Sample records for saline sodium chloride

  1. Comparison of heparinized saline and 0.9% sodium chloride for maintaining peripheral intravenous catheter patency in dogs.

    PubMed

    Ueda, Yu; Odunayo, Adesola; Mann, F A

    2013-01-01

    To determine whether heparinized saline would be more effective in maintaining the patency of peripheral IV catheters in dogs compared to 0.9% sodium chloride. Prospective blinded randomized study. University Veterinary Teaching Hospital. Thirty healthy purpose bred dogs, intended for use in the junior surgery laboratory, were utilized. The dogs were randomized into 1 of 3 groups, 2 treatment groups and a control group. An 18-Ga cephalic catheter was placed in the cephalic vein of each dog. Each dog in the treatment group had their catheter flushed with either 10 IU/mL heparinized saline or 0.9% sodium chloride every 6 hours for 42 hours. The dogs in the control group did not have their catheters flushed until the end of the study period. Immediately prior to flushing catheters, each catheter was evaluated for patency by aspiration of blood and the catheter site was evaluated for phlebitis. All dogs in the heparinized saline and 0.9% sodium chloride group had catheters that flushed easily at each evaluation point. More dogs in the saline group had catheters from which blood could not be aspirated, but there was no significant difference between these groups. All dogs in the control group had catheters that flushed easily at the end of the assigned 6 hour interval except in 1 dog. Phlebitis was not detected in any dog. Flushes of 0.9% sodium chloride were found to be as effective as 10 IU/mL heparinized saline flushes in maintaining patency of 18-Ga peripheral venous catheters in dogs for up to 42 hours. For peripheral catheters placed with the intention of performing serial blood draws, heparinized flushes may be warranted. © Veterinary Emergency and Critical Care Society 2013.

  2. Sodium chloride and hypertension.

    PubMed

    Huang, Y W

    1997-09-01

    The hypothesis that sodium chloride deficiency, and not its overuse, is prime cause of hypertension and arteriosclerosis is presented. In the author's home town--a farflung part of northern China--hypertension is a rare disease and arteriosclerosis is a virtually unknown condition. The average intake of sodium chloride for these people is > 30 g/day compared with the typical sodium chloride intake of 10-12 g per day in the USA. When the 10-12 g salt ingested is mixed with the average daily water intake (2100 ml), 0.47% to 0.57% saline mixture is produced, which is hypotonic to extracellular fluid in salt content. Thus sodium conservation becomes necessary. All the hormones and ions involved in sodium conservation are inducers of hypertension; these include aldosterone, angiotensin 11, glucocorticoids, catecholamine, and vasopression. Plus, potassium waste, induced under the influence of aldosterone excess, participates in the development of hypertension.

  3. Measuring Sodium Chloride Contents of Aerosols

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Amount of sodium chloride in individual aerosol particles measured in real time by analyzer that includes mass spectrometer. Analyzer used to determine mass distributions of active agents in therapeutic or diagnostic aerosols derived from saline solutions and in analyzing ocean spray. Aerosol particles composed of sodium chloride introduced into oven, where individually vaporized on hot wall. Vapor molecules thermally dissociated, and some of resulting sodium atoms ionized on wall. Ions leave oven in burst and analyzed by spectrometer, which is set to monitor sodium-ion intensity.

  4. TOLERANCE OF STAPHYLOCOCCUS AUREUS TO SODIUM CHLORIDE

    PubMed Central

    Parfentjev, I. A.; Catelli, Anna R.

    1964-01-01

    Parfentjev, I. A. (Institute of Applied Biology, New York, N.Y.), and Anna R. Catelli. Tolerance of Staphylococcus aureus to sodium chloride. J. Bacteriol. 88:1–3. 1964.—The tolerance of Staphylococcus aureus to high concentrations of sodium chloride in liquid medium has been reported. We found that S. aureus grows at 37 C in Tryptose Phosphate Broth saturated with sodium chloride. No difference was noticed between possibly pathogenic and nonpathogenic strains. Under the conditions of our tests, no changes in the original properties of S. aureus strains occurred. In contrast, solutions of sodium chloride in distilled water were injurious to staphylococci and killed most of these organisms in 1 hr. Staphylococci were killed faster at 37 C than at room temperature in a solution of 0.85% sodium chloride in water. Addition of traces of Tryptose Phosphate Broth had a protective effect and prolonged the life of these organisms in physiological saline. All tests were performed at pH 7.2. PMID:14197887

  5. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-03

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials.

  6. Administration of hypertonic (3%) sodium chloride/acetate in hyponatremic patients with symptomatic vasospasm following subarachnoid hemorrhage.

    PubMed

    Suarez, J I; Qureshi, A I; Parekh, P D; Razumovsky, A; Tamargo, R J; Bhardwaj, A; Ulatowski, J A

    1999-07-01

    A retrospective study was carried out to evaluate the effect of hypertonic (3%) saline chloride/acetate on various hemodynamic parameters in mildly hyponatremic patients with symptomatic vasospasm following aneurysmal subarachnoid hemorrhage (SAH). We identified 29 hyponatremic (serum sodium < 135 mEq/L) patients who received hypertonic (3%) sodium chloride/acetate as a continuous infusion. Administration of hypertonic (3%) sodium chloride/acetate resulted in higher central venous pressures and positive fluid balance, with a concomitant increase in serum sodium and chloride concentrations without metabolic acidosis. There were no changes in mean cerebral blood flow velocities after infusion of hypertonic (3%) sodium chloride/acetate. We found no reports of congestive heart failure, pulmonary edema, metabolic acidosis, coagulopathy, intracranial hemorrhages, or central pontine myelinolysis in any of these patients. We conclude that hypertonic (3%) sodium chloride/acetate can be administered to patients with mild hyponatremia in the setting of symptomatic vasospasm following SAH without untoward effects. Sample size and limitations of a retrospective analysis preclude conclusions about safety and efficacy of hypertonic (3%) sodium chloride/acetate administration in this patient population. However, our results support justification for a prospective, randomized, double-blind trial of hypertonic (3%) sodium chloride/acetate versus normal saline in patients with symptomatic vasospasm following SAH.

  7. Preservative-free 0.9% sodium chloride for flushing and locking peripheral intravenous access device: a prospective controlled trial.

    PubMed

    Wang, Rui; Luo, Ou; He, Liu; Li, Jia-Xin; Zhang, Ming-Guang

    2012-11-01

    In Mainland China, heparin saline solution is commonly used for flushing and locking peripheral intravenous access devices in clinical practice for a long time. We conducted a prospective controlled trial to compare the effectiveness and safety of preservative-free 0.9% sodium chloride solution versus heparin saline solution as flushing and locking solution for peripheral intravenous access devices. Patients with gastroenterological or hepatic diseases were enrolled for this study from August 2011 to October 2011. After non-randomized allocation, preservative-free 0.9% sodium chloride was used as flushing and locking solution in the sodium chloride solution group, while hepatic solution (10 U/mL) was given in the heparin saline solution group. The device related complications and its maintenance duration were compared between two groups. One-way ANOVA, Chi(2), or Mantel-Haenszel test were performed using SPSS 13.0 and RevMan 5.0. Totally, 181 and 178 peripheral intravenous access devices in the sodium chloride solution and heparin saline solution groups were included and analyzed. Results indicated than sodium chloride solution did not increase the risks of occlusion (7.7% vs. 7.9%) and other adverse events of peripheral intravenous access devices (P = 0.163). Sodium chloride solution neither shortened the duration of peripheral intravenous access devices maintenance (3.6 ± 1.1 days vs. 3.7 ± 1.2 days, P = 0.651), nor increased the proportion of abnormal withdrawal (29.3% vs. 31.5%, P = 0.654). Sodium chloride solution is as effective and safe as conventional heparin saline solution for flushing and locking peripheral intravenous access devices, which results from our evidence-based study and should be transferred to other nurses in China. © 2012 Wiley Publishing Asia Pty Ltd and Chinese Cochrane Center, West China Hospital of Sichuan University.

  8. Modeling the effects of sodium chloride on degradation of chloramphenicol in aquaculture pond sediment.

    PubMed

    Chien, Y H; Lai, H T; Liu, S M

    1999-10-01

    Sodium chloride was added to aquaculture pond sediment to determine effects of different salinities on degradation of chloramphenicol (CM). In this experiment, freshwater (0 ppt salinity) eel pond sediment slurries (10% w/v) were amended with sodium chloride to obtain salinities of 12, 24 and 36 ppt. There were no significant differences in sorption rate either between aerobic and anaerobic conditions or among various salinities. Degradation of CM fitted well to the decaying exponential curve. The degradation rates under anaerobic conditions were significantly greater than those under aerobic conditions. As salinity increased, the degradation rates decreased under both aerobic and anaerobic conditions. The differences in degradation rates either between aerobic and anaerobic conditions or among various salinities were attributed to the effects of microbial activities under different environments.

  9. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization.

    PubMed

    Tarchoune, I; Sgherri, C; Izzo, R; Lachaal, M; Ouerghi, Z; Navari-Izzo, F

    2010-09-01

    Soils and ground water in nature are dominated by chloride and sulphate salts. There have been several studies concerning NaCl salinity, however, little is known about the Na(2)SO(4) one. The effects on antioxidative activities of chloride or sodium sulphate in terms of the same Na(+) equivalents (25 mM Na(2)SO(4) and 50 mM NaCl) were studied on 30 day-old plants of Ocimum basilicum L., variety Genovese subjected to 15 and 30 days of treatment. Growth, thiobarbituric acid reactive substances (TBARS), relative ion leakage ratio (RLR), hydrogen peroxide (H(2)O(2)), ascorbate and glutathione contents as well as the activities of ascorbate peroxidase (APX, EC 1.11.1.11); glutathione reductase (GR, EC 1.6.4.2) and peroxidases (POD, EC 1.11.1.7) were determined. In leaves, growth was more depressed by 25 mM Na(2)SO(4) than 50 mM NaCl. The higher sensitivity of basil to Na(2)SO(4) was associated with an enhanced accumulation of H(2)O(2), an inhibition of APX, GR and POD activities (with the exception of POD under the 30-day-treatment) and a lower regeneration of reduced ascorbate (AsA) and reduced glutathione (GSH). However, the changes in the antioxidant metabolism were enough to limit oxidative damage, explaining the fact that RLR and TBARS levels were unchanged under both Na(2)SO(4) and NaCl treatment. Moreover, for both salts the 30-day-treatment reduced H(2)O(2) accumulation, unchanged RLR and TBARS levels, and enhanced the levels of antioxidants and antioxidative enzymes, thus achieving an adaptation mechanism against reactive oxygen species. 2010 Elsevier Masson SAS. All rights reserved.

  10. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions.

    PubMed

    Shi, Yu; Wang, Yichao; Flowers, Timothy J; Gong, Haijun

    2013-06-15

    Silicon can alleviate salt damage to plants, although the mechanism(s) still remains to be elucidated. In this paper, we report the effect of silicon on chloride transport in rice (Oryza sativa L.) seedlings in saline conditions. In the absence of salinity, silicon enhanced the growth of shoots, but not roots in three cultivars (cv. GR4, IR36, and CSR10). Salinity reduced the growth of both shoots and roots in all three genotypes. In saline conditions, addition of silicon to the culture solution again improved the growth of shoots, but not of roots. Under these saline conditions, the concentrations of chloride in the shoot were markedly decreased by adding silicon and the ratio of K(+)/Cl(-) was significantly increased, while the concentration of chloride in the roots was unchanged. The decrease in chloride concentration in the shoot was correlated with the decrease in transpirational bypass flow in rice, as shown by the transport of the apoplastic tracer trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). Addition of silicon increased the net photosynthetic rate, stomata conductance, and transpiration of salt-stressed plants in cv. IR36, indicating that the reduction of chloride (and sodium) uptake by silicon was not through a reduction in transpiration rate. Silicon addition also increased the instantaneous water use efficiency of salt-stressed plants, while it did not change the relative growth rate of shoots. The results suggest that silicon addition decreased transpirational bypass flow in the roots, and therefore decreased the transport of chloride to the shoot. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Regional analysis of the effect of paved roads on sodium and chloride in lakes.

    PubMed

    Kelting, Daniel L; Laxson, Corey L; Yerger, Elizabeth C

    2012-05-15

    Salinization of surface water from sodium chloride (road salt) applied to paved roads is a widely recognized environmental concern in the northern hemisphere, yet practical information to improve winter road management to reduce the environmental impacts of this deicer is lacking. The purpose of our study was to provide such information by developing baseline concentrations for sodium and chloride for lakes in watersheds without paved roads, and then determining the relationship between these ions and density, type, and proximity of paved roads to shoreline. We used average summer (June-September) sodium and chloride data for 138 lakes combined in a watershed based analysis of paved road networks in the Adirondack Park of New York, U.S.A. The watersheds used in our study represented a broad range in paved road density and type, 56 of which had no paved roads. Median lake sodium and chloride concentrations in these 56 watersheds averaged 0.55 and 0.24 mg/L, respectively. In contrast, the median sodium and chloride concentrations for the 82 lakes in watersheds with paved roads were 3.60 and 7.22 mg/L, respectively. Paved road density (lane-km/km(2)) was positively correlated with sodium and chloride concentrations, but only state roads were significantly correlated with sodium and chloride while local roads were not. State road density alone explained 84 percent of the variation in both ions. We also successfully modeled the relationship between road proximity to shoreline and sodium and chloride concentrations in lakes, which allowed us to identify sections of road that contributed more to explaining the variation in sodium and chloride in lakes. This model and our approach could be used as part of larger efforts to identify environmentally sensitive areas where alternative winter road management treatments should be applied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Refractive-index measurements in freezing sea-ice and sodium chloride brines.

    PubMed

    Maykut, G A; Light, B

    1995-02-20

    Sea ice contains numerous pockets of brine and precipitated salts whose size and number distributions change dramatically with temperature. Theoretical treatment of scattering produced by these inclusions requires information on refractive-index differences among the brine, salts, and surrounding ice. Lacking specific data on refractive-index variations in the brine, we carried out laboratory measurements in freezing-equilibrium solutions between -2 and -32 °C. Index values at 589 nm increased from 1.341 to 1.397 over this temperature range, corresponding to salinities of 35 and 240 parts per thousand (ppt). Spectral data were also taken at 50-nm intervals between 400 and 700 nm in nonequilibrium solutions with salinities ranging up to 300 ppt. Spectral gradients increased slightly with salinity but showed no measurable dependence on temperature between +12 and -16 °C. The Lorentz-Lorenz equation, combined with data on density, molar refractivities, and brine composition, yielded temperature-dependent index predictions in excellent agreement with the experimental data. Similar index and density measurements in freezing sodium chloride brines yielded values nearly identical to those in the sea-ice brines. The absence of mirabilite crystals in sodium chloride ice, however, will cause it to have higher transmissivity and lower reflectivity than sea ice above -22 °C.

  13. Sodium Bicarbonate Versus Sodium Chloride for Preventing Contrast-Associated Acute Kidney Injury in Critically Ill Patients: A Randomized Controlled Trial.

    PubMed

    Valette, Xavier; Desmeulles, Isabelle; Savary, Benoit; Masson, Romain; Seguin, Amélie; Sauneuf, Bertrand; Brunet, Jennifer; Verrier, Pierre; Pottier, Véronique; Orabona, Marie; Samba, Désiré; Viquesnel, Gérald; Lermuzeaux, Mathilde; Hazera, Pascal; Dutheil, Jean-Jacques; Hanouz, Jean-Luc; Parienti, Jean-Jacques; du Cheyron, Damien

    2017-04-01

    To test whether hydration with bicarbonate rather than isotonic sodium chloride reduces the risk of contrast-associated acute kidney injury in critically ill patients. Prospective, double-blind, multicenter, randomized controlled study. Three French ICUs. Critically ill patients with stable renal function (n = 307) who received intravascular contrast media. Hydration with 0.9% sodium chloride or 1.4% sodium bicarbonate administered with the same infusion protocol: 3 mL/kg during 1 hour before and 1 mL/kg/hr during 6 hours after contrast medium exposure. The primary endpoint was the development of contrast-associated acute kidney injury, as defined by the Acute Kidney Injury Network criteria, 72 hours after contrast exposure. Patients randomized to the bicarbonate group (n = 151) showed a higher urinary pH at the end of the infusion than patients randomized to the saline group (n = 156) (6.7 ± 2.1 vs 6.2 ± 1.8, respectively; p < 0.0001). The frequency of contrast-associated acute kidney injury was similar in both groups: 52 patients (33.3%) in the saline group and 53 patients (35.1%) in the bicarbonate group (absolute risk difference, -1.8%; 95% CI [-12.3% to 8.9%]; p = 0.81). The need for renal replacement therapy (five [3.2%] and six [3.9%] patients; p = 0.77), ICU length of stay (24.7 ± 22.9 and 23 ± 23.8 d; p = 0.52), and mortality (25 [16.0%] and 24 [15.9%] patients; p > 0.99) were also similar between the saline and bicarbonate groups, respectively. Except for urinary pH, none of the outcomes differed between the two groups. Among ICU patients with stable renal function, the benefit of using sodium bicarbonate rather than isotonic sodium chloride for preventing contrast-associated acute kidney injury is marginal, if any.

  14. Copper Chloride Cathode For Liquid-Sodium Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.

    1990-01-01

    Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.

  15. Resuscitation of severe uncontrolled hemorrhage: 7.5% sodium chloride/6% dextran 70 vs 0.9% sodium chloride.

    PubMed

    Stern, S A; Jwayyed, S; Dronen, S C; Wang, X

    2000-08-01

    Resuscitation studies of hypertonic saline using controlled and uncontrolled hemorrhage models yield conflicting results with regard to efficacy. These disparate results reflect the use of models and resuscitation regimens that are not comparable between studies. This study evaluated the effects of comparable and clinically relevant resuscitation regimens of 7.5% sodium chloride/6% dextran 70 (HSD) and 0.9% sodium chloride (NS) in a near-fatal uncontrolled hemorrhage model. Thirty-six swine (14.2 to 21.4 kg) with 4-mm aortic tears were bled to a pulse pressure of 5 mm Hg (40-45 mL/kg). The animals were resuscitated with either NS or HSD administered in volumes that provided equivalent sodium loads at similar rates. Group II (n = 12) was resuscitated with 80 mL/kg of NS at a rate of 4 mL/kg/min. Group III (n = 12) received 9.6 mL/kg of HSD at a rate of 0.48 mL/kg/min. In both groups, crystalloid resuscitation was followed by shed blood infusion (30 mL/kg) at a rate of 2 mL/kg/min. Group I (controls; n = 12) were not resuscitated. One-hour mortality was significantly greater in group I (92%) as compared with group II (33%) and group III (33%) (Fisher's exact test; p = 0.004). Intraperitoneal hemorrhage was significantly greater in group II (34 +/- 20 mL/kg) and group III (31 +/- 13 mL/ kg) as compared with group I (5 +/- 2 mL/kg) (ANOVA; p < 0.05). There was no significant difference in hemodynamic parameters between groups II and III. In this model of severe uncontrolled hemorrhage, resuscitation with HSD or NS, administered in volumes that provided equivalent sodium loads at similar rates, had similar effects on mortality, hemodynamic parameters, and hemorrhage from the injury site.

  16. Slow Sodium: An Oral Slowly Released Sodium Chloride Preparation

    PubMed Central

    Clarkson, E. M.; Curtis, J. R.; Jewkes, R. J.; Jones, B. E.; Luck, V. A.; de Wardener, H. E.; Phillips, N.

    1971-01-01

    The use of a slowly released oral preparation of sodium chloride is described. It was given to patients and athletes to treat or prevent acute and chronic sodium chloride deficiency. Gastrointestinal side effects were not encountered after the ingestion of up to 500 mEq in one day or 200 mEq in 10 minutes. PMID:5569979

  17. Sodium and chloride levels in rainfall, mist. streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls

    NASA Astrophysics Data System (ADS)

    Neal, C.; Kirchner, J. W.

    Variations in sodium and chloride in atmospheric inputs (rainfall and mist), stream runoff and groundwater stores are documented for the upper Severn River (Afon Hafren and Afon Hore catchments), Plynlimon, mid-Wales. The results show five salient features.

    1. Sodium and chloride concentrations are highly variable and highly correlated in rainfall and mist. The sodium-chloride relationship in rainfall has a slope close to the sodium/chloride ratio in sea-water, and an intercept that is not significantly different from zero. This indicates that sea-salt is the dominant source of both sodium and chloride in rainfall, which would be expected given the maritime nature of the metrology. For mist, there is also a straight line with near-zero intercept, but with a slightly higher gradient than the sea-salt ratio, presumably due to small additional sodium inputs from other sources.
    2. There is an approximate input-output balance for both sodium and chloride, with the exception of one groundwater well, in which high chemical weathering results in an anomalous high Na/Cl ratio. Thus, atmospheric deposition is the dominant source of both sodium and chloride in groundwater and streamflow.
    3. The fluctuations in sodium and chloride concentrations in the streams and groundwaters are strongly damped compared to those in the rain and the mist, reflecting the storage and mixing of waters in the subsurface.
    4. On all timescales, from weeks to years, sodium fluctuations are more strongly damped than chloride fluctuations in streamflow. The additional damping of sodium is consistent with ion exchange buffering of sodium in the catchment soils.
    5. Sodium and chloride concentrations are linearly correlated in the streams and groundwaters, but the slope is almost universally less than the sea-salt ratio and there is a non-zero intercept. The Na/Cl ratio in streamflow and groundwater is higher than the sea-salt ratio when salinity is low and lower

    6. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro.

      PubMed

      Roussos, Peter A; Pontikis, Constantine A

      2007-07-01

      Jojoba (Simmondsia chinensis L.) single node explants were cultured in a basal medium supplemented with 17.8 microM 6-benzyladenine and four levels of sodium chloride concentration (0, 56.41, 112.82 and 169.23 mM). The free, the soluble conjugated and the insoluble bound forms of polyamines (PAs) (putrescine (Put), spermidine (Spd) and spermine (Spm)) were determined monthly during a 3-month proliferation stage. Free Put and Spd were found in higher levels in the control treatment, while Spm content was higher in the salt treatments. All soluble conjugated PAs were found to be in lower concentrations in explants growing on medium supplemented with salt, while the opposite was true for the insoluble bound PAs. It appeared that certain PAs and PAs forms could play a significant role in the adaptation mechanism of jojoba under saline conditions.

    7. Interpretation of postmortem vitreous concentrations of sodium and chloride.

      PubMed

      Zilg, B; Alkass, K; Berg, S; Druid, H

      2016-06-01

      Vitreous fluid can be used to analyze sodium and chloride levels in deceased persons, but it remains unclear to what extent such results can be used to diagnose antemortem sodium or chloride imbalances. In this study we present vitreous sodium and chloride levels from more than 3000 cases. We show that vitreous sodium and chloride levels both decrease with approximately 2.2mmol/L per day after death. Since potassium is a well-established marker for postmortem interval (PMI) and easily can be analyzed along with sodium and chloride, we have correlated sodium and chloride levels with the potassium levels and present postmortem reference ranges relative the potassium levels. We found that virtually all cases outside the reference range show signs of antemortem hypo- or hypernatremia. Vitreous sodium or chloride levels can be the only means to diagnose cases of water or salt intoxication, beer potomania or dehydration. We further show that postmortem vitreous sodium and chloride strongly correlate and in practice can be used interchangeably if analysis of one of the ions fails. It has been suggested that vitreous sodium and chloride levels can be used to diagnose drowning or to distinguish saltwater from freshwater drowning. Our results show that in cases of freshwater drowning, vitreous sodium levels are decreased, but that this mainly is an effect of postmortem diffusion between the eye and surrounding water rather than due to the drowning process, since the decrease in sodium levels correlates with immersion time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

    8. Association between continuous peripheral i.v. infusion of 3% sodium chloride injection and phlebitis in adults.

      PubMed

      Meng, Lina; Nguyen, Cherwyn M; Patel, Samit; Mlynash, Michael; Caulfield, Anna Finley

      2018-03-01

      One institution's experience with use of peripheral i.v. (PIV) catheters for prolonged infusions of 3% sodium chloride injection at rates up to 100 mL/hr is described. A prospective, observational, 13-month quality assurance project was conducted at an academic medical center to evaluate frequencies of patient and catheter phlebitis among adult inpatients who received both an infusion of 3% sodium chloride injection for a period of ≥4 hours through a dedicated PIV catheter and infusions of routine-care solutions (RCSs) through separate PIV catheters during the same hospital stay. Sixty patients received PIV infusions through a total of 291 catheters during the study period. The majority of patients (78%) received infusions of 3% sodium chloride injection for intracranial hypertension, with 30% receiving such infusions in the intensive care unit. Phlebitis occurred in 28 patients (47%) during infusions of 3% sodium chloride and 26 patients (43%) during RCS infusions ( p = 0.19). Catheter phlebitis occurred in 73 catheters (25%), with no significant difference in the frequencies of catheter phlebitis with infusion of 3% sodium chloride versus RCSs (30% [32 of 106 catheters]) versus 22% [41 of 185 catheters]), p = 0.16). Patient and catheter phlebitis rates were not significantly different with infusions of 3% sodium chloride injection versus RCSs, suggesting that an osmolarity cutoff value of 900 mOsm/L for peripheral infusions of hypertonic saline solutions may not be warranted. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  1. Chloride and sodium uptake potential over an entire rotation of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny

    2009-01-01

    There is a need for information about the response of Populus genotypes to repeated application of high-salinity water and nutrient sources throughout an entire rotation. We have combined establishment biomass and uptake data with mid- and full-rotation growth data to project potential chloride (Cl−) and sodium (Na...

  2. NuLYTELY (PEG 3350, sodium chloride, sodium bicarbonate and potassium chloride for oral solution).

    PubMed

    Swartz, M L

    1992-02-01

    NuLYTELY (PEG 3350, Sodium Chloride, Sodium Bicarbonate, and Potassium Chloride for Oral Solution), a product from Braintree Laboratories, Inc. is a modification of GoLYTELY (PEG 3350 and Electrolytes for Oral Solution) that has been found to have the same therapeutic advantages in terms of safety, efficacy, speed and patient acceptance. This product was developed to improve upon the taste of GoLYTELY. NuLYTELY represents an effective alternative for bowel cleansing prior to colonoscopy that may be more acceptable to some patients.

  3. Effect of pH, Sodium Chloride, and Sodium Nitrite on Enterotoxin A Production

    PubMed Central

    Tompkin, R. B.; Ambrosino, J. M.; Stozek, S. K.

    1973-01-01

    The combined effects of pH, sodium chloride, and sodium nitrite were studied by using a dialysis sac technique in brain heart infusion broth. Growth and enterotoxin A production by Staphylococcus aureus strain 100 were found to decrease with the addition of sodium nitrite, with a decrease in pH from 7.0, and with an increase in sodium chloride concentration. The significance of these results is discussed in relation to cured meats. PMID:4203331

  4. Injection of beef strip loins with solutions containing sodium tripolyphosphate, sodium lactate, and sodium chloride to enhance palatability.

    PubMed

    Vote, D J; Platter, W J; Tatum, J D; Schmidt, G R; Belk, K E; Smith, G C; Speer, N C

    2000-04-01

    Beef strip loins (46 U.S. Choice loins and 49 U.S. Select loins) were used to evaluate the potential for enhancing beef tenderness, juiciness, and flavor by injecting fresh cuts with solutions containing sodium tripolyphosphate, sodium lactate, and sodium chloride. One half of each loin served as an untreated control, and the other half was injected with either distilled water (110% of raw weight) or a solution containing phosphate/lactate/chloride solution (107.5, 110, 112.5, or 115% of raw weight). All phosphate/lactate/chloride solutions were formulated to produce injected product concentrations of .25% sodium tripolyphosphate, .5% sodium chloride, and 2.5% sodium lactate. Ten additional U.S. Select loins were injected to 110% of raw weight with a phosphate-only solution (final product concentration of .25% sodium tripolyphosphate) for comparison with Select loins injected to 110% with phosphate/lactate/chloride and with distilled water. Steaks from each control and treated loin section were cooked to two final internal temperatures (66 degrees C and 77 degrees C) for sensory panel evaluation and shear force measurement. Injection of subprimal cuts with phosphate/lactate/chloride solutions improved tenderness (P < .05), juiciness (P < .05), and cooked beef flavor (P < .10) of strip loin steaks and was especially effective for maintaining tenderness and juiciness of steaks cooked to the higher final internal temperature. Injection of Select loins with a solution containing only sodium tripolyphosphate was not effective for improving beef tenderness or juiciness and tended to impart off-flavors characterized by sensory panelists as soapy and sour. Injection of fresh cuts with phosphate/lactate/chloride solutions could assist the beef industry's efforts to improve product quality and consistency.

  5. Advanced intermediate temperature sodium copper chloride battery

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  6. Comparison of Sodium Chloride Tablets-Induced, Sodium Chloride Solution-Induced, and Glycerol-Induced Hyperhydration on Fluid Balance Responses in Healthy Men.

    PubMed

    Savoie, Félix A; Asselin, Audrey; Goulet, Eric D B

    2016-10-01

    Savoie, FA, Asselin, A, and Goulet, EDB. Comparison of sodium chloride tablets-induced, sodium chloride solution-induced, and glycerol-induced hyperhydration on fluid balance responses in healthy men. J Strength Cond Res 30(10): 2880-2891, 2016-Sodium chloride solution-induced hyperhydration (NaCl-SolIH) is a powerful strategy to increase body water before exercise. However, NaCl-SolIH is associated with an unpleasant salty taste, potentially dissuading some athletes from using it and coaches from recommending it. Therefore, we evaluated the hyperhydrating potential of sodium chloride tablets-induced hyperhydration (NaCl-TabIH), which bypasses the palatability issue of NaCl-SolIH without sacrificing sodium chloride content, and compared it to NaCl-SolIH and glycerol-induced hyperhydration (GIH). Sixteen healthy males (age: 21 ± 2 years; fat-free mass (FFM): 65 ± 6 kg) underwent three, 3-hour long passive hyperhydration protocols during which they drank, over the first 60 minutes, 30-ml·kg FFM of an artificially sweetened solution. During NaCl-TabIH, participants swallowed 7.5, 1 g each, sodium chloride tablets with every liter of solution. During NaCl-SolIH, an equal quantity of sodium chloride tablets was dissolved in each liter of solution. With GIH, the glycerol concentration was 46.7 g·L. Urine production, fluid retention, hemoglobin, hematocrit, plasma volume, and perceptual variables were monitored throughout the trials. Total fluid intake was 1948 ± 182 ml. After 3 hour, there were no significant differences among treatments for hemoglobin, hematocrit, and plasma volume changes. Fluid retention was significantly greater with NaCl-SolIH (1150 ± 287 ml) than NaCl-TabIH (905 ± 340 ml) or GIH (800 ± 211 ml), with no difference between NaCl-TabIH and GIH. No differences were found among treatments for perceptual variables. NaCl-TabIH and GIH are equally effective, but inferior than NaCl-SolIH. NaCl-TabIH represents an alternative to hyperhydration induced

  7. Relationship between sweat chloride, sodium, and age in clinically obtained samples.

    PubMed

    Traeger, Nadav; Shi, Qiuhu; Dozor, Allen J

    2014-01-01

    The relationship between sweat electrolytes and age is uncertain, as is the value of measuring sodium or the chloride:sodium ratio. 13,785 sweat tests performed over 23 years at one center through the Macroduct collection in clinically obtained samples were analyzed. Sweat chloride tended to decrease over the first year of life, slowly increase until the fourth decade, then either level off or slightly decrease. In children, sweat sodium overlapped between those with positive and negative sweat tests, but not in adults. If the sweat test was positive, there was a higher likelihood of having a chloride:sodium ratio >1, but most subjects with a ratio >1 did not have CF. Sweat chloride and sodium vary with age. Measurement of sweat sodium did not add discriminatory value. The proportion of subjects with a chloride:sodium ratio >1, with or without CF, varied greatly between age ranges. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  8. Fermentation of cucumbers brined with calcium chloride instead of sodium chloride

    USDA-ARS?s Scientific Manuscript database

    Generation of waste water containing sodium chloride from cucumber fermentation tank yards could be eliminated if cucumbers were fermented in brines that did not contain this salt. To determine if this is feasible, cucumbers were fermented in brines that contained only calcium chloride to maintain f...

  9. Quinoa Seed Quality Response to Sodium Chloride and Sodium Sulfate Salinity

    PubMed Central

    Wu, Geyang; Peterson, Adam J.; Morris, Craig F.; Murphy, Kevin M.

    2016-01-01

    Quinoa (Chenopodium quinoa Willd.) is an Andean crop with an edible seed that both contains high protein content and provides high quality protein with a balanced amino acid profile in embryonic tissues. Quinoa is a halophyte adapted to harsh environments with highly saline soil. In this study, four quinoa varieties were grown under six salinity treatments and two levels of fertilization, and then evaluated for quinoa seed quality characteristics, including protein content, seed hardness, and seed density. Concentrations of 8, 16, and 32 dS m-1 of NaCl and Na2SO4, were applied to the soil medium across low (1 g N, 0.29 g P, 0.29 g K per pot) and high (3 g N, 0.85 g P, 0.86 g K per pot) fertilizer treatments. Seed protein content differed across soil salinity treatments, varieties, and fertilization levels. Protein content of quinoa grown under salinized soil ranged from 13.0 to 16.7%, comparable to that from non-saline conditions. NaCl and Na2SO4 exhibited different impacts on protein content. Whereas the different concentrations of NaCl did not show differential effects on protein content, the seed from 32 dS m-1 Na2SO4 contained the highest protein content. Seed hardness differed among varieties, and was moderately influenced by salinity level (P = 0.09). Seed density was affected significantly by variety and Na2SO4 concentration, but was unaffected by NaCl concentration. The samples from 8 dS m-1 Na2SO4 soil had lower density (0.66 g/cm3) than those from 16 dS m-1 and 32 dS m-1 Na2SO4, 0.74 and 0.72g/cm3, respectively. This paper identifies changes in critical seed quality traits of quinoa as influenced by soil salinity and fertility, and offers insights into variety response and choice across different abiotic stresses in the field environment. PMID:27375648

  10. UV-induced Lactobacillus gasseri mutants resisting sodium chloride and sodium nitrite for meat fermentation.

    PubMed

    Arihara, K; Itoh, M

    2000-06-01

    Lactobacillus gasseri, one of the predominant lactobacilli in human intestinal tracts, is utilized for probiotics and dairy starter cultures. However, since L. gasseri is relatively sensitive to sodium chloride and sodium nitrite (essential compounds for meat products), it is difficult to utilize this species for conventional fermented meat products. In this study, efforts were directed to generate mutants of L. gasseri resisting sodium chloride and sodium nitrite. UV irradiation of the strain of L. gasseri JCM1131(T) generated several mutants resisting these compounds. A mutant strain 1131-M8 demonstrated satisfactory growth in meat containing 3.3% sodium chloride and 200 ppm sodium nitrite. Although proteins extracted from the cell surface of 1131-M8 were slightly different from those of the original strain, other biochemical characteristics of both strains were indistinguishable. These results suggest that the L. gasseri mutant obtained in this study could be utilized as a starter culture to develop probiotic meat products.

  11. Ion transport in proximal colon of the rat. Sodium depletion stimulates neutral sodium chloride absorption.

    PubMed Central

    Foster, E S; Budinger, M E; Hayslett, J P; Binder, H J

    1986-01-01

    The model of sodium and chloride transport proposed for the colon is based on studies performed in the distal segment and tacitly assumes that ion transport is similar throughout the colon. In rat distal colon, neutral sodium-chloride absorption accounts for the major fraction of overall sodium absorption and aldosterone stimulates electrogenic, amiloride-sensitive sodium absorption. Since we have demonstrated qualitative differences in potassium transport in proximal and distal segments of rat colon, unidirectional 22Na and 36Cl fluxes were performed under short-circuit conditions across isolated proximal colon of control and sodium-depleted rats with secondary hyperaldosteronism. In the control group, net sodium absorption (JNanet) (7.4 +/- 0.5 mu eq/h . cm2) was greater than Isc (1.4 +/- 0.1 mu eq/h . cm2), and JClnet was 0 in Ringer solution. Residual flux (JR) was -5.2 +/- 0.5 mu eq/h . cm2 consistent with hydrogen ion secretion suggesting that neutral sodium absorption may represent sodium-hydrogen exchange. 1 mM mucosal amiloride, which inhibits sodium-hydrogen exchange in other epithelia, produced comparable decreases in JNanet and JR (4.1 +/- 0.6 and 3.2 +/- 0.6 mu eq/h . cm2, respectively) without a parallel fall in Isc. Sodium depletion stimulated JNanet, JClnet, and Isc by 7.0 +/- 1.4, 6.3 +/- 1.9, and 0.8 +/- 0.2 mu eq/h . cm2, respectively, and 1 mM amiloride markedly inhibited JNanet and JClnet by 6.0 +/- 1.1 and 4.0 +/- 1.6 mu eq/h . cm2, respectively, with only a minimal reduction in Isc. Conclusions: the predominant neutral sodium-absorptive mechanism in proximal colon is sodium-hydrogen exchange. Sodium depletion stimulates electroneutral chloride-dependent sodium absorption (most likely as a result of increasing sodium-hydrogen and chloride-bicarbonate exchanges), not electrogenic chloride-independent sodium transport. The model of ion transport in the proximal colon is distinct from that of the distal colon. PMID:2418060

  12. Stability of levothyroxine sodium 0.4 microg/mL in 0.9% sodium chloride injection.

    PubMed

    Stadalman, Kelli A; Kelner, Michael J; Box, Kevin; Dominguez, Alex; Rigby, Joseph F

    2009-12-01

    Intravenous levothyroxine therapy decreases vasopressor requirements and prevents cardiovascular collapse in hemodynamically unstable patients eligible for organ donation. The stability of levothyroxine when used in this manner is unknown. To determine the stability of levothyroxine solution for intravenous use at a concentration of 0.4 microg/mL diluted in 0.9% sodium chloride. Triplicate sample sets were prepared by reconstituting levothyroxine 200 microg for injection with 5 mL of 0.9% sodium chloride with further dilution in 500 mL of 0.9% sodium chloride. One sample set was protected from light and the other was left unprotected. Both sample sets were stored at room temperature, and samples from each were analyzed for initial concentration and 4, 8, 12, and 24 hours later. Levothyroxine sodium 0.4 microg/mL in 500 mL 0.9% sodium chloride is stable for 24 hours at room temperature when protected from light.

  13. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Chloride Production Subcategory § 415.160 Applicability; description of the sodium chloride production subcategory. The provisions of this subpart are applicable to discharges resulting from...

  14. A Comparison of Taste and Odor Perception in Pediatric Patients Receiving a 0.9% Sodium Chloride Flush From 2 Different Brands of Prefilled 0.9% Sodium Chloride Syringes.

    PubMed

    Hamze, Benjamin; Vaillancourt, Régis; Sharp, Diane; Villarreal, Gilda

    2016-01-01

    The aim of this randomized single-blind study is to compare taste and odor disturbances in patients receiving 0.9% sodium chloride flushes from 2 brands. Seventy-five patients from 6 to 18 years of age received intravenous 0.9% sodium chloride infusions, and 50 healthy volunteers who tasted the 2 brands of 0.9% sodium chloride from prefilled syringes were assessed for taste and/or odor disturbances. Taste or odor disturbances were equally present in patients flushed with MedXL and Becton-Dickinson 0.9% sodium chloride. Disturbances are more frequent when 0.9% sodium chloride is flushed through central venous access devices than through peripheral catheters. No difference between the brands was found when healthy volunteers tasted it orally.

  15. The Perceptual Characteristics of Sodium Chloride to Sodium-Depleted Rats

    PubMed Central

    2017-01-01

    Three experiments assessed potential changes in the rat’s perception of sodium chloride (NaCl) during a state of sodium appetite. In Experiment 1, sodium-sufficient rats licking a range of NaCl concentrations (0.028–0.89M) in 15s trials showed an inverted U-shaped concentration response function peaking at 0.281M. Depleted rats (furosemide) showed an identical function, merely elevated, suggesting altered qualitative or hedonic perception but no change in perceived intensity. In Experiment 2, sodium-depleted rats were tested with NaCl, sodium gluconate, and potassium chloride (KCl; 0.028–0.89M) similar to Experiment 1. KCl was licked at the same rate as water except for a slight elevation at 0.158; sodium gluconate and NaCl were treated similarly, but rats showed more licking for hypertonic sodium gluconate than hypertonic NaCl. Sodium-depleted rats were also tested with NaCl mixed in amiloride (10–300 μM). Amiloride reduced licking but did not alter the shape of the concentration–response function. Collectively, these results suggest that transduction of sodium by epithelial sodium channels (which are blocked by amiloride and are more dominant in sodium gluconate than NaCl transduction) is crucial for the perception of sodium during physiological sodium depletion. In Experiment 3, sodium-deplete rats were tested with NaCl as in Experiment 1 but after taste aversion conditioning to 0.3M NaCl or sucrose. Rats conditioned to avoid NaCl but not sucrose failed to express a sodium appetite, strongly suggesting that NaCl does not undergo a change in taste quality during sodium appetite—rats show no confusion between sucrose and NaCl in this paradigm. PMID:27660150

  16. The Perceptual Characteristics of Sodium Chloride to Sodium-Depleted Rats.

    PubMed

    St John, Steven J

    2017-02-01

    Three experiments assessed potential changes in the rat's perception of sodium chloride (NaCl) during a state of sodium appetite. In Experiment 1, sodium-sufficient rats licking a range of NaCl concentrations (0.028-0.89M) in 15s trials showed an inverted U-shaped concentration response function peaking at 0.281M. Depleted rats (furosemide) showed an identical function, merely elevated, suggesting altered qualitative or hedonic perception but no change in perceived intensity. In Experiment 2, sodium-depleted rats were tested with NaCl, sodium gluconate, and potassium chloride (KCl; 0.028-0.89M) similar to Experiment 1. KCl was licked at the same rate as water except for a slight elevation at 0.158; sodium gluconate and NaCl were treated similarly, but rats showed more licking for hypertonic sodium gluconate than hypertonic NaCl. Sodium-depleted rats were also tested with NaCl mixed in amiloride (10-300 μM). Amiloride reduced licking but did not alter the shape of the concentration-response function. Collectively, these results suggest that transduction of sodium by epithelial sodium channels (which are blocked by amiloride and are more dominant in sodium gluconate than NaCl transduction) is crucial for the perception of sodium during physiological sodium depletion. In Experiment 3, sodium-deplete rats were tested with NaCl as in Experiment 1 but after taste aversion conditioning to 0.3M NaCl or sucrose. Rats conditioned to avoid NaCl but not sucrose failed to express a sodium appetite, strongly suggesting that NaCl does not undergo a change in taste quality during sodium appetite-rats show no confusion between sucrose and NaCl in this paradigm. Published by Oxford University Press on behalf of US Government 2016.

  17. Alternate cathodes for sodium-metal chloride batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Various metal chlorides were tested as possible cathode materials for sodium-metal batteries (in addition to Fe and Ni chlorides, which have been already developed to a stage of commercialization), using an electrochemical cell consisting of a pyrex tube, heated to 250 C, with the metal wire as working electrode, concentric Ni foil as counterelectrode, and high-purity Al as reference electrode. In particular, the aim of this study was to identify metal chlorides insoluble even in neutral melts, possible at the interface during overcharge, in order to eliminate the failure mode of the cell through a cationic exchange of the dissolved metal ions with sodium beta-double-prime alumina solid electrolyte. Results indicate that Mo and Co are likely alternatives to FeCl2 and NiCl2 cathodes in sodium batteries. The open circuit voltages of Na/CoCl(x) and Na/MoCl(x) cells at 250 C would be 2.55 V and 2.64 V, respectively.

  18. Influence of Sodium Chloride on Growth of Neisseria meningitidis

    PubMed Central

    Mitzel, John R.; Hunter, Jack A.; Beam, Walter E.

