so that an efficient antioxidant system, of which ascorbic acid (AsA) is a key component, is an essential requirement of tolerance. However, antioxidant responses of plants to salinity vary considerably among species. Limonium stocksii is a sub-tropical halophyte found in the coastal marshes from Gujarat (India) to Karachi (Pakistan) but little information exists on its salt resistance. In order to investigate the role of AsA in tolerance, 2-month-old plants were treated with 0 (control), 300 (moderate) and 600 (high) mM NaCl for 30 days with or without exogenous application of AsA (20 mM) or distilled water. Shoot growth of unsprayed plants at moderate salinity was similar to that of controls while at high salinity growth was inhibited substantially. Sap osmolality, AsA concentrations and activities of AsA-dependant antioxidant enzymes increased with increasing salinity. Water spray resulted in some improvement in growth, indicating that the growth promotion by exogenous treatments could partly be attributed to water. However, exogenous application of AsA on plants grown under saline conditions improved growth and AsA dependent antioxidant enzymes more than the water control treatment. Our data show that AsA-dependent antioxidant enzymes play an important role in salinity tolerance of L. stocksii. PMID:25603966

  19. Pore formation and pore closure in poly(D,L-lactide-co-glycolide) films.

    PubMed

    Fredenberg, Susanne; Wahlgren, Marie; Reslow, Mats; Axelsson, Anders

    2011-03-10

    Pore formation and pore closure in poly(D,L-lactide-co-glycolide)-based drug delivery systems are two important processes as they control the release of the encapsulated drug. The phenomenon pore closure was investigated by studying the effects of the pH and the temperature of the release medium, and the properties of the polymer. Poly(D,L-lactide-co-glycolide) (PLG) films were subjected to a pore forming pre-treatment, and then pore closure was observed simultaneously with changes in glass transition temperature, wettability (contact angle), water absorption and mass remaining. To further understand the effect of pH, combined pore formation and pore closure were studied at different pH values. Pore closure was increased in a release medium with low pH, with a low-molecular-weight PLG of relatively low degree of hydrophobicity, or at high temperature. Pore closure occurred by two different mechanisms, one based on polymer-polymer interactions and one on polymer-water interactions. The mobility of the PLG chains also played an important role. The surface of the PLG films were more porous at pH 5-6 than at lower or higher pH, as pore formation was relatively fast and pore closure were less pronounced in this pH range. The pH had a significant impact on the porous structure, which should be kept in mind when evaluating experimental results, as the pH may be significantly decreased in vitro, in vivo and in situ. The results also show that the initial porosity is very important when using a high-molecular-weight PLG. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  1. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    NASA Astrophysics Data System (ADS)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  2. Soil- and plant- water uptake in saline environments and their consequences to plant adaptation in fluctuating climates

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Albertson, J. D.; Katul, G. G.; Marani, M.

    2010-12-01

    Ecological processes determining plant colonization are quite peculiar and competition among different species is governed by a set of unique adaptations to stress conditions caused by drought, hypoxic or hyper-saline conditions. These adaptations and possible positive feedbacks often lead to the formation of patterns of vegetation colonization and spatial heterogeneity (zonation), and play a primary role in the stabilization of sediments. It is these issues that frame the scope of this study. The main objective of this work is to track one of the fundamental pathways between plant adaptation (quantified in terms of physiological and ecological attributes such as leaf area or root density profile) and feedbacks (quantified by plant-mediated alterations to water availability and salinity levels): root water uptake. Because root-water uptake is the main conduit connecting transpiring leaves to reservoirs of soil water, the means by which salinity modifies the processes governing its two end-points and any two-way interactions between them serves as a logical starting point. Salinity effects on leaf transpiration and photosynthesis are first explored via stomatal optimization principles that maximize carbon gain at a given water loss for autonomous leaves. Salinity directly affects leaf physiological attributes such as mesophyll conductance and photosynthetic parameters and hence over-all conductance to transpiration as well as different strategies to cope with the high salinity (e.g. through salt seclusion, compartmentation and osmotic adjustments). A coupled model of subsurface flow based on a modified Richards’ equation that accounts for the effects of increasing salinity, anaerobic conditions, water stress and compensation factors is developed. Plant water uptake is considered as a soil moisture sink term with a potential rate dictated by the carbon demands of the leaves, and an actual rate that accounts for both - hydraulic and salinity limitations. Using this

  3. Proton Diffusion through Bilayer Pores

    DOE PAGES

    McDaniel, Jesse G.; Yethiraj, Arun

    2017-09-26

    The transport of protons through channels in complex environments is important in biology and materials science. In this work, we use multistate empirical valence bond simulations to study proton transport within a well-defined bilayer pore in a lamellar L β phase lyotropic liquid crystal (LLC). The LLC is formed from the self-assembly of dicarboxylate gemini surfactants in water, and a bilayer-spanning pore of radius of approximately 3–5 Å results from the uneven partitioning of surfactants between the two leaflets of the lamella. Local proton diffusion within the pore is significantly faster than diffusion at the bilayer surface, which is duemore » to the greater hydrophobicity of the surfactant/water interface within the pore. Proton diffusion proceeds by surface transport along exposed hydrophobic pockets at the surfactant/water interface and depends on the continuity of hydronium–water hydrogen bond networks. At the bilayer surface, there is a reduced fraction of the “Zundel” intermediates that are central to the Grotthuss transport mechanism, whereas the fraction of these species within the bilayer pore is similar to that in bulk water. Our results demonstrate that the chemical nature of the confining interface, in addition to confinement length scale, is an important determiner of local proton transport in nanoconfined aqueous environments.« less

  4. 30-Second bound and pore water concentration mapping of cortical bone using 2D UTE with optimized half-pulses.

    PubMed

    Manhard, Mary Kate; Harkins, Kevin D; Gochberg, Daniel F; Nyman, Jeffry S; Does, Mark D

    2017-03-01

    MRI of cortical bone has the potential to offer new information about fracture risk. Current methods are typically performed with 3D acquisitions, which suffer from long scan times and are generally limited to extremities. This work proposes using 2D UTE with half pulses for quantitatively mapping bound and pore water in cortical bone. Half-pulse 2D UTE methods were implemented on a 3T Philips Achieva scanner using an optimized slice-select gradient waveform, with preparation pulses to selectively image bound or pore water. The 2D methods were quantitatively compared with previously implemented 3D methods in the tibia in five volunteers. The mean difference between bound and pore water concentration acquired from 3D and 2D sequences was 0.6 and 0.9 mol 1 H/L bone (3 and 12%, respectively). While 2D pore water methods tended to slightly overestimate concentrations relative to 3D methods, differences were less than scan-rescan uncertainty and expected differences between healthy and fracture-prone bones. Quantitative bound and pore water concentration mapping in cortical bone can be accelerated by 2 orders of magnitude using 2D protocols with optimized half-pulse excitation. Magn Reson Med 77:945-950, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Measuring restoration progress using pore- and surface-water chemistry across a chronosequence of formerly afforested blanket bogs.

    PubMed

    Gaffney, Paul P J; Hancock, Mark H; Taggart, Mark A; Andersen, Roxane

    2018-08-01

    During the restoration of degraded bogs and other peatlands, both habitat and functional recovery can be closely linked with nutrient cycling, which is reflected in pore- and surface-water chemistry. Several peatland restoration studies have shown that the time required for recovery of target conditions is slow (>10 years); for heavily-impacted, drained and afforested peatlands of northern Scotland, recovery time is unknown. We monitored pore- and surface-water chemistry across a chronosequence of formerly drained, afforested bog restoration sites spanning 0-17 years, using a space-for-time substitution, and compared them with open blanket bog control sites. Our aims were to measure rate of recovery towards bog conditions and to identify the best suite of water chemistry variables to indicate recovery. Our results show progress in recovery towards bog conditions over a 0-17 year period post-restoration. Elements scavenged by trees (Mg, Na, S) completely recovered within that period. Many water chemistry variables were affected by the restoration process itself, but recovered within 11 years, except ammonium (NH 4 + ), Zn and dissolved organic carbon (DOC) which remained elevated (when compared to control bogs) 17 years post restoration. Other variables did not completely recover (water table depth (WTD), pH), exhibiting what we term "legacy" effects of drainage and afforestation. Excess N and a lowered WTD are likely to slow the recovery of bog vegetation including key bog plants such as Sphagnum mosses. Over 17 years, we measured near-complete recovery in the chemistry of surface-water and deep pore-water but limited progress in shallow pore-water. Our results suggest that at least >17 years are required for complete recovery of water chemistry to bog conditions. However, we expect that newer restoration methods including conifer harvesting (stem plus brash) and the blocking of plough furrows (to increase the WTD) are likely to accelerate the restoration process

  6. Pore water distributions of dissolved copper and copper-complexing ligands in estuarine and coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Skrabal, Stephen A.; Donat, John R.; Burdige, David J.

    2000-06-01

    The distributions and seasonal variability of total dissolved Cu (TDCu) and Cu-complexing ligands in sediment pore waters have been investigated at two contrasting sites in the Chesapeake Bay. Two ligand classes, which differ on the basis of the conditional stability constants ( K'cond) of their Cu complexes, were detected at all depths at both sites. At the sulfidic, muddy, mid-Bay Sta. M, concentrations and values of log K'cond ranged from 390-12,500 nM and ≥7.2->8.9, respectively, for the stronger ligand class ( L1 S) and 75-6,420 nM and 6.2-7.9 for the weaker ligand class ( L2 S). At the bioturbated, sandy Sta. S in the lower Bay, respective concentrations and values of log K'cond ranged from 135-807 nM and ≥7.6-≥10.2 for L1 S and 40-1,410 nM and 6.6-9.2 for L2 S. For comparison, one pore water profile from a slope station off of the Chesapeake Bay also showed the presence of two ligand classes, with respective concentrations and values of log K'cond of 140-270 nM and 8->11 for L1 S and 30-180 nM and 7-10 for L2 S. These ligands are in large excess relative to ambient TDCu concentrations (<0.1-24.3 nM), thereby maintaining very low inorganic Cu concentrations (typically <0.1 to <100 pM) and a high degree of organic complexation (87.2->99.9%) of Cu in Bay and slope sediment pore waters. Thus, virtually all TDCu fluxing from these sediments is complexed during sediment-water exchange. A relatively small fraction of the TDCu is exchanged as inorganic species, which are widely regarded as the most bioavailable form of Cu. Higher ligand concentrations at Sta. M suggest that sulfide or organic ligands containing reduced S contribute to the pool of complexing ligands; however, the exact nature and sources of the ligands in Bay pore waters are not known. The progressive increase in conditional stability constants of the CuL 2 S complexes from the mid-Bay to the slope sediments may reflect differences in biological or chemical processes at each site, as well as

  7. Using the Electromagnetic Induction Method to Connect Spatial Vegetation Distributions with Soil Water and Salinity Dynamics on Steppe Grassland

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Li, X.; Wu, H.

    2014-12-01

    In arid and semi-arid areas, plant growth and productivity are obviously affected by soil water and salinity. But it is not easy to acquire the spatial and temporal dynamics of soil water and salinity by traditional field methods because of the heterogeneity in their patterns. Electromagnetic induction (EMI), for its rapid character, can provide a useful way to solve this problem. Grassland dominated by Achnatherum splendens is an important ecosystem near the Qinghai-Lake watershed on the Qinghai-Tibet Plateau in northwestern China. EMI surveys were conducted for electrical conductivity (ECa) at an intermediate habitat scale (a 60×60 m experimental area) of A. splendens steppe for 18 times (one day only for one time) during the 2013 growing season. And twenty sampling points were established for the collection of soil samples for soil water and salinity, which were used for calibration of ECa. In addition, plant species, biomass and spatial patterns of vegetation were also sampled. The results showed that ECa maps exhibited distinctly spatial differences because of variations in soil moisture. And soil water was the main factor to drive salinity patterns, which in turn affected ECa values. Moreover, soil water and salinity could explain 82.8% of ECa changes due to there was a significant correlation (P<0.01) between ECa, soil water and salinity. Furthermore, with higher ECa values closer to A. splendens patches at the experimental site, patterns of ECa images showed clearly temporal stability, which were extremely corresponding with the spatial pattern of vegetation. A. splendens patches that accumulated infiltrating water and salinity and thus changed long-term soil properties, which were considered as "reservoirs" and were deemed responsible for the temporal stability of ECa images. Hence, EMI could be an indicator to locate areas of decreasing or increasing of water and to reveal soil water and salinity dynamics through repeated ECa surveys.

  8. Effect of pore water velocities and solute input methods on chloride transport in the undisturbed soil columns of Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, BeiBei; Wang, QuanJiu

    2017-09-01

    Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.

  9. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water.

    PubMed

    Besser, John M; Brumbaugh, William G; Allert, Ann L; Poulton, Barry C; Schmitt, Christopher J; Ingersoll, Christopher G

    2009-02-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  10. Ecological impacts of lead mining on Ozark streams: Toxicity of sediment and pore water

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Allert, A.L.; Poulton, B.C.; Schmitt, C.J.; Ingersoll, C.G.

    2009-01-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  11. A mini drivepoint sampler for measuring pore water solute concentrations in the hyporheic zone of sand-bottom streams

    USGS Publications Warehouse

    Duff, J.H.; Murphy, F.; Fuller, C.C.; Triska, F.J.

    1998-01-01

    A new method for collecting pore-water samples in sand and gravel streambeds is presented. We developed a mini drivepoint solution sampling (MINIPOINT) technique to collect pore-water samples at 2.5-cm vertical resolution. The sampler consisted of six small-diameter stainless steel drivepoints arranged in a 10-cm-diameter circular array. In a simple procedure, the sampler was installed in the streambed to preset drivepoint depths of 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 cm. Sampler performance was evaluated in the Shingobee River, Minnesota, and Pinal Creek, Arizona, by measuring the vertical gradient of chloride concentration in pore water beneath the streambed that was established by the uninterrupted injection to the stream for 3 d. Pore-water samples were withdrawn from all drivepoints simultaneously. In the first evaluation, the vertical chloride gradient was unchanged at withdrawal rates between 0.3 and 4.0 ml min-1 but was disturbed at higher rates. In the second evaluation, up to 70 ml of pore water was withdrawn from each drivepoint at a withdrawal rate of 2.5 ml min-1 without disturbing the vertical chloride gradient. Background concentrations of other solutes were also determined with MINIPOINT sampling. Steep vertical gradients were present for biologically reactive solutes such as DO, NH4/+, NO3/-, and dissolved organic C in the top 20 cm of the streambed. These detailed solute profiles in the hyporheic zone could not have been determined without a method for close interval vertical sampling that does not disturb natural hydrologic mixing between stream water and groundwater.

  12. Emerging organic pollutants in the vadose zone of a soil aquifer treatment system: Pore water extraction using positive displacement.

    PubMed

    Sopilniak, Alexander; Elkayam, Roy; Rossin, Anna Voloshenko; Lev, Ovadia

    2018-01-01

    Trace organic compounds in effluents, water streams and aquifers are amply reported. However, the mobile pool of Emerging Organic Contaminants (EOCs) in the deep parts of the vadose zone is hard to estimate, due to difficulties in extraction of sufficient quantity of pore water. Here, we present a new methodology for depth profiling of EOCs in pore water by Positive Displacement Extraction (PDE): Pore water extraction from unsaturated soil samples is carried out by withdrawal of soil cores by direct-push drilling and infiltrating the core by organics free water. We show that EOC concentrations in the water eluted in the plateau region of the inverse breakthrough curve is equal to their pore water concentrations. The method was previously validated for DOC extraction, and here the scope of the methodology is extended to pore water extraction for organic pollutants analysis. Method characteristics and validation were carried out with atrazine, simazine, carbamazepine, venlafaxine, O-desmethylvenlafaxine and caffeine in the concentration range of several ng to several μg/liter. Validation was carried out by laboratory experiments on three different soils (sandy, sandy-clayey and clayey). Field studies in the vadose zone of a SAT system provided 27 m deep EOC profiles with less than 1.5 m spatial resolution. During the percolation treatment, carbamazepine remained persistent, while the other studied EOCs were attenuated to the extent of 50-99%.The highest degradation rate of all studied EOCs was in the aerobic zone. EOC levels based on PDE and extraction by centrifugation were compared, showing a positive bias for centrifugation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    PubMed

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000.

    PubMed

    Durack, Paul J; Wijffels, Susan E; Matear, Richard J

    2012-04-27

    Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle. Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 ± 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world.

  15. Potential of combined Water Sensitive Urban Design systems for salinity treatment in urban environments.

    PubMed

    Kazemi, Fatemeh; Golzarian, Mahmood Reza; Myers, Baden

    2018-03-01

    Water sensitive urban design and similar concepts often recommend a 'treatment train' is employed to improve stormwater quality. In this study, the capability of a combined permeable pavement and bioretention basin was examined with a view to developing a permeable pavement reservoir that can supplement the irrigation needs of a bioretention system in semi-arid climates. Salinity was a key study parameter due to published data on salinity in permeable pavement storage, and the potential to harvest water contaminated with de-icing salts. To conduct experiments, roofwater was collected from a roof in Adelaide, South Australia. Water was amended with NaCl to produce a control runoff (no added salt), a medium (500 mg/l) and a high (1500 mg/l) salinity runoff. Water was then run through the pavement into the storage reservoir and used to irrigate the bioretention system. Samples were collected from the roof, the pavement reservoir and the bioretention system outflow to determine whether significant water quality impacts occurred. Results show that while salinity levels increased significantly as water passed through the pavement and through the bioretention system, the increase was beneficial for irrigation purposes as it was from Ca and Mg ions thus reducing the sodium absorption ratio to levels considered 'good' for irrigation in accordance with several guidelines. Permeable paving increased pH of water and this effect was prominent when the initial salt concentration increased. The study shows that permeable pavements with underlying storage can be used to provide supplementary irrigation for bioretention systems, but high initial salt concentrations may present constraints on beneficial use of stormwater. Copyright © 2017. Published by Elsevier Ltd.

  16. Acclimation of CO2 Assimilation in Cotton Leaves to Water Stress and Salinity 1

    PubMed Central

    Plaut, Zvi; Federman, Evelyn

    1991-01-01

    Cotton (Gossypium hirsutum L. cv Acala SJ2) plants were exposed to three levels of osmotic or matric potentials. The first was obtained by salt and the latter by withholding irrigation water. Plants were acclimated to the two stress types by reducing the rate of stress development by a factor of 4 to 7. CO2 assimilation was then determined on acclimated and nonacclimated plants. The decrease of CO2 assimilation in salinity-exposed plants was significantly less in acclimated as compared with nonacclimated plants. Such a difference was not found under water stress at ambient CO2 partial pressure. The slopes of net CO2 assimilation versus intercellular CO2 partial pressure, for the initial linear portion of this relationship, were increased in plants acclimated to salinity of −0.3 and −0.6 megapascal but not in nonacclimated plants. In plants acclimated to water stress, this change in slopes was not significant. Leaf osmotic potential was reduced much more in acclimated than in nonacclimated plants, resulting in turgor maintenance even at −0.9 megapascal. In nonacclimated plants, turgor pressure reached zero at approximately −0.5 megapascal. The accumulation of Cl− and Na+ in the salinity-acclimated plants fully accounted for the decrease in leaf osmotic potential. The rise in concentration of organic solutes comprised only 5% of the total increase in solutes in salinity-acclimated and 10 to 20% in water-stress-acclimated plants. This acclimation was interpreted in light of the higher protein content per unit leaf area and the enhanced ribulose bisphosphate carboxylase activity. At saturating CO2 partial pressure, the declined inhibition in CO2 assimilation of stress-acclimated plants was found for both salinity and water stress. ImagesFigure 2 PMID:16668429

  17. Genesis of economic relevant fresh groundwater resources in Pleistocene/ Neogene aquifers in Nam Dinh (Red River Delta, Vietnam).

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Ludwig, R. R.; Noell, U.; Hoang, H. V.; Pham, N. Q.; Larsen, F.; Lindenmaier, F.

    2012-04-01

    In the Southern Red River Delta (Nam Dinh Province, Vietnam), a local lens of low saline pore water of high quality has been identified in unconsolidated Pleistocene and Neogene aquifers, which are regionally known to contain brackish and saline pore waters. Since the 1990ies, ongoing overexploitation of the fresh groundwater results in decreasing GW heads up to 0.6 m/a and the development of a regional abstraction cone. The presented study focuses on distribution and genesis of fresh and saline pore waters and reflects the results in frame of the regional hydrogeological context. Observations of the geological structure and groundwater dynamics combined with hydrochemical and isotopic studies suggest adjacent Triassic hard rock aquifers as the major source for fresh Pleistocene and Neogene groundwater. Salinization status in the economically most relevant Pleistocene aquifer has been studied based on archive and new hydrochemical and geophysical data. Own hydrochemical field studies as well as laboratory measurements of the specific resistivity of dry sediment samples allow the translation of induction logging data from existing monitoring wells into vertical pore water salinity profiles. This approach suggests the regional occurrence of saline pore water in shallow Holocene sediments in the working area, as confirmed by pore water studies in Hoan et al. (2010). Interpretation of induction logging and stable isotope data suggest vertical diffusion of saline pore water in shallow Holocene sediments as a source for high saline pore water in deeper aquifers. Analytical diffusion modeling for a period of 3000 years confirms that vertical diffusion of Holocene paleo-sea water can explain saline pore water in Pleistocene and Neogene aquifers in a stagnant environment. The constant influx of fresh groundwater from adjacent Triassic hard rocks results in flushing of the primary Pleistocene and Neogene pore water and inhibits the infiltration of saline water from marine

  18. Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation.

    PubMed

    Shao, Hongbo; Ray, Jessica R; Jun, Young-Shin

    2011-02-15

    To ensure the viability of geologic CO2 sequestration (GCS), we need a holistic understanding of reactions at supercritical CO2 (scCO2)-saline water-rock interfaces and the environmental factors affecting these interactions. This research investigated the effects of salinity and the extent of water on the dissolution and surface morphological changes of phlogopite [KMg2.87Si3.07Al1.23O10(F,OH)2], a model clay mineral in potential GCS sites. Salinity enhanced the dissolution of phlogopite and affected the location, shape, size, and phase of secondary minerals. In low salinity solutions, nanoscale particles of secondary minerals formed much faster, and there were more nanoparticles than in high salinity solutions. The effect of water extent was investigated by comparing scCO2-H2O(g)-phlogopite and scCO2-H2O(l)-phlogopite interactions. Experimental results suggested that the presence of a thin water film adsorbed on the phlogopite surface caused the formation of dissolution pits and a surface coating of secondary mineral phases that could change the physical properties of rocks. These results provide new information for understanding reactions at scCO2-saline water-rock interfaces in deep saline aquifers and will help design secure and environmentally sustainable CO2 sequestration projects.

  19. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region

    USGS Publications Warehouse

    Kraemer, T.F.; Reid, D.F.

    1984-01-01

    Radium has been measured in deep saline formation waters produced from a variety of U.S. Gulf Coast subsurface environments, including oil reservoirs, gas reservoirs and water-producing geopressured aquifers. A strong positive correlation has been found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th, which are located at sites on and within the solid matrix. Processes that are belived to be primarily responsible for transferring Ra from matrix to formation water are chemical leaching and alpha-particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following factors: (a) ion exchange; (b) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of reequilibration of silica between solution and quartz grains; and (c) the equilibration of Ra in solution with detrial barite within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs. ?? 1984.

  20. Influence of drinking water salinity on carcass characteristics and meat quality of Santa Inês lambs.

    PubMed

    Castro, Daniela P V; Yamamoto, Sandra M; Araújo, Gherman G L; Pinheiro, Rafael S B; Queiroz, Mario A A; Albuquerque, Ítalo R R; Moura, José H A

    2017-08-01

    This study aimed to evaluate the effects of different salinity levels in drinking water on the quantitative and qualitative characteristics of lamb carcass and meat. Ram lambs (n = 32) were distributed in a completely randomized design with four levels of salinity in the drinking water (640 mg of total dissolved solids (TDS)/L of water, 3188 mg TDS/L water, 5740 mg TDS/L water, and 8326 mg TDS/L water). After slaughter, blending, gutting, and skinning the carcass, hot and biological carcass yields were obtained. Then, the carcasses were cooled at 5 °C for 24 h, and then, the morphometric measurements and the cold carcass yield were determined and the commercial cuts made. In the Longissimus lumborum muscle color, water holding capacity, cooking loss, shear force, and chemical composition were determined. The yields of hot and cold carcass (46.10 and 44.90%), as well as losses to cooling (2.40%) were not affected (P > 0.05) by the salinity levels in the water ingested by the lambs. The meat shear force was 3.47 kg/cm 2 and moisture, crude protein, ether extract, and ash were 73.62, 22.77, 2.5, and 4.3%, respectively. It is possible to supply water with salinity levels of up to 8326 mg TDS/L, because it did not affect the carcass and meat characteristics of Santa Inês lambs.

  1. Testing of a technique for remotely measuring water salinity in an estuarine environment

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    An aircraft experiment was flown on November 7, 1973 to test a technique for remote water salinity measurement. Apparent temperatures at 21 cm and 8-14 micron wavelengths were recorded on eight runs over a line along which the salinity varied from 5 to 30%. Boat measurements were used for calibration and accuracy calculations. Overall RMS accuracy over the complete range of salinities was 3.6%. Overall RMS accuracy for salinities greater than 10%, where the technique is more sensitive, was 2.6%. Much of this error is believed to be due to inability to exactly locate boat and aircraft positions. The standard deviation over the eight runs for salinities or = 10% is 1.4%; this error contains a component due to mislocation of the aircraft also. It is believed that operational use of the technique is possible with accuracies of 1-2%.

  2. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water.

    PubMed

    Teakle, Natasha Lea; Colmer, Timothy David; Pedersen, Ole

    2014-10-01

    A combination of flooding and salinity is detrimental to most plants. We studied tolerance of complete submergence in saline water for Melilotus siculus, an annual legume with superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived complete submergence of 1 week at low salinity (up to 50 mol m(-3) NaCl), but did not recover following de-submergence from 100 mol m(-3) NaCl. The leaf gas films protected against direct salt ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even after 3 d of complete submergence. By contrast, leaves with the gas films experimentally removed suffered from substantial Na(+) and Cl(-) intrusion and lost the capacity for underwater photosynthesis. Similarly, plants in saline water and without gas films lost more K(+) than those with intact gas films. This study has demonstrated that leaf gas films reduce Na(+) and Cl(-) ingress into leaves when submerged by saline water - the thin gas layer physically separates the floodwater from the leaf surface. This feature aids survival of plants exposed to short-term saline submergence, as well as the previously recognized beneficial effects of gas exchange under water. © 2014 John Wiley & Sons Ltd.

  3. A Tiered Approach to Evaluating Salinity Sources in Water at Oil and Gas Production Sites.

    PubMed

    Paquette, Shawn M; Molofsky, Lisa J; Connor, John A; Walker, Kenneth L; Hopkins, Harley; Chakraborty, Ayan

    2017-09-01

    A suspected increase in the salinity of fresh water resources can trigger a site investigation to identify the source(s) of salinity and the extent of any impacts. These investigations can be complicated by the presence of naturally elevated total dissolved solids or chlorides concentrations, multiple potential sources of salinity, and incomplete data and information on both naturally occurring conditions and the characteristics of potential sources. As a result, data evaluation techniques that are effective at one site may not be effective at another. In order to match the complexity of the evaluation effort to the complexity of the specific site, this paper presents a strategic tiered approach that utilizes established techniques for evaluating and identifying the source(s) of salinity in an efficient step-by-step manner. The tiered approach includes: (1) a simple screening process to evaluate whether an impact has occurred and if the source is readily apparent; (2) basic geochemical characterization of the impacted water resource(s) and potential salinity sources coupled with simple visual and statistical data evaluation methods to determine the source(s); and (3) advanced laboratory analyses (e.g., isotopes) and data evaluation methods to identify the source(s) and the extent of salinity impacts where it was not otherwise conclusive. A case study from the U.S. Gulf Coast is presented to illustrate the application of this tiered approach. © 2017, National Ground Water Association.

  4. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  5. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mode...

  6. Transport of biocolloids in water saturated columns packed with sand: Effect of grain size and pore water velocity

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2012-03-01

    The main objective of this study was to evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three waterborne fecal indicator organisms (Escherichia coli, MS2, and ΦX174) in laboratory-scale columns packed with clean quartz sand. Three different grain sizes and three pore water velocities were examined and the attachment behavior of Escherichia coli, MS2, and ΦX174 onto quartz sand was evaluated. The mass recoveries of the biocolloids examined were shown to be highest for Escherichia coli and lowest for MS2. However, no obvious relationships between mass recoveries and water velocity or grain size could be established from the experimental results. The observed mean dispersivity values for each sand grain size were smaller for bacteria than coliphages, but higher for MS2 than ΦX174. The single collector removal and collision efficiencies were quantified using the classical colloid filtration theory. Furthermore, theoretical collision efficiencies were estimated only for E. coli by the Interaction-Force-Boundary-Layer, and Maxwell approximations. Better agreement between the experimental and Maxwell theoretical collision efficiencies were observed.

  7. Transport of biocolloids in water saturated columns packed with sand: Effect of grain size and pore water velocity

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2011-11-01

    The main objective of this study was to evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three waterborne fecal indicator organisms ( Escherichia coli, MS2, and ΦX174) in laboratory-scale columns packed with clean quartz sand. Three different grain sizes and three pore water velocities were examined and the attachment behavior of Escherichia coli, MS2, and ΦX174 onto quartz sand was evaluated. The mass recoveries of the biocolloids examined were shown to be highest for Escherichia coli and lowest for MS2. However, no obvious relationships between mass recoveries and water velocity or grain size could be established from the experimental results. The observed mean dispersivity values for each sand grain size were smaller for bacteria than coliphages, but higher for MS2 than ΦX174. The single collector removal and collision efficiencies were quantified using the classical colloid filtration theory. Furthermore, theoretical collision efficiencies were estimated only for E. coli by the Interaction-Force-Boundary-Layer, and Maxwell approximations. Better agreement between the experimental and Maxwell theoretical collision efficiencies were observed.

  8. Biogeochemical environments of streambed-sediment pore waters withand without arsenic enrichment in a sedimentary rock terrain, New Jersey Piedmont, USA

    USGS Publications Warehouse

    Mumford, Adam C.; Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Blum, Alex E.; Young, Lily Y.

    2015-01-01

    Release of arsenic (As) from sedimentary rocks has resulted in contamination of groundwater in aquifers of the New Jersey Piedmont Physiographic Province, USA; the contamination also may affect the quality of the region's streamwater to which groundwater discharges. Biogeochemical mechanisms involved in the release process were investigated in the streambeds of Six Mile Run and Pike Run, tributaries to the Millstone River in the Piedmont. At Six Mile Run, streambed pore water and shallow groundwater were low or depleted in oxygen, and contained As at concentrations greater than 20μg/L. At Pike Run, oxidizing conditions were present in the streambed, and the As concentration in pore water was 2.1μg/L. The 16S rRNA gene and the As(V) respiratory reductase gene, arrA, were amplified from DNA extracted from streambed pore water at both sites and analyzed, revealing that distinct bacterial communities that corresponded to the redox conditions were present at each site. Anaerobic enrichment cultures were inoculated with pore water from gaining reaches of the streams with acetate and As(V). As(V) was reduced by microbes to As(III) in enrichments with Six Mile Run pore water and groundwater, whereas no reduction occurred in enrichments with Pike Run pore water. Cloning and sequencing of the arrA gene indicated 8 unique operational taxonomic units (OTUs) at Six Mile Run and 11 unique OTUs at Pike Run, which may be representative of the arsenite oxidase gene arxA. Low-oxygen conditions at Six Mile Run have favored microbial As reduction and release, whereas release was inhibited by oxidizing conditions at Pike Run.

  9. Contributions of groundwater conditions to soil and water salinization

    NASA Astrophysics Data System (ADS)

    Salama, Ramsis B.; Otto, Claus J.; Fitzpatrick, Robert W.

    Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Résumé La salinisation est le processus par lequel la

  10. Dynamic properties of individual water molecules in a hydrophobic pore lined with acyl chains: a molecular dynamics study.

    PubMed

    Qi, Z; Sokabe, M

    1998-03-30

    Recently, a certain class of synthetic molecules has been shown to form ion channels, the pore of which is lined with hydrophobic acyl chains [M. Sokabe, in: F. Oosawa, H. Hayashi, T. Yoshioka (Eds.), Transmembrane Signaling and Sensation, JSSP/VNU Science Press BV, Tokyo, 1984, p. 119; F. Hayashi, M. Sokabe, M. Takagi, K. Hayashi, U. Kishimoto, Biochim. Biophys. Acta, 510 (1978) 305; M.J. Pregel, L. Jullien, J. Canceill, L. Lacombe, J.M. Lehn, J. Chem. Soc. Perkin Trans., 2 (1995) 417; Y. Tanaka, Y. Kobuke, M. Sokabe, Angew. Chem. Int. Ed. Engl., 34 (1995) 693; M. Sokabe, Z. Qi, K. Donowaki, H. Ishida, K. Okubo, Biophys. J., 70 (1996) A201; H. Ishida, K. Donowaki, Y. Inoue, Z. Qi, M. Sokabe, Chem. Lett. (1997) p. 953]. As an initial step towards understanding the physical mechanisms of ion permeation across such a hydrophobic pore, systematic molecular dynamics simulations were performed to investigate dynamic and energetic properties of water molecules inside the pore using a dimer of alanine-N'-acylated cyclic peptide as a channel model. Dynamic energy profiles for water molecules indicated that the energy barrier at the middle region of the pore is approximately 2-3 kcal/mol higher than that in the cap water region which was defined as a vicinity region of the channel entrance. Energetics analyses demonstrated that the mutual interactions among intrapore water molecules are the major factor to give favorable interaction (negative energy contribution) for themselves. The pore, despite being lined with acyl chains, has a favorable van der Waals interaction with intrapore water molecules. These results may help to explain why water-filled channels can be formed by the hydrophobic helices in natural channels.

  11. Simulation of Water Levels and Salinity in the Rivers and Tidal Marshes in the Vicinity of the Savannah National Wildlife Refuge, Coastal South Carolina and Georgia

    USGS Publications Warehouse

    Conrads, Paul; Roehl, Edwin A.; Daamen, Ruby C.; Kitchens, Wiley M.