    1972-01-01

    Nasopharyngeal isolates of Neisseria meningitidis were tested for growth on nutrient agar with and without the addition of 0.8% sodium chloride. Of the 822 strains tested, 1.3% grew on the salt-free medium, and 74.1% grew on the medium supplemented with sodium chloride. PMID:4626905

  19. Compatibility and activity of enoxaparin sodium in 0.9% sodium chloride injection for 48 hours.

    PubMed

    Mewborn, A L; Kessler, J M; Joyner, K A

    1996-01-15

    The stability of enoxaparin sodium in 0.9% sodium chloride injection in polyvinyl chloride (PVC) containers was studied. Triplicate solutions of 120 mg (1.2 mL) of enoxaparin (as the sodium salt) and 98.8 mL of 0.9% sodium chloride injection were prepared in 250-mL PVC containers and stored at room temperature (20-22 degrees C). Samples were taken immediately after preparation and at 0.25, 0.5, 0.75, 1, 4, 12, 16, 24, and 48 hours. Inspections for color change and precipitation were performed with a clarity inspection station and a magnifying glass. Samples of the three admixtures were evaluated in duplicate for pharmacologic activity by an automated coagulation heparin assay. Throughout the 48-hour study period, the enoxaparin admixtures were free of color change, evolution of gas, and precipitates. The pharmacologic activity of enoxaparin in the PVC containers remained > 94% of the initial measured activity for 48 hours. Enoxaparin 1.2 mg/mL (as the sodium salt) in 0.9% sodium chloride injection in PVC containers was stable for up to 48 hours at 20-22 degrees C.

  20. [Clinical experience of supplying sodium chloride for the treatment of patients with severe heart failure].

    PubMed

    He, Li-xia; Sun, Lu-lu; Yang, Yue-jin; Zhang, Jian; Zhang, Yu-hui; Song, Wei-hua; Huang, Yan; Lü, Rong; Ji, Shi-ming

    2012-09-01

    To observe the effect and safety of supplying sodium chloride in the treatment of patients with severe heart failure. Consecutive 51 hospitalized patients with severe heart failure and cardiac edema were included in this study. Normal diet (6 g NaCl/d) was supplied to all patients. On the basis of controlling fluid intake and treating related etiological factors as well as standard medications including furosemide for severe heart failure, patients with mild hyponatremia (serum sodium level 130 - 134 mmol/L) ate additional salted vegetables, patients with moderate hyponatremia (serum sodium level 125 - 129 mmol/L) and severe hyponatremia (serum sodium level < 125 mmol/L) ate additional salted vegetables and were received additionally intravenous 3%NaCl hypertonic saline infusion (10 ml/h) until reaching normal serum sodium level. On admission, 37.25% (19/51) patients had hyponatremia. During the first two weeks hospitalization period, 88.24% (45/51) patients were treated with intravenous diuretics and total incidence of hyponatremia was 64.71% (33/51), mild hyponatremia was 50.98% (26/51), middle and severe hyponatremia was 13.73% (7/51); among them, hyponatremia lasted less than 3 d in 57.58% (19/33) patients and ≥ 3 d in 42.42% (14/33) patients. Heart failure exacerbation and hypernatremia were not observed in patients receiving additional sodium chloride therapy. Hospitalization time was similar among patients with different blood natrium levels [average (16 ± 12) d]. Fifty out of 51 (98%) patients discharged from the hospital with improved heart failure symptoms and signs. Supplying additional sodium chloride could rapid correct hyponatremia in heart failure patients with or without intravenous diuretics therapy which might contribute to a favorable prognosis in hospitalized heart failure patients.

  1. Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride

    USDA-ARS?s Scientific Manuscript database

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride instead of NaCl...

  2. Manufacture of low-sodium Minas fresh cheese: effect of the partial replacement of sodium chloride with potassium chloride.

    PubMed

    Gomes, A P; Cruz, A G; Cadena, R S; Celeghini, R M S; Faria, J A F; Bolini, H M A; Pollonio, M A R; Granato, D

    2011-06-01

    We investigated the effect of sodium reduction by partial substitution of sodium chloride (NaCl) with potassium chloride (KCl) on the manufacture of Minas fresh cheese during 21 d of refrigerated storage. Four treatments of low-sodium Minas fresh cheese were manufactured, with partial replacement of NaCl by KCl at 0, 25, 50, and 75% (wt/wt), respectively. The cheeses showed differences in the content of moisture, ash, protein, salt, and lipid contents, as well as on the extent of proteolysis and hardness throughout the storage period. However, no difference was observed among treatments within each storage day tested. The partial substitution of NaCl by KCl decreased up to 51.8% the sodium concentration of the cheeses produced. The consumer test indicated that it is possible to manufacture a low-sodium Minas fresh cheese that is acceptable to consumers by partial substitution of NaCl by KCl at 25% (wt/wt) in the salting step. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Stability of methacholine chloride in isotonic sodium chloride using a capillary electrophoresis assay.

    PubMed

    Henn, S; Monfort, P; Vigneron, J H; Hoffman, M A; Hoffman, M

    1999-10-01

    To investigate the stability of methacholine chloride in 0.9% sodium chloride solutions. Methacholine powder was mixed with diluent to a final concentration of 5 and 10 mg/ml. Duplicates of each admixture were divided and stored in glass vials at 25 degrees C, 4 degrees C and -20 degrees C for 12 months. At appropriate times intervals, samples were removed from solutions and analysed. Methacholine concentrations were measured using a high performance capillary electrophoresis assay. No colour or other visual changes were seen in any sample. However, an additional peak was observed in some samples. Methacholine chloride solutions 5 mg/ml were stable in isotonic sodium chloride after refrigeration or freezing over a period of one year; methacholine chloride solutions 10 mg/ml were stable for one year after freezing. The solutions stored at ambient temperature were stable for 35 days and for less than 14 days, respectively, for the 5 and the 10 mg/ml solutions.

  4. Stability of Alprostadil in 0.9% Sodium Chloride Stored in Polyvinyl Chloride Containers.

    PubMed

    McCluskey, Susan V; Kirkham, Kylian; Munson, Jessica M

    2017-01-01

    The stability of alprostadil diluted in 0.9% sodium chloride stored in polyvinyl chloride (VIAFLEX) containers at refrigerated temperature, protected from light, is reported. Five solutions of alprostadil 11 mcg/mL were prepared in 250 mL 0.9% sodium chloride polyvinyl chloride (PL146) containers. The final concentration of alcohol was 2%. Samples were stored under refrigeration (2°C to 8°C) with protection from light. Two containers were submitted for potency testing and analyzed in duplicate with the stability-indicating high-performance liquid chromatography assay at specific time points over 14 days. Three containers were submitted for pH and visual testing at specific time points over 14 days. Stability was defined as retention of 90% to 110% of initial alprostadil concentration, with maintenance of the original clear, colorless, and visually particulate-free solution. Study results reported retention of 90% to 110% initial alprostadil concentration at all time points through day 10. One sample exceeded 110% potency at day 14. pH values did not change appreciably over the 14 days. There were no color changes or particle formation detected in the solutions over the study period. This study concluded that during refrigerated, light-protected storage in polyvinyl chloride (VIAFLEX) containers, a commercial alcohol-containing alprostadil formulation diluted to 11 mcg/mL with 0.9% sodium chloride 250 mL was stable for 10 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  5. Mechanism of sodium and chloride transport in the thin ascending limb of Henle.

    PubMed Central

    Imai, M; Kokko, J P

    1976-01-01

    Our previous in vitro studies have disclosed that the thin ascending limb of Henle (tALH) possesses some unique membrane characteristics. In those studies we failed to demonstrated active transport of sodium chloride by the tALH, although it was shown that the isotopic permeability to sodium and chloride was unusually high. However, we did not examine the mechanisms by which the apparent high permeation of sodium chloride occurs. Thus the purpose of the present studies was to elucidate the mechanism of sodium chloride transport across the isolated tALH of the rabbit by conducting four different types of studies: (1) comparison of the observed chloride and sodium flux ratios to those predicted by Ussing's equation under imposed salt concentration gradients; (2) kinetic evaluation of chloride and sodium fluxes; (3) examination of the effect of bromide on the kinetics of chloride transport; and (4) experiments to test for the existence of exchange diffusion of chloride. In the first set of studies the predicted and the theoretical flux ratios of sodium were identical in those experiments in which sodium chloride was added either to the perfusate or to the bath. However, the observed chloride flux ratio, lumen-to-bath/bath-to-lumen, was significantly lower than that predicted from Ussing's equation when 100 mM sodium chloride was added to the bath. In the second set of experiments the apparent isotopic permeability for sodium and for chloride was measured under varying perfusate and bath NaCl concentrations. There was no statistical change in the apparent sodium permeability coefficient when the NaCl concentration was raised by varying increments from 85.5 to 309.5 mM. However, permeation of 36Cl decrease significantly with an increase in Cl from 73.6 to 598.6 mM. These events could be explained by a two component chloride transport process consisting of simple diffusion and a saturable facilitated diffusion process with a Vmax = 3.71 neq mm-1 min-1. In the third set

  6. Sodium-metal chloride battery research at JPL

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Sodium metal chloride batteries have certain distinct advantages over sodium sulfur batteries such as increased safety, inherent overcharge capability and lower operation temperatures. Two systems, i.e., Na/FeCl2 and Na/NiCl2 were developed extensively elsewhere and evaluated for various applications including electric vehicles and space. Their performance has been very encouraging and prompted a detailed fundamental study of these cathodes here at the Jet Propulsion Laboratory. A brief review of our studies on these new cathode materials is presented here. The initial efforts focussed on the methods of fabrication of the electrodes and their electrochemical characterization. Subsequent studies were aimed at establishing the reaction mechanism, determining the kinetics and identifying the rate limiting processes in the reduction of metal chloride cathodes. Nickel chloride emerged from these studies as the most promising candidate material and was taken up for further detailed study on its passivation - a rate limiting process - under different experimental conditions. Also, the feasibility of using copper chloride, which is expected to have higher energy density, has been assessed. Based on the criteria established from the voltammetric response of FeCl2, NiCl2, and CuCl2, several other transition metal chlorides were screened. Of these, molybdenum and cobalt chlorides appear promising.

  7. Making Positive Electrodes For Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Bankston, C. Perry

    1992-01-01

    High coulombic yields provided by sodium/metal chloride battery in which cathode formed by impregnating sintered nickel plaque with saturated solution of nickel chloride. Charge/discharge cycling of nickel chloride electrode results in very little loss of capacity. Used in spacecraft, electric land vehicles, and other applications in which high-energy-density power systems required.

  8. Sodium-metal chloride batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1992-01-01

    It was concluded that rapid development in the technology of sodium metal chloride batteries has been achieved in the last decade mainly due to the: expertise available with sodium sulfur system; safety; and flexibility in design and fabrication. Long cycle lives of over 1000 and high energy densities of approx. 100 Wh/kg have been demonstrated in both Na/FeCl2 and Na/NiCl2 cells. Optimization of porous cathode and solid electrolyte geometries are essential for further enhancing the battery performance. Fundamental studies confirm the capabilities of these systems. Nickel dichloride emerges as the candidate cathode material for high power density applications such as electric vehicle and space.

  9. Comparative effects of sodium bicarbonate and sodium chloride on reversing cocaine-induced changes in the electrocardiogram.

    PubMed

    Parker, R B; Perry, G Y; Horan, L G; Flowers, N C

    1999-12-01

    Cocaine abuse is associated with a number of cardiovascular complications that include arrhythmias and sudden cardiac death. Although the mechanism(s) remain unclear, cocaine-induced block of sodium channels resulting in slowed cardiac conduction is thought to play an important role. Several reports suggest that the effects of cocaine effects on cardiac sodium channels can be reversed by administration of sodium bicarbonate. Whether the beneficial effects of sodium bicarbonate are due to sodium ions or an increase in blood pH is unknown. Therefore the purpose of this study was to compare the effects of sodium loading alone (by using sodium chloride) versus sodium loading with an associated increase in arterial pH (by using sodium bicarbonate) on reversing cocaine-induced effects on the electrocardiogram (ECG) in a canine model. Seventeen anesthetized dogs received three i.v. injections of cocaine, 5 mg/kg, with each dose separated by 15 min. Two minutes after the third cocaine dose, each dog was randomly assigned to receive 2 mEq/kg i.v. sodium bicarbonate (1 mEq/ml) or 2 mEq/kg i.v. sodium chloride (1 mEq/ml). ECG, electrophysiologic, and hemodynamic data were recorded at baseline, after each cocaine injection, and after administration of sodium bicarbonate or sodium chloride. In both groups of animals, the first cocaine injection significantly (p < 0.05) prolonged the PR, QTc, AH, and HV intervals, and QRS duration compared with baseline. All intervals continued to lengthen in a dose-dependent manner after the second and third cocaine doses. Sodium bicarbonate significantly (p < 0.05) reduced cocaine-induced prolongation of PR [(147 +/- 5-130 +/- 5 ms), AH (81 +/- 6 - 72 +/- 6 ms), and HV intervals (55 +/- 2 - 39 +/- 1 ms). and QRS duration (96 +/- 6 - 66 +/- 4 ms), peak effect after third cocaine dose versus after sodium bicarbonate, respectively]. Sodium chloride had no effect on reversing cocaine-induced effects on the ECG. Cocaine produces dose

  10. Sodium Chloride Affects Helicobacter pylori Growth and Gene Expression▿

    PubMed Central

    Gancz, Hanan; Jones, Kathleen R.; Merrell, D. Scott

    2008-01-01

    Epidemiological evidence links high-salt diets and Helicobacter pylori infection with increased risk of developing gastric maladies. The mechanism by which elevated sodium chloride content causes these manifestations is unclear. Here we characterize the response of H. pylori to temporal changes in sodium chloride concentration and show that growth, cell morphology, survival, and virulence factor expression are all altered by increased salt concentration. PMID:18375562

  11. Stability study of carboplatin infusion solutions in 0.9% sodium chloride in polyvinyl chloride bags.

    PubMed

    Myers, Alan L; Zhang, Yang-Ping; Kawedia, Jitesh D; Trinh, Van A; Tran, Huyentran; Smith, Judith A; Kramer, Mark A

    2016-02-01

    Carboplatin is a platinum-containing compound with efficacy against various malignancies. The physico-chemical stability of carboplatin in dextrose 5% water (D5W) has been thoroughly studied; however, there is a paucity of stability data in clinically relevant 0.9% sodium chloride infusion solutions. The manufacturer's limited stability data in sodium chloride solutions hampers the flexibility of carboplatin usage in oncology patients. Hence, the purpose of this study is to determine the physical and chemical stability of carboplatin-sodium chloride intravenous solutions under different storage conditions. The physico-chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL carboplatin-sodium chloride solutions prepared in polyvinyl chloride bags was determined following storage at room temperature under ambient fluorescent light and under refrigeration in the dark. Concentrations of carboplatin were measured at predetermined time points up to seven days using a stability-indicating high-performance liquid chromatography method. All tested solutions were found physically stable for at least seven days. The greatest chemical stability was observed under refrigerated storage conditions. At 4℃, all tested solutions were found chemically stable for at least seven days, with nominal losses of ≤6%. Following storage at room temperature exposed to normal fluorescent light, the chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL solutions was three days, five days, and seven days, respectively. The extended physico-chemical stability of carboplatin prepared in sodium chloride reported herein permits advance preparation of these admixtures, facilitating pharmacy utility and operations. Since no antibacterial preservative is contained within these carboplatin solutions, we recommend storage, when prepared under specified aseptic conditions, no greater than 24 h at room temperature or three days under refrigeration. © The Author(s) 2014.

  12. Dietary Impact of Adding Potassium Chloride to Foods as a Sodium Reduction Technique.

    PubMed

    van Buren, Leo; Dötsch-Klerk, Mariska; Seewi, Gila; Newson, Rachel S

    2016-04-21

    Potassium chloride is a leading reformulation technology for reducing sodium in food products. As, globally, sodium intake exceeds guidelines, this technology is beneficial; however, its potential impact on potassium intake is unknown. Therefore, a modeling study was conducted using Dutch National Food Survey data to examine the dietary impact of reformulation (n = 2106). Product-specific sodium criteria, to enable a maximum daily sodium chloride intake of 5 grams/day, were applied to all foods consumed in the survey. The impact of replacing 20%, 50% and 100% of sodium chloride from each product with potassium chloride was modeled. At baseline median, potassium intake was 3334 mg/day. An increase in the median intake of potassium of 453 mg/day was seen when a 20% replacement was applied, 674 mg/day with a 50% replacement scenario and 733 mg/day with a 100% replacement scenario. Reformulation had the largest impact on: bread, processed fruit and vegetables, snacks and processed meat. Replacement of sodium chloride by potassium chloride, particularly in key contributing product groups, would result in better compliance to potassium intake guidelines (3510 mg/day). Moreover, it could be considered safe for the general adult population, as intake remains compliant with EFSA guidelines. Based on current modeling potassium chloride presents as a valuable, safe replacer for sodium chloride in food products.

  13. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis.

    PubMed

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Dominguez Rieg, Jessica A; Rieg, Timo

    2017-08-01

    The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3 loxloxCre) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3 loxloxCre mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3 loxloxCre mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3 loxloxCre mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3 loxloxCre mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3 loxloxCre mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Molybdenum In Cathodes Of Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of molybdenum wire in NaAlCl4 melt indicate molybdenum chloride useful as cathode material in rechargeable sodium/metal chloride electrochemical cells. Batteries used in electric vehicles, for electric-power load leveling, and other applications involving high energy and power densities.

  15. The influence of the chloride gradient across red cell membranes on sodium and potassium movements

    PubMed Central

    Cotterrell, D.; Whittam, R.

    1971-01-01

    1. A study has been made to see whether active and passive movements of sodium and potassium in human red blood cells are influenced by changing the chloride gradient and hence the potential difference across the cell membrane. 2. Chloride distribution was measured between red cells and isotonic solutions with a range of concentrations of chloride and non-penetrating anions (EDTA, citrate, gluconate). The cell chloride concentration was greater than that outside with low external chloride, suggesting that the sign of the membrane potential was reversed. The chloride ratio (internal/external) was approximately equal to the inverse of the hydrogen ion ratio at normal and low external chloride, and inversely proportional to external pH. These results show that chloride is passively distributed, making it valid to calculate the membrane potential from the chloride ratio. 3. Ouabain-sensitive (pump) potassium influx and sodium efflux were decreased by not more than 20 and 40% respectively on reversing the chloride gradient, corresponding to a change in membrane potential from -9 to +30 mV. In contrast, passive (ouabain-insensitive) movements were reversibly altered — potassium influx was decreased about 60% and potassium efflux was increased some tenfold. Sodium influx was unaffected by the nature of the anion and depended only on the external sodium concentration, whereas ouabain-insensitive sodium efflux was increased about threefold. When external sodium was replaced by potassium there was a decrease in ouabain-insensitive sodium efflux with normal chloride, but an increase in low-chloride medium. 4. Net movements of sodium and potassium were roughly in accord with the unidirectional fluxes. 5. The results suggest that reversing the chloride gradient and, therefore, the sign of the membrane potential, had little effect on the sodium pump, but caused a marked increase in passive outward movements of both sodium and potassium ions. PMID:4996368

  16. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    PubMed Central

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  17. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    PubMed

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-04

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  18. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    NASA Astrophysics Data System (ADS)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  19. Stability and compatibility of anakinra with ceftriaxone sodium injection in 0.9% sodium chloride or 5% dextrose injection.

    PubMed

    Nahata, M C; Morosco, R S; Sabados, B K; Weber, T R

    1997-06-01

    The stability and compatibility of anakinra (recombinant human interleukin-1 receptor antagonist) with ceftriaxone sodium in 0.9% sodium chloride or 5% dextrose injection was determined during a 4-h period at ambient room temperature and light. Anakinra was diluted in 0.9% sodium chloride or 5% dextrose to the concentrations of 4 and 36 mg/ml. Anakinra, at each concentration was mixed with ceftriaxone sodium (20 mg/ml) in a 50:50 proportion and stored in plastic culture vials with polypropylene caps. The samples were collected at 0, 2 and 4 h after mixing. Anakinra and ceftriaxone concentrations were measured using stability-indicating HPLC methods. In 0.9% sodium chloride injection, the mean concentrations of anakinra and ceftriaxone exceeded 98% of initial concentrations at the end of the study period. In 5% dextrose, however, anakinra concentrations were below 90% of the expected initial concentration at the time of first analysis (within 0.5 h). Thus, anakinra appears to be stable and compatible with ceftriaxone sodium when diluted in 0.9% sodium chloride injection, but not in 5% dextrose injection over 4 h at ambient room temperature and light.

  20. Wetting properties and critical micellar concentration of benzalkonium chloride mixed in sodium hypochlorite.

    PubMed

    Bukiet, Frédéric; Couderc, Guillaume; Camps, Jean; Tassery, Hervé; Cuisinier, Frederic; About, Imad; Charrier, Anne; Candoni, Nadine

    2012-11-01

    The purposes of the present study were to (1) assess the effect of the addition of benzalkonium chloride to sodium hypochlorite on its wetting properties, contact angle, and surface energy; (2) determine the critical micellar concentration of benzalkonium chloride in sodium hypochlorite; and (3) investigate the influence of addition of benzalkonium chloride on the free chlorine level, cytotoxicity, and antiseptic properties of the mixture. Solutions of benzalkonium chloride, with concentrations ranging from 0%-1%, were mixed in 2.4% sodium hypochlorite and tested as follows. The wetting properties were investigated by measuring the contact angle of the solutions on a nondehydrated dentin surface by using the static sessile drop method. The pending drop technique was subsequently used to determine the surface energy of the solutions. The critical micellar concentration of benzalkonium chloride mixed in sodium hypochlorite was calculated from the data. When 2.4% NaOCl was mixed with benzalkonium chloride at the critical micellar concentration, 3 parameters were tested: free chloride content, cytotoxicity, and antibacterial effects against Enterococcus faecalis. The contact angle (P < .001) as well as the surface energy (P < .001) significantly decreased with increasing benzalkonium chloride concentrations. The critical micellar concentration of benzalkonium chloride in sodium hypochlorite was 0.008%. At this concentration, the addition of benzalkonium chloride had no effect on the free chlorine content, cytotoxicity, or antibacterial efficiency of the mixture. The addition of benzalkonium chloride to sodium hypochlorite at the critical micellar concentration reduced the contact angle by 51.2% and the surface energy by 53.4%, without affecting the free chloride content, cytotoxicity, or antibacterial properties of the mixture. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Soil salinization in different natural zones of intermontane depressions in Tuva

    NASA Astrophysics Data System (ADS)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  2. Sodium chloride inhibits IFN-γ, but not IL-4, production by invariant NKT cells.

    PubMed

    Jeong, Dongjin; Kim, Hye Young; Chung, Doo Hyun

    2018-01-01

    Invariant NKT (iNKT) cells are a distinct subset of T cells that exert Janus-like functions in vivo by producing IFN-γ and IL-4. Sodium chloride modulates the functions of various immune cells, including conventional CD4 + T cells and macrophages. However, it is not known whether sodium chloride affects iNKT cell function, so we addressed this issue. Sodium chloride inhibited IFN-γ, but not IL-4, production by iNKT cells upon TCR or TCR-independent (IL-12 and IL-18) stimulation in a dose-dependent manner. Consistently, sodium chloride reduced the expression level of tbx21, but not gata-3, in iNKT cells stimulated with TCR engagement or IL-12 + IL-18. Sodium chloride increased phosphorylated p38 expression in iNKT cells and inhibitors of p38, NFAT5, SGK1, and TCF-1 restored IFN-γ production by iNKT cells stimulated with sodium chloride and TCR engagement. Furthermore, adoptive transfer of iNKT cells pretreated with sodium chloride restored antibody-induced joint inflammation to a lesser extent than for untreated iNKT cells in Jα18 knockout mice. These findings suggest that sodium chloride inhibits IFN-γ production by iNKT cells in TCR-dependent and TCR-independent manners, which is dependent on p38, NFAT5, SGK1, and TCF-1. These findings highlight the functional role of sodium chloride in iNKT cell-mediated inflammatory diseases. ©2017 Society for Leukocyte Biology.

  3. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  4. Randomized controlled trial comparing the effect of 8.4% sodium bicarbonate and 5% sodium chloride on raised intracranial pressure after traumatic brain injury.

    PubMed

    Bourdeaux, Chris P; Brown, Jules M

    2011-08-01

    Hypertonic sodium chloride solutions are routinely used to control raised intracranial pressure (ICP) after traumatic brain injury but have the potential to cause a hyperchloremic metabolic acidosis. Sodium bicarbonate 8.4% has previously been shown to reduce ICP and we have therefore conducted a randomized controlled trial to compare these two solutions. Patients with severe traumatic brain injury were randomly allocated to receive an equiosmolar dose of either 100 ml of sodium chloride 5% or 85 ml of sodium bicarbonate 8.4% for each episode of intracranial hypertension. ICP and blood pressure were measured continuously. Arterial pCO(2), sodium, chloride, osmolality, and pH were measured at intervals. We studied 20 episodes of intracranial hypertension in 11 patients. Treatments with 8.4% sodium bicarbonate and 5% sodium chloride reduced raised ICP effectively with a significant fall in ICP from baseline at all time points (P < 0.001). There was no significant difference in ICP with time between those episodes treated with 5% sodium chloride or 8.4% sodium bicarbonate, P = 0.504. Arterial pH was raised after treatment with 8.4% sodium bicarbonate. An equiosmolar infusion of 8.4% sodium bicarbonate is as effective as 5% sodium chloride for reduction of raised ICP after traumatic brain injury when infused over 30 min.

  5. The chemistry of sodium chloride involvement in processes related to hot corrosion. [in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Thermodynamic and mass transport calculations, and laboratory experiments elucidating the behavior of sodium chloride in combustion environments, in the deposition process, and in reactions with certain oxides on the surfaces of superalloys are summarized. It was found that some of the ingested salt is separated out of the air stream by the compressor. However, sodium chloride does pass from the compressor to the combustor where numerous chemical reactions take place. Here some of the salt is vaporized to yield gaseous sodium chloride molecules. Hydrogen and oxygen atoms present in the combustion products react with some sodium chloride to yield other gaseous species such as sodium, and a fraction of the salt remains as particulates. Both the gas phase and condensed sodium chloride can lead to sodium sulfate formation by various routes, all of which involve reaction with sulfur oxides and oxygen. In addition to contributing to the formation of sodium sulfate, the sodium chloride can contribute to corrosion directly.

  6. Diclofenac sodium, 0.1% (Voltaren Ophtha), versus sodium chloride, 5%, in the treatment of filamentary keratitis.

    PubMed

    Avisar, R; Robinson, A; Appel, I; Yassur, Y; Weinberger, D

    2000-03-01

    To compare the efficacy and short-term safety of diclofenac sodium, 0.1% (Voltaren Ophtha; Ciba-Vision) and of sodium chloride, 5% ophthalmic solution, in the treatment of filamentary keratitis (FK) in patients with dry-eye syndrome due to secondary Sjögren's syndrome. Thirty-two patients (64 eyes) with dry-eye syndrome due to secondary Sjögren' syndrome were enrolled in a randomized study (patients and authors were aware of which medication was being used). All patients had FK. Sixteen patients were treated with sodium chloride, 5% drops, and 16 patients received diclofenac sodium, 0.1% eyedrops. Treatment regimen included instillation of 1 drop, 4 times a day for 28 days, for both groups. Clinical assessment was performed once a week during the study period. Data on the efficacy and safety of the different therapeutic regimens were collected and compared. Both medications achieved disappearance of filaments at the end of the study. Treatment with diclofenac sodium, 0.1%, revealed a significantly more rapid improvement of the clinical symptoms as compared with sodium chloride, 5%. No significant adverse effects were observed in both groups. Diclofenac sodium, 0.1%, may be an effective and safe topical therapy in patients with FK caused by secondary Sjögren's disease.

  7. Incidence of Adverse Events During Peripheral Administration of Sodium Chloride 3.

    PubMed

    Dillon, Ryan C; Merchan, Cristian; Altshuler, Diana; Papadopoulos, John

    2018-01-01

    Traditionally, sodium chloride 3% has been administered via a central venous line (CVL) because of the perceived risk of infiltration and tissue injury due to its high osmolarity. In clinical practice, sodium chloride 3% is commonly administered through peripheral venous catheters (PVCs) given the necessity of timely administration. However, there is no published data on the safety of administering sodium chloride 3% through PVCs in the adult population. The objective of this study was to evaluate the safety of peripheral venous administration of sodium chloride 3%. A retrospective review was conducted in patients who received sodium chloride 3% in the intensive care unit (ICU). Patients were excluded if they had a CVL for the entire duration of the infusion or younger than 18 years at the time of administration. Baseline patient and infusion characteristics were collected. Infusion-related adverse events (IRAEs) were recorded, graded, and interventions required were noted. A total of 66 patients were included in the analysis. The most common indication was hyponatremia and majority of the patients were managed in the neurosurgical ICU. The most common risk factor for IRAEs was the presence of altered mental status. Four patients experienced an IRAE at an event rate of 6.1%. Patients who experienced an IRAE ranged from 38 to 82 years old. The IRAEs were grade 1 in severity, managed conservatively with removal of the PVC, and 2 of the 4 patients had their infusions restarted peripherally. The time to initial IRAE ranged from 2 to 94 hours. For the entire cohort, hospital and ICU length of stay were 8 and 4 days, respectively. The rate of IRAEs related to the infusion of sodium chloride 3% through PVCs appears to be similar to those reported with other hyperosmotic agents and could be considered for patients who need time-sensitive therapy.

  8. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.

    PubMed

    Green, R; Giebisch, G

    1975-11-01

    Simultaneous perfusion of peritubular capillaries and proximal convoluted tubules was used to study the effect of varying transepithelial ionic gradients on ionic fluxes. Results show that net sodium influx and volume flux was one-third of normal when bicarbonate was absent, no chloride gradient existed, and glucose and amino acids were absent. Addition of bicarbonate to the luminal fluid did not restore the flux to normal, but peritubular bicarbonate did restore it. A chloride gradient imposed when no bicarbonate was present could only increase the fluxes slightly, but his flux was significant even after cyanide had poisoned transport. Reversing the chloride concentration gradient decreased the net sodium and volume fluxes whether bicarbonate was present or not. Glucose had no effect on fluxes, but substitution of Na by choline abolished them entirely. It is concluded that sodium is actively transported, that a chloride concentration gradient from lumen to plasma could account for up to 20% of net transport, and that peritubular bicarbonate is necessary for normal rates of sodium and fluid absorption.

  9. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density.

    PubMed

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y; Meinhardt, Kerry D; Chang, Hee Jung; Canfield, Nathan L; Sprenkle, Vincent L

    2016-02-11

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  10. Effects of sodium chloride on selected parameters in cats.

    PubMed

    Kirk, Claudia A; Jewell, Dennis E; Lowry, Stephen R

    2006-01-01

    This study used 36 cats with varying renal insufficiency and physiologic status to evaluate the effect of a food high in sodium chloride (HSC) compared with a low sodium chloride (LSC) food on selected blood parameters and blood pressure. Cats eating the HSC food had an increase in serum creatinine, urea nitrogen, and phosphorus compared with cats eating the LSC food. Also, cats eating the HSC food had increased fractional excretion of calcium and increased fractional shortening during cardiac contraction. There was no effect of food on systolic, diastolic, or mean arterial pressure.

  11. INTERRELATIONSHIP BETWEEN TEMPERATURE AND SODIUM CHLORIDE ON GROWTH OF LACTIC ACID BACTERIA ISOLATED FROM MEAT-CURING BRINES.

    PubMed

    GOLDMAN, M; DEIBEL, R H; NIVEN, C F

    1963-05-01

    Goldman, Manuel (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J. Bacteriol. 85:1017-1021. 1963.-An elevation of the temperature limit for growth of some Pediococcus homari (Gaffkya homari) and motile Lactobacillus strains could be effected by the addition of sodium chloride to the growth medium. At the optimal temperature for growth, sodium chloride was stimulatory, and as the temperature of incubation was increased a mandatory requirement for sodium chloride was manifested. At the optimal temperature for growth (30 C), the highest sodium chloride concentrations were tolerated; as the temperature was increased, this tolerance decreased, although the optimal sodium chloride concentration increased. No other substances were found that would replace the sodium chloride requirement at higher temperatures of incubation.

  12. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.

    PubMed

    Chen, Lei; Mao, Feijian; Kirumba, George Chira; Jiang, Cheng; Manefield, Mike; He, Yiliang

    2015-12-01

    Microcystis (M.) aeruginosa, one of the most common bloom-forming cyanobacteria, occurs worldwide. The Qingcaosha (QCS) Reservoir is undergoing eutrophication and faces the problem of saltwater intrusion. The aim of this study was to investigate the effects of sudden salinity changes on physiological parameters and related gene transcription in M. aeruginosa under controlled laboratory conditions. The results showed that sodium chloride (50, 200 and 500 mg L(-1) NaCl) inhibited the algal growth and decreased pigment concentrations (chlorophyll a, carotenoid and phycocyanin). Sodium chloride increased both the intracellular and extracellular microcystin contents and elevated the mcyD transcript level in M. aeruginosa. It also increased the malondialdehyde (MDA) content and caused cytomembrane damage. This damage caused the release of intracellular toxins into the culture medium. In addition, NaCl decreased the maximum electron transport rate, increased the levels of reactive oxygen species (ROS) and changed the cellular redox status. Consequently, NaCl inhibited the expression of cpcB, psbA and rbcL. Furthermore, NaCl increased the activities of superoxide dismutases (SOD), catalase (CAT), glutathione reductase (GR), and total glutathione peroxidase (GPx). The transcript levels of sod and reduced glutathione (gsh) were also increased after exposure to NaCl. Our results indicate that a sudden increase in salinity increases the production and excretion of microcystin, changes the cellular redox status, enhances the activities of antioxidant enzymes, inhibits photosynthesis, and affects transcript levels of related genes in M. aeruginosa. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    L-1), although the chloride comprises only a fraction of the total dissolved salts in water. The Cl/TDS ratio varies from 0.1 in nonmarine saline waters to ˜0.5 in marine-associated saline waters. Water salinity is also defined by electrical conductivity (EC). In soil studies, the electrical conductivity and the ratio of Na/√(Ca+Mg) (SAR) are often used as an indirect measure of soil salinity. In addition to chloride, high levels of other dissolved constituents may limit the use of water for domestic, agriculture, and industrial applications. In some parts of Africa, China, and India, for example, high fluoride content is associated with saline groundwater and causes severe dental and skeletal fluorosis (Shiklomanov, 1997). Hence, the "salinity" problem is only the "tip of the iceberg," as high levels of salinity are associated with high concentrations of other inorganic pollutants (e.g., sodium, sulfate, boron, fluoride), and bioaccumulated elements (e.g., selenium, and arsenic) (see Chapter 9.03).The World Health Organization (WHO) recommends that the chloride concentration of the water supply for human consumption should not exceed 250 mg L-1. Agriculture applications also depend upon the salinity level of the supplied water. Many crops, such as citrus, avocado, and mango, are sensitive to chloride concentration in irrigation water (an upper limit of 250 mg L-1). In addition, long-term irrigation with water enriched with sodium results in a significant reduction in the hydraulic conductivity and hence the fertility of the irrigated soil. Similarly, the industrial sector demands water of high quality. For example, the high-tech industry requires a large amount of water with low levels of dissolved salts. Hence, the salinity level of groundwater is one of the limiting factors that determine the suitability of water for a variety of applications.The salinity problem is a global phenomenon but it is more severe in water-scarce areas, such as arid and semi

  14. Salt equivalence and temporal dominance of sensations of different sodium chloride substitutes in butter.

    PubMed

    de Souza, Vanessa Rios; Freire, Tassyana Vieira Marques; Saraiva, Carla Gonçalves; de Deus Souza Carneiro, João; Pinheiro, Ana Carla Marques; Nunes, Cleiton Antônio

    2013-08-01

    Studies indicate a positive association between dietary salt intake and some diseases, which has promoted the tendency to reduce the sodium in foods. The objective of this study was to determine the equivalent amount of different sodium chloride replacements required to promote the same degree of ideal saltiness in butter and to study the sensory profile of sodium chloride and the substitutes using the analysis of Temporal Dominance of Sensations (TDS). Using the magnitude estimation method, it was determined that the potencies of potassium chloride, monosodium glutamate and potassium phosphate relative to the 1% sodium chloride in butter are 83·33, 31·59 and 33·32, respectively. Regarding the sensory profile of the tested salt substitutes, a bitter taste was perceived in the butter with potassium chloride, a sour taste was perceived in the butter with potassium phosphate and sweet and umami tastes were dominant in the butter with monosodium glutamate. Of all the salt substitutes tested calcium lactate, potassium lactate, calcium chloride and magnesium chloride were impractical to use in butter.

  15. Formation of dioxins during the combustion of newspapers in the presence of sodium chloride and poly(vinyl chloride).

    PubMed

    Yasuhara, A; Katami, T; Okuda, T; Ohno, N; Shibamoto, T

    2001-04-01

    Exhaust gases from the combustion of newspaper alone, from branches of London plane tree alone, and from newspapers mixed with sodium chloride (NaCl), polyethylene, or poly(vinyl chloride) (PVC) were collected. The samples were analyzed for dioxins by gas chromatography/mass spectrometry. Total amounts of dioxins found in the samples were 0.186 ng/g from newspapers alone, 1.42 ng/g from the branches of London plane, 102 ng/g from newspapers impregnated with sodium chloride (CI wt % = 3.1), 101 ng/g from newspapers impregnated with sodium chloride mixed with PVC (Cl wt % = 2.6), and 146 ng/g from newspapers mixed with PVC (Cl wt % = 5.1). Samples with a higher chloride content produced more dioxins, and there is a clear correlation between dioxin formation and chloride content. The amount of dioxins formed in the samples according to the number of chlorides was Cl5 > Cl4 > Cl6 > Cl7 > Cl8 in PCDD isomers and Cl4 > Cl5 > Cl6 > Cl7 > Cl8 in PCDF isomers, except in the case of newspapers alone. Benzofurans composed 78-92% of the total dioxins formed in the exhaust gases. The higher the number of the chlorides, the lower the production of benzofuran observed. NaCl vaporized at the temperature of the flame used for combustion of the samples (760-1080 degrees C). The results indicate that NaCl and PVC contribute significantly to dioxin formation from waste materials combusted in incinerators.

  16. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  17. Cerebral effects of resuscitation with hypertonic saline and a new low-sodium hypertonic fluid in hemorrhagic shock and head injury.

    PubMed

    Sheikh, A A; Matsuoka, T; Wisner, D H

    1996-07-01

    A 2400-mOsm/L hypertonic solution (isosal) with a lower sodium content, compared with conventional 7.5% hypertonic saline, was formulated using a mixture of sodium chloride, glucose, and mixed amino acids. This solution was developed to minimize hypernatremia during resuscitation. We assessed the effects of isosal on hemodynamics, brain edema, and plasma sodium concentration after head injury associated with hemorrhagic shock. DESIGN. Prospective, randomized laboratory study. University research laboratory. Twenty-one adult female Suffolk sheep, weighing 39 to 49 kg. Animals were subjected to a 2-hr period of hemorrhagic shock to a mean arterial pressure (MAP) of 40 to 45 mm Hg in the presence of a freeze injury to the cerebral cortex. The hemorrhagic shock/head injury phase was followed by 2 hrs of resuscitation with isosal, a new 2400-mosm/L low-sodium hypertonic fluid, 2400 mosm/L of 7.5% hypertonic saline, or lactated Ringer's solution. Initial resuscitation was with a bolus injection of 8 mL/kg of the study solution; subsequent resuscitation in all three groups was with lactated Ringer's solution as needed to maintain baseline cardiac output. Serial hemodynamics, intracranial pressure, electrolytes, and osmolarity were measured. AT the end of resuscitation, the animals were killed and brain water content (mL H2O/g dry weight) of the injured and uninjured areas was determined. Resuscitation volumes were significantly lower in the isosal (19 +/- 5 mL/kg) and 7.5% hypertonic saline (14 +/- 2 mL/mg) groups compared with the lactated Ringer's solution (35 +/- 5 mL/kg) group. Intracranial pressure after 2 hrs of resuscitation was significantly lower in the isosal (7 +/- 1 mm Hg) and hypertonic saline groups (4 +/- 1 mm Hg). Water content in all areas of the brain was significantly lower in the hypertonic saline group compared with the lactated Ringer's solution group. Brain water content in the isosal group was lower than in the lactated Ringer's solution group only

  18. INTERRELATIONSHIP BETWEEN TEMPERATURE AND SODIUM CHLORIDE ON GROWTH OF LACTIC ACID BACTERIA ISOLATED FROM MEAT-CURING BRINES1

    PubMed Central

    Goldman, Manuel; Deibel, R. H.; Niven, C. F.

    1963-01-01

    Goldman, Manuel (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J. Bacteriol. 85:1017–1021. 1963.—An elevation of the temperature limit for growth of some Pediococcus homari (Gaffkya homari) and motile Lactobacillus strains could be effected by the addition of sodium chloride to the growth medium. At the optimal temperature for growth, sodium chloride was stimulatory, and as the temperature of incubation was increased a mandatory requirement for sodium chloride was manifested. At the optimal temperature for growth (30 C), the highest sodium chloride concentrations were tolerated; as the temperature was increased, this tolerance decreased, although the optimal sodium chloride concentration increased. No other substances were found that would replace the sodium chloride requirement at higher temperatures of incubation. PMID:14043988

  19. The effect of sodium chloride on the dissolution of calcium silicate hydrate gels.

    PubMed

    Hill, J; Harris, A W; Manning, M; Chambers, A; Swanton, S W

    2006-01-01

    The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 degrees C compared to those prepared at 25 degrees C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium.

  20. Geochemical assessments and classification of coal mine spoils for better understanding of potential salinity issues at closure.

    PubMed

    Park, Jin Hee; Li, Xiaofang; Edraki, Mansour; Baumgartl, Thomas; Kirsch, Bernie

    2013-06-01

    Coal mining wastes in the form of spoils, rejects and tailings deposited on a mine lease can cause various environmental issues including contamination by toxic metals, acid mine drainage and salinity. Dissolution of salt from saline mine spoil, in particular, during rainfall events may result in local or regional dispersion of salts through leaching or in the accumulation of dissolved salts in soil pore water and inhibition of plant growth. The salinity in coal mine environments is from the geogenic salt accumulations and weathering of spoils upon surface exposure. The salts are mainly sulfates and chlorides of calcium, magnesium and sodium. The objective of the research is to investigate and assess the source and mobility of salts and trace elements in various spoil types, thereby predicting the leaching behavior of the salts and trace elements from spoils which have similar geochemical properties. X-ray diffraction analysis, total digestion, sequential extraction and column experiments were conducted to achieve the objectives. Sodium and chloride concentrations best represented salinity of the spoils, which might originate from halite. Electrical conductivity, sodium and chloride concentrations in the leachate decreased sharply with increasing leaching cycles. Leaching of trace elements was not significant in the studied area. Geochemical classification of spoil/waste defined for rehabilitation purposes was useful to predict potential salinity, which corresponded with the classification from cluster analysis based on leaching data of major elements. Certain spoil groups showed high potential salinity by releasing high sodium and chloride concentrations. Therefore, the leaching characteristics of sites having saline susceptible spoils require monitoring, and suitable remediation technologies have to be applied.

  1. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange.

    PubMed Central

    Sasaki, S; Yoshiyama, N

    1988-01-01

    The existence of chloride/bicarbonate exchange across the basolateral membrane and its physiologic significance were examined in rabbit proximal tubules. S2 segments of the proximal straight tubule were perfused in vitro and changes in intracellular pH (pHi) and chloride activity (aCli) were monitored by double-barreled microelectrodes. Total peritubular chloride replacement with gluconate increased pHi by 0.8, and this change was inhibited by a pretreatment with an anion transport inhibitor, SITS. Peritubular bicarbonate reduction increased aCli, and most of this increase was lost when ambient sodium was totally removed. The reduction rates of pHi induced by a peritubular bicarbonate reduction or sodium removal were attenuated by 20% by withdrawal of ambient chloride. SITS application to the bath in the control condition quickly increased pHi, but did not change aCli. However, the aCli slightly decreased in response to SITS when the basolateral bicarbonate efflux was increased by reducing peritubular bicarbonate concentration. It is concluded that sodium coupled chloride/bicarbonate exchange is present in parallel with sodium-bicarbonate cotransport in the basolateral membrane of the rabbit proximal tubule, and it contributes to the basolateral bicarbonate and chloride transport. PMID:2450891

  2. Response of the Higher Basidiomycetic Ganoderma resinaceum to Sodium Chloride Stress

    PubMed Central

    Mohamed, Eman H. F. A.; Abd Elzaher, E. H. F.

    2007-01-01

    Ganoderma resinaceum tolerated sodium chloride salt stress within a range of 0 mM till 300 mM. It responded to salt stress with fluctuation in proline formation at different NaCl concentrations. However,the mycelial dry weight,total protein contents and exopolysaccharides did not changed considerably. Increasing sodium chloride concentration led to morphological alteration in fungal mycelia with disappearance of fungal cell wall,plasmolysis,and vacuolation as indicated with electron microscopic examination of the fungal growth. PMID:24015082

  3. Influence of Surfactants on Sodium Chloride Crystallization in Confinement

    PubMed Central

    2017-01-01

    We study the influence of different surfactants on NaCl crystallization during evaporation of aqueous salt solutions. We found that at concentrations of sodium chloride close to saturation, only the cationic surfactant CTAB and the nonionic surfactant Tween 80 remain stable. For the nonionic surfactant, the high concentration of salt does not significantly change either the critical micellar concentration (CMC) or the surface tension at the CMC; for the cationic surfactant, the CMC is reduced by roughly 2 orders of magnitude upon adding the salt. The presence of both types of surfactants in the salt solution delays the crystallization of sodium chloride with evaporation. This, in turn, leads to high supersaturation which induces the rapid precipitation of a hopper crystal in the bulk. The crystallization inhibitor role of these surfactants is shown to be mainly due to the passivation of nucleation sites at both liquid/air and solid/liquid interfaces rather than a change in the evaporation rate which is found not to be affected by the presence of the surfactants. The adsorption of surfactants at the liquid/air interface prevents the crystallization at this location which is generally the place where the precipitation of sodium chloride is observed. Moreover, sum frequency generation spectroscopy measurements show that the surfactants are also present at the solid/liquid interface. The incorporation of the surfactants into the salt crystals is investigated using a novel, but simple, method based on surface tension measurements. Our results show that the nonionic surfactant Tween 80 is incorporated in the NaCl crystals but the cationic surfactant CTAB is not. Taken together, these results therefore allow us to establish the effect of the presence of surfactants on sodium chloride crystallization. PMID:28425711

  4. Development of an animal model of nephrocalcinosis via selective dietary sodium and chloride depletion

    PubMed Central

    Tuchman, Shamir; Asico, Laureano D.; Escano, Crisanto; Bobb, Daniel A.; Ray, Patricio E.

    2013-01-01

    Background Nephrocalcinosis (NC) is an important clinical problem seen in critically ill pre-term neonates treated with loop diuretics. No reliable animal models are available to study the pathogenesis of NC in preterm infants. The purpose of this study was to develop a reproducible and clinically relevant animal model of NC for these patients, and to explore the impact of extracellular fluid (ECF) volume contraction induced by sodium and chloride depletion in this process. Methods Three-week old weanling Sprague-Dawley rats were fed diets deficient in either chloride or sodium and chloride. A sub-group of rats from each dietary group was injected daily with furosemide (40 mg/kg; i.p.). Results Rats fed a control diet, with or without furosemide, or a chloride depleted diet alone, did not develop NC. In contrast, 50% of the rats injected with furosemide and fed the chloride depleted diet developed NC. Moreover, 94% of the rats fed the combined sodium/chloride depleted diet developed NC, independently of furosemide use. NC was associated with the development of severe ECF volume contraction, hypochloremic, hypokalemic metabolic alkalosis, increased phosphaturia, and growth retardation. Conclusion Severe ECF volume contraction induced by chronic sodium and chloride depletion appears to play an important role in the pathogenesis of NC. PMID:23174703

  5. Effect of sodium chloride- and sodium bicarbonate-rich mineral water on blood pressure and metabolic parameters in elderly normotensive individuals: a randomized double-blind crossover trial.

    PubMed

    Schorr, U; Distler, A; Sharma, A M

    1996-01-01

    To examine the effect of sodium chloride- and sodium bicarbonate-rich mineral water on blood pressure and parameters of glucose and lipid metabolism in elderly normotensive individuals. We examined 21 healthy men and women aged 60-72 years in a randomized, placebo-controlled, double-blind crossover trial. After reducing dietary salt intake to below 100 mmol/day, study participants were randomly assigned to drink 1.5 l daily of a sodium chloride-rich (sodium 84.5 mmol/l, chloride 63.7 mmol/l, bicarbonate 21.9 mmol/l), a sodium bicarbonate-rich (sodium 39.3 mmol/l, chloride 6.5 mmol/l, bicarbonate 48.8 mmol/l) and a low-sodium (placebo: sodium, chloride and bicarbonate < 0.02 mmol/l) mineral water for 4 weeks each in a three-phase crossover order. Each phase was separated by a 2-week washout period in which the study participants remained on a low-salt diet. Compliance was assessed by biweekly urinary electrolyte excretion and five study participants were excluded from analysis for failing to complete the trial or to fulfil the compliance criteria. Mean arterial blood pressure was significantly lower during the periods of consuming low-sodium -7.0 +/- 7.2 mmHg, P < 0.001) or sodium bicarbonate-rich (-5.7 +/- 6.4 mmHg, P < 0.05) water than at baseline. In contrast, blood pressure during the phase of drinking sodium chloride-rich water was identical to that at baseline. Ambulatory 24 h blood pressure, oral glucose tolerance and plasma lipids were not affected by the different regimens. Urinary calcium excretion was significantly reduced by drinking low-sodium or sodium bicarbonate-rich water but was unchanged under the sodium chloride-rich water. Consumption of sodium chloride-rich mineral water can abolish the blood pressure reduction induced by dietary salt restriction in elderly individuals. Sodium bicarbonate-rich mineral water in conjunction with a low-salt diet may have a beneficial effect on calcium homeostasis.

  6. Salt microspheres and potassium chloride usage for sodium reduction: Case study with sushi.

    PubMed

    Đorđević, Đani; Buchtová, Hana; Macharáčková, Blanka

    2018-01-01

    The aim of the study was to estimate possibilities of salt substitutes usage in the preparation of two sushi types (nigiri and maki) prepared with different seafood (salmon: Salmo salar, tuna: Thunnus albacares, and shrimp: Pleoticus muelleri). Potassium chloride (Mary samples), Soda-Lo (hollowed microsphere of regular salt crystals), and regular salt (sodium chloride) were used in the experiment. Sushi samples (n = 1960) were evaluated by 40 trained panelists who noticed that maki shrimp samples prepared with Mary salt had higher bitterness (21.48 ± 28.01) in comparison with 2% sodium chloride (7.91 ± 8.80). The saltiness was lower in nigiri tuna prepared with Mary (49.59 ± 17.47) than 2% sodium chloride (61.11 ± 15.75). The study clearly showed the possibility of lowering sodium content in sushi meal with the usage of salt substitutes, with emphasis that Soda-Lo should be considered as a better option due to the retention of sensory properties in sushi samples prepared with this salt substitute.

  7. The Mechanism of Sodium and Chloride Uptake by the Gills of a Fresh-Water Fish, Carassius auratus

    PubMed Central

    García Romeu, F.; Maetz, J.

    1964-01-01

    Carassius auratus placed in a dilute sodium chloride solution (400 µM) is able to absorb sodium and chloride ions at very different rates, or to absorb one ion and to lose the other. This is the case not only for fish which have been previously kept in choline chloride or sodium sulfate solutions or deionized water, in order to stimulate their absorption processes, but also in control fish which have not been deprived of sodium or chloride. The absorption of sodium or chloride appears to be unaffected by the presence of a nonpermeant co-ion such as choline or sulfate. Conductivity measurements of the external medium show that during ion uptake the conductivity is constant or increases slowly. This suggests the existence of exchange processes between the ions absorbed and endogenous ions excreted. It is unlikely that potassium or calcium is exchanged for sodium, because of the low permeability of the gills to these ions. Finally, the flux ratios observed for both sodium and chloride ions in the present investigation can only be explained, in relation to their electrochemical gradients across the gills, in terms of active transport. PMID:14192553

  8. Effect of Sodium Nitrite, Sodium Chloride, and Sodium Nitrate on Germination and Outgrowth of Anaerobic Spores1

    PubMed Central

    Duncan, Charles L.; Foster, E. M.

    1968-01-01

    The effects of meat-curing agents on germination and outgrowth of putrefactive anaerobe 3679h (PA 3679h) spores were studied in microcultures. Nitrite concentrations up to 0.06% at pH 6.0 or between 0.8 and 1% at pH 7.0 allowed emergence and elongation of vegetative cells but blocked cell division. The newly emerged cells then lysed. With more than 0.06% nitrite at pH 6.0 or more than 0.8 to 1% at pH 7.0, the spores lost refractility and swelled, but vegetative cells did not emerge. Even as much as 4% nitrite failed to prevent germination (complete loss of refractility) and swelling of the spores. Sodium chloride concentrations above 6% prevented complete germination (i.e., the spores retained a refractile core). In the presence of 3 to 6% sodium chloride, most of the spores germinated and produced vegetative cells, but cell division was often blocked. Sodium nitrate had no apparent effect on germination and outgrowth at concentrations up to 2%. Images Fig. 1 Fig. 2 Fig. 3 PMID:5645423

  9. Comparison of effects of isotonic sodium chloride with diltiazem in prevention of contrast-induced nephropathy.

    PubMed

    Beyazal, Hatice; Caliskan, Zuhal; Utaç, Cengiz

    2014-04-01

    Contrast-induced nephropathy (CIN) significantly increases the morbidity and mortality of patients. The aim of this study is to investigate and compare the protective effects of isotonic sodium chloride with sodium bicarbonate infusion and isotonic sodium chloride infusion with diltiazem, a calcium channel blocker, in preventing CIN. Our study included patients who were administered 30-60 mL of iodinated contrast agent for percutaneous coronary angiography (PCAG), all with creatinine values between 1.1 and 3.1 mg/dL. Patients were divided into three groups and each group had 20 patients. The first group of patients was administered isotonic sodium chloride; the second group was administered a solution that of 5% dextrose and sodium bicarbonate, while the third group was administered isotonic sodium chloride before and after the contrast injection. The third group received an additional injection of diltiazem the day before and first 2 days after the contrast injection. All of the patients' plasma blood urea nitrogen (BUN) and creatinine levels were measured on the second and seventh day after the administration of intravenous contrast material. The basal creatinine levels were similar for all three groups (p > 0.05). Among a total of 60 patients included in the study, 16 patients developed acute renal failure (ARF) on the second day after contrast material was injected (26.6%). The number of patients who developed ARF on the second day after the injection in the first group was five (25%), in the second group was six (30%) and the third group was five (25%) (p > 0.05). There was no significant difference between isotonic sodium chloride, sodium bicarbonate and isotonic sodium chloride with diltiazem application in prevention of CIN.

  10. Chloride and sodium ion concentrations in saliva and sweat as a method to diagnose cystic fibrosis.

    PubMed

    Gonçalves, Aline Cristina; Marson, Fernando Augusto Lima; Mendonça, Regina Maria Holanda; Bertuzzo, Carmen Sílvia; Paschoal, Ilma Aparecida; Ribeiro, José Dirceu; Ribeiro, Antônio Fernando; Levy, Carlos Emílio

    2018-05-19

    Cystic fibrosis diagnosis is dependent on the chloride ion concentration in the sweat test (≥60mEq/mL - recognized as the gold standard indicator for cystic fibrosis diagnosis). Moreover, the salivary glands express the CFTR protein in the same manner as sweat glands. Given this context, the objective was to verify the correlation of saliva chloride concentration and sweat chloride concentration, and between saliva sodium concentration and sweat sodium concentration, in patients with cystic fibrosis and healthy control subjects, as a tool for cystic fibrosis diagnosis. There were 160 subjects enrolled: 57/160 (35.70%) patients with cystic fibrosis and two known CFTR mutations and 103/160 (64.40%) healthy controls subjects. Saliva ion concentration was analyzed by ABL 835 Radiometer ® equipment and, sweat chloride concentration and sweat sodium concentration, respectively, by manual titration using the mercurimetric procedure of Schales & Schales and flame photometry. Statistical analysis was performed by the chi-squared test, the Mann-Whitney test, and Spearman's correlation. Alpha=0.05. Patients with cystic fibrosis showed higher values of sweat chloride concentration, sweat sodium concentration, saliva chloride concentration, and saliva sodium concentration than healthy controls subjects (p-value<0.001). The correlation between saliva chloride concentration and sweat chloride concentration showed a positive Spearman's Rho (correlation coefficient)=0.475 (95% CI=0.346 to 0.587). Also, the correlation between saliva sodium concentration and sweat sodium concentration showed a positive Spearman's Rho=0.306 (95% CI=0.158 to 0.440). Saliva chloride concentration and saliva sodium concentration are candidates to be used in cystic fibrosis diagnosis, mainly in cases where it is difficult to achieve the correct sweat amount, and/or CFTR mutation screening is difficult, and/or reference methods for sweat test are unavailable to implement or are not easily accessible by

  11. Stability of penicillin G sodium diluted with 0.9% sodium chloride injection or 5% dextrose injection and stored in polyvinyl chloride bag containers and elastomeric pump containers.

    PubMed

    Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire

    2014-04-15

    The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.

  12. Preparation of 99Tcm-MAG3: no confirmation that sodium chloride injections from plastic containers affect radiochemical purity.

    PubMed

    Millar, A M; O'Brien, L M

    1998-05-01

    Reports have suggested that when sodium chloride injections from a plastic ampoule are used during the preparation of 99Tcm-mercaptoacetyltriglycine (99Tcm-MAG3), the radiochemical purity of the final product might be reduced. A study was therefore undertaken to examine the effect of sodium chloride injections from five manufacturers on the radiochemical purity and stability of 99Tcm-MAG3. One sodium chloride injection was supplied in a glass vial, three in plastic ampoules and one in a plastic infusion bag. Three batches of sodium chloride injections from each manufacturer were tested. The radiopharmaceutical was prepared at a radioactive concentration of 1.1 GBq in 10 ml according to the instructions of the manufacturer of TechneScan MAG3. Analysis of radiochemical purity was performed by high-performance liquid chromatography immediately after preparation and 6 h later. Using 95% as the minimum acceptable radiochemical purity, all the products were satisfactory over the 6 h test period. No manufacturer's sodium chloride injection was found to have a statistically significant effect on the radiochemical purity. Based on the 15 batches of sodium chloride injection tested, this study cannot confirm that sodium chloride injections from a plastic container affect the radiochemical purity of 99Tcm-MAG3. However, in view of the known sensitivity of some 99Tcm radiopharmaceuticals to external influences, it is probably good practice to test radiochemical purity when new batches of ancillary materials, such as sodium chloride injections, are introduced.

  13. [The use of sodium chloride baths in the treatment of diabetic patients with micro- and macroangiopathies].

    PubMed

    Davydova, O B; Turova, E A; Grishina, E V

    1998-01-01

    Patients suffering from insulin-dependent or non-insulin-dependent diabetes mellitus with micro- and macroangiopathy took sodium chloride baths of diverse concentration (30 and 50 g/l). A control group consisted of patients who had taken "neutral" baths. The response to sodium chloride baths was registered in carbohydrate and lipid metabolism, microcirculation, hemorheology, lower limbs circulation, exercise tolerance. Baths with sodium chloride concentrations 50 g/l have advantages, especially in patients with insulin-dependent diabetes mellitus.

  14. Heterogeneous Reaction gaseous chlorine nitrate and solid sodium chloride

    NASA Technical Reports Server (NTRS)

    Timonen, Raimo S.; Chu, Liang T.; Leu, Ming-Taun

    1994-01-01

    The heterogeneous reaction of gaseous chlorine nitrate and solid sodium chloride was investigated over a temperature range of 220 - 300 K in a flow-tube reactor interfaced with a differentially pumped quadrupole mass spectrometer.

  15. Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of staphylococci.

    PubMed

    Agarwal, Astha; Jain, Amita

    2013-01-01

    All colonizing and invasive staphylococcal isolates may not produce biofilm but may turn biofilm producers in certain situations due to change in environmental factors. This study was done to test the hypothesis that non biofilm producing clinical staphylococci isolates turn biofilm producers in presence of sodium chloride (isotonic) and high concentration of glucose, irrespective of presence or absence of ica operon. Clinical isolates of 100 invasive, 50 colonizing and 50 commensal staphylococci were tested for biofilm production by microtiter plate method in different culture media (trypticase soy broth alone or supplemented with 0.9% NaCl/ 5 or 10% glucose). All isolates were tested for the presence of ica ADBC genes by PCR. Biofilm production significantly increased in the presence of glucose and saline, most, when both glucose and saline were used together. All the ica positive staphylococcal isolates and some ica negative isolates turned biofilm producer in at least one of the tested culture conditions. Those remained biofilm negative in different culture conditions were all ica negative. The present results showed that the use of glucose or NaCl or combination of both enhanced biofilm producing capacity of staphylococcal isolates irrespective of presence or absence of ica operon.

  16. Clinical, hematologic, and electrolyte changes with 0.9% sodium chloride or acetated fluids in endurance horses.

    PubMed

    Fielding, C Langdon; Magdesian, K Gary; Meier, Chloe A; Rhodes, Diane M

    2012-06-01

    To describe the clinical and laboratory changes associated with the use of IV0.9% sodium chloride and a commercially available acetated fluid (CAF) to treat endurance horses requiring emergency medical treatment. Randomized, controlled clinical trial from 2007 to 2010. Emergency treatment centers of the Western States 100-mile (220 km) endurance ride. Twelve horses requiring emergency medical treatment in the form of IVfluids completed the study. Horses were assigned to either the 0.9% sodium chloride group (6 horses) or CAF group (6 horses) and received a total of 20 L of fluid. Clinical, hematologic, and electrolyte data were collected prior to and during fluid therapy. As compared to results prior to fluid therapy, horses treated with 0.9% sodium chloride had a decrease in heart rate (P < 0.01), PCV (P < 0.001), total plasma protein (TPP) (P < 0.001), and the sodium-chloride difference (P < 0.05). These horses also had an increase in plasma chloride (P < 0.01) and sodium (P < 0.01) concentrations. Horses treated with CAF showed a decrease in PCV (P < 0.01) and TPP (P < 0.001). These findings should aid in the design a larger clinical trial to provide further clarification on the effects of type of fluid therapy on clinical and biochemical parameters in endurance horses. The use of 0.9% sodium chloride may not be ideal for the emergency management of endurance horses as it was associated with an increase in plasma chloride concentration. © Veterinary Emergency and Critical Care Society 2012.

  17. Sodium chloride accumulation in glycophyte plants with cyanobacterial symbionts

    PubMed Central

    Sancho, Leopoldo G; Pintado, Ana; Saco, Dolores; Martín, Soledad; Arróniz-Crespo, María; Angel Casermeiro, Miguel; de la Cruz Caravaca, Maria Teresa; Cameron, Steven; Rozzi, Ricardo

    2017-01-01

    Abstract The majority of plant species are glycophytes and are not salt-tolerant and maintain low sodium levels within their tissues; if. high tissue sodium concentrations do occur, it is in response to elevated environmental salt levels. Here we report an apparently novel and taxonomically diverse grouping of plants that continuously maintain high tissue sodium contents and share the rare feature of possessing symbiotic cyanobacteria. Leaves of Gunnera magellanica in Tierra del Fuego always had sodium contents (dry weight basis) of around 4.26 g kg−1, about 20 times greater than measured in other higher plants in the community (0.29 g kg−1). Potassium and chloride levels were also elevated. This was not a response to soil sodium and chloride levels as these were low at all sites. High sodium contents were also confirmed in G. magellanica from several other sites in Tierra del Fuego, in plants taken to, and cultivated in Madrid for 2 years at low soil salt conditions, and also in other free living or cultivated species of Gunnera from the UK and New Zealand. Gunnera species are the only angiosperms that possess cyanobacterial symbionts so we analysed other plants that have this rather rare symbiosis, all being glycophytes. Samples of Azolla, a floating aquatic fern, from Europe and New Zealand all had even higher sodium levels than Gunnera. Roots of the gymnosperm Cycas revoluta had lower sodium contents (2.52 ± 0.34 g kg−1) but still higher than the non-symbiotic glycophytes. The overaccumulation of salt even when it is at low levels in the environment appears to be linked to the possession of a cyanobacterial symbiosis although the actual functional basis is unclear. PMID:29225764

  18. Maturation of the renal response to hypertonic sodium chloride loading in rats: micropuncture and clearance studies.

    PubMed Central

    Baker, J T; Solomon, S

    1976-01-01

    1. The ability of maturing rats to excrete a sodium load was studied by micropuncture and clearance procedures. 2. During control conditions, no change of glomerular filtration rate or sodium excretion was observed for the time period of the entire procedure (P greater than 0-20). During the infusion of hypertonic (4%) sodium chloride, fractional sodium excretion was 0-08 +/- 0-01 in rats 21-30 days old and 0-14 +/- 0-01 (P less than 0-01) in adults. However, the depression of proximal tubular water re-absorption was equal in both groups (P greater than 0-20). 3. Proximal glomerulotubular balance for water re-absorption was similar in all groups (P less than 0-20). Since end proximal tubular water excretion and depression of fractional water excretion were the same in all animals, differences of urinary sodium excretion during development are probably due to differences of function of segments beyond the proximal tubule during development. 4. Fractional potassium excretion was reduced in young rats (0-17 +/- 0-04) during hypertonic sodium chloride infusion, compared to adults (0-24 +/- 0-01, P less than 0-05). 5. Passage time of fast green through cortical segments in seconds is prolonged in young rats during control conditions. Similar decreases of passage time were seen in all groups during hypertonic sodium chloride infusion. No segmental differences of passage time were seen during developmental. 6. No difference in the relationship between fractional sodium and water excretion was seen during development of the renal response to hypertonic sodium chloride infusion. Thus, altered sensitivity to sodium chloride osmotic diuresis does not exist during maturation in rats. PMID:945839

  19. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques

    PubMed Central

    Tańska, Małgorzata; Rotkiewicz, Daniela; Piętak, Andrzej

    2016-01-01

    Summary This study assessed the selected properties of bread with reduced amount of sodium chloride. The bread was made from white and wholemeal wheat flour and rye flour. The dough was prepared using three techniques: with yeast, natural sourdough or starter sourdough. Sodium chloride was added to the dough at 0, 0.5, 1.0 and 1.5% of the flour mass. The following bread properties were examined in the study: yield and volume of the loaf, moisture content, crumb firmness and porosity, and organoleptic properties. Reducing the mass fraction of added sodium chloride was not found to have considerable effect on bread yield, whereas it had a significant and variable effect on the loaf volume, and crumb firmness and porosity. Organoleptic assessment showed diverse effects of sodium chloride addition on sensory properties of bread, depending on the type of bread and the dough preparation method. Reduced mass fractions of sodium chloride changed the organoleptic properties of bread made with yeast and with starter sourdough to a greater extent than of bread prepared with natural sourdough. PMID:27904407

  20. Malnutrition causes a reduction in alveolar epithelial sodium and chloride transport which predisposes to death from lung injury.

    PubMed

    Eisenhut, Michael

    2007-01-01

    All forms of malnutrition have been associated with increased severity of pneumonia, an increased pneumonia associated mortality and an increased risk of pulmonary fluid overload. Malnutrition was found to be associated with increased sweat sodium and chloride concentrations. A reduction of systemic sodium and chloride transport reflected in sweat sodium and chloride levels has been linked to increased severity of pulmonary edema in children with septicemia. Malnutrition causes a reduction in alveolar epithelial sodium and chloride transport which predisposes to death from lung injury. SUPPORTING EVIDENCE FOR THE HYPOTHESIS: Malnutrition caused reduced pulmonary fluid clearance in the rat model. Amiloride insensitive pulmonary fluid clearance in malnourished rats was reduced. The reduction in fluid clearance was reversible by beta agonists which increases epithelial sodium and chloride transport. Reduction of alveolar ion and fluid transport capacity explains the predisposition to death from pulmonary edema associated with intravenous fluids and blood transfusions in inpatients with malnutrition. Reduced alveolar epithelial ion transport impairs absorption of intra-alveolar inflammatory exudate in pneumonia leading to a increased severity of respiratory compromise and increased mortality. MEANS TO TEST THE HYPOTHESIS: Nasal potential difference measurements could compare airway epithelial sodium and chloride transport in patients with and without malnutrition and malnutrition associated lung disease. Sweat sodium and chloride concentrations could be compared in patients with and without respiratory disease associated with malnutrition and correlated with the severity of respiratory compromise.

  1. A Review of Sodium-Metal Chloride Battery Activity At JPL

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Following the disclosures by Coetzer et al. on the use of transition metal chlorides in chloroaluminates as alternate cathodes to sulfur in rechargeable sodium batteries, several laboratories, including the Jet Propulsion Laboratory, focused their attention on these systems. These systems have certain distinct advantages over sodium-sulfur batteries such as increased safety, inherent overcharge capability, and lower operating temperatures. Two systems, i.e., Na/FeCl2 and NaNiCl2, were developed extensively and evaluated in various applications including electric vehicles and space. Their performance has been very encouraging and warrants a detailed fundamental study on these cathodes. At the Jet Propulsion Laboratory a program was initiated two years back to understand the electrochemical behavior of FeCl2 and NiCl2, and to identify and evaluate other transition metal chlorides of promise. The initial efforts focused on the methods of fabrication of the electrodes and their electrochemical characterization. Subsequent studies were aimed at establishing the reaction mechanism, determining the kinetics, and identifying the rate-limiting processes in te reduction of metal chloride cathodes. Nickel chloride emerged form these studies as the most promising candidate material and was taken up for further detailed study on its passivation- a rate limiting process-under different experimental conditions. Also, the feasibility of using copper chloride, which is expected to have a higher energy density, has been assessed. On the basis of the criteria established from the voltammetric response of FeCl2, NiCl2, and CuCl2, several other transition metal chlorides were screened. Of these, molybdenum and cobalt appear promising.

  2. On the Effect of Sodium Chloride and Sodium Sulfate on Cold Denaturation

    PubMed Central

    Pica, Andrea; Graziano, Giuseppe

    2015-01-01

    Both sodium chloride and sodium sulfate are able to stabilize yeast frataxin, causing an overall increase of its thermodynamic stability curve, with a decrease in the cold denaturation temperature and an increase in the hot denaturation one. The influence of low concentrations of these two salts on yeast frataxin stability can be assessed by the application of a theoretical model based on scaled particle theory. First developed to figure out the mechanism underlying cold denaturation in water, this model is able to predict the stabilization of globular proteins provided by these two salts. The densities of the salt solutions and their temperature dependence play a fundamental role. PMID:26197394

  3. Electrostatic N-95 respirator filter media efficiency degradation resulting from intermittent sodium chloride aerosol exposure.

    PubMed

    Moyer, E S; Bergman, M S

    2000-08-01

    The effects of intermittently loading small masses of sodium chloride aerosol on the filtration efficiency of N-95 filtering facepiece respirators was investigated. The National Institute for Occupational Safety and Health (NIOSH) certifies that N-95 respirators must provide at least 95 percent filtration efficiency against a sodium chloride aerosol challenge as per the respirator certification (42 CFR 84) test criteria. N-95 respirators are specified for protection against solid and water-based particulates (i.e., non-oil aerosols). New N-95 respirators from three different manufacturers were loaded with 5 +/- 1 mg of sodium chloride aerosol one day a week, over a period of weeks. Aerosol loading and penetration measurements were performed using the TSI 8130 Filter Tester. Respirators were stored uncovered on an office desktop outside the laboratory. To investigate environmental and temporal effects of filters being stored without sodium chloride exposure, control respirators were stored on the desk for various lengths of time before being initiated into weekly testing. For all manufacturers' respirators, the controls showed similar initial penetrations on their day of initiation (day zero) to those of the study samples on day zero. As the controls were tested weekly, they showed similar degradation rates to those of the study samples. Results show that some of the manufacturers' models had penetrations of greater than 5 percent when intermittently exposed to sodium chloride aerosol. It is concluded that intermittent, low-level sodium chloride aerosol loading of N-95 respirators has a degrading effect on filter efficiency. This reduction in filter efficiency was not accompanied by a significant increase in breathing resistance that would signal the user that the filter needs to be replaced. Furthermore, it was noted that the effect of room storage time prior to initial exposure was much less significant.

  4. Solute rejection by porous glass membranes. I - Hyperfiltration of sodium chloride and urea feed solutions.

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wydeven, T.; Leban, M. I.

    1971-01-01

    Hyperfiltration of sodium chloride and urea was studied with porous glass membranes in closed-end capillary form, to determine the effect of pressure, temperature, and concentration variations, and lifetime rejection and flux characteristics. Rejection data for sodium chloride were consistent with the functioning of the porous glass as a low-capacity ion-exchange membrane.

  5. Human body frequency modulation by 0.9% sodium chloride solutions: a new paradigm and perspective for human health.

    PubMed

    Sudan, B J

    2000-08-01

    This case study demonstrates that the normal human body frequency, which can be disturbed by electromagnetic influences of the environment, can be modulated by 0.9% sodium chloride solutions (physiological saline) and that occurrence of allergic reactions have subsequently been suppressed as a result of this modulation. The use of distilled water as control showed no effect on occurrence of allergic reactions. Further observations on the growth of various plants in a greenhouse exposed to various geomagnetic fields support the previous observations on humans. The neutralization of electromagnetic influences on humans using 0.9% sodium chloride solution or by enclosure of plants within a copper wire Faraday cage resulting in a normal and uniform growth of plants as compared with disturbed and irregular growth in unenclosed controls, is demonstrated. These original observations propose a new strategy to suppress or prevent allergic reactions and possibly other effects observed in various human pathologies in relation to a disturbance of human body frequencies. It is hypothesized that the double helix structure of desoxyribonucleic acid (DNA) could be modified by environmental electromagnetic fields and that disresonance between the two chains of DNA could lead to the expression of specific pathology. Copyright 2000 Harcourt Publishers Ltd.

  6. Influence of chloride on the chronic toxicity of sodium nitrate to Ceriodaphnia dubia and Hyalella azteca.

    PubMed

    Soucek, David J; Dickinson, Amy

    2016-09-01

    While it has been well established that increasing chloride concentration in water reduces the toxicity of nitrite to freshwater species, little work has been done to investigate the effect of chloride on nitrate toxicity. We conducted acute and chronic nitrate (as sodium nitrate) toxicity tests with the cladoceran Ceriodaphnia dubia and the amphipod Hyalella azteca (chronic tests only) over a range of chloride concentrations spanning natural chloride levels found in surface waters representative of watersheds of the Great Lakes Region. Chronic nitrate toxicity test results with both crustaceans were variable, with H. azteca appearing to be one of the more sensitive invertebrate species tested and C. dubia being less sensitive. While the variability in results for H. azteca were to an extent related to chloride concentration in test water that was distinctly not the case for C. dubia. We concluded that the chloride dependent toxicity of nitrate is not universal among freshwater crustaceans. An additional sodium chloride chronic toxicity test with the US Lab strain of H. azteca in the present study suggested that when present as predominantly sodium chloride and with relatively low concentrations of other ions, there is a narrow range of chloride concentrations over which this strain is most fit, and within which toxicity test data are reliable.

  7. Mechanism of chemical activation of sodium chloride in the presence of amino acids.

    PubMed

    Rahn, Anja K K; Yaylayan, Varoujan A

    2015-01-01

    Sodium chloride has been shown to promote chlorination of glycerol during thermal processing. However, the detailed mechanism of this reaction is not well understood. Preliminary experiments have indicated that the reaction mixture should contain an amino acid and it should be dissolved thoroughly in water in order to induce chlorination. These observations are consistent with the process of dissociation of sodium chloride and its re-association with amino acid and eventual formation of the chlorinating agent in the form of the hydrochloride salt. Release of HCl from this salt can be manifested in chlorination and hydrolytic reactions occurring during thermal processing. The generation of HCl at room temperature from a mixture of sodium chloride and glycine was confirmed through spectrophotometric monitoring of the pH. Hydrolytic and chlorination reactions were demonstrated through monitoring of formation of HMF and chlorinated products under pyrolytic conditions using glucose or sucrose and amino acid mixtures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Stability of methadone hydrochloride in 0.9% sodium chloride injection in single-dose plastic containers.

    PubMed

    Denson, D D; Crews, J C; Grummich, K W; Stirm, E J; Sue, C A

    1991-03-01

    The stability of methadone hydrochloride in 0.9% sodium chloride injection in flexible polyvinyl chloride containers was studied. Commercially available methadone hydrochloride 20 mg/mL and 25-mL single-dose bags of 0.9% sodium chloride injection were used. Six samples each were prepared at methadone hydrochloride concentrations of 1, 2, and 5 mg/mL. The solutions were stored at room temperature and were not protected from light. Immediately after preparation and after two, three, and four weeks of storage, each of the 18 samples was divided into three aliquots, each of which was analyzed in duplicate for methadone hydrochloride concentration by gas chromatography. There was less than 10% change in methadone hydrochloride concentration in any sample throughout the four-week study period. Methadone hydrochloride at concentrations of 1, 2, and 5 mg/mL prepared in commercially available flexible polyvinyl chloride containers of 0.9% sodium chloride injection and stored at room temperature without deliberate protection from light is stable for at least four weeks.

  9. Evaluation of an alternative deicing chemical vs. conventional sodium chloride.

    DOT National Transportation Integrated Search

    2004-07-01

    A research project was initiated to evaluate the performance and cost effectiveness of a proprietary, pre-blended, : roadway-deicing chemical on New Hampshire highways. The evaluated material is a patented blend of sodium chloride, liquid : magnesium...

  10. Soil salinity study in Northern Great Plains sodium affected soil

    NASA Astrophysics Data System (ADS)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0

  11. Temporal and spatial trends of chloride and sodium in groundwater in New Hampshire, 1960–2011

    USGS Publications Warehouse

    Medalie, Laura

    2012-01-01

    Data on concentrations of chloride and sodium in groundwater in New Hampshire were assembled from various State and Federal agencies and organized into a database. This report provides documentation of many assumptions and limitations of disparate data that were collected to meet wide-ranging objectives and investigates temporal and spatial trends of the data. Data summaries presented in this report and analyses performed for this study needed to take into account the 27 percent of chloride and 5 percent of sodium data that were censored (less than a reporting limit) at multiple reporting limits that systematically decreased over time. Throughout New Hampshire, median concentrations of chloride were significantly greater during 2000-2011 than in every decade since the 1970s, and median concentrations of sodium were significantly greater during 2000-2011 than during the 1990s. Results of summary statistics showed that the 50th, 75th, and 90th percentiles of the median concentrations of chloride and sodium by source (well) from Rockingham and Strafford counties were the highest in the State; and the 75th and 90th percentiles from Carroll, Coos, and Grafton counties were the lowest. Large increases in median concentrations of chloride and sodium for individual wells after 1995 compared with concentrations for years before were found in parts of Belknap and Rockingham counties and in small clusters within Carroll, Hillsborough, and Merrimack counties.

  12. Comparison of sodium content of workplace and homemade meals through chemical analysis and salinity measurements.

    PubMed

    Shin, Eun-Kyung; Lee, Yeon-Kyung

    2014-10-01

    Most Koreans consume nearly 70-80% of the total sodium through their dishes. The use of a salinometer to measure salinity is recommended to help individuals control their sodium intake. The purpose of this study was to compare sodium content through chemical analysis and salinity measurement in foods served by industry foodservice operations and homemade meals. Workplace and homemade meals consumed by employees in 15 cafeterias located in 8 districts in Daegu were collected and the sodium content was measured through chemical analysis and salinity measurements and then compared. The foods were categorized into 9 types of menus with 103 workplace meals and 337 homemade meals. Workplace meals did not differ significantly in terms of sodium content per 100 g of food but had higher sodium content via chemical analysis in roasted foods per portion. Homemade meals had higher broth salt content and higher salt content by chemical analysis per 100 g of roasted foods and hard-boiled foods. One-dish workplace meals had higher salinity (P < 0.05), while homemade broths and stews had higher sodium content (P < 0.05 and P < 0.01, respectively). The sodium content per 100 g of foods was higher in one-dish workplace meals (P < 0.05) and in homemade broths and stews (P < 0.01 and P < 0.05, respectively). The use of a salinometer may be recommended to estimate the sodium content in foods and control one's sodium intake within the daily intake target as a way to promote cooking bland foods at home. However, estimated and actual measured values may differ.

  13. Effects of salinity on chloride cells and Na+ K+-ATPase activity in the teleost Gillchthys mirabilis

    USGS Publications Warehouse

    Yoshikawa, J.S.M.; McCormick, S.D.; Young, G.; Bern, H.A.

    1993-01-01

    1. Longjawed mudsuckers, Gillichthys mirabilis, in 30ppt seawater (SW) were transferred to 1.5, 30 and 60ppt SW.2. In the first 1–3 days after transfer, plasma chloride level and plasma osmolarity rose in the 60ppt SW fish, and decreased in the 1.5ppt SW fish.3. By day 21, however, plasma chloride and osmolarity were at or near the levels seen in the controls (30ppt).4. Branchial and jawskin Na+, K+-ATPase activities were high in all salinities, and did not differ significantly among treatments.5. The vital fluorescent stains DASPEI and anthroylouabain were used to detect mitochondria and Na+, K+-ATPase, respectively, in chloride cells.6. Both stains indicated that jawskin chloride cell density did not differ among treatment groups.7. In contrast, chloride cell size increased significantly with increasing salinity.8. The chloride cells of fish in 60 ppt SW were noticeably angular in outline, whereas those of both the 1.5 and 30ppt SW fish were circular.9. The results are discussed in relation to the ion transport requirements encountered in the intertidal habitat of the mudsucker.

  14. Attenuation by genistein of sodium-chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats.

    PubMed

    Tatsuta, M; Iishi, H; Baba, M; Yano, H; Uehara, H; Nakaizumi, A

    1999-01-29

    The effects of prolonged administration of genistein, a tyrosine-kinase inhibitor, on sodium-chloride-enhanced induction of gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine, and the labeling and apoptotic indices and vessel counts in the gastric mucosa and gastric cancers, were investigated in Wistar rats. After 25 weeks of the carcinogen treatment, rats were fed chow pellets containing 10% sodium chloride and were given s.c. injections of genistein at dosages of 15 mg/kg or 30 mg/kg body weight every other day. In week 52, the incidence of gastric cancers was significantly greater in rats fed sodium chloride than in untreated control rats. Prolonged administration of genistein at a dosage of 30 mg/kg, but not 15 mg/kg, body weight significantly reduced the incidence of gastric cancers, which was increased by oral treatment with sodium chloride. Genistein at the higher dose significantly decreased the labeling index and vessel counts of the antral mucosa and the gastric cancers (which were increased by treatment with sodium chloride) and significantly increased the apoptotic index of the antral mucosa and the cancers (which was lowered by the treatment with sodium chloride). These findings suggest that genistein attenuates gastric carcinogenesis promoted by sodium chloride, by inducing increased apoptosis and lower cell proliferation and angiogenesis of antral mucosa and gastric cancers.

  15. View of Sodium Chloride inserted onto blueberry jelly within a metal loop on Expedition Six

    NASA Image and Video Library

    2003-03-15

    ISS006-E-39282 (15 March 2003) --- A view of sodium chloride inserted onto blueberry jelly within a 50-millimeter (mm) metal loop was photographed by an Expedition Six crewmember. The water in the sodium chloride solution evaporates as it leaves larger three-dimensional crystals while the blueberry jelly hardens. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  16. [Sulfide ooze mud and sodium chloride baths in treating osteoarthrosis patients].

    PubMed

    Novikova, N V

    1989-01-01

    Humoral immunity initially affected in patients with osteoarthrosis returns to normal under the influence of a multiple-modality treatment involving application of sulphide moor in combination with sodium chloride baths.

  17. Stability of i.v. admixture containing metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate in 0.9% sodium chloride injection.

    PubMed

    Kintzel, Polly E; Zhao, Ting; Wen, Bo; Sun, Duxin

    2014-12-01

    The chemical stability of a sterile admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was evaluated. Triplicate samples were prepared and stored at room temperature without light protection for a total of 48 hours. Aliquots from each sample were tested for chemical stability immediately after preparation and at 1, 4, 8, 24, and 48 hours using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate were selectively monitored using multiple-reaction monitoring. Samples were diluted differently for quantitation using three individual LC-MS/MS methods. To determine the drug concentration of the three compounds in the samples, three calibration curves were constructed by plotting the peak area or the peak area ratio versus the concentration of the calibration standards of each tested compound. Apixaban was used as an internal standard. Linearity of the calibration curve was evaluated by the correlation coefficient r(2). Constituents of the admixture of metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection retained more than 90% of their initial concentrations over 48 hours of storage at room temperature without protection from light. The observed variability in concentrations of these three compounds was within the limits of assay variability. An i.v. admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was chemically stable for 48 hours when stored at room temperature without light protection. Copyright © 2014 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  18. Investigation into the role of sodium chloride deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1983-01-01

    Sodium chloride is deposited on the surface of alumina substrates and exposed to air containing 1% SO2 at temperatures between 500 C and 700 C. In all cases the sodium chloride was converted to sodium sulfate. The volatilization of sodium chloride from the original salt particles was responsible for the development of a uniform coating of sodium sulfate on the alumina substrate. At temperatures above 625 C, a liquid NaCl-Na2SO4 autectic was formed on the substrate. The mechanisms for these reactions are given. One of the main roles of NaCl in low temperature hot corrosion lies in enabling a corrosive liquid to form.

  19. 0.9% sodium chloride injection with and without heparin for maintaining peripheral indwelling intermittent-infusion devices in infants.

    PubMed

    Nelson, T J; Graves, S M

    1998-03-15

    The use of 0.9% sodium chloride injection with and without heparin sodium for maintaining peripheral indwelling intermittent-infusion devices (PIIIDs) in infants was studied. In this double-blind study, children up to one year of age who had a 24-gauge PIIID through which a continuous i.v. infusion was no longer running were randomly assigned to have their PIIID capped with 0.9% sodium chloride injection with or without heparin sodium 10 units/mL. PIIIDs were capped every eight hours if no medications were administered; otherwise, they were capped after each dose of an i.v. drug. The heparin group had 26 patients with 28 evaluable PIIIDs, and the 0.9% sodium chloride injection group had 32 patients with 46 evaluable PIIIDs. The two groups did not differ significantly in variables assessing the duration of PIIID use, reasons for removal of PIIIDs, mean number of cappings, irritant potential of administered drugs, or severity of medication-related irritation. There was no significant difference between 0.9% sodium chloride injection with and without heparin sodium 10 units/mL in maintaining 24-gauge PIIIDs in children younger than one year.

  20. Acid tolerance and acid shock response of Escherichia coli O157:H7 and non-O157:H7 isolates provide cross protection to sodium lactate and sodium chloride.

    PubMed

    Garren, D M; Harrison, M A; Russell, S M

    1998-02-01

    The survival of Escherichia coli O157:H7 and non-O157:H7 due to an enhanced acid tolerance response (ATR), and enhanced acid shock response (ASR), or the stationary phase protective system when exposed to lactic acid and the resulting cross protection against increased concentration of sodium chloride and sodium lactate was studied. Escherichia coli O157:H7 isolates (1932 and 009) and a non-O157:H7 strain (ATCC 23716) were grown to stationary phase at 32 degrees C and O157:H7 to one of two treatments in an attempt to either acid shock or acid adapt the survivors. Acid shocked cells were exposed to lactic acid at pH 4.0. Acid-adapted cells were first exposed to a pH of 5.5 and then an acid challenge of pH 4.0. Sodium lactate (10%, 20%, or 30%) or sodium chloride (5%, 10%, or 15%) were added to a minimal glucose medium after the acidification treatment. When acid shocked and acid adapted isolate 932 and strain ATCC 23716 tolerated the elevated levels of sodium lactate, and the strain ATCC 23716 tolerated the elevated levels of sodium chloride. Acid adaption allowed isolate 932 to tolerate higher levels of sodium chloride; however, the acid shocking did not provide the same protection. Neither of the acid treatment provided increased tolerance to sodium chloride for isolate E009. Evidence of cross protection against acid and sodium chloride or acid and sodium lactate in E. coli O157:H7 could point to a need for further evaluation of whether these combinations of preservation means are sufficient to control this pathogen.