    2006-01-01

    reliability. Understanding freshwater inflows, tidal water levels, and specific conductance in the rivers and marshes is critical to enhancing the predictive capabilities of a successful marsh succession model. Data-mining techniques, including artificial neural network (ANN) models, were applied to address various needs of the ecology study and to integrate the riverine predictions from the 3D model to the marsh-succession model. ANN models were developed to simulate riverine water levels and specific conductance in the vicinity of the tidal marshes for the full range of historical conditions using data from the river gaging networks. ANN models were also developed to simulate the marsh water levels and pore-water salinities using data from the marsh gaging networks. Using the marsh ANN models, the continuous marsh network was hindcasted to be concurrent with the long-term riverine network. The hindcasted data allow ecologists to compute hydrologic parameters?such as hydroperiods and exposure frequency?to help analyze historical vegetation data. To integrate the 3D hydrodynamic model, the marsh-succession model, and various time-series databases, a decision support system (DSS) was developed to support the various needs of regulatory and scientific stakeholders. The DSS required the development of a spreadsheet application that integrates the database, 3D hydrodynamic model output, and ANN riverine and marsh models into a single package that is easy to use and can be readily disseminated. The DSS allows users to evaluate water-level and salinity response for different hydrologic conditions. Savannah River streamflows can be controlled by the user as constant flow, a percentage of historical flows, a percentile daily flow hydrograph, or as a user-specified hydrograph. The DSS can also use output from the 3D model at stream gages near the Savannah National Wildlife Refuge to simulate the effects in the tidal marshes. The DSS is distributed with a two-dimensional (

  12. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    PubMed

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  13. Evolution of the electrical resistivity anisotropy during saline tracer tests: insights from geoelectrical milli-fluidic experiments

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.

    2017-12-01

    The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our

  14. Salinity Remote Sensing and the Study of the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, G. S. E.; LeVine, David M.; Chao, Y.; Colomb, F. Raul; Font, J.

    2007-01-01

    The SMOS and AquariusISAC-D satellite missions will begin a new era to map the global sea surface salinity (SSS) field and its variability from space within the next twothree years. They will provide critical data needed to study the interactions between the ocean circulation, global water cycle and climate. Key scientific issues to address are (1) mapping large expanses of the ocean where conventional SSS data do not yet exist, (2) understanding the seasonal and interannual SSS variations and the link to precipitation, evaporation and sea-ice patterns, (3) links between SSS and variations in the oceanic overturning circulation, (4) air-sea coupling processes in the tropics that influence El Nino, and (4) closing the marine freshwater budget. There is a growing body of oceanographic evidence in the form of salinity trends that portend significant changes in the hydrologic cycle. Over the past several decades, highlatitude oceans have become fresher while the subtropical oceans have become saltier. This change is slowly spreading into the subsurface ocean layers and may be affecting the strength of the ocean's therrnohaline overturning circulation. Salinity is directly linked to the ocean dynamics through the density distribution, and provides an important signature of the global water cycle. The distribution and variation of oceanic salinity is therefore attracting increasing scientific attention due to the relationship to the global water cycle and its influence on circulation, mixing, and climate processes. The oceans dominate the water cycle by providing 86% of global surface evaporation (E) and receiving 78% of global precipitation (P). Regional differences in E-P, land runoff, and the melting or freezing of ice affect the salinity of surface water. Direct observations of E-P over the ocean have large uncertainty, with discrepancies between the various state-of-the-art precipitation analyses of a factor of two or more in many regions. Quantifying the climatic

  15. Salinity control in a clay soil beneath an orchard irrigated with treated waste water in the presence of a high water table: A numerical study

    NASA Astrophysics Data System (ADS)

    Russo, David; Laufer, Asher; Bardhan, Gopali; Levy, Guy J.

    2015-12-01

    A citrus orchard planted on a structured, clay soil associated with a high water table, irrigated by drip irrigation system using treated waste water (TWW) and local well water (LWW) was considered here. The scope of the present study was to analyze transport of mixed-ion, interacting salts in a combined vadose zone-groundwater flow system focusing on the following issues: (i) long-term effects of irrigation with TWW on the response of the flow system, identifying the main factors (e.g., soil salinity, soil sodicity) that control these effects, and (ii) salinity control aiming at improving both crop productivity and groundwater quality. To pursue this two-fold goal, 3-D numerical simulations of field-scale flow and transport were performed for an extended period of time, considering realistic features of the soil, water table, crop, weather and irrigation, and the coupling between the flow and the transport through the dependence of the soil hydraulic functions, K(ψ) and θ(ψ), on soil solution concentration C, and sodium adsorption ratio, SAR. Results of the analyses suggest that in the case studied, the long-term effect of irrigation with TWW on the response of the flow system is attributed to the enhanced salinity of the TWW, and not to the increase in soil sodicity. The latter findings are attributed to: (i) the negative effect of soil salinity on water uptake, and the tradeoff between water uptake and drainage flux, and, concurrently, solute discharge below the root zone; and, (ii) the tradeoff between the effects of C and SAR on K(ψ) and θ(ψ). Furthermore, it was demonstrated that a data-driven protocol for soil salinity control, based on alternating irrigation water quality between TWW and desalinized water, guided by the soil solution salinity at the centroid of the soil volume active in water uptake, may lead to a substantial increase in crop yield, and to a substantial decrease in the salinity load in the groundwater.

  16. Optical properties of chromophoric dissolved organic matter (CDOM) in surface and pore waters adjacent to an oil well in a southern California salt marsh.

    PubMed

    Bowen, Jennifer C; Clark, Catherine D; Keller, Jason K; De Bruyn, Warren J

    2017-01-15

    Chromophoric dissolved organic matter (CDOM) optical properties were measured in surface and pore waters as a function of depth and distance from an oil well in a southern California salt marsh. Higher fluorescence and absorbances in pore vs. surface waters suggest soil pore water is a reservoir of CDOM in the marsh. Protein-like fluorophores in pore waters at distinct depths corresponded to variations in sulfate depletion and Fe(II) concentrations from anaerobic microbial activity. These variations were supported by fluorescence indexes and are consistent with differences in optical molecular weight and aromaticity indicators. Fluorescence indices were consistent with autochthonous material of aquatic origin in surface waters, with more terrestrial, humified allochthonous material in deeper pore waters. CDOM optical properties were consistent with significantly enhanced microbial activity in regions closest to the oil well, along with a three-dimensional excitation/emission matrix fluorescence spectrum peak attributable to oil, suggesting anaerobic microbial degradation of oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Hydrogeologic framework and salinity distribution of the Floridan aquifer system of Broward County, Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Cunningham, Kevin J.

    2014-01-01

    Concerns about water-level decline and seawater intrusion in the surficial Biscayne aquifer, currently the principal source of water supply to Broward County, prompted a study to refine the hydrogeologic framework of the underlying Floridan aquifer system to evaluate its potential as an alternative source of supply. This report presents cross sections that illustrate the stratigraphy and hydrogeology in eastern Broward County; maps of the upper surfaces and thicknesses of several geologic formations or units within the Floridan aquifer system; and maps of two of the potentially productive water-bearing zones within the system, the Upper Floridan aquifer and the Avon Park permeable zone. An analysis of data on rock depositional textures, associated pore networks, and flow zones in the Floridan aquifer system shows that groundwater moves through the system in two ways. These data support a conceptual, dual-porosity model of the system wherein groundwater moves either as concentrated flow in discrete, thin bedding-plane vugs or zones of vuggy megaporosity, or as diffuse flow through rocks with primarily interparticle and moldic-particle porosity. Because considerable exchange of groundwater may occur between the zones of vuggy and matrix-dominated porosity, understanding the distribution of that porosity and flow zone types is important to evaluating the suitability of the several units within the Floridan aquifer system for managing the water through practices such as aquifer storage and recovery (ASR). The salinity of the water in the Floridan aquifer system is highest in the central part of the study area, and lower toward the north and south. Although salinity generally increases with depth, in the western part of the study area a zone of relatively high saline water is perched above water of lower salinity in the underlying Avon Park permeable zone. Overall, the areas of highest salinity in the aquifer system coincide with those with the lowest estimated

  18. Pore water sampling in acid sulfate soils: a new peeper method.

    PubMed

    Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd

    2009-01-01

    This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.

  19. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    NASA Astrophysics Data System (ADS)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  20. Subduction of a low-salinity water mass around the Xisha Islands in the South China Sea.

    PubMed

    Huang, Zhida; Zhuang, Wei; Liu, Hailong; Hu, Jianyu

    2018-02-15

    Based on three climatologically observed temperature and salinity datasets (i.e., GDEM-V3, SCSPOD14 and WOA13), this paper reports a low-salinity (~34.32) water mass in the subsurface-to-intermediate layer around the Xisha Islands in the South China Sea. This water mass mainly subducts from the surface layer into the intermediate layer, characterized by a relatively low potential vorticity tongue extending from the bottom of mixed layer to the thermocline, and accompanied by a thermocline ventilation in spring (especially in April). The potential dynamics are the joint effects of negative wind stress curl, and an anticyclonic eddy triggered by the inherent topographic effect of the Xisha Islands, reflecting that downward vertical motion dominates the subduction. Despite lacking of the homogenous temperature and density, the low-salinity water mass is to some extent similar to the classic mode water and can be regarded as a deformed mode water in the South China Sea.

  1. Estimation of solar energy resources for low salinity water desalination in several regions of Russia

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. B.; Kiseleva, S. V.; Shakun, V. P.; Gabderakhmanova, T. S.

    2018-01-01

    This paper focuses on estimation of demanded photovoltaic (PV) array areas and capital expenses to feed a reverse osmosis desalination unit (1 m3/day fresh water production rate). The investigation have been made for different climatic conditions of Russia using regional data on ground water salinity from different sources and empirical dependence of specific energy consumption on salinity and temperature. The most optimal results were obtained for Krasnodar, Volgograd, Crimea Republic and some other southern regions. Combination of salinity, temperature and solar radiation level there makes reverse osmosis coupled with photovoltaics very attractive to solve infrastructure problems in rural areas. Estimation results are represented as maps showing PV array areas and capital expenses for selected regions.

  2. Chemical quality of surface waters and sedimentation in the Saline River basin, Kansas

    USGS Publications Warehouse

    Jordan, Paul Robert; Jones, B.F.; Petri, Lester R.

    1964-01-01

    This report gives the results of an investigation of the sediment and dissolved minerals that are transported by the Saline River and its tributaries. The Saline River basin is in western and central Kansas; it is long and narrow and covers 3,420 square miles of rolling plains, which is broken in some places by escarpments and small areas of badlands. In the western part the uppermost bedrock consists predominantly of calcareous elastic sedimentary rocks of continental origin of Pliocene age and in most places is covered by eolian deposits of Pleistocene and Recent age. In the central part the ex posed bedrock consists predominantly of calcareous marine sedimentary rocks of Late Cretaceous age. In the eastern part the exposed bedrock consists mainly of noncalcareous continental and littoral elastic sedimentary rocks of Early Cretaceous and Permian age. Fluvial deposits are in the valleys, and eolian materials are present over much of the uplands. Average precipitation increases rather uniformly from about 18 inches per year in the west to almost 28 inches per year in the east. Runoff is not affected by irrigation nor regulated by large structures, but it is closely related to precipitation. Average runoff increases from less than 0.2 inch per year in the west to more than 1.5 inches per year in the east. Aquifers of the flood-plain and terrace deposits and of the Cretaceous Dakota Sandstone are the major sources of ground-water accretion to the streams. In the upper reaches of the Saline River, the water is only slightly mineralized; during the period of record the specific conductance near Wakeeney never exceeded 750 micromhos per centimeter. In the lower reaches, however, the water is slightly mineralized during periods of high flow and is highly mineralized during periods of low flow; the specific conductance near Russell exceeded 1,500 micromhos per centimeter more than 80 percent of the time. Near Russell, near Wilson, and at Tescott the water is of the

  3. Salinity of the Delaware Estuary

    USGS Publications Warehouse

    Cohen, Bernard; McCarthy, Leo T.

    1962-01-01

    The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.

  4. Methane production correlates positively with methanogens, sulfate-reducing bacteria and pore water acetate at an estuarine brackish-marsh landscape scale

    NASA Astrophysics Data System (ADS)

    Tong, C.; She, C. X.; Jin, Y. F.; Yang, P.; Huang, J. F.

    2013-11-01

    Methane production is influenced by the abundance of methanogens and the availability of terminal substrates. Sulfate-reducing bacteria (SRB) also play an important role in the anaerobic decomposition of organic matter. However, the relationships between methane production and methanogen populations, pore water terminal substrates in estuarine brackish marshes are poorly characterized, and even to our knowledge, no published research has explored the relationship between methane production rate and abundance of SRB and pore water dimethyl sulfide (DMS) concentration. We investigated methane production rate, abundances of methanogens and SRB, concentrations of pore water terminal substrates and electron acceptors at a brackish marsh landscape dominated by Phragmites australis, Cyperus malaccensis and Spatina alterniflora marshes zones in the Min River estuary. The average rates of methane production at a soil depth of 30 cm in the three marsh zones were 0.142, 0.058 and 0.067 μg g-1 d-1, respectively. The abundance of both methanogens and SRB in the soil of the P. australis marsh with highest soil organic carbon content was higher than in the C. malaccensis and S. alterniflora marshes. The abundance of methanogens and SRB in the three soil layers was statistically indistinguishable. Mean pore water DMS concentrations at a soil depth of 30 cm under the S. alterniflora marsh were higher than those in the C. malaccensis and P. australis marshes. Methane production rate increased with the abundance of both methanogens and SRB across three marsh zones together at the landscape scale, and also increased with the concentration of pore water acetate, but did not correlate with concentrations of pore water DMS and dissolved CO2. Our results suggest that, provided that substrates are available in ample supply, methanogens can continue to produce methane regardless of whether SRB are prevalent in estuarine brackish marshes.

  5. Pore Water Arsenic Dynamics in Rice Paddies Under Projected Future Climates

    NASA Astrophysics Data System (ADS)

    Plaganas, M.; Wang, T.; Muehe, E. M.; Fendorf, S. E.

    2016-12-01

    Rice is one of the staple crops in the world, with 50% of the global population eating rice daily. Many rice-producing regions of the world are irrigated with groundwater contaminated with arsenic (As), and in particular South and Southeast Asia, where geogenic As is leached into the groundwater. Use of groundwater pervasively high in As leads to subsequent accumulation in paddy soils. Arsenic, a toxic metalloid, also decreases rice productivity and further jeopardizes food security. Hence, rice agriculture is concerned with its productivity in a climate change impacted future and the particular impacts of arsenic on yields. However, past studies do not address the prevalence of As in paddy soils or its fate in the rhizosphere and ultimate impact on the plant. The objective of our study was to determine changes in pore water As dynamics in the rhizosphere of rice plants grown on As-contaminated paddy soil under climate conditions projected for the end of the century. In order to address this objective, we designed greenhouse chambers with today's climate and projected climate conditions for the year 2100, specifically 5°C increase in temperature and doubled concentration of atmospheric CO2. We hypothesize that the effects of climate change with these conditions will increase the mobility of As in the rhizosphere, and thus, decrease rice growth in As-bearing paddies more than, so far, expected. We examined pore water geochemistry including pH and As concentrations, and correlate that to the height of the plants. Furthermore, the dynamics of other elements in the pore water such as carbon, iron, sulfur, manganese, and silica are further evaluated for their effects on rice growth. Arsenic will have an impact on rice production and conditions induced by future climatic conditions need to be considered for food security. Considering that climate change will decrease the global agricultural output, we should urgently consider adapting our agricultural practices to aid

  6. Compositions of surface layers formed on amalgams in air, water, and saline.

    PubMed

    Hanawa, T; Gnade, B E; Ferracane, J L; Okabe, T; Watari, F

    1993-12-01

    The surface layers formed on both a zinc-free and a zinc-containing dental amalgam after polishing and aging in air, water, or saline, were characterized using x-ray photoelectron spectroscopy (XPS) to determine the compositions of the surface layers which might govern the release of mercury from amalgam. The XPS data revealed that the formation of the surface layer on the zinc-containing amalgam was affected by the environment in which the amalgam was polished and aged, whereas that on the zinc-free amalgam was not affected. In addition, among the elements contained in amalgam, zinc was the most reactive with the environment, and was preferentially dissolved from amalgam into water or saline. Mercury atoms existed in the metallic state in the surface layer.

  7. Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; Wang, Mengyi; Kang, Qinjun

    Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less

  8. Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping

    DOE PAGES

    Chen, Li; Wang, Mengyi; Kang, Qinjun; ...

    2018-04-26

    Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less

  9. ARSENIC DETERMINATION IN SALINE WATERS BY HYDRIDE GENERATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY.

    EPA Science Inventory

    The determination of arsenic in estuarine waters usually involves a matrix removal and/or pre-concentration prior to analysis because of the high salt content in these waters. The salinity also produces analytical challenges in terms of interferences and instrument stability. A...

  10. Colloid transport in porous media: impact of hyper-saline solutions.

    PubMed

    Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander

    2011-05-01

    The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during

  11. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water.

    PubMed

    Olufemi, Olukemi Temiloluwa; Adeyeye, Adeolu Ikechukwu

    2017-01-01

    Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS) or the distilled water (DW) group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Forty-one (42.3%) of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315). The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389). It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities. © The Authors, published by EDP Sciences, 2017.

  12. Hydrochromic Approaches to Mapping Human Sweat Pores.

    PubMed

    Park, Dong-Hoon; Park, Bum Jun; Kim, Jong-Man

    2016-06-21

    Hydrochromic materials, which undergo changes in their light absorption and/or emission properties in response to water, have been extensively investigated as humidity sensors. Recent advances in the design of these materials have led to novel applications, including monitoring the water content of organic solvents, water-jet-based rewritable printing on paper, and hydrochromic mapping of human sweat pores. Our interest in this area has focused on the design of hydrochromic materials for human sweat pore mapping. We recognized that materials appropriate for this purpose must have balanced sensitivities to water. Specifically, while they should not undergo light absorption and/or emission transitions under ambient moisture conditions, the materials must have sufficiently high hydrochromic sensitivities that they display responses to water secreted from human sweat pores. In this Account, we describe investigations that we have carried out to develop hydrochromic substances that are suitable for human sweat pore mapping. Polydiacetylenes (PDAs) have been extensively investigated as sensor matrices because of their stimulus-responsive color change property. We found that incorporation of headgroups composed of hygroscopic ions such as cesium or rubidium and carboxylate counterions enables PDAs to undergo a blue-to-red colorimetric transition as well as a fluorescence turn-on response to water. Very intriguingly, the small quantities of water secreted from human sweat pores were found to be sufficient to trigger fluorescence turn-on responses of the hydrochromic PDAs, allowing precise mapping of human sweat pores. Since the hygroscopic ion-containing PDAs developed in the initial stage display a colorimetric transition under ambient conditions that exist during humid summer periods, a new system was designed. A PDA containing an imidazolium ion was found to be stable under all ambient conditions and showed temperature-dependent hydrochromism corresponding to a

  13. The Influence of Sulphate Deposition on the Seasonal Variation of Peat Pore Water Methyl Hg in a Boreal Mire

    PubMed Central

    Bergman, Inger; Bishop, Kevin; Tu, Qiang; Frech, Wolfgang; Åkerblom, Staffan; Nilsson, Mats

    2012-01-01

    In this paper we investigate the hypothesis that long-term sulphate (SO4 2−) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO4 2− on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO4 2− started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha−1 yr−1 of sulphur (S) addition (1.3±0.08 ng L−1, SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha−1 yr−1 of ambient S deposition (0.6±0.02 ng L−1, SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L−1 compared to +/−0.5 ng L−1 in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r2 = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO4 2− to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO4 2− deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO4 2− in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands. PMID:23029086

  14. The influence of sulphate deposition on the seasonal variation of peat pore water methyl Hg in a boreal mire.

    PubMed

    Bergman, Inger; Bishop, Kevin; Tu, Qiang; Frech, Wolfgang; Åkerblom, Staffan; Nilsson, Mats

    2012-01-01

    In this paper we investigate the hypothesis that long-term sulphate (SO(4) (2-)) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO(4) (2-) on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO(4) (2-) started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha(-1) yr(-1) of sulphur (S) addition (1.3±0.08 ng L(-1), SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha(-1) yr(-1) of ambient S deposition (0.6±0.02 ng L(-1), SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L(-1) compared to +/-0.5 ng L(-1) in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r(2) = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO(4) (2-) to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO(4) (2-) deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO(4) (2-) in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands.

  15. Geohydrology and potential for upward movement of saline water in the Cocoa well field, East Orange County, Florida

    USGS Publications Warehouse

    Phelps, G.G.; Schiffer, D.M.

    1996-01-01

    The Floridan aquifer system, an approximately 2,000-foot thick sequence of Eocene-age limestone and dolomite, is the main source of water supply in central Florida. Hydraulic conductivity is different in strata of different lithology and is the basis for separating the aquifer system into the Upper Floridan aquifer, a middle semi- confining unit, and the Lower Floridan aquifer. The coastal city of Cocoa withdraws about 26 million gallons of water per day from the Upper Floridan aquifer from a well field in east Orange County, about 25 miles inland. About 60 million gallons per day are withdrawn from the Upper Floridan aquifer and 56 million gallons per day from the Lower Floridan aquifer in the Orlando area, about 15 miles west of the Cocoa well field. Wells drilled in the Cocoa well field from 1955-61 yielded water with chloride concentrations ranging from 25-55 milligrams per liter. Soon after the wells were put in service, chloride concentrations increased; therefore, new wells were drilled further inland. Chloride concen- trations in water from many of the new wells also have increased. Possible sources of saline water are lateral movement of relict seawater in the Upper Floridan aquifer from the east, regional upconing of saline water from the Lower Floridan aquifer or underlying older rocks, or localized upward movement of saline water through fractures. Several test wells were drilled to provide information about chloride concentration changes with depth and to monitor changes with time, including a multi-zone well drilled in 1965 (well C) and two wells drilled in the 1990's (wells R and S). Chloride concentrations have increased in the zone pumped by the supply wells (the upper 500 feet of the aquifer) and in the 1,351-1,357-foot deep zone of well C, but not in the two intervening zones. This indicates that the source of saline water is located laterally, rather than vertically, from the pumped zone in the area of well C. The potential for upward movement

  16. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton

    PubMed Central

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A. Egrinya

    2012-01-01

    A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na+ concentrations in leaves. The [Na+] in the ‘0’ side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the ‘0’ side phloem was girdled, suggesting that the increased [Na+] in the ‘0’ side roots was possibly due to transportation of foliar Na+ to roots through phloem. Plants under non-uniform salinity extruded more Na+ from the root than those under uniform salinity. Root Na+ efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na+ efflux and H+ influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na+ extrusion was probably due to active Na+/H+ antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na+ concentration, transport of excessive foliar Na+ to the low salinity side, and enhanced Na+ efflux from the low salinity root. PMID:22200663

  17. Relative insignificance of virus inactivation during aluminum electrocoagulation of saline waters.

    PubMed

    Tanneru, Charan Tej; Jothikumar, N; Hill, Vincent R; Chellam, Shankararaman

    2014-12-16

    Combined removal and inactivation of the MS2 bacteriophage from model saline (0-100 mM NaCl) waters by electrochemical treatment using a sacrificial aluminum anode was evaluated. Both chemical and electrodissolution contributed to coagulant dosing since measured aluminum concentrations were statistically higher than purely electrochemical predictions using Faraday's law. Electrocoagulation generated only small amounts of free chlorine in situ but effectively destabilized viruses and incorporated them into Al(OH)3(s) flocs during electrolysis. Low chlorine concentrations combined with virus shielding and aggregation within flocs resulted in very slow disinfection rates necessitating extended flocculation/contact times to achieve significant log-inactivation. Therefore, the dominant virus control mechanism during aluminum electrocoagulation of saline waters is "physical" removal by uptake onto flocs rather than "chemical" inactivation by chlorine. Attenuated total reflectance-Fourier transform infrared spectroscopy provided evidence for oxidative transformations of capsid proteins including formation of oxyacids, aldehydes, and ketones. Electrocoagulation significantly altered protein secondary structures decreasing peak areas associated with turns, bends, α-helices, β-structures, and random coils for inactivated viruses compared with the MS2 stock. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) measurements showed rapid initial RNA damage following a similar trend as plaque assay measurements of infectious viruses. However, ssRNA cleavage measured by qRT-PCR underestimated inactivation over longer durations. Although aluminum electrocoagulation of saline waters disorders virus capsids and damages RNA, inactivation occurs at a sufficiently low rate so as to only play a secondary role to floc-encapsulation during residence times typical of electrochemical treatment.

  18. Drinking Water Salinity and Maternal Health in Coastal Bangladesh: Implications of Climate Change

    PubMed Central

    Ireson, Andrew; Kovats, Sari; Mojumder, Sontosh Kumar; Khusru, Amirul; Rahman, Atiq; Vineis, Paolo

    2011-01-01

    Background: Drinking water from natural sources in coastal Bangladesh has become contaminated by varying degrees of salinity due to saltwater intrusion from rising sea levels, cyclone and storm surges, and upstream withdrawal of freshwater. Objective: Our objective was to estimate salt intake from drinking water sources and examine environmental factors that may explain a seasonal excess of hypertension in pregnancy. Methods: Water salinity data (1998–2000) for Dacope, in rural coastal Bangladesh, were obtained from the Centre for Environment and Geographic Information System in Bangladesh. Information on drinking water sources, 24-hr urine samples, and blood pressure was obtained from 343 pregnant Dacope women during the dry season (October 2009 through March 2010). The hospital-based prevalence of hypertension in pregnancy was determined for 969 pregnant women (July 2008 through March 2010). Results: Average estimated sodium intakes from drinking water ranged from 5 to 16 g/day in the dry season, compared with 0.6–1.2 g/day in the rainy season. Average daily sodium excretion in urine was 3.4 g/day (range, 0.4–7.7 g/day). Women who drank shallow tube-well water were more likely to have urine sodium > 100 mmol/day than women who drank rainwater [odds ratio (OR) = 2.05; 95% confidence interval (CI), 1.11–3.80]. The annual hospital prevalence of hypertension in pregnancy was higher in the dry season (OR = 12.2%; 95% CI, 9.5–14.8) than in the rainy season (OR = 5.1%; 95% CI, 2.91–7.26). Conclusions: The estimated salt intake from drinking water in this population exceeded recommended limits. The problem of saline intrusion into drinking water has multiple causes and is likely to be exacerbated by climate change–induced sea-level rise. PMID:21486720

  19. Numerical Investigation of Physicochemical Processes Occurring During Water Evaporation in the Surface Layer Pores of a Forest Combustible Material

    NASA Astrophysics Data System (ADS)

    Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2014-07-01

    A numerical investigation of the physicochemical processes occurring during water evaporation from the pores of the surface layer of a forest combustible material has been carried out. The characteristic features of the suppression of the thermal decomposition reaction of a combustible material with water filling fullyits pores and formation of a water fi lm over its surface have been determined. The characteristic times of suppression of thermal decomposition reactions under various environmental conditions and the thickness and kinds of forest combustible material (birch leaves, pine and spruce needles, etc.) have been established.

  20. Salinity minima, water masses and surface circulation in the Eastern Tropical Pacific off Mexico and surrounding areas

    NASA Astrophysics Data System (ADS)

    Portela, Esther; Beier, Emilio; Godínez, Victor; Castro, Rubén; Desmond Barton, Eric

    2016-04-01

    The seasonal variations of the water masses and their interactions are analyzed in the Tropical Pacific off Mexico (TPOM) and four contiguous areas of on the basis of new extensive hydrographic database. The regional water masses intervals are redefined in terms of Absolute Salinity (SA) in g kg-1 and Conservative Temperature (Θ) according to TEOS - 10. The California Current System Water (CCSW) mass is introduced as an improved description of the former California Current Water (CCW) together with the Subarctic Water (SAW) to describe better the characteristics of the components of the California Current System. Hydrographic data, Precipitation-Evaporation balance and geostrophic currents were used to investigate the origin and seasonality of two salinity minima in the area. The shallow salinity minimum of around 33.5 g kg-1 originated in the California Current System and became saltier but less dense water as it traveled to the southeast. It can be identified as a mixture of CCSW and tropical waters. The surface salinity minimum of 32 - 33 g kg-1 was seen as a sharp surface feature in the TPOM from August to November. It was produced by the arrival of tropical waters from the south in combination with the net precipitation in the area during these months. This result provides new evidence of the presence of the poleward-flowing Mexican Coastal Current and, for the first time, of its seasonal pattern of variation.

  1. Characterization and geostatistical mapping of water salinity: A case study of terminal complex in the Oued Righ Valley (southern Algeria)

    NASA Astrophysics Data System (ADS)

    Belkesier, Mohamed Saleh; Zeddouri, Aziez; Halassa, Younes; Kechiched, Rabah

    2018-05-01

    The region of Oued Righ contains large quantities of groundwater hosted by the three aquifers: the Terminal Complex (CT), the Continental Intercalary (CI) and the phreatic aquifer. The present study is focused on the water from CT aquifer in order to characterize their salinity using geostatistical tool for maping. Indeed, water in this aquifer show a high mineralization exceeding the OMS standards. The main hydro-chemical facies of this water is Chloride-Sodium and Sulfate-Sodium. The elementary statistics have been performed on the physico-chemical analysis from 97 wells whereas 766 wells were analyzed on salinity and are used for the geostatistical mapping. The obtained results show a spatial evolution of the salinity toward the direction South to the North. The salinity is locally strong in the central part of Oued Righ valley. The non-parametric geostatistic of indicator kriging was performed on the salinity data using a cut-off of 5230 mg/l which represents the average value in the studied area. The indicator Kriging allows the estimation of salinity probabilities I (5230 mg / l) in the water of the CT aquifer using bloc model (500 x 500 m). The automatic mapping is used to visualize the distribution of the kriged probabilities of salinity. These results can help to ensure a rational and a selective exploitation of groundwater according the salinity contents.

  2. Remote sensing of salinity

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances.

  3. Assessment of Well Safety from Pressure and Temperature-Induced Damage during CO2 Injection in Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Delfs, J.; Goerke, U.; Kolditz, O.

    2013-12-01

    Carbon dioxide Capture and Storage (CCS) technology is known for disposing a specific amount of CO2 from industrial release of flue gases into a suitable storage where it stays for a defined period of time in a safe way. Types of storage sites for CO2 are depleted hydrocarbon reservoirs, unmineable coal seams and saline aquifers. In this poster, we address the problem of CO2 sequestration into deep saline aquifers. The main advantage of this kind of site for the CO2 sequestration is its widespread geographic distribution. However, saline aquifers are very poorly characterized and typically located at one kilometer depth below the earth's surface. To demonstrate that supercritical CO2 injection into deep saline aquifers is technically and environmentally safe, it is required to perform thermo-hydro-mechanical analysis of failure moods with numerical models. In the poster, we present simple process-catching benchmark for testing the scenario of compressed CO2 injection into a multi- layered saline aquifer.The pores of the deformable matrix are initially filled with saline water at hydrostatic pressure and geothermal temperature conditions. This benchmark investigates (i) how the mechanical and thermal stresses enhance the permeability for CO2 migration; and (ii) subsequent failures mode, i.e., tensile, and shear failures. The tensile failure occurs when pore fluid pressure exceeds the principle stress whereas the Mohr-Coulomb failure criterion defines the shear failure mode. The thermo-hydro-mechanical (THM) model is based on a ';multi-componential flow' module . The coupled system of balance equations is solvedin the monolithic way. The Galerkin finite element approach is used for spatial discretization, whereas temporal discretization is performed with a generalized single step scheme. This numerical module has been implemented in the open-source scientific software OpenGeoSys.

  4. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA

    USGS Publications Warehouse

    Huff, G.F.

    2006-01-01

    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  5. Growth responses of Phragmites karka - a candidate for second generation biofuel from degraded saline lands

    NASA Astrophysics Data System (ADS)

    Zaheer Ahmed, Muhammad; Shoukat, Erum; Abideen, Zainul; Aziz, Irfan; Gulzar, Salman; Ajmal Khan, M.

    2017-04-01

    following order: root > senesced leaves > young leaves. Moreover, plants maintained nutrient homeostasis (K+, Ca++, Mg++, NO-) by selective uptake via root and transport towards leaf. Moderate salinity increased instantaneous carboxylation efficiency and water use efficiency with stomatal density and smaller pore size compared to control which supported unchanged photosynthetic rate by protecting light harvesting machinery. Low photosynthetic rate in early phase of higher salinity was related to reduced stomatal conductance, while in later phase (15-30 days) due to decreased carboxylation efficiency, effective quantum yield and Fv/Fm (at noon). In conclusion, organ specific responses to short and long term exposure in moderate salinity ensures successful plant survival, whereas long term exposure tohigh salinitywas toxic for plant growth. It is recommended that P. karka could be grown as a biofuel crop on marginally saline and degraded lands.

  6. Responses of Baltic Sea Ice and Open-Water Natural Bacterial Communities to Salinity Change

    PubMed Central

    Kaartokallio, Hermanni; Laamanen, Maria; Sivonen, Kaarina

    2005-01-01

    To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure. PMID:16085826

  7. Preliminary survey of the saline-water resources of the United States

    USGS Publications Warehouse

    Krieger, Robert A.; Hatchett, J.L.; Poole, J.L.

    1957-01-01

    Basic hydrologic data available in the field offices of the U. S. Geological Survey and reports issued by the Survey furnish evidence that saline water (defined in this report as water containing more than 1,000 parts per million of dissolved solids) is available under diverse geologic and hydrologic conditions throughout the United States.The number of areas in which undeveloped supplies of fresh water are available has diminished considerably with the rapid growth of industries and population in the past decade. Many areas previously considered to have relatively unlimited water resources have reached the point at which water-supply shortages exist or are threatened.

  8. Groundwater-saline lakes interaction - The contribution of saline groundwater circulation to solute budget of saline lakes: a lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Weinstein, Yishai; Starinsky, Abraham; Yechieli, Yoseph

    2013-04-01

    Saline lakes act as base level for both surface water and groundwater. Thus, a change in lake levels is expected to result in changes in the hydrogeological system in its vicinity, exhibited in groundwater levels, location of the fresh-saline water interface, sub-lacustrine groundwater discharge (SGD) and saline water circulation. All these processes were observed in the declining Dead Sea system, whose water level dropped by ~35 meters in the last 50 years. This work focuses mainly on the effect of circulation of Dead Sea water in the aquifer, which continues even in this very rapid base level drop. In general, seawater circulation in coastal aquifers is now recognized as a major process affecting trace element mass balances in coastal areas. Estimates of submarine groundwater discharge (SGD) vary over several orders of magnitude (1-1000000 m3/yr per meter shoreline). These estimates are sensitive to fresh-saline SGD ratios and to the temporal and spatial scales of the circulation. The Dead Sea system is an excellent natural field lab for studying seawater-groundwater interaction and large-scale circulation due to the absence of tides and to the minor role played by waves. During Dead Sea water circulation in the aquifer several geochemical reactions occur, ranging from short-term adsorption-desorption reactions and up to long-term precipitation and dissolution reactions. These processes affect the trace element distribution in the saline groundwater. Barite and celestine, which are supersaturated in the lake water, precipitate during circulation in the aquifer, reducing barium (from 5 to 1.5 mg/L), strontium (from 350 to 300 mg/L) and the long-lived 226Ra (from 145 to 60 dpm/L) in the saline groundwater. Redox-controlled reactions cause a decrease in uranium from 2.4 to 0.1 μg/L, and an increase in iron from 1 to 13 mg/L. 228Ra (t1/2=5.75 yr) activity in the Dead Sea is ~1 dpm/L and increase gradually as the saline water flows further inland until reaching

  9. Pushpoint sampling for defining spatial and temporal variations in contaminant concentrations in sediment pore water near the ground-water / surface-water interface

    USGS Publications Warehouse

    Zimmerman, Marc J.; Massey, Andrew J.; Campo, Kimberly W.