  1. Attenuation by d-limonene of sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats.

    PubMed

    Yano, H; Tatsuta, M; Iishi, H; Baba, M; Sakai, N; Uedo, N

    1999-08-27

    The effects of prolonged administration of d-limonene, a monocyclic monoterpene, on sodium chloride-enhanced induction of gastric carcinogenesis by N-methyl-N'-nitro-N-nitrosoguanidine, the labeling and apoptotic indices, and ornithine decarboxylase (ODC) activity of gastric cancers were investigated in Wistar rats. After 25 weeks of carcinogen treatment, rats were given chow pellets containing 10% sodium chloride and 1% limonene ad libitum. In week 52, the incidence of gastric cancers, the labeling index and ODC activity were significantly higher and the apoptotic index was significantly lower in rats given sodium chlolide than in untreated control rats. However, in rats given both sodium chloride and d-limonene, the incidence of gastric cancers, the labeling index and ODC activity were significantly lower and the apoptotic index was significantly higher than in rats given sodium chloride alone. Our findings suggest that limonene attenuates the gastric carcinogenesis enhanced by sodium chloride via increased apoptosis and decreased ODC activity in gastric cancers. Copyright 1999 Wiley-Liss, Inc.

  2. The behaviour of water and sodium chloride solution confined into asbestos nanotube

    NASA Astrophysics Data System (ADS)

    Fomin, Yu. D.; Ryzhov, V. N.; Tsiok, E. N.

    2016-08-01

    We present the molecular simulation study of the behaviour of water and sodium chloride solution confined in lizardite asbestos nanotube which is a typical example of hydrophilic confinement. The local structure and orientational and dynamic properties are studied. It is shown that at low enough temperatures there is a well-defined orientational ordering of the water molecules. At high local densities corresponding to the maxima of the density distribution function, the water molecules are oriented parallel to the axis of the tube. It is also shown that the diffusion coefficient drops about two orders of magnitude comparing to the bulk case. The behaviour of sodium chloride solutions is also considered and the formation of double layer is observed.

  3. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT... the production of sodium chloride by the solution brine-mining process and by the solar evaporation...

  4. Acid-base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution.

    PubMed

    Hashemi, Sayed Jalal; Heidari, Sayed Morteza; Yaraghi, Ahmad; Seirafi, Reza

    2016-01-01

    Intraoperative hemorrhage is one of the problems during surgery and, if it happens in a high volume without an immediate action to control, it can be fatal. Nowadays, various injectable solutions are used. The aim of this study was to compare the acid-base and hemodynamic status of the patient using two solutions, Ringer lactate and 1.3% sodium bicarbonate, in half saline solution. This clinical trial was performed at the Al-Zahra Hospital in 2013 on 66 patients who were randomly selected and put in two studied groups at the onset of hemorrhage. For the first group, crystalloid Ringer lactate solution and for the second group, 1.3% sodium bicarbonate in half-normal saline solution was used. Electrocardiogram, heart rate, O2 saturation non-invasive blood pressure and end-tidal CO2 were monitored. The arterial blood gas, blood electrolytes, glucose and blood urea nitrogen were measured before serum and blood injection. After the infusion of solutions and before blood transfusions, another sample was sent for measurement of blood parameters. Data were analyzed using SPSS software. The mean arterial pressure was significantly higher in the second group than in the first group at some times after the infusion of solutions. pHh levels, base excess, bicarbonate, sodium, strong ion differences and osmolarity were significantly greater and potassium and chloride were significantly lower in the second group than in the first group after the infusion of solutions. 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid-base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  5. Heparin or 0.9% sodium chloride to maintain central venous catheter patency: a randomized trial.

    PubMed

    Schallom, Marilyn E; Prentice, Donna; Sona, Carrie; Micek, Scott T; Skrupky, Lee P

    2012-06-01

    To compare heparin (3 mL, 10 units/mL) and 0.9% sodium chloride (NaCl, 10 mL) flush solutions with respect to central venous catheter lumen patency. Single-center, randomized, open label trial. Medical intensive care unit and Surgical/Burn/Trauma intensive care unit at Barnes-Jewish Hospital, St. Louis, MO. Three hundred forty-one patients with multilumen central venous catheters. Patients with at least one lumen with a minimum of two flushes were included in the analysis. Patients were randomly assigned within 12 hrs of central venous catheter insertion to receive either heparin or 0.9% sodium chloride flush. The primary outcome was lumen nonpatency. Secondary outcomes included the rates of loss of blood return, inability to infuse or flush through the lumen (flush failure), heparin-induced thrombocytopenia, and catheter-related blood stream infection. Assessment for patency was performed every 8 hrs in lumens without continuous infusions for the duration of catheter placement or discharge from intensive care unit. Three hundred twenty-six central venous catheters were studied yielding 709 lumens for analysis. The nonpatency rate was 3.8% in the heparin group (n = 314) and 6.3% in the 0.9% sodium chloride group (n = 395) (relative risk 1.66, 95% confidence interval 0.86-3.22, p = .136). The Kaplan-Meier analysis for time to first patency loss was not significantly different (log rank = 0.093) between groups. The rates of loss of blood return and flush failure were similar between the heparin and 0.9% sodium chloride groups. Pressure-injectable central venous catheters had significantly greater rates of nonpatency (10.6% vs. 4.3%, p = .001) and loss of blood return (37.0% vs. 18.8%, p <.001) compared to nonpressure-injectable catheters. The frequencies of heparin-induced thrombocytopenia and catheter-related blood stream infection were similar between groups. 0.9% sodium chloride and heparin flushing solutions have similar rates of lumen nonpatency. Given potential

  6. [The use of sodium chloride baths in patients with chronic bronchitis].

    PubMed

    Anisimkina, A N; Aĭrapetova, N S; Davydova, O B; Doronina, Iu V; Derevnina, N A; Gontar', E V

    1996-01-01

    80 patients with chronic bronchitis took baths with sodium chloride concentration 20, 40, 60 g/l and temperature 37-38 degrees C. The baths produced a positive effect on central and regional hemodynamics, reduced inflammation and sensitization.

  7. Effect of sodium chloride on the glass transition of condensed starch systems.

    PubMed

    Chuang, Lillian; Panyoyai, Naksit; Shanks, Robert; Kasapis, Stefan

    2015-10-01

    The present investigation deals with the structural properties of condensed potato starch-sodium chloride systems undergoing a thermally induced glass transition. Sample preparation included hot pressing at 120°C for 7 min to produce extensive starch gelatinisation. Materials covered a range of moisture contents from 3.6% to 18.8%, which corresponded to relative humidity values of 11% and 75%. Salt addition was up to 6.0% in formulations. Instrumental work was carried out with dynamic mechanical analysis in tension, modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy and wide angle X-ray diffraction. Experimental conditions ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of sodium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Sodium ions interact with chemical moieties of the polysaccharide chain to alter considerably structural properties, as compared to the starch-water matrix. Copyright © 2015. Published by Elsevier Ltd.

  8. Influence of sodium chloride on the beta-glucuronidase activity of Clostridium perfringens and Escherichia coli.

    PubMed

    Fujisawa, T; Aikawa, K; Takahashi, T; Yamai, S

    2000-09-01

    While the beta-glucuronidase activity of intact cells of Clostridium perfringens was higher in 0.95% sodium chloride (NaCl) than that in 0, 0.1 or 0.5%, that of Escherichia coli was higher in 0.1% NaCl than that in 0, 0.5 or 0.95% NaCl in 0.1 mol l-1 KH2PO4. However, the enzyme activity of both species of intact cells was higher in buffer containing 16 mEq sodium, 134 mEq potassium and 16 mEq chloride per litre than in that containing 146 mEq sodium, 13 mEq potassium and 146 mEq chloride. These findings suggest that bacterial cells are affected by the presence of NaCl and that the effect of NaCl on the activity of bacterial beta-glucuronidase may differ by location in the large intestine.

  9. Attenuation by all-trans-retinoic acid of sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats.

    PubMed

    Tatsuta, M; Iishi, H; Baba, M; Hirasawa, R; Yano, H; Sakai, N; Nakaizumi, A

    1999-02-01

    The effect of prolonged administration of all-trans-retinoic acid (RA) on sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine, and the labelling and apoptotic indices and immunoreactivity of transforming growth factor (TGF) alpha in the gastric cancers was investigated in Wistar rats. After 25 weeks of carcinogen treatment, the rats were given chow pellets containing 10% sodium chloride and subcutaneous injections of RA at doses of 0.75 or 1.5 mg kg(-1) body weight every other day. In week 52, oral supplementation with sodium chloride significantly increased the incidence of gastric cancers compared with the untreated controls. Long-term administration of RA at both doses significantly reduced the incidence of gastric cancers, which was enhanced by oral administration of sodium chloride. RA at both doses significantly decreased the labelling index and TGF-alpha immunoreactivity of gastric cancers, which were enhanced by administration of sodium chloride, and significantly increased the apoptotic index of cancers, which was lowered by administration of sodium chloride. These findings suggest that RA attenuates gastric carcinogenesis, enhanced by sodium chloride, by increasing apoptosis, decreasing DNA synthesis, and reducing TGF-alpha expression in gastric cancers.

  10. The use of short rotation willows and poplars for the recycling of saline waste waters

    Treesearch

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  11. Kinetic Effect on the Freezing of Ammonium-Sodium-Carbonate-Chloride Brines and Implications for Origin of Ceres' Bright Spots

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.; Thomas, E. C.; Vu, T. H.; Johnson, P. V.; Choukroun, M.

    2017-12-01

    Subsurface brines on Ceres containing natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3 have been proposed to reach the dwarf planet's surface from an internal reservoir, where the brines freeze and result in bright spots across Ceres. Kinetically frozen solutions containing the likely constituents of Ceres' subsurface brines (ammonium, sodium, carbonate, and chloride ions) were studied via infrared and micro-Raman spectroscopy, where the flash-frozen mixtures were found to preferentially form ammonium chloride and ammonium bicarbonate, even in sodium-dominated solutions. Additionally, sodium chloride only formed when sodium or chloride (or both) were present in excess in the brine solutions. Raman spectroscopy was further employed to analyze the effect of vacuum exposure on these frozen brines over longer periods of time to simulate the surface conditions of Ceres.

  12. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells.

    PubMed

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A

    2017-08-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na + ) and, indirectly, serum potassium (K + ) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ( 22 Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22 Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K + , the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22 Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion. Copyright © 2017 the American Physiological Society.

  13. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application

    NASA Astrophysics Data System (ADS)

    Kolesar, Katheryn R.; Mattson, Claire N.; Peterson, Peter K.; May, Nathaniel W.; Prendergast, Rashad K.; Pratt, Kerri A.

    2018-03-01

    The application of salts and salty brines to roads is common practice during the winter in many urban environments. Road salts can become aerosolized, thereby injecting sodium and chloride particulate matter (PM) into the atmosphere. Here, data from the United States Environmental Protection Agency Chemical Speciation Monitoring Network were used to assess temporal trends of sodium and chloride PM2.5 (PM < 2.5 μm) at 25 locations across the United States to investigate the ubiquity of road salt aerosols. Sodium and chloride PM2.5 concentrations were an average of three times higher in the winter, as compared to the summer, for locations with greater than 25 cm of average annual snowfall. Winter urban chloride PM2.5 concentrations attributed to road salt can even sometimes rival those of coastal sea spray aerosol-influenced sites. In most snow-influenced cities, chloride and sodium PM2.5 concentrations were positively correlated with snowfall; however, this relationship is complicated by differences in state and local winter maintenance practices. This study highlights the ubiquity of road salt aerosols in the United States and their potential impact on wintertime urban air quality, particularly due to the potential for multiphase reactions to liberate chlorine from the particle-phase. Since road salt application is a common practice in wintertime urban environments across the world, it is imperative that road salt application emissions, currently not included in inventories, and its impacts be investigated through measurements and modeling.

  14. Use of potassium chloride and flavor enhancers in low sodium Cheddar cheese.

    PubMed

    Grummer, J; Bobowski, N; Karalus, M; Vickers, Z; Schoenfuss, T

    2013-03-01

    We investigated use of potassium chloride (KCl) to maintain both the salty flavor and to replace the preservative effects of salt when reducing the sodium content in natural cheese. Because salt replacers can affect flavor because of inherent off-flavors, such as bitter and metallic, we examined the use of flavor enhancers for their ability to modulate some of these undesirable sensory effects. Stirred-curd Cheddar-style cheese was manufactured using 2 cheese-making procedures (different curd knife sizes and target salting titratable acidities), in duplicate. Curd was salted with sodium chloride (NaCl) or 60% reduced sodium blends of NaCl and KCl (2 different sources). Curd was also salted at a 60% reduced sodium rate with NaCl and KCl with added flavor enhancers. A hydrolyzed vegetable protein/yeast extract blend, a natural "potassium-blocking type" flavor, disodium inosinate, or disodium guanylate were each blended with the reduced sodium salt blend and added to curd at the salting step. The resulting blocks of cheese were aged for 5 mo and evaluated monthly for chemical, microbial, and sensory differences. At 5 mo of aging, we measured liking for the cheeses using a consumer panel. Overall, cheeses were well liked by the consumer panel, and the scores of reduced sodium cheese with 2 different KCl sources were not different from those of the full-sodium control. The addition of flavor enhancers to Cheddar curd had mixed results, with one improving the consumer flavor liking only slightly over KCl, and one (disodium inosinate) significantly reducing consumer flavor liking scores, presumably due to the amount of umami flavor it contributed. Potassium chloride replacement salts sourced from different manufacturers affected the chemical and flavor properties of cheese, and changes to pH and temperature targets may be necessary to yield cheese with the moisture and pH targets desired. The cheese-making procedure used also influenced flavors observed, which resulted in

  15. Meta-Analysis of Individual Patient Data of Sodium Bicarbonate and Sodium Chloride for All-Cause Mortality After Coronary Angiography.

    PubMed

    Brown, Jeremiah R; Pearlman, Daniel M; Marshall, Emily J; Alam, Shama S; MacKenzie, Todd A; Recio-Mayoral, Alejandro; Gomes, Vitor O; Kim, Bokyung; Jensen, Lisette O; Mueller, Christian; Maioli, Mauro; Solomon, Richard J

    2016-11-15

    We sought to examine the relation between sodium bicarbonate prophylaxis for contrast-associated nephropathy (CAN) and mortality. We conducted an individual patient data meta-analysis from multiple randomized controlled trials. We obtained individual patient data sets for 7 of 10 eligible trials (2,292 of 2,764 participants). For the remaining 3 trials, time-to-event data were imputed based on follow-up periods described in their original reports. We included all trials that compared periprocedural intravenous sodium bicarbonate to periprocedural intravenous sodium chloride in patients undergoing coronary angiography or other intra-arterial interventions. Included trials were determined by consensus according to predefined eligibility criteria. The primary outcome was all-cause mortality hazard, defined as time from randomization to death. In 10 trials with a total of 2,764 participants, sodium bicarbonate was associated with lower mortality hazard than sodium chloride at 1 year (hazard ratio 0.61, 95% confidence interval [CI] 0.41 to 0.89, p = 0.011). Although periprocedural sodium bicarbonate was associated with a reduction in the incidence of CAN (relative risk 0.75, 95% CI 0.62 to 0.91, p = 0.003), there exists a statistically significant interaction between the effect on mortality and the occurrence of CAN (hazard ratio 5.65, 95% CI 3.58 to 8.92, p <0.001) for up to 1-year mortality. Periprocedural intravenous sodium bicarbonate seems to be associated with a reduction in long-term mortality in patients undergoing coronary angiography or other intra-arterial interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Antimicrobial effects of electrolytic products of sodium chloride--comparative evaluation with sodium hypochlorite solution and efficacy in handwashing.

    PubMed

    Hitomi, S; Baba, S; Yano, H; Morisawa, Y; Kimura, S

    1998-11-01

    We examined the in vitro bactericidal effects and efficacy on handwashing of water containing electrolytic products of sodium chloride (electrolytic water). The electrolytic water, whose pH and concentration of free residual chlorine were 6.7-6.9 and 20-22 ppm, respectively, showed equal reduction of both Staphylococcus aureus and Escherichia coli to dilution of commercially available sodium hypochlorite containing 60 ppm of free residual chlorine. This bactericidal effect was calculated to be due to hypochlorous acid, based on the pH and the amount of chlorine in solution. Handwashing with the electrolytic water reduced the numbers of S. aureus on hands by 1/10(2), while running water and 0.2% benzalkonium chloride with 80% ethanol gave a 1/10 and 1/10(5) reduction, respectively. We conclude that electrolytic water might be applicable for handwashing in place of running water.

  17. Use of cetylpyridinium chloride and sodium chloride for the decontamination of sputum specimens that are transported to the laboratory for the isolation of Mycobacterium tuberculosis.

    PubMed Central

    Smithwick, R W; Stratigos, C B; David, H L

    1975-01-01

    A method is presented for the decontamination, liquefaction, and concentration of sputum specimens that are in transport more than 24 h. The method is inexpensive, and culture results compare well with those obtained with the accepted N-acetyl-L-cysteine and sodium hydroxide method for the isolation of tubercle bacilli. The working solution, 1% cetylpyridinium chloride and 2% sodium chloride, is mixed in equal volumes with sputum before the specimens are shipped. Tubercle bacilli remained viable after 8 days of exposure to this solution. Only Lowenstein-Jensen medium was used because the cetylpyridinium chloride in the inoculum remains active on 7H10 or other agar base media and partially inhibits the growth of tubercle bacilli. PMID:809478

  18. Interactions between chloride and cement-paste materials.

    PubMed

    Barberon, Fabien; Baroghel-Bouny, Véronique; Zanni, Hélène; Bresson, Bruno; d'Espinose de la Caillerie, Jean-Baptiste; Malosse, Lucie; Gan, Zehong

    2005-02-01

    The durability of cement-based materials with respect to exterior aggressions is one of the current priorities in civil engineering. Depending on their use, the cement-based materials can be exposed to different types of aggressive environments. For instance, damages to concrete structures in contact with a saline environment (sea water on bridges, deicing salts on roads, etc.) are of utmost importance. Upon exposure to saline water, Cl- ions penetrate into the structures and subsequently lead to reinforcement corrosion. Chloride attack is often combined with other aggressive influences such as temperature (e.g., freezing) or the ingress of other ions (e.g., sulfates in sea water). We therefore aim to explore the effect of sodium chloride (NaCl) on the structural chemistry of cement paste. Existing studies about reinforcement corrosion by chloride have focused on the penetration of Cl- ions and the comparison between "free" ions (water-soluble ions) and bound ones. However, little is known about the fixation mechanisms, the localization of Cl in the cement matrix and the structural interaction between Cl and the silicate and aluminate hydrate phases present in cement paste. We present here results of a multinuclear nuclear magnetic resonance study on the fixation of chloride in the hydration products and the characterization of new phases potentially appearing due to chloride ingress.

  19. Physical Compatibility of Calcium Chloride and Sodium Glycerophosphate in Pediatric Parenteral Nutrition Solutions.

    PubMed

    Anderson, Collin; MacKay, Mark

    2016-11-01

    Calcium and phosphate precipitation is an ongoing concern when compounding pediatric parenteral nutrition (PN) solutions. Considerable effort has been expended in producing graphs, tables, and equations to guide the practitioner in prescribing PN that will remain stable. Calcium gluconate is preferred over calcium chloride when compounding PN because of its superior compatibility with inorganic phosphates. PN solutions containing calcium gluconate carry a higher aluminum load than equivalent solutions compounded with calcium chloride, leading to increased potential for aluminum toxicity. This study tested the solubility of calcium chloride in PN solutions compounded with an organic phosphate component, sodium glycerophosphate (NaGP), in place of sodium phosphate. Five PN solutions were compounded by adding calcium chloride at 10, 20, 30, 40, and 50 mEq/L and corresponding concentrations of NaGP at 10, 20, 30, 40, and 50 mmol/L. Each of the 5 solutions was compounded using 1.5% and 4% amino acids, cysteine, and lipids. The physical stability was evaluated by visual inspection (precipitation, haze, and color change). Solutions were evaluated microscopically for any microcrystals using U.S. Pharmacopeia <788> standards. Compatibility testing showed no changes in the PN solution in any of the concentrations tested. Calcium chloride was found to be physically compatible with NaGP in PN at the tested concentrations. Utilization of NaGP in PN solutions would eliminate the need for precipitation curves and allow for the use of calcium chloride. Compounding with NaGP and calcium chloride allows the practitioner a mechanism for reducing the aluminum load in PN. © 2015 American Society for Parenteral and Enteral Nutrition.

  20. Hazard identification for human and ecological effects of sodium chloride road salt.

    DOT National Transportation Integrated Search

    2007-07-01

    The New Hampshire Department of Environmental Services (DES) requested an evaluation of : the human and ecological risks associated with the application of sodium chloride (NaCl) road : salt to roadways. NaCl is the major de-icing agent used in NH to...

  1. Chloride and sodium uptake potential over an entire rotation of Populus irrigated with landfill leachate.

    PubMed

    Zalesny, Jill A; Zalesny, Ronald S

    2009-07-01

    There is a need for information about the response of Populus genotypes to repeated application of high-salinity water and nutrient sources throughout an entire rotation. We have combined establishment biomass and uptake data with mid- and full-rotation growth data to project potential chloride (Cl-) and sodium (Na+) uptake for 2- to 11-year-old Populus in the north central United States. Our objectives were to identify potential levels of uptake as the trees developed and stages of plantation development that are conducive to variable application rates of high-salinity irrigation. The projected cumulative uptake of Cl- and Na+ during mid-rotation plantation development was stable 2 to 3 years after planting but increased steadily from year 3 to 6. Year six cumulative uptake ranged from 22 to 175 kg Cl- ha(-1) and 8 to 74 kg Na+ ha(-1), while annual uptake ranged from 8 to 54 kg Cl- ha(-1) yr(-1) and 3 to 23 kg Na+ ha(-1) yr(-1). Full-rotation uptake was greatest from 4 to 9 years (Cl-) and 4 to 8 years (Na+), with maximum levels of Cl- (32 kg ha(-1) yr(-1)) and Na+ (13 kg ha(-1) yr(-1)) occurring in year six. The relative uptake potential of Cl- and Na+ at peak accumulation (year six) was 2.7 times greater than at the end of the rotation.

  2. Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride.

    PubMed

    Lee, Judy; Ashokkumar, Muthupandian; Kentish, Sandra E

    2014-01-01

    Ultrasound is known to promote nucleation of crystals and produce a narrower size distribution in a controlled and reproducible manner for the crystallisation process. Although there are various theories that suggest cavitation bubbles are responsible for sonocrystallisation, most studies use power ultrasonic horns that generate both intense shear and cavitation and this can mask the role that cavitation bubbles play. High frequency ultrasound from a plate transducer can be used to examine the effect of cavitation bubbles without the intense shear effect. This study reports the crystal size and morphology with various mixing speeds and ultrasound frequencies. The results show high frequency ultrasound produced sodium chloride crystals of similar size distribution as an ultrasonic horn. In addition, ultrasound generated sodium chloride crystals having a more symmetrical cubic structure compared to crystals produced by a high shear mixer. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Compatibility of butorphanol and droperidol in 0.9% sodium chloride injection.

    PubMed

    Chen, Fu-Chao; Fang, Bao-Xia; Li, Peng; Yang, Jin-Guo; Zhou, Ben-Hong

    2013-03-15

    The compatibility and stability of butorphanol tartrate and droperidol in polyvinyl chloride (PVC) bags and glass bottles stored at 4°C and 25°C for up to 15 days were studied. Admixtures were assessed initially and for 15 days after preparation in PVC bags and glass bottles using 0.9% sodium chloride injection as a diluent and stored at 4°C and 25°C. The initial drug concentrations were 0.08 mg/mL for butorphanol tartrate and 0.05 mg/mL for droperidol. Samples were withdrawn from each container immediately after preparation and at predetermined intervals (2, 4, 8, 24, 48, 72, 120, 168, 240, and 360 hours after preparation). The solutions were visually inspected for precipitation, cloudiness, and discoloration at each sampling interval. Drug concentrations were determined using a validated high-pressure liquid chromatography method. After 15 days of storage, all formulations tested retained >98% of the initial concentrations of both drugs. The drug mixtures were clear in appearance, and no color change or precipitation was observed. Throughout this period, pH values remained stable. Admixtures of butorphanol tartrate 0.08 mg/mL and droperidol 0.05 mg/mL in 0.9% sodium chloride injection were stable for at least 360 hours when stored in PVC bags or glass bottles at 4°C and 25°C and protected from light.

  4. Testing Metal Chlorides For Use In Sodium-Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of transition-metal wires in molten NaAlCl4 electrolyte used to eliminate suitability of transition metals as cathodes in sodium cells. Cyclic voltammetry used in conjunction with measurement of galvanostatic polarization curves determines whether given metal chloride suitable as cathode material in such cell. Cells useful in such high-energy-density and high-power-density applications as leveling loads on electric-power plants, supplying power to electric ground vehicles, and aerospace applications.

  5. Loss of absorptive capacity for sodium and chloride in the colon causes diarrhoea in Potomac horse fever.

    PubMed

    Rikihisa, Y; Johnson, G C; Wang, Y Z; Reed, S M; Fertel, R; Cooke, H J

    1992-05-01

    Ehrlichia risticii, an obligate intracellular bacterium in the family Rickettsiaceae, causes Potomac horse fever which is often associated with severe watery diarrhoea. The mechanism of the diarrhoea is unknown. The aim of this study was to determine whether sodium and chloride transport, morphology and cyclic adenosine 3', 5'-monophosphate (cyclic AMP) content of colonic mucosa was altered in E risticii-infected horses. Mucosa-submucosa sheets from the large and small colon of nine infected and seven to nine uninfected horses were set up in Ussing chambers for measurement of short-circuit current and transepithelial 22Na and 36Cl fluxes. Uninfected tissues absorbed both sodium and chloride whereas absorption of sodium and chloride was abolished in infected tissues. Bethanechol and histamine evoked a concentration-dependent increase in short-circuit current in both groups, but the responses were attenuated at all concentrations in infected horses. Slight focal degeneration of colonic epithelial cells and loss of microvilli from glandular epithelial cells occurred in infected horses. There was a significant increase in cyclic AMP content in colonic mucosa of infected animals. The results suggest that E risticii infection induces focal microscopic degeneration of epithelial cells and an increase in intracellular cyclic AMP in colonic mucosa. These alterations are associated with malabsorption of sodium and chloride and could cause diarrhoea.

  6. Calciuric effects of short-term dietary loading of protein, sodium chloride and potassium citrate in prepubescent girls.

    PubMed

    Duff, T L; Whiting, S J

    1998-04-01

    Studies using adult human subjects indicate that dietary protein and sodium chloride have negative effects on the retention of calcium by increasing urinary calcium excretion, while alkaline potassium improves calcium retention along with decreasing urinary calcium losses. This study investigated the effect of these dietary factors on acute urinary calcium excretion in 14 prepubescent girls age 6.7 to 10.0 years. Subjects provided a fasting urine sample then consumed a meal containing one of five treatments: moderate protein (MP) providing 11.8 g protein, moderate protein plus 26 mmol sodium chloride (MP+Na), high protein (HP) providing 28.8 g protein, high protein plus 26 mmol sodium chloride (HP+Na), or high protein plus 32 mmol potassium as tripotassium citrate (HP+K). Urine was collected at 1.5 and 3.0 hours after the meal. Supplemental protein was given as 80:20 casein:lactalbumin. Test meals were isocaloric, and unless intentionally altered, components of interest except phosphate were equal between treatments. Each subject completed all five treatments. Urinary calcium excretion rose after the meal, peaking at 1.5 hours. There were no significant differences in calcium excretion between treatments at any time point. The high protein treatments did not result in a significant increase in either net acid or sulfate excretion at 1.5 hours compared to moderate protein. Dietary sodium chloride had no effect on urinary sodium or calcium excretion over the 3 hours. After the potassium treatment, sodium excretion increased (p< or =0.002) and net acid excretion decreased (p<0.001) compared to other treatments at 1.5 hours. In children, a simultaneous increase in protein and phosphorus due to increased milk protein intake did not increase acute urinary calcium excretion. An effect of dietary sodium chloride on acute urinary calcium excretion was not observed. Both these findings were similar to those of adult studies previously conducted in the same laboratory using

  7. Periarteritis nodosa in rats treated with chronic excess sodium chlorides (NaCl) after X-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Nakagawa, Y.; Ito, A.

    1987-07-01

    Five-week-old male Crj:CD (SD) rats were treated with excess sodium chloride after abdominal X-irradiation. The gastric regions of the rats were irradiated with a total dose of 20 Gy given in two equal fractions separated by 3 days. After X-irradiation, animals were fed a diet containing 10% sodium chloride. Red blood cell anemia appeared 22 weeks after the last irradiation. By gross observation, the mesenteric arteries became reddish in color, and bead- or lead pipe-like nodular thickenings were present. Microscopically these nodularly thickened mesenteric arteries showed fibrinoid necrosis with massive inflammatory infiltration including eosinophils and neutrophils. In more advanced lesions,more » elastica interna and externa and medial smooth muscle cells disappeared completely and were replaced by granulation tissue. In old lesions, arterial walls were markedly thickened with fibrous or fibromuscular tissue. These findings were quite similar to those of the human periarteritis nodosa. These arterial lesions could not be found in the rats with X-irradiation only, sodium chloride only, or in nontreated animals. This study demonstrates X-ray-induced, NaCl-promoted periarteritis nodosa-like lesions in rats.« less

  8. Periarteritis nodosa in rats treated with chronic excess sodium chloride (NaCl) after X-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Nakagawa, Y.; Ito, A.

    1987-07-01

    Five-week-old male Crj:CD (SD) rats were treated with excess sodium chloride after abdominal X-irradiation. The gastric regions of the rats were irradiated with a total dose of 20 Gy given in two equal fractions separated by 3 days. After X-irradiation, animals were fed a diet containing 10% sodium chloride. Red blood cell anemia appeared 22 weeks after the last irradiation. By gross observation, the mesenteric arteries became reddish in color, and bead- or lead pipe-like nodular thickenings were present. Microscopically, these nodularly thickened mesenteric arteries showed fibrinoid necrosis with massive inflammatory infiltration including eosinophils and neutrophils. In more advanced lesions,more » elastica interna and externa and medial smooth muscle cells disappeared completely and were replaced by granulation tissue. In old lesions, arterial walls were markedly thickened with fibrous or fibromuscular tissue. These findings were quite similar to those of the human periarteritis nodosa. These arterial lesions could not be found in the rats with X-irradiation only, sodium chloride only, or in nontreated animals. This study demonstrates X-ray-induced, NaCl-promoted periarteritis nodosa-like lesions in rats.« less

  9. Controlling the Maillard reaction by reactant encapsulation: sodium chloride in cookies.

    PubMed

    Fiore, Alberto; Troise, Antonio Dario; Ataç Mogol, Burçe; Roullier, Victor; Gourdon, Anthony; El Mafadi Jian, Samira; Hamzalioğlu, Berat Aytül; Gökmen, Vural; Fogliano, Vincenzo

    2012-10-31

    Formation of Maillard reaction products (MRPs) including 5-hydroxymethylfurfural (HMF) and acrylamide has been an intensive area of research in recent decades. The presence of reactants such as sodium chloride may influence the Maillard reaction (MR) pathways through the dehydration of various key intermediates. The aim of this work was to test the potential of ingredient encapsulation to mitigate the MR by investigating the case of sodium chloride encapsulation on the HMF formation in cookies. Thirteen cookies were prepared with recipes containing free or encapsulated NaCl. Increasing NaCl concentration from 0 to 0.65% increases HMF concentration up to 75%, whereas in the presence of encapsulated NaCl the reduction of HMF varied from 18 to 61% due to the inhibition of sucrose pyrolytic decomposition and the fructofuranosyl cation formation. Data demonstrated that the more heat-resistant the lipid-based coating was, the more pronounced the reduction of HMF formation. The results showed that encapsulation represents a useful approach to prevent the formation of potentially harmful compounds in thermally processed foods.

  10. Effect of Sodium Chloride and pH on Enterotoxin B Production

    PubMed Central

    Genigeorgis, Constantin; Sadler, Walter W.

    1966-01-01

    Genigeorgis, Constantin (University of California, Davis), and Walter W. Sadler. Effect of sodium chloride and pH on enterotoxin B production. J. Bacteriol. 92:1383–1387. 1966.—The growth and production of enterotoxin B by Staphylococcus aureus strain S-6 in Brain Heart Infusion broth with 2 to 16% sodium chloride and an initial pH of 5.1 to 6.9 was studied during a 10-day incubation period at 37 C. Growth was good at pH 6.9 and with a 16% concentration of salt, but no cells survived after 10 days of incubation at pH 5.1 and with a 16% concentration of salt. With geldiffusion technique, enterotoxin B was detected in broth with pH 6.9 and up to 10% salt or pH 5.1 and up to 4% salt. Growth and enterotoxin production were better when pH was increased and salt concentration was decreased. The dependence of toxin production on the interaction of these two factors was demonstrated. PMID:5924269

  11. Ion Homeostasis in Chloroplasts under Salinity and Mineral Deficiency 1

    PubMed Central

    Schröppel-Meier, Gabriele; Kaiser, Werner M.

    1988-01-01

    Spinach (Spinacia oleracea var “Yates”) plants in hydroponic culture were exposed to stepwise increased concentrations of NaCl or NaNO3 up to a final concentration of 300 millimoles per liter, at constant Ca2+-concentration. Leaf cell sap and extracts from aqueously isolated spinach chloroplasts were analyzed for mineral cations, anions, amino acids, sugars, and quarternary ammonium compounds. Total osmolality of leaf sap and photosynthetic capacity of leaves were also measured. For comparison, leaf sap from salt-treated pea plants was also analyzed. Spinach plants under NaCl or NaNO3 salinity took up large amounts of sodium (up to 400 millimoles per liter); nitrate as the accompanying anion was taken up less (up to 90 millimoles per liter) than chloride (up to 450 millimoles per liter). Under chloride salinity, nitrate content in leaves decreased drastically, but total amino acid concentrations remained constant. This response was much more pronounced (and occurred at lower salt concentrations) in leaves from the glycophyte (pea, Pisum sativum var “Kleine Rheinländerin”) than from moderately salt-tolerant spinach. In spinach, sodium chloride or nitrate taken up into leaves was largely sequestered in the vacuoles; both salts induced synthesis of quarternary ammonium compounds, which were accumulated mainly in chloroplasts (and cytosol). This prevented impairment of metabolism, as indicated by an unchanged photosynthetic capacity of leaves. PMID:16666232

  12. Assessment of the efficacy of benzalkonium chloride and sodium hypochlorite against Acanthamoeba polyphaga and Tetrahymena spp.

    PubMed

    Vaerewijck, M J M; Sabbe, K; Baré, J; Spengler, H-P; Favoreel, H W; Houf, K

    2012-03-01

    The efficacy of benzalkonium chloride and sodium hypochlorite against Acanthamoeba polyphaga and two Tetrahymena spp. was determined based on the European Standard EN 1276:2009 suspension test. Trophozoite viability was assessed by determination of the membrane integrity using flow cytometry as a fast screening technique. Bovine serum albumin was added to simulate clean (0.3 g/liter) and dirty (3 g/liter) conditions. Benzalkonium chloride caused cell lysis at concentrations above 50 mg/liter under clean and dirty conditions. A concentration of 50 mg of free chlorine per liter had a strong biocidal effect on acanthamoebae and tetrahymenae after 15 min under clean and dirty conditions. Our results suggest that benzalkonium chloride and sodium hypochlorite were effective against the three microorganisms at concentrations commonly applied in the food industry.

  13. Hyponatremia due to Secondary Adrenal Insufficiency Successfully Treated by Dexamethasone with Sodium Chloride

    PubMed Central

    Kazama, Itsuro; Tamada, Tsutomu; Nakajima, Toshiyuki

    2015-01-01

    Patient: Female, 60 Final Diagnosis: Hyponatremia due to secondary adrenal insufficiency Symptoms: prolonged general fatigue and anorexia Medication: — Clinical Procedure: Successfully treated by dexamethasone with sodium chloride Specialty: Nephrology Objective: Rare co-existance of disease or pathology Background: Patients who were surgically treated for Cushing’s syndrome postoperatively surrender to “primary” adrenal insufficiency. However, the preoperative over-secretion of cortisol or the postoperative administration of excessive glucocorticoids can cause “secondary” adrenal insufficiency, in which the prevalence of hyponatremia is usually lower than that of primary adrenal insufficiency. Case Report: A 60-year-old woman with a past medical history of Cushing’s syndrome developed hyponatremia with symptoms of acute glucocorticoid deficiency, such as prolonged general fatigue and anorexia, after upper respiratory tract infection. A decrease in the serum cortisol level and the lack of increase in the ACTH level, despite the increased demand for cortisol, enabled a diagnosis of “secondary” adrenal insufficiency. Although the initial fluid replacement therapy was not effective, co-administration of dexamethasone and sodium chloride quickly resolved her symptoms and ameliorated the refractory hyponatremia. Conclusions: In this case, the hypothalamic-pituitary axis of the patient was thought to have become suppressed long after the surgical treatment for Cushing’s syndrome. This case suggested a mechanism of refractory hyponatremia caused by secondary adrenal insufficiency, for which the administration of dexamethasone and sodium chloride exerted additional therapeutic efficacy. PMID:26319655

  14. Serum Chloride and Sodium Interplay in Patients With Acute Myocardial Infarction and Heart Failure With Reduced Ejection Fraction: An Analysis From the High-Risk Myocardial Infarction Database Initiative.

    PubMed

    Ferreira, João Pedro; Girerd, Nicolas; Duarte, Kevin; Coiro, Stefano; McMurray, John J V; Dargie, Henry J; Pitt, Bertram; Dickstein, Kenneth; Testani, Jeffrey M; Zannad, Faiez; Rossignol, Patrick

    2017-02-01

    Serum chloride levels were recently found to be independently associated with mortality in heart failure (HF). We investigated the relationship between serum chloride and clinical outcomes in 7195 subjects with acute myocardial infarction complicated by reduced left ventricular function and HF. The studied outcomes were all-cause mortality, cardiovascular mortality, and hospitalization for HF. Both chloride and sodium had a nonlinear association with the studied outcomes (P<0.05 for linearity). Patients in the lowest chloride tertile (chloride ≤100) were older, had more comorbidities, and had lower sodium levels (P<0.05 for all). Serum chloride showed a significant interaction with sodium with regard to all studied outcomes (P for interaction <0.05 for all). The lowest chloride tertile (≤100 mmol/L) was associated with increased mortality rates in the context of lower sodium (≤138 mmol/L; adjusted hazard ratio [95% confidence interval] for all-cause mortality=1.42 (1.14-1.77); P=0.002), whereas in the context of higher sodium levels (>141 mmol/L), the association with mortality was lost. Spline-transformed chloride and its interaction with sodium did not add significant prognostic information on top of other well-established prognostic variables (P>0.05 for all outcomes). In post-myocardial infarction with systolic dysfunction and HF, low serum chloride was associated with mortality (but not hospitalization for HF) in the setting of lower sodium. Overall, chloride and its interaction with sodium did not add clinically relevant prognostic information on top of other well-established prognostic variables. Taken together, these data support an integrated and critical consideration of chloride and sodium interplay. © 2017 American Heart Association, Inc.

  15. Effect of pH, sodium chloride and sodium pyrophosphate on the termal resistance of Escherichia coli O157:H7 in ground beef

    USDA-ARS?s Scientific Manuscript database

    Response to the Letter to the Editor: We have received with great satisfaction that our article “Modelling the effect of pH, sodium chloride and sodium pyrophosphate on the thermal resistance of Escherichia coli O157:H7 in ground beef” (Food Research International, 69:289-304; 2015) has awaken inte...

  16. Modify washing solutions in the process of deglycerolization in ACP 215 and storage at 4°C in 0.9% sodium chloride in 24h.

    PubMed

    Zhao, Yang; Luo, Guangping; Luo, Hong; Ye, Xin; Rong, Xia; Huang, Kejun

    2010-10-01

    The ACP 215 was a functional closed system for preparing glycerolized and deglycerolized RBCs, CSBT had approved the technique of long term storage glycerolized rare blood lower than -65°C, and then deglycerolized by this machine. From the manual method to use ACP 215, Chinese blood banks chose 9% sodium chloride and 0.9% sodium chloride in deglycerolization process, while the AABB guideline prescribed that 12% sodium chloride and 0.9% sodium chloride-0.2% glucose were acceptable in washing step of ACP 215. In addition, 0.9% sodium chloride was the only solution which was permitted by CSBT to be added into postwash RBCs, while in America many kinds of additive solutions like AS-3 could be added into postwash RBCs and stored at 4°C for 14 days. Changes of washing solutions and preservation solution were much different from the original procedure of ACP 215 approved by the FDA. It was necessary to assess the quality of deglyceroled and postwash RBCs by this modified process in ACP 215 in China. Two-unit whole bloods were collected from each volunteer and preserved in CP2D for anticoagulant. It was then centrifuged to separate the plasma, and suspending RBCs were stored at 4°C in MAP for 6 days. Each unit of RBC was transferred to a 1000-ml PVC plastic bag, an improved procedure including the single-disposable glycerolization set in an automated, functionally closed system (ACP 215, Haemonetics) was used to glycerolize RBC with 40% (wt/vol) glycerol, then frozen at -80°C. Two modified washing solutions of 9% sodium chloride and 0.9% sodium chloride were used to deglycerolize the same RBCs with single disposable deglycerolization set in ACP 215. The deglycerolized RBCs were stored at 4°C in 0.9% sodium chloride for 24h. The freeze-thaw recovery value was 95.3±1.8% (mean±SD); the freeze-thaw-wash recovery value was 82.3±5.94% (mean±SD); the residure glycerol was 6.1±1.66 mg/dl (mean±SD), storage at 4°C in 0.9% sodium chloride within 24h after

  17. Effects of Road Density and Road-Salt Application Practices on Sodium and Chloride Loads to the Scituate Reservoir, Rhode Island

    NASA Astrophysics Data System (ADS)

    Waldron, M. C.; Nimiroski, M.

    2001-05-01

    The Scituate Reservoir drainage basin is the drinking-water source area for two thirds of the population of Rhode Island. The effects of road density and road-salt-application practices on sodium and chloride concentrations in streams in the drainage basin were examined using concentration data collected at intervals of one to six months from January 1982 through June 2000 at 32 stream sites distributed throughout the basin. Median concentrations of sodium and chloride for individual streams during the period of data collection were related to 1995 road densities (road miles per square mile of subbasin) for roads maintained by the Rhode Island Department of Transportation (State-maintained roads) and for roads maintained by the four municipalities in the drainage basin (locally maintained roads). Nearly 60 percent of the variation in median stream sodium and chloride concentrations was accounted for by the variation in density of State-maintained roads (R2= 0.595, p < 0.0001). In contrast, no correlations could be identified between median concentrations of sodium and chloride in streams and the densities of locally maintained roads in the subbasins (R2 = 0.001, p = 0.8771). Also, there was no difference in the relations between median stream sodium concentrations and subbasin road densities for data collected before and after a 1990 State-mandated reduction in the rate of application of sodium during winter deicing of State-maintained roads. Analysis of data on sources of sodium and chloride in the Scituate Reservoir drainage basin during water year 2000 (October 1999 through September 2000) indicates that, while the lengths and densities of locally maintained roads were greater than those of State-maintained roads in most subbasins, the total amount of sodium applied during water year 2000 was nearly three times greater for State-maintained roads than for locally maintained roads. This would be expected, given that State-maintained roads carry more traffic at

  18. THE EFFECT OF SODIUM CHLORIDE ON THE CHEMICAL CHANGES IN THE BLOOD OF THE DOG AFTER PYLORIC AND INTESTINAL OBSTRUCTION.

    PubMed

    Haden, R L; Orr, T G

    1923-06-30

    Experiments to determine the effect of furnishing an ample supply of sodium chloride on the toxemia of pyloric and intestinal obstruction are reported. A fall in chlorides is the first and seemingly most significant change to take place in the blood after pyloric and intestinal obstruction. The chloride is apparently utilized by the body as a protective measure against the primary toxic substance. Two dogs with pyloric obstruction were given 50 cc. of 10 per cent NaCl subcutaneously daily. One lived 3 days, the other 4. The blood showed little change, except a marked terminal rise in chlorides. Animals given a like amount of distilled water or 25 per cent glucose showed the changes typical of untreated animals. The obstruction of the pylorus was released in six dogs 48 to 72 hours after the initial operation. Two died within 24 hours after the second operation with a high non-protein nitrogen in the blood. Two survived but showed a high level of non-protein nitrogen in the blood and a high nitrogen excretion in the urine, low blood chlorides, and a marked alkalosis. One dog in such a state died on the 13th day from peritonitis, arising in a wound infection. The other showed a marked fall in non-protein nitrogen in the blood following the administration of 10 gm. of sodium chloride by mouth, but died following the intravenous injection of 25 per cent sodium chloride. Two animals were given 50 cc. of 10 per cent NaCl subcutaneously, at the time of the second operation. The blood rapidly returned to normal and complete recovery followed. Two dogs with the duodenum obstructed by section and inversion of the cut ends were treated with 10 per cent sodium chloride after the obstruction had existed for 48 hours and the characteristic blood changes had developed. The non-protein nitrogen returned to normal within 48 hours after treatment was begun. One dog died following a lateral anastomosis for relief of the obstruction. A second operation was not attempted in the other

  19. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.

    PubMed

    Walsh, Kathryn R; Kuwabara, Jill T; Shim, Joon W; Wainford, Richard D

    2016-01-15

    Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension. Copyright © 2016 the American Physiological Society.

  20. Sodium relations in desert plants: 7. Effects of sodium chloride on Atriplex polycarpa and Atriplex canescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Romney, E.M.; Mueller, R.T.

    1982-07-01

    Atriplex canescens (Pursh) Nutt. ssp. canescens (Caligonum c. Pursh.) and Atriplex polycarpa (Torr.) Wats. (Obione p. Torr.) plants were grown in Yolo loam soil in a glasshouse with different levels of sodium salts. Both species tolerated concentrations of salt equivalent to seawater, using either NaCl or Na/sub 2/SO/sub 4/. Vegetative yields were sightly higher with chloride, particularly with stems of A. polycarpa; SO/sub 4//sup 2 -/ decreased calcium and magnesium concentrations. Atriplex canescens leaves contained less Na, total cations, Cl, S, and Si, but more N than did those of A. polycarpa. The A. polycarpa would have high concentrations ormore » organic acids in leaves. Chloride decreased N concentrations in leaves of A. polycarpa.« less

  1. Direct comparison of the hygroscopic properties of ammonium sulfate and sodium chloride aerosol at relative humidities approaching saturation.

    PubMed

    Walker, Jim S; Wills, Jon B; Reid, Jonathan P; Wang, Liangyu; Topping, David O; Butler, Jason R; Zhang, Yun-Hong

    2010-12-09

    Holographic optical tweezers are used to make comparative measurements of the hygroscopic properties of single component aqueous aerosol containing sodium chloride and ammonium sulfate over a range of relative humidity from 84% to 96%. The change in RH over the course of the experiment is monitored precisely using a sodium chloride probe droplet with accuracy better than ±0.09%. The measurements are used to assess the accuracy of thermodynamic treatments of the relationship between water activity and solute mass fraction with particular attention focused on the dilute solute limit approaching saturation vapor pressure. The consistency of the frequently used Clegg-Brimblecombe-Wexler (CBW) treatment for predicting the hygroscopic properties of sodium chloride and ammonium sulfate aerosol is confirmed. Measurements of the equilibrium size of ammonium sulfate aerosol are found to agree with predictions to within an uncertainty of ±0.2%. Given the accuracy of treating equilibrium composition, the inconsistencies highlighted in recent calibration measurements of critical supersaturations of sodium chloride and ammonium sulfate aerosol cannot be attributed to uncertainties associated with the thermodynamic predictions and must have an alternative origin. It is concluded that the CBW treatment can allow the critical supersaturation to be estimated for sodium chloride and ammonium sulfate aerosol with an accuracy of better than ±0.002% in RH. This corresponds to an uncertainty of ≤1% in the critical supersaturation for typical supersaturations of 0.2% and above. This supports the view that these systems can be used to accurately calibrate instruments that measure cloud condensation nuclei concentrations at selected supersaturations. These measurements represent the first study in which the equilibrium properties of two particles of chemically distinct composition have been compared simultaneously and directly alongside each other in the same environment.

  2. Biological Variation of Chloride and Sodium in Sweat Obtained by Pilocarpine Iontophoresis in Adults: How Sure are You About Sweat Test Results?

    PubMed

    Willems, Philippe; Weekx, Steven; Meskal, Anissa; Schouwers, Sofie

    2017-04-01

    The measurement of chloride and sodium concentrations in sweat is an important test for the diagnosis of cystic fibrosis (CF). The aim of this study was to assess the analytical variation (CV A ) and within-subject (CV I ) and between-subject (CV G ) biological variation of chloride and sodium concentrations in sweat, collected by pilocarpine iontophoresis and to determine their effect on the clinical interpretation of sweat test results. Twelve Caucasian adults (six male and six female) without symptoms suggestive for CF and with a mean age of 41 years (range 28-59) were included in the study. At least eight samples of sweat were collected from each individual by pilocarpine iontophoresis. Chloride and sodium concentrations were measured in duplicate for each sample using ion selective electrodes. After the removal of outliers, the CV A , CV I , and CV G of chloride and sodium were determined, and their impact on measurement uncertainty and reference change value were calculated. The CV A , CV I , and CV G of chloride in sweat samples were 6.5, 17.7, and 47.2%, respectively. The CV A , CV I , and CV G of sodium sweat samples were 6.0, 17.5, and 42.6%, respectively. Our study indicates that sweat chloride and sodium concentration results must be interpreted with great care. Different components of variation, particularly the biological variations, have a considerable impact on the interpretation of these results. If no pre-analytical, analytical, or post-analytical errors are suspected, repeated sweat testing to confirm first-measurement results might not be desirable.

  3. Assessing the effectiveness of 30% sodium chloride aqueous solution for the preservation of fixed anatomical specimens: a 5-year follow-up study

    PubMed Central

    de Oliveira, Fabrício Singaretti

    2014-01-01

    Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. PMID:24762210

  4. Salt, sodium chloride or sodium? Content and relationship with chemical, instrumental and sensory attributes in cooked meat products.

    PubMed

    Kameník, Josef; Saláková, Alena; Vyskočilová, Věra; Pechová, Alena; Haruštiaková, Danka

    2017-09-01

    The aim of this study was to determine the salt content in selected cooked meat products by the methods of determining the sodium content and the content of chlorides. The resulting data was compared with other chemical, instrumental and sensory parameters of the analysed samples. A total of 133 samples of 5 meat products were tested. The sodium content ranged from 558.0 to 1308.0mgNa/100g. Salt level determined by the two methods strongly correlated and did not differ in any meat product. Intensity of salty taste of the product was independent on its salt content. The salt (sodium) content may be reduced without a negative impact on sensory or instrumental properties of meat products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Concentrations of chloride and sodium in groundwater in New Hampshire from 1960 through 2011

    USGS Publications Warehouse

    Medalie, Laura

    2013-01-01

    A new cooperative study between the U.S. Geological Survey (USGS) and the NHDES (Medalie, 2012) assessed chloride and sodium levels in groundwater in New Hampshire from the 1960s through 2011. The purpose of the study was to integrate all data on concentrations of chloride and sodium from groundwater in New Hampshire available from various Federal and State sources, including from the NHDES, the New Hamsphire Department of Health and Human Services, the USGS, and the U.S. Environmental Protection SurveyAgency (USEPA), for public and private (domestic) wells and to organize the data into a database. Medalie (2012) explained the many assumptions and limitations of disparate data that were collected to meet wide-ranging objectives. This fact sheet summarizes the most important findings of the data.

  6. The Use of Sodium Chloride & Aluminum as Phase Change Materials for High Temperature Thermal Energy Storage Characterized by Calorimetry

    NASA Astrophysics Data System (ADS)

    Solomon, Laura

    2013-01-01

    Encapsulated phase change materials (EPCM) have a great deal of potential for the storage of thermal energy in a wide range of applications. The present work is aimed at developing encapsulated phase change materials capable of storing thermal energy at temperatures above 700°C for use in concentrated solar power (CSP) systems. EPCM with a phase change material (PCM) with both a salt (sodium chloride) and a metal (aluminum) are considered here. Sodium chloride and aluminum are effective storage mediums because of their high melting points and large latent heats of fusion, 800°C and 660°C and 430kJ/kg and 397kJ/kg, respectively. Based on the heat capacities and the latent heat of fusion, for a 100 degree temperature range centered on the melting point of the PCM, 80% of the energy stored by the sodium chloride PCM can be attributed to the latent heat and 79% for the aluminum PCM. These large fractions attributed to latent heat have the potential for making EPCM based thermal energy storage devices smaller and less expensive. To study the performance of the candidate PCMs considered here, a specialized immersion calorimeter was designed, calibrated, and used to evaluate the storage capabilities of sodium chloride and aluminum based EPCMs. Additionally, the EPCMs were studied to ensure no loss of capacity would occur over the lifetime of the EPCM. While no reduction in the storage capacity of the sodium chloride EPCMs was found after repeated thermal cycles, there was a decrease in the storage capacity of the aluminum EPCMs after prolonged exposure to high temperatures.

  7. Stability of polymyxin B sulfate diluted in 0.9% sodium chloride injection and stored at 4 or 25 degrees C.

    PubMed

    He, Jie; Figueroa, Deborah A; Lim, Tze-Peng; Chow, Diana S; Tam, Vincent H

    2010-07-15

    The stability of polymyxin B sulfate in infusion bags containing 0.9% sodium chloride injection stored at 4 and 25 degrees C was studied. Seven manufacturing batches of polymyxin B from different sources were tested. The products were reconstituted in sterile water for injection, diluted in infusion bags containing 0.9% sodium chloride injection, and stored at room temperature (25 degrees C) or under refrigeration (4 degrees C). Samples were withdrawn at the same time on days 0, 1, 2, 3, 5, and 7. A modified microbiological assay was used to determine the concentrations, as indicated by zones of inhibition, of polymyxin B. Bordetella bronchiseptica served as the reference organism. Stability was defined as retention of >90% of the initial concentration. The decomposition kinetics of polymyxin B in 0.9% sodium chloride injection were evaluated by plotting the polymyxin B concentration remaining versus time. On average, the samples retained over 90% of their initial concentration for up to two days at both storage temperatures. All samples retained over 90% of their initial concentration at 24 hours. The decomposition kinetics of polymyxin B in infusion bags containing 0.9% sodium chloride injection exhibited pseudo-first-order kinetics, with rate constants of 0.024-0.075 day(-1) at 25 degrees C and 0.022-0.043 day(-1) at 4 degrees C (p > 0.05). Polymyxin B was stable for at least one day when stored at 4 or 25 degrees C in infusion bags containing 0.9% sodium chloride injection. Stability did not differ significantly between the two storage temperatures.

  8. Assessing the effectiveness of 30% sodium chloride aqueous solution for the preservation of fixed anatomical specimens: a 5-year follow-up study.

    PubMed

    de Oliveira, Fabrício Singaretti

    2014-07-01

    Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. © 2014 Anatomical Society.

  9. Scanning Electron Microscopic Evaluation of Root Canal Irrigation with Saline, Sodium Hypochlorite, and Citric Acid,

    DTIC Science & Technology

    1983-12-01

    with six different irrigation regimens. Sodium hypochlorite (NaOCl) was significantly more effective than citric acid in "* removing superficial...EVALUATION OF ROOT CANAL IRRIGATION WITH SALINE, SODIUM HYPOCHLORITE , AND CITRIC ACID 4 *J. Craig Baumgartner, D.D.S., M.S. • **Carolyn M. Brown, D.D.S., M.S...preparation with six different irrigation regimens. Sodium hypochlorite (NaOCl) was significantly more effective than citric acid in removing superficial

  10. Sodium and water metabolism under the influence of prolactin, aldosterone, and antidiuretic hormone.

    PubMed Central

    Burstyn, P G

    1978-01-01

    1. Rabbits were placed in metabolism cages in order to measure their intakes of food, water, and sodium chloride (as 1% saline solution), and to measure urinary and faecal excretion of sodium, potassium, and water. 2. Antidiuretic hormone (0.2 i.u./day) caused a reduction in urine volume and no change in sodium excretion. There was full compensatory reduction in water intake so that no accumulation of water occurred. 3. Aldosterone (4 mg/da) caused a reduction in renal sodium excretion for 1--2 days. The saline intake was reduced, though this was insufficient to prevent some sodium accumulation. 4. Renal mineralocorticoid 'escape' resulted in a large increase in sodium excretion at the end of the aldosterone treatment period. This was fully compensated through increased saline intake, and balance was maintained. 5. Prolactin (200 i.u./day) caused a reduction in urine volume and in renal sodium excretion and since there were no compensatory changes in water and sodium intake, this led to substantial accumulation of both water and sodium. 6. The effects of smaller doses of both aldosterone and prolactin were investigated and found to be similar but smaller. 7. It is suggested that whereas prolactin may have little or no role to play in the sodium homoeostasis of the normal animal, the hormone may well be responsible for the substantial increase in body fluids in pregnancy. PMID:633132

  11. Safety and efficacy of intravenous hypotonic 0.225% sodium chloride infusion for the treatment of hypernatremia in critically ill patients.

    PubMed

    Dickerson, Roland N; Maish, George O; Weinberg, Jordan A; Croce, Martin A; Minard, Gayle; Brown, Rex O

    2013-06-01

    The purpose of this study was to evaluate the safety and efficacy of central venous administration of a hypotonic 0.225% sodium chloride (one-quarter normal saline [¼ NS]) infusion for critically ill patients with hypernatremia. Critically ill, adult patients with traumatic injuries and hypernatremia (serum sodium [Na] >150 mEq/L) who were given ¼ NS were retrospectively studied. Serum sodium, fluid balance, free water intake, sodium intake, and plasma free hemoglobin concentration (fHgb) were assessed. Twenty patients (age, 50 ± 18 years; Injury Severity Score, 29 ± 12) were evaluated. The ¼ NS infusion was given at 1.5 ± 1.0 L/d for 4.6 ± 1.6 days. Serum sodium concentration decreased from 156 ± 4 to 143 ± 6 mEq/L (P < .001) over 3-7 days. Total sodium intake was decreased from 210 ± 153 to 156 ± 112 mEq/d (P < .05). Daily net fluid balance was not significantly increased. Plasma fHgb increased from 4.9 ± 5.4 mg/dL preinfusion to 8.9 ± 7.4 mg/dL after 2.6 ± 1.3 days of continuous intravenous (IV) ¼ NS in 10 patients (P = .055). An additional 10 patients had a plasma fHgb of 10.2 ± 9.0 mg/dL during the infusion. Hematocrit and hemoglobin decreased (26% ± 3% to 24% ± 2%, P < .001 and 9.1 ± 1.1 to 8.2 ± 0.8 g/dL, P < .001, respectively). Although IV ¼ NS was effective for decreasing serum sodium concentration, evidence for minor hemolysis warrants further research to establish its safety before its routine use can be recommended.

  12. The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate.

    PubMed

    Mistry, Abinash C; Wynne, Brandi M; Yu, Ling; Tomilin, Viktor; Yue, Qiang; Zhou, Yiqun; Al-Khalili, Otor; Mallick, Rickta; Cai, Hui; Alli, Abdel A; Ko, Benjamin; Mattheyses, Alexa; Bao, Hui-Fang; Pochynyuk, Oleh; Theilig, Franziska; Eaton, Douglas C; Hoover, Robert S

    2016-10-01

    The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. Depression of fractional sodium reabsorption by the proximal tubule of the dog without sodium diuresis

    PubMed Central

    Howards, Stuart S.; Davis, Bernard B.; Knox, Franklyn G.; Wright, Fred S.; Berliner, Robert W.

    1968-01-01

    The effect of infusions of hyperoncotic solutions on fractional sodium reabsorption by the proximal tubule of the dog was studied by the recollection micropuncture method. Tubule fluid to plasma inulin concentration ratios were measured for identified proximal tubule segments before and after infusion of 25% albumin or dextran solutions. Results were compared with changes in fractional reabsorption during saline diuresis. Plasma volume increased 66% ± SE 5.8 after infusion of albumin solution and 94% ± SE 8.2 after infusion of dextran solution. Fractional sodium reabosorption by the proximal tubule was depressed after infusion of both of these hyperoncotic solutions. Nevertheless, changes in sodium excretion after infusion of albumin and dextran were small. In contrast, after infusions of isotonic sodium chloride solution, which increased plasma volume 61% ± SE 5.8, a decrease in fractional reabsorption of 50.7% ± SE 7.2 was associated with large changes in sodium excretion. PMID:5658588

  14. Lack of the Sodium-Driven Chloride Bicarbonate Exchanger NCBE Impairs Visual Function in the Mouse Retina

    PubMed Central

    Hilgen, Gerrit; Huebner, Antje K.; Tanimoto, Naoyuki; Sothilingam, Vithiyanjali; Seide, Christina; Garrido, Marina Garcia; Schmidt, Karl-Friedrich; Seeliger, Mathias W.; Löwel, Siegrid; Weiler, Reto

    2012-01-01

    Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl−]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function. PMID:23056253

  15. The transport dynamics of chloride and sodium in a ladder fen during a continuous wastewater polishing experiment

    NASA Astrophysics Data System (ADS)

    McCarter, Colin P. R.; Price, Jonathan S.

    2017-06-01

    Ladder fen peatlands have excellent potential for wastewater polishing as they naturally contain both open water (pools) and subsurface (peat) treatment landforms; however, there is a poor understanding of solute transport in ladder fens with and without the increased hydrological load imposed by wastewater discharge. To better understand solute transport in ladder fens under wastewater polishing conditions a continuous solute (NaCl) tracer experiment (38 m3 day-1 of water, chloride - 47.2 mg L-1, and sodium - 25.3 mg L-1) was conducted during the summer of 2014 (day of year 192-243) in a small ladder fen in the James Bay Lowland. The transmissivity distribution and effective porosity (average 0.5) of the peat ribs were determined through repeated bail tests and the drainable porosity of 18 peat cores at -100 mb, respectively. Water samples were taken at least every 7 days to capture the solute (sodium and chloride) plumes. Both solute plumes never reached the site outflow (∼250 m downgradient) and displayed complex plume morphology, typically following the patterns of higher hydraulic conductivity within the upper 0.1 m of the saturated peat, rather than the microtopography. Based on the 50% breakthrough isotherms, sodium and chloride were transported at an average solute velocity of 1.9 and 1.1 m day-1, respectively (average linear groundwater velocity = 2.1 m day-1); thus, the solutes were retarded by a factor of 2.1 and 1.2 for sodium and chloride, respectively. Due to the inherent retardation of solutes into inactive pores and relatively high solute residence times, this study demonstrates the potential for wastewater polishing in ladder fens.

  16. Exploring How Different Features of Animations of Sodium Chloride Dissolution Affect Students' Explanations

    ERIC Educational Resources Information Center

    Kelly, Resa M.; Jones, Loretta L.

    2007-01-01

    Animations of molecular structure and dynamics are often used to help students understand the abstract ideas of chemistry. This qualitative study investigated how the features of two different styles of molecular-level animation affected students' explanations of how sodium chloride dissolves in water. In small group sessions 18 college-level…

  17. Formation of biofilm by Listeria monocytogenes ATCC 19112 at different incubation temperatures and concentrations of sodium chloride

    PubMed Central

    Lee, H.Y.; Chai, L.C.; Pui, C.F.; Mustafa, S.; Cheah, Y.K.; Nishibuchi, M.; Radu, S.

    2013-01-01

    Biofilm formation can lead to various consequences in the food processing line such as contamination and equipment breakdowns. Since formation of biofilm can occur in various conditions; this study was carried out using L. monocytogenes ATCC 19112 and its biofilm formation ability tested under various concentrations of sodium chloride and temperatures. Cultures of L. monocytogenes ATCC 19112 were placed in 96-well microtitre plate containing concentration of sodium chloride from 1–10% (w/v) and incubated at different temperature of 4 °C, 30 °C and 45 °C for up to 60 h. Absorbance reading of crystal violet staining showed the density of biofilm formed in the 96-well microtitre plates was significantly higher when incubated in 4 °C. The formation of biofilm also occurs at a faster rate at 4 °C and higher optical density (OD 570 nm) was observed at 45 °C. This shows that storage under formation of biofilm that may lead to a higher contamination along the processing line in the food industry. Formation of biofilm was found to be more dependent on temperature compared to sodium chloride stress. PMID:24159283

  18. A randomized trial of misoprostol versus extra-amniotic sodium chloride infusion with oxytocin for induction of labor.

    PubMed

    Buccellato, C A; Stika, C S; Frederiksen, M C

    2000-05-01

    Our purpose was to compare the efficacy and safety of misoprostol and extra-amniotic sodium chloride infusion with oxytocin for induction of labor. This randomized trial compared two methods of labor induction in women requiring cervical ripening. One hundred twenty-three women undergoing labor induction with a Bishop score < or =5 were randomly selected to receive either misoprostol, 50 microg intravaginally every 4 hours, or extra-amniotic sodium chloride infusion. The primary outcome variable was the time interval from induction to vaginal delivery. Sixty-one women received extra-amniotic sodium chloride infusion and 62 women received misoprostol. The mean time interval from the start of induction to vaginal delivery was 15.0 +/- 5.0 hours and 16.5 +/- 7.2 hours for the extra-amniotic infusion and misoprostol groups, respectively (P, not significant). The cesarean delivery rate was not significantly different between the 2 groups (32.8% for the extra-amniotic infusion group; 19.4% for the misoprostol group). Maternal and neonatal outcomes were similar between the 2 groups. Both methods of induction are equally efficacious and result in similar maternal and neonatal outcomes.

  19. Involvement of Glucagon-Like Peptide-1 in the Regulation of Selective Excretion of Sodium or Chloride Ions by the Kidneys.

    PubMed

    Marina, A S; Kutina, A V; Shakhmatoba, E I; Natochin, Yu V

    2017-02-01

    An increase of total glucagon-like peptide-1 (GLP-1) concentration in the plasma in rats was revealed 5 min after oral, but not intraperitoneal administration of NaCl or Trizma HCl solutions. The increase in GLP-1 level was similar to that after oral glucose administration. After intraperitoneal administration of 2.5% NaCl, GLP-1 mimetic exenatide accelerated natriuresis and urinary chloride excretion. Under conditions of normonatriemia and hyperchloremia induced by injection of 6.7% Trizma HCl, exenatide stimulated chloride excretion and reabsorption of sodium ions in the kidneys. These findings suggest that GLP-1 participates in selective regulation of the balance of sodium and chloride ions.

  20. Fabrication Of Metal Chloride Cathodes By Sintering

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Di Stefano, Salvador; Bankston, C. Perry

    1992-01-01

    Transition-metal chloride cathodes for use in high-temperature rechargeable sodium batteries prepared by sintering transition-metal powders mixed with sodium chloride. Need for difficult and dangerous chlorination process eliminated. Proportions of transition metal and sodium chloride in mixture adjusted to suit specific requirements. Cathodes integral to sodium/metal-chloride batteries, which have advantages over sodium/sulfur batteries including energy densities, increased safety, reduced material and thermal-management problems, and ease of operation and assembly. Being evaluated for supplying electrical power during peak demand and electric vehicles.

  1. Sodium chloride-esculin hydrolysis test for rapid identification of enterococci.

    PubMed Central

    Qadri, S M; Flournoy, D J; Qadri, S G

    1987-01-01

    The ability of enterococci to cause severe disease in humans and their relative resistance to chemotherapeutic agents make it desirable to rapidly differentiate these organisms from other streptococci. We developed and evaluated a test that within 2 h distinguishes enterococci from other alpha-, beta-, or nonhemolytic streptococci in a buffered solution containing 0.2% esculin and 5% sodium chloride. All 239 strains of enterococci tested gave a positive reaction within 2 h, whereas 95 of 96 isolates of other streptococci remained negative at 4 h. PMID:3597753

  2. [Antibacterial actin of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7 (Part 2). Effect of sodium chloride and temperature on bactericidal activity].

    PubMed

    Entani, E; Asai, M; Tsujihata, S; Tsukamoto, Y; Ohta, M

    1997-05-01

    Bactericidal effects of various kinds of AWASEZU (processed vinegar, 2.5% acidity) on food-borne pathogenic bacteria including Escherichia coli O157:H7 and other bacteria were examined. the order of bactericidal activities was NIHAIZU (3.5% NaCl was added) > SANBA-IZU (3.5% NaCl and 10% sucrose were added) > plain vinegar (spirit vinegar) > AMAZU (10% sucrose was added). This indicates that their activities were enhanced by the addition of sodium chloride and suppressed by the addition of sugar. On the other hand, when soy sauce was used instead of sodium chloride, the order of bactericidal activities was plain vinegar > AMAZU > NIHAIZU > SANBAIZU. This is mainly because their activities were suppressed by the increase in the pH value. The effect of sodium chloride (0.01-15%) and temperature (10-50 degrees C) on bactericidal activities against E. coli O157:H7 in spirit vinegar (0.5-2.5% acidity) was further examined. When vinegar was used in combination with sodium chloride, predominant synergism on the bactericidal activity was observed. Their activities were markedly enhanced by the addition of sodium chloride in proportion to the concentration. In addition to this, at higher temperatures spirit vinegar killed bacteria much more rapidly. It should be noted that the bactericidal activity of spirit vinegar was extremely enhanced by the combined use of the addition of sodium chloride and the rise of temperature. For example, in 2.5% acidity vinegar, the time required for 3 log decrease in viable cell numbers at 20 degrees C was shortened to 1/140-fold by the addition of 5% sodium chloride, shortened to 1/51-fold by the rise of the reaction temperature at 40 degrees C, and shortened to 1/830-fold; 0.89 minutes by both the addition of 5% sodium chloride and the rise of temperature at 40 degrees C. In order to propose the methods to prevent food poisoning by bacterial infection, bactericidal activities of vinegar solution containing sodium chloride on cooking tools and

  3. Close-up view of Sodium Chloride crystals in a water bubble on Expedition Six.

    NASA Image and Video Library

    2003-03-14

    ISS006-E-39236 (14 March 2003) --- A view of sodium chloride crystals in a water bubble within a 50-millimeter metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  4. Chemistry and Mechanism of Interaction Between Molybdenite Concentrate and Sodium Chloride When Heated in the Presence of Oxygen

    NASA Astrophysics Data System (ADS)

    Aleksandrov, P. V.; Medvedev, A. S.; Imideev, V. A.; Moskovskikh, D. O.

    2017-04-01

    Roasting of molybdenum concentrates with sodium chloride has high potential and can be an alternative to oxidizing roasting and autoclave leaching; however, the chemistry and mechanism are poorly known. The chemical mechanism of the roasting process between molybdenite concentrate and sodium chloride in the presence of atmospheric oxygen is proposed. It is demonstrated that the process occurs through molybdenite oxidation, up to molybdenum trioxide, with subsequent formation of sodium polymolybdates and molybdenum dioxydichloride from molybdenum trioxide. It is found that the formation of water-soluble sodium polymolybdates from molybdenum trioxide stops over time due to passivation of sodium chloride surface by polymolybdates. It is proved experimentally that preliminary grinding of the mixture in a furnace charge leads to an increase in the polymolybdate fraction of the roasting products, which constitutes approximately 65 pct of molybdenum initially in the roasted mixture against 20 to 22 pct in a nonground mixture (or 75 to 77 pct against 30 to 33 pct of molybdenum in calcine). For the first time, the presence of the Na2S2O7 phase in the calcine was confirmed experimentally. The suggested mechanism gives possible explanations for the sharp increase of MoO2Cl2 formation within the temperature range of 673 K to 723 K (400 °C to 450 °C) that is based on the catalytic reaction of molybdenum dioxydichloride from the Na2S2O7 liquid phase as it runs in a melt.

  5. Temporal changes in sulfate, chloride, and sodium concentrations in four eastern Pennsylvania streams

    USGS Publications Warehouse

    Barker, J.L.

    1986-01-01

    Trend analyses of 20 years or more of chemical quality and streamflow data for four streams in eastern Pennsylvania indicate that sulfate has decreased significantly in three of the four basins studied, while sodium and chloride have generally increased. The majority of chemical quality changes occurred in the late 1950 's and early 1960 's coincident with significant cultural changes. It is believed that these chemical quality changes are presently of little or no environmental consequence, as the concentrations are well within the range of those found in natural waters. Decreases in sulfate follow a regional trend concurrent with the conversion of home and industrial heating units from high to low sulfur coal, gas, and oil. The most significant decreases were observed in those basins severely affected by mine-drainage where pumpage has decreased significantly in the past 25 years, thereby further reducing the sulfur content of the streams. The observed increases in chloride and sodium are attributed to population increases and shifts from rural to suburban communities with concurrent increase in the percentage of the population using municipal waste treatment facilities and the increased use of salt on roadways. The concentrations of dissolved chloride, which are from two to three times higher in recent years, reach a peak in January, coincident with the application of salt to melt ice on the roadways. (USGS)

  6. Do environmental factors affect male fathead minnow (Pimephales promelas) response to estrone? Part 1. Dissolved oxygen and sodium chloride.

    PubMed

    Feifarek, D J; Shappell, N W; Schoenfuss, H L

    2018-01-01

    Laboratory exposures indicate that estrogens and their mimics can cause endocrine disruption in male fishes, yet while studies of resident fish populations in estrogen-polluted waters support these findings, biomarker expression associated with field versus laboratory exposure to estrogenic endocrine disruptors (EDs) often differ dramatically. Two of the environmental parameters often found to vary in dynamic aquatic ecosystems were chosen (dissolved oxygen [DO] and sodium chloride concentrations) to assess their potential impact on ED exposure. In separate experiments, male fathead minnows (Pimephales promelas) were exposed to estrone (E1) a natural ED, under either two concentrations of DO, or two concentrations of sodium chloride, in a laboratory flow-through system. Morphological and hematological parameters were assessed. While vitellogenin concentrations were elevated with exposure to estrone (29 to 390ng/L), the effect on other indices were variable. Estrone exposure altered SSC, blood glucose, hematocrit, and hepatic and gonado-somatic index in 1 of 4 experiments, while it decreased body condition factor in 3 of 4 experiments. At the concentrations tested, no main effect differences (P<0.05) were found associated with DO or sodium chloride treatments, except in one experiment low DO resulted in a decrease in secondary sex characteristic score (SSC). The combination of DO or sodium chloride and E1 altered blood glucose in one experiment each. These results indicate the variability of fathead minnow response to estrone, even within the confines of controlled laboratory conditions. Published by Elsevier B.V.

  7. Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride

    DOE PAGES

    Schindelholz, Eric John; Cong, Hongbo; Jove-Colon, Carlos F.; ...

    2018-04-26

    Here, this study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at themore » alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu 2Cl(OH) 3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.« less

  8. Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindelholz, Eric John; Cong, Hongbo; Jove-Colon, Carlos F.

    Here, this study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at themore » alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu 2Cl(OH) 3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.« less

  9. Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves.

    PubMed

    Geilfus, Christoph-Martin; Tenhaken, Raimund; Carpentier, Sebastien Christian

    2017-11-17

    During chloride salinity, the pH of the leaf apoplast (pH apo ) transiently alkalizes. There is an ongoing debate about the physiological relevance of these stress-induced pH apo changes. Using proteomic analyses of expanding leaves of corn ( Zea mays L.), we show that this transition in pH apo conveys functionality by (i) adjusting protein abundances and (ii) affecting the rheological properties of the cell wall. pH apo was monitored in planta via microscopy-based ratio imaging, and the leaf-proteomic response to the transient leaf apoplastic alkalinization was analyzed via ultra-high performance liquid chromatography-MS. This analysis identified 1459 proteins, of which 44 exhibited increased abundance specifically through the chloride-induced transient rise in pH apo These elevated protein abundances did not directly arise from high tissue concentrations of Cl - or Na + but were due to changes in the pH apo Most of these proteins functioned in growth-relevant processes and in the synthesis of cell wall-building components such as arabinose. Measurements with a linear-variable differential transducer revealed that the transient alkalinization rigidified ( i.e. stiffened) the cell wall during the onset of chloride salinity. A decrease in t -coumaric and t -ferulic acids indicates that the wall stiffening arises from cross-linkage to cell wall polymers. We conclude that the pH of the apoplast represents a dynamic factor that is mechanistically coupled to cellular responses to chloride stress. By hardening the wall, the increased pH abrogates wall loosening required for cell expansion and growth. We conclude that the transient alkalinization of the leaf apoplast is related to salinity-induced growth reduction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Nutrient agar with sodium chloride supplementation for presumptive detection of Moraxella catarrhalis in clinical specimens.

    PubMed

    Nishiyama, Hiroyuki; Saito, Ryoichi; Chida, Toshio; Sano, Kazumitsu; Tsuchiya, Tatsuyuki; Okamura, Noboru

    2012-04-01

    We previously reported that Nissui nutrient agar (N medium) promoted the growth of Moraxella catarrhalis but not commensal Neisseria spp. In the present study, we examined which constituent of N medium was responsible for the selective growth of M. catarrhalis using 209 M. catarrhalis and 100 commensal Neisseria spp. clinical strains. We found that peptone, but not meat extract or agar of N medium, had growth-promoting or growth-inhibiting ability with respect to M. catarrhalis and commensal Neisseria spp. Thus, we investigated the amino acid content of N peptone and found it had higher concentrations of amino acids than other commercial peptone products. On varying the sodium chloride concentration of reconstituted N medium, we noted that the concentration was an important factor in bacterial growth differences. Varying the sodium chloride concentration of other commercial nutrient agars achieved similar results to those for N medium. This is, to our knowledge, the first study observing that sodium chloride concentration is responsible for difference in growth between the two organisms. We also successfully isolated colonies of M. catarrhalis from respiratory specimens on N medium, whereas the growth of commensal Neisseria spp. was inhibited, and by adding bovine hematin and β-NAD we were able to isolate Haemophilus influenzae colonies as efficiently as with a chocolate agar. In conclusion, nutrient agar can be used as a medium for the preferential isolation of M. catarrhalis from upper respiratory tract specimens.

  11. Close-up view of Sodium Chloride crystals in a water bubble on Expedition Six.

    NASA Image and Video Library

    2003-03-13

    ISS006-E-39211 (13 March 2003) --- A close up view of sodium chloride crystals in a water bubble within a 50-millimeter metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  12. Close-up view of Sodium Chloride crystals in a water bubble on Expedition Six.

    NASA Image and Video Library

    2003-03-14

    ISS006-E-39238 (14 March 2003) --- A close up view of sodium chloride crystals in a water bubble within a 50-millimeter metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  13. Benefit and risk assessment of increasing potassium intake by replacement of sodium chloride with potassium chloride in industrial food products in Norway.

    PubMed

    Steffensen, Inger-Lise; Frølich, Wenche; Dahl, Knut Helkås; Iversen, Per Ole; Lyche, Jan Ludvig; Lillegaard, Inger Therese Laugsand; Alexander, Jan

    2018-01-01

    High sodium chloride (NaCl) intake is associated with health risks. NaCl may be replaced by potassium chloride (KCl) to decrease sodium intake. However, increased potassium may also have negative health effects. We conducted a benefit and risk assessment of increasing potassium by ratios of 30:70, 50:50, 70:30 (weight % K + : weight % Na + ) in children, adolescents and adults in Norway, using intake data from national food consumption surveys and available literature on potassium health effects. An intake of at least 3.5 g/day of potassium decreases risk of stroke and hypertension, and this level was used in the benefit assessment of the healthy population. Three g/day of potassium added to mean food intake is assumed safe, and these levels were used in the risk assessment. Not all persons reached the protective level of potassium, and increasing numbers exceeded the safe levels, in these scenarios. In addition, elderly above 85 years and infants below one year of age, as well as several patient groups and medication users, are particularly vulnerable to hyperkalemia. In conclusion, the number of Norwegians facing increased risk is far greater than the number likely to benefit from this replacement of sodium with potassium in industrially produced food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Application of cetylpyridinium chloride and sodium chloride decontamination method for recovery of Mycobacterium tuberculosis from clinically suspected cases of pulmonary tuberculosis.

    PubMed

    Shinu, Pottathil; Singh, Varsha; Nair, Anroop; Mehrishi, Priya; Mehta, Sonia; Joshi, Ekta

    2013-10-01

    The study was designed to compare the efficacy of cetylpyridinium chloride (CPC) and sodium chloride (NaCl) decontamination method with N-acetyl L-Cystine (NALC) and sodium hydroxide (NaOH) decontamination (the reference method) method for the recovery of Mycobacterium tuberculosis (MTB) from clinically suspected cases of pulmonary tuberculosis. To evaluate CPC-NaCl and NALC-NaOH decontamination methods, sputum specimens (n = 796) were studied (culturing on Löwenstein-Jensen medium), and the performances were compared. The CPC-NaCl decontamination method demonstrated a sensitivity, specificity, negative predictive value, and positive predictive value of 97.99%, 87.53%, 70.19%, and 99.32%, respectively, when compared to NALC-NaOH decontamination method. In summary, CPC-NaCl decontamination method effectively detected significantly higher number of MTB cases (n = 208) than NALC-NaOH decontamination method (n = 149) particularly in sputum with scanty bacilli and smear-negative cases, indicating the potential of CPC-NaCl decontamination method to preserve paucibacillary cases more efficient than NALC-NaOH decontamination method. © 2013.

  15. Chloride accumulation vs chloride excretion: Phytoextraction potential of three halophytic grass species growing in a salinized landfill.

    PubMed

    McSorley, Kaitlin A; Rutter, Allison; Cumming, Robert; Zeeb, Barbara A

    2016-12-01

    Phragmites australis, Puccinnellia nuttalliana (salt accumulators), and Spartina pectinata (salt excretor) were investigated based on their relative abilities to phytoextract chloride from a cement kiln dust landfill in Bath, ON. Salt tolerance mechanisms were found to affect phytoextraction performance. On the basis of accumulation alone, P. australis had the greatest phytoextraction efficiency compared to the other two species due to its high biomass (despite having the lowest shoot ion concentrations). Conversely, when weekly salt excretion on the leaf surfaces of S. pectinata was accounted for over an eight week period from July to August 2014, removal of Cl - increased by 160% surpassing the extraction ability of P. australis by nearly 60%. Energy dispersive spectroscopy analysis of the excreted salt particles on S. pectinata indicates that they were composed of the plant macronutrient, potassium and micronutrient, chloride. Wind re-distribution of these nutrients may actually have beneficial effects on the environment, as they are required by both plants and animals for various metabolic functions. This is the first study to demonstrate salt excretion for the remediation of an industrially salinized landfill in Canada. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis.

    PubMed

    Doorn, J; Storteboom, T T R; Mulder, A M; de Jong, W H A; Rottier, B L; Kema, I P

    2015-07-01

    Measurement of chloride in sweat is an essential part of the diagnostic algorithm for cystic fibrosis. The lack in sensitivity and reproducibility of current methods led us to develop an ion chromatography/high-performance liquid chromatography (IC/HPLC) method, suitable for the analysis of both chloride and sodium in small volumes of sweat. Precision, linearity and limit of detection of an in-house developed IC/HPLC method were established. Method comparison between the newly developed IC/HPLC method and the traditional Chlorocounter was performed, and trueness was determined using Passing Bablok method comparison with external quality assurance material (Royal College of Pathologists of Australasia). Precision and linearity fulfill criteria as established by UK guidelines are comparable with inductively coupled plasma-mass spectrometry methods. Passing Bablok analysis demonstrated excellent correlation between IC/HPLC measurements and external quality assessment target values, for both chloride and sodium. With a limit of quantitation of 0.95 mmol/L, our method is suitable for the analysis of small amounts of sweat and can thus be used in combination with the Macroduct collection system. Although a chromatographic application results in a somewhat more expensive test compared to a Chlorocounter test, more accurate measurements are achieved. In addition, simultaneous measurements of sodium concentrations will result in better detection of false positives, less test repeating and thus faster and more accurate and effective diagnosis. The described IC/HPLC method, therefore, provides a precise, relatively cheap and easy-to-handle application for the analysis of both chloride and sodium in sweat. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. A novel and efficient method for the immobilization of thermolysin using sodium chloride salting-in and consecutive microwave irradiation.

    PubMed

    Chen, Feifei; Zhang, Fangkai; Du, Fangchuan; Wang, Anming; Gao, Weifang; Wang, Qiuyan; Yin, Xiaopu; Xie, Tian

    2012-07-01

    Sodium chloride salting-in and microwave irradiation were combined to drive thermolysin molecules into mesoporous support to obtain efficiently immobilized enzyme. When the concentration of sodium chloride was 3 M and microwave power was 40 W, 93.2% of the enzyme was coupled to the support by 3 min, and the maximum specific activity of the immobilized enzyme was 17,925.1 U mg(-1). This was a 4.5-fold increase in activity versus enzyme immobilized using conventional techniques, and a 1.6-fold increase versus free enzyme. Additionally, the thermal stability of the immobilized thermolysin was significantly improved. When incubated at 70°C, there was no reduction in activity by 3.5h, whereas free thermolysin lost most of its activity by 3h. Immobilization also protected the thermolysin against organic solvent denaturation. The microwave-assisted immobilization technique, combined with sodium chloride salting-in, could be applied to other sparsely soluble enzymes immobilization because of its simplicity and high efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Efficacy of formalin, hydrogen-peroxide, and sodium-chloride on fungal-infected rainbow-trout eggs

    USGS Publications Warehouse

    Schreier, Theresa M.; Rach, J.J.; Howe, G.E.

    1996-01-01

    Antifungal agents are essential for the maintenance of healthy stocks of fish and their eggs in intensive aquaculture operations. In the usa, formalin is the only fungicide approved for use in fish culture, however, hydrogen peroxide and sodium chloride have been granted low regulatory priority drug status by the united states food and drug administration (fda) and their use is allowed. We evaluated the efficacy of these fungicides for controlling fungal infections on rainbow trout eggs. A pilot study was conducted to determine the minimum water flow rate required to administer test chemicals accurately in heath incubators. A minimum water flow rate of 7.6 1 min(-1) was necessary to maintain treatment concentrations during flow-through chemical exposures, the antifungal activity of formalin, hydrogen peroxide, and sodium chloride was evaluated by treating uninfected and 10% fungal-infected (saprolegnia parasitica) rainbow trout eggs (oncorhynchus mykiss) for 15 min every other day until hatch. There were no significant differences among treatments in percent hatch or final infection for uninfected eggs receiving prophylactic chemical treatments, eggs of the negative control group (uninfected and untreated) had a mean hatch exceeding 86%, all chemical treatments conducted on the infected egg groups controlled the spread of fungus and improved hatching success compared with the positive control groups (infected and untreated), formalin treatments of 1000 and 1500 mu l 1(-1) and hydrogen peroxide treatments of 500 and 1000 mu l 1(-1) were the most effective. Sodium chloride treatments of 30000 mg 1(-1) improved fry hatch, but the compound was less effective at inhibiting fungal growths compared with hydrogen peroxide and formalin treatments.

  19. The effects of magnetic fields exposure on relative permittivity of saline solutions measured by a high resolution SPR system

    PubMed Central

    Jiang, Li; Zhao, Xinyuan; Fei, Yue; Yu, Dongdong; Qian, Jun; Tong, Jinguang; Chen, Guangdi; He, Sailing

    2016-01-01

    A measurement system for the relative permittivity of a physiological solution under 50 Hz magnetic fields (MF) is presented. It is based on a phase-sensitive surface plasmon resonance (SPR) system. Relative permittivity was analyzed for different solute concentrations of sodium chloride under various MF exposure parameters. We found that MF exposure at 0.2–4.0 mT step-wise decreased significantly the SPR phase signal of a 0.9% sodium chloride solution while 0.1 mT of MF exposure did not. The decreases in the SPR phase signal depended on the duration of MF exposure, and the signal reached a plateau after 15 min of exposure. Interestingly, the decreased SPR phase signal showed a gradual increase and approached the background level when the exposure was drawn off. In addition, we found that the response of the sodium chloride solution to MF also depended on its concentration. In brief, the relative permittivity of sodium chloride in solutions appears to be practically affected by 50 Hz MF exposure. Our data indicates that the relative permittivity of the saline solution influenced by MF exposure should be considered when investigating the biological effects of MF exposure on organisms in experimental study. PMID:27121618

  20. Quality of life in patients with nonalcoholic fatty liver disease in combination with essential hypertension considering taste sensitivity to sodium chloride.