    2005-01-01

    During four periods from April 2002 to June 2003, pore-water samples were taken from river sediment within a gaining reach (Mill Pond) of the Sudbury River in Ashland, Massachusetts, with a temporary pushpoint sampler to determine whether this device is an effective tool for measuring small-scale spatial variations in concentrations of volatile organic compounds and selected field parameters (specific conductance and dissolved oxygen concentration). The pore waters sampled were within a subsurface plume of volatile organic compounds extending from the nearby Nyanza Chemical Waste Dump Superfund site to the river. Samples were collected from depths of 10, 30, and 60 centimeters below the sediment surface along two 10-meter-long, parallel transects extending into the river. Twenty-five volatile organic compounds were detected at concentrations ranging from less than 1 microgram per liter to hundreds of micrograms per liter (for example, 1,2-dichlorobenzene, 490 micrograms per liter; cis-1,2-dichloroethene, 290 micrograms per liter). The most frequently detected compounds were either chlorobenzenes or chlorinated ethenes. Many of the compounds were detected only infrequently. Quality-control sampling indicated a low incidence of trace concentrations of contaminants. Additional samples collected with passive-water-diffusion-bag samplers yielded results comparable to those collected with the pushpoint sampler and to samples collected in previous studies at the site. The results demonstrate that the pushpoint sampler can yield distinct samples from sites in close proximity; in this case, sampling sites were 1 meter apart horizontally and 20 or 30 centimeters apart vertically. Moreover, the pushpoint sampler was able to draw pore water when inserted to depths as shallow as 10 centimeters below the sediment surface without entraining surface water. The simplicity of collecting numerous samples in a short time period (routinely, 20 to 30 per day) validates the use of a

  10. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    NASA Astrophysics Data System (ADS)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity

  11. Active Sampling Device for Determining Pollutants in Surface and Pore Water - the In Situ Sampler for Biphasic Water Monitoring

    NASA Astrophysics Data System (ADS)

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-02-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040-0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

  12. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  13. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Wigger, Cornelia; Van Loon, Luc R.

    2018-06-01

    The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described.

  14. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks.

    PubMed

    Wigger, Cornelia; Van Loon, Luc R

    2018-06-01

    The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl 2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl 2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl 2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Pore characteristics and their emergent effect on water adsorption and transport in clays using small-angle neutron scattering with contrast variation

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2013-12-01

    In nuclear waste management, clays are canonical materials in the construction of engineered barriers. They are also naturally occurring reactive minerals which play an important role in retention and colloidal facilitated reactive transport in subsurface systems. Knowledge of total and accessible porosity in clays is crucial in determining fluids transport behavior in clays. It will provide fundamental insight on the performance efficiency of specific clays as a barrier material and their role in regulating radionuclide transport in subsurface environments. The aim of the present work is to experimentally investigate the change in pore characteristics of clays as function of moisture content, and to determine their pore character in relation to their water retention capacity. Recent developments in small-angle neutron scattering (SANS) techniques allow quantitative measurement of pore morphology and size distribution of various materials in their pristine state under various sample environments (exposure to solution, high temperature, and so on). Furthermore, due to dramatic different neutron scattering properties of hydrogen and deuterium, one can readily use contrast variation, which is the isotopic labeling with various ratios of H and D (e.g. mixture of H2O/D2O) to highlight or suppress features of the sample. This is particularly useful in the study of complex pore system such as clays. In this study, we have characterized the pore structures for a number of clays including clay minerals and field samples which are relevant to high-level waste systems under various sample environments (e.g., humidity, temperature and pressure) using SANS. Our results suggest that different clays show unique pore features under various sample environments. To distinguish between accessible/non-accessible pores and the nature of pore filling (e.g. the quantity of H2O adsorbed by clays, and the distribution of H2O in relation to pore character) to water, clays were exposed for

  16. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    NASA Astrophysics Data System (ADS)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  17. Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a Spartina alterniflora salt marsh.

    PubMed

    Negrin, Vanesa L; Spetter, Carla V; Asteasuain, Raúl O; Perillo, Gerardo M E; Marcovecchio, Jorge E

    2011-01-01

    Four sites were selected in a salt marsh in the Bahia Blanca Estuary (Argentina): (1) low marsh (flooded by the tide twice daily) vegetated by S. alterniflora; (2) non-vegetated low marsh; (3) high marsh (flooded only in spring tides) vegetated by S. alterniflora; (4) non-vegetated high marsh. The pH and Eh were measured in sediments, while dissolved nutrients (ammonium, nitrate, nitrite and phosphate) and particulate organic matter (POM) were determined in pore water. pH (6.2-8.7) was only affected by vegetation in low areas. Eh (from -300 to 250 mV) was lower at low sites than at high ones; in the latter, the values were higher in the non-vegetated sediments. The POM concentration was greater in the high marsh than in the low marsh, with no effect of vegetation. Ammonium was the most abundant nitrogen nutrient species in pore water, except in the non-vegetated high marsh where nitrate concentration was higher. All nitrogen nutrients were affected by both flooding and vegetation. Phosphate was always present in pore water at all sites throughout the year and its concentration varied within narrow limits, with no effect of flooding and greater values always at non-vegetated sites. Our results showed that the variability of the pore water composition within the marsh is greater than the temporal variation, meaning that both tidal flooding and vegetation are important in the dynamics of nutrients and organic matter in the sediment pore water.

  18. Continual in situ monitoring of pore water stable isotopes in the subsurface

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Weiler, M.

    2014-05-01

    Stable isotope signatures provide an integral fingerprint of origin, flow paths, transport processes, and residence times of water in the environment. However, the full potential of stable isotopes to quantitatively characterize subsurface water dynamics is yet unfolded due to the difficulty in obtaining extensive, detailed, and repeated measurements of pore water in the unsaturated and saturated zone. This paper presents a functional and cost-efficient system for non-destructive continual in situ monitoring of pore water stable isotope signatures with high resolution. Automatic controllable valve arrays are used to continuously extract diluted water vapor in soil air via a branching network of small microporous probes into a commercial laser-based isotope analyzer. Normalized liquid-phase isotope signatures are then obtained based on a specific on-site calibration approach along with basic corrections for instrument bias and temperature dependent isotopic fractionation. The system was applied to sample depth profiles on three experimental plots with varied vegetation cover in southwest Germany. Two methods (i.e., based on advective versus diffusive vapor extraction) and two modes of sampling (i.e., using multiple permanently installed probes versus a single repeatedly inserted probe) were tested and compared. The results show that the isotope distribution along natural profiles could be resolved with sufficiently high accuracy and precision at sampling intervals of less than four minutes. The presented in situ approaches may thereby be used interchangeably with each other and with concurrent laboratory-based direct equilibration measurements of destructively collected samples. It is thus found that the introduced sampling techniques provide powerful tools towards a detailed quantitative understanding of dynamic and heterogeneous shallow subsurface and vadose zone processes.

  19. Mapping of accumulated nitrogen in the sediment pore water of a eutrophic lake in Iowa, USA

    USGS Publications Warehouse

    Iqbal, M.Z.; Fields, C.L.

    2009-01-01

    A large pool of nitrogen in the sediment pore fluid of a eutrophic lake in Iowa, USA, was mapped in this study. Previously, the lake had supported fishing and boating, but today it no longer supports its designated uses as a recreational water body. In the top 5 cm of the lake bottom, the pore water nitrogen ranges between 3.1 and 1,250 ??g/cm3 of sediments, with an average of 160.3 ??g/cm3. Vertically, nitrate concentrations were measured as 153 ??g/cm3 at 0-10 cm, 162 ??g/cm3 at 10-20 cm, and 32 ??g/cm3 at 20-30 cm. Nitrate mass distribution was quantified as 3.67 ?? 103 kg (65%) in the bottom sediments, 172 kg (3%) in suspended particulates, and 1.83 ?? 103 kg (32%) in the dissolved phase. Soil runoff nutrients arrive at the lake from the heavily fertilized lands in the watershed. Upon sedimentation, a large mass of nitrogen desorbs from mineral particles to the relatively immobile pore fluid. Under favorable conditions, this nitrogen diffuses back into the water column, thereby dramatically limiting the lake's capability to process incoming nutrients from farmlands. Consequently, a condition of oxygen deficiency disrupts the post-season biological activities in the lake. ?? 2008 Springer-Verlag.

  20. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    PubMed

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  1. Role of Pore-Lining Residues in Defining the Rate of Water Conduction by Aquaporin-0.

    PubMed

    Saboe, Patrick O; Rapisarda, Chiara; Kaptan, Shreyas; Hsiao, Yu-Shan; Summers, Samantha R; De Zorzi, Rita; Dukovski, Danijela; Yu, Jiaheng; de Groot, Bert L; Kumar, Manish; Walz, Thomas

    2017-03-14

    Compared to other aquaporins (AQPs), lens-specific AQP0 is a poor water channel, and its permeability was reported to be pH-dependent. To date, most water conduction studies on AQP0 were performed on protein expressed in Xenopus oocytes, and the results may therefore also reflect effects introduced by the oocytes themselves. Experiments with purified AQP0 reconstituted into liposomes are challenging because the water permeability of AQP0 is only slightly higher than that of pure lipid bilayers. By reconstituting high amounts of AQP0 and using high concentrations of cholesterol to reduce the permeability of the lipid bilayer, we improved the signal-to-noise ratio of water permeability measurements on AQP0 proteoliposomes. Our measurements show that mutation of two pore-lining tyrosine residues, Tyr-23 and Tyr-149 in sheep AQP0, to the corresponding residues in the high-permeability water channel AQP1 have additive effects and together increase the water permeability of AQP0 40-fold to a level comparable to that of AQP1. Molecular dynamics simulations qualitatively support these experimental findings and suggest that mutation of Tyr-23 changes the pore profile at the gate formed by residue Arg-187. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE PAGES

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; ...

    2016-12-05

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore

  3. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore

  4. Infections may select for filial cannibalism by impacting egg survival in interactions with water salinity and egg density.

    PubMed

    Lehtonen, Topi K; Kvarnemo, Charlotta

    2015-07-01

    In aquatic environments, externally developing eggs are in constant contact with the surrounding water, highlighting the significance of water parameters and pathogens for egg survival. In this study we tested the impact of water salinity, egg density and infection potential of the environment on egg viability in the sand goby (Pomatoschistus minutus), a small fish that exhibits paternal egg care and has a marine origin, but which in the Baltic Sea lives in brackish water. To manipulate the infection potential of the environment, we added either a Saprolegnia infection vector into UV-filtered water or a fungicide into natural Baltic Sea water. Saprolegnia are widely spread water moulds that are a key cause of egg mortality in aquatic organisms in fresh- and brackish water. We found that increased water salinity indeed decreased the egg infection rate and had a positive effect on egg viability, while high egg density tended to have the opposite effect. However, the different factors influenced egg viability interactively, with a higher egg density having negative effects at low, but not in high, salinity. Thus, the challenges facing marine organisms adapting to lower salinity levels can be amplified by Saprolegnia infections that reduce egg survival in interaction with other environmental factors. Our results support the hypothesis that suppressing egg infections is an important aspect of parental care that can select for filial cannibalism, a common but poorly understood behaviour, especially in fish with parental care.

  5. Water beetle tolerance to salinity and anionic composition and its relationship to habitat occupancy.

    PubMed

    Céspedes, V; Pallarés, S; Arribas, P; Millán, A; Velasco, J

    2013-10-01

    Water salinity and ionic composition are among the main environmental variables that constrain the fundamental niches of aquatic species, and accordingly, physiological tolerance to these factors constitutes a crucial part of the evolution, ecology, and biogeography of these organisms. The present study experimentally estimated the fundamental saline and anionic niches of adults of two pairs of congeneric saline beetle species that differ in habitat preference (lotic and lentic) in order to test the habitat constraint hypothesis. Osmotic and anionic realised niches were also estimated based on the field occurrences of adult beetle species using Outlying Mean Index analysis and their relationship with experimental tolerances. In the laboratory, all of the studied species showed a threshold response to increased salinity, displaying high survival times when exposed to low and intermediate conductivity levels. These results suggest that these species are not strictly halophilic, but that they are able to regulate both hyperosmotically and hypoosmotically. Anionic water composition had a significant effect on salinity tolerance at conductivity levels near their upper tolerance limits, with decreased species survival at elevated sulphate concentrations. Species occupying lentic habitats demonstrated higher salinity tolerance than their lotic congeners in agreement with the habitat constraint hypothesis. As expected, realised salinity niches were narrower than fundamental niches and corresponded to conditions near the upper tolerance limits of the species. These species are uncommon on freshwater-low conductivity habitats despite the fact that these conditions might be physiologically suitable for the adult life stage. Other factors, such as biotic interactions, could prevent their establishment at low salinities. Differences in the realised anionic niches of congeneric species could be partially explained by the varying habitat availability in the study area. Combining

  6. 4D Imaging of Salt Precipitation during Evaporation from Saline Porous Media Influenced by the Particle Size Distribution

    NASA Astrophysics Data System (ADS)

    Norouzi Rad, M.; Shokri, N.

    2014-12-01

    Understanding the physics of water evaporation from saline porous media is important in many processes such as evaporation from porous media, vegetation, plant growth, biodiversity in soil, and durability of building materials. To investigate the effect of particle size distribution on the dynamics of salt precipitation in saline porous media during evaporation, we applied X-ray micro-tomography technique. Six samples of quartz sand with different grain size distributions were used in the present study enabling us to constrain the effects of particle and pore sizes on salt precipitation patterns and dynamics. The pore size distributions were computed using the pore-scale X-ray images. The packed beds were saturated with NaCl solution of 3 Molal and the X-ray imaging was continued for one day with temporal resolution of 30 min resulting in pore scale information about the evaporation and precipitation dynamics. Our results show more precipitation at the early stage of the evaporation in the case of sand with the larger particle size due to the presence of fewer evaporation sites at the surface. The presence of more preferential evaporation sites at the surface of finer sands significantly modified the patterns and thickness of the salt crust deposited on the surface such that a thinner salt crust was formed in the case of sand with smaller particle size covering larger area at the surface as opposed to the thicker patchy crusts in samples with larger particle sizes. Our results provide new insights regarding the physics of salt precipitation in porous media during evaporation.

  7. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes

    PubMed Central

    Lechthaler, Silvia; Robert, Elisabeth M. R.; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W.

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0–5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  8. Pore-water pressures associated with clogging of soil pipes: Numerical analysis of laboratory experiments

    USDA-ARS?s Scientific Manuscript database

    Clogging of soil pipes due to excessive internal erosion has been hypothesized to cause extreme erosion events such as landslides, debris flows, and gullies, but confirmation of this phenomenon has been lacking. Laboratory and field measurements have failed to measure pore water pressures within pip...

  9. Inverse modeling of surface-water discharge to achieve restoration salinity performance measures in Florida Bay, Florida

    USGS Publications Warehouse

    Swain, E.D.; James, D.E.

    2008-01-01

    The use of numerical modeling to evaluate regional water-management practices involves the simulation of various alternative water-delivery scenarios, which typically are designed intuitively rather than analytically. These scenario simulations are used to analyze how specific water-management practices affect factors such as water levels, flows, and salinities. In lieu of testing a variety of scenario simulations in a trial-and-error manner, an optimization technique may be used to more precisely and directly define good water-management alternatives. A numerical model application in the coastal regions of Florida Bay and Everglades National Park (ENP), representing the surface- and ground-water hydrology for the region, is a good example of a tool used to evaluate restoration scenarios. The Southern Inland and Coastal System (SICS) model simulates this area with a two-dimensional hydrodynamic surface-water model and a three-dimensional ground-water model, linked to represent the interaction of the two systems with salinity transport. This coastal wetland environment is of great interest in restoration efforts, and the SICS model is used to analyze the effects of alternative water-management scenarios. The SICS model is run within an inverse modeling program called UCODE. In this application, UCODE adjusts the regulated inflows to ENP while SICS is run iteratively. UCODE creates parameters that define inflow within an allowable range for the SICS model based on SICS model output statistics, with the objective of matching user-defined target salinities that meet ecosystem restoration criteria. Preliminary results obtained using two different parameterization methods illustrate the ability of the model to achieve the goals of adjusting the range and reducing the variance of salinity values in the target area. The salinity variance in the primary zone of interest was reduced from an original value of 0.509 psu2 to values 0.418 psu2 and 0.342 psu2 using different

  10. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.

    We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and EEM-PARAFAC components within the peat column. In particular the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate-depthmore » zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds (PAC) that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate-depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem

  11. Dynamic changes in the accumulation of metabolites in brackish water clam Corbicula japonica associated with alternation of salinity.

    PubMed

    Koyama, Hiroki; Okamoto, Seiji; Watanabe, Naoki; Hoshino, Naoshige; Jimbo, Mitsuru; Yasumoto, Ko; Watabe, Shugo

    2015-03-01

    The brackish water clam Corbicula japonica inhabits rivers and brackish waters throughout Japan where the major fishing grounds in the Ibaraki Prefecture, Japan, are located at the Hinuma Lake and Hinuma River. Water salinity in the Lake Hinuma is low and stable due to the long distance from the Pacific Ocean, whereas that in the downstream of the river varies daily due to a strong effect of tidal waters. In the present study, we dissected the gill and foot muscle of brackish water clam collected from these areas, and subjected them to metabolome analysis by capillary electrophoresis-time-of-flight mass spectrometry. More than 200 metabolites including free amino acids, peptides and organic acids were identified, and their amounts from the foot muscle tend to be higher than those from the gill. The principal component analysis revealed that the amount of each metabolite was different among sampling areas and between the gill and foot muscle, whereas no apparent differences were observed between male and female specimens. When the metabolites in the female clam at high salinity were compared with those at low salinity, concentrations of β-alanine, choline, γ-aminobutyric acid, ornithine and glycine betaine were found to be changed in association with salinity. We also compared various metabolites in relation to metabolic pathways, suggesting that many enzymes were involved in their changes depending on salinity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Comparison of water immersion and saline infusion as a means of inducing volume expansion in man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Pins, D. S.; Arrington, R.; Denunzio, A. G.; Engstrom, R.

    1975-01-01

    The study compares the natriuresis induced by head-out water immersion to that of a standard saline infusion and assesses the relative effectiveness of these two techniques as volume determinants of renal sodium and water handling in humans in a seated posture. The data obtained show that the volume stimulus of immersion is identical to that of standard saline-induced extracellular fluid volume expansion (ECVE) in normal seated subjects. The ability of head-out water immersion to induce a natriuresis without a concomitant increase in total blood volume and with a decrease in body weight suggests that water immersion may be preferred as an investigative tool for assessing the effects of ECVE in man.

  13. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices.

    PubMed

    Williamson, Kelly S; Petty, Jimmie D; Huckins, James N; Lebo, Jon A; Kaiser, Edwin M

    2002-11-01

    Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri-Columbia, USA; Williamson et al., Chemosphere (This issue--PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.

  14. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri - Columbia, USA; Williamson et al., Chemosphere (This issue - PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.

  15. Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.

    A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. Thismore » model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.« less

  16. Salinity-dependent toxicity of water-dispersible, single-walled carbon nanotubes to Japanese medaka embryos.

    PubMed

    Kataoka, Chisato; Nakahara, Kousuke; Shimizu, Kaori; Kowase, Shinsuke; Nagasaka, Seiji; Ifuku, Shinsuke; Kashiwada, Shosaku

    2017-04-01

    To investigate the effects of salinity on the behavior and toxicity of functionalized single-walled carbon nanotubes (SWCNTs), which are chemical modified nanotube to increase dispersibility, medaka embryos were exposed to non-functionalized single-walled carbon nanotubes (N-SWCNTs), water-dispersible, cationic, plastic-polymer-coated, single-walled carbon nanotubes (W-SWCNTs), or hydrophobic polyethylene glycol-functionalized, single-walled carbon nanotubes (PEG-SWCNTs) at different salinities, from freshwater to seawater. As reference nanomaterials, we tested dispersible chitin nanofiber (CNF), chitosan-chitin nanofiber (CCNF) and chitin nanocrystal (CNC, i.e. shortened CNF). Under freshwater conditions, with exposure to 10 mg l -1  W-SWCNTs, the yolk sacks of 57.8% of embryos shrank, and the remaining embryos had a reduced heart rate, eye diameter and hatching rate. Larvae had severe defects of the spinal cord, membranous fin and tail formation. These toxic effects increased with increasing salinity. Survival rates declined with increasing salinity and reached 0.0% in seawater. In scanning electron microscope images, W-SWCNTs, CNF, CCNF and CNC were adsorbed densely over the egg chorion surface; however, because of chitin's biologically harmless properties, only W-SWCNTs had toxic effects on the medaka eggs. No toxicity was observed from N-SWCNT and PEG-SWCNT exposure. We demonstrated that water dispersibility, surface chemistry, biomedical properties and salinity were important factors in assessing the aquatic toxicity of nanomaterials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Effect of irrigation water salinity and sodicity and water table position on water table chemistry beneath Atriplex lentiformis and Hordeum marinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, L.S.; Bauder, J.W.; Phelps, S.D.

    2006-04-15

    Coal bed methane (CBM) extraction in Montana and Wyoming's Powder River Basin (PRB) produces large quantities of modestly saline-sodic water. This study assessed effects of irrigation water quality and water table position on water chemistry of closed columns, simulating a perched or a shallow water table. The experiment assessed the potential salt loading in areas where shallow or perched water tables prevent leaching or where artificial drainage is not possible. Water tables were established in sand filled PVC columns at 0.38, 0.76, and1.14 m below the surface, after which columns were planted to one of three species, two halophytic Atriplexmore » spp. and Hordeum marinum Huds. (maritime barley), a glycophyte. As results for the two Atriplex ssp. did not differ much, only results from Atriplex lentiformis (Torn) S. Wats. (big saltbush) and H. marinum are presented. Irrigation water representing one of two irrigation sources was used: Powder River (PR) (electrolytic conductivity (EC) = 0.19 Sm{sup -1}, sodium adsorption ratio (SAR) = 3.5) or CBM water (EC = 0.35 Sm-1, SAR = 10.5). Continuous irrigation with CBM and PR water led to salt loading over time, the extent being proportional to the salinity and sodicity of applied water. Water in columns planted to A. lentiformis with water tables maintained at 0.38 m depth had greater EC and SAR values than those with 0.76 and 1.14 m water table positions. Elevated EC and SAR values most likely reflect the shallow rooted nature of A. lentiformis, which resulted in enhanced ET with the water table close to the soil surface.« less

  18. Deposition Nucleation or Pore Condensation and Freezing?

    NASA Astrophysics Data System (ADS)

    David, Robert O.; Mahrt, Fabian; Marcolli, Claudia; Fahrni, Jonas; Brühwiler, Dominik; Lohmann, Ulrike; Kanji, Zamin A.

    2017-04-01

    Ice nucleation plays an important role in moderating Earth's climate and precipitation formation. Over the last century of research, several mechanisms for the nucleation of ice have been identified. Of the known mechanisms for ice nucleation, only deposition nucleation occurs below water saturation. Deposition nucleation is defined as the formation of ice from supersaturated water vapor on an insoluble particle without the prior formation of liquid. However, recent work has found that the efficiency of so-called deposition nucleation shows a dependence on the homogeneous freezing temperature of water even though no liquid phase is presumed to be present. Additionally, the ability of certain particles to nucleate ice more efficiently after being pre-cooled (pre-activation) raises questions on the true mechanism when ice nucleation occurs below water saturation. In an attempt to explain the dependence of the efficiency of so-called deposition nucleation on the onset of homogeneous freezing of liquid water, pore condensation and freezing has been proposed. Pore condensation and freezing suggests that the liquid phase can exist under sub-saturated conditions with respect to liquid in narrow confinements or pores due to the inverse Kelvin effect. Once the liquid-phase condenses, it is capable of nucleating ice either homogeneously or heterogeneously. The role of pore condensation and freezing is assessed in the Zurich Ice Nucleation Chamber, a continuous flow diffusion chamber, using spherical nonporous and mesoporous silica particles. The mesoporous silica particles have a well-defined particle size range of 400 to 600nm with discreet pore sizes of 2.5, 2.8, 3.5 and 3.8nm. Experiments conducted between 218K and 238K show that so-called deposition nucleation only occurs below the homogenous freezing temperature of water and is highly dependent on the presence of pores and their size. The results strongly support pore condensation and freezing, questioning the role of

  19. Contribution of Methane Accumulation and Pore Water Flow to Forming High Concentration of Gas Hydrate in Sandy Sediments

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Waseda, A.; Fujii, T.

    2006-12-01

    The geological and geophysical evaluations have suggested worldwide methane contents in gas hydrate beneath deep sea floors as well as permafrost-related zones to about twice the total reserves of conventional and unconventional hydrocarbon. In 1998 and 2002 Mallik wells were drilled in the Canadian Arctic that clarified the characteristics of gas hydrate-concentrated sandy layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data, anomalies of chloride contents in pore waters, core temperature depression as well as visible gas hydrates have confirmed the highly saturated pore-space hydrate as intergranular pore filling, whose saturations are evaluated higher than 80 percent in pore volume. In the Nankai Trough forearc basins and accretionary prisms developed and BSRs (bottom simulating reflectors) have been recognized widely, where the multiple wells were drilled in 2000 and 2004, and revealed the presence of pore-space hydrate in sandy layers. It is remarked that there are many similar features in appearance and characteristics between the Mallik and Nankai Trough areas with observations of well- interconnected and highly saturated pore-space hydrate. High concentration of gas hydrate may need original pore space large enough to occur within a host sandy sediment, and this appears to be a similar mode for conventional petroleum accumulations. The distribution of a porous and coarser-grained sandy sediments should be one of the most important factors controlling occurrences and distributions of gas hydrate, as well as physicochemical conditions. Supplying methane for forming deep marine gas hydrate is commonly attributed to microbial conversion of organic material within the zone of stability or to migration of methane-containing fluids from a deeper source area. Pore water flows are considered to a macroscopic migration through faults/fractures and a microscopic flow in intergranular pore systems of sediment. We should

  20. Characteristics of streams and aquifers and processes affecting the salinity of water in the upper Colorado River basin, Texas

    USGS Publications Warehouse

    Slade, R.M.; Buszka, P.M.

    1994-01-01

    The chemical characteristics of the saline water in streams and shallow aquifers in the study area were compared to characteristics of water that would result from the probable processes affecting the salinity of water, such as evapotranspiration, mineral dissolution, and mixing of water from streams and shallow-aquifer water with brines from deep aquifers. Dissolution of halite or mixing with deep-aquifer water was the most common cause of increased salinity in 48.0 percent of 77 water samples from shallow aquifers, as classified using salt-norm analysis; the second most common cause was the weathering and dissolution of sulfur-bearing minerals. Mixing with water from soil-mineral dissolution was classified as the principal source of chloride in 28.4 percent of 67 water samples from shallow aquifers with nitrate determinations. Trace-species/chloride ratios indicated that mixing with water from deep aquifers in rocks of the Pennsylvanian System was the principal source of chloride in 24.4 percent of 45 shallow-aquifer samples lacking nitrate determinations.

  1. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this study, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting watermore » pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10-100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore

  2. Polar organic compounds in pore waters of the Chesapeake Bay impact structure, Eyreville core hole: Character of the dissolved organic carbon and comparison with drilling fluids

    USGS Publications Warehouse

    Rostad, C.E.; Sanford, W.E.

    2009-01-01

    Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.

  3. Effects of salinity on baldcypress seedlings: Physiological responses and their relation to salinity tolerance

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; Pezeshki, S.R.

    1997-01-01

    Growth and physiological responses of 15 open-pollinated families of baldcypress (Taxodium distichum var. distichum) subjected to flooding with saline water were evaluated in this study. Ten of the families were from coastal sites in Louisiana and Alabama, USA that have elevated levels of soil-water salinity. The other five families were from inland, freshwater sites in Louisiana. Seedlings from all families tolerated flooding with water of low (2 g l-1) salinity. Differences in biomass among families became most apparent at the highest salinity levels (6 and 8 g l-1). Overall, increasing salinity reduced leaf biomass more than root biomass, which in turn was reduced more than stem biomass. A subset of seedlings from the main greenhouse experiment was periodically placed indoors under artificial light, and measurements were made of gas exchange and leaf water potential. Also, tissue concentrations of Cl-, Na+, K+, and Ca2+ were determined at the end of the greenhouse experiment. Significant intraspecific variation was found for nearly all the physiological parameters evaluated, but only leaf concentrations of Na+ and Cl- were correlated with an index of family-level differences in salt tolerance.

  4. Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.

    PubMed

    He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan

    2017-01-01

    One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nanoscale Controls on CO2-water-rock Interactions in Saline Reservoirs

    NASA Astrophysics Data System (ADS)

    Deyoreo, J.; Depaolo, D. J.

    2009-12-01

    It is becoming increasingly widely recognized that geologic sequestration of CO2, when combined with economical means of capture, may be one of the most effective approaches to reducing net CO2 emissions to the atmosphere over the next century. Injection of CO2 into saline geologic formations involves forcing a buoyant, low-viscosity fluid into a more dense, higher viscosity fluid. The difference in wetting properties of the two fluids, their partial miscibility, the fact that CO2 and H2O form an acid, and the heterogeneity of geologic formations combine to make the flow and transport details fascinating but difficult to fully characterize and predict. A major question is whether the flow of CO2 into subsurface formations, the efficiency of pore space filling, and the trapping efficiency can be not only predicted but controlled over the decades of injection that might be associated with the life of a power plant. The major technological gaps to controlling and ultimately sequestering subsurface CO2 can be traced to far-from-equilibrum processes that originate at the molecular and nanoscale, but are expressed as complex emergent behavior at larger scales. Essential knowledge gaps involve the effects of nanoscale confinement on material properties, flow and chemical reactions, the effects of nanoparticles, mineral surface dynamics, and microbiota on mineral dissolution/precipitation and fluid flow, and the dynamics of fluid-fluid and fluid-mineral interfaces. To address these scientific and technical challenges, the Energy Frontier Research Center recently established, involving collaboration between LBNL, ORNL, MIT, UC Berkeley, UC Davis and LLNL, will attempt to bring new approaches to the study of nanoscale phenomena in fluid-rock systems to bear on the problem of CO2 behavior in saline formations. The stated goal is to use molecular, nanoscale, and pore-network scale approaches to control flow, dissolution, and precipitation in deep subsurface rock formations to

  6. Rotifers from selected inland saline waters in the Chihuahuan Desert of México

    PubMed Central

    Walsh, Elizabeth J; Schröder, Thomas; Wallace, Robert L; Ríos-Arana, Judith V; Rico-Martínez, Roberto

    2008-01-01

    Background In spite of considerable efforts over past decades we still know relatively little regarding the biogeography of rotifers of inland waters in México. To help rectify this we undertook an extensive survey of the rotifer fauna of 48 water bodies in the Chihuahuan Desert of México. Results Of the sites surveyed, 21 had salinities ≥ 2000 μS cm-1 and in these we found 57 species of monogonont rotifers and several bdelloids. Species richness in the saline sites varied widely, with a range in species richness of 1 to 27 and a mean (± 1SD) = 8.8 (± 6.2). Collectively all sites possess relatively high percent single- and doubletons, 33.3 and 21.7%, respectively. Simpson's Asymmetric Index indicated that similarity in rotifer species composition varied widely among a set of 10 sites. These were selected because they were sampled more frequently or represent unusual habitats. These SAI values ranged from 0.00 (complete dissimilarity) to 1.00 (complete similarity). The Jaccard Index varied between 0.00 and 0.35. This observation probably reflects similarities and differences in water chemistry among these sites. Inland saline systems differed in their chemical composition by region. Conductivity was related to hardness and alkalinity. In addition, hardness was positively associated with chloride and sulfate. RDA showed that several species were positively associated with chloride concentration. Other factors that were significantly associated with rotifer species included the presence of macrophytes, nitrate content, oxygen concentration, TDS, latitude and whether the habitat was a large lake or reservoir. Conclusion This study illustrates the diversity of the rotiferan fauna of inland saline systems and the uniqueness among waterbodies. Conservation of these systems is needed to preserve these unique sources of biodiversity that include rotifers and the other endemic species found in association with them. PMID:18533042

  7. Climate-driven flushing of pore water in peatlands

    NASA Astrophysics Data System (ADS)

    Siegel, D. I.; Reeve, A. S.; Glaser, P. H.; Romanowicz, E. A.

    1995-04-01

    NORTHERN peatlands can act as either important sources or sinks for atmospheric carbon1,2. It is therefore important to understand how carbon cycling in these regions will respond to a changing climate. Existing carbon balance models for peatlands assume that fluid flow and advective mass transport are negligible at depth3,4, and that the effects of climate change should be essentially limited to the near-surface. Here we report the response of groundwater flow and porewater chemistry in the Glacial Lake Agassiz peat-lands of northern Minnesota to the regional drought cycle. Comparison of field observations and numerical simulations indicates that climate fluctuations of short duration may temporarily reverse the vertical direction of fluid flow through the peat, although this has little effect on water chemistry5. On the other hand, periods of drought persisting for at least 3-5 years produce striking changes in the chemistry of the pore water. These longer-term changes in hydrology influence the flux of nutrients and dissolved organic matter through the deeper peat, and therefore affect directly the rates of fermentation and methanogenesis, and the export of dissolved carbon compounds from the peatland.

  8. The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles.

    PubMed

    Pallarés, Susana; Arribas, Paula; Bilton, David T; Millán, Andrés; Velasco, Josefa; Ribera, Ignacio

    2017-10-01

    Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso- and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation-resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso- and hypersaline habitats. © 2017 John Wiley & Sons Ltd.

  9. Organic geochemistry and pore water chemistry of sediments from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Hatcher, P.G.; Simoneit, B.R.T.; MacKenzie, F.T.; Neumann, A.C.; Thorstenson, D.C.; Gerchakov, S.M.

    1982-01-01

    Mangrove Lake, Bermuda, is a small coastal, brackish-water lake that has accumulated 14 m of banded, gelatinous, sapropelic sediments in less than 104 yr. Stratigraphic evidence indicates that Mangrove Lake's sedimentary environment has undergone three major depositional changes (peat, freshwater gel, brackish-water gel) as a result of sea level changes. The deposits were examined geochemically in an effort to delineate sedimentological and diagenetic changes. Gas and pore water studies include measurements of sulfides, ammonia, methane, nitrogen gas, calcium, magnesium, chloride, alkalinity, and pH. Results indicate that sulfate reduction is complete, and some evidence is presented for bacterial denitrification and metal sulfide precipitation. The organic-rich sapropel is predominantly algal in origin, composed mostly of carbohydrates and insoluble macromolecular organic matter called humin with minor amounts of proteins, lipids, and humic acids. Carbohydrates and proteins undergo hydrolysis with depth in the marine sapropel but tend to be preserved in the freshwater sapropel. The humin, which has a predominantly aliphatic structure, increases linearly with depth and composes the greatest fraction of the organic matter. Humic acids are minor components and are more like polysaccharides than typical marine humic acids. Fatty acid distributions reveal that the lipids are of an algal and/or terrestrial plant source. Normal alkanes with a total concentration of 75 ppm exhibit two distribution maxima. One is centered about n-C22 with no odd/even predominance, suggestive of a degraded algal source. The other is centered at n-C31 with a distinct odd/even predominance indicative of a vascular plant origin. Stratigraphic changes in the sediment correlate to observed changes in the gas and pore water chemistry and the organic geochemistry. ?? 1982.

  10. [Adaptability of abnormal tadpole (Rana chensinensis) to water pH, salinity and alkalinity in Changbai Mountain of China].

    PubMed

    Yang, Fuyi; Shao, Qingchun; Li, Jinglin; Chen, Guoshuang

    2004-08-01

    Under field condition with 16-18 degree C water temperature, single-factor acute toxicity test was used to study the toxicity effects of water pH, salinity and carbonate-alkalinity on abnormal tadpole (R. chensinensis). The results showed that when the water salinity was 0.18 g x L(-1), carbonate-alkalinity was 1.41 mmol x L(-1), and water pH was 4.3-9.7, the survival rate of abnormal tadpole within 96 hours was not affected. The upper limit of LC50 for the pH within 24, 48, 72 and 96 hours was 10.33, 10.18, 10.08 and 10.02, and the prescribed minimum was 3.92, 4.07, 4.11 and 4.16, respectively. The upper limit of LC0 was 9.95, 9.80, 9.70 and 9.70, and the prescribed minimum was 4.23, 4.45, 4.30 and 4.30, and that of LC100 was 10.70, 10.55, 10.45 and 10.33, and the prescribed minimum was 3.55, 3.70, 3.92 and 4.03, respectively. The survival rate of abnormal tadpole within 96 hours was not affected in the water salinity between 2.0-3.0 g x L(-1). When water pH was 7.0-8.5 and carbonate-alkalinity was 1.41 mmol x L(-1), the LC50 of the salinity within 24, 48, 72 and 96 hours was 8.21, 7.25, 5.17 and 3.70 g x L(-1), the LC0 was 7.14, 6.00, 2.67 and 2.20 g x L(-1), and the LC100 was 9.98, 9.00, 7.67 and 5.20 g x L(-1), respectively, while the SC was 1.70 g x L(-1). Under the same water pH and when the water salinity was 0.18 g x L(-1), the LC50 of carbonate-alkalinity within 24, 48, 72 and 96 hours was 14.36, 11.83, 10.35, and 7.68 mmol x L(-1), the LC0 was 8.76, 8.51, 4.65 and 3.88 mmol x L(-1), and the LC100 was 19.96, 15.14, 16.05 and 11.48 mmol x L(-1), respectively, while the SC was 1.70 mmol x L(-1). The survival rate of abnormal tadpole (R. chensinensis) was decreased with increasing water pH, salinity and carbonate-alkalinity. The optimum water salinity and carbonate-alkalinity to the survival and the growth of abnormal tadpole (R. chensinensis) were below 2.0 g x L(-1) and 3.0 mmol x L(-1), respectively, and water pH was between 6.0 and 9.0.

  11. Measuring Salinity by Conductivity.

    ERIC Educational Resources Information Center

    Lapworth, C. J.

    1981-01-01

    Outlines procedures for constructing an instrument which uses an electrode and calibration methods to measure the salinity of waters in environments close to and affected by a saline estuary. (Author/DC)

  12. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms.

    PubMed

    Watling, Helen R; Collinson, David M; Corbett, Melissa K; Shiers, Denis W; Kaksonen, Anna H; Watkin, Elizabeth L J

    2016-09-01

    The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water. Copyright © 2016. Published by Elsevier Masson SAS.

  13. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities

    NASA Astrophysics Data System (ADS)

    Marcolli, C.

    2013-06-01

    Heterogeneous ice nucleation is an important mechanism for the glaciation of mixed phase clouds and may also be relevant for cloud formation and dehydration at the cirrus cloud level. It is thought to proceed through different mechanisms, namely contact, condensation, immersion and deposition nucleation. Supposedly, deposition nucleation is the only pathway which does not involve liquid water but occurs by direct water vapor deposition on a surface. This study challenges this classical view by putting forward the hypothesis that what is called deposition nucleation is in fact homogeneous or immersion nucleation occurring in pores and cavities that may form between aggregated primary particles and fill with water at relative humidity RHw < 100% because of the inverse Kelvin effect. Evidence for this hypothesis of pore condensation and freezing (PCF) originates from a number of only loosely connected scientific areas. The prime example for PCF is ice nucleation in clay minerals and mineral dusts, for which the data base is best. Studies on freezing in confinement carried out on mesoporous silica materials such as SBA-15, SBA-16, MCM-41, zeolites and KIT have shown that homogeneous ice nucleation occurs abruptly at T=230-235 K in pores with diameters (D) of 3.5-4 nm or larger but only gradually at T=210-230 K in pores with D=2.5-3.5 nm. Melting temperatures in pores are depressed by an amount that can be described by the Gibbs-Thomson equation. Water adsorption isotherms of MCM-41 show that pores with D=3.5-4 nm fill with water at RHw = 56-60% in accordance with an inverse Kelvin effect. Water in such pores should freeze homogeneously for T < 235 K even before relative humidity with respect to ice (RHi) reaches ice saturation. Ice crystal growth by water vapor deposition from the gas phase is therefore expected to set in as soon as RHw > 100%. Pores with D > 7.5 nm fill with water at RHi > 100% for T < 235 K and are likely to freeze homogeneously as soon as they are

  14. A 2D fluid motion model of the estuarine water circulation: Physical analysis of the salinity stratification in the Sebou estuary

    NASA Astrophysics Data System (ADS)

    Haddout, Soufiane; Maslouhi, Abdellatif; Magrane, Bouchaib

    2018-02-01

    Estuaries, which are coastal bodies of water connecting the riverine and marine environment, are among the most important ecosystems in the world. Saltwater intrusion is the movement of coastal saline water into an estuary, which makes up-estuary water, that becomes salty due to the mixing of freshwater with saltwater. It has become a serious environmental problem in the Sebou estuary (Morocco) during wet and dry seasons, which have a considerable impact on residential water supply, agricultural water supply as well as urban industrial production. The variations of salt intrusion, and the vertical stratification under different river flow conditions in the Sebou estuary were investigated in this paper using a two-dimensional numerical model. The model was calibrated and verified against water level variation, and salinity variation during 2016, respectively. Additionally, the model validation process showed that the model results fit the observed data fairly well ( R2 > 0.85, NSC > 0.89 and RMSE = 0.26 m). Model results show that freshwater is a dominant influencing factor to the saltwater intrusion and controlled salinity structure, vertical stratification and length of the saltwater intrusion. Additionally, the extent of salinity intrusion depends on the balance between fresh water discharges and saltwater flow from the sea. This phenomenon can be reasonably predicted recurring to mathematical models supported by monitored data. These tools can be used to quantify how much fresh water is required to counterbalance salinity intrusion at the upstream water intakes.

  15. Effects of salinity on baldcypress seedlings: responses and their relation to salinity tolerance physiological

    Treesearch

    James A. Allen; Jim L. Chambers; S. Reza Pezeshki

    1997-01-01

    Taxodium distichum var.distichum) subjected to flooding with saline water were evaluated in this study. Ten of the families were from coastal sites in Louisiana and Alabama, USA that have elevated levels of soil-water salinity. The other five families were from inland, freshwater sites in Louisiana. Seedlings from all families...

  16. Influence of Organic Amendment and Compaction on Nutrient Dynamics in a Saturated Saline-Sodic Soil from the Riparian Zone.

    PubMed

    Miller, J J; Bremer, E; Curtis, T

    2016-07-01

    Cattle grazing in wet riparian pastures may influence nutrient dynamics due to nutrient deposition in feces and urine, soil compaction, and vegetation loss. We conducted a lab incubation study with a saline-sodic riparian soil to study nutrient (N, P, S, Fe, Mn, Cu, and Zn) dynamics in soil pore water using Plant Root Simulator (PRS) probes and release of nutrients into the overlying ponded water during flooding. The treatment factors were organic amendment (manure, roots, and unamended control), compaction (compacted, uncompacted), and burial time (3, 7, and 14 d). Amendment treatment had the greatest impact on nutrient dynamics, followed by burial time, whereas compaction had little impact. The findings generally supported our hypothesis that organic amendments should first increase nitrate loss, then increase Mn mobility, then Fe mobility and associated release of P, and finally increase sulfate loss. Declines in nitrate due to amendment addition were small because nitrate was at low levels in all treatments due to high denitrification potential instead of being released to soil pore water or overlying water. Addition of organic amendment strongly increased Mn and Fe concentrations in overlying water and of adsorbed Fe on PRS probes but only increased Mn on PRS probes on Day 3 due to subsequent displacement from ion exchange membranes. Transport of P to overlying water was increased by organic amendment addition but less so for manure than roots despite higher P on PRS probes. The findings showed that saline-sodic soils in riparian zones are generally a nutrient source for P and are a nutrient sink for N as measured using PRS probes after 3 to 7 d of flooding. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Phytosynthetic bacteria (PSB) as a water quality improvement mechanism in saline-alkali wetland ponds.

    PubMed

    Liu, Fu-jun; Hu, Weng-Ying; Li, Quan-Yi

    2002-07-01

    The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline-alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO3-(-)N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH4-(-)N (NH3-N), NO2-(-)N; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect-exerting speed of PSB was slower, but the effect-sustaining time was longer; (6) the appropriate concentration of PSB application in saline-alkali wetland ponds was 10 x 10(-6) mg/L, one-time effective period was more than 15 days. So PSB was an efficient water quality improver in saline-alkali ponds.

  18. Pore-throat radius and tortuosity estimation from formation resistivity data for tight-gas sandstone reservoirs

    NASA Astrophysics Data System (ADS)

    Ziarani, Ali S.; Aguilera, Roberto

    2012-08-01

    A new model is proposed for estimation of pore-throat aperture size from formation resistivity factor and permeability data. The model is validated with data from the Mesaverde sandstone using brine salinities ranging from 20,000 to 200,000 ppm. The data analyzed includes various basins such as Green River, Piceance, Sand Wash, Powder River, Uinta, Washakie and Wind River, available in the literature. For pore-throat radii analysis the methodology involves the use of log-log plots of pore-throat radius versus the product of formation resistivity factor and permeability (rT = a(FK)b + c). The model fits over 280 samples from the Mesaverde formation with coefficients of determination varying between 0.95 and 0.99 depending primarily on the type of model used for pore throat radius calculation. The brine salinity has some minor effects on the results. The model can provide better estimates of pore-throat radii if it is calibrated with experimental techniques such as mercury porosimetry. The results show pore-throat radii varying between 0.001 and 5 μm for the Mesaverde tight sandstone; however, most of the samples fall in a range between 0.01 and 1 μm. For tortuosity analysis, the calculation involves the use of product of formation factor and porosity data. Results indicate that the estimated tortuosity values range mainly between 1 and 5. For samples with lower porosities (< 5%), tortuosity values show a wider scatter (between 1 and 8); whereas for samples with larger porosities (> 15%), the scattering in tortuosity decreases significantly. In general, for tortuosity calculation in tight gas sandstone formations, a square root model with a parameter (bf) representing various types of connecting pores, i.e., sheet-like and tubular pores, is recommended.

  19. Batteries for efficient energy extraction from a water salinity difference.

    PubMed

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D; Logan, Bruce E; Cui, Yi

    2011-04-13

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na(2-x)Mn(5)O(10) nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future.

  20. Pore-Water Chemistry and Hydrology in a Spring-Fed River: Implications for Hyporheic Control of Nutrient Cycling and Speleogenesis

    NASA Astrophysics Data System (ADS)

    Kurz, M. J.; Martin, J. B.; Cohen, M. J.

    2010-12-01

    Hyporheic exchange is important for nutrient cycling in rivers, but little is known about the magnitude of this process in karst systems or its influence on speleogenesis and the formation of river channels. We use four pore-water depth profiles to assess nutrient and carbonate processing in the hyporheic zone (HZ) of the Ichetucknee River (north-central, Florida). Co-located pairs of stilling wells equipped with conductivity, temperature, depth (CTD) sensors are used to continuously monitor the hydraulic gradients within the HZ to determine flow directions and temporal variability of groundwater exchange. The Ichetucknee River is sourced from six major and numerous small springs which discharge from the karstic Floridan Aquifer. Downstream and diel variations in nitrate concentrations, specific conductivity and calcite saturation state reflect in-stream processing, but hyporheic exchange should also influence the overall dynamics of nutrient and carbonate fluxes in the river. Our depth profiles and stilling wells are located at four sites in a cross-channel transect and extend through unconsolidated sediment to the solid carbonate of the Floridan Aquifer 35-156 cm below the river bed. Decreasing DOC, pH, and DO concentrations and increased DIC are indicative of organic carbon remineralization in the shallow sediments. Increasing alkalinity, Ca concentrations, specific conductivity and decreasing calcite saturation state indicate carbonate dissolution being driven by the decreasing pH. Decreasing nitrate concentrations indicate denitrification and increasing phosphate concentration could be a result of carbonate dissolution or OC remineralization. Most of these changes appear to occur in the upper 60cm of sediment, below which many concentrations return to values observed in the groundwater, suggesting water discharges from the Floridan Aquifer at the base of the sediment. Hydraulic head is higher in the pore waters than the river indicating groundwater then

  1. Pore diffusion limits removal of monochloramine in treatment of swimming pool water using granular activated carbon.

    PubMed

    Skibinski, Bertram; Götze, Christoph; Worch, Eckhard; Uhl, Wolfgang

    2018-04-01

    Overall apparent reaction rates for the removal of monochloramine (MCA) in granular activated carbon (GAC) beds were determined using a fixed-bed reactor system and under conditions typical for swimming pool water treatment. Reaction rates dropped and quasi-stationary conditions were reached quickly. Diffusional mass transport in the pores was shown to be limiting the overall reaction rate. This was reflected consistently in the Thiele modulus, in the effect of temperature, pore size distribution and of grain size on the reaction rates. Pores <2.5 times the diameter of the monochloramine molecule were shown to be barely accessible for the monochloramine conversion reaction. GACs with a significant proportion of large mesopores were found to have the highest overall reactivity for monochloramine removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water.

    PubMed

    Yang, Rong; Goktekin, Esma; Gleason, Karen K

    2015-11-03

    Fouling refers to the undesirable attachment of organic molecules and microorganisms to submerged surfaces. It is an obstacle to the purification of shale gas produced water and is currently without an effective solution due to the highly contaminated nature of produced water. Here, we demonstrate the direct vapor application of a robust zwitterionic coating to a variety of substrates. The coating remains unprecedentedly hydrophilic, smooth, and effectively antifouling in extremely high salinity solutions (with salt concentration of 200,000 ppm). The fouling resistance is assessed rapidly and quantitatively with a molecular force spectroscopy-based method and corroborated using quartz crystal microbalance system with dissipation monitoring. Grazing angle attenuated total reflectance Fourier transform infrared is used in combination with X-ray photoelectron spectroscopy, atomic force microscope, and in situ spectroscopic ellipsometry to lend insight into the underlying mechanism for the exceptional stability and effectiveness of the zwitterionic coating under high-salinity conditions. A unique coating architecture, where the surface is concentrated with mobile zwitterionic moieties while the bulk is cross-linked to enhance coating durability, was discovered to be the origin of its stable fouling resistance under high salinity. Combined with previously reported exceptional stability in highly oxidative environments and strong fouling resistance to oil and grease, the zwitterionic surface here has the potential to enable low-cost, membrane-based techniques for the purification of produced water and to eventually balance the favorable economics and the concerning environmental impacts of the hydraulic fracturing industry.

  3. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.

    PubMed

    Bazihizina, Nadia; Colmer, Timothy D; Barrett-Lennard, Edward G

    2009-09-01

    Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na(+) and Cl(-) concentrations were 1.9- to 2.3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K(+) concentrations were 1.2- to 2.0-fold higher in the non-uniform treatment. Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments.

  4. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations

    PubMed Central

    Bazihizina, Nadia; Colmer, Timothy D.; Barrett-Lennard, Edward G.

    2009-01-01

    Background and Aims Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Methods Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Key Results Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na+ and Cl− concentrations were 1·9- to 2·3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K+ concentrations were 1·2- to 2·0-fold higher in the non-uniform treatment. Conclusions Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments. PMID:19556265

  5. Are Low Salinity Waters the Remedy to Noctiluca scintillans Blooms in the Arabian Sea?

    NASA Astrophysics Data System (ADS)

    Gibson, J.

    2017-12-01

    Noctiluca scintillans (Noctiluca) is a mixotrophic, green dinoflagellate that for the past two decades has been producing problematic algal blooms in the Arabian Sea (AS). As a mixotroph, Noctiluca obtains energy from both consumption of phytoplankton as well as its intracellular photosynthesizing endosymbionts named, Pedinomonas noctilucae. It is this autotrophic and heterotrophic dual capability that has largely enabled Noctiluca to be a highly dominant species at the planktonic trophic layer in the AS. Exacerbated by non-point source/point-source pollution in the AS, ocean acidification, and intensified monsoons, Noctiluca currently algal blooms can be as big as three times the size of Texas. By depleting the AS of oxygen, clogging the gills of fish, and altering the AS food web, these algal blooms result in mass fish die offs. In turn this propagates financial and food insecurity issues in countless coastal communities. However, through satellite imaging over the years, it has been observed that the proliferation of Noctiluca is precluded or encounters a "wall" about mid-way along the west coast of India. It is theorized that this "wall" is due to a significant change in salinity. Snow from atop the Himalayan Mountains melts and adds fresh water to the Bay of Bengal (BB), and in winter the East Indian Coastal Current (EICC) carries this fresher water around the southern tip of India and towards the AS. It is believed that this dilution effect impedes the growth of Noctiluca further south. Ultimately, in this study the salinity gradient from the Bay of Bengal (BB) around the horn of India into the AS was replicated in six pairs of culture bottles. Noctiluca was grown in six different salinities including 26, 28, 30, 32, 34, and 38 psu. Algae grown in the 34 and 38 psu bottles, were healthier and 38 psu treated Noctiluca provided optimal conditions for its photosynthesizing endosymbionts. Noctiluca does not grow well at lower salinities, thus applications of low

  6. Membrane inlet laser spectroscopy to measure H and O stable isotope compositions of soil and sediment pore water with high sample throughput

    DOE PAGES

    Oerter, Erik J.; Perelet, Alexei; Pardyjak, Eric; ...

    2016-10-20

    Here, the fast and accurate measurement of H and O stable isotope compositions (δ 2H and δ 18O values) of soil and sediment pore water remains an impediment to scaling-up the application of these isotopes in soil and vadose hydrology. Here we describe a method and its calibration to measuring soil and sediment pore water δ 2H and δ 18O values using a water vapor-permeable probe coupled to an isotope ratio infrared spectroscopy analyzer.

  7. Stable isotope geochemistry of pore waters from the New Jersey shelf - No evidence for Pleistocene melt water

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Hayashi, Takeshi; Böttcher, Michael E.; Mottl, Michael J.; Barth, Johannes A. C.; Stadler, Susanne

    2013-04-01

    Scientific drillings in the 1970s revealed the presence of a large fresh water lens below the New Jersey Shelf. The origin and age of this fresh water body is still under debate. Groundwater flow models suggest that the water mainly originates from glacial melt water that entered the ground below large continental ice sheets during the last glacial maximum (LGM), whereas other studies suggest an age up to late Miocene. In this study, interstitial water was sampled during the Integrated Ocean Drilling Program (IODP) expedition 313 "New Jersey Shallow Shelf" (Mountain et al., 2010) and analyzed for water chemistry and stable isotope ratios (van Geldern et al, 2013). The pore fluid stable isotope values define a mixing line with end members that have oxygen and hydrogen isotope values of -7.0‰ and -41‰ for fresh water, and -0.8‰ and -6‰ for saltwater, respectively. The analyses revealed the following sources of fluids beneath the shelf: (1) modern rainwater, (2) modern seawater, and (3) a brine that ascends from deep sediments. The stable isotope composition of the water samples indicates modern meteoric recharge from New Jersey onshore aquifers as the fresh-water end member. This contradicts earlier views on the formation of the New Jersey fresh water lens, as it does not support the ice-age-origin theory. The salt-water end member is identical to modern New Jersey shelf seawater. Lower core parts of the drilling sites are characterized by mixing with a brine that originates from evaporites in the deep underground and that ascends via faults into the overlying sediments. The geochemical data from this study may provide the basis for an approach to construct a transect across the New Jersey shallow shelf since they fill a missing link in the shelf's geochemical profile. They also lay foundations for future research on hardly explored near-shore freshwater resources. References Mountain, G. and the Expedition 313 Scientists, 2010, Proceedings of the Integrated

  8. Formulation Development of High Strength Gel System and Evaluation on Profile Control Performance for High Salinity and Low Permeability Fractured Reservoir

    PubMed Central

    Zhang, Chengli; Qu, Guodong

    2017-01-01

    For the large pores and cracks of reservoirs with low temperatures, high salinity, and low permeability, a new type of high strength gel ABP system is developed in this paper. The defects of conventional gels such as weak gel strength, no gelling, and easy dehydration are overcome under the conditions of low temperature and high salinity. The temperature and salt resistance, plugging characteristics, and EOR of the gel system are studied. Under the condition of 32°C and 29500 mg/L salinity, the ABP system formulation is for 0.3% crosslinking agent A + 0.09% coagulant B + 3500 mg/L polymer solution P. The results show that when the temperature was increased, the delayed crosslinking time of the system was shortened and the gel strength was increased. The good plugging characteristics of the ABP system were reached, and the plugging rate was greater than 99% in cores with different permeability. A good profile control performance was achieved, and the recovery rate was improved by 19.27% on the basis of water flooding. In the practical application of the gel system, the salinity of formation water and the permeability of fractures are necessary to determine the appropriate formulation. PMID:28592971

  9. Review of Knowledge on the Occurrence, Chemical Composition, and Potential Use for Desalination of Saline Ground Water in Arizona, New Mexico, and Texas with a Discussion of Potential Future Study Needs

    USGS Publications Warehouse

    Huff, G.F.

    2004-01-01

    Increasing demand on the limited supplies of freshwater in the desert Southwest, as well as other parts of the United States, has increased the level of interest in saline-water resources. Saline ground water has long been recognized as a potentially important contributor to water supply in the Southwest, as demonstrated by the number of hydrologic, geologic, and engineering studies on the distribution of saline water and the feasibility of desalination. Potential future study needs include investigating and documenting the three-dimensional distribution of salinity and chemical composition of saline-water resources and the hydraulic properties of aquifers containing these saline-water resources, assessing the chemical suitability of saline water for use with existing and anticipated desalination technologies, simulating the effect of withdrawal of saline ground water on water levels and water composition in saline and adjoining or overlying freshwater aquifers, and determining the suitability of target geologic formations for injection of desalination-generated waste.

  10. Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water

    USDA-ARS?s Scientific Manuscript database

    Irrigation with high salinity water influences plant growth, production of photosynthetic pigments and total phenols, leading to reduction in crop yield and quality. Foliar application of macro- and/or micro-nutrients can, to some extent, mitigate negative effects of high salinity irrigation water o...

  11. Poring over two-pore channel pore mutants

    PubMed Central

    Penny, Christopher J.; Patel, Sandip

    2016-01-01

    Two-pore channels are members of the voltage-gated ion channel superfamily. They localise to the endolysosomal system and are likely targets for the Ca2+ mobilising messenger NAADP. In this brief review, we relate mutagenesis of the TPC pore to a recently published homology model and discuss how pore mutants are informing us of TPC function. Molecular physiology of these ubiquitous proteins is thus emerging. PMID:27226934

  12. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    PubMed

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  13. Chemical data for bottom sediment, lake water, bottom-sediment pore water, and fish in Mountain Creek Lake, Dallas, Texas, 1994-96

    USGS Publications Warehouse

    Jones, S.A.; Van Metre, P.C.; Moring, J.B.; Braun, C.L.; Wilson, J.T.; Mahler, B.J.

    1997-01-01

    Mountain Creek Lake is a reservoir adjacent to two U.S. Department of the Navy facilities, the Naval Weapons Industrial Reserve Plant and the Naval Air Station in Dallas, Texas. A Resource Conservation and Recovery Act Facility Investigation found ground-water plumes containing chlorinated solvents on both facilities. These findings led to a U.S. Geological Survey study of Mountain Creek Lake adjacent to both facilities between June 1994 and August 1996. Bottom sediments, lake water, bottom-sediment pore water, and fish were collected for chemical analysis.

  14. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  15. Spatial and temporal variability of water salinity in an ephemeral, arid-zone river, central Australia

    NASA Astrophysics Data System (ADS)

    Costelloe, Justin F.; Grayson, Rodger B.; McMahon, Thomas A.; Argent, Robert M.

    2005-10-01

    This study describes the spatial and temporal variability of water salinity of the Neales-Peake, an ephemeral river system in the arid Lake Eyre basin of central Australia. Saline to hypersaline waterholes occur in the lower reaches of the Neales-Peake catchment and lie downstream of subcatchments containing artesian mound springs. Flood pulses are fresh in the upper reaches of the rivers (<200 mg l-1). In the salt-affected reaches, flood pulses become increasingly saline during their recession. It is hypothesized that leakage from the Great Artesian Basin deposits salt at the surface. This salt is then transported by infrequent runoff events into the main river system over long periods of time. The bank/floodplain store downstream of salt-affected catchments contains high salt concentrations, and this salt is mobilized during the flow recession when bank/floodplain storage discharges into the channel. The salinity of the recession increases as the percentage of flow derived from this storage increases. A simple conceptual model was developed for investigating the salt movement processes during flow events. The model structure for transport of water and salt in the Neales-Peake catchment generated similar spatial and temporal patterns of salt distribution in the floodplain/bank storage and water flow as observed during flow events in 2000-02. However, more field-data collection and modelling are required for improved calibration and description of salt transport and storage processes, particularly with regard to the number of stores required to represent the salt distribution in the upper zone of the soil profile.

  16. Paleohydrological Information from Profiles in Pore Water of Holocene Low-Permeability Cores and Groundwater Flow Simulation, Lake Kasumigaura, Japan

    NASA Astrophysics Data System (ADS)

    Takamoto, N.; Shimada, J.

    2014-12-01

    The paleohydrological information can become important to predict hydrological conditions in the future. In Japan, which hydrologically is characterized by relatively small catchment scales with steep relief of topography under humid temperate climatic conditions, the residence time of the groundwater should be relatively short. Thus the paleohydrological information preserved in the groundwater aquifer should also be limited compared with the continental aquifer. However, regarding groundwater in clay and silt sediments have low-permeability characteristic, archiving the paleohydrologic information at the time of deposition is expected.  Therefore, in this study, cores were drilled into Holocene clay and silt deposits (Site K-1 and Site K-2) in the Lake Kasumigaurain Japan, where the depositional rate 10,000 years ago was rapid and it has been affected strongly by sea level changes including transgression and regression. By using the obtained core samples and extracted pore water from the cores, paleohydrologic information was investigated, and it was tried to understand hydrologic environments at the study area during a Holocene. In addition, groundwater flow and solute transport simulation were conducted to reproduce profiles of pore water.  Results of investigation show that the profiles of pore water contents reflect sea level change and the difference in hydrological environment at that time at each site. The content of the paleo-brackish water in the culmination of transgression was about 14,000 mg/l in Cl-, -13.0‰ in δD and -2.6‰ in δ18O. It is allowed better understanding paleohydrological information by studying not only inorganic chemistry contents and stable isotopes of pore water and also the diatom fossils and groundwater flow and solute transport simulation. We will characterize the paleohydrological information of the study area acquired by those investigations and analysis.

  17. Big and small: menisci in soil pores affect water pressures, dynamics of groundwater levels, and catchment-scale average matric potentials

    NASA Astrophysics Data System (ADS)

    de Rooij, G. H.

    2010-09-01

    Soil water is confined behind the menisci of its water-air interface. Catchment-scale fluxes (groundwater recharge, evaporation, transpiration, precipitation, etc.) affect the matric potential, and thereby the interface curvature and the configuration of the phases. In turn, these affect the fluxes (except precipitation), creating feedbacks between pore-scale and catchment-scale processes. Tracking pore-scale processes beyond the Darcy scale is not feasible. Instead, for a simplified system based on the classical Darcy's Law and Laplace-Young Law we i) clarify how menisci transfer pressure from the atmosphere to the soil water, ii) examine large-scale phenomena arising from pore-scale processes, and iii) analyze the relationship between average meniscus curvature and average matric potential. In stagnant water, changing the gravitational potential or the curvature of the air-water interface changes the pressure throughout the water. Adding small amounts of water can thus profoundly affect water pressures in a much larger volume. The pressure-regulating effect of the interface curvature showcases the meniscus as a pressure port that transfers the atmospheric pressure to the water with an offset directly proportional to its curvature. This property causes an extremely rapid rise of phreatic levels in soils once the capillary fringe extends to the soil surface and the menisci flatten. For large bodies of subsurface water, the curvature and vertical position of any meniscus quantify the uniform hydraulic potential under hydrostatic equilibrium. During unit-gradient flow, the matric potential corresponding to the mean curvature of the menisci should provide a good approximation of the intrinsic phase average of the matric potential.

  18. The role of sea surface salinity in ENSO related water cycle anomaly

    NASA Astrophysics Data System (ADS)

    Tang, Wenqing; Yueh, Simon

    2017-04-01

    This study investigates the role of sea surface salinity (SSS) in the water cycle anomaly associated with El Niño Southern Oscillation (ENSO). The 2015-16 El Niño, one of the strongest ENSO events observed in centuries, coincident with unprecedented coverage of spacebased remote sensing of SSS over global oceans. We analyze three SSS data sets: from the NASA's missions of SMAP and Aquarius, and the ESA's Soil Moisture and Ocean Salinity (SMOS). One typical characteristics of an ENSO event is the zonal displacement of the Western equatorial Pacific Fresh Pool (WPFP). The edge of the pool extends eastward during El Niño, retreats westward during La Niña. For super El Niño, the eastern edge of WPFP extends much more east across the equatorial Pacific. Indeed, SSS from SMAP reveals much stronger eastward migration of WPFP starting in April 2015. The eastern edge of WPFP reached 140°W in March 2016, about 40° more eastward extension than Aquarius observed in previous years. In the following months from March to June 2016, WPFP retreated westward, coincident with the ending of this strong El Niño event [WMO, El Nino/La Nina update, 2016]. SMOS data shows similar feature, confirming that there is no systematic biases between SMAP and Aquarius retrievals. We examine the linkage between the observed SSS variation and ENSO related water cycle anomaly by integrated analysis of SSS data sets in conjunction with other satellite and in situ measurements on rain, wind, evaporation and ocean currents. Based on the governing equation of the mixed layer salt budget, the freshwater exchange between air-sea interfaces is estimated as residual of the mixed-layer salinity (MLS) temporal change and advection (Focean), as an alternative to evaporation minus precipitation (FE-P). We analyzed the spatial and temporal variation of Focean and FE-P to explore the anomalous signature in the oceanic and atmospheric branches of the water cycle associated with 2015/16 ENSO. The maximum

  19. Nitrous oxide and methane dynamics in a coral reef lagoon driven by pore water exchange: Insights from automated high-frequency observations

    NASA Astrophysics Data System (ADS)

    O'Reilly, Chiara; Santos, Isaac R.; Cyronak, Tyler; McMahon, Ashly; Maher, Damien T.

    2015-04-01

    Automated cavity ring down spectroscopy was used to make continuous measurements of dissolved methane, nitrous oxide, and carbon dioxide in a coral reef lagoon for 2 weeks (Heron Island, Great Barrier Reef). Radon (222Rn) was used to trace the influence of tidally driven pore water exchange on greenhouse gas dynamics. Clear tidal variation was observed for CH4, which correlated to 222Rn in lagoon waters. N2O correlated to 222Rn during the day only, which appears to be a response to coupled nitrification-denitrification in oxic sediments, fueled by nitrate derived from bird guano. The lagoon was a net source of CH4 and N2O to the atmosphere and a sink for atmospheric CO2. The estimated pore water-derived CH4 and N2O fluxes were 3.2-fold and 24.0-fold greater than the fluxes to the atmosphere. Overall, pore water and/or groundwater exchange were the only important sources of CH4 and major controls of N2O in the coral reef lagoon.

  20. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  1. Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean.

    PubMed

    Lambs, Luc; Mangion, Perrine; Mougin, Eric; Fromard, François

    2016-01-30

    The functioning of mangrove forests found on small coralline islands is characterized by limited freshwater inputs. Here, we present data on the water cycling of such systems located on Europa and Juan de Nova Islands, Mozambique Channel. In order to better understand the water cycle and mangrove growth conditions, we have analysed the hydrological and salinity dynamics of the systems by gauge pressure and isotopic tracing (δ18O and δ2H values). Both islands have important seawater intrusion as measured by the water level change and the high salinities in the karstic ponds. Europa Island displays higher salinity stress, with its inner lagoon, but presents a pluri-specific mangrove species formation ranging from shrub to forest stands. No freshwater signal could be detected around the mangrove trees. On Juan de Nova Island, the presence of sand and detrital sediment allows the storage of some amount of rainfall to form a brackish groundwater. The mangrove surface area is very limited with only small mono-specific stands being present in karstic depression. On the drier Europa Island, the salinity of all the water points is equal to or higher than that of the seawater, and on Juan de Nova the groundwater salinity is lower (5 to 20 PSU). This preliminary study shows that the karstic pothole mangroves exist due to the sea connection through the fractured coral and the high tidal dynamics.