    PubMed

    Mashura, Hanna Y; Hanych, Taras M; Rishko, Alexander A

    2016-01-01

    Nonalcoholic fatty liver disease and hypertensive disease - is the most common combination of abnormalities that occur in people suffering from metabolic syndrome. Their combination not only causes concurrent damage of the liver and the heart, caused by common pathogenic beginning, and also mutually complicate the disease course of each other. The leading role in the development of nonalcoholic fatty liver disease belongs to abdominal obesity and insulin resistance, and is seen as a manifestation of liver disease in metabolic syndrome. Genetic predisposition, lifestyle, improper nutrition, including excessive use of sodium chloride, lead to excessive formation of visceral adipose tissue with development of abdominal obesity, which is a likely criterion of insulin resistance. The long course of nonalcoholic fatty liver disease in combination with essential hypertension in excessive consumption of sodium chloride may negatively affect their quality of life. The aim of the study is to find out the features of quality of life in patients with nonalcoholic fatty liver disease in combination with hypertensive disease with different taste sensitivity to sodium chloride. We have investigated the quality of life of 65 patients with nonalcoholic fatty liver disease in combination with hypertensive disease II stage with different taste sensitivity to sodium chloride. Salt taste sensitivity threshold to sodium chloride is determined by the method of R. Henkin. Assessment of quality of life was performed using the Ukrainian version of the questionnaire Medical Outcomes Study Short Form 36 (MO S SF-36). Was revealed that in patients with nonalcoholic fatty liver disease in combination with hypertensive disease II stage with high salt taste sensitivity threshold observed the decline in the quality of life that manifests as a decline in physical condition (especially of the physical functioning, physical role functioning and general health perceptions) and mental health

  1. Sodium and potassium content and their ratio in meatballs in tomato sauce produced with lower amounts of sodium

    NASA Astrophysics Data System (ADS)

    Lilić, S.; Nikolić, D.; Pejkovski, Z.; Velebit, B.; Lakićević, B.; Korićanac, V.; Vranić, D.

    2017-09-01

    The goal of this study was to examine the possibility of partial replacement of sodium chloride with potassium chloride and ammonium chloride, with the target of achieving less sodium content in meatballs and tomato sauce as well as achieving a better Na:K ratio. The trial consisted of five groups. In the control group of meatballs and sauce, only sodium chloride was added. In group 1, half of the sodium chloride was replaced with potassium chloride related to control group while in group 2 one third of the sodium chloride was replaced with potassium chloride. In group 3, one third of the sodium chloride was replaced with ammonium chloride, and in group 4, sodium chloride was reduced to half the amount in the control group, and 1 g (0.25%) of ammonium chloride was also added. All products were acceptable according to sensory analyses. The largest reductions of sodium content were 44.64%, achieved in meatballs from group 1 and 50.62% in tomato sauce from group 4 in relation to meatballs and tomato sauce from control group. The highest Na:K ratio was calculated in meatballs and tomato sauce from control group, 2.88 and 4.39, respectively. The best Na:K ratio was in meatballs and tomato sauce from group 1, 0.60 and 0.92, respectively, in which half of sodium chloride was replaced with potassium chloride. However, in meatballs and tomato sauce from group 4, with only half the amount of sodium chloride related to control group, the Na:K ratio was worse because in these products, potassium chloride was not added.

  2. Randomized trial of one-hour sodium bicarbonate vs standard periprocedural saline hydration in chronic kidney disease patients undergoing cardiovascular contrast procedures.

    PubMed

    Kooiman, Judith; de Vries, Jean-Paul P M; Van der Heyden, Jan; Sijpkens, Yvo W J; van Dijkman, Paul R M; Wever, Jan J; van Overhagen, Hans; Vahl, Antonie C; Aarts, Nico; Verberk-Jonkers, Iris J A M; Brulez, Harald F H; Hamming, Jaap F; van der Molen, Aart J; Cannegieter, Suzanne C; Putter, Hein; van den Hout, Wilbert B; Kilicsoy, Inci; Rabelink, Ton J; Huisman, Menno V

    2018-01-01

    Guidelines advise periprocedural saline hydration for prevention of contrast induced-acute kidney injury (CI-AKI). We analysed whether 1-hour sodium bicarbonate hydration administered solely prior to intra-arterial contrast exposure is non-inferior to standard periprocedural saline hydration in chronic kidney disease (CKD) patients undergoing elective cardiovascular diagnostic or interventional contrast procedures. We performed an open-label multicentre non-inferiority trial between 2011-2014. Patients were randomized to 1 hour pre-procedure sodium bicarbonate hydration (250 ml 1.4%, N = 168) or 4-12 hours saline hydration (1000 ml 0.9%, N = 165) prior to and following contrast administration (2000 ml of saline total). Primary outcome was the relative serum creatinine increase (%) 48-96 hours post contrast exposure. Secondary outcomes were: incidence of CI-AKI (serum creatinine increase>25% or >44μmol/L), recovery of renal function, the need for dialysis, and hospital costs within two months follow-up. Mean relative creatinine increase was 3.1% (95%CI 0.9 to 5.2%) in the bicarbonate and 1.1% (95%CI -1.2 to 3.5%) in the saline arm, mean difference 1.9% (95%CI -1.2 to 5.1%, p-non-inferiority <0.001). CI-AKI occurred in 11 (6.7%) patients randomized to sodium bicarbonate and 12 (7.5%) to saline (p = 0.79). Renal function did not fully recover in 40.0% and 44.4% of CI-AKI patients, respectively (p = 0.84). No patient required dialysis. Mean costs for preventive hydration and clinical preparation for the contrast procedure were $1158 for sodium bicarbonate vs. $1561 for saline (p < 0.001). Short hydration with sodium bicarbonate prior to elective cardiovascular diagnostic or therapeutic contrast procedures is non-inferior to standard periprocedural saline hydration in CKD patients with respect to renal safety and results in considerable healthcare savings. Netherlands Trial Register (http://www.trialregister.nl/trialreg/index.asp), Nr NTR2699.

  3. Randomized trial of one-hour sodium bicarbonate vs standard periprocedural saline hydration in chronic kidney disease patients undergoing cardiovascular contrast procedures

    PubMed Central

    de Vries, Jean-Paul P. M.; Van der Heyden, Jan; Sijpkens, Yvo W. J.; van Dijkman, Paul R. M.; Wever, Jan J.; van Overhagen, Hans; Vahl, Antonie C.; Aarts, Nico; Verberk-Jonkers, Iris J. A. M.; Brulez, Harald F. H.; Hamming, Jaap F.; van der Molen, Aart J.; Cannegieter, Suzanne C.; Putter, Hein; van den Hout, Wilbert B.; Kilicsoy, Inci; Rabelink, Ton J.; Huisman, Menno V.

    2018-01-01

    Background Guidelines advise periprocedural saline hydration for prevention of contrast induced-acute kidney injury (CI-AKI). We analysed whether 1-hour sodium bicarbonate hydration administered solely prior to intra-arterial contrast exposure is non-inferior to standard periprocedural saline hydration in chronic kidney disease (CKD) patients undergoing elective cardiovascular diagnostic or interventional contrast procedures. Methods We performed an open-label multicentre non-inferiority trial between 2011–2014. Patients were randomized to 1 hour pre-procedure sodium bicarbonate hydration (250 ml 1.4%, N = 168) or 4–12 hours saline hydration (1000 ml 0.9%, N = 165) prior to and following contrast administration (2000 ml of saline total). Primary outcome was the relative serum creatinine increase (%) 48–96 hours post contrast exposure. Secondary outcomes were: incidence of CI-AKI (serum creatinine increase>25% or >44μmol/L), recovery of renal function, the need for dialysis, and hospital costs within two months follow-up. Results Mean relative creatinine increase was 3.1% (95%CI 0.9 to 5.2%) in the bicarbonate and 1.1% (95%CI -1.2 to 3.5%) in the saline arm, mean difference 1.9% (95%CI -1.2 to 5.1%, p-non-inferiority <0.001). CI-AKI occurred in 11 (6.7%) patients randomized to sodium bicarbonate and 12 (7.5%) to saline (p = 0.79). Renal function did not fully recover in 40.0% and 44.4% of CI-AKI patients, respectively (p = 0.84). No patient required dialysis. Mean costs for preventive hydration and clinical preparation for the contrast procedure were $1158 for sodium bicarbonate vs. $1561 for saline (p < 0.001). Conclusion Short hydration with sodium bicarbonate prior to elective cardiovascular diagnostic or therapeutic contrast procedures is non-inferior to standard periprocedural saline hydration in CKD patients with respect to renal safety and results in considerable healthcare savings. Trial registration Netherlands Trial Register (http

  4. Influence of salinity on the localization of Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis)

    USGS Publications Warehouse

    McCormick, S.D.; Sundell, K.; Bjornsson, Bjorn Thrandur; Brown, C.L.; Hiroi, J.

    2003-01-01

    Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) are the three major transport proteins thought to be involved in chloride secretion in teleost fish. If this is the case, the levels of these transporters should be high in chloride cells of seawater-acclimated fish. We therefore examined the influence of salinity on immunolocalization of Na +/K+-ATPase, NKCC and CFTR in the gills of the Hawaiian goby (Stenogobius hawaiiensis). Fish were acclimated to freshwater and 20??? and 30??? seawater for 10 days. Na+/K +-ATPase and NKCC were localized specifically to chloride cells and stained throughout most of the cell except for the nucleus and the most apical region, indicating a basolateral/tubular distribution. All Na+/K +-ATPase-positive chloride cells were also positive for NKCC in all salinities. Salinity caused a slight increase in chloride cell number and size and a slight decrease in staining intensity for Na+/K +-ATPase and NKCC, but the basic pattern of localization was not altered. Gill Na+/K+-ATPase activity was also not affected by salinity. CFTR was localized to the apical surface of chloride cells, and only cells staining positive for Na+/K+-ATPase were CFTR-positive. CFTR-positive cells greatly increased in number (5-fold), area stained (53%) and intensity (29%) after seawater acclimation. In freshwater, CFTR immunoreactivity was light and occurred over a broad apical surface on chloride cells, whereas in seawater there was intense immunoreactivity around the apical pit (which was often punctate in appearance) and a light subapical staining. The results indicate that Na+/K +-ATPase, NKCC and CFTR are all present in chloride cells and support current models that all three are responsible for chloride secretion by chloride cells of teleost fish.

  5. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    PubMed

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods.

  6. Modelling the effect of pH, sodium chloride and sodium pyrophosphate on the thermal resistance of Escherichia coli O157:H7 in ground beef

    USDA-ARS?s Scientific Manuscript database

    A fractional factorial design was used to assess the combined effects of four internal temperatures (55.0, 57.5, 60.0 and 62.5C) and five concentrations of sodium chloride (NaCl) (0.0, 1.5, 3.0, 4.5 and 6.0 wt/wt%) and sodium pyrophosphate (SPP) (0.0, 0.1, 0.15, 0.2 and 0.3 wt/wt%) on the heat resis...

  7. Intradermal bacteriostatic 0.9% sodium chloride containing the preservative benzyl alcohol compared with intradermal lidocaine hydrochloride 1% for attenuation of intravenous cannulation pain.

    PubMed

    McNelis, K A

    1998-12-01

    This study compared the efficacy of a common medication diluent, bacteriostatic 0.9% sodium chloride containing the preservative benzyl alcohol with lidocaine hydrochloride 1% as an intradermal pretreatment for the relief of pain associated with intravenous cannulation. Forty adult presurgical patients requiring two large bore intravenous catheters were used. They served as their own controls. The inner aspect of one forearm received the usual pretreatment, lidocaine hydrochloride 1%, and the inner aspect of the opposite arm received intradermal pretreatment with bacteriostatic 0.9% sodium chloride with the preservative benzyl alcohol. Intravenous cannulation was accomplished on the first attempt, and pain reported with cannulation was rated using a visual analogue scale (VAS). A paired t test was used to compare differences in VAS scores with the pretreatment bacteriostatic 0.9% sodium chloride containing the preservative benzyl alcohol with the pretreatment lidocaine hydrochloride 1%. Analysis of the data revealed no significant difference in the report of perceived pain of intravenous cannulation based on the intradermal pretreatment. These findings suggest that intradermal bacteriostatic 0.9% sodium chloride containing the preservative benzyl alcohol is as effective as intradermal lidocaine hydrochloride 1% in the attenuation of intravenous cannulation pain.

  8. Sodium Chloride Supplementation Is Not Routinely Performed in the Majority of German and Austrian Infants with Classic Salt-Wasting Congenital Adrenal Hyperplasia and Has No Effect on Linear Growth and Hydrocortisone or Fludrocortisone Dose.

    PubMed

    Bonfig, Walter; Roehl, Friedhelm; Riedl, Stefan; Brämswig, Jürgen; Richter-Unruh, Annette; Fricke-Otto, Susanne; Hübner, Angela; Bettendorf, Markus; Schönau, Eckhard; Dörr, Helmut; Holl, Reinhard W; Mohnike, Klaus

    2018-01-01

    Sodium chloride supplementation in salt-wasting congenital adrenal hyperplasia (CAH) is generally recommended in infants, but its implementation in routine care is very heterogeneous. To evaluate oral sodium chloride supplementation, growth, and hydrocortisone and fludrocortisone dose in infants with salt-wasting CAH due to 21-hydroxylase in 311 infants from the AQUAPE CAH database. Of 358 patients with classic CAH born between 1999 and 2015, 311 patients had salt-wasting CAH (133 females, 178 males). Of these, 86 patients (27.7%) received oral sodium chloride supplementation in a mean dose of 0.9 ± 1.4 mmol/kg/day (excluding nutritional sodium content) during the first year of life. 225 patients (72.3%) were not treated with sodium chloride. The percentage of sodium chloride-supplemented patients rose from 15.2% in children born 1999-2004 to 37.5% in children born 2011-2015. Sodium chloride-supplemented and -unsupplemented infants did not significantly differ in hydrocortisone and fludrocortisone dose, target height-corrected height-SDS, and BMI-SDS during the first 2 years of life. In the AQUAPE CAH database, approximately one-third of infants with salt-wasting CAH receive sodium chloride supplementation. Sodium chloride supplementation is performed more frequently in recent years. However, salt supplementation had no influence on growth, daily fludrocortisone and hydrocortisone dose, and frequency of adrenal crisis. © 2017 S. Karger AG, Basel.

  9. View of Sodium Chloride inserted onto blueberry jelly within a metal loop on Expedition Six

    NASA Image and Video Library

    2003-03-14

    ISS006-E-39254 (14 March 2003) --- A view of sodium chloride inserted onto blueberry jelly within a 50-millimeter (mm) metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  10. The thiazide sensitive sodium chloride co-transporter NCC is modulated by site-specific ubiquitylation.

    PubMed

    Rosenbaek, Lena L; Rizzo, Federica; Wu, Qi; Rojas-Vega, Lorena; Gamba, Gerardo; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A

    2017-10-11

    The renal sodium chloride cotransporter, NCC, in the distal convoluted tubule is important for maintaining body Na + and K + homeostasis. Endogenous NCC is highly ubiquitylated, but the role of individual ubiquitylation sites is not established. Here, we assessed the role of 10 ubiquitylation sites for NCC function. Transient transfections of HEK293 cells with human wildtype (WT) NCC or various K to R mutants identified greater membrane abundance for K706R, K828R and K909R mutants. Relative to WT-NCC, stable tetracycline inducible MDCKI cell lines expressing K706R, K828R and K909R mutants had significantly higher total and phosphorylated NCC levels at the apical plasma membrane under basal conditions. Low chloride stimulation increased membrane abundance of all mutants to similar or greater levels than WT-NCC. Under basal conditions K828R and K909R mutants had less ubiquitylated NCC in the plasma membrane, and all mutants displayed reduced NCC ubiquitylation following low chloride stimulation. Thiazide-sensitive sodium-22 uptakes were elevated in the mutants and internalization from the plasma membrane was significantly less than WT-NCC. K909R had increased half-life, whereas chloroquine or MG132 treatment indicated that K706 and K909 play roles in lysosomal and proteasomal NCC degradation, respectively. In conclusion, site-specific ubiquitylation of NCC plays alternative roles for NCC function.

  11. Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates.

    PubMed

    Holzammer, Christine; Schicks, Judith M; Will, Stefan; Braeuer, Andreas S

    2017-09-07

    We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO 2 ) gas hydrates using Raman spectroscopy. The CO 2 hydrates were formed from sodium chloride/water solutions with salinities of 0-10 wt %, which were pressurized with liquid CO 2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO 2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, x H , and the fraction of the dispersed liquid water-rich phase, x L , from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate x H contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO 2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO 2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO 2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect.

  12. Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates

    PubMed Central

    2017-01-01

    We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO2) gas hydrates using Raman spectroscopy. The CO2 hydrates were formed from sodium chloride/water solutions with salinities of 0–10 wt %, which were pressurized with liquid CO2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, xH, and the fraction of the dispersed liquid water-rich phase, xL, from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate xH contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect. PMID:28817275

  13. Evaluation of angiogenesis, epithelialisation and microcirculation after application of polyhexanide, chitosan and sodium chloride in rodents.

    PubMed

    Goertz, Ole; Lauer, Henrik; Hirsch, Tobias; Daigeler, Adrien; Harati, Kamran; Stricker, Ingo; Lehnhardt, Marcus; von der Lohe, Leon

    2016-12-01

    The purpose of this study was to investigate the effect of polyhexanide and a new developed chitin-based wound dressing on skin microcirculation, epithelialisation and angiogenesis. A full-thickness dermal layer extending to the underlying cartilage was excised on the dorsal side of hairless mice (n = 27; 2·3 ± 0·3 mm 2 ). A polyhexanide ointment, a chitosan solution and a sodium chloride group as control were analysed using intravital fluorescence microscopy. Angiogenesis, epithelialisation and microcirculatory standard parameters were measured over a time period of 20 days. The non-perfused area is regarded as a parameter for angiogenesis and showed the following results: on days 12, 16 and 20, the sodium chloride group was significantly superior to chitosan solution (P < 0·05) and, on days 8, 12, 16 and 20, the polyhexanide group was superior to chitosan solution (P < 0·05). The epithelialisation was measured significantly faster in the polyhexanide and control group on day 8 versus chitosan solution. Whereas polyhexanide and sodium chloride were nearly completely epithelialised, treatment with chitosan solution showed still an open wound of 11% of the initial wound size. Altogether, we could demonstrate the advantageous effects of a polyhexanide ointment on microcirculation, angiogenesis and epithelialisation. Chitosan solution appears to inhibit angiogenesis and delays epithelialisation. Further studies in different models would be worthwhile to confirm these results. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  14. Hydroxyethyl starch or saline for fluid resuscitation in intensive care.

    PubMed

    Myburgh, John A; Finfer, Simon; Bellomo, Rinaldo; Billot, Laurent; Cass, Alan; Gattas, David; Glass, Parisa; Lipman, Jeffrey; Liu, Bette; McArthur, Colin; McGuinness, Shay; Rajbhandari, Dorrilyn; Taylor, Colman B; Webb, Steven A R

    2012-11-15

    The safety and efficacy of hydroxyethyl starch (HES) for fluid resuscitation have not been fully evaluated, and adverse effects of HES on survival and renal function have been reported. We randomly assigned 7000 patients who had been admitted to an intensive care unit (ICU) in a 1:1 ratio to receive either 6% HES with a molecular weight of 130 kD and a molar substitution ratio of 0.4 (130/0.4, Voluven) in 0.9% sodium chloride or 0.9% sodium chloride (saline) for all fluid resuscitation until ICU discharge, death, or 90 days after randomization. The primary outcome was death within 90 days. Secondary outcomes included acute kidney injury and failure and treatment with renal-replacement therapy. A total of 597 of 3315 patients (18.0%) in the HES group and 566 of 3336 (17.0%) in the saline group died (relative risk in the HES group, 1.06; 95% confidence interval [CI], 0.96 to 1.18; P=0.26). There was no significant difference in mortality in six predefined subgroups. Renal-replacement therapy was used in 235 of 3352 patients (7.0%) in the HES group and 196 of 3375 (5.8%) in the saline group (relative risk, 1.21; 95% CI, 1.00 to 1.45; P=0.04). In the HES and saline groups, renal injury occurred in 34.6% and 38.0% of patients, respectively (P=0.005), and renal failure occurred in 10.4% and 9.2% of patients, respectively (P=0.12). HES was associated with significantly more adverse events (5.3% vs. 2.8%, P<0.001). In patients in the ICU, there was no significant difference in 90-day mortality between patients resuscitated with 6% HES (130/0.4) or saline. However, more patients who received resuscitation with HES were treated with renal-replacement therapy. (Funded by the National Health and Medical Research Council of Australia and others; CHEST ClinicalTrials.gov number, NCT00935168.).

  15. Hyponatremia due to Secondary Adrenal Insufficiency Successfully Treated by Dexamethasone with Sodium Chloride.

    PubMed

    Kazama, Itsuro; Tamada, Tsutomu; Nakajima, Toshiyuki

    2015-08-28

    Patients who were surgically treated for Cushing's syndrome postoperatively surrender to "primary" adrenal insufficiency. However, the preoperative over-secretion of cortisol or the postoperative administration of excessive glucocorticoids can cause "secondary" adrenal insufficiency, in which the prevalence of hyponatremia is usually lower than that of primary adrenal insufficiency. A 60-year-old woman with a past medical history of Cushing's syndrome developed hyponatremia with symptoms of acute glucocorticoid deficiency, such as prolonged general fatigue and anorexia, after upper respiratory tract infection. A decrease in the serum cortisol level and the lack of increase in the ACTH level, despite the increased demand for cortisol, enabled a diagnosis of "secondary" adrenal insufficiency. Although the initial fluid replacement therapy was not effective, co-administration of dexamethasone and sodium chloride quickly resolved her symptoms and ameliorated the refractory hyponatremia. In this case, the hypothalamic-pituitary axis of the patient was thought to have become suppressed long after the surgical treatment for Cushing's syndrome. This case suggested a mechanism of refractory hyponatremia caused by secondary adrenal insufficiency, for which the administration of dexamethasone and sodium chloride exerted additional therapeutic efficacy.

  16. Progress and recent developments in sodium-metal chloride batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Significant strides have been made in the development of high-temperature rechargeable sodium batteries utilizing transition metal chloride cathodes in the last decade, mainly due to the expertise available on Na/S batteries. These systems have already performed attractively in the various feasibility studies and have an excellent safety record. Despite the encouraging figures obtained for specific energies, certain design changes such as modifying the geometry of the beta alumina electrolyte and optimization of the porous cathodes for enhanced electrolyte flow need to be made to achieve high power densities required in applications such as electric vehicles and space. The chemistry of MCl2 cathodes, electrode fabrication, and design options are discussed, and performance data are examined.

  17. Evaluation of sodium-nickel chloride cells for space applications

    NASA Technical Reports Server (NTRS)

    Hendel, B.; Dudley, G. J.

    1991-01-01

    The status of the European Space Agency (ESA) program on sodium nickel chloride batteries is outlined. Additionally, the results of initial tests of two prototype space cells are reported. After 2800 cycles typical of a low-earth orbit (LEO) application without failure, the recharge ratio remained at unity, the round trip energy efficiency remained high (87 percent), and the increase in internal cell resistance was modest. Initial tear-down analysis data show no degradation whatsoever of the beta-alumina electrolyte tubes. The low-rate capacity did, however drop by some 40 percent, which needs further investigation, but overall results are encouraging for future use of this couple in geosynchronous (GEO) and LEO spacecraft.

  18. Failure of dietary alpha-difluoromethylornithine to inhibit gastric carcinogenesis in rats after 8 weeks of treatment with N-methyl-N'-nitro-N-nitrosoguanidine and sodium chloride.

    PubMed

    Tanakamaru, Z; Nishikawa, A; Furukawa, F; Imazawa, T; Lee, I S; Kasahara, K; Tanaka, T; Takahashi, M

    1997-11-25

    The modifying effects of alpha-difluoromethylomithine (DFMO) on glandular stomach carcinogenesis after initiation with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and sodium chloride were investigated in male outbred Wistar rats. Animals were simultaneously given MNNG solution (100 ppm) as their drinking water and diet supplemented with 10% sodium chloride for 8 weeks, and administered DFMO (dietary levels of 2000 ppm or 500 ppm) and tap water for the following 70 weeks. The DFMO treatment did not show any tendency to inhibit the development of gastric adenocarcinomas. The incidences and multiplicities of atypical hyperplasias in the glandular stomachs were also comparable in all groups of rats given MNNG/sodium chloride. Neither gastric carcinomas nor atypical hyperplasias were observed without the carcinogen treatment. Thus, DFMO did not exert any inhibitory effects when given during the post-initiation phase of two-stage glandular stomach carcinogenesis in rats initiated with MNNG and sodium chloride for 8 weeks.

  19. View of Sodium Chloride inserted onto blueberry jelly within a metal loop on Expedition Six

    NASA Image and Video Library

    2003-03-14

    ISS006-E-39258 (14 March 2003) --- A close up view of sodium chloride inserted onto blueberry jelly within a 50-millimeter (mm) metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  20. Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress

    PubMed Central

    Singh, Chandan Kumar; Kumari, Shanti; Singh Tomar, Ram Sewak; Karwa, Sourabh; Singh, Rajendra; Singh, Raja Bahadur; Sarkar, Susheel Kumar; Pal, Madan

    2017-01-01

    One hundred and sixty two genotypes of different Lens species were screened for salinity tolerance in hydroponics at 40, 80 and 120 mM sodium chloride (NaCl) for 30 d. The germination, seedling growth, biomass accumulation, seedling survivability, salinity scores, root and shoot anatomy, sodium ion (Na+), chloride ion (Cl-) and potassium ion (K+) concentrations, proline and antioxidant activities were measured to evaluate the performance of all the genotypes. The results were compared in respect of physiological (Na+, K+ and Cl-) and seed yield components obtained from field trials for salinity stress conducted during two years. Expression of salt tolerance in hydroponics was found to be reliable indicator for similarity in salt tolerance between genotypes and was evident in saline soil based comparisons. Impressive genotypic variation for salinity tolerance was observed among the genotypes screened under hydroponic and saline field conditions. Plant concentrations of Na+ and Cl- at 120 mM NaCl were found significantly correlated with germination, root and shoot length, fresh and dry weight of roots and shoots, seedling survivability, salinity scores and K+ under controlled conditions and ranked the genotypes along with their seed yield in the field. Root and shoot anatomy of tolerant line (PDL-1) and wild accession (ILWL-137) showed restricted uptake of Na+ and Cl- due to thick layer of their epidermis and endodermis as compared to sensitive cultigen (L-4076). All the genotypes were scanned using SSR markers for genetic diversity, which generated high polymorphism. On the basis of cluster analysis and population structure the contrasting genotypes were grouped into different classes. These markers may further be tested to explore their potential in marker-assisted selection. PMID:28542267

  1. Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress.

    PubMed

    Singh, Dharmendra; Singh, Chandan Kumar; Kumari, Shanti; Singh Tomar, Ram Sewak; Karwa, Sourabh; Singh, Rajendra; Singh, Raja Bahadur; Sarkar, Susheel Kumar; Pal, Madan

    2017-01-01

    One hundred and sixty two genotypes of different Lens species were screened for salinity tolerance in hydroponics at 40, 80 and 120 mM sodium chloride (NaCl) for 30 d. The germination, seedling growth, biomass accumulation, seedling survivability, salinity scores, root and shoot anatomy, sodium ion (Na+), chloride ion (Cl-) and potassium ion (K+) concentrations, proline and antioxidant activities were measured to evaluate the performance of all the genotypes. The results were compared in respect of physiological (Na+, K+ and Cl-) and seed yield components obtained from field trials for salinity stress conducted during two years. Expression of salt tolerance in hydroponics was found to be reliable indicator for similarity in salt tolerance between genotypes and was evident in saline soil based comparisons. Impressive genotypic variation for salinity tolerance was observed among the genotypes screened under hydroponic and saline field conditions. Plant concentrations of Na+ and Cl- at 120 mM NaCl were found significantly correlated with germination, root and shoot length, fresh and dry weight of roots and shoots, seedling survivability, salinity scores and K+ under controlled conditions and ranked the genotypes along with their seed yield in the field. Root and shoot anatomy of tolerant line (PDL-1) and wild accession (ILWL-137) showed restricted uptake of Na+ and Cl- due to thick layer of their epidermis and endodermis as compared to sensitive cultigen (L-4076). All the genotypes were scanned using SSR markers for genetic diversity, which generated high polymorphism. On the basis of cluster analysis and population structure the contrasting genotypes were grouped into different classes. These markers may further be tested to explore their potential in marker-assisted selection.

  2. [The effect of sodium chloride baths on the physical work capacity and extrasystole of patients with ischemic heart disease and stable stenocardia].

    PubMed

    Klemenkov, S V; Davydova, O B; Levitskiĭ, E F; Chashchin, N F; Sharova, O Ia; Kubushko, I V

    1999-01-01

    73 patients with ischemic heart disease (IHD) and stable angina pectoris of NYHA class I and II underwent balneotherapy. 43 of them took a course of sodium chloride baths, 30 control patients took common water baths. As shown by spiroveloergometry and Holter monitoring, sodium chloride baths are a good training modality in IHD patients. They enhance muscular performance and coronary heart reserve, reduce the mean 24-h number of ventricular extrasystoles by 49.9%, supraventricular extrasystoles by 57.5%.

  3. Stability of Melphalan in 0.9% Sodium Chloride Solutions Prepared in Polyvinyl Chloride Bags for Intravenous Injection.

    PubMed

    Desmaris, Romain-Pacôme; Mercier, Lionel; Paci, Angelo

    2015-09-01

    Melphalan is an alkylating agent frequently used in an intravenous formulation to treat hematologic malignancies and solid tumors in both adults and children. According to the manufacturer, melphalan is stable in sterile 0.9% sodium chloride for 90 min at room temperature (RT). Several authors have studied the stability of different concentrations of melphalan; however, most were not adapted to the current manufacturing process applied in pharmaceutical centralized units. This study was conducted to determine the stability of melphalan in 0.9% sodium chloride solutions at concentrations used for intravenous injection in practice. Melphalan is commonly prepared in diluted solutions ranging from 2 to 4 mg/ml for the treatment of adult patients and at lower concentrations (down to 0.5 mg/ml) for pediatric use. Accordingly, these were the three concentrations chosen for this study. Melphalan concentrations were measured with high-performance thin-layer chromatography (HPTLC). At RT, admixtures prepared at 4 mg/ml were stable for up to 8 h without protection from light; however, at lower concentrations, such as 0.5 and 2 mg/ml, stability did not exceed 2 h. When refrigerated, melphalan was stable for 24 h at 2 mg/ml; however, at 0.5 and 4 mg/ml, the drug was not stable. Melphalan solutions present with limited stability at 0.5, 2, and 4 mg/ml and are not adapted for delayed administration in pharmaceutical centralized units. However, at 4 mg/ml and at RT, a stability of 8 h is very interesting in practice and allows sufficient time for preparation, pharmaceutical control, transport, and administration.

  4. The Effects of Salinity and Sodium Adsorption Ratio on the Water Retention and Hydraulic Conductivity Curves of Soils From The Pampa del Tamarugal, Chile

    NASA Astrophysics Data System (ADS)

    Lagos, M. S.; Munoz, J.; Suarez, F. I.; Fierro, V.; Moreno, C.

    2015-12-01

    The Pampa del Tamarugal is located in the Atacama Desert, the most arid desert of the world. It has important reserves of groundwater, which are probably fed by infiltration coming from the Andes Mountain, with groundwater levels fluctuating between 3 and 10-70 m below the land surface. In zones where shallow groundwater exists, the capillary rise allows to have a permanently moist vadose zone, which sustain native vegetation such as the Tamarugos (Prosopis tamarugo Phil.) and Algarrobos (Prosopis alba Griseb.). The native vegetation relies on the soil moisture and on the evaporative fluxes, which are controlled by the hydrodynamic characteristics of the soils. The soils associated to the salt flats of the Pampa del Tamarugal are a mixture of sands and clays, which have high levels of sulfates, chloride, carbonates, sodium, calcium, magnesium, and potassium, with high pH and electrical conductivity, and low organic matter and cationic exchange capacity. In this research, we are interested in evaluating the impact of salinity and sodium adsorption ratio (SAR) on the hydrodynamic characteristics of the soil, i.e., water retention and hydraulic conductivity curves. Soils were collected from the Pampa del Tamarugal and brought to the laboratory for characterization. The evaporation method (HYPROP, UMS) was used to determine the water retention curve and the hydraulic conductivity curve was estimated combining the evaporation method with direct measurements using a variable head permeameter (KSAT, UMS). It was found that higher sodium concentrations increase the water retention capacity and decrease the soiĺs hydraulic conductivity. These changes occur in the moist range of the hydrodynamic characteristics. The soil's hydraulic properties have significant impact on evaporation fluxes, which is the mayor component of the water balance. Thus, it is important to quantify them and incorporate salt precipitation/dissolution effect on the hydrodynamic properties to correctly

  5. In vitro influence of D/L-lactic acid, sodium chloride and sodium nitrite on the infectivity of feline calicivirus and of ECHO virus as potential surrogates for foodborne viruses.

    PubMed

    Straube, J; Albert, T; Manteufel, J; Heinze, J; Fehlhaber, K; Truyen, U

    2011-11-15

    The importance of foodborne viruses is increasingly recognized. Thus, the effect of commonly used food preservation methods on the infectivity of viruses is questioned. In this context, we investigated the antiviral properties of D,L-lactic acid, sodium chloride and sodium nitrite by in vitro studies. Two model viruses, Feline Calicivirus (FCV) and Enteric Cytophatic Human Orphan (ECHO) virus, were chosen for this study simulating important foodborne viruses (human noroviruses (NoV) and human enteroviruses, resp.). The model viruses were exposed to different solutions of D,L-lactic acid (0.1-0.4% w/w, pH 6.0-3.2), of sodium chloride (2-20%, w/v) and of sodium nitrite (100, 150 and 200 ppm) at 4 and 20 °C for a maximum of 7 days. Different results were obtained for the two viruses. ECHO virus was highly stable against D,L-lactic acid and sodium chloride when tested under all conditions. On the contrary, FCV showed less stability but was not effectively inactivated when exposed to low acid and high salt conditions at refrigeration temperatures (4 °C). FCV titers decreased more markedly at 20 °C than 4 °C in all experiments. Sodium nitrite did not show any effect on the inactivation of both viruses. The results indicate that acidification, salting or curing maybe insufficient for effective inactivation of foodborne viruses such as NoV or human enteroviruses during food processing. Thus, application of higher temperature during fermentation and ripening processes maybe more effective toward the inactivation kinetics of less stable viruses. Nevertheless, more studies are needed to examine the antiviral properties of these preserving agents on virus survival and inactivation kinetics in the complex food matrix. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Drinking Water Sodium and Elevated Blood Pressure of Healthy Pregnant Women in Salinity-Affected Coastal Areas.

    PubMed

    Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo

    2016-08-01

    Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies. © 2016 American Heart Association, Inc.

  7. Commercial Scale Cucumber Fermentations Brined with Calcium Chloride Instead of Sodium Chloride.

    PubMed

    Pérez-Díaz, I M; McFeeters, R F; Moeller, L; Johanningsmeier, S D; Hayes, J; Fornea, D S; Rosenberg, L; Gilbert, C; Custis, N; Beene, K; Bass, D

    2015-12-01

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride (CaCl2 ) instead of NaCl to commercial scale production. Although CaCl2 brined cucumber fermentations were stable in laboratory experiments, commercial scale trials using 6440 L open-top tanks rapidly underwent secondary cucumber fermentation. It was understood that a limited air purging routine, use of a starter culture and addition of preservatives to the cover brine aids in achieving the desired complete cucumber fermentation. The modified process was used for subsequent commercial trials using 12490 and 28400 L open-top tanks packed with variable size cucumbers and from multiple lots, and cover brines containing CaCl2 and potassium sorbate to equilibrated concentrations of 100 and 6 mM, respectively. Lactobacillus plantarum LA0045 was inoculated to 10(6) CFU/mL, and air purging was applied for two 2-3 h periods per day for the first 10 d of fermentation and one 2-3 h period per day between days 11 and 14. All fermentations were completed, as evidenced by the full conversion of sugars to lactic acid, decrease in pH to 3.0, and presented microbiological stability for a minimum of 21 d. This CaCl2 process may be used to produce fermented cucumbers intended to be stored short term in a manner that reduces pollution and waste removal costs. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions.

    PubMed

    Álvarez-Aragón, Rocío; Rodríguez-Navarro, Alonso

    2017-07-01

    Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na + effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na + uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na + into the xylem constitute the major pathway for the accumulation of Na + in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na + accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na + transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na + could not be accumulated. In contrast, in NaCl the plants that accumulated Na + lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na + uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long-term toxicity. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Effects of temperature and sodium chloride concentration on the activities of proteases and amylases in soy sauce koji.

    PubMed

    Su, Nan-Wei; Wang, Mei-Ling; Kwok, Kam-Fu; Lee, Min-Hsiung

    2005-03-09

    This study investigated the effects of temperature and sodium chloride concentration on the proteolytic and amylolytic activities of soy sauce koji. The optimal temperatures for both protease and amylase were found in the range of 50-55 degrees C. The protease was not stable at 55 degrees C and retained only approximately 20% residual activity after incubation at 55 degrees C for 4 h. The protease was labile in sodium chloride solution, whereas the amylase was quite stable. The residual protease activity in an 18% NaCl solution was only approximately 3%. The harvested koji was mixed with 1.5 volumes of water (v/w) and incubated at 45 degrees C for 48 h; the total nitrogen and amino nitrogen contents were 1.3 and 0.56%, respectively. The results indicated that the hydrolysis of koji at the critical temperature of 45 degrees C could be employed as a rapid fermentation method to reduce the time for soy sauce manufacturing. According to this study, the combination of 5% sodium chloride and fermentation at 45 degrees C was considered as the best condition for the prohydrolysis of koji for making soy sauce. In addition, the critical temperature of 45 degrees C was very important when used in the preparation of protein hydrolysates for the flavoring industry and for the preparation of biologically active peptides.

  10. Water and mineral relations of Atriplex canescens and A. cuneata on saline processed oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, S.G.

    1979-01-01

    Growth, mineral uptake and water relations of Atriplex canescens and A. cuneata, both native to the arid oil shale region of northeastern Utah, were studied in the greenhouse and laboratory as affected by various salinity levels and specific ions in processed oil shale. Salinity of the shale was manipulated by moistening leached processed oil shale to near field capacity (20% H/sub 2/O by weight) with solutions of shale leachate, sodium sulfate, magnesium sulfate or sodium chloride at equiosmotic concentrations ranging from 0 to -30 bars. Although shale salinity did not affect osmotic adjustment, zero turgor points of A. canescens becamemore » more negative with reductions in shale moisture percentage. Differences in plant growth due to differet ions in the soil solution could not be explained by effects on osmotic adjustment. However, greater growth of A. canescens in Na/sub 2/SO/sub 4/ treated than MgSO/sub 4/ treated leached shale was associated with greater leaf succulence, greater lamina lengths and lamina widths and lower diffusive leaf resistances. Potassium added to leached and unleached processed oil shale increased shoot and root biomass production, shoot/root ratio, leaf K content, and water use efficiency of a sodium-excluding Atriplex canescens biotype but did not increase growth of a sodium-accumulating biotype.« less

  11. Stability and availability of cyclosporine in 5% dextrose injection or 0.9% sodium chloride injection.

    PubMed

    Ptachcinski, R J; Logue, L W; Burckart, G J; Venkataramanan, R

    1986-01-01

    The stability of cyclosporine in commonly used i.v. solutions and the percentage of the drug delivered via polyvinyl chloride administration tubing were studied. Cyclosporine injection was prepared according to the manufacturer's instructions and diluted with 5% dextrose injection (D5W) or with 0.9% sodium chloride injection (NS). Admixtures containing cyclosporine 2 mg/mL were prepared in polyvinyl chloride minibags (five for each solution) and in glass containers (three for each solution). The sample obtained at time zero from a glass container protected from light was the control. Additional samples were prepared in minibags and run through 70-inch polyvinyl chloride administration sets. An HPLC assay for cyclosporine was used. Exposure to room light did not significantly affect cyclosporine concentrations. More than 90% of the initial drug concentration remained after 24 hours under all storage conditions, but less than 95% remained after 6 hours in samples diluted with NS and stored in plastic. At times up to 60 minutes, cyclosporine concentrations were significantly different in solutions infused from the minibags through polyvinyl chloride tubing from those in control solutions. Under these conditions, cyclosporine is stable in D5W in glass containers or polyvinyl chloride minibags for 24 hours and in NS for 6 hours (polyvinyl chloride) to 12 hours (glass). However, because of the potential for leaching of plasticizers, cyclosporine admixtures should be stored in glass or used within six hours if stored in polyvinyl chloride minibags. Approximately 10% of the initial drug concentration is lost to 70-inch length polyvinyl chloride infusion tubing.

  12. Effects of ammonium sulfate and sodium chloride concentration on PEG/protein liquid-liquid phase separation.

    PubMed

    Dumetz, André C; Lewus, Rachael A; Lenhoff, Abraham M; Kaler, Eric W

    2008-09-16

    When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.

  13. Zero-gravity growth of a sodium chloride-lithium fluoride eutectic mixture

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yeh, C. W.; Yue, B. K.

    1982-01-01

    Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on Earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convective current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and Earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.

  14. Spectral Behavior of Irradiated Sodium Chloride Crystals Under Europa-Like Conditions

    NASA Astrophysics Data System (ADS)

    Poston, Michael J.; Carlson, Robert W.; Hand, Kevin P.

    2017-12-01

    F- and M-color center formation (decay) was observed during (after) irradiation of sodium chloride crystal grains with 10 keV electrons as a function of temperature, radiation dose rate, and radiation dose. The F centers (peak center: 460 nm) were found to form and decay at a faster rate than the M centers (peak center: 720 nm). These effects were influenced by temperature and possibly by irradiation dose rate. Tracking the band depth ratio of the color center features during irradiation could enable age determination of geologically very young features on the surface of Europa and other icy ocean worlds.

  15. Benzalkonium chloride neutralizes the irritant effect of sodium dodecyl sulfate.

    PubMed

    McFadden, J P; Holloway, D B; Whittle, E G; Basketter, D A

    2000-11-01

    When benzalkonium chloride (BKC), a cationic surfactant, is added to sodium dodecyl sulfate (SDS), an anionic surfactant, and used in patch testing, on the basis of their known physicochemical interaction, it is possible to predict that there will be a tendency towards a reduction in the expected irritant response when compared to SDS alone. The aim of this study was to investigate whether BKC could reduce the irritant response to SDS when applied after the SDS exposure. 54 non-atopic adult volunteers were recruited for the study. 20% SDS was applied for 2 h under occlusion. 1% BKC was then applied to the same site. Various controls, including SDS application followed by water for 2 h, were included. The irritant reaction was assessed at 24 h and 48 h. 40 of the 54 subjects had some reaction when SDS was applied for 2 h followed by either benzalkonium chloride or water control under occlusion. In comparison to water control, where BKC was applied after SDS, 20 of the 40 responders had a weaker reaction but only 4 had a stronger response. This study shows that BKC applied to skin exposed to SDS attenuates the resulting irritant reaction.

  16. Efficacy of bolus lukewarm saline and yoga postures as colonoscopy preparation: a pilot study.

    PubMed

    Arya, Vijaypal; Gupta, Kalpana A; Arya, Swarn V

    2010-12-01

    Colonoscopy is now the gold standard for colon cancer screening and a vital diagnostic and therapeutic tool in 21st century medical practice. Although advances have been swift since colonoscopy came into wide use a generation ago, its effectiveness can be compromised by patients' ability to adequately prepare for the procedure. Many patients dread this task more than the procedure itself. While no prep regimen can be ideal for all patients, the authors present a novel approach that represents a potential time-saving improvement for younger, healthier patients. It is a modern version of an Indian practice called shankh prakshalana, in which lukewarm saline is used in combination with five yoga postures to cleanse the bowel. The objective of this study was to examine the safety, efficacy, and tolerability of lukewarm saline and yoga (LWS/yoga) as a colonoscopy preparation in comparison with NuLytely(®) (PEG-3350, sodium chloride, sodium bicarbonate, and potassium chloride solution) used according to the manufacturer's instructions. This was a pilot study comprising 54 healthy adults, ages 18-65, equally divided into two groups: Group A preparing with lukewarm saline and yoga postures (LWS/yoga); and Group B preparing with NuLytely(®) as directed on the label. Data were collected on the quality of bowel preparation, patient safety, patient tolerability, and side-effects. The setting was a Joint Commission accredited outpatient endoscopy clinic. Patients performed the series of five yoga postures known as shankh prakshalana, interrupting the exercises at regular intervals to consume 480 mL of lukewarm saline. The solution was prepared by adding 9 g of sodium chloride per liter of lukewarm water (99°F-102°F/37.2°C-38.9°C). The mean total score was significantly better in Group A versus Group B (20.63 ± 5.09 versus 16.48 ± 5.18, p < 0.0007). In Group A, 24/27 (88.9%) of patients had excellent or optimum total scores, compared with 21/27 (77.8%) in

  17. Bromination of aromatic compounds by residual bromide in sodium chloride matrix modifier salt during heated headspace GC/MS analysis.