  2. Reconstructing Past Ocean Salinity ((delta)18Owater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilderson, T P; Pak, D K

    2005-11-23

    Temperature and salinity are two of the key properties of ocean water masses. The distribution of these two independent but related characteristics reflects the interplay of incoming solar radiation (insolation) and the uneven distribution of heat loss and gain by the ocean, with that of precipitation, evaporation, and the freezing and melting of ice. Temperature and salinity to a large extent, determine the density of a parcel of water. Small differences in temperature and salinity can increase or decrease the density of a water parcel, which can lead to convection. Once removed from the surface of the ocean where 'local'more » changes in temperature and salinity can occur, the water parcel retains its distinct relationship between (potential) temperature and salinity. We can take advantage of this 'conservative' behavior where changes only occur as a result of mixing processes, to track the movement of water in the deep ocean (Figure 1). The distribution of density in the ocean is directly related to horizontal pressure gradients and thus (geostrophic) ocean currents. During the Quaternary when we have had systematic growth and decay of large land based ice sheets, salinity has had to change. A quick scaling argument following that of Broecker and Peng [1982] is: the modern ocean has a mean salinity of 34.7 psu and is on average 3500m deep. During glacial maxima sea level was on the order of {approx}120m lower than present. Simply scaling the loss of freshwater (3-4%) requires an average increase in salinity a similar percentage or to {approx}35.9psu. Because much of the deep ocean is of similar temperature, small changes in salinity have a large impact on density, yielding a potentially different distribution of water masses and control of the density driven (thermohaline) ocean circulation. It is partly for this reason that reconstructions of past salinity are of interest to paleoceanographers.« less

  3. Optimization of a high-pressure pore water extraction device.

    PubMed

    Cyr, Martin; Daidié, Alain

    2007-02-01

    High-pressure squeezing is a technique used for the extraction of the pore water of porous materials such as sediments, soils, rocks, and concrete. The efficiency of extraction depends on the maximum pressures on the materials. This article presents the design of a high-pressure device reaching an axial pressure of 1000 MPa which has been developed to improve the efficiency of extraction. The increase in squeezing pressure implies high stresses inside the chamber, so specialized expertise was required to design a safe, functional device that could withstand pressures significantly higher than common laboratory equipment. The design includes finite element calculations, selection of appropriate materials, and descriptive construction details for the apparatus. It also includes an experimental study of the performance of the apparatus in terms of extraction efficiency.

  4. Pore-Water Quality in the Clay-Silt Confining Units of the Lower Miocene Kirkwood Formation and Hypothetical Effects on Water Quality in the Atlantic City 800-Foot Sand, Northeastern Cape May County, New Jersey, 2001

    USGS Publications Warehouse

    Szabo, Zoltan; Keller, Elizabeth A.; Defawe, Rose M.

    2006-01-01

    Pore water was extracted from clay-silt core samples collected from a borehole at Ocean View, west of Sea Isle City, in northeastern Cape May County, New Jersey. The borehole intersects the lower Miocene Kirkwood Formation, which includes a thick sand and gravel unit between two clay-silt units. The sand and gravel unit forms a major confined aquifer in the region, known as the Atlantic City 800-foot sand, the major source of potable water along the Atlantic Coast of southern New Jersey. The pore water from the core is of interest because the borehole intersects the aquifer in an area where the ground water is sodium-rich and sulfidic. Locally in the aquifer in central and southern Cape May County, sodium concentrations are near the New Jersey secondary drinking-water standard of 50 mg/L (milligrams per liter), and typically are greater than 30 mg/L, but chloride and sulfate do not approach their respective secondary drinking-water standards except in southernmost Cape May County. Pore waters from the confining units are suspected to be a source of sodium, sulfur, and chloride to the aquifer. Constituent concentrations in filtered pore-water samples were determined using the inductively coupled plasma-mass spectrometry analytical technique to facilitate the determination of low-level concentrations of many trace constituents. Calcium-sodium-sulfate-bicarbonate, calcium-chloride-sulfate, calcium-sulfate, and sodium-sulfate-chloride-bicarbonate type waters characterize samples from the deepest part of the confining unit directly overlying the aquifer (termed the 'lower' confining unit). A sodium-chloride-sulfate type water is dominant in the composite confining unit below the aquifer. Sodium, chloride, and sulfate became increasingly dominant with depth. Pore water from the deepest sample recovered (1,390 ft (feet) below land surface) was brackish, with concentrations of sodium, chloride, and sulfate of 5,930, 8,400, and 5,070 mg/L, respectively. Pore-water samples

  5. Discharge, suspended sediment, and salinity in the Gulf Intracoastal Waterway and adjacent surface waters in South-Central Louisiana, 1997–2008

    USGS Publications Warehouse

    Swarzenski, Christopher M.; Perrien, Scott M.

    2015-10-19

    River water penetrates much of the Louisiana coast, as demonstrated by the large year-to-year fluctuations in salinity regimes of intradistributary basins in response to differences in flow regimes of the Mississippi and the Atchafalaya Rivers. This occurs directly through inflow along the GIWW and through controlled diversions and indirectly by transport into basin interiors after mixing with the Gulf of Mexico. The GIWW plays an important role in moderating salinity in intradistributary basins; for example, salinity in surface waters just south of the GIWW between Bayou Boeuf and the Houma Navigation Canal remained low even during a year with prolonged low water (2000).

  6. Determination of atrazine and its major degradation products in soil pore water by solid-phase extraction, chemical derivatization, and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Carter, D.S.

    1996-01-01

    This report describes a method for the determination of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine, and hydroxyatrazine from soil pore waters by use of solid-phase extractionfollowed by chemical derivatization and gas chromatography/mass spectrometry. The analytes are isolated from the pore-water matrix byextraction onto a graphitized carbon-black cartridge. The cartridge is dried under vacuum, and adsorbed analytes are removed by elution with ethyl acetate followed by dichloromethane/methanol (7:3, volume/volume). Water is removed from the ethyl acetate fraction on an anhydrous sodium sulfate column. The combined fractions are solvent exchanged into acetonitrile, evaporated by use of a nitrogen stream, and derivatized by use of N- methyl-N-(tert-butyldimethylsilyl)- trifluoroacetamide. The derivatized extracts are analyzed by capillary-column gaschromatography/electron-impact mass spectrometry in the scan mode. Estimated method detection limits range from 0.03 to 0.07 micrograms per liter. The mean recoveries of all analytes and surrogates determined at 0.74 to 0.82 micrograms per liter in reagent water in soil pore water were 94 percent and 98 percent, respectively. The mean recoveries of all analytes and surrogates determined at 7.4 to 8.2 micrograms per liter in reagent water and in soil pore water were 96 percent and 97 percent,respectively. Recoveries were 90 percent or higher, regardless of analyte concentration or matrix composition, for all compounds excepthydroxyatrazine, whose recoveries were slightly lower (77 percent) at the low concentration.

  7. Saline aquifer mapping project in the southeastern United States

    USGS Publications Warehouse

    Williams, Lester J.; Spechler, Rick M.

    2011-01-01

    In 2009, the U.S. Geological Survey initiated a study of saline aquifers in the southeastern United States to evaluate the potential use of brackish or saline water from the deeper portions of the Floridan aquifer system and the underlying Coastal Plain aquifer system (Fig. 1). The objective of this study is to improve the overall understanding of the available saline water resources for potential future development. Specific tasks are to (1) develop a digital georeferenced database of borehole geophysical data to enable analysis and characterization of saline aquifers (see locations in Fig. 1), (2) identify and map the regional extent of saline aquifer systems and describe the thickness and character of hydrologic units that compose these systems, and (3) delineate salinity variations at key well sites and along section lines to provide a regional depiction of the freshwater-saltwater interfaces. Electrical resistivity and induction logs, coupled with a variety of different porosity logs (sonic, density, and neutron), are the primary types of borehole geophysical logs being used to estimate the water quality in brackish and saline formations. The results from the geophysical log calculations are being compared to available water-quality data obtained from water wells and from drill-stem water samples collected in test wells. Overall, the saline aquifer mapping project is helping to improve the understanding of saline water resources in the area. These aquifers may be sources of large quantities of water that could be treated by using reverse osmosis or similar technologies, or they could be used for aquifer storage and recovery systems.

  8. Atomistic Simulations of Pore Formation and Closure in Lipid Bilayers

    PubMed Central

    Bennett, W. F. Drew; Sapay, Nicolas; Tieleman, D. Peter

    2014-01-01

    Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes. PMID:24411253

  9. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations

    USDA-ARS?s Scientific Manuscript database

    Scarcity of water of good quality for landscape irrigation is of outmost importance in arid and semiarid regions due to the competition with urban population. This is forcing the use of degraded waters with high levels of salinity and high pH, which may affect plant establishment and growth. The o...

  10. Configuration of freshwater/saline-water interface and geologic controls on distribution of freshwater in a regional aquifer system, central lower peninsula of Michigan

    USGS Publications Warehouse

    Westjohn, David B.; Weaver, T.L.

    1996-01-01

    Electrical-resistivity logs and water-quality data were used to delineate the fresh water/saline-water interface in a 22,000-square-mile area of the central Michigan Basin, where Mississippian and younger geologic units form a regional system of aquifers and confining units.Pleistocene glacial deposits in the central Lower Peninsula of Michigan contain freshwater, except in a 1,600-square-mile area within the Saginaw Lowlands, where these deposits typically contain saline water. Pennsylvanian and Mississippian sandstones are freshwater bearing where they subcrop below permeable Pleistocene glacial deposits. Down regional dip from subcrop areas, salinity of ground water progressively increases in Early Pennsylvanian and Mississippian sandstones, and these units contain brine in the central part of the basin. Freshwater is present in Late Pennsylvanian sandstones in the northern and southern parts of the aquifer system. Typically, saline water is present in Pennsylvanian sandstones in the eastern and western parts of the aquifer system.Relief on the freshwater/saline-water interface is about 500 feet. Altitudes of the interface are low (300 to 400 feet above sea level) along a north-south-trending corridor through the approximate center of the area mapped. In isolated areas in the northern and western parts of the aquifer system, the altitude of the base of freshwater is less than 400 feet, but altitude is typically more than 400 feet. In the southern and northern parts of the aquifer system where Pennsylvanian rocks are thin or absent, altitudes of the base of freshwater range from 700 to 800 feet and from 500 to 700 feet above sea level, respectively.Geologic controls on distribution of freshwater in the regional aquifer system are (1) direct hydraulic connection of sandstone aquifers and freshwater-bearing, permeable glacial deposits, (2) impedance of upward discharge of saline water from sandstones by lodgement tills, (3) impedance of recharge of freshwater to

  11. Effects of saline-wastewater injection on water quality in the Altamont-Bluebell oil and gas field, Duchesne County, Utah, 1990-2005

    USGS Publications Warehouse

    Steiger, Judy I.

    2007-01-01

    The Altamont-Bluebell oil and gas field in the Uinta Basin in northeastern Utah has been an important oil and natural gas production area since the 1950s. Saline water is produced along with oil during the oil-well drilling and pumping process. The saline wastewater is disposed of by injection into wells completed in the Duchesne River Formation, Uinta Formation, and other underlying formations. There are concerns that the injected saline wastewater could migrate into the upper part of the Duchesne River and Uinta Formations and surficial deposits that are used for drinking-water supply and degrade the quality of the drinking water. The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Oil, Gas, and Mining, began a program in 1990 to monitor water quality in five wells in the Altamont-Bluebell oil and gas field. By 1996, water-quality samples had been collected from 20 wells. Ten of the 20 wells were sampled yearly during 1996-2005 and analyzed for bromide, chloride, and stable isotopes. Comparison of major chemical constituents, bromide-to-chloride ratios, trend analysis, and isotope ratios were used to assess if saline wastewater is migrating into parts of the formation that are developed for drinking-water supplies. Results of four different analyses all indicate that saline wastewater injected into the lower part of the Duchesne River and Uinta Formations and underlying formations is not migrating upward into the upper parts of the formations that are used for drinking-water supplies.

  12. Can ash clog soil pores?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  13. Hydrogeologic processes in saline systems: Playas, sabkhas, and saline lakes

    USGS Publications Warehouse

    Yechieli, Y.; Wood, W.W.

    2002-01-01

    Pans, playas, sabkhas, salinas, saline lakes, and salt flats are hydrologically similar, varying only in their boundary conditions. Thus, in evaluating geochemical processes in these systems, a generic water and solute mass-balance approach can be utilized. A conceptual model of a coastal sabkha near the Arabian Gulf is used as an example to illustrate the various water and solute fluxes. Analysis of this model suggests that upward flux of ground water from underlying formations could be a major source of solutes in the sabkha, but contribute only a small volume of the water. Local rainfall is the main source of water in the modeled sabkha system with a surprisingly large recharge-to-rainfall ratio of more than 50%. The contribution of seawater to the solute budget depends on the ratio of the width of the supratidal zone to the total width and is generally confined to a narrow zone near the shoreline of a typical coastal sabkha. Because of a short residence time of water, steady-state flow is expected within a short time (50,000 years). The solute composition of the brine in a closed saline system depends largely on the original composition of the input water. The high total ion content in the brine limits the efficiency of water-rock interaction and absorption. Because most natural systems are hydrologically open, the chemistry of the brines and the associated evaporite deposits may be significantly different than that predicted for hydrologically closed systems. Seasonal changes in temperature of the unsaturated zone cause precipitation of minerals in saline systems undergoing evaporation. Thus, during the hot dry season months, minerals exhibit retrograde solubility so that gypsum, anhydrite and calcite precipitate. Evaporation near the surface is also a major process that causes mineral precipitation in the upper portion of the unsaturated zone (e.g. halite and carnallite), provided that the relative humidity of the atmosphere is less than the activity of water

  14. Base of moderately saline ground water in the Uinta Basin, Utah, with an introductory section describing the methods used in determining its position

    USGS Publications Warehouse

    Howells, Lewis; Longson, M.S.; Hunt, Gilbert L.

    1987-01-01

    The base of the moderately saline water (water that contains from 3,000 to 10,000 milligrams per liter of dissolved solids) was mapped by using available water-quality data and by determining formation-water resistivities from geophysical well logs based on the resistivity-porosity, spontaneous potential, and resistivity-ratio methods. The contour map developed from these data showed a mound of very saline and briny water, mostly of sodium chloride and sodium bicarbonate type, in most of that part of the Uinta Basin that is underlain by either the Green River or Wasatch Formations. Along its northern edge, the mound rises steeply from below sea level to within 2,000 feet of the land surface and, locally, to land surface. Along its southern edge, the mound rises less steeply and is more complex in outline. This body of very saline to briny water may be a lens; many wells or test holes drilled within the area underlain by the mound re-entered fresh to moderately saline water at depths of 8,000 to 15,000 feet below lam surface.

  15. The importance of dehydration in determining ion transport in narrow pores.

    PubMed

    Richards, Laura A; Schäfer, Andrea I; Richards, Bryce S; Corry, Ben

    2012-06-11

    The transport of hydrated ions through narrow pores is important for a number of processes such as the desalination and filtration of water and the conductance of ions through biological channels. Here, molecular dynamics simulations are used to systematically examine the transport of anionic drinking water contaminants (fluoride, chloride, nitrate, and nitrite) through pores ranging in effective radius from 2.8 to 6.5 Å to elucidate the role of hydration in excluding these species during nanofiltration. Bulk hydration properties (hydrated size and coordination number) are determined for comparison with the situations inside the pores. Free energy profiles for ion transport through the pores show energy barriers depend on pore size, ion type, and membrane surface charge and that the selectivity sequence can change depending on the pore size. Ion coordination numbers along the trajectory showed that partial dehydration of the transported ion is the main contribution to the energy barriers. Ion transport is greatly hindered when the effective pore radius is smaller than the hydrated radius, as the ion has to lose some associated water molecules to enter the pore. Small energy barriers are still observed when pore sizes are larger than the hydrated radius due to re-orientation of the hydration shell or the loss of more distant water. These results demonstrate the importance of ion dehydration in transport through narrow pores, which increases the current level of mechanistic understanding of membrane-based desalination and transport in biological channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydraulic redistribution: limitations for plants in saline soils.

    PubMed

    Bazihizina, Nadia; Veneklaas, Erik J; Barrett-Lennard, Edward G; Colmer, Timothy D

    2017-10-01

    Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. © 2017 John Wiley & Sons Ltd.

  17. Pore water pressure variations in Subpermafrost groundwater : Numerical modeling compared with experimental modeling

    NASA Astrophysics Data System (ADS)

    Rivière, Agnès.; Goncalves, Julio; Jost, Anne; Font, Marianne

    2010-05-01

    Development and degradation of permafrost directly affect numerous hydrogeological processes such as thermal regime, exchange between river and groundwater, groundwater flows patterns and groundwater recharge (Michel, 1994). Groundwater in permafrost area is subdivided into two zones: suprapermafrost and subpermafrost which are separated by permafrost. As a result of the volumetric expansion of water upon freezing and assuming ice lenses and frost heave do not form freezing in a saturated aquifer, the progressive formation of permafrost leads to the pressurization of the subpermafrost groundwater (Wang, 2006). Therefore disappearance or aggradation of permafrost modifies the confined or unconfined state of subpermafrost groundwater. Our study focuses on modifications of pore water pressure of subpermafrost groundwater which could appear during thawing and freezing of soil. Numerical simulation allows elucidation of some of these processes. Our numerical model accounts for phase changes for coupled heat transport and variably saturated flow involving cycles of freezing and thawing. The flow model is a combination of a one-dimensional channel flow model which uses Manning-Strickler equation and a two-dimensional vertically groundwater flow model using Richards equation. Numerical simulation of heat transport consisted in a two dimensional model accounting for the effects of latent heat of phase change of water associated with melting/freezing cycles which incorporated the advection-diffusion equation describing heat-transfer in porous media. The change of hydraulic conductivity and thermal conductivity are considered by our numerical model. The model was evaluated by comparing predictions with data from laboratory freezing experiments. Experimental design was undertaken at the Laboratory M2C (Univesité de Caen-Basse Normandie, CNRS, France). The device consisted of a Plexiglas box insulated on all sides except on the top. Precipitation and ambient temperature are

  18. Response of pore water Al, Fe and S concentrations to waterlogging in a boreal acid sulphate soil.

    PubMed

    Virtanen, Seija; Simojoki, Asko; Hartikainen, Helinä; Yli-Halla, Markku

    2014-07-01

    Environmental hazards caused by acid sulphate (AS) soils are of worldwide concern. Among various mitigation measures, waterlogging has mainly been studied in subtropical and tropical conditions. To assess the environmental relevance of waterlogging as a mitigation option in boreal AS soils, we arranged a 2.5-year experiment with monolithic lysimeters to monitor changes in the soil redox potential, pH and the concentrations of aluminium (Al), iron (Fe) and sulphur (S) in pore water in response to low and high groundwater levels in four AS soil horizons. The monoliths consisted of acidic oxidized B horizons and a reduced C horizon containing sulphidic material. Eight lysimeters were cropped (reed canary grass, Phalaris arundinacea) and two were bare without a crop. Waterlogging was conducive to reduction reactions causing a slight rise in pH, a substantial increase in Fe (Fepw) and a decrease in Al (Alpw) in the pore water. The increase in Fepw was decisively higher in the cropped waterlogged lysimeters than in the bare ones, which was attributable to the microbiologically catalysed reductive dissolution of poorly ordered iron oxides and secondary minerals. In contrast to warmer climates, Fepw concentrations remained high throughout the experiment, indicating that the reduction was poised in the iron range, while sulphate was not reduced to sulphide. Therefore, the precipitation of iron sulphide was negligible in the environment with a low pH and abundant with poorly ordered Fe oxides. Increased Fe in pore water counteracts the positive effects of waterlogging, when water is flushed from fields to watercourses, where re-oxidation of Fe causes acidity and oxygen depletion. However, waterlogging prevented further oxidation of sulphidic materials and decreased Alpw to one-tenth of the initial concentrations, and even to one-hundredth of the levels in the low water table lysimeters. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Implications of salinity pollution hotspots on agricultural production

    NASA Astrophysics Data System (ADS)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  20. Drinking Water Sodium and Elevated Blood Pressure of Healthy Pregnant Women in Salinity-Affected Coastal Areas.

    PubMed

    Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo

    2016-08-01

    Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies. © 2016 American Heart Association, Inc.

  1. Precipitation of ikaite crystals in Antarctic marine sediments: implications from pore water geochemistry

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Kennedy, H.; Rickaby, R. E.; Georg, B.; Shaw, S.; Lennie, A.; Pancost, R. D.

    2008-12-01

    Ikaite is a calcium carbonate hexahydrate (CaCO3•6H20) considered to be stable only at low temperatures. It has been found in form of tufa tower at locations where alkaline water mixes with water masses enriched in calcium (e.g. Ikka Fjord, Mono Lake). Large euhedral single crystals of ikaite were also recovered in marine sediments, associated with organic matter degradation, anaerobic oxidation of methane (AOM) and sulfate reduction. The hydration water in the ikaite crystals were demonstrated to record the oxygen isotope composition of the water from which they precipitated. Such a characteristic may allow using ikaite to reconstruct the ice volume in the past. For this purpose, the controls on its precipitation in the sediment column need to be investigated which is the main goal of this study. U.S. Antarctica Program cruise NBP0703 collected two cores with ikaite crystals at Antarctica Peninsula (Bransfield Strait and Firth of Tay). We determined major cation/anion concentrations, dissolved inorganic carbon (DIC) and δ13C composition of DIC in the pore waters in these two cores. Strong organic matter degradation or AOM in both cores results in quick consumption of sulfate in shallow part of the cores (SMT at around 3m).Rapid build-up of DIC is accompanied by the sharp decrease of dissolved calcium in the top 5m. Large variations were observed in δ13CDIC values (-20‰ to +13‰). The δ13C of ikaite in two cores were distinctive from each other (-19‰ and +4‰) corresponding to the DIC pools at different depths. The down core saturation state of the ikaite was modeled in PHREEQC based on the pore water chemistry, and the results are consistent with carbon isotope data, suggesting that these large crystals very likely formed within a narrow depth interval and a short time period (given high sedimentation rates of 0.5-1 cm/yr in this area).

  2. An In vitro Comparison of Coconut Water, Milk, and Saline in Maintaining Periodontal Ligament Cell Viability

    PubMed Central

    D’Costa, Vivian Flourish; Bangera, Madhu Keshava; Kini, Shravan; Kutty, Shakkira Moosa; Ragher, Mallikarjuna

    2017-01-01

    Background and Objectives: Two of the most critical factors affecting the prognosis of an avulsed tooth after replantation are extraoral dry time and the storage media in which the tooth is placed before treatment is rendered. The present study is undertaken to evaluate the periodontal ligament (PDL) cell viability after storage of teeth in different storage media, namely, coconut water, milk, and saline. Materials and Methods: Forty sound human premolars undergoing extraction for orthodontic purpose were selected. The teeth were allowed to lie dry on sand/mud for 30 min followed by which they were randomly divided and stored in three different media, i.e., coconut water, milk, and saline. After 45-min storage in their respective media, the root surface was then scraped for PDL tissue. Results: The ANOVA and Newman–Keuls post hoc procedure for statistical analysis of viable cell count under a light microscope using hemocytometer demonstrated that coconut water preserved significantly more PDL cells viable (P < 0.05) compared with milk and saline. Conclusion: Storage media help in preserving the viability of PDL cells when immediate replantation is not possible. This study evaluated the posttraumatic PDL cells’ viability following storage in three different storage media. Within the parameters of this study, it was found that coconut water is the most effective media for maintaining the viability of PDL. PMID:29284947

  3. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    PubMed

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  4. Flow characteristics and salinity patterns of tidal rivers within the northern Ten Thousand Islands, southwest Florida, water years 2007–14

    USGS Publications Warehouse

    Booth, Amanda C.; Soderqvist, Lars E.

    2016-12-12

    Freshwater flow to the Ten Thousand Islands estuary has been altered by the construction of the Tamiami Trail and the Southern Golden Gate Estates. The Picayune Strand Restoration Project, which is associated with the Comprehensive Everglades Restoration Plan, has been implemented to improve freshwater delivery to the Ten Thousand Islands estuary by removing hundreds of miles of roads, emplacing hundreds of canal plugs, removing exotic vegetation, and constructing three pump stations. Quantifying the tributary flows and salinity patterns prior to, during, and after the restoration is essential to assessing the effectiveness of upstream restoration efforts.Tributary flow and salinity patterns during preliminary restoration efforts and prior to the installation of pump stations were analyzed to provide baseline data and preliminary analysis of changes due to restoration efforts. The study assessed streamflow and salinity data for water years1 2007–2014 for the Faka Union River (canal flow included), East River, Little Wood River, Pumpkin River, and Blackwater River. Salinity data from the Palm River and Faka Union Boundary water-quality stations were also assessed.Faka Union River was the dominant contributor of freshwater during water years 2007–14 to the Ten Thousand Islands estuary, followed by Little Wood and East Rivers. Pumpkin River and Blackwater River were the least substantial contributors of freshwater flow. The lowest annual flow volumes, the highest annual mean salinities, and the highest percentage of salinity values greater than 35 parts per thousand (ppt) occurred in water year 2011 at all sites with available data, corresponding with the lowest annual rainfall during the study. The highest annual flow volumes and the lowest percentage of salinities greater than 35 ppt occurred in water year 2013 for all sites with available data, corresponding with the highest rainfall during the study.In water year 2014, the percentage of monitored annual flow

  5. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh

    PubMed Central

    Chowdhury, Muhammad A.H.; Haines, Andy; Alam, Dewan S.; Hoque, Mohammad A.; Butler, Adrian P.; Khan, Aneire E.; Mojumder, Sontosh K.; Blangiardo, Marta A.G.; Elliott, Paul; Vineis, Paolo

    2017-01-01

    Background: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. Objectives: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. Methods: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from “conventional” ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. Results: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. Conclusions: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in “real-life” salinity-affected settings. https://doi.org/10.1289/EHP659 PMID:28599268

  6. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    PubMed

    Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo

    2017-05-30

    Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.

  7. Fresh and Salt Water Distribution in Passive Margin Sediments: Insights from Iodp Expedition 313 ON the New Jersey Margin

    NASA Astrophysics Data System (ADS)

    Lofi, J.; Inwood, J.; Proust, J.; Monteverde, D.; Loggia, D.; Basile, C.; Hayashi, T.; Stadler, S.; Fehr, A.; Pezard, P.

    2012-12-01

    For the first time in the history of international scientific drillings, the Integrated Ocean Drilling Program (IODP) mission-specific platform (MSP) Expedition 313 drilled three 631-755 m-deep boreholes on the middle shelf of a clastic passive margin. This expedition gathered a full set of geophysical data tied to drillcores with 80% of recovery. It offers a unique opportunity to access the internal structure of a siliciclastic system, at scales ranging from the matrix to the margin, and to correlate the geological skeleton with the spatial distribution and salinity of saturating fluids. In addition to the discovery of very low salinity pore water (<3g/l) at depths exceeding 400 m below the middle shelf, this expedition provides evidence for a multi-layered reservoir, with fresh/brackish water intervals alternating vertically with salty intervals. Our observations suggest that the processes controlling salinity distribution are strongly influenced by lithology, porosity and permeability. Saltier pore waters are recovered in less porous, more permeable, intervals whereas fresher pore waters are recovered in more porous, less permeable, intervals. Pore water concentrations are inversely correlated to the Thorium content, with high salinities in low Th intervals (i.e. sandy formations). The transition from fresher to saltier intervals is often marked by cemented horizons acting as permeability barrier. In the lower part of some holes, the salinity varies independently of lithology, suggesting different mechanisms and/or sources of salinity. We have developed a 2D model of permeability distribution along a dip transect of the margin, extrapolated from combined clinoform geometries observed on seismic data and sedimentary facies described on cores. This model clearly illustrates the importance of taking into account the spatial heterogeneity of geological system at several scales. Lithology reflects permeability at a small scale whereas seismic facies and system tracts

  8. Factors controlling the configuration of the fresh-saline water interface in the Dead Sea coastal aquifers: Synthesis of TDEM surveys and numerical groundwater modeling

    USGS Publications Warehouse

    Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C.I.

    2001-01-01

    TDEM (time domain electromagnetic) traverses in the Dead Sea (DS) coastal aquifer help to delineate the configuration of the interrelated fresh-water and brine bodies and the interface in between. A good linear correlation exists between the logarithm of TDEM resistivity and the chloride concentration of groundwater, mostly in the higher salinity range, close to that of the DS brine. In this range, salinity is the most important factor controlling resistivity. The configuration of the fresh-saline water interface is dictated by the hydraulic gradient, which is controlled by a number of hydrological factors. Three types of irregularities in the configuration of fresh-water and saline-water bodies were observed in the study area: 1. Fresh-water aquifers underlying more saline ones ("Reversal") in a multi-aquifer system. 2. "Reversal" and irregular residual saline-water bodies related to historical, frequently fluctuating DS base level and respective interfaces, which have not undergone complete flushing. A rough estimate of flushing rates may be obtained based on knowledge of the above fluctuations. The occurrence of salt beds is also a factor affecting the interface configuration. 3. The interface steepens towards and adjacent to the DS Rift fault zone. Simulation analysis with a numerical, variable-density flow model, using the US Geological Survey's SUTRA code, indicates that interface steep- ening may result from a steep water-level gradient across the zone, possibly due to a low hydraulic conductivity in the immediate vicinity of the fault.

  9. Intensities of groundwater pollution and salinization in Asian coastal cities

    NASA Astrophysics Data System (ADS)

    Onodera, S. I.; Saito, M.; Tomozawa, Y.; Shimizu, Y.; Admajaya, F. T.

    2017-12-01

    To confirm groundwater pollution and salinization intensities in various coastal Asian cities, we compared hydrogeological and chemical data at Osaka, Manila, Bangkok, and Jakarta as a mega-city and at Okayama and Marugame in western Japan as a small city. The groundwater depressions with heavy use caused intrusions of surface pollutants to deeper zone, that is, the expansion and diffusion of pollution. In addition, groundwater pollution originated from old sewage systems was found, especially in Osaka which is a developed city. Groundwater salinization was caused by seawater intrusion and leaching of saline component in sediment under the condition with lower hydraulic head at the deep groundwater than the sea level with urbanization. The former process is the contribution of present seawater, on the other hand the later is the contribution of palaeo-seawater in alluvial clay layer. The saline content in groundwater were 3.0x1010 t in Bangkok, 2.2x108 t in Osaka, 5.2x107 t in Jakarta, and 3.6x106 t in Manila, respectively. The subject area is one order wider in Bangkok than in Osaka, and two orders wider than in Manila and Jakarta. Such huge saline accumulation in Bangkok would be due to the lowest groundwater potential in present as well as the largest subject area. Deeper groundwater potential in Osaka has recovered since 1970, whereas those in Manila and Jakarta are declining. In addition, we estimated the palaeo-seawater content under the mega-cities as total pore volume in the alluvial clay. These values were estimated to be 5.5x109 t in Bangkok, 2.1x108 t in Osaka, 9.0x107 t in Jakarta, and 8.0x107 t in Manila, respectively. The comparative results of accumulative contents and palaeo-values indicated that accumulative contents were more than the others in Bangkok and Osaka. These results suggest that seawater intrusion occurred as well as palaeo-water leaching in these cities. In addition, that shows the urbanization period is important to salinization

  10. Decline of the world's saline lakes

    NASA Astrophysics Data System (ADS)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  11. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    NASA Astrophysics Data System (ADS)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  12. Comparison of Pore-scale CO2-water-glass System Wettability and Conventional Wettability Measurement on a Flat Plate for Geological CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Jafari, M.; Cao, S. C.; Jung, J.

    2017-12-01

    Goelogical CO2 sequestration (GCS) has been recently introduced as an effective method to mitigate carbon dioxide emission. CO2 from main producer sources is collected and then is injected underground formations layers to be stored for thousands to millions years. A safe and economical storage project depends on having an insight of trapping mechanisms, fluids dynamics, and interaction of fluids-rocks. Among different forces governing fluids mobility and distribution in GCS condition, capillary pressure is of importance, which, in turn, wettability (measured by contact angel (CA)) is the most controversial parameters affecting it. To explore the sources of discrepancy in the literature for CA measurement, we conducted a series of conventional captive bubble test on glass plates under high pressure condition. By introducing a shape factor, we concluded that surface imperfection can distort the results in such tests. Since the conventional methods of measuring the CA is affected by gravity and scale effect, we introduced a different technique to measure pore-scale CA inside a transparent glass microchip. Our method has the ability to consider pore sizes and simulate static and dynamics CA during dewetting and imbibition. Glass plates shows a water-wet behavior (CA 30° - 45°) by a conventional experiment consistent with literature. However, CA of miniature bubbles inside of the micromodel can have a weaker water-wet behavior (CA 55° - 69°). In a more realistic pore-scale condition, water- CO2 interface covers whole width of a pore throats. Under this condition, the receding CA, which is used for injectability and capillary breakthrough pressure, increases with decreasing pores size. On the other hand, advancing CA, which is important for residual or capillary trapping, does not show a correlation with throat sizes. Static CA measured in the pores during dewetting is lower than static CA on flat plate, but it is much higher when measured during imbibition implying

  13. Salt permeation and exclusion in hydroxylated and functionalized silica pores.

    PubMed

    Leung, Kevin; Rempe, Susan B; Lorenz, Christian D

    2006-03-10

    We use combined ab initio molecular dynamics (AIMD), grand canonical Monte Carlo, and molecular dynamics techniques to study the effect of pore surface chemistry and confinement on the permeation of salt into silica nanopore arrays filled with water. AIMD shows that 11.6 A diameter hydroxylated silica pores are relatively stable in water, whereas amine groups on functionalized pore surfaces abstract silanol protons, turning into NH3+. Free energy calculations using an ab initio parametrized force field show that the hydroxylated pores strongly attract Na+ and repel Cl- ions. Pores lined with NH3+ have the reverse surface charge polarity. Finally, studies of ions in carbon nanotubes suggest that hydration of Cl- is more strongly frustrated by pure confinement effects than Na+.

  14. Validation of pore network simulations of ex-situ water distributions in a gas diffusion layer of proton exchange membrane fuel cells with X-ray tomographic images

    NASA Astrophysics Data System (ADS)

    Agaesse, Tristan; Lamibrac, Adrien; Büchi, Felix N.; Pauchet, Joel; Prat, Marc

    2016-11-01

    Understanding and modeling two-phase flows in the gas diffusion layer (GDL) of proton exchange membrane fuel cells are important in order to improve fuel cells performance. They are scientifically challenging because of the peculiarities of GDLs microstructures. In the present work, simulations on a pore network model are compared to X-ray tomographic images of water distributions during an ex-situ water invasion experiment. A method based on watershed segmentation was developed to extract a pore network from the 3D segmented image of the dry GDL. Pore network modeling and a full morphology model were then used to perform two-phase simulations and compared to the experimental data. The results show good agreement between experimental and simulated microscopic water distributions. Pore network extraction parameters were also benchmarked using the experimental data and results from full morphology simulations.