    PubMed

    Fine, Dennis D; Ko, Saebom; Huling, Scott

    2013-12-15

    Analytical artifacts attributed to the bromination of toluene, xylenes, and trimethylbenzenes were found during the heated headspace gas chromatography/mass spectrometry (GC/MS) analysis of aqueous samples. The aqueous samples were produced from Fenton-like chemical oxidation reactions and contained aromatic compounds, hydrogen peroxide (H2O2), and ferric sulfate. Prior to GC/MS headspace analysis, the samples were acidified (pH<2), and sodium chloride was amended to the headspace vial as a matrix modifier. The brominated artifacts were generated during heated headspace analysis. Further, when samples were spiked with a mixture of volatile chlorinated and aromatic compounds (50 µg/L), poor spike recoveries of toluene and xylenes occurred, and in some cases complete loss of trimethylbenzenes and naphthalene resulted. Where poor recovery of aromatic spike compounds occurred, brominated aromatic compounds were found. The only significant source of bromine in the reaction scheme is the bromide typically present (<0.01% w/w) in the sodium chloride amended to the samples. Conversely, brominated artifacts were absent when a buffered salt mixture composed of sodium chloride and potassium phosphate dibasic/monobasic was used as a matrix modifier and raised the sample pH (pH~6). This indicated that the brominated artifacts resulted from the reaction of the aromatic compounds with BrCl, which was formed by the reaction of H2O2, chloride, and bromide under acidic conditions. An alternative matrix modifier salt is recommended that prevents the bromination reaction and avoids these deleterious effects on sample integrity during headspace analysis. Published by Elsevier B.V.

  18. Sodium and chloride concentration in leaf, woody, and root tissue of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; A.H. Wiese; B. Sexton; R.B. Hall

    2007-01-01

    There are few reports in the literature about the response of different genomic groups and clones of Populus to elevated levels of sodium (Na+) and chloride (Cl-). In addition, there is an increasing need to understand the variation in salt tolerance and tissue composition of such genotypes over multiple...

  19. Alpha-adrenergic systems mediate chronic central AII hypertension in rats fed high sodium chloride diet from weaning.

    PubMed

    Camara, A K; Osborn, J L

    1999-04-16

    Hypertension is elicited by chronic, low dose intracerebroventricular (ICV) angiotensin II (AII) infusion in rats raised from weaning on relatively high sodium chloride diet (250 mEq kg(-1) food). This experimental model of hypertension is dependent upon renal innervation and associated with neurogenic sodium retention. The present study determined whether this neurogenic ICV AII hypertension is mediated by central alpha-adrenoceptors. Rats were weaned at 21 days of age and fed a 1.5% (250 mg kg(-1) food) sodium chloride diet for 10-12 weeks. At adulthood, animals were instrumented with central nervous system (CNS) lateral ventricular cannulas, femoral artery and vein catheters and housed in metabolic pens for chronic study. Low dose ICV AII infusion (20 ng min(-1)) increased mean arterial pressure (MAP) from 121 +/- 4 to 140 +/- 6 mm Hg on the day of ICV infusion. This increase in arterial pressure was associated with 3 consecutive days of decreased urinary sodium excretion. Subsequent ICV alpha-adrenoceptor blockade with phentolamine (AII + phentolamine) abolished the pressor and antinatriuretic responses to low dose chronic ICV AII infusion. Resumption of ICV AII infusion alone increased in MAP toward pre-alpha-adrenergic blockade values (133 +/- 5 mm Hg) on day 8. Following cessation of ICV AII infusion, arterial pressure and sodium excretion returned to values not significantly different from control. This model of hypertension was not dependent on circulating plasma renin activity (PRA), since PRA decreased during ICV AII infusion. These data confirm that low dose ICV AII causes hypertension and sodium retention in rats raised from weaning on moderately elevated sodium intake. We conclude that AII mediated neurogenic hypertension and antinatriuresis is elicited by stimulation of AT1 receptors on neurons which interact with noradrenergic cell bodies in cardiovascular and autonomic centers that may modulate renal sympathetic outflow via alpha-adrenoceptors.

  20. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.

    PubMed

    Zhang, H X; Hodson, J N; Williams, J P; Blumwald, E

    2001-10-23

    Transgenic Brassica napus plants overexpressing AtNHX1, a vacuolar Na(+)/H(+) antiport from Arabidopsis thaliana, were able to grow, flower, and produce seeds in the presence of 200 mM sodium chloride. Although the transgenic plants grown in high salinity accumulated sodium up to 6% of their dry weight, growth of the these plants was only marginally affected by the high salt concentration. Moreover, seed yields and the seed oil quality were not affected by the high salinity of the soil. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils. Our findings, showing that the modification of a single trait significantly improved the salinity tolerance of this crop plant, suggest that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated.

  1. The effect of inhaling a dry powder of sodium chloride on the airways of asthmatic subjects.

    PubMed

    Anderson, S D; Spring, J; Moore, B; Rodwell, L T; Spalding, N; Gonda, I; Chan, K; Walsh, A; Clark, A R

    1997-11-01

    Wet aerosols of 4.5% sodium chloride (NaCl) are often used to assess the bronchial responsiveness associated with asthma. We questioned whether dry NaCl could be used as an alternative. Dry powder NaCl was inhaled from capsules containing either 5, 10, 20 or 40 mg to a cumulative dose of 635 mg. The powder was delivered via an Inhalator or Halermatic. The airway sensitivity to the dry and wet NaCl was compared in 24 patients with asthma aged 19-39 yrs. All subjects responded to both preparations and the geometric mean (95% confidence intervals) for the provocative dose of NaCl causing forced expiratory volume in one second (FEV1) to fall 20% from baseline (PD[20,NaCl]) for dry NaCl was 103 mg (68-157) versus 172 mg (102-292), p<0.03 for the wet NaCl. The response to dry NaCl was reproducible and on repeat challenge the PD20 was 108 mg (75-153). The mean maximum fall in FEV1 was approximately 25% on each of the two test days. Spontaneous recovery occurred within 60 min after challenge with dry NaCl and within 5 min after bronchodilator. There were no serious side-effects requiring medical attention, however some patients coughed on inhalation of the 40 mg dose and three gagged. Arterial oxygen saturation remained within normal limits. We conclude that a suitably prepared dry powder of sodium chloride could potentially replace wet sodium chloride to assess bronchial responsiveness in patients with asthma, but further studies are required to establish the long-term stability of the dry powder preparation.

  2. Quality of sweat test (ST) based on the proportion of sweat sodium (Na) and sweat chloride (Cl) as diagnostic parameter of cystic fibrosis: are we on the right way?

    PubMed

    Faria, Alethéa Guimarães; Marson, Fernando Augusto Lima; Gomez, Carla Cristina de Souza; Ribeiro, Maria Ângela Gonçalves de Oliveira; Morais, Lucas Brioschi; Servidoni, Maria de Fátima; Bertuzzo, Carmen Sílvia; Sakano, Eulália; Goto, Maura; Paschoal, Ilma Aparecida; Pereira, Mônica Corso; Hessel, Gabriel; Levy, Carlos Emílio; Toro, Adyléia Aparecida Dalbo Contrera; Peixoto, Andressa Oliveira; Simões, Maria Cristina Ribeiro; Lomazi, Elizete Aparecida; Nogueira, Roberto José Negrão; Ribeiro, Antônio Fernando; Ribeiro, José Dirceu

    2016-10-26

    To assess the quality of sweat test (ST) based on the proportion of sweat sodium and sweat chloride as diagnostic parameter of cystic fibrosis (CF). A retrospective study of 5,721 sweat samples and subsequent descriptive analysis were carried out. The test was considered "of good quality" (correct) when: (i) sweat chloride was lower than 60 mEq/L, and sweat sodium was higher than sweat chloride; (ii) sweat chloride was higher than 60 mEq/L, and sweat sodium was lower than sweat chloride. The study included 5,692/5,721 sweat samples of ST which had been requested due to clinical presentations compatible with CF and/or neonatal screenings with altered immunoreactive trypsinogen values. Considering the proportion of sweat sodium and sweat chloride as ST quality parameter, the test was performed correctly in 5,023/5,692 (88.2 %) sweat samples. The sweat chloride test results were grouped into four reference ranges for chloride (i) chloride < 30 mEq/L: 3,651/5,692 (64.1 %); (ii) chloride ≥ 30 mEq/L to < 40 mEq/L: 652/5,692 (11.5 %); (iii) ≥ 40 mEq/L to < 60 mEq/L: 673/5,692 (11.8 %); (iv) ≥ 60 mEq/L: 716/5,692 (12.6 %). In the comparative analysis, there was no association between ST quality and: (i) symptoms to indicate a ST [respiratory (p = 0.084), digestive (p = 0.753), nutritional (p = 0.824), and others (p = 0.136)], (ii) sweat weight (p = 0.416). However, there was a positive association with: (i) gender, (ii) results of ST (p < 0.001), (iii) chloride/sodium ratio (p < 0.001), (iv) subject's age at the time of ST [grouped according to category (p < 0.001) and numerical order (p < 0.001)]. For the subset of 169 patients with CF and two CFTR mutations Class I, II and/or III, in comparative analysis, there was a positive association with: (i) sweat chloride/sodium ratio (p < 0.001), (ii) sweat chloride values (p = 0.047), (iii) subject's age at the time of the ST grouped by

  3. No sodium in the vapour plumes of Enceladus.

    PubMed

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  4. Biogeochemical conversion of sulfur species in saline lakes of Steppe Altai

    NASA Astrophysics Data System (ADS)

    Borzenko, Svetlana V.; Kolpakova, Marina N.; Shvartsev, Stepan L.; Isupov, Vitaly P.

    2017-08-01

    The aim of the present research is to identify the main mechanisms of sulfur behavior in saline lakes in the course of time and followed transformations in their chemical composition. The influence of water on chemical composition of biochemical processes involved in decomposition of organic matter was determined by the study of behavior of reduced forms of sulfur in lakes. The determination of reduced forms of sulfur was carried out by successive transfer of each form of sulfur to hydrogen sulfide followed by photometric measurements. The other chemical components were determined by standard methods (atomic absorption, potentiometric method, titration method and others). The salt lakes of the Altai steppe were studied in summer season 2013-2015. Analysis of the chemical composition of the saline lakes of Altai Krai has shown that carbonate-, hydrocarbonate- and chloride ions dominate among anions; sodium is main cation; sulfates are found in subordinate amounts. Reduced forms of sulfur occur everywhere: hydrogen and hydrosulfide sulfur S2- prevail in the bottom sediments; its derivative—elemental S0—prevails in the lakes water. The second important species in water of soda lakes is hydrosulfide sulfur S2-, and in chloride lakes is thiosulfate sulfur S2O3 2- . The lag in the accumulation of sulfates in soda lakes in comparison to chloride lakes can be explained by their bacterial reduction, followed by the formation and deposition of iron sulfides in sediments. In chloride lakes gypsum is a predominantly barrier for sulfates.

  5. Effect of calcium chloride concentration on output force in electrical actuator made of sodium alginate gel

    NASA Astrophysics Data System (ADS)

    Wu, Yuda; Zhao, Gang; Wei, Chengye; Liu, Shuang; Fu, Yu; Liu, Xvxiong

    2018-01-01

    As a kind of artificial muscle intelligent material, the biological gel electric driver has the advantages of low driving voltage, large strain, good biological compatibility, good flexibility, low price, etc. The application prospect is broad and it has high academic value. Alginate, as a common substance in sea, has characteristics of low cost, green and pollution-free. Therefore,this paper obtains biological gel electric actuator by sodium alginate and calcium chloride. Effects on output force of the electric actuator is researched by changing the crosslinking of calcium chloride concentration and the output force enhancement mechanism is analyzed in this paper.

  6. A relatively small change in sodium chloride concentration has a strong effect on adhesion of ocular bacteria to contact lenses.

    PubMed

    Cowell, B A; Willcox, M D; Schneider, R P

    1998-06-01

    Adhesion of bacteria to hydrogel lenses is thought to be an initial step of ocular colonization allowing evasion of normal host defences. The salt concentration of media is an important parameter controlling microbial adhesion. Salinity varies from 0.97% NaCl equivalents in the open eye to 0.89% in the closed eye state. In this study, the effect of sodium chloride in the concentration range of 0.8-1.0% (w/v) NaCl on adhesion of ocular bacteria to soft contact lenses was investigated using a static adhesion assay. Pseudomonas aeruginosa was found to adhere to lenses in significantly greater amounts than Serratia marcescens, Flavobacterium meningosepticum, Stenotrophomonas maltophilia and Staphylococcus intermedius. Increasing NaCl from 0.8% to 1.0% (w/v) increased adhesion of all bacteria tested. This adhesion was strong since the organisms could not be removed by washing in low ionic buffer. Adhesion of these organisms did not correlate with their cell surface properties as determined by bacterial adhesion to hydrocarbons (BATH) and retention on sepharose columns.

  7. Sodium

    MedlinePlus

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  8. Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart Sexton; Richard B. Hall

    2008-01-01

    The response of Populus to irrigation sources containing elevated levels of sodium (Na+) and chloride (Cl-) is poorly understood. We irrigated eight Populus clones with fertilized well water (control) (N, P, K) or municipal solid waste landfill leachate weekly during 2005 and 2006 in...

  9. [The use of sodium chloride baths in the combined treatment of trophic ulcers of the lower extremities].

    PubMed

    Zhirov, V P; Lipnitskiĭ, E M; Nagovitsyn, E S; Aksenova, E N; Kasimtseva, E V

    1989-01-01

    The use of sodium chloride baths for preoperative treatment of lower-limb trophic ulcers in 60 patients relieved the pain of the ulcer, enhanced repair processes. Epithelialization occurred in 9 patients. The duration of the hospital stay and the number of postoperative complications reduced.

  10. Strength and texture of sodium chloride to 56 GPa

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; Kavner, A.; Kiefer, B.; Wenk, H.-R.; Duffy, T. S.

    2018-04-01

    The strength and texture of sodium chloride in the B1 (rocksalt) and B2 (cesium chloride) phases were investigated in a diamond anvil cell using synchrotron X-ray diffraction in a radial geometry to 56 GPa. The measured differential stresses within the Reuss limit are in the range of 0.2 GPa for the B1 phase at pressure of 24 GPa and 1.6 GPa for the B2 phase at pressure of 56 GPa. A strength weakening is observed near the B1-B2 phase transition at about 30 GPa. The low strength of NaCl in the B1 phase confirms that it is an effective pressure-transmitting medium for high-pressure experiments to ˜30 GPa. The B2 phase can be also used as a pressure-transmitting medium although it exhibits a steeper increase in strength with pressure than the B1 phase. Deformation induces weak lattice preferred orientation in NaCl, showing a (100) texture in the B1 phase and a (110) texture in the B2 phase. The observed textures were evaluated by viscoplastic self-consistent model and our results suggest {110}⟨ 1 1 ¯ 0 ⟩ as the slip system for the B1 phase and {112} ⟨1 1 ¯ 0 ⟩ for the B2 phase.

  11. Effect of sodium chloride concentration on elemental analysis of brines by laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Goueguel, Christian; Singh, Jagdish P; McIntyre, Dustin L; Jain, Jinesh; Karamalidis, Athanasios K

    2014-01-01

    Leakage of injected carbon dioxide (CO2) or resident fluids, such as brine, is a major concern associated with the injection of large volumes of CO2 into deep saline formations. Migration of brine could contaminate drinking water resources by increasing their salinity or endanger vegetation and animal life as well as human health. The main objective of this study was to investigate the effect of sodium chloride (NaCl) concentration on the detection of calcium and potassium in brine samples using laser-induced breakdown spectroscopy (LIBS). The ultimate goals were to determine the suitability of the LIBS technique for in situ measurements of metal ion concentrations in NaCl-rich solution and to develop a chemical sensor that can provide the early detection of brine intrusion into formations used for domestic or agricultural water production. Several brine samples of NaCl-CaCl2 and NaCl-KCl were prepared at NaCl concentrations between 0.0 and 3.0 M. The effect of NaCl concentration on the signal-to-background ratio (SBR) and signal-to-noise ratio (SNR) for calcium (422.67 nm) and potassium (769.49 nm) emission lines was evaluated. Results show that, for a delay time of 300 ns and a gate width of 3 μs, the presence of and changes in NaCl concentration significantly affect the SBR and SNR for both emission lines. An increase in NaCl concentration from 0.0 to 3.0 M produced an increase in the SNR, whereas the SBR dropped continuously. The detection limits obtained for both elements were in the milligrams per liter range, suggesting that a NaCl-rich solution does not severely limit the ability of LIBS to detect trace amount of metal ions.

  12. Stability of Dalteparin 1,000 Unit/mL in 0.9% Sodium Chloride for Injection in Polypropylene Syringes.

    PubMed

    Kirkham, Kylian; Munson, Jessica M; McCluskey, Susan V; Graner, Kevin K

    2017-01-01

    The stability of dalteparin 1,000 units/mL in 0.9% sodium chloride for injection stored in polypropylene syringes under refrigeration was examined. Dalteparin 1,000-units/mL syringes were prepared by adding 9 mL of 0.9% sodium chloride for injection to 1 mL of dalteparin sodium 10,000 unit/mL from commercial single-use syringes. Compounded solutions in 0.5-mL aliquots were transferred to 1-mL polypropylene syringes and sealed with a Luer lock tip cap and stored at refrigerated temperatures (2°C to 8°C) with ambient fluorescent light exposure. Syringes from three batches of dalteparin 1,000 units/mL were potency tested in duplicate by a stability-indicating high-performance liquid chromatography assay using a 0.5-mL sample at specified intervals. Visual and pH testing were performed on each batch. Samples were visually inspected for container integrity, color, and clarity. Samples for pH testing were prepared using a 1:1 dilution of dalteparin 1,000 units/mL in sterile water for injection and underwent duplicate analysis at each time point. High-performance liquid chromatography analyses showed a remaining percent of the initial dalteparin content at day 30 of 94.88% ± 2.11%. Samples remained colorless and clear with no signs of container compromise and no visual particulate matter at each time point. Throughout the 30-day study period, pH values remained within 0.3-pH units from the initial value of 5.84. Dalteparin 1,000 unit/mL in 0.9% sodium chloride for injection, packaged in 1-mL polypropylene syringes was stable for at least 30 days while stored at refrigerated conditions with ambient fluorescent light exposure. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  13. Time-course analysis of the Shewanella amazonensis SB2B proteome in response to sodium chloride shock.

    PubMed

    Parnell, J Jacob; Callister, Stephen J; Rompato, Giovanni; Nicora, Carrie D; Paša-Tolić, Ljiljana; Williamson, Ashley; Pfrender, Michael E

    2011-01-01

    Shewanellae are microbial models for environmental stress response; however, the sequential expression of mechanisms in response to stress is poorly understood. Here we experimentally determine the response mechanisms of Shewanella amazonensis SB2B during sodium chloride stress using a novel liquid chromatography and accurate mass-time tag mass spectrometry time-course proteomics approach. The response of SB2B involves an orchestrated sequence of events comprising increased signal transduction associated with motility and restricted growth. Following a metabolic shift to branched chain amino acid degradation, motility and cellular replication proteins return to pre-perturbed levels. Although sodium chloride stress is associated with a change in the membrane fatty acid composition in other organisms, this is not the case for SB2B as fatty acid degradation pathways are not expressed and no change in the fatty acid profile is observed. These findings suggest that shifts in membrane composition may be an indirect physiological response to high NaCl stress.

  14. Deliquescence and crystallization of ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles

    NASA Astrophysics Data System (ADS)

    Pant, Atul; Fok, Abel; Parsons, Matthew T.; Mak, Jackson; Bertram, Allan K.

    2004-06-01

    In the following, we report the deliquescence relative humidities (DRH) and crystallization relative humidities (CRH) of mixed inorganic-organic particles, specifically ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles. Knowledge of the DRH and CRH of mixed inorganic-organic particles is crucial for predicting the role of aerosol particles in the atmosphere. Our DRH results are in good agreement with previous measurements, but our CRH results are significantly lower than some of the previous measurements reported in the literature. Our studies show that the DRH and CRH of ammonium sulfate and sodium chloride only decreased slightly when the mole fraction of the acid was less than 0.4. If other organics in the atmosphere behave in a similar manner, then the DRH and CRH of mixed inorganic-organic atmospheric particles will only be slightly less than the DRH and CRH of pure inorganic particles when the organic mole fraction is less than 0.4. Our results also show that if the particles contain a significant amount of organics (mole fraction > 0.5) the crystallization relative humidity decreases significantly and the particles are more likely to remain in the liquid state. Further work is needed to determine if other organics species of atmospheric importance have a similar effect.

  15. Hydration patterns and salting effects in sodium chloride solution.

    PubMed

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  16. Stability of butorphanol-tropisetron mixtures in 0.9% sodium chloride injection for patient-controlled analgesia use.

    PubMed

    Chen, Fu-Chao; Shi, Xiao-Ya; Li, Peng; Yang, Jin-Guo; Zhou, Ben-Hong

    2015-02-01

    Tropisetron is an adjuvant for butorphanol used in intravenous patient-controlled analgesia (PCA) and has been reported to provide superior pain control. It is efficacious in reducing the incidence of postoperative nausea and vomiting. However, this admixture is not available commercially and stability data applicable to hospital practice are limited. This study aimed to describe the drug compounding and evaluates the long-term (up to 14 days) stability of butorphanol and tropisetron in 0.9% sodium chloride injection for PCA use.In this study, commercial solutions of butorphanol tartrate and tropisetron hydrochloride were combined and further diluted with 0.9% sodium chloride injection to final concentrations of butorphanol tartrate 0.08 mg/mL and tropisetron hydrochloride 0.05 mg/mL. The polyolefin bags and glass bottles were stored at 4°C and 25°C for up to 14 days. The drug stabilities were determined by visual inspection, pH measurement, and high-pressure liquid chromatography assay of drug concentrations.The data obtained for admixtures prepared and stored at temperatures of 25°C and 4°C show the drugs have maintained at least 98% of the initial concentration. All solutions remained clear and colorless over the 14-day period, and the pH value did not change significantly.The results indicate that admixtures of butorphanol tartrate 0.08 mg/mL and tropisetron hydrochloride 0.05 mg/mL in 0.9% sodium chloride injection solution were stable for 14 days when stored in polyolefin bags or glass bottles at 4°C and 25°C and protected from light. The infusion is feasible for manufacturing in pharmacy aseptic units and can be stored for up to 14 days for routine use in PCA infusions.

  17. Electronic structure of the Cu + impurity center in sodium chloride

    NASA Astrophysics Data System (ADS)

    Chermette, H.; Pedrini, C.

    1981-08-01

    The multiple-scattering Xα method is used to describe the electronic structure of Cu+ in sodium chloride. Several improvements are brought to the conventional Xα calculation. In particular, the cluster approximation is used by taking into account external lattice potential. The ''transition state'' procedure is applied in order to get the various multiplet levels. The fine electronic structure of the impurity centers is obtained after a calculation of the spin-orbit interactions. These results are compared with those given by a modified charge-consistent extended Hückel method (Fenske-type calculation) and the merit of each method is discussed. The present calculation produces good quantitative agreement with experiment concerning mainly the optical excitations and the emission mechanism of the Cu+ luminescent centers in NaCl.

  18. A randomized comparison of 1-h sodium bicarbonate hydration versus standard peri-procedural saline hydration in patients with chronic kidney disease undergoing intravenous contrast-enhanced computerized tomography.

    PubMed

    Kooiman, Judith; Sijpkens, Yvo W J; de Vries, Jean-Paul P M; Brulez, Harald F H; Hamming, Jaap F; van der Molen, Aart J; Aarts, Nico J M; Cannegieter, Suzanne C; Putter, Hein; Swarts, Renate; van den Hout, Wilbert B; Rabelink, Ton J; Huisman, Menno V

    2014-05-01

    Guidelines recommend saline hydration for prophylaxis of contrast-induced acute kidney injury (CI-AKI) in patients with chronic kidney disease (CKD) undergoing intravenous contrast media-enhanced CT (CE-CT). The safety and efficacy of a brief hydration protocol using sodium bicarbonate in this population is unknown. We analysed whether 1-h sodium bicarbonate hydration prior to CE-CT is non-inferior to saline hydration prior to and after CE-CT in CKD patients. We performed an open-label multicentre randomized trial. Patients were randomized to 250 mL of 1.4% sodium bicarbonate hydration prior to CE-CT or 1000 mL of 0.9% saline hydration prior to and, once again, after CE-CT. Primary outcome was the relative increase in serum creatinine 48-96 h post-CE-CT. Secondary outcomes were incidence of CI-AKI [serum creatinine increase >25%/>44 µmol/L (0.5 mg/dL)], recovery of renal function, the need for dialysis and 2-month hospital costs. Five hundred and seventy adult CKD patients undergoing CE-CT were randomized between 2010 and 2012, of whom 548 were included in the intention-to-treat population. Mean relative serum creatinine increase was 1.2% for sodium bicarbonate and 1.5% for saline (mean difference -0.3%; 95% confidence interval -2.7 to 2.1, P-value for non-inferiority <0.0001). CI-AKI occurred in 22 patients (4.1%); 8 (3.0%) randomized to sodium bicarbonate versus 14 (5.1%) to saline (P = 0.23). Renal function recovered in 75 and 69% of CI-AKI patients, respectively (P = 0.81). No patients developed a need for dialysis. Mean hydration costs per patient were €224 for the sodium bicarbonate and €683 for the saline regime (P < 0.001). Other healthcare costs were similar. Short hydration with sodium bicarbonate prior to CE-CT was non-inferior to peri-procedural saline hydration with respect to renal safety and may result in healthcare savings. [Netherlands Trial Register (http://www.trialregister.nl/trialreg/index.asp), Nr 2149, date of registration 23 December

  19. Conductivity of molten sodium chloride in an arbitrarily weak dc electric field.

    PubMed

    Delhommelle, Jerome; Cummings, Peter T; Petravic, Janka

    2005-09-15

    We use nonequilibrium molecular-dynamics (NEMD) simulations to characterize the response of a fluid subjected to an electric field. We focus on the response for very weak fields. Fields accessible by conventional NEMD methods are typically of the order of 10(9) V m(-1), i.e., several orders of magnitude larger than those typically used in experiments. Using the transient time-correlation function, we show how NEMD simulations can be extended to study systems subjected to a realistic dc electric field. We then apply this approach to study the response of molten sodium chloride for a wide range of dc electric fields.

  20. Salinity of the Delaware Estuary

    USGS Publications Warehouse

    Cohen, Bernard; McCarthy, Leo T.

    1962-01-01

    The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.

  1. Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively.

    PubMed

    Forbes, W M; Ashton, F T; Boston, R; Zhu, X; Schad, G A

    2004-03-25

    Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.

  2. Characterization and geostatistical mapping of water salinity: A case study of terminal complex in the Oued Righ Valley (southern Algeria)

    NASA Astrophysics Data System (ADS)

    Belkesier, Mohamed Saleh; Zeddouri, Aziez; Halassa, Younes; Kechiched, Rabah

    2018-05-01

    The region of Oued Righ contains large quantities of groundwater hosted by the three aquifers: the Terminal Complex (CT), the Continental Intercalary (CI) and the phreatic aquifer. The present study is focused on the water from CT aquifer in order to characterize their salinity using geostatistical tool for maping. Indeed, water in this aquifer show a high mineralization exceeding the OMS standards. The main hydro-chemical facies of this water is Chloride-Sodium and Sulfate-Sodium. The elementary statistics have been performed on the physico-chemical analysis from 97 wells whereas 766 wells were analyzed on salinity and are used for the geostatistical mapping. The obtained results show a spatial evolution of the salinity toward the direction South to the North. The salinity is locally strong in the central part of Oued Righ valley. The non-parametric geostatistic of indicator kriging was performed on the salinity data using a cut-off of 5230 mg/l which represents the average value in the studied area. The indicator Kriging allows the estimation of salinity probabilities I (5230 mg / l) in the water of the CT aquifer using bloc model (500 x 500 m). The automatic mapping is used to visualize the distribution of the kriged probabilities of salinity. These results can help to ensure a rational and a selective exploitation of groundwater according the salinity contents.

  3. Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-12-01

    Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Sodium Chloride Reduces Production of Curvacin A, a Bacteriocin Produced by Lactobacillus curvatus Strain LTH 1174, Originating from Fermented Sausage

    PubMed Central

    Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc

    2004-01-01

    Lactobacillus curvatus LTH 1174, a strain originating in fermented sausage, produces the antilisterial bacteriocin curvacin A. Its biokinetics of cell growth and bacteriocin production as a function of various concentrations of salt (sodium chloride) were investigated in vitro during laboratory fermentations using modified MRS medium. A model was set up to describe the effects of different NaCl concentrations on microbial behavior. Both cell growth and bacteriocin activity were affected by changes in the salt concentration. Sodium chloride clearly slowed down the growth of L. curvatus LTH 1174, but more importantly, it had a detrimental effect on specific curvacin A production (kB) and hence on overall bacteriocin activity. Even a low salt concentration (2%, wt/vol) decreased bacteriocin production, while growth was unaffected at this concentration. The inhibitory effect of NaCl was mainly due to its role as an aw-lowering agent. Further, it was clear that salt interfered with bacteriocin induction. Additionally, when 6% (wt/vol) sodium chloride was added, the minimum biomass concentration necessary to start the production of curvacin A (XB) was 0.90 g (cell dry mass) per liter. Addition of the cell-free culture supernatant or a protein solution as a source of induction factor resulted in a decrease in XB, an increase in kB, and hence an increase in the maximum attainable bacteriocin activity. PMID:15066822

  5. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange.

    PubMed Central

    Star, R A; Burg, M B; Knepper, M A

    1985-01-01

    Cortical collecting ducts (CCD) from rabbits treated with deoxycorticosterone (DOC) actively secrete bicarbonate at high rates. To investigate the mechanism of bicarbonate secretion, we measured bicarbonate and chloride transport in CCD from rabbits treated with DOC for 9-24 d. Removal of chloride (replaced with gluconate) from both perfusate and bath inhibited bicarbonate secretion without changing transepithelial voltage. Removal of chloride only from the bath increased bicarbonate secretion, while removal of chloride only from the perfusate inhibited secretion. In contrast to the effect of removing chloride, removal of sodium from both the perfusate and bath (replacement with N-methyl-D-glucamine) did not change the rate of bicarbonate secretion. The rate of bicarbonate secretion equaled the rate of chloride absorption in tubules bathed with 0.1 mM ouabain to inhibit any cation-dependent chloride transport. Under these conditions, chloride absorption occurred against an electrochemical gradient. Removal of bicarbonate from both the perfusate and bath inhibited chloride absorption. Removal of bicarbonate only from the bath inhibited chloride absorption, while removal of bicarbonate from the lumen stimulated chloride absorption. We conclude that CCD from DOC-treated rabbits actively secrete bicarbonate and actively absorb chloride by an electroneutral mechanism involving 1:1 chloride/bicarbonate exchange. The process is independent of sodium. PMID:3930570

  6. Effects of Replacement of External Sodium Chloride with Sucrose on Membrane Currents of the Squid Giant Axon

    PubMed Central

    Adelman, William J.; Taylor, Robert E.

    1964-01-01

    It was observed that a reduction of the sodium chloride concentration in the external solution bathing a squid giant axon by replacement with sucrose resulted in marked decreases in the peak inward and steady-state outward currents through the axon membrane following a step decrease in membrane potential. These effects are quantitatively acounted for by the increase in series resistance resulting from the decreased conductivity of the sea water and the assumption that the sodium current obeys a relation of the form I = k1C1 - k2C2 where C1, C2 are internal and external ion activities and k1, k2 are independent of concentration. It is concluded that the potassium ion current is independent of the sodium concentration. That the inward current is carried by sodium ions has been confirmed. The electrical potential (or barrier height) profile in the membrane which drives sodium ions appears to be independent of sodium ion concentration or current. A specific effect of the sucrose on hyperpolarizing currents was observed and noted but not investigated in detail. PMID:14232131

  7. Hexagonal bubble formation and nucleation in sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Wang, Lifen; Liu, Lei; Mohsin, Ali; Wen, Jianguo; Gu, Gong; Miller, Dean

    The bubble is formed frequently at a solid-liquid interface when the surface of the solid or liquid has a tendency of accumulating molecular species due to unbalanced surface hydrophobicity attraction. Morphology and shape of the bubble are thought to be associated with the Laplace pressure that spherical-cap-shaped object are commonly observed. Dynamic surface nanobubble formation and nucleation in the controlled system have been not fully investigated due to the direct visualization challenge in liquid systems. Here, utilizing in situ TEM, dynamic formation and collapse of spherical-shaped nanobubbles were observed at the water-graphene interface, while hexagonal nanobubbles grew and merged with each other at water-crystalline sodium chloride interface. Our finding demonstrates that different hydrophobic-hydrophilic interaction systems give rise to the varied morphology of surface nanobubble, leading to the fundamental understanding of the interface-interaction-governed law on the formation of surface nanobubble.

  8. Response to copper and sodium chloride excess in Spirulina sp. (cyanobacteria).

    PubMed

    Deniz, F; Saygideger, S D; Karaman, S

    2011-07-01

    Physiological responses of the cyanobacterium, Spirulina sp., were evaluated following exposure to copper (0.1 and 1.0 mg/L) and sodium chloride (0.2 and 0.4 mol/L) for 7 days. Growth and chlorophyll a content exhibited decreases at most exposure levels, while increases occurred for malondialdehyde at all exposure levels. Proline content was increased at the higher exposure levels. Carotenoid levels of Spirulina sp. were not significantly changed. Increased amounts of malondialdehyde were indicative of free radical formation in Spirulina sp. under the stress, while increasing levels of proline pointed to the occurrence of a scavenging mechanism. Concentrations of copper in Spirulina sp. decreased with increasing concentrations of NaCl.

  9. Aqueous sodium chloride induced intergranular corrosion of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Daeschner, D. L.

    1986-01-01

    Two methods have been explored to assess the susceptibility of Al-Li-Cu alloys to intergranular corrosion in aqueous sodium chloride solution. They are: (1) constant extension rate testing with and without alternate-immersion preexposure and (2) metallographic examination after exposure to a NaCl-H2O2 corrosive solution per Mil-H-6088F. Intergranular corrosion was found to occur in both powder and ingot metallurgy alloys of similar composition, using both methods. Underaging rendered the alloys most susceptible. The results correlate to stress-corrosion data generated in conventional time-to-failure and crack growth-rate tests. Alternate-immersion preexposure may be a reliable means to assess stress corrosion susceptibility of Al-Li-Cu alloys.

  10. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Haq, S.; Kaushal, S.

    2017-12-01

    Human dominated watersheds are subjected to an array of salt inputs (e.g. road salts), and in urban areas, infrastructure and impervious surfaces quickly drain applied road salts into the river channel. As a result, many streams experience episodic salinization over the course of hours to days following a snow event (e.g. road salt pulse), and long-term salinization over the course of seasons to decades. Salinization of streams can release contaminants (e.g. heavy metals), reduce biodiversity, and degrade drinking water quality. We investigated the water quality effects of episodic salinization in urban streams. Sediment and streamwater were incubated from twelve sites in the Baltimore-Washington Metropolitan Area under a range of sodium chloride treatments in a lab environment to mimic a vertical stream column with a sediment-water interface undergoing episodic salinization, and to characterize relationships between experimental salinization and nutrient/cation fluxes. Eight sites (Baltimore) exhibit a land use gradient and are routinely monitored within the Baltimore Ecosystem Study LTER project, and four sites (Washington DC) are suburban and offer a contrasting lithology and physiographic province. Our research suggests that salinization can mobilize total dissolved nitrogen, soluble reactive phosphorous, and base cations; potentially due to coupled biotic-abiotic processes, such as ion exchange, rapid nitrification, pH changes, and chloride-organic matter dispersal. The impact of salinization on dissolved inorganic and organic carbon varied between sites, potentially due to sediment composition, organic matter content, and ambient water quality. We contrasted the experimental results with measurements of salinization (specific conductance) and nutrients (nitrate) from real-time sensors operated by the US Geological Survey that encompass the same watersheds as our experimental sites. Sensor data was analyzed to provide insight on the timescales of salinity

  11. The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies.

    PubMed

    Lee, Jacqueline A; Marsden, Islay D; Glover, Chris N

    2010-08-01

    Copper is an important ionoregulatory toxicant in freshwater, but its effects in marine and brackish water systems are less well characterised. The effect of salinity on short-term copper accumulation and sublethal toxicity in two estuarine animals was investigated. The osmoregulating crab Hemigrapsus crenulatus accumulated copper in a concentration-dependent, but salinity-independent manner. Branchial copper accumulation correlated positively with branchial sodium accumulation. Sublethal effects of copper were most prevalent in 125% seawater, with a significant increase in haemolymph chloride noted after 96h at exposure levels of 510 microg Cu(II) L(-1). The osmoconforming gastropod, Scutus breviculus, was highly sensitive to copper exposure, a characteristic recognised previously in related species. Toxicity, as determined by a behavioural index, was present at all salinities and was positively correlated with branchial copper accumulation. At 100% seawater, increased branchial sodium accumulation, decreased haemolymph chloride and decreased haemolymph osmolarity were observed after 48h exposure to 221 microg Cu(II) L(-1), suggesting a mechanism of toxicity related to ionoregulation. However, these effects were likely secondary to a general effect on gill barrier function, and possibly mediated by mucus secretion. Significant impacts of copper on haemocyanin were also noted in both animals, highlighting a potentially novel mechanism of copper toxicity to animals utilising this respiratory pigment. Overall these findings indicate that physiology, as opposed to water chemistry, exerts the greatest influence over copper toxicity. An understanding of the physiological limits of marine and estuarine organisms may be critical for calibration of predictive models of metal toxicity in waters of high and fluctuating salinities. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Implications of salt and sodium reduction on microbial food safety.

    PubMed

    Taormina, Peter J

    2010-03-01

    Excess sodium consumption has been cited as a primary cause of hypertension and cardiovascular diseases. Salt (sodium chloride) is considered the main source of sodium in the human diet, and it is estimated that processed foods and restaurant foods contribute 80% of the daily intake of sodium in most of the Western world. However, ample research demonstrates the efficacy of sodium chloride against pathogenic and spoilage microorganisms in a variety of food systems. Notable examples of the utility and necessity of sodium chloride include the inhibition of growth and toxin production by Clostridium botulinum in processed meats and cheeses. Other sodium salts contributing to the overall sodium consumption are also very important in the prevention of spoilage and/or growth of microorganisms in foods. For example, sodium lactate and sodium diacetate are widely used in conjunction with sodium chloride to prevent the growth of Listeria monocytogenes and lactic acid bacteria in ready-to-eat meats. These and other examples underscore the necessity of sodium salts, particularly sodium chloride, for the production of safe, wholesome foods. Key literature on the antimicrobial properties of sodium chloride in foods is reviewed here to address the impact of salt and sodium reduction or replacement on microbiological food safety and quality.

  13. Phytoaccumulation of sodium and chloride into leaf, woody, and root tissue of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2007-01-01

    Information is limited about the response of Populus to elevated levels of sodium (Na+) and chloride (Cl-). We irrigated eight Populus clones (NC13460, NC14018, NC14104, NC14106, DM115, DN5, NM2, NM6) with fertilized well water (control) (N, P, K) or municipal solid waste landfill leachate weekly during...

  14. Inhibition of biosynthesis of metalloprotease of Aeromonas sobria by sodium chloride in the medium.

    PubMed

    Takahashi, Eizo; Kobayashi, Hidetomo; Yamanaka, Hiroyasu; Nair, Gopinath Balakrish; Takeda, Yoshifumi; Arimoto, Sakae; Negishi, Tomoe; Okamoto, Keinosuke

    2011-01-01

    The present authors have previously shown that the serine protease activity of Aeromonas sobria is markedly decreased when A. sobria is cultured in medium containing 3.0% sodium chloride (NaCl, concentration almost equivalent to sea water salinity), and that this occurs because, although the synthesis of ASP is not disturbed by the salt in the medium, the maturation pathway of serine protease of A. sobria (ASP) does not proceed successfully in such a medium. In this study, the effect of salt in the medium on the production of metalloprotease by A. sobria (AMP) was examined. A. sobria produced AMP in the milieu when the bacteria were cultured in medium containing (NaCl) at a concentration of 0.5%. However, AMP was not produced when the bacteria were cultured in salty medium containing 1.5% or more NaCl. To examine how NaCl reduces the production of metalloprotease by A. sobria, the amount of amp mRNA in the cell was measured and it was found that this decreased in proportion to the concentration of NaCl in the medium. The mRNA of amp was not detected in cells cultured in medium containing 1.5% or more NaCl. This means that the transcription of amp is inhibited in salty condition. As described, NaCl in the medium disturbs the maturation pathway of ASP. The mode of action whereby NaCl suppresses AMP activity in A. sobria differs from the mechanism for suppressing ASP activity. © 2010 The Societies and Blackwell Publishing Asia Pty Ltd.

  15. Base of moderately saline ground water in the Uinta Basin, Utah, with an introductory section describing the methods used in determining its position

    USGS Publications Warehouse

    Howells, Lewis; Longson, M.S.; Hunt, Gilbert L.

    1987-01-01

    The base of the moderately saline water (water that contains from 3,000 to 10,000 milligrams per liter of dissolved solids) was mapped by using available water-quality data and by determining formation-water resistivities from geophysical well logs based on the resistivity-porosity, spontaneous potential, and resistivity-ratio methods. The contour map developed from these data showed a mound of very saline and briny water, mostly of sodium chloride and sodium bicarbonate type, in most of that part of the Uinta Basin that is underlain by either the Green River or Wasatch Formations. Along its northern edge, the mound rises steeply from below sea level to within 2,000 feet of the land surface and, locally, to land surface. Along its southern edge, the mound rises less steeply and is more complex in outline. This body of very saline to briny water may be a lens; many wells or test holes drilled within the area underlain by the mound re-entered fresh to moderately saline water at depths of 8,000 to 15,000 feet below lam surface.

  16. Mechanisms of tubular sodium chloride transport.

    PubMed

    Venkatesh, S; Schrier, R W; Andreoli, T E

    1998-11-01

    Extracellular fluid volume is determined by sodium and its accompanying anions. There are control mechanisms which regulate sodium balance in the body. These include high and low pressure baroreceptors, intrarenal baroreceptors, renal autoregulation, tubuloglomerular feedback, aldosterone, and numerous other physical and hormonal factors. Sodium transport by the nephron involves active and passive processes which occur in several different nephron segments. Mechanisms of cotransport, Na(+)-H+ exchange, antiporters and ion-specific channels are all utilized by the nephron to maintain sodium balance. These regulatory factors and transport mechanisms for sodium in the kidney will he discussed in detail.

  17. Proteolysis and sensory properties of dry-cured bacon as affected by the partial substitution of sodium chloride with potassium chloride.