  15. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation

    NASA Astrophysics Data System (ADS)

    Mahabadi, Nariman; Dai, Sheng; Seol, Yongkoo; Sup Yun, Tae; Jang, Jaewon

    2016-08-01

    The water retention curve and relative permeability are critical to predict gas and water production from hydrate-bearing sediments. However, values for key parameters that characterize gas and water flows during hydrate dissociation have not been identified due to experimental challenges. This study utilizes the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values. Hydrates with various saturation and morphology are realized in the pore-network that was extracted from micron-resolution CT images of sediments recovered from the hydrate deposit at the Mallik site, and then the processes of gas invasion, hydrate dissociation, gas expansion, and gas and water permeability are simulated. Results show that greater hydrate saturation in sediments lead to higher gas entry pressure, higher residual water saturation, and steeper water retention curve. An increase in hydrate saturation decreases gas permeability but has marginal effects on water permeability in sediments with uniformly distributed hydrate. Hydrate morphology has more significant impacts than hydrate saturation on relative permeability. Sediments with heterogeneously distributed hydrate tend to result in lower residual water saturation and higher gas and water permeability. In this sense, the Brooks-Corey model that uses two fitting parameters individually for gas and water permeability properly capture the effect of hydrate saturation and morphology on gas and water flows in hydrate-bearing sediments.

  16. Laboratory evaluation of dual-frequency multisensor capacitance probes to monitor soil water and salinity

    USDA-ARS?s Scientific Manuscript database

    Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available for sandy soils that simultaneously monitor volumetric soil water content (VWC, ') and sa...

  17. The effects of pressure, temperature, and pore water on velocities in Westerly granite. [for seismic wave propagation

    NASA Technical Reports Server (NTRS)

    Spencer, J. W., Jr.; Nur, A. M.

    1976-01-01

    A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.

  18. Sphagnum can 'filter' N deposition, but effects on the plant and pore water depend on the N form.

    PubMed

    Chiwa, Masaaki; Sheppard, Lucy J; Leith, Ian D; Leeson, Sarah R; Tang, Y Sim; Cape, J Neil

    2016-07-15

    The ability of Sphagnum moss to efficiently intercept atmospheric nitrogen (N) has been assumed to be vulnerable to increased N deposition. However, the proposed critical load (20kgNha(-1)yr(-1)) to exceed the capacity of the Sphagnum N filter has not been confirmed. A long-term (11years) and realistic N manipulation on Whim bog was used to study the N filter function of Sphagnum (Sphagnum capillifolium) in response to increased wet N deposition. On this ombrotrophic peatland where ambient deposition was 8kgNha(-1)yr(-1), an additional 8, 24, and 56kgNha(-1)yr(-1) of either ammonium (NH4(+)) or nitrate (NO3(-)) has been applied for 11years. Nutrient status of Sphagnum and pore water quality from the Sphagnum layer were assessed. The N filter function of Sphagnum was still active up to 32kgNha(-1)yr(-1) even after 11years. N saturation of Sphagnum and subsequent increases in dissolved inorganic N (DIN) concentration in pore water occurred only for 56kgNha(-1)yr(-1) of NH4(+) addition. These results indicate that the Sphagnum N filter is more resilient to wet N deposition than previously inferred. However, functionality will be more compromised when NH4(+) dominates wet deposition for high inputs (56kgNha(-1)yr(-1)). The N filter function in response to NO3(-) uptake increased the concentration of dissolved organic N (DON) and associated organic anions in pore water. NH4(+) uptake increased the concentration of base cations and hydrogen ions in pore water though ion exchange. The resilience of the Sphagnum N filter can explain the reported small magnitude of species change in the Whim bog ecosystem exposed to wet N deposition. However, changes in the leaching substances, arising from the assimilation of NO3(-) and NH4(+), may lead to species change. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Evidence for seasonal low salinity surface waters in the Gulf of Mexico over the last 16,000 years

    NASA Astrophysics Data System (ADS)

    Spero, Howard J.; Williams, Douglas F.

    1990-12-01

    Oxygen isotopic analyses of individual Orbulina universa from Orca Basin core EN32-PC6 document the presence of low salinity surface waters in the northern Gulf of Mexico over the past 16 kyr. Isotopic data from an interval immediately following the Younger Dryas Event indicate the rapid decrease in δ18O values at the conclusion of the Younger Dryas was due to a year-round return of meltwater to the Gulf of Mexico. Data indicate periodic or seasonal low-salinity waters existed over the region of the Orca Basin prior to the initiation of the meltwater spike. Estimates suggest O. universa grew its shell in salinities at least 4.5 ‰ below ambient. Since O. universa may have calcified deep in the mixed layer during periods of low salinity, surface salinities could have been even lower. Comparison of the average of individual O. universa oxygen isotopic values with data from multiple shell samples of white Gs. ruber from the same core samples demonstrates that the two species record similar values during the late Holocene. In contrast, O. universa records lower oxygen isotopic values during the late glacial/deglacial intervals, possibly due to differences in seasonal distribution or shell ontogeny between the two species.

  20. Corrosion protection performance of corrosion inhibitors and epoxy-coated reinforcing steel in a simulated concrete pore water solution.

    DOT National Transportation Integrated Search

    1998-06-01

    We used a simulated concrete pore water solution to evaluate the corrosion protection performance of concrete corrosion-inhibiting admixtures and epoxy-coated reinforcing bars (ECR). We evaluated three commercial corrosion inhibitors, ECR from three ...

  1. Salinity Management in Agriculture

    USDA-ARS?s Scientific Manuscript database

    Existing guidelines and standards for reclamation of saline soils and management to control salinity exist but have not been updated for over 25 years. In the past few years a looming water scarcity has resulted in questioning of the long term future of irrigation projects in arid and semi arid regi...

  2. Experimental Quantification of Pore-Scale Flow Phenomena in 2D Heterogeneous Porous Micromodels: Multiphase Flow Towards Coupled Solid-Liquid Interactions

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.

    2017-12-01

    Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.

  3. Salinity of deep groundwater in California: Water quantity, quality, and protection.

    PubMed

    Kang, Mary; Jackson, Robert B

    2016-07-12

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California's Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km(3), most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km(3) of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California's Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond.

  4. Salinity of deep groundwater in California: Water quantity, quality, and protection

    PubMed Central

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  5. Varying evapotranspiration and salinity level of irrigation water influence soil quality and performance of perennial ryegrass (lolium perenne l.)

    USDA-ARS?s Scientific Manuscript database

    Increasing use of recycled water that is often high in salinity warrants further examination of irrigation practices for turfgrass health and salinity management. A study was conducted during 2011-2012 in Riverside, CA to evaluate the response of perennial ryegrass (Lolium perenne L.) ‘SR 4550’ turf...

  6. Spatio-temporal impacts of dairy lagoon water reuse on soil: heavy metals and salinity.

    PubMed

    Corwin, Dennis L; Ahmad, Hamaad Raza

    2015-10-01

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. The spatial impact and sustainability of dairy lagoon water reuse from concentrated animal feeding operations (CAFOs) has not been evaluated at field scale. The objective of this study is to monitor the impact of dairy lagoon water blended with recycled water on a 32 ha field near San Jacinto, CA from 2007 to 2011. Spatial monitoring was based on soil samples collected at locations identified from apparent soil electrical conductivity (ECa) directed sampling. Soil samples were taken at depth increments of 0-0.15, 0.15-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, 1.2-1.5, and 1.5-1.8 m at 28 sample sites on 7-11 May 2007 and again on 31 May - 2 June 2011 after 4 years of irrigation with the blended waters. Chemical analyses included salinity (electrical conductivity of the saturation extract, ECe), pHe (pH of the saturation extract), SAR (sodium adsorption ratio), trace elements (As, B, Mo, Se), and heavy metals (Cd, Cu, Mn, Ni, Zn). Results indicate a decrease in mean values of pHe at all depth increments; a decrease in ECe and SAR above a depth of 0.15 m, but an increase below 0.15 m; a decrease in all trace elements except B, which increased throughout the 1.8 m profile; and the accumulation of Cd, Mn, and Ni at all depth increments, while Cu was readily leached from the 1.8 m profile. Zinc showed little change. The results focused concern on the potential long-term agronomic effect of salinity, SAR, and B, and the long-term environmental threat of salinity and Cu to detrimentally impact groundwater. The accumulation of Cd, Mn, and Ni in the soil profile raised concern since it provided a potential future source of metals for leaching. The long-term sustainability of dairy lagoon water reuse hinges on regular monitoring to provide spatial feedback for site-specific management.

  7. Evolution of anomalies of salinity of surface waters of Arctic Ocean and their possible influence on climate changes

    NASA Astrophysics Data System (ADS)

    Popov, A.; Rubchenia, A.

    2009-04-01

    Numerous of model simulations of ice extent in Arctic Ocean predict almost full disappearance of sea ice in Arctic regions by 2050. However, the nature, as against models, does not suffer the unidirectional processes. By means of various feedback responses system aspires to come in an equilibrium condition. In Arctic regions one of the most powerful generators of a negative feedback is the fresh-water stream to Greenland Sea and Northern Atlantic. Increasing or decreasing of a fresh-water volume from the Arctic basin to Greenland Sea and Northern Atlantic results in significant changes in climatic system. At the Oceanology department of Arctic and Antarctic Research Institute (AARI) (St-Petersburg, Russia) in 2007, on the basis of the incorporated Russian-American database of the oceanographic data, reconstruction of long-term time series of average salinity of ocean surface was executed. The received time series describes the period from 1950 to 1993. For allocation of the processes determining formation of changes of average salinity of surface waters in Arctic basin the correlation analysis of interrelation of the received time series and several physical parameters which could affect formation of changes of salinity was executed. We found counter-intuitive result: formation of long-term changes of average salinity of surface waters of Arctic basin in the winter period does not depend on changes of a Siberian rivers runoff. Factors of correlation do not exceed -0,31. At the same time, clear inverse relationship of salinity of surface waters from volumes of the ice formed in flaw lead polynyas of the Siberian shelf seas is revealed. In this case factors of correlation change from -0,56 to -0,7. The maximum factor of correlation is -0,7. It characterizes interrelation of total volume of the ice formed in flaw lead polynyas of all seas of the Siberian shelf and average salinity of surface waters of Arctic basin. Thus, at increase of volumes of the ice formed in

  8. Pore shape of honeycomb-patterned films: modulation and interfacial behavior.

    PubMed

    Wan, Ling-Shu; Ke, Bei-Bei; Zhang, Jing; Xu, Zhi-Kang

    2012-01-12

    The control of the pore size of honeycomb-patterned films has been more or less involved in most work on the topic of breath figures. Modulation of the pore shape was largely ignored, although it is important to applications in replica molding, filtration, particle assembly, and cell culture. This article reports a tunable pore shape for patterned films prepared from commercially available polystyrene (PS). We investigated the effects of solvents including tetrahydrofuran (THF) and chloroform (CF) and hydrophilic additives including poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), poly(ethylene glycol) (PEG), and poly(N-vinyl pyrrolidone) (PVP). Water droplets on/in the polymer solutions were observed and analyzed for simulating the formation and stabilization of breath figures. Interfacial tensions of the studied systems were measured and considered as a main factor to modulate the pore shape. Results indicate that the pores gradually change from near-spherical to ellipsoidal with the increase of additive content when using CF as the solvent; however, only ellipsoidal pores are formed from the THF solution. It is demonstrated that the aggregation of the additives at the water/polymer solution interface is more efficient in the THF solution than that in the CF solution. This aggregation decreases the interfacial tension, stabilizes the condensed water droplets, and shapes the pores of the films. The results may facilitate our understanding of the dynamic breath figure process and provide a new pathway to prepare patterned films with different pore structures.

  9. Prediction of Hydraulic Conductivity as Related to Pore Size Distribution in Unsaturated Soils

    USDA-ARS?s Scientific Manuscript database

    Soil pore volume as well as pore size, shape, type (i.e. biopore versus crack), continuity, and distribution in soil affect soil water and gas exchange. Vertical and lateral drainage of water by gravitational forces occurs through large, non-capillary soil pores, but redistribution and upward moveme...

  10. Urbanization accelerates long-term salinization and alkalinization of fresh water

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R. M.; Newcomer Johnson, T. A.; Delaney Newcomb, K.; Gorman, J. K.; Bowman, N.; Mayer, P. M.; Wood, K. L.; Belt, K.; Stack, W.

    2017-12-01

    Human dominated land-use increases transport a major ions in streams due to anthropogenic salts and accelerated weathering. We show long-term trends in calcium, magnesium, sodium, alkalinity, and hardness over 50 years in the Baltimore metropolitan region and elsewhere. We also examine how major ion concentrations have increased significantly with impervious surface cover in watersheds across land use. Base cations show strong relationships with acid anions, which illustrates the coupling of major biogeochemical cycles in urban watersheds over time. Longitudinal patterns in major ions can also show increasing trends from headwaters to coastal waters, which suggests coupled biogeochemical cycles over space. We present new results from manipulative experiments and long-term monitoring across different urban regions regarding patterns and processes of salinization and alkalinization. Overall, our work demonstrates that urbanization dramatically increases major ions, ionic strength, and pH over decades from headwaters to coastal waters, which impacts the integrity of aquatic life, infrastructure, drinking water, and coastal ocean alkalinization.

  11. Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions

    PubMed Central

    Nguyen, Hoa T.; Stanton, Daniel E.; Schmitz, Nele; Farquhar, Graham D.; Ball, Marilyn C.

    2015-01-01

    Background and Aims Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions. Methods Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50 % seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth. Key Results Avicennia marina seedlings failed to grow in 0–5 % seawater, whereas maximal growth occurred in 50–75 % seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50–75 % seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity. Conclusions The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte

  12. Behavior of pure gallium in water and various saline solutions.

    PubMed

    Horasawa, N; Nakajima, H; Takahashi, S; Okabe, T

    1997-12-01

    This study investigated the chemical stability of pure gallium in water and saline solutions in order to obtain fundamental knowledge about the corrosion mechanism of gallium-based alloys. A pure gallium plate (99.999%) was suspended in 50 mL of deionized water, 0.01%, 0.1% or 1% NaCl solution at 24 +/- 2 degrees C for 1, 7, or 28 days. The amounts of gallium released into the solutions were determined by atomic absorption spectrophotometry. The surfaces of the specimens were examined after immersion by x-ray diffractometry (XRD) and x-ray photoelectron spectroscopy (XPS). In the solutions containing 0.1% or more NaCl, the release of gallium ions into the solution was lowered when compared to deionized water after 28-day immersion. Gallium oxide monohydroxide was found by XRD on the specimens immersed in deionized water after 28-day immersion. XPS indicated the formation of gallium oxide/hydroxide on the specimens immersed in water or 0.01% NaCl solution. The chemical stability of pure solid gallium was strongly affected by the presence of Cl- ions in the aqueous solution.

  13. In situ Measurement of Pore-Water pH in Anoxic Sediments Using Laser Raman Spectrometry

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Luna, M.; Walz, P. M.; Zhang, X.; Brewer, P. G.

    2010-12-01

    Accurate measurement of the geochemical properties of sediment pore waters is of fundamental importance in ocean geochemistry and microbiology. Recent work has shown that the properties of pore waters can be measured rapidly in situ with a novel Raman based insertion probe (Zhang et al., 2010), and that data obtained from anoxic sediments on in situ dissolved methane concentrations are very different (~30x) than from recovered cores due the large scale degassing that occurs during core recovery (Zhang et al., submitted). Degassing of methane must carry with it via Henry’s Law partioning significant quantities of H2S, which is clearly detectable by smell during sample processing, and thus in situ measurement of H2S is also highly desirable. In practice, dissolved H2S is partitioned between the HS- and H2S species as a function of pH with pKa ~7 for the acid dissociation reaction. Since both species are Raman active full determination of the sulfide system is possible if the relative Raman cross sections are known. The diagenetic equations for these reactions are commonly summarized as: 2CH2O + SO4= ↔ 2HCO3- + H2S CH4 + SO4= ↔ HCO3- + HS- + H2O Three of the major components of these equations, CH4, SO4=, and H2S/HS-, are all observable directly by Raman spectroscopy; but the detection of HCO3- presents a challenge due to its low Raman cross section and thus poor sensitivity. We show that pore water pH, which is a good estimator of HCO3- if total CO2 or alkalinity are known, can be measured by observing the H2S / HS- ratio via the equation: pH = pKa + log([HS-]/[H2S]) thereby fully constraining these equations within a single measurement protocol. The Raman peak for HS- is at 2573 cm-1 and for H2S is at 2592 cm-1; thus the peaks are well separated and may easily be deconvoluted from the observed spectrum. We have determined the relative Raman cross sections by a series of laboratory measurements over a range of pH and by using the definition that when pH = p

  14. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    NASA Astrophysics Data System (ADS)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  15. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity

    PubMed Central

    Ozaslan, Cumali; Bukun, Bekir; Ozcan, Selcuk

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in

  16. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity.

    PubMed

    Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Bukun, Bekir; Ozcan, Selcuk; Gunal, Hikmet

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in

  17. Smectite Dehydration, Membrane Filtration, and Pore-Water Freshening in Deep Ultra-Low Permeability Formations: Deep Processes in the Nankai Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Sample, J. C.; Even, E.; Poeppe, D.; Henry, P.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    We address the fundamental questions surrounding the nature of water and chemical transport processes deep within sedimentary basin and accretionary-wedge environments. Consolidation and permeability studies conducted to 165 MPa (~10km depth) indicate that ultra-tight clay formations (10-18 m2 to10-21 m2) can substantially modify the fluids migrating through then. Pore-water extractions conducted on smectite/illite rich core samples obtained from 1-3 km depths at IODP (NanTroSEIZE, Chikyu) deep-riser drilling Site C0002, at the elevated loads required to squeeze waters from such deeply buried sediment (stresses up to 100 MPa),resulted in anomalous patterns of sequential freshening with progressive loading. More accurate laboratory investigations (both incremental loading and Constant Rate of Strain test) revealed that such freshening initiates above 20 MPa and progresses with consolidation to become greater than 20% by effective normal load of 165 MPa. Log-log plots of stress vs. hydraulic conductivity reveal that trends remain linear to elevated stresses and total porosities as low at 14%. The implications are that stress induced smectite dehydration and/or membrane filtration effects cause remarkable changes in pore water chemistry with fluid migration through deep, tight, clay-rich formations. These changes should occur in addition to any thermally induced diagenetic and clay-dehydration effects on pore water chemistry. Work is progressing to evaluate the impact of clay composition and temperature to ascertain if purely illitic compositions show similar trends and if the mass fractionation of water and other isotopes also occurs. Such studies will ascertain if the presence of smectite is a prerequisite for freshening or if membrane filtration is a major process in earth systems containing common clay minerals. The results have major implications for interpretations of mass chemical balances, pore water profiles, and the hydrologic, geochemical, and stress state

  18. Changes in the renal handling of urea in sheep on a low protein diet exposed to saline drinking water.

    PubMed

    Meintjes, R A; Engelbrecht, H

    2004-09-01

    Previous trials have demonstrated that sheep on a low protein diet and free access to water, and sheep dosed with boluses of NaCl intraruminally also with free access to water, showed decreases in urea loss via the urine compared to control animals. We monitored urea excretion in sheep on a relatively poor protein diet when they were exposed to saline drinking water, i.e. they were unable to vary their intake of NaCl:water. Sheep on isotonic saline drinking water (phase 3) excreted significantly more urea via the urine (284 mM/day) compared to phase 1 when they were on non-saline drinking water (urea excretion = 230 mM/day) and phase 2 when they were on half isotonic saline drinking water (urea excretion = 244 mM/day). This finding was explained by the high glomerular filtration rate (GFR) 91.9 l/day, compared to 82.4 l/day (phase 1) and 77.9 l/day (phase 2), together with a significantly raised fractional excretion of urea (FEurea) (51.1 %) during this phase, and was in spite of the significantly lower plasma concentrations of urea in phase 3 compared to phase 1. The FEurea probably results from the osmotic diuresis caused by the salt. There were indications of a raised plasma antidiuretic hormone (ADH) concentration and this would have opposed urea loss, as ADH promotes urea reabsorption. However, this ADH effect was probably counteracted to some extent by a low plasma angiotensin II concentration, for which again there were indications, inhibiting urea reabsorption during the phases of salt loading. As atrial natriuretic peptide both increases GFR and decrease sodium reabsorption from the tubule, it was probably instrumental in causing the increase in GFR and the increase in the fractional excretion of sodium (FE(Na)).

  19. The exocytotic fusion pore modeled as a lipidic pore.

    PubMed Central

    Nanavati, C; Markin, V S; Oberhauser, A F; Fernandez, J M

    1992-01-01

    Freeze-fracture electron micrographs from degranulating cells show that the lumen of the secretory granule is connected to the extracellular compartment via large (20 to 150 nm diameter) aqueous pores. These exocytotic fusion pores appear to be made up of a highly curved bilayer that spans the plasma and granule membranes. Conductance measurements, using the patch-clamp technique, have been used to study the fusion pore from the instant it conducts ions. These measurements reveal the presence of early fusion pores that are much smaller than those observed in electron micrographs. Early fusion pores open abruptly, fluctuate, and then either expand irreversibly or close. The molecular structure of these early fusion pores is unknown. In the simplest extremes, these early fusion pores could be either ion channel like protein pores or lipidic pores. Here, we explored the latter possibility, namely that of the early exocytotic fusion pore modeled as a lipid-lined pore whose free energy was composed of curvature elastic energy and work done by tension. Like early exocytotic fusion pores, we found that these lipidic pores could open abruptly, fluctuate, and expand irreversibly. Closure of these lipidic pores could be caused by slight changes in lipid composition. Conductance distributions for stable lipidic pores matched those of exocytotic fusion pores. These findings demonstrate that lipidic pores can exhibit the properties of exocytotic fusion pores, thus providing an alternate framework with which to understand and interpret exocytotic fusion pore data. PMID:1420930

  20. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis.

    PubMed

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-02-15

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  2. Pre-Exercise Ingestion of Pickle Juice, Hypertonic Saline, or Water and Aerobic Performance and Thermoregulation

    PubMed Central

    Peikert, Jarett; Miller, Kevin C.; Albrecht, Jay; Tucker, Jared; Deal, James

    2014-01-01

    Context: Ingesting high-sodium drinks pre-exercise can improve thermoregulation and performance. Athletic trainers (19%) give athletes pickle juice (PJ) prophylactically for cramping. No data exist on whether this practice affects aerobic performance or thermoregulation. Objective: To determine if drinking 2 mL/kg body mass of PJ, hypertonic saline, or deionized water (DIW) pre-exercise affects aerobic performance or thermoregulation. Design: Crossover study. Setting: Controlled laboratory study. Patients or Other Participants: Nine euhydrated men (age = 22 ± 3 years, height = 184.0 ± 8.2 cm, mass = 82.6 ± 16.0 kg) completed testing. Intervention(s): Participants rested for 65 minutes. During this period, they ingested 2 mL/kg of PJ, hypertonic saline, or DIW. Next, they drank 5 mL/kg of DIW. Blood was collected before and after ingestion of all fluids. Participants were weighed and ran in the heat (temperature = 38.3°C ± 1°C, relative humidity = 21.1% ± 4.7%) at increasing increments of maximal heart rate (50%, 60%, 70%, 80%, 90%, 95%) until exhaustion or until rectal temperature exceeded 39.5°C. Participants were weighed postexercise so we could calculate sweat volume. Main Outcome Measure(s): Time to exhaustion, rectal temperature, changes in plasma volume, and sweat volume. Results: Time to exhaustion did not differ among drinks (PJ = 77.4 ± 5.9 minutes, hypertonic saline = 77.4 ± 4.0 minutes, DIW = 75.7 ± 3.2 minutes; F2,16 = 1.1, P = .40). Core temperature of participants was similar among drinks (PJ = 38.7°C ± 0.3°C, hypertonic saline = 38.7°C ± 0.4°C, DIW = 38.8°C ± 0.4°C; P = .74) but increased from pre-exercise (36.7°C ± 0.2°C) to postexercise (38.7°C ± 0.4°C) (P < .05). No differences were observed for changes in plasma volume or sweat volume among drinks (P > .05). Conclusions: Ingesting small amounts of PJ or hypertonic saline with water did not affect performance or select thermoregulatory measures. Drinking larger volumes of

  3. Pre-exercise ingestion of pickle juice, hypertonic saline, or water and aerobic performance and thermoregulation.

    PubMed

    Peikert, Jarett; Miller, Kevin C; Albrecht, Jay; Tucker, Jared; Deal, James

    2014-01-01

    Ingesting high-sodium drinks pre-exercise can improve thermoregulation and performance. Athletic trainers (19%) give athletes pickle juice (PJ) prophylactically for cramping. No data exist on whether this practice affects aerobic performance or thermoregulation. To determine if drinking 2 mL/kg body mass of PJ, hypertonic saline, or deionized water (DIW) pre-exercise affects aerobic performance or thermoregulation. Crossover study. Controlled laboratory study. Nine euhydrated men (age = 22 ± 3 years, height = 184.0 ± 8.2 cm, mass = 82.6 ± 16.0 kg) completed testing. Participants rested for 65 minutes. During this period, they ingested 2 mL/kg of PJ, hypertonic saline, or DIW. Next, they drank 5 mL/kg of DIW. Blood was collected before and after ingestion of all fluids. Participants were weighed and ran in the heat (temperature = 38.3°C ± 1°C, relative humidity = 21.1% ± 4.7%) at increasing increments of maximal heart rate (50%, 60%, 70%, 80%, 90%, 95%) until exhaustion or until rectal temperature exceeded 39.5°C. Participants were weighed postexercise so we could calculate sweat volume. Time to exhaustion, rectal temperature, changes in plasma volume, and sweat volume. Time to exhaustion did not differ among drinks (PJ = 77.4 ± 5.9 minutes, hypertonic saline = 77.4 ± 4.0 minutes, DIW = 75.7 ± 3.2 minutes; F2,16 = 1.1, P = .40). Core temperature of participants was similar among drinks (PJ = 38.7°C ± 0.3°C, hypertonic saline = 38.7°C ± 0.4°C, DIW = 38.8°C ± 0.4°C; P = .74) but increased from pre-exercise (36.7°C ± 0.2°C) to postexercise (38.7°C ± 0.4°C) (P < .05). No differences were observed for changes in plasma volume or sweat volume among drinks (P > .05). Ingesting small amounts of PJ or hypertonic saline with water did not affect performance or select thermoregulatory measures. Drinking larger volumes of PJ and water may be more effective at expanding the extracellular space.

  4. Estuarine Salinity Mapping From Airborne Radiometry

    NASA Astrophysics Data System (ADS)

    Walker, J. P.; Gao, Y.; Cook, P. L. M.; Ye, N.

    2016-12-01

    Estuaries are critical ecosystems providing both ecological habitat and human amenity including boating and recreational fishing. Salinity gradients, caused by the mixing of fresh and salt water, exert an overwhelming control on estuarine ecology and biogeochemistry as well as being a key tracer for model calibration. At present, salinity monitoring within estuaries typically uses point measurements or underway boat-based methods, which makes sensing of localised phenomena such as upwelling of saline bottom water difficult. This study has pioneered the use of airborne radiometry (passive microwave) sensing as a new method to remotely quantify estuarine salinity, allowing rapid production of high resolution surface salinity maps. The airborne radiometry mapping was conducted for the Gippsland Lakes, the largest estuary in Australia, in February, July, October and November of 2015, using the Polarimetric L-band Microwave Radiometer (PLMR). Salinity was retrieved from the brightness temperature collected by PLMR with results validated against boat sampling conducted concurrently with each flight. Results showed that the retrieval accuracy of the radiative transfer model was better than 5 ppt for most flights. The spatial, temporal and seasonal variations of salinity observed in this study are also analysed and discussed.

  5. Sulfur Isotope Fractionation in Marine Pore waters from the Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, T. L.; Chen, N. C.; Wang, B. S.; Lin, L. H.; Yang, T. F.; Chen, Y. G.; Shen, C. C.

    2017-12-01

    In this study, we selected two marine sediment cores, 474cm C11 and 252cm EN1, with different sulfate reduction rate due to anaerobic oxidation of methane (AOM) in offshore southwestern Taiwan, to clarify the regional sulfur biogeochemical process. Sulfur isotopic composition in pore waters was determined on a multi-collector inductively coupled mass spectrometer, Thermo NEPTUNE, with 2-sigma reproducibility of ±0.18‰. Our results show that correlation between δ34S values of 21.7-40.6‰ and 21.5-54.3‰, and sulfate contents of 7.1-26.6 and 1.2-27.6mM follows a closed system Rayleigh fractionation model above the sulfate-methane transition zone (SMTZ) at depths of 172.5 cm for core C11 and 212.5 cm for core EN1 below sea floor. At the SMTZ, δ34S reaches the summit of 40.6 ‰, followed by a decreasing trend to 16-20‰ at depth of 172.5-470.0 cm for core C11. Our results suggest that sulfur in pore fluids offshore southwestern Taiwan is controlled by multiple processes including microbial sulfate reduction, barite dissolution and clay dehydration.

  6. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.

    PubMed

    Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M

    2010-07-15

    The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.

  7. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  8. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  9. Last Glacial Maximum Salinity Reconstruction

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  10. The effects of saline water consumption on the ultrasonographic and histopathological appearance of the kidney and liver in Barki sheep.

    PubMed

    Ghanem, Mohamed; Zeineldin, Mohamed; Eissa, Attia; El Ebissy, Eman; Mohammed, Rasha; Abdelraof, Yassein

    2018-05-18

    The objective of this study was to evaluate the impact of varying degrees of water salinity on the ultrasonographical and histopathological appearance of the liver and kidneys in Barki sheep. Thirty Barki sheep (initial weight, 29.48 ± 0.81 kg) were allocated into three groups (n=10 per group) based on the type of drinking water for 9 months: the tap water (TW) group (350 ppm total dissolved solids [TDS]); the moderate saline water (MSW) group (4,557 ppm TDS); and the high saline water (HSW) group (8,934 ppm TDS). After 9 months, the body weight was significantly decreased in sheep subjected to MSW (P=0.0347) and HSW (P=0.0424). Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, and creatinine were significantly increased (P<0.05) in sheep subjected to MSW and HSW. Ultrasonographic examination of the right and left kidneys revealed an increased length of both kidneys with crystal formation, particularly in male sheep. Ultrasonographic examination of the liver showed hyperechogenic dots varying in size and number between males and females. Histopathological examination of kidney revealed significant changes in both MSW and HSW groups such as hyaline matrix formation, atrophied glomerular tufts, and intramedullary congestion. Histopathological examination of the liver revealed slight fatty liver changes, slight fibrosis around the bile duct, massive inflammatory cell infiltration and vacuolar changes of hepatocytes in both MSW and HSW groups. In conclusion, water salinity negatively affects the body weight, liver and kidney appearance of Barki sheep and thus sheep production.

  11. Subsurface low dissolved oxygen occurred at fresh- and saline-water intersection of the Pearl River estuary during the summer period.

    PubMed

    Li, Gang; Liu, Jiaxing; Diao, Zenghui; Jiang, Xin; Li, Jiajun; Ke, Zhixin; Shen, Pingping; Ren, Lijuan; Huang, Liangmin; Tan, Yehui

    2018-01-01

    Estuarine oxygen depletion is one of the worldwide problems, which is caused by the freshwater-input-derived severe stratification and high nutrients loading. In this study we presented the horizontal and vertical distributions of dissolved oxygen (DO) in the Pearl River estuary, together with temperature, salinity, chlorophyll a concentration and heterotrophic bacteria abundance obtained from two cruises during the summer (wet) and winter (dry) periods of 2015. In surface water, the DO level in the summer period was lower and varied greater, as compared to the winter period. The DO remained unsaturated in the summer period if salinity is <12 and saturated if salinity is >12; while in the winter period it remained saturated throughout the estuary. In subsurface (>5m) water, the DO level varied from 0.71 to 6.65mgL -1 and from 6.58 to 8.20mgL -1 in the summer and winter periods, respectively. Particularly, we observed an area of ~1500km 2 low DO zone in the subsurface water with a threshold of 4mgDOL -1 during this summer period, that located at the fresh- and saline-water intersection where is characterized with severe stratification and high heterotrophic bacteria abundance. In addition, our results indicate that spatial DO variability in surface water was contributed differently by biological and physio-chemical variables in the summer and winter periods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of pore-water samplers at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used innovative sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report evaluates a new type of pore-water sampler developed for this investigation to examine the subsurface contamination beneath the drainage ditch. The new type of pore-water sampler appears to be an effective approach for long-term monitoring of ground water in the sand and organic-rich mud beneath the drainage ditch.

  13. Integrated landslide monitoring: rainfalls, pore water pressures and surface movements

    NASA Astrophysics Data System (ADS)

    Berti, M.; Casula, G.; Elmi, C.; Fabris, M.; Ghirotti, M.; Loddo, F.; Mora, P.; Pesci, A.; Simoni, A.

    2003-04-01

    Rainfall-induced landslides involving clay-rich soils are widely represented in the Apennines. They cover up to 30% of the slopes forming the relief constituted by chaotic clayey units and are typically subject to repeated reactivations of the movement which are often triggered by a series of discrete failures located in the upper part (headscarp). Failures and movement can then propagate downslope and reactivate the whole landslide deposit which displays a typical elongated body, limited depth and a fan-shaped toe as a result of successive slow earth-flow like movements. An experimental monitoring programme was designed and is currently operating on the Rocca Pitigliana landslide whose characteristics well represent the above described type of movements. Its last parossistic movement date back to 1999 and, since then, remedial works were realized on behalf of local authorities. They basically consist of surficial and deep drainage works located on the landslide body. Experimental activities focus on the main headscarp whose morphology and sub-surface water circulation scheme were unaffected by the interventions. The monitoring approach includes measuring rainfalls and pore-pressure responses in both saturated and unsaturated soils. Surficial movements are continuously measured by means of GPS permanent stations and by wire extensometers which allow real time control of headscarp activity. Main aim of the monitoring activities is to provide experimental data, which can be used to test various existing hydrologic models and to identify triggering conditions. Since the ‘70s, many hydrologic models have been proposed to describe the pore water pressure distribution within the soil and its response to precipitation. The topic has recently drawn growing attention because of the recognized importance in landslide triggering but still experimental data are very much needed in order to obtain and validate capable predicting tools. This is mostly due to the multiple and

  14. Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity

    PubMed Central

    Järvå, Michael; Alm Rosenblad, Magnus; Pingitore, Piero; Karlsson, Emil; Wrange, Anna-Lisa; Kamdal, Emelie; Sundell, Kristina; André, Carl; Jonsson, Per R.; Havenhand, Jon; Eriksson, Leif A.; Hedfalk, Kristina; Blomberg, Anders

    2017-01-01

    Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU

  15. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; Kostka, Joel E.; Hanson, Paul; Chanton, Jeffrey P.

    2018-02-01

    We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone ( 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is

  16. Nebulized Isotonic Saline versus Water following a Laryngeal Desiccation Challenge in Classically Trained Sopranos

    ERIC Educational Resources Information Center

    Tanner, Kristine; Roy, Nelson; Merrill, Ray M.; Muntz, Faye; Houtz, Daniel R.; Sauder, Cara; Elstad, Mark; Wright-Costa, Julie

    2010-01-01

    Purpose: To examine the effects of nebulized isotonic saline (IS) versus sterile water (SW) on self-perceived phonatory effort (PPE) and phonation threshold pressure (PTP) following a surface laryngeal dehydration challenge in classically trained sopranos. Method: In a double-blind, within-subject crossover design, 34 sopranos breathed dry air…

  17. Chemical analyses of ground water for saline-water resources studies in Texas Coastal Plain stored in National Water Data Storage and Retrieval System

    USGS Publications Warehouse

    Taylor, R.E.

    1975-01-01

    Chemical analyses of 4,269 water samples from wells in 66 counties in Texas have been processed into the National Water Data Storage and Retrieval System by the Gulf Coast Hydrogeology Project of the U. S. Geological Survey. More than 65,000 chemical analyses of saline waters produced by oil test and production wells have been contributed to the project by major oil companies. The computerized tabulation and the computer-drawn map of the locations of sampling sites are the initial release of oil company, State, and Federal data in Texas Coastal Plain from the data bank.

  18. Dosimetric effects of saline- versus water-filled balloon applicators for IORT using the model S700 electronic brachytherapy source.

    PubMed

    Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang

    The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff  = 7.56) versus water (Z eff  = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. Major Cation, Carbon System and Trace Element Chemistry in Pore Waters from a Depth Transect of Cores on the Iberian Margin: Implications for Paleoproxies.

    NASA Astrophysics Data System (ADS)

    Greaves, M.; Elderfield, H.; Hodell, D. A.; Skinner, L. C.; Sevilgen, D.; Grauel, A. L.; de la Fuente, M.; Misra, S.

    2014-12-01

    A significant body of work exists on the chemistry of pore waters from DSDP and ODP drilling cores (e.g. Gieskes 1975; Sayles 1981) showing large gradients in sea salt cations and anions interpreted in terms of diagenetic reactions such as the formation of Mg-rich clays and dolomite formation (Higgins and Schrag, 2010). Another class of diagenetic reactions involves the breakdown of organic matter and trace element behaviour (Froelich et al., 1979). The translation of chemical gradients into fluxes requires estimates of pore water chemistry across the sea water - sediment surface boundary. Additionally, the use of the chemistry of benthic foraminiferal calcite for seawater paleochemistry requires estimation of the chemistry of pore waters which may differ from that of bottom seawater because of diagenetic reactions. In this work we have collected multi core samples from 10 core sites on cruise RRS James Cook JC089 on the southwest Iberian continental margin. Pore waters were extracted from the core surface and at 1 cm depth intervals down core (typically to ~40 cm depth) using Rhizon samplers and analysed for Alkalinity, DIC, ∂13C and Na, K, Mg, Ca, Li, Mn, Fe, Ba, B, Sr by atomic emission spectrophotometry as well as O2 penetration and pH by microelectrodes. This has allowed us to inspect chemical behavior at the bottom water - sediment interface. Some examples of results are a large gradient in ∂13C of DIC, the similarity of zero O2 penetration followed by an increase in Mn concentration and then decrease to zero, the similarity of Li to Mn and, in contrast to much DSDP/ODP work, Ca2+ and Mg2+both decrease with depth in pore waters near the sediment surface. References: Gieskes J.M. Annu. Rev. Earth Planet. Sci. 3, 433 (1975). Sayles F. L. Geochim. Cosmochim. Acta45, 1061 (1981). Higgins J.A. and D.P. Schrag. Geochim. Cosmochim. Acta.74, 5039 (2010). Froelich, P.N., et al., Geochim. Cosmochim. Acta. 43, 1075 (1979).

  20. Application of real rock pore-threat statistics to a regular pore network model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakibul, M.; Sarker, H.; McIntyre, D.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable

  1. Application of real rock pore-throat statistics to a regular pore network model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, M.R.; McIntyre, D.; Ferer, M.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable

  2. Batch experiments versus soil pore water extraction--what makes the difference in isoproturon (bio-)availability?

    PubMed

    Folberth, Christian; Suhadolc, Metka; Scherb, Hagen; Munch, Jean Charles; Schroll, Reiner

    2009-10-01

    Two approaches to determine pesticide (bio-)availability in soils (i) batch experiments with "extraction with an excess of water" (EEW) and (ii) the recently introduced "soil pore water (PW) extraction" of pesticide incubated soil samples have been compared with regard to the sorption behavior of the model compound isoproturon in soils. A significant correlation between TOC and adsorbed pesticide amount was found when using the EEW approach. In contrast, there was no correlation between TOC and adsorbed isoproturon when using the in situ PW extraction method. Furthermore, sorption was higher at all concentrations in the EEW method when comparing the distribution coefficients (K(d)) for both methods. Over all, sorption in incubated soil samples at an identical water tension (-15 kPa) and soil density (1.3 g cm(-3)) appears to be controlled by a complex combination of sorption driving soil parameters. Isoproturon bioavailability was found to be governed in different soils by binding strength and availability of sorption sites as well as water content, whereas the dominance of either one of these factors seems to depend on the individual composition and characteristics of the respective soil sample. Using multiple linear regression analysis we obtained furthermore indications that the soil pore structure is affected by the EEW method due to disaggregation, resulting in a higher availability of pesticide sorption sites than in undisturbed soil samples. Therefore, it can be concluded that isoproturon sorption is overestimated when using the EEW method, which should be taken into account when using data from this approach or similar batch techniques for risk assessment analysis.

  3. Chemical and Isotopic Characterization of Surface Water and Active Layer Pore Water in a Tundra Landscape, Barrow, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Heikoop, J. M.; Throckmorton, H.; Arendt, C. A.; Graham, D. E.; Wilson, C. J.; Wullschleger, S. D.

    2016-12-01

    Studies conducted in the Barrow Environmental Observatory as part of the Next Generation Ecosystem Experiment (NGEE) - Arctic have demonstrated significant chemical and isotopic variability in surface water and active layer pore water of polygonal terrain located between drained thaw lake basins (DTLBs). In this study, we report on chemical and isotopic variation at the broader landscape scale that includes different age DTLBs and associated drainages, extant thaw lakes, and interlake regions. Fingerprint diagrams of major elements show a broader range of variation at the landscape scale relative to polygonal terrain. ANOVA analysis suggests that many of the polygonal and broader landscape scale sites have similar chemistry, suggesting a reasonably high degree of hydrologic connectivity. The most significant site-specific differences include higher d18O and d2H, indicative of evaporative conditions, of surface and active layer water from an ancient (2000- 5500 BP) DTLB that comprises a shallow basin with no outlets. Significantly higher Cl, Ca, Fe, Mg, Na, As, Mn and Sr concentrations were also found in pore waters collected immediately above the frost table at two locations. The first location is a small drainage leading from an area of polygonal terrain into an adjacent slough, while the second is upgradient of the estuarine terminus of a drainage sourced from a medium-aged DTLB (50- 300 BP). Higher concentrations at the frost table suggests a mechanism related to periodic freezing and thawing of the transition zone above permafrost or permafrost degradation. Alternative conceptual models, including the presence of a marine signal or the influence of cryopegs (brine layers within permafrost), will also be considered. Characterization of present day Arctic hydrology and chemistry at different scales is important for Earth Systems Models and for predicting hydrogeochemical change associated with landscape evolution due to future permafrost degradation.

  4. Sediment-pore water interactions controlling cementation in the NanTroSEIZE drilling transects

    NASA Astrophysics Data System (ADS)

    Hong, W.; Spinelli, G. A.; Torres, M. E.

    2012-12-01

    One goal of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is to understand how changes in subducting sediment control the transition from aseismic to seismogenic behavior in subduction zones. In the sediment entering the Nankai subduction zone, dramatic changes in physical and chemical properties occur across a diagenetic boundary; they are thought to affect sediment strength and deformation. The dissolution of disseminated volcanic ash and precipitation of silica cement may be responsible for these changes in physical properties, but the mechanism controlling cementation was unclear (Spinelli et al., 2007). In this study, we used CrunchFlow (Steefel, 2009) to simulate chemical reactions and fluid flow through 1-D sediment columns at Integrated Ocean Drilling Program (IODP) sites on the incoming plate in Nankai Trough. The simulations include the thermodynamics and kinetics of sediment-water interactions, advection of pore water and sediment due to compaction, and multi-component diffusion in an accumulating sediment column. Key reactions in the simulations are: ash dissolution, amorphous silica precipitation and dissolution, and zeolite precipitation. The rate of ash decomposition was constrained using Sr isotope data of Joseph et al. (2012). Our model reproduces the distinct diagenetic boundary observed in sediment and pore water chemistry, which defines two zones. Above this boundary (zone 1), dissolved and amorphous silicate contents are high and the potassium concentration remains near seawater values or gradually decreases toward the boundary. Below the boundary, both dissolved and amorphous silicate content drop rapidly, concomitant with a decrease in dissolved potassium. Our model shows that these changes in the system are driven by formation of clinoptilolite in response to changes in pore fluid pH. The low pH values (<7.6) above the diagenetic boundary accelerate ash decomposition and maintain clinoptilolite slightly undersaturated. The

  5. Geochemical assessments and classification of coal mine spoils for better understanding of potential salinity issues at closure.

    PubMed

    Park, Jin Hee; Li, Xiaofang; Edraki, Mansour; Baumgartl, Thomas; Kirsch, Bernie

    2013-06-01

    Coal mining wastes in the form of spoils, rejects and tailings deposited on a mine lease can cause various environmental issues including contamination by toxic metals, acid mine drainage and salinity. Dissolution of salt from saline mine spoil, in particular, during rainfall events may result in local or regional dispersion of salts through leaching or in the accumulation of dissolved salts in soil pore water and inhibition of plant growth. The salinity in coal mine environments is from the geogenic salt accumulations and weathering of spoils upon surface exposure. The salts are mainly sulfates and chlorides of calcium, magnesium and sodium. The objective of the research is to investigate and assess the source and mobility of salts and trace elements in various spoil types, thereby predicting the leaching behavior of the salts and trace elements from spoils which have similar geochemical properties. X-ray diffraction analysis, total digestion, sequential extraction and column experiments were conducted to achieve the objectives. Sodium and chloride concentrations best represented salinity of the spoils, which might originate from halite. Electrical conductivity, sodium and chloride concentrations in the leachate decreased sharply with increasing leaching cycles. Leaching of trace elements was not significant in the studied area. Geochemical classification of spoil/waste defined for rehabilitation purposes was useful to predict potential salinity, which corresponded with the classification from cluster analysis based on leaching data of major elements. Certain spoil groups showed high potential salinity by releasing high sodium and chloride concentrations. Therefore, the leaching characteristics of sites having saline susceptible spoils require monitoring, and suitable remediation technologies have to be applied.

  6. Carbon isotope dynamics in the water column and surface sediments of marginal seas

    NASA Astrophysics Data System (ADS)

    Lipka, Marko; Liu, Bo; Schmiedinger, Iris; Böttcher, Michael E.

    2017-04-01

    The microbial mineralization of organic matter in marine sediments leads to the accumulation of dissolved inorganic carbon (DIC) and other metabolites into the interstitial waters. Pore water profiles sensitively reflect the zones of dominant biogeochemical processes, net trans-formation rates, and diffusive and advective transport of dissolved species across the sediment-water interface. They are controlled by different factors like sedimentology, bottom water currents and redox conditions, microbial activity, and the availability of electron acceptors/donors. The biogeochemical processes create steep gradients in DIC and its carbon isotope composition. One boundary condition for transport processes in the sediment is defined by the composition of the water column, which is under impact by physical mixing processes (e.g., salinity gradient; sediment-water exchange), biological activity and carbon dioxide exchange at the water-atmosphere interface. We present here the results of detailed biogeochemical investigations of vertical water column and pore water profiles from two brackish marginal seas: the Baltic Sea and the Black Sea. The water column on a transect between the North Sea and the southern Baltic Sea as well within the Black Sea were investigated on three cruises with RV MS Merian (MSM33, MSM50, MSM51). In addition, biogeochemical processes and associated element fluxes across the sediment-water interface were studied in key regions of Baltic Sea and Black Sea using pore water and sediment samples retrieved from sediment cores that were collected with a multi-coring device. Water samples were analyzed for metals, nutrients, and metabolites concentrations as well as stable carbon isotope composition of DIC to allow a modeling of steady-state transformation, volumetric transformation rates and element fluxes. The isotope composition of the dissolved inorganic carbon system shows a gradient between the North and the Baltic Sea, following the salinity during

  7. Depth distribution of sulfonamide antibiotics in pore water of an undisturbed loamy grassland soil.

    PubMed

    Burkhardt, Michael; Stamm, Christian

    2007-01-01

    Despite the concern raised by the detections of veterinary antibiotics like sulfonamides (SA) in the environment, their fate in soils is still not sufficiently understood. In a previous article, we demonstrated that manure may substantially influence losses of SA via runoff from soils. Here, we report on the effect of manure on SA availability in soil pore water. Three sulfonamides (sulfadimidine, sulfadiazine, sulfathiazole) and two tracers (bromide and Brilliant Blue) were either applied in manure or as aqueous solution on grassland plots. After 1 and 3 d contact time, the plots were irrigated with deionized water. One day after irrigation, soil cores were taken and profiles of pore water concentrations were determined. The median SA concentrations of the top layer on manured plots varied between 40 and 60 microg L(-1) and between 10 and 30 microg L(-1) on the controls. For the conservative tracer Br the mass recovery was about 60 to 75% and much lower for the SA (2 to 14%). Apparent distribution coefficients K(d,app) of the SA in the topsoil ranged between 3 and 15 L kg(-1) on the manured plots and between 30 to 35 kg L(-1) on the controls. Below the top layer, the concentration distribution showed a pattern typical for preferential flow. Locally, SA concentrations down to 30- to 50-cm depth were as high as in the top 5 cm with little effect of the two application matrices. In the topmost layer, the data indicate that 10 to 25% of sulfadimidine were transformed to its acetyl-metabolite.

  8. Surface and Active Layer Pore Water Chemistry from Ice Wedge Polygons, Barrow, Alaska, 2013-2014

    DOE Data Explorer

    David E. Graham; Baohua Gu; Elizabeth M. Herndon; Stan D. Wullschleger; Ziming Yang; Liyuan Liang

    2016-11-10

    This data set reports the results of spatial surveys of aqueous geochemistry conducted at Intensive Site 1 of the Barrow Environmental Observatory in 2013 and 2014 (Herndon et al., 2015). Surface water and soil pore water samples were collected from multiple depths within the tundra active layer of different microtopographic features (troughs, ridges, center) of a low-centered polygon (area A), high-centered polygon (area B), flat-centered polygon (area C), and transitional polygon (area D). Reported analytes include dissolved organic and inorganic carbon, dissolved carbon dioxide and methane, major inorganic anions, and major and minor cations.

  9. Isotope Geochemistry and Chronology of Offshore Ground Water Beneath Indian River Bay, Delaware

    USGS Publications Warehouse

    Böhlke, John Karl; Krantz, David E.

    2003-01-01

    detected by geophysical surveys beneath Indian River Bay represent lateral continuations of the active surficial nitrate-contaminated freshwater flow systems originating on land, but they do not indicate directly the magnitude of fresh ground-water discharge or nutrient exchange with the estuary. There is evidence that some of the terrestrial ground-water nitrate is reduced before discharging directly beneath the estuary. Local estuarine sediment-derived ammonium in saline pore water may be a substantial benthic source of nitrogen in offshore areas of the estuary.

  10. Distribution of Glass Eel by the Water Surface Salinity Using Landsat TM at Pelabuhan Ratu Bay, West Java

    NASA Astrophysics Data System (ADS)

    Irianto, D. S.; Supriatna; Pin, TjiongGiok

    2016-11-01

    Eel (Anguilla spp.) is consumed fish that has an important economic value, either for local or international market. Pelabuhanratu Bay is an area with big potential for supplying eel seed. One of important factor, which affect an eel existence, is salinity, because eel migrate from fresh water, brackish, and sea naturally although the otherwise so that need ways to describe the distribution of glass eel by the salinity. To find out the percentage of salinity, it obtained from Landsat 8 Imagery in year 2015 using salinity prediction of Algorithm Cimandiri. The research has been conducted at Cimandiri Estuary, Citepus Estuary, and Cimaja Estuary based on wet and dry months. The existence of glass eel which is obtained from the catch was occurs on dry month when the most catch was occurs at the edge of estuary. The catch is reduced if it's farther from the edge of estuary, at the beach towards the sea and the inside of the river mouth with the percentage of salinity towards the sea is increase while the percentage of salinity towards the river is decrease.

  11. Effects of intermediate wettability on entry capillary pressure in angular pores.

    PubMed

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima

    2016-07-01

    Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Trace Metal Distribution and Speciation in Pore Water of Hydrothermal Sediments From the Guaymas Basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Morales-Villafuerte, M.; Ortega-Osorio, A.; Wheat, G.; Seewald, J.

    2004-12-01

    Thirteen sediment cores were collected through out direct sampling with the MBARI/ ROV "Tiburon" in the southern trough of the Guaymas Basin in March 2003. Pore water samples from regular 2.5 cm intervals of sediment cores were extracted onboard by centrifugation. The supernatants were collected in clean polystyrene vials and stored at 4° C until analytical work on shore. Dissolved Fe, Mn, Cu, Pb, Zn and Ni concentrations in extracted fluid samples were analyzed by direct injection of atomic absorption spectrometry. Four zones in the hydrothermal field were classified according to their physical characteristics. A core located away from the influence of active vents was recovered as a background site. The second zone is characterized by low temperatures (4.2-80° C) and sediments saturated in hydrocarbons. Sulfides formation and higher temperatures (4-166° C) were observed in the third zone. Precipitation of carbonates on top of the sediment characterizes the fourth zone. Concentration of trace metals at the water-sediment interface appears to be the highest, probably due to metal precipitation from the hydrothermal plume, followed by diffusion into the pore water. A decrease in concentration is observed between 5-12 cm depth, suggesting that biological activity is consuming essential metals (zone of bioturbation). Metal concentrations in zones where sulfide phases are rich, exhibit smaller values in pore water (Fe=2.4-3.8 μ mol/kg, Cu=0.6-0.8 μ mol/kg, Pb=1.2-1.5 μ mol/kg, Zn=0.4-0.5 μ mol/kg and Ni= 3.4-4.4 μ mol/kg) relative to samples located at hydrocarbon sites (Fe= 2.7-11.4, Cu= 0.7-1.0 μ mol/kg, Pb= 1.2-2.2 μ mol/kg, Zn= 0.4-0.7 μ mol/kg and Ni= 3.4-5.2 μ mol/kg). At sulfide zones, pH and Eh conditions help to precipitate their stable sulfides as opposed to the hydrocarbon areas, where conditions are not favorable for sulfide formation due to the absence of H2S. In general, Fe concentrations in pore water are lower than that of Mn, very likely

  13. Investigation of the Effect of the Tortuous Pore Structure on Water Diffusion through a Polymer Film Using Lattice Boltzmann Simulations.

    PubMed

    Gebäck, Tobias; Marucci, Mariagrazia; Boissier, Catherine; Arnehed, Johan; Heintz, Alexei

    2015-04-23

    Understanding how the pore structure influences the mass transport through a porous material is important in several applications, not the least in the design of polymer film coatings intended to control drug release. In this study, a polymer film made of ethyl cellulose and hydroxypropyl cellulose was investigated. The 3D structure of the films was first experimentally characterized using confocal laser scanning microscopy data and then mathematically reconstructed for the whole film thickness. Lattice Boltzmann simulations were performed to compute the effective diffusion coefficient of water in the film and the results were compared to experimental data. The local porosities and pore sizes were also analyzed to determine how the properties of the internal film structure affect the water effective diffusion coefficient. The results show that the top part of the film has lower porosity, lower pore size, and lower connectivity, which results in a much lower effective diffusion coefficient in this part, largely determining the diffusion rate through the entire film. Furthermore, the local effective diffusion coefficients were not proportional to the local film porosity, indicating that the results cannot be explained by a single tortuosity factor. In summary, the proposed methodology of combining microscopy data, mass transport simulations, and pore space analysis can give valuable insights on how the film structure affects the mass transport through the film.

  14. Salinity: Electrical conductivity and total dissolved solids

    USDA-ARS?s Scientific Manuscript database

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  15. Saturation-dependent solute dispersivity in porous media: Pore-scale processes

    NASA Astrophysics Data System (ADS)

    Raoof, A.; Hassanizadeh, S. M.

    2013-04-01

    It is known that in variably saturated porous media, dispersion coefficient depends on Darcy velocity and water saturation. In one-dimensional flow, it is commonly assumed that the dispersion coefficient is a linear function of velocity. The coefficient of proportionality, called the dispersivity, is considered to depend on saturation. However, there is not much known about its dependence on saturation. In this study, we investigate, using a pore network model, how the longitudinal dispersivity varies nonlinearly with saturation. We schematize the porous medium as a network of pore bodies and pore throats with finite volumes. The pore space is modeled using the multidirectional pore-network concept, which allows for a distribution of pore coordination numbers. This topological property together with the distribution of pore sizes are used to mimic the microstructure of real porous media. The dispersivity is calculated by solving the mass balance equations for solute concentration in all network elements and averaging the concentrations over a large number of pores. We have introduced a new formulation of solute transport within pore space, where we account for different compartments of residual water within drained pores. This formulation makes it possible to capture the effect of limited mixing due to partial filling of the pores under variably saturated conditions. We found that dispersivity increases with the decrease in saturation, it reaches a maximum value, and then decreases with further decrease in saturation. To show the capability of our formulation to properly capture the effect of saturation on solute dispersion, we applied it to model the results of a reported experimental study.

  16. Determination of Irreducible Water Saturation from nuclear magnetic resonance based on fractal theory — a case study of sandstone with complex pore structure

    NASA Astrophysics Data System (ADS)

    Peng, L.; Pan, H.; Ma, H.; Zhao, P.; Qin, R.; Deng, C.

    2017-12-01

    The irreducible water saturation (Swir) is a vital parameter for permeability prediction and original oil and gas estimation. However, the complex pore structure of the rocks makes the parameter difficult to be calculated from both laboratory and conventional well logging methods. In this study, an effective statistical method to predict Swir is derived directly from nuclear magnetic resonance (NMR) data based on fractal theory. The spectrum of transversal relaxation time (T2) is normally considered as an indicator of pore size distribution, and the micro- and meso-pore's fractal dimension in two specific range of T2 spectrum distribution are calculated. Based on the analysis of the fractal characteristics of 22 core samples, which were drilled from four boreholes of tight lithologic oil reservoirs of Ordos Basin in China, the positive correlation between Swir and porosity is derived. Afterwards a predicting model for Swir based on linear regressions of fractal dimensions is proposed. It reveals that the Swir is controlled by the pore size and the roughness of the pore. The reliability of this model is tested and an ideal consistency between predicted results and experimental data is found. This model is a reliable supplementary to predict the irreducible water saturation in the case that T2 cutoff value cannot be accurately determined.

  17. Insights into the Groundwater Salinization Processes in Manas River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Jin, M.; Liu, Y.; Liang, X.

    2017-12-01

    Manas River Basin (MRB) is a typical mountains-oasis-desert inland basin in northwest China, where groundwater salinization is threatening the local water use and the environment, but the groundwater salinization process is not clear. Based on groundwater flow system analysis by integrating flow fields, hydrochemical and isotopic characteristics, a deuterium excess analytical method was used to quantitatively assess salinization mechanism and calculate the contribution ratios of evapoconcentration effect to the salinities. 73 groundwater samples and 11 surface water samples were collected from the basin. Hydrochemical diagrams and δD and δ18O compositions indicated that evapoconcentration, mineral dissolution and transpiration, increased the groundwater salinities (i.e. total dissolved solids). The results showed that the average contribution ratios of evapoconcentration effect to the increased salinities were 5.8% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the evapoconcentration effect increased the average groundwater loss from 7% to 29%. However, it only increased slight salinity (0 - 0.27 g/L), as determined from the deuterium excess signals. Minerals dissolution and anthropogenic activities are the major cause of groundwater salinization problem. The results revealed that fresh water in the rivers directly and quickly infiltrated the aquifers in the piedmont area with evapoconcentration affected weakly, and the fresh water interacted with the sediments and dissolved soluble minerals, subsequently increasing the salinities. Combined with the groundwater stable isotopic compositions and hydrochemical evolution, the relationships between δ18O and Cl and salinities reveal the soil evaporites leaching by the vertical recharge (irrigation return flow and channels leakage) mainly affect the groundwater salinization processes in the middle alluvial-diluvial plain and the desert land. The saline water

  18. Effects of pore-water ammonia on in situ survival and growth of juvenile mussels (Lampsilis cardium) in the St. Croix Riverway, Wisconsin, USA

    USGS Publications Warehouse

    Bartsch, M.R.; Newton, T.J.; Allran, J.W.; O'Donnell, J. A.; Richardson, W.B.

    2003-01-01

    We conducted a series of in situ tests to evaluate the effects of pore-water ammonia on juvenile Lampsilis cardium in the St. Croix River (WI, USA). Threats to this river and its associated unionid fauna have accelerated in recent years because of its proximity to Minneapolis-St. Paul, Minnesota, USA. In 2000, caged juveniles were exposed to sediments and overlying water at 12 sites for 10 d. Survival and growth of juveniles was significantly different between sediment (mean, 47%) and water column (mean, 86%) exposures; however, these effects were unrelated to pore-water ammonia. During 2001, juveniles were exposed to sediments for 4, 10, and 28 d. Pore-water ammonia concentrations ranged from 0.3 to 62.0 ??g NH3-NIL in sediments and from 0.5 to 140.8 ??g NH3-N/L within exposure chambers. Survival (mean, 45, 28, and 41% at 4, 10, and 28 d, respectively) and growth (range, 3-45 ??,m/d) of juveniles were highly variable and generally unrelated to ammonia concentrations. Although laboratory studies have shown unionids to be quite sensitive to ammonia, further research is needed to identify the route(s) of ammonia exposure in unionids and to understand the factors that contribute to the spatial variability of ammonia in rivers.

  19. Prediction of relative and absolute permeabilities for gas and water from soil water retention curves using a pore-scale network model

    NASA Astrophysics Data System (ADS)

    Fischer, Ulrich; Celia, Michael A.

    1999-04-01

    Functional relationships for unsaturated flow in soils, including those between capillary pressure, saturation, and relative permeabilities, are often described using analytical models based on the bundle-of-tubes concept. These models are often limited by, for example, inherent difficulties in prediction of absolute permeabilities, and in incorporation of a discontinuous nonwetting phase. To overcome these difficulties, an alternative approach may be formulated using pore-scale network models. In this approach, the pore space of the network model is adjusted to match retention data, and absolute and relative permeabilities are then calculated. A new approach that allows more general assignments of pore sizes within the network model provides for greater flexibility to match measured data. This additional flexibility is especially important for simultaneous modeling of main imbibition and drainage branches. Through comparisons between the network model results, analytical model results, and measured data for a variety of both undisturbed and repacked soils, the network model is seen to match capillary pressure-saturation data nearly as well as the analytical model, to predict water phase relative permeabilities equally well, and to predict gas phase relative permeabilities significantly better than the analytical model. The network model also provides very good estimates for intrinsic permeability and thus for absolute permeabilities. Both the network model and the analytical model lost accuracy in predicting relative water permeabilities for soils characterized by a van Genuchten exponent n≲3. Overall, the computational results indicate that reliable predictions of both relative and absolute permeabilities are obtained with the network model when the model matches the capillary pressure-saturation data well. The results also indicate that measured imbibition data are crucial to good predictions of the complete hysteresis loop.

  20. Adopting adequate leaching requirement for practical response models of basil to salinity

    NASA Astrophysics Data System (ADS)

    Babazadeh, Hossein; Tabrizi, Mahdi Sarai; Darvishi, Hossein Hassanpour

    2016-07-01

    Several mathematical models are being used for assessing plant response to salinity of the root zone. Objectives of this study included quantifying the yield salinity threshold value of basil plants to irrigation water salinity and investigating the possibilities of using irrigation water salinity instead of saturated extract salinity in the available mathematical models for estimating yield. To achieve the above objectives, an extensive greenhouse experiment was conducted with 13 irrigation water salinity levels, namely 1.175 dS m-1 (control treatment) and 1.8 to 10 dS m-1. The result indicated that, among these models, the modified discount model (one of the most famous root water uptake model which is based on statistics) produced more accurate results in simulating the basil yield reduction function using irrigation water salinities. Overall the statistical model of Steppuhn et al. on the modified discount model and the math-empirical model of van Genuchten and Hoffman provided the best results. In general, all of the statistical models produced very similar results and their results were better than math-empirical models. It was also concluded that if enough leaching was present, there was no significant difference between the soil salinity saturated extract models and the models using irrigation water salinity.

  1. Processes controlling the seasonal and spatial variations in sulfate profiles in the pore water of the sediments surrounding Qi'ao Island, Pearl River Estuary, Southern China

    NASA Astrophysics Data System (ADS)

    Wu, Zijun; Zhou, Huaiyang; Ren, Dezhang; Gao, Hang; Li, Jiangtao

    2015-04-01

    Marine sediments are the main sink for seawater sulfate and bacterial sulfate reduction is a major component of the global sulfur cycle. Nevertheless, the factors controlling sulfate reduction in the coastal estuary sediments that undergo spatial and temporal variations are still not fully understood. In this study, we measured the concentrations of SO42-, Cl-, CH4, and DIC, and the δ13C of DIC in the pore water of five sampling stations surrounding the Qi'ao Island, Pearl River Estuary, Southern China during the dry season in November 2011 and during the wet season in May 2012. The results showed that the dilution-mixing of the Pearl River with low-concentration sulfate significantly affects the downcore profiles of the sulfate concentrations in the pore water of these estuary sediments. During the wet season, the dilution-mixing of the layers from the top of the sediments to a depth of 14-18 cm occurred at the different sampling stations. In this layer, the sulfate reduction is not appreciable based on the plot of the pore water Cl- and SO42-. Below the dilution-mixing layers, however, sulfate reduction that is driven by the anaerobic oxidation of methane (AOM) occurs. In our comparison, it appeared that the AOM played more important role in the consumption of the pore water sulfate in May 2012 than in November 2011. Meanwhile, we observed a relatively good correlation (r2=0.64) between the depth of the sulfate-methane interface (SMI) and the sulfate concentration in the pore water of the top sediments in dry season, indicating that the pore water sulfate concentration appears to be a primary controlling factor for the depth of the SMI in this estuary. These results highlight the need for an integrated analysis of the hydrologically driven the variations in the sulfate profiles to improve our understanding of the biogeochemical cycling of C, Fe and S and their budgets in estuarine environments.

  2. Bioavailability of metals and toxicity identification of the sediment pore waters from Plow Shop Pond, Fort Devens, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jop, K.; Putt, A.; Shepherd, S.

    1995-12-31

    Plow Shop Pond is a shallow, 30-acre pond located at Fort Devens, Massachusetts. An ecological risk assessment was conducted at Plow Shop Pond as part of a remedial investigation. Preliminary analysis revealed high concentrations of arsenic, copper, chromium, lead, and mercury in the sediment. Therefore, a laboratory testing program was incorporated into this investigation to assess the toxicity of sediments to aquatic organisms. The screening testing program included short-term chronic exposure of Ceriodaphnia dubia to pore waters, 10-day exposures of Chironomus tentans and Hyalella azteca to bulk sediments and a bioaccumulation study with Lumbriculus variegatus. Survival and reproduction of C.more » dubia, growth of amphipods and reproduction of oligochaetes appeared to indicate sediment toxicity at some sites within the pond. Although high concentrations of arsenic, copper, mercury and lead were detected in the whole sediments and pore waters, the response could not be correlated to a particular element. Also, relatively low bioaccumulation of methyl mercury and high uptake of inorganic mercury was established for three sediment samples. To characterize and identify the source of toxicity, a toxicity identification evaluation program using sediments collected at several locations was performed. The pore water from these samples was used for fractionation coupled with a 10-day test using H. azteca. Survival and growth were evaluated as endpoints during the exposures. Partitioning of metals and their bioavailability was influenced primarily by organic carbon and AVS concentration. At least two constituents were responsible for the toxicity.« less

  3. Pore-scale investigation on stress-dependent characteristics of granular packs and the impact of pore deformation on fluid distribution

    DOE PAGES

    Yoon, Hongkyu; Klise, Katherine A.; Torrealba, Victor A.; ...

    2015-05-25

    Understanding the effect of changing stress conditions on multiphase flow in porous media is of fundamental importance for many subsurface activities including enhanced oil recovery, water drawdown from aquifers, soil confinement, and geologic carbon storage. Geomechanical properties of complex porous systems are dynamically linked to flow conditions, but their feedback relationship is often oversimplified due to the difficulty of representing pore-scale stress deformation and multiphase flow characteristics in high fidelity. In this work, we performed pore-scale experiments of single- and multiphase flow through bead packs at different confining pressure conditions to elucidate compaction-dependent characteristics of granular packs and their impactmore » on fluid flow. A series of drainage and imbibition cycles were conducted on a water-wet, soda-lime glass bead pack under varying confining stress conditions. Simultaneously, X-ray micro-CT was used to visualize and quantify the degree of deformation and fluid distribution corresponding with each stress condition and injection cycle. Micro-CT images were segmented using a gradient-based method to identify fluids (e.g., oil and water), and solid phase redistribution throughout the different experimental stages. Changes in porosity, tortuosity, and specific surface area were quantified as a function of applied confining pressure. Results demonstrate varying degrees of sensitivity of these properties to confining pressure, which suggests that caution must be taken when considering scalability of these properties for practical modeling purposes. Changes in capillary number with confining pressure are attributed to the increase in pore velocity as a result of pore contraction. Furthermore, this increase in pore velocity was found to have a marginal impact on average phase trapping at different confining pressures.« less

  4. Numerical Analysis of Ground-Water Flow and Salinity in the Ewa Area, Oahu, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Souza, William R.; Bolke, Edward I.; Bauer, Glenn R.

    1996-01-01

    The coastal plain in the Ewa area of southwestern Oahu, Hawaii, is part of a larger, nearly continuous sedimentary coastal plain along Oahu's southern coast. The coastal sediments are collectively known as caprock because they impede the free discharge of ground water from the underlying volcanic aquifers. The caprock is a layered sedimentary system consisting of interbedded marine and terrestrial sediments of both high and low permeability. Before sugarcane cultivation ended in late 1994, shallow ground water from the upper limestone unit, which is about 60 to 200 feet thick, was used primarily for irrigation of sugarcane. A cross-sectional ground-water flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in the Ewa area. Controls considered were: (1) overall caprock hydraulic conductivity, (2) stratigraphic variations of hydraulic conductivity in the caprock, and (3) recharge. In addition, the effects of a marina excavation were evaluated. Within the caprock, variations in hydraulic conductivity, caused by caprock stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of ground-water flow and the distribution of water levels and salinity. Model results also show that a reduction of recharge will result in increased salinity throughout the caprock with the greatest change in the upper limestone layer. In addition, the model indicates that excavation of an ocean marina will lower water levels in the upper limestone layer. Results of cross-sectional modeling confirm the general ground-water flow pattern that would be expected in the layered sedimentary system in the Ewa caprock. Ground-water flow is: (1) predominantly upward in the low-permeability sedimentary units, and (2) predominantly horizontal in the high-permeability sedimentary units.

  5. Treating nahcolite containing formations and saline zones

    DOEpatents

    Vinegar, Harold J

    2013-06-11

    A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.

  6. Measurement of variation in soil solute tracer concentration across a range of effective pore sizes

    USGS Publications Warehouse

    Harvey, Judson W.

    1993-01-01

    Solute transport concepts in soil are based on speculation that solutes are distributed nonuniformly within large and small pores. Solute concentrations have not previously been measured across a range of pore sizes and examined in relation to soil hydrological properties. For this study, modified pressure cells were used to measure variation in concentration of a solute tracer across a range of pore sizes. Intact cores were removed from the site of a field tracer experiment, and soil water was eluted from 10 or more discrete classes of pore size. Simultaneous changes in water content and unsaturated hydraulic conductivity were determined on cores using standard pressure cell techniques. Bromide tracer concentration varied by as much as 100% across the range of pore sizes sampled. Immediately following application of the bromide tracer on field plots, bromide was most concentrated in the largest pores; concentrations were lower in pores of progressively smaller sizes. After 27 days, bromide was most dilute in the largest pores and concentrations were higher in the smaller pores. A sharp, threefold decrease in specific water capacity during elution indicated separation of two major pore size classes at a pressure of 47 cm H2O and a corresponding effective pore diameter of 70 μm. Variation in tracer concentration, on the other hand, was spread across the entire range of pore sizes investigated in this study. A two-porosity characterization of the transport domain, based on water retention criteria, only broadly characterized the pattern of variation in tracer concentration across pore size classes during transport through a macroporous soil.

  7. Bilayer Deformation, Pores, and Micellation Induced by Oxidized Lipids.

    PubMed

    Boonnoy, Phansiri; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak

    2015-12-17

    The influence of different oxidized lipids on lipid bilayers was investigated with 16 individual 1 μs atomistic molecular dynamics (MD) simulations. Binary mixtures of lipid bilayers of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) and its peroxide and aldehyde products were performed at different concentrations. In addition, an asymmetrical short chain lipid, 1-palmitoyl-2-decanoyl-sn-glycero-3-phosphatidylcholine (PDPC), was used to compare the effects of polar/apolar groups in the lipid tail on lipid bilayer. Although water defects occurred with both aldehyde and peroxide lipids, full pore formation was observed only for aldehyde lipids. At medium concentrations the pores were stable. At higher concentrations, however, the pores became unstable and micellation occurred. Data analysis shows that aldehyde lipids' propensity for pore formation is due to their shorter and highly mobile tail. The highly polar peroxide lipids are stabilized by strong hydrogen bonds with interfacial water.

  8. Metal uptake of tomato and alfalfa plants as affected by water source, salinity, and Cd and Zn levels under greenhouse conditions.

    PubMed

    Gharaibeh, Mamoun A; Marschner, Bernd; Heinze, Stefanie

    2015-12-01

    Irrigation with wastewater is a promising option to improve crop yields and to reduce pressure on freshwater sources. However, heavy metal concentrations in wastewater may cause health concerns. A greenhouse pot experiment was conducted in order to determine cadmium (Cd) and zinc (Zn) concentrations in sandy soil and plant tissues of tomato (Lycopersicon esculentum L.) and alfalfa (Medicago sativa L.). A 2 × 2 × 4 × 2 factorial treatment arrangement was utilized. Two water sources, fresh (FW) or treated wastewater (TWW), at two salinity levels (1 and 3 dS m(-1)) containing different levels of Cd and Zn were used. Samples were collected after a 90-day growth period. It was observed that the growth of both plants was depressed at the highest metal level (L3). Metal accumulation in plant parts increased with the increase of metal concentration and salinity in irrigation water. At low salinity, water source was the main factor which controlled metal accumulation, whereas, at high salinity, chloride appeared to be the principal factor controlling metal uptake regardless of water source. Metal translocation from roots to shoots increased in TWW-irrigated plants, even in the controls. Tomatoes accumulated Cd up to and above critical levels safe for human consumption, even though Cd concentration in irrigation water did not exceed the current recommended values. Therefore, food production in sandy soils may well pose a health hazard when irrigated with TWW containing heavy metals. Complexation with dissolved organic compounds (DOC) in TWW may be to be the principal factor responsible for increased metal uptake and transfer at low salinity, thereby increasing the risk of heavy metal contamination of food and forage crops.

  9. pH controlled gating of toxic protein pores by dendrimers

    NASA Astrophysics Data System (ADS)

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K. G.; Maiti, Prabal K.

    2016-06-01

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent

  10. Impact of Inoculation Protocols, Salinity, and pH on the Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) and Survival of PAH-Degrading Bacteria Introduced into Soil

    PubMed Central

    Kästner, Matthias; Breuer-Jammali, Maren; Mahro, Bernd

    1998-01-01

    Degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of bacteria in soil was investigated by applying different inoculation protocols. The soil was inoculated with Sphingomonas paucimobilis BA 2 and strain BP 9, which are able to degrade anthracene and pyrene, respectively. CFU of soil bacteria and of the introduced bacteria were monitored in native and sterilized soil at different pHs. Introduction with mineral medium inhibited PAH degradation by the autochthonous microflora and by the strains tested. After introduction with water (without increase of the pore water salinity), no inhibition of the autochthonous microflora was observed and both strains exhibited PAH degradation. PMID:9435090

  11. Percolation Pore Network Study on the Residue Gas Saturation of Dry Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Tang, Y. B.; Zou, G. Y.; Jiang, K.; Li, M.

    2014-12-01

    We tried to model the effect of pore size heterogeneity and pore connectivity on the residue gas saturation for dry gas reservoir rocks. If we consider that snap-off does not exist and only piston displacement takes place in all pores with the same size during imbibition process, in the extreme case, the residue gas saturation will be equal to zero. Thus we can suppose that the residue gas saturation of dry rocks is mainly controlled by the pore size distribution. To verify the assumption, percolation pore networks (i.e., three-dimensional simple cubic (SC) and body-center cubic (BCC)) were used in the study. The connectivity and the pore size distribution in percolation pore network could be changed randomly. The concept of water phase connectivity zw(i.e., water coordination number) and gas phase connectivity zg (i.e., gas coordination number) was introduced here. zw and zg will change during simulation and can be estimated numerically from the results of simulations through gradually saturated networks by water. The Simulation results show that when zg less than or equal to 1.5 during water quasi - static imbibition, the gas will be trapped in rock pores. Network simulation results also shows that the residue gas saturation Srg follows a power law relationship (i.e.,Srg∝σrα, where σr is normalized standard deviation of the pore radius distribution, and exponent α is a function of coordination number). This indicates that the residue gas saturation has no explicit relationship with porosity and permeability as it should have in light of previous study, pore radius distribution is the principal factor in determining the residue gas saturation of dry reservoir rocks.

  12. Influence of salinity on the larval development of the fiddler crab Uca vocator (Ocypodidae) as an indicator of ontogenetic migration towards offshore waters

    NASA Astrophysics Data System (ADS)

    de Jesus de Brito Simith, Darlan; de Souza, Adelson Silva; Maciel, Cristiana Ramalho; Abrunhosa, Fernando Araújo; Diele, Karen

    2012-03-01

    Larvae of many marine decapod crustaceans are released in unpredictable habitats with strong salinity fluctuations during the breeding season. In an experimental laboratory study, we investigated the influence of seven different salinities (0, 5, 10, 15, 20, 25 and 30) on the survival and development time of fiddler crab zoea larvae, Uca vocator, from northern Brazilian mangroves. The species reproduces during the rainy season when estuarine salinity strongly fluctuates and often reaches values below 10 and even 5. Salinity significantly affected the survival rate and development period from hatching to megalopa, while the number of zoeal stages remained constant. In salinities 0 and 5, no larvae reached the second zoeal stage, but they managed to survive for up to 3 (average of 2.3 days) and 7 days (average of 5.1 days), respectively. From salinity 10 onwards, the larvae developed to the megalopal stage. However, the survival rate was significantly lower (5-15%) and development took more time (average of 13.5 days) in salinity 10 than in the remaining salinities (15-30). In the latter, survival ranged from 80-95% and development took 10-11 days. Given the 100% larval mortality in extremely low salinities and their increased survival in intermediate and higher salinities, we conclude that U. vocator has a larval `export' strategy with its larvae developing in offshore waters where salinity conditions are more stable and higher than in mangrove estuaries. Thus, by means of ontogenetic migration, osmotic stress and resulting mortality in estuarine waters can be avoided.

  13. Salinity Tolerance Turfgrass: History and Prospects

    PubMed Central

    Uddin, Md. Kamal; Juraimi, Abdul Shukor

    2013-01-01

    Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses. PMID:24222734

  14. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    NASA Astrophysics Data System (ADS)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  15. Management scenarios for the Jordan River salinity crisis

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2005-01-01

    Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Water and mineral relations of Atriplex canescens and A. cuneata on saline processed oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, S.G.

    1979-01-01

    Growth, mineral uptake and water relations of Atriplex canescens and A. cuneata, both native to the arid oil shale region of northeastern Utah, were studied in the greenhouse and laboratory as affected by various salinity levels and specific ions in processed oil shale. Salinity of the shale was manipulated by moistening leached processed oil shale to near field capacity (20% H/sub 2/O by weight) with solutions of shale leachate, sodium sulfate, magnesium sulfate or sodium chloride at equiosmotic concentrations ranging from 0 to -30 bars. Although shale salinity did not affect osmotic adjustment, zero turgor points of A. canescens becamemore » more negative with reductions in shale moisture percentage. Differences in plant growth due to differet ions in the soil solution could not be explained by effects on osmotic adjustment. However, greater growth of A. canescens in Na/sub 2/SO/sub 4/ treated than MgSO/sub 4/ treated leached shale was associated with greater leaf succulence, greater lamina lengths and lamina widths and lower diffusive leaf resistances. Potassium added to leached and unleached processed oil shale increased shoot and root biomass production, shoot/root ratio, leaf K content, and water use efficiency of a sodium-excluding Atriplex canescens biotype but did not increase growth of a sodium-accumulating biotype.« less

  17. Isotopic Composition of Methane and Inferred Methanogenic Substrates Along a Salinity Gradient in a Hypersaline Microbial Mat System

    NASA Astrophysics Data System (ADS)

    Potter, Elyn G.; Bebout, Brad M.; Kelley, Cheryl A.

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC δ13C values ranged from -6.7 to -13.5%, and DIC δ13C values ranged from -1.4 to -9.6%. These values were similar to previously reported values. The δ13C values of methane ranged from -49.6 to -74.1%; the methane most enriched in 13C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  18. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system.

    PubMed

    Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  19. Salinity management in the Rio Grande Bosque

    Treesearch

    Jan M. H. Hendrickx; J. Bruce J. Harrison; Jelle Beekma; Graciela Rodriguez-Marin

    1999-01-01

    This paper discusses management options for salinity control in the Rio Grande Bosque. First, salt sources are identified and quantified. Capillary rise of ground water is the most important cause for soil salinization in the bosque. Next, a riparian salt balance is presented to explain the different mechanisms for soil salinization. Finally, the advantages and...

  20. Salinity of the ground water in western Pinal County, Arizona

    USGS Publications Warehouse

    Kister, Lester Ray; Hardt, W.F.

    1966-01-01

    The chemical quality of the ground water in western Pinal County is nonuniform areally and stratigraphically. The main areas of highly mineralized water are near Casa Grande and near Coolidge. Striking differences have been noted in the quality of water from different depths in the same well. Water from one well, (D-6-7) 25cdd, showed an increase in chloride content from 248 ppm (parts per million) at 350 feet below the land surface to 6,580 ppm at 375 feet; the concentration of chloride increased to 10,400 ppm at 550 feet below the land surface. This change was accompanied by an increase in the total dissolved solids as indicated by conductivity measurements. The change in water quality can be correlated with sediment types. The upper and lower sand and gravel units seem to yield water of better quality than the intermediate silt and clay unit. In places the silt and clay unit contains zones of gypsum and common table salt. These zones yield water that contains large amounts of the dissolved minerals usually associated with water from playa deposits. Highly mineralized ground water in an area near Casa Grande has moved southward and westward as much as 4 miles. Similar water near Coolidge has moved a lesser distance. Good management practices and proper use of soil amendments have made possible the use of water that is high in salinity and alkali hazard for agricultural purposes in western Pinal County. The fluoride content of the ground water in western Pinal County is usually low; however, water from wells that penetrate either the bedrock or unconsolidated sediments that contain certain volcanic rocks may have as much as 9 ppm of fluoride.

  1. Comparison between monitored and modeled pore water pressure and safety factor in a slope susceptible to shallow landslides

    NASA Astrophysics Data System (ADS)

    Bordoni, Massimiliano; Meisina, Claudia; Zizioli, Davide; Valentino, Roberto; Bittelli, Marco; Chersich, Silvia

    2014-05-01

    Shallow landslides can be defined as slope movements affecting superficial deposits of small thicknesses which are usually triggered due to extreme rainfall events, also very concentrated in time. Shallow landslides are hazardous phenomena: in particular, if they happen close to urbanized areas they could cause significant damages to cultivations, structures, infrastructures and, sometimes, human losses. The triggering mechanism of rainfall-induced shallow landslides is strictly linked with the hydrological and mechanical responses of usually unsaturated soils to rainfall events. For this reason, it is fundamental knowing the intrinsic hydro-mechanical properties of the soils in order to assess both susceptibility and hazard of shallow landslide and to develop early-warning systems at large scale. The hydrological data collected by a 20 months monitoring on a slope susceptible to shallow landslides in an area of the North -Eastern Oltrepo Pavese (Northern Apennines, Italy) were used to identify the hydrological behaviors of the investigated soils towards rainfall events. Field conditions under different rainfall trends have also been modeled by using both hydrological and physically-based stability models for the evaluation of the slope safety factor . The main objectives of this research are: (a) to compare the field measured pore water pressures at different depths with results of hydrological models, in order to evaluate the efficiency of the tested models and to determine how precipitations affect pore pressure development; (b) to compare the time trends of the safety factor that have been obtained by applying different stability models; (c) to evaluate, through a sensitivity analysis, the effects of soil hydrological properties on modeling pore water pressure and safety factor. The test site slope where field measurements were acquired is representative of other sites in Northern Apennines affected by shallow landslides and is characterized by medium

  2. Saline contamination of soil and water on Pawnee tribal trust land, eastern Payne County, Oklahoma

    USGS Publications Warehouse

    Runkle, Donna L.; Abbott, Marvin M.; Lucius, Jeffrey E.

    2001-01-01

    The Bureau of Land Management reported evidence of saline contamination of soils and water in Payne County on Pawnee tribal trust land. Representatives of the Bureau of Land Management and U.S. Geological Survey inspected the site, in September 1997, and observed dead grass, small shrubs, and large trees near some abandoned oil production wells, a tank yard, an pit, and pipelines. Soil and bedrock slumps and large dead trees were observed near a repaired pipeline on the side of the steep slope dipping toward an unnamed tributary of Eagle Creek. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, initiated an investigation in March 1998 to examine soil conductance and water quality on 160 acres of Pawnee tribal trust land where there was evidence of saline contamination and concern about saline contamination of the Ada Group, the shallowest freshwater aquifer in the area. The proximity of high specific conductance in streams to areas containing pipeline spill, abandoned oil wells, the tank yard, and the pit indicates that surface-water quality is affected by production brines. Specific conductances measured in Eagle Creek and Eagle Creek tributary ranged from 1,187 to 10,230 microsiemens per centimeter, with the greatest specific conductance measured downgradient of a pipeline spill. Specific conductance in an unnamed tributary of Salt Creek ranged from 961 to 11,500 microsiemens per centimeter. Specific conductance in three ponds ranged from 295 to 967 microsiemens per centimeter, with the greatest specific conductance measured in a pond located downhill from the tank yard and the abandoned oil well. Specific conductance in water from two brine storage pits ranged from 9,840 to 100,000 microsiemens per centimeter, with water from the pit near a tank yard having the greater specific conductance. Bartlesville brine samples from the oil well and injection well have the greatest specific conductance, chloride concentration, and dissolved

  3. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.

  4. Arsenic geochemistry of alluvial sediments and pore waters affected by mine tailings along the Belle Fourche and Cheyenne River floodplains

    USGS Publications Warehouse

    Pfeifle, Bryce D.; Stamm, John F.; Stone, James J.

    2018-01-01

    Gold mining operations in the northern Black Hills of South Dakota resulted in the discharge of arsenopyrite-bearing mine tailings into Whitewood Creek from 1876 to 1977. Those tailings were transported further downstream along the Belle Fourche River, the Cheyenne River, and the Missouri River. An estimated 110 million metric tons of tailings remain stored in alluvial deposits of the Belle Fourche and Cheyenne Rivers. Pore-water dialysis samplers were deployed in the channel and backwaters of the Belle Fourche and Cheyenne Rivers to determine temporal and seasonal changes in the geochemistry of groundwater in alluvial sediments. Alluvial sediment adjacent to the dialysis samplers were cored for geochemical analysis. In comparison to US Environmental Protection Agency drinking water standards and reference concentrations of alluvial sediment not containing mine tailings, the Belle Fourche River sites had elevated concentrations of arsenic in pore water (2570 μg/L compared to 10 μg/L) and sediment (1010 ppm compared to < 34 ppm), respectively. Pore water arsenic concentration was affected by dissolution of iron oxyhydroxides under reducing conditions. Sequential extraction of iron and arsenic from sediment cores indicates that substantial quantities of soluble metals were present. Dissolution of arsenic sorbed to alluvial sediment particles appears to be affected by changing groundwater levels that cause shifts in redox conditions. Bioreductive processes did not appear to be a substantial transport pathway but could affect speciation of arsenic, especially at the Cheyenne River sampling sites where microbial activity was determined to be greater than at Belle Fourche sampling sites.

  5. Low salinity hydrocarbon water disposal through deep subsurface drip irrigation: leaching of native selenium

    USGS Publications Warehouse

    Bern, Carleton R.; Engle, Mark A.; Boehlke, Adam R.; Zupancic, John W.; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    A subsurface drip irrigation system is being used in Wyoming’s Powder River Basin that treats high sodium, low salinity, coal bed methane (CBM) produced water with sulfuric acid and injects it into cropped fields at a depth of 0.92 m. Dissolution of native gypsum releases calcium that combats soil degradation that would otherwise result from high sodium water. Native selenium is leached from soil by application of the CBM water and traces native salt mobilization to groundwater. Resulting selenium concentrations in groundwater at this alluvial site were generally low (0.5–23 μg/L) compared to Wyoming’s agricultural use suitability standard (20 μg/L).

  6. Jerusalem artichoke (Helianthus tuberosus, L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters

    USDA-ARS?s Scientific Manuscript database

    The scarcity of good quality water in semiarid regions of the world is the main limiting factor for increased irrigated agriculture in those regions. Saline water is generally widely available in arid regions at reduced costs, and can be a viable alternative for crop irrigation. However, the literat...

  7. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    NASA Astrophysics Data System (ADS)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  8. Geohydrology and Potential for Upward Movement of Saline Water in the Cocoa Well Field, East Orange County, Florida

    DTIC Science & Technology

    1996-01-01

    11 8. Map showing chloride concentration in water from the Upper...not move upward. Upconing of saline water probably is not taking place in the center and western part of the well field, based on the low vertical...zone of low hydraulic conductivity, based on the geophysical logs of well R (fig. 5). Chloride concentrations increase sharply in water from both

  9. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    NASA Astrophysics Data System (ADS)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  10. Indigenous Halomonas spp., the Potential Nitrifying Bacteria for Saline Ammonium Waste Water Treatment.

    PubMed

    Sangnoi, Yutthapong; Chankaew, Sunipa; O-Thong, Sompong

    2017-01-01

    Toxic nitrogen compounds are one cause decreasing of shrimp production and water pollution. Indigenous Halomonas spp., isolated from Pacific white shrimp farm are benefitted for saline ammonium waste water treatment. This study aimed to isolate the heterotrophic-halophilic Halomonas spp. and investigate their ammonium removal efficiency. Halomonas spp., were isolated by culturing of samples collected from shrimp farm into modified Pep-Beef-AOM medium. Ammonium converting ability was tested and monitored by nitrite reagent. Ammonium removal efficiency was measured by the standard colorimetric method. Identification and classification of Halomonas spp., were studied by morphological, physiological and biochemical characteristics as well as molecular information. There were 5 strains of heterotrophic-halophilic nitrifying bacteria including SKNB2, SKNB4, SKNB17, SKNB20 and SKNB22 were isolated. The identification result based on 16S rRNA sequence analysis indicated that all 5 strains were Halomonas spp., with sequence similarity values of 91-99 %. Ammonium removal efficiency of all strains showed a range of 23-71%. The production of nitrite was low detected of 0.01-0.15 mg-N L-1, while the amount of nitrate was almost undetectable. This might suggest that the indigenous Halomonas spp., as nitrifying bacteria involved biological nitrification process for decreasing and transforming of ammonia. Due to being heterotrophic, halophilic and ammonium removing bacteria, these Halomonas spp., could be developed for use in treatment of saline ammonium waste water.

  11. Reduction effect of surface temperature of baked bricks with different pore shapes during absorption-evaporation test

    NASA Astrophysics Data System (ADS)

    Oguchi, Chiaki T.; Shinozuka, Katsumi

    2017-04-01

    To study the effect of decreasing in surface temperature of baked bricks with various pore shapes, the present study performed several experiments such as water absorbance test and heating test. For the preparation of experimental specimens, bricks with artificial spherical pores, artificial linear pores and non-additional artificial pores were made. The bricks were examined their properties of bulk density, Equotip hardness and absorbing properties by putting in the water. Wet bricks were also put in the incubator set at 50 °C, and monitored the increasing of surface temperature of each brick. Brick with linear pores shows higher water absorption rate in a short time than those with spherical pores. They evaporated moisture faster than those with a spherical pores. They kept the temperature by 11.7 °C lower than the setting temperature, whereas the bricks with a spherical pores kept the temperature by 10.5 °C . Bricks with linear pores has about 10% higher effectiveness of decreasing in surface temperature than those with spheroidal pores.

  12. Effects of pore-water ammonia on in situ survival and growth of juvenile mussels (Lampsilis cardium) in the St. Croix Riverway, Wisconsin, USA

    USGS Publications Warehouse

    Bartsch, Michelle; Newton, Teresa J.; Allran, John W.; O'Donnell, Jonathan A.; Richardson, William B.

    2003-01-01

    We conducted a series of in situ tests to evaluate the effects of pore-water ammonia on juvenile Lampsilis cardium in the St. Croix River (WI, USA). Threats to this river and its associated unionid fauna have accelerated in recent years because of its proximity to Minneapolis-St. Paul, Minnesota, USA. In 2000, caged juveniles were exposed to sediments and overlying water at 12 sites for 10 d. Survival and growth of juveniles was significantly different between sediment (mean, 47%) and water column (mean, 86%) exposures; however, these effects were unrelated to pore-water ammonia. During 2001, juveniles were exposed to sediments for 4, 10, and 28 d. Pore-water ammonia concentrations ranged from 0.3 to 62.0 μg NH3-N/L in sediments and from 0.5 to 140.8 μg NH3-N/L within exposure chambers. Survival (mean, 45, 28, and 41% at 4, 10, and 28 d, respectively) and growth (range, 3-45 μm/d) of juveniles were highly variable and generally unrelated to ammonia concentrations. Although laboratory studies have shown unionids to be quite sensitive to ammonia, further research is needed to identify the route(s) of ammonia exposure in unionids and to understand the factors that contribute to the spatial variability of ammonia in rivers.

  13. Evidence for Enhanced Matrix Diffusion in Geological Environment

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu

    2013-01-01

    Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.

  14. Salinity impact on yield, water use, mineral and essential oil content of fennel (Foeniculum vulgare Mill.)

    USDA-ARS?s Scientific Manuscript database

    The experimental study was carried out to determine the effects of salinity on water consumption, plant height, fresh and seed yields, biomass production, ion accumulation and essential oil content of fennel (Foeniculum vulgare Mill.) under greenhouse conditions. The experiment was conducted with a ...

  15. A pore-level scenario for the development of mixed-wettability in oil reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovscek, A.R.; Wong, H.; Radke, C.J.

    Understanding the role of thin films in porous media is vital if wettability is to be elucidated at the pore level. The type and thickness of films coating pore walls determines reservoir wettability and whether or not reservoir rock can be altered from its initial state of wettability. Pore shape, especially pore wall curvature, is an important factor in determining wetting-film thicknesses. Yet, pore shape and the physics of thin wetting films are generally neglected in models of flow in porous rocks. This paper incorporates thin-film forces into a collection of star-shaped capillary tubes model to describe the geological developmentmore » of mixed-wettability in reservoir rock. Here, mixed-wettability refers to continuous and distinct oil and water-wetting surfaces coexisting in the porous medium. The proposed model emphasizes the remarkable role of thin films. New pore-level fluid configurations arise that are quite unexpected. For example, efficient water displacement of oil (i.e, low residual oil saturation) characteristic of mixed-wettability porous media is ascribed to interconnected oil lenses or rivulets which bridge the walls adjacent to a pore corner. Predicted residual oil saturations are approximately 35 % less in mixed-wet rock compared to completely water-wet rock. Calculated capillary pressure curves mimic those of mixed-wet porous media in the primary drainage of water, imbibition of water, and secondary drainage modes. Amott-Harvey indices range from {minus}0.18 to 0.36 also in good agreement with experimental values. (Morrow et al, 1986; Judhunandan and Morrow, 1991).« less

  16. Seasonal and Downslope Changes in the Pore Water Geochemistry of Tundra Soils Near Nome, Alaska

    NASA Astrophysics Data System (ADS)

    Philben, M. J.; Zheng, J.; Wullschleger, S. D.; Graham, D. E.; Gu, B.

    2017-12-01

    Thawing permafrost is exposing vast stores of organic matter to decomposition in previously frozen tundra soils. In low-relief and poorly drained areas, the complexity of microbial metabolism under anaerobic conditions complicates the prediction of resulting CO2 and CH4 emissions. To improve this understanding, we investigated the dissolved gas and major ion concentrations and DOM composition in depth profiles of soil pore water collected from the Teller Road site near Nome, AK, as part of the Next Generation Ecosystem Experiment (NGEE)-Arctic. Pathways of anaerobic organic matter degradation were inferred based on two complementary approaches: first, we compared the composition of soil pore waters of saturated areas in the peat plateau and the base of the hillslope, collected early and late in the thaw season (July and September) to assess seasonal changes in the soil solution chemistry. CH4 and low molecular weight organic acids (e.g., acetate, formate, and propionate) were both near or below the detection limit in July but accumulated later in the season. In contrast, SO42- and Fe(III) concentrations were high in July and low in September, while Fe(II) was higher in September. These results suggest SO42- and Fe(III) reduction were the primary pathways for anaerobic respiration early in the thaw season, while methanogenesis increased in September as labile organic acids accumulated. Second, we assessed the change in DOM composition in a transect of piezometers, capturing the degradation of organic matter during transport down a hillslope. The DOC concentration did not change, but SUVA254 declined and the organic acid concentration increased downslope. In addition, Fourier-transform infrared spectroscopy indicated the ratio of carboxyl to amide and aromatic functional groups increased downslope. These parameters show that although there was no net loss of DOC along the transect, it was transformed to less aromatic and potentially more labile forms. Together, these

  17. Responses of the brackish-water amphipod Gammarus duebeni (crustacea) to saline sewage

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Johnson, I.

    Soon after the openiing of the Looe sewage treatment works (Cornwall, southwest England) in 1973, it became colonized by the brackish-water amphipod Gammarus duebeni Liljeborg. The works is unusual as it operates with saline sewage and has a tidally-based pattern of salinity fluctuation (S=13 to 34). Various responses of this unique amphipod population (sewage amphipods) have been compared with G. duebeni from the adjacent Looe River estuary (estuarine amphipods) in an attempt to identify long-term responses to sewage. Sewage amphipods were significantly smaller than their estuarine equivalents; the sewage population was biased significantly to males, whereas the sex ratio of the estuarine population significantly favours females. Compared with the estuary, the consistently lower oxygen levels in the works were reflected in significant differences in metabolism. Sewage amphipods maintained high levels of activity under hypoxia ( e.g. swimming), and the higher survival and lower rates of lactic acid accumulation under anoxia than estuarine individuals. In addition, sewage amphipods recovered more rapidly from anoxia and had a lower critical oxygen tension (p c) than estuarine amphipods. Sewage amphipods are exposed to higher levels of heavy metals associated with the domestic sewage and zinc concentrations are particularly elevated in the works. Exposure to elevated zinc concentrations resulted in similar patterns of body zinc uptake for sewage and estuarine Gammarus at high (30) and low (10) salinity, with zinc regulation apparently occuring to an external threshold of 200 γmgZn·dm -3. No consistent interpopulational differences in the effect ofzinc on zinc uptake or on osmoregulation have been identified. However, sewage amphipods had higher survival at all zinc/salinity combinations compared with estuarine individuals. These indicate that sewage amphipods are adapted to the unusual combination of conditions prevailing in the treatment works and, if reproductive

  18. Effects Of Bedrock Shape And Hillslope Gradient On The Pore-Water Pressure Development: Implication For Slope Stability

    NASA Astrophysics Data System (ADS)

    Lanni, Cristiano; McDonnell, Jeff

    2010-05-01

    Shallow Landslides are one of the most important causes of loss of human life and socio-economic damage related to the hydro-geological risk issues. The danger of these phenomena is related to their speed of development, the diffculty of foreseeing their location, and the high density of individual phenomena, whose downhill trajectories have a relevant probability of interfering with urbanized areas. Research activity on precipitation-induced landslides has focused mainly on developing predictive understanding of where and when landslides are likely to occur. Nevertheless, some major aspects that may be related to activation of landslides have been poorly investigated. For instance, landslide susceptibility zones are generally predicted assuming constant thickness of soil over an impervious bedrock layer. Nevertheless, recent studies showed subsurface topography could be a first order control for subsurface water-flow dynamics, because of the effects of its own irregular shape. Tromp-van Meerveld and McDonnell (2006) argued that connectivity of patches of transient saturation were a necessary prerequisite for exceeding the rainfall threshold necessary to drive lateral flow. Connectivity - "how the hillslope architecture controls the filling and spilling of isolated patches of saturation" (Hopp and McDonnell, 2009) - appears to be a possible unifying concept and theoretical platform for moving hillslope and watershed hydrology forward. Connectivity could also have important implications on triggering of shallow landslides, because the particular shape of bedrock may limit the water-flow downhill. Here we present a number of virtual numerical experiments performed to investigate the role of bedrock shape and hillslope gradient on pore-water pressure development. On this purpose, our test is represented by the subsurface topography of the Panola Experiment Hillslope (PEH). That is because scientific literature on PEH provides substantial documentation about the role

  19. Effect of Saline Water Irrigation on Growth and Physiological Responses of Three Rose Rootstocks

    PubMed Central

    Niu, Genhua; Rodriguez, Denise S.; Aguiniga, Lissie

    2009-01-01

    Salt-tolerant landscape plants are needed for arid and semiarid regions where the supply of quality water is limited and soil salinization often occurs. This study evaluated growth, chloride (Cl) and sodium (Na) uptake, relative chlorophyll content, and chlorophyll fluorescence of three rose rootstocks [Rosa ×fortuniana Lindl., R. multiflora Thunb., and R. odorata (Andr.) Sweet] irrigated with saline solutions at 1.6 (control), 3.0, 6.0, or 9.0 dS·m −1 electrical conductivity in a greenhouse. After 15 weeks, most plants in 9.0 dS·m −1 treatment died regardless of rootstock. Significant growth reduction was observed in all rootstocks at 6.0 dS·m −1 compared with the control and 3.0 dS·m −1, but the reduction in R. ×fortuniana was smaller than in the other two rootstocks. The visual scores of R. multiflora at 3.0 and 6.0 dS·m−1 were slightly lower than those of the other rootstocks. Rosa odorata had the highest shoot Na concentration followed by R. multiflora; however, R. multiflora had the highest root Na concentration followed by R. odorata. All rootstocks had higher Cl accumulation in all plant parts at elevated salinities, and no substantial differences in Cl concentrations in all plant parts existed among the rootstocks, except for leaf Cl concentration in R. multiflora, which was higher than those in the other two rootstocks. The elevated salinities of irrigation water reduced the relative chlorophyll concentration, measured as leaf SPAD readings, and maximal photochemical efficiency of photosystem II (PSII) and minimal fluorescence (F0)/maximum fluorescence (Fv/Fm), but the largest reduction in Fv/Fm was only 2.4%. Based on growth and visual quality, R. ×fortuniana was relatively more salt-tolerant than the other two rootstocks and R. odorata was slightly more salt-tolerant than R. multiflora. PMID:20148186

  20. Salinity in the Colorado River in the Grand Valley, western Colorado, 1994-95

    USGS Publications Warehouse

    Butler, David L.; von Guerard, Paul B.

    1996-01-01

    Salinity, or the dissolved-solids concentration, is the measure of salts such as sodium chloride, calcium bicarbonate, and calcium sulfate that are dissolved in water. About one-half of the salinity in the Colorado River Basin is from natural sources (U.S. Department of the Interior, 1995), such as thermal springs in the Glenwood-Dotsero area, located about 90 miles upstream from Grand Junction (fig. 1). Effects of human activities, such as irrigation, reservoir evaporation, and transbasin diversions, have increased the levels of salinity in the Colorado River. High salinity can affect industrial and municipal water users by causing increased water-treatment costs, increased deterioration of plumbing and appliances, increased soap needs, and undesirable taste of drinking water. High salinity also can cause lower crop yields by reducing water and nutrient uptake by plants and can increase agricultural production costs because of higher leaching and drainage requirements. Agricultural losses might occur when salinity reaches about 700?850 milligrams per liter (U.S Department of the Interior, 1994). Figure 1. Irrigated area in the Grand Valley and locations of sampling sites for the 1994?95 salinity study of the Colorado River. The Colorado River is the major source of irrigation water to the Grand Valley (fig. 1) and also is one source of water for the Clifton Water District, which supplies domestic water to part of the eastern Grand Valley. During spring and early summer in 1994, the Colorado River in the Grand Valley had lower than average streamflow. There was concern by water users about the effect of this low streamflow on salinity in the river. In 1994, the U.S. Geological Survey (USGS), in cooperation with the Colorado River Water Conservation District, began a study to evaluate salinity in the Colorado River. This fact sheet describes results of that study. The specific objectives of the fact sheet are to (1) compare salinity in the Colorado River among