    PubMed

    Wu, Haizhou; Zhang, Yingyang; Long, Men; Tang, Jing; Yu, Xiang; Wang, Jiamei; Zhang, Jianhao

    2014-03-01

    Quadriceps femoris muscle samples (48) from 24 pigs were processed into dry-cured bacon. This study investigated the influence of partial substitution of sodium chloride (NaCl) with potassium chloride (KCl) on proteolysis and sensory properties of dry-cured bacon. Three salt treatments were considered, namely, I (100% NaCl), II (60% NaCl, 40% KCl), and III (30% NaCl, 70% KCl). No significant differences were observed among treatments in the proteolysis, which was reflected by SDS-PAGE, proteolysis index, amino acid nitrogen, and peptide nitrogen contents. Furthermore, there were no significant differences in the moisture content between control and treatment II, whereas the moisture content in treatment III was significantly higher (p<0.05) in comparison with control (treatment I). The sensory analysis indicated that it was possible to reduce NaCl by 40% without adverse effects on sensory properties, but 70% replacement of NaCl with KCl resulted in bacon with less hardness and saltiness and higher (p<0.05) juiciness and bitterness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  19. The Helicobacter pylori Ferric Uptake Regulator (Fur) is Essential for Growth Under Sodium Chloride Stress

    PubMed Central

    Gancz, Hanan; Merrell, D. Scott

    2011-01-01

    Epidemiological data and animal models indicate that Helicobacter pylori and dietary NaCl have a synergistic ill effect on gastric maladies. Here we show that the Ferric Uptake Regulator (Fur), which is a crucial regulatory factor required for H. pylori colonization, is essential for growth in the presence of high NaCl concentrations. Moreover, we demonstrate that the transcriptional response induced by sodium chloride stress exhibits similarities to that seen under iron depletion. PMID:21538253

  20. Effect of different non-chloride sodium sources on the performance of heat-stressed broiler chickens.

    PubMed

    Ahmad, T; Mushtaq, T; Mahr-Un-Nisa; Sarwar, M; Hooge, D M; Mirza, M A

    2006-06-01

    1. One hundred and eighty 1-d-old broiler chicks were used to evaluate the effect upon broiler performance during severely hot summer months of three different sodium salts: sodium bicarbonate (NaHCO3), sodium carbonate (Na2CO3) and sodium sulphate (Na2SO4), in starter and finisher diets having an identical electrolyte balance (DEB) of 250 mEq/kg. 2. The non-chloride sodium salts were added to contribute the same amount of sodium and were substituted at the expense of builder's sand in the basal diets containing common salt (NaCl) as Na and Cl source. 3. Each diet was fed to three experimental units having 15 chicks each until 42 d of age. Severe heat-stress conditions, maintained in the rearing room, were indicated by high average weekly room temperature (minimum 29.3 degrees C; maximum 38.0 degrees C). 4. Diets containing sodium salts gave better body weight gain, feed intake and feed to gain ratio than the control diet. Sodium salts also enhanced water intake as well as water to feed intake ratio. This effect was more pronounced in broilers fed NaHCO3 supplement (with NaCl in the basal diets). 5. The increased water intake resulted in lower body temperature in heat-stressed birds fed NaHCO3 supplemented diet than in birds fed other sodium salts. A lower mortality rate was noted with NaHCO3 (15.15%), Na2CO3 (13.64%) and Na2SO4 (15.15%) supplements than with the control (33.33%) treatment. 6. Better carcase and parts yield were observed in sodium supplemented broilers. Sodium salts reduced the alkalotic pH and enhanced the blood sodium content, which ultimately improved the blood electrolyte balance and overall performance of heat-stressed broilers. 7. Supplementing broiler diets with sodium salts improved the live performance of heat-stressed broilers and better productive performance was noted with NaHCO3 than other sodium supplements.

  1. Separation of sodium chloride from the evaporated residue of the reverse osmosis reject generated in the leather industry--optimization by response surface methodology.

    PubMed

    Boopathy, R; Sekaran, G

    2014-08-01

    Reverse osmosis (RO) concentrate is being evaporated by solar/thermal evaporators to meet zero liquid discharge standards. The resulted evaporated residue (ER) is contaminated with both organic and inorganic mixture of salts. The generation of ER is exceedingly huge in the leather industry, which is being collected and stored under the shelter to avoid groundwater contamination by the leachate. In the present investigation, a novel process for the separation of sodium chloride from ER was developed, to reduce the environmental impact on RO concentrate discharge. The sodium chloride was selectively separated by the reactive precipitation method using hydrogen chloride gas. The selected process variables were optimized for maximum yield ofNaCl from the ER (optimum conditions were pH, 8.0; temperature, 35 degrees C; concentration of ER, 600 g/L and HCl purging time, 3 min). The recovered NaCl purity was verified using a cyclic voltagramm.

  2. Co-doped sodium chloride crystals exposed to different irradiation temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of themore » dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.« less

  3. Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient.

    PubMed

    Pillans, Richard D; Franklin, Craig E

    2004-07-01

    Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C. leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C. leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24 per thousand SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1 per thousand rise in salinity. Between 24 per thousand and 33 per thousand, plasma osmolarity increased by 33% or 4.7% per 1 per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28 per thousand and 33 per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10 per thousand, 11-20 per thousand and 21-33 per thousand. A comparison between C. leucas captured in FW and estuarine environments (20-28 per thousand ) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C. leucas moving between FW and SW, as well as the ecological implications of these data are discussed.

  4. Test Your Sodium Smarts

    MedlinePlus

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  5. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from themore » anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.« less

  6. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    USDA-ARS?s Scientific Manuscript database

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  7. Chemical quality of surface waters and sedimentation in the Saline River basin, Kansas

    USGS Publications Warehouse

    Jordan, Paul Robert; Jones, B.F.; Petri, Lester R.

    1964-01-01

    calcium bicarbonate type when the specific conductance is less than about 1,000 micromhos per centimeter, but it is of the sodium chloride type when the specific conductance is more than about 1,500 micromhos per centimeter. The water is off the calcium bicarbonate, sodium bicarbonate, or sodium chloride type when the conductance is between 1,000 and 1,500 micromhos per centimeter. Most of the increase in mineralization of the water is caused by inflow of highly mineralized ground water. The ground-water inflow was estimated to be 22 percent of the total streamflow at Tescott in 1948 and 60 percent in 1952. Mineralization increases and water quality deteriorates progressively downstream along nearly the entire Saline River, especially in the part of the area directly underlain by the Dakota Sandstone between the vicinities of Fairport and Wilson: sodium and chloride are the principal constituents of water contributed by the Dakota. The total percentage of the salt in the Saline River that comes from oil-field brines is considered to be small. The water in the upper Saline River is of good quality for domestic use except that it is hard; the water in the lower Saline River is of poor quality for domestic use because most of the time it is highly mineralized, is hard, and contains high concentrations of chloride and sulfate. In the upper reaches of the river, the water is of good quality for irrigation. In the lower reaches, if the water were impounded in a reservoir, it would be of good quality for irrigation during years of high flow and of very poor quality during years of low flow. The water in the lower reaches is of poor quality for industrial use because it is highly mineralized most of the tinge. Relations of suspended-sediment discharge to water discharge were used with the long-term streamflow duration curves to compute the long-term aver age suspended-sediment discharges and concentrations at five indications. Sediment discharge is closely related to runoff. S

  8. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride.

    PubMed

    Chea, F P; Chen, Y; Montville, T J; Schaffner, D W

    2000-08-01

    The germination kinetics of proteolytic Clostridium botulinum 56A spores were modeled as a function of temperature (15, 22, 30 degrees C), pH (5.5, 6.0, 6.5), and sodium chloride (0.5, 2.0, 4.0%). Germination in brain heart infusion (BHI) broth was followed with phase-contrast microscopy. Data collected were used to develop the mathematical models. The germination kinetics expressed as cumulated fraction of germinated spores over time at each environmental condition were best described by an exponential distribution. Quadratic polynomial models were developed by regression analysis to describe the exponential parameter (time to 63% germination) (r2 = 0.982) and the germination extent (r2 = 0.867) as a function of temperature, pH, and sodium chloride. Validation experiments in BHI broth (pH: 5.75, 6.25; NaCl: 1.0, 3.0%; temperature: 18, 26 degrees C) confirmed that the model's predictions were within an acceptable range compared to the experimental results and were fail-safe in most cases.

  9. Development of remote sensing techniques for assessment of salinity induced plant stresses

    NASA Astrophysics Data System (ADS)

    Stong, Matthew Harold

    Salinity has been shown to reduce vegetative growth, crop quality, and yield in agricultural crops. Remote sensing is capable of providing data about large areas. This project was designed to induce salinity stress in a crop, pak choi, and thereafter monitor the response of the crop as expressed by its spectral reflectances. The project was conducted in the National Taiwan University Phytotron, and spectral data was collected using a GER 2600. Yield and soil salinity (ECe) were also measured. After three seasons of data were collected, wavelengths sensitive to salinity were selected. These wavelengths, which are within the spectral response of biochemicals produced by plants as a response to soil salinity, were used to create two indices, the Salinity Stress Index (SSI) and the Normalized Salinity Stress Index (NSSI). After creating the indices tests were conducted to determine the efficacy of these indices in detecting salinity and drought stresses as compared to existing indices (SRVI and NDVI). This project induced salinity and drought stress in a crop, pak choi, and thereafter monitored the response of the crop as expressed by its spectral reflectances. The SSI and NSSI correlated well to both ECe and marketable yield. Additionally the SSI and NSSI were found to provide statistical differences between salinity stressed treatments and the control treatment. Drought stress was not detected well by any of the indices reviewed although the SSI and NSSI indices tended to increase with drought stress and decrease with salinity stress. As a final test, specific ion toxicities of sodium and chloride were tested against the developed indices (SSI and NSSI) and existing indices (NDVI, SRVI, and NDWI). There were no differences in SSI and NSSI responses to specific ion concentration in the high salinity treatments. These results indicated that the SSI and NSSI are not sensitive to the specific ion concentration in irrigation water. However, the SSI and NSSI were higher

  10. Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect

    PubMed Central

    Russo, Michael A.; Högenauer, Christoph; Coates, Stephen W.; Santa Ana, Carol A.; Porter, Jack L.; Rosenblatt, Randall L.; Emmett, Michael; Fordtran, John S.

    2003-01-01

    Due to genetic defects in apical membrane chloride channels, the cystic fibrosis (CF) intestine does not secrete chloride normally. Depressed chloride secretion leaves CF intestinal absorptive processes unopposed, which results in net fluid hyperabsorption, dehydration of intestinal contents, and a propensity to inspissated intestinal obstruction. This theory is based primarily on in vitro studies of jejunal mucosa. To determine if CF patients actually hyperabsorb fluid in vivo, we measured electrolyte and water absorption during steady-state perfusion of the jejunum. As expected, chloride secretion was abnormally low in CF, but surprisingly, there was no net hyperabsorption of sodium or water during perfusion of a balanced electrolyte solution. This suggested that fluid absorption processes are reduced in CF jejunum, and further studies revealed that this was due to a marked depression of passive chloride absorption. Although Na+-glucose cotransport was normal in the CF jejunum, absence of passive chloride absorption completely blocked glucose-stimulated net sodium absorption and reduced glucose-stimulated water absorption 66%. This chloride absorptive abnormality acts in physiological opposition to the classic chloride secretory defect in the CF intestine. By increasing the fluidity of intraluminal contents, absence of passive chloride absorption may reduce the incidence and severity of intestinal disease in patients with CF. PMID:12840066

  11. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: a retrospective study in a tertiary mixed ICU population.

    PubMed

    Van Regenmortel, Niels; Verbrugghe, Walter; Roelant, Ella; Van den Wyngaert, Tim; Jorens, Philippe G

    2018-04-01

    Research on intravenous fluid therapy and its side effects, volume, sodium, and chloride overload, has focused almost exclusively on the resuscitation setting. We aimed to quantify all fluid sources in the ICU and assess fluid creep, the hidden and unintentional volume administered as a vehicle for medication or electrolytes. We precisely recorded the volume, sodium, and chloride burdens imposed by every fluid source administered to 14,654 patients during the cumulative 103,098 days they resided in our 45-bed tertiary ICU and simulated the impact of important strategic fluid choices on patients' chloride burdens. In septic patients, we assessed the impact of the different fluid sources on cumulative fluid balance, an established marker of morbidity. Maintenance and replacement fluids accounted for 24.7% of the mean daily total fluid volume, thereby far exceeding resuscitation fluids (6.5%) and were the most important sources of sodium and chloride. Fluid creep represented a striking 32.6% of the mean daily total fluid volume [median 645 mL (IQR 308-1039 mL)]. Chloride levels can be more effectively reduced by adopting a hypotonic maintenance strategy [a daily difference in chloride burden of 30.8 mmol (95% CI 30.5-31.1)] than a balanced resuscitation strategy [daily difference 3.0 mmol (95% CI 2.9-3.1)]. In septic patients, non-resuscitation fluids had a larger absolute impact on cumulative fluid balance than did resuscitation fluids. Inadvertent daily volume, sodium, and chloride loading should be avoided when prescribing maintenance fluids in view of the vast amounts of fluid creep. This is especially important when adopting an isotonic maintenance strategy.

  12. Modeling time to inactivation of Listeria monocytogenes in response to high pressure, sodium chloride, and sodium lactate.

    PubMed

    Youart, Alyssa M; Huang, Yang; Stewart, Cynthia M; Kalinowski, Robin M; Legan, J David

    2010-10-01

    A mathematical model was developed to predict time to inactivation (TTI) by high pressure processing of Listeria monocytogenes in a broth system (pH 6.3) as a function of pressure (450 to 700 MPa), inoculum level (2 to 6 log CFU/ml), sodium chloride (1 or 2%), and sodium lactate (0 or 2.5%) from a 4°C initial temperature. Ten L. monocytogenes isolates from various sources, including processed meats, were evaluated for pressure resistance. The five most resistant strains were used as a cocktail to determine TTI and for model validation. Complete inactivation of L. monocytogenes in all treatments was demonstrated with an enrichment method. The TTI increased with increasing inoculum level and decreasing pressure magnitude, from 1.5 min at 700 MPa and 2 log CFU/ml, to 15 min at 450 MPa and 6 log CFU/ml. Neither NaCl nor sodium lactate significantly influenced TTI. The model was validated with ready-to-eat, uncured, Australian retail poultry products, and with product specially made at a U.S. Department of Agriculture, Food Safety and Inspection Service (FSIS)-inspected pilot plant in the United States. Data from the 210 individual product samples used for validation indicate that the model gives "fail-safe" predictions (58% with response as expected, 39% with no survivors where survivors expected, and only 3% with survivors where none were expected). This model can help manufacturers of refrigerated ready-to-eat meats establish effective processing criteria for the use of high pressure processing as a postlethality treatment for L. monocytogenes in accordance with FSIS regulations.

  13. Ultra-long–term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion12

    PubMed Central

    Birukov, Anna; Rakova, Natalia; Lerchl, Kathrin; Engberink, Rik HG Olde; Johannes, Bernd; Wabel, Peter; Moissl, Ulrich; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2016-01-01

    Background: The intake of sodium, chloride, and potassium is considered important to healthy nutrition and cardiovascular disease risk. Estimating the intake of these electrolytes is difficult and usually predicated on urine collections, commonly for 24 h, which are considered the gold standard. We reported on data earlier for sodium but not for potassium or chloride. Objective: We were able to test the value of 24-h urine collections in a unique, ultra-long–term balance study conducted during a simulated trip to Mars. Design: Four healthy men were observed while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, while their potassium intake was maintained at 4 g/d for 105 d. Six healthy men were studied while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, with a re-exposure of 12 g/d, while their potassium intake was maintained at 4 g/d for 205 d. Food intake and other constituents were recorded every day for each subject. All urine output was collected daily. Results: Long-term urine recovery rates for all 3 electrolytes were very high. Rather than the expected constant daily excretion related to daily intake, we observed remarkable daily variation in excretion, with a 7-d infradian rhythm at a relatively constant intake. We monitored 24-h aldosterone excretion in these studies and found that aldosterone appeared to be the regulator for all 3 electrolytes. We report Bland–Altman analyses on the value of urine collections to estimate intake. Conclusions: A single 24-h urine collection cannot predict sodium, potassium, or chloride intake; thus, multiple collections are necessary. This information is important when assessing electrolyte intake in individuals. PMID:27225435

  14. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...

  15. Could vitamin C and zinc chloride protect the germ cells against sodium arsenite?

    PubMed

    Altoé, L S; Reis, I B; Gomes, Mlm; Dolder, H; Pirovani, Jc Monteiro

    2017-10-01

    Arsenic (As) is commonly associated with natural and human processes such as volcanic emissions, mining and herbicides production, being an important pollutant. Several studies have associated As intake with male fertility reduction, thus the aim of the present study was to evaluate whether vitamin C and/or zinc would counteract As side effects within the testicles. Adult male Wistar rats were divided into six experimental groups: control, sodium arsenite (5 mg/kg/day), vitamin C (100 mg/kg/day), zinc chloride (ZnCl 2 ; 20 mg/kg/day), sodium arsenite + vitamin C and sodium arsenite + ZnCl 2 . Testicles and epididymis were harvested and either frozen or routinely processed to be embedded in glycol methacrylate resin. As reduced the seminiferous epithelium and tubules diameter due to germ cell loss. In addition, both the round spermatids population and the daily sperm production were reduced. However, ZnCl 2 and vitamin C showed to be effective against such side effects, mainly regarding to sperm morphology. Long-term As intake increased the proportions of abnormal sperm, whereas the concomitant intake of As with zinc or vitamin C enhanced the proportions of normal sperm, showing that such compounds could be used to protect this cell type against morphological defects.

  16. Real-time measurement of sodium chloride in individual aerosol particles by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1985-01-01

    The method of particle analysis by mass spectrometry has been applied to the quantitative measurement of sodium chloride in individual particles on a real-time basis. Particles of known masses are individually introduced, in the form of a beam, into a miniature Knudsen cell oven (1600 K). The oven is fabricated from rhenium metal sheet (0.018 mm thick) and is situated in the ion source of a quadrupole mass spectrometer. A particle once inside the oven is trapped and completely volatilized; this overcomes the problem of partial volatilization due to particles bouncing from the filament surface. Individual particles are thermally volatilized and ionized inside the rhenium oven, and produce discrete sodium ion pulses whose intensities are measured with the quadrupole mass spectrometer. An ion pulse width of several milliseconds (4-12 ms) is found for particles in the mass range 1.3 x 10 to the -13th to 5.4 x 10 to the -11th g. The sodium ion intensity is found to be proportional to the particle mass to the 0.86-power. The intensity distribution for monodisperse aerosol particles possesses a geometric standard deviation of 1.09, showing that the method can be used for the determination of the mass distribution function with good resolution in a polydisperse aerosol.

  17. Stimulation of cell division in the rat by NaCl, KCl, MgCl2, and CaCl2, and inhibition of the sodium chloride effect on the glandular stomach by ascorbic acid and beta-carotene.

    PubMed

    Lugli, S M; Lutz, W K

    1999-01-01

    Three questions associated with the stimulation of cell division by chloride salts have been investigated: (i) whether cations other than sodium show a similar effect, (ii) whether vitamins can have a preventive activity, and (iii) whether subchronic treatment with sodium chloride in the diet is also effective. Male Fischer 344 rats were given solutions of the chloride salts of sodium, potassium, magnesium, and calcium by oral gavage. Water was used for control. After 4 h, a 24-h osmotic minipump containing 5-bromo-2'-deoxyuridine was implanted subcutaneously. The forestomach and glandular stomach, as well as liver and bladder were analyzed immunohistochemically 24 h later for the proportion of cells in S phase as an indicator of the rate of replicative DNA synthesis. For both the forestomach and the glandular stomach, potassium was as potent as sodium, and the divalent cations Mg and Ca were even more potent on a molar basis. Supplementation of the diet with ascorbic acid (2 g/kg food) or beta-carotene (12.5 mg/kg food) for 1 week before gavage of the sodium chloride solution resulted in an inhibition of the stimulation of cell division. A putative tumor-chemopreventive activity of the two vitamins might therefore not only rely on their antioxidative properties but may include effects on the cell cycle. A 4-week treatment with a sodium chloride supplement in the diet (2% and 4% supplement) resulted in a significant stimulation of cell division not only in both parts of the stomach and in the bladder (with the 4% supplement) but also in the liver (even with the 2% supplement). Sodium-chloride-stimulated cell turnover therefore is a sustained effect.

  18. Stability of admixtures of pethidine and metoclopramide in aqueous solution, 5% dextrose and 09% sodium chloride.

    PubMed

    Hor, M M; Chan, S Y; Yow, K L; Lim, L Y; Chan, E

    1997-01-01

    To study the stability of admixtures of pethidine and metoclopramide in aqueous solution, 0.9% sodium chloride and 5% dextrose preparations. Aqueous mixtures of 1 ml of 50 mg/ml pethidine with 2ml of 5 mg/ml metoclopramide were prepared in plastic syringes, while the 0.9% sodium chloride and 5% dextrose admixtures, each containing 7.35 mg/ml of pethidine and 0.15 mg/ml of metoclopramide, were prepared in infusion bags. The preparations were stored under light and dark conditions at 32 degrees C for 48 h. Samples were collected at 0, 0.5, 1, 2, 4, 6, 8, 24, 32 and 48 h. A high-performance liquid chromatographic method was developed to separate and quantify both drugs. All preparations were found to be physically and chemically stable for at least 48h, as concentration changes were within 10% of their initial level, with no development of haze, precipitate or colour. Light appeared to have a negligible effect. Although pH changes were observed, they were inconsistent and were within the ranges in which the drugs are expected to remain stable. Pethidine and metoclopramide admixtures can, therefore, on stability grounds be used for the concomitant management of pain, nausea and vomiting.

  19. High Concentrations of Sodium Chloride Improve Microbicidal Activity of Ibuprofen against Common Cystic Fibrosis Pathogens.

    PubMed

    Muñoz, Adrián J; Alasino, Roxana V; Garro, Ariel G; Heredia, Valeria; García, Néstor H; Cremonezzi, David C; Beltramo, Dante M

    2018-05-17

    Ibuprofen (IBU-H), a widely used anti-inflammatory, also shows a marked antimicrobial effect against several bacterial species, including those involved in cystic fibrosis such as Pseudomona aeruginosa , methicillin resistant Staphylococcus aureus and Burkholderia cepacia complex. Additionally, our results show significant synergy between water soluble Na-ibuprofen (IBU-Na) and ionic strength. Salt concentrations above 0.5 M modify the zeta potential promoting the action of Na-IBU; thus, with 1 M sodium chloride, IBU-Na is ten times more efficient than in the absence of ionic strength, and the minimum effective contact time is reduced from hours to minutes. In short time periods, where neither IBU-Na nor controls with 1 M NaCl show activity, the combination of both leads to a reduction in the bacterial load. We also analyzed whether the changes caused by salt on the bacterial membrane also promoted the activity of other microbicide compounds used in cystic fibrosis like gentamicin, tobramycin and phosphomycin. The results show that the presence of ionic strength only enhanced the bactericidal activity of the amphipathic molecule of IBU-Na. In this respect, the effect of saline concentration was also reflected in the surface properties of IBU-Na, where, in addition to the clear differences observed between 145 mM and 1 M, singular behaviors were also found, different in each condition. The combination of anti-inflammatory activity and this improved bactericidal effect of Na-IBU in hypertonic solution provides a new alternative for the treatment of respiratory infections of fibrotic patients based on known and widely used compounds.

  20. Growth of Aeromonas species on increasing concentrations of sodium chloride.

    PubMed

    Delamare, A P; Costa, S O; Da Silveira, M M; Echeverrigaray, S

    2000-01-01

    The growth of 16 strains of Aeromonas, representing 12 species of the genera, were examined at different salt levels (0-1.71 M NaCl). All the strains grew on media with 0.34 M NaCl, and nine on media with 0.68 M. Two strains, Aer. enteropelogenes and Aer. trota, were able to grow on media with 0.85 M and 1.02 M NaCl, respectively. Comparison of the growth curves of Aer. hydrophila ATCC7966 and Aer. trota ATCC 49657 on four concentrations of NaCl (0.08, 0.34, 0.68 and 1.02 M) confirm the high tolerance of Aer. trota, and indicate that high concentrations of salt increase the lag time and decrease the maximum growth rate. However, both strains were able to grow, slowly, in at least 0.68 M NaCl, a sodium chloride concentration currently used as food preservative.

  1. Relations of enzymes inAspergillus repens grown under sodium chloride stress.

    PubMed

    Kelavkar, U P; Chhatpar, H S

    1993-09-01

    Aspergillus repens, a salt-pan isolate, was halotolerant. When grown for 72 h (log phase) and 144 h (beginning of stationary phase) in a medium containing 2M sodium chloride, the activities of invertase, malate dehydrogenase (MDH), glucose-6-phosphate dehydrogenase (G6PDH), and glutamate dehydrogenase (GDH) were found to have increased. Control cultures grown in a medium devoid of 2M NaCl failed to show such changes. The activities of MDH, G6PDH, and GDH increased with rising concentrations of Na(+) (as NaCl) when added up to 100MM in vitro. At higher concentrations they decreased. Changes in kinetic constants, Km and Vmax of these enzymes, as well as their de novo synthesis, were found to be some of the responses to NaCl stress-mediated changes.

  2. Paleohydrology on Mars constrained by mass balance and mineralogy of pre-Amazonian sodium chloride lakes

    NASA Astrophysics Data System (ADS)

    Melwani Daswani, M.; Kite, E. S.

    2017-09-01

    Chloride-bearing deposits on Mars record high-elevation lakes during the waning stages of Mars' wet era (mid-Noachian to late Hesperian). The water source pathways, seasonality, salinity, depth, lifetime, and paleoclimatic drivers of these widespread lakes are all unknown. Here we combine reaction-transport modeling, orbital spectroscopy, and new volume estimates from high-resolution digital terrain models, in order to constrain the hydrologic boundary conditions for forming the chlorides. Considering a T = 0°C system, we find that (1) individual lakes were >100 m deep and lasted decades or longer; (2) if volcanic degassing was the source of chlorine, then the water-to-rock ratio or the total water volume were probably low, consistent with brief excursions above the melting point and/or arid climate; (3) if the chlorine source was igneous chlorapatite, then Cl-leaching events would require a (cumulative) time of >10 years at the melting point; and (4) Cl masses, divided by catchment area, give column densities 0.1-50 kg Cl/m2, and these column densities bracket the expected chlorapatite-Cl content for a seasonally warm active layer. Deep groundwater was not required. Taken together, our results are consistent with Mars having a usually cold, horizontally segregated hydrosphere by the time chlorides formed.

  3. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    USGS Publications Warehouse

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  4. Combined effects of potassium lactate and calcium ascorbate as sodium chloride substitutes on the physicochemical and sensory characteristics of low-sodium frankfurter sausage.

    PubMed

    Choi, Y M; Jung, K C; Jo, H M; Nam, K W; Choe, J H; Rhee, M S; Kim, B C

    2014-01-01

    The purpose of this study was to evaluate the combined effects of sodium chloride (NaCl) substitutes, including potassium lactate (K-lactate) and calcium ascorbate (Ca-ascorbate), on the physicochemical and sensory characteristics of low-sodium frankfurter sausage (1.2% content of NaCl). Sausages produced with 40% substitution of NaCl with combined K-lactate and Ca-ascorbate showed a higher value of lightness (P<0.001) than sausages containing 2.0% content of NaCl (control). However, the sensory panels were unable to distinguish a difference in color intensity between the control and treatment groups. Frankfurter sausages produced with 30% K-lactate and 10% Ca-ascorbate exhibited similar water-holding capacity, textural properties, and organoleptic characteristics (P>0.05) when compared to control sausages. Thus, the use of these salt mixtures is a good way to reduce the NaCl content in meat products while maintaining the quality of meat products. These results may be useful in developing low-sodium meat products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. An empirical equation with tables of smoothed solubilities of methane in water and aqueous sodium chloride solutions up to 25 weight percent, 360 degrees C, and 138 MPa

    USGS Publications Warehouse

    Haas, John L.

    1978-01-01

    The total pressure for the system H2O-CH 4 is given by p(total) = P(H2O,t) + exp10[log x(CH 4) - a - b x(CH4)], where P(H2O,t) is the vapor pressure of H2O liquid at the temperature t (?C) and x(CH 4) is the molal concentration of methane in the solution. The terms a and b are functions of temperature only. Where the total pressure and temperature are known, the concentration of methane, x(CH4), is found by iteration. The concentration of methane in a sodium chloride brine, y(CH4), is estimated using the function log y(CH4) = log x(CH4) - A I, where A is the salting out constant and I is the ionic strength. For sodium chloride solutions, the ionic strength is equal to the molality of the salt. The equations are valid to 360?C, 138 MPa, and 25 weight percent sodium chloride.

  6. Identification of sodium chloride-regulated genes in Burkholderia cenocepacia.

    PubMed

    Bhatt, Shantanu; Weingart, Christine L

    2008-05-01

    Previous studies have suggested that the airways of cystic fibrosis (CF) patients have elevated sodium chloride (NaCl) levels due to the malfunctioning of the CF transmembrane conductance regulator protein. For bacteria to survive in this high-salt environment, they must adjust by altering the regulation of gene expression. Among the different bacteria inhabiting the airways of CF patients is the opportunistic pathogen Burkholderia cenocepacia. Previous studies have indicated that B. cenocepacia produces a toxin and cable pili under high osmolar conditions. We used transposon mutagenesis to identify NaCl-regulated genes in the clinical strain B. cenocepacia K56-2. Six transconjugants were induced with increasing NaCl concentration. The DNA flanking the transposon was sequenced and five distinct open reading frames were identified encoding the following putative proteins: an integrase, an NAD-dependent deacetylase, TolB, an oxidoreductase, and a novel hypothetical protein. The collective results of this study provide important information about the physiology of B. cenocepacia when faced with osmotic stress and suggest the identity of significant virulence mechanisms in this opportunistic pathogen.

  7. The potentiality of Trichoderma harzianum in alleviation the adverse effects of salinity in faba bean plants.

    PubMed

    Abd El-Baki, G K; Mostafa, Doaa

    2014-12-01

    The interaction between sodium chloride and Trichoderma harzianum (T24) on growth parameters, ion contents, MDA content, proline, soluble proteins as well as SDS page protein profile were studied in Vicia faba Giza 429. A sharp reduction was found in fresh and dry mass of shoots and roots with increasing salinity. Trichoderma treatments promoted the growth criteria as compared with corresponding salinized plants. The water content and leaf area exhibited a marked decrease with increasing salinity. Trichoderma treatments induced a progressive increase in both parameters. Both proline and MDA contents were increased progressively as the salinity rose in the soil. Trichoderma treatments considerably retarded the accumulation of both parameters in shoots and roots. Both Na+ and K+ concentration increased in both organs by enhancing salinity levels. The treatment with Trichoderma harzianum enhanced the accumulation of both ions. Exposure of plants to different concentrations of salinity, or others treated with Trichoderma harzianum produced marked changes in their protein pattern. Three types of alterations were observed: the synthesis of certain proteins declined significantly, specific synthesis of certain other proteins were markedly observed and synthesis of a set specific protein was induced de novo in plant treated with Trichoderma harzianum.

  8. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  9. Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent.

    PubMed

    Pal, Mahi; Rai, Rewa; Yadav, Anita; Khanna, Rajesh; Baker, Gary A; Pandey, Siddharth

    2014-11-11

    Deep eutectic solvents (DESs) have shown tremendous promise as green solvents with low toxicity and cost. Understanding molecular aggregation processes within DESs will not only enhance the application potential of these solvents but also help alleviate some of the limitations associated with them. Among DESs, those comprising choline chloride and appropriate hydrogen-bond donors are inexpensive and easy to prepare. On the basis of fluorescence probe, electrical conductivity, and surface tension experiments, we present the first clear lines of evidence for self-aggregation of an anionic surfactant within a DES containing a small fraction of water. Namely, well-defined assemblies of sodium dodecyl sulfate (SDS) apparently form in the archetype DES Reline comprising a 1:2 molar mixture of choline chloride and urea. Significant enhancement in the solubility of organic solvents that are otherwise not miscible in choline chloride-based DESs is achieved within Reline in the presence of SDS. The remarkably improved solubility of cyclohexane within SDS-added Reline is attributed to the presence of spontaneously formed cyclohexane-in-Reline microemulsions by SDS under ambient conditions. Surface tension, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), density, and dynamic viscosity measurements along with responses from the fluorescence dipolarity and microfluidity probes of pyrene and 1,3-bis(1-pyrenyl)propane are employed to characterize these aggregates. Such water-free oil-in-DES microemulsions are appropriately sized to be considered as a new type of nanoreactor.

  10. Active kallikrein response to changes in sodium-chloride intake in essential hypertensive patients.

    PubMed

    Ferri, C; Bellini, C; Carlomagno, A; Desideri, G; Santucci, A

    1996-03-01

    To evaluate the behavior of active kallikrein excretion in salt-sensitive and salt-resistant hypertensive patients during changes in sodium-chloride (NaCl) intake, 61 male, nonobese, nondiabetic outpatients affected by uncomplicated essential hypertension were given a diet that contained 140 mmol NaCl per day for 2 wk. Patients then received either a low- (20 mmol NaCl/day) or a high- (320 mmol NaCl/day) sodium diet for 2 wk, according to a randomized, double-blind, cross-over protocol. Hypertensive patients were classified as salt sensitive when their diastolic blood pressure rose by at least 10 mm Hg after the high-sodium diet, and decreased by at least 10 mm Hg after the low-sodium diet, considering as baseline blood pressure values those that were taken at the end of the 140 mmol NaCl/day intake period. The remaining patients were classified as salt resistant or, when diastolic blood pressure increased by 10 mm Hg or more after low-sodium intake, as counter-regulating. Twenty-three patients were therefore classified as salt sensitive, 28 as salt resistant, and 10 as counter-regulating. The baseline active kallikrein excretion was significantly lower (P < 0.0001) in salt-sensitive (0.62 +/- 0.31 U/24 h) patients than in salt-resistant (1.39 +/- 0.44 U/24 h) and counter-regulating patients (1.27 +/- 0.38 U/24 h). Surprisingly, the kallikrein response to changes in sodium intake was similar in all subgroups, although enzyme excretion was always at the lowest level in salt-sensitive hypertensive patients. This latter group also showed the highest plasma atrial natriuretic peptide levels (28.2 +/- 8.5 fmol/mL, P < 0.0001 versus salt-resistant and counter-regulating patients), and the greatest peptide increment with sodium load (P < 0.0001 versus salt-resistant and counter-regulating patients). Counter-regulating patients showed the steepest increase in plasma renin activity (from 0.24 +/- 0.18 to 0.83 +/- 0.21 ng/L per s, P < 0.001) and decrease of plasma atrial

  11. Copper chloride cathode for a secondary battery

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Nagasubramanian, Ganesan (Inventor); Bankston, Clyde P. (Inventor)

    1990-01-01

    Higher energy and power densities are achieved in a secondary battery based on molten sodium and a solid, ceramic separator such as a beta alumina and a molten catholyte such as sodium tetrachloroaluminate and a copper chloride cathode. The higher cell voltage of copper chloride provides higher energy densities and the higher power density results from increased conductivity resulting from formation of copper as discharge proceeds.

  12. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    PubMed

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    PubMed

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration.

  14. Compressed sodium chloride as a fast-acting antimicrobial surface: results of a pilot study.

    PubMed

    Whitlock, B D; Smith, S W

    2016-10-01

    Antimicrobial surfaces are currently being studied as an aid to reduce transmission of pathogens leading to healthcare-associated infections (HAIs). Among the most harmful and costly pathogens that cause HAIs is meticillin-resistant Staphylococcus aureus (MRSA). Currently available and previously investigated antimicrobial surface technologies that are effective against MRSA (e.g. copper alloy surfaces) take 30min to several hours to achieve significant reduction. This article presents a new antimicrobial surface technology made of compressed sodium chloride that reduces MRSA 20-30 times faster than copper alloy surfaces. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. [Immunobiological blood parameters in rabbits after addition to the diet suspensions of chlorella, sodium sulfate, citrate and chromium chloride].

    PubMed

    Lesyk, Ia V; Fedoruk, R S; Dolaĭchuk, O P

    2013-01-01

    We studied the content of glycoproteins and their individual carbohydrate components, the phagocyte activity of neutrophils, phagocyte index, phagocyte number lizotsym and bactericidal activity of the serum concentration of circulating immune complexes and middle mass molecules in the blood of rabbits following administration into the diet chlorella suspension, sodium sulfate, chromium citrate and chromium chloride. The studies were conducted on rabbits weighing 3.7-3.9 kg with altered diet from the first day of life to 118 days old. Rabbits were divided into five groups: the control one and four experimental groups. We found that in the blood of rabbits of experimental groups recieved sodium sulphate, chromium chloride and chromium citrate, the content of glycoprotein's and their carbohydrate components was significantly higher during the 118 days of the study compared with the control group. Feeding rabbits with mineral supplements likely reflected the differences compared with the control parameters of nonspecific resistance in the blood for the study period, which was more pronounced in the first two months of life.

  16. Cardiovascular effect of 7.5% sodium chloride-dextran infusion after thermal injury.

    PubMed

    Murphy, J T; Horton, J W; Purdue, G F; Hunt, J L

    1999-10-01

    Clinical study can help determine the safety and cardiovascular and systemic effects of an early infusion of 7.5% sodium chloride in 6% dextran-70 (hypertonic saline-dextran-70 [HSD]) given as an adjuvant to a standard resuscitation with lactated Ringer (RL) solution following severe thermal injury. Prospective clinical study. Intensive care unit of tertiary referral burn care center. Eighteen patients with thermal injury over more than 35% of the total body surface area (TBSA) (range, 36%-71%) were studied. Eight patients (mean +/- SEM, 48.2% +/- 2% TBSA) received a 4-mL/kg HSD infusion approximately 3.5 hours (range, 1.5-5.0 hours) after thermal injury in addition to routine RL resuscitation. Ten patients (46.0% +/- 6% TBSA) received RL resuscitation alone. Pulmonary artery catheters were employed to monitor cardiac function, while hemodynamic, metabolic, and biochemical measurements were taken for 24 hours. Serum troponin I levels, while detectable in all patients, were significantly lower after HSD compared with RL alone (mean +/- SEM, 0.45 +/- 0.32 vs 1.35 +/- 0.35 microg/L at 8 hours, 0.88 +/- 0.55 vs 2.21 +/- 0.35 microg/L at 12 hours). While cardiac output increased proportionately between 4 and 24 hours in both groups (from 5.79 +/- 0.8 to 9.45 +/- 1.1 L/min [mean +/- SEM] for HSD vs from 5.4 +/- 0.4 to 9.46 +/- 1.22 L/min for RL), filling pressure (central venous pressure and pulmonary capillary wedge pressure) remained low for 12 hours after HSD infusion (P = .048). Total fluid requirements at 8 hours (2.76 +/- 0.7 mL/kg per each 1% TBSA burned [mean +/- SEM] for HSD vs 2.67 +/- 0.24 mL/kg per each 1% TBSA burned for RL) and 24 hours (6.11 +/- 4.4 vs 6.76 +/- 0.75 mL/kg per each 1% TBSA burned) were similar. Blood pressure remained unchanged, and serum sodium levels did not exceed 150 +/- 2 mmol/L (mean +/- SD) in either group. The absence of deleterious hemodynamic or metabolic side effects following HSD infusion in patients with major thermal injury

  17. Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride.

    PubMed

    Arroyo-López, F N; Bautista-Gallego, J; Romero-Gil, V; Rodríguez-Gómez, F; Garrido-Fernández, A

    2012-04-16

    The present work uses a logistic/probabilistic model to obtain the growth/no growth interfaces of Saccharomyces cerevisiae, Wickerhamomyces anomalus and Candida boidinii (three yeast species commonly isolated from table olives) as a function of the diverse combinations of natamycin (0-30 mg/L), citric acid (0.00-0.45%) and sodium chloride (3-6%). Mathematical models obtained individually for each yeast species showed that progressive concentrations of citric acid decreased the effect of natamycin, which was only observed below 0.15% citric acid. Sodium chloride concentrations around 5% slightly increased S. cerevisiae and C. boidinii resistance to natamycin, although concentrations above 6% of NaCl always favoured inhibition by this antimycotic. An overall growth/no growth interface, built considering data from the three yeast species, revealed that inhibition in the absence of citric acid and at 4.5% NaCl can be reached using natamycin concentrations between 12 and 30 mg/L for growth probabilities between 0.10 and 0.01, respectively. Results obtained in this survey show that is not advisable to use jointly natamycin and citric acid in table olive packaging because of the observed antagonistic effects between both preservatives, but table olives processed without citric acid could allow the application of the antifungal. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Avoidance of Overt Precipitation and Patient Harm Following Errant Y-Site Administration of Calcium Chloride and Parenteral Nutrition Compounded With Sodium Glycerophosphate.

    PubMed

    Anderson, Collin; Stidham, Chanelle; Boehme, Sabrina; Cash, Jared

    2017-12-14

    Calcium phosphate precipitates present 1 of many challenges associated with parenteral nutrition (PN) compounding. Extensive research has led to the establishment of solubility curves to guide practitioners in the prescription and preparation of stable PN. Concurrent dosing of intravenous products via y-site administration with PN can alter the chemical balance of the solution and modify solubility. Medications containing calcium or phosphate should not be administered in the same line as PN, due to the high potential for precipitation. Herein a case is reported from a pediatric cardiac intensive care unit where a physician ordered the administration of calcium chloride. The bedside nurse added the calcium chloride intermittent infusion as a y-site administration with the patient's PN. The patient's PN had been compounded with sodium glycerophosphate, temporarily available in the United States during a sodium phosphate shortage. The patient did not experience any observable adverse effects from the y-site administration with PN. Following this event, the scenario was replicated to investigate any precipitation risk associated with the y-site administration. Additionally, a separate PN solution containing sodium phosphate rather than glycerophosphate was compounded and used in a laboratory setting to demonstrate the potential for harm had the patient's PN been compounded with an inorganic phosphate source. This replication of the error demonstrates the additional safety gained in relation to precipitation risk when PN solutions are compounded with sodium glycerophosphate in place of sodium phosphate. © 2017 American Society for Parenteral and Enteral Nutrition.

  19. Long-term stability of temocillin in dextrose 5% and in sodium chloride 0.9% polyolefin bags at 5 ± 3°C after freeze-thaw treatment.

    PubMed

    Rolin, C; Hecq, J-D; Tulkens, P; Vanbeckbergen, D; Jamart, J; Galanti, L

    2011-11-01

    The aim of this study was to investigate the stability of a mixture of temocillin 20mg/ml in 5% dextrose and in 0.9% sodium chloride polyolefin bags after freezing, microwave thawing and long-term storage at 5±3°C. The stability of ten polyolefin bags containing 20mg/ml of temocillin, five bags in 5% dextrose and five bags in 0.9% sodium chloride, prepared under aseptic conditions was studied after freezing for 1 month at -20°C, thawing in a microwave oven with a validated cycle, and stored at 5±3°C. Over 30 days, temocillin concentrations were measured by high-pressure liquid chromatography. Visual inspections, microscope observation, spectrophotometric measurements and pH measurements were also performed. No precipitation occurred in the preparations but minor colour change was observed. No microaggregate was observed with optical microscopy or revealed by a change of absorbance. Based on a shelf life of 95% residual potency, temocillin infusions were stable at least 11 days in 5% dextrose and 14 days in 0.9% sodium chloride after freezing and microwave thawing (corresponding at the period where 95% lower confidence limit of the concentration-time profile remained superior to 95% of the initial concentration). During this period, the pH values of drug solutions have been observed to decrease without affecting chromatographic parameters. Within these limits, temocillin in 5% dextrose and in 0.9% sodium chloride infusions may be prepared and frozen in advance by a centralized intravenous admixture service then thawed before use in clinical units. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Experimental Evaluation of Sodium Silicate-Based Nanosilica against Chloride Effects in Offshore Concrete

    PubMed Central

    Kim, Kyoung-Min; Kim, Hak-Young; Heo, Young-Sun; Jung, Sang-Jin

    2014-01-01

    This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS), on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (−) charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45) is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete. PMID:25574486

  1. Experimental evaluation of sodium silicate-based nanosilica against chloride effects in offshore concrete.

    PubMed

    Kim, Kyoung-Min; Kim, Hak-Young; Heo, Young-Sun; Jung, Sang-Jin

    2014-01-01

    This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS), on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (-) charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45) is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete.

  2. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  3. Sodium Chloride Crystal-Induced SERS Platform for Controlled Highly Sensitive Detection of Illicit Drugs.

    PubMed

    Yu, Borong; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Shaofei; Yang, Liangbao

    2018-04-03

    A sodium chloride crystal-driven spontaneous 'hot spot' structure was demonstrated as a SERS-active platform, to get reproducible SERS signals, and eliminate the need for mapping large areas, in comparison with solution phase testing. During the process of solvent evaporation, the crystals produced induced silver aggregates to assemble around themselves. The micro-scale crystals can also act as a template to obtain an optical position, such that the assembled hot area is conveniently located during SERS measurements. More importantly, the chloride ions added in colloids can also replace the citrate and on the surface of the silver sol, and further decrease the background interference. High quality SERS spectra from heroin, methamphetamine (MAMP), and cocaine have been obtained on the crystal-driven hot spot structure with high sensitivity and credible reproducibility. This approach can not only bring the nanoparticles to form plasmonic hot spots in a controlled way, and thus provide high sensitivity, but also potentially be explored as an active substrate for label-free detection of other illicit drugs or additives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Salinity increases in the navajo aquifer in southeastern Utah

    USGS Publications Warehouse

    Naftz, D.L.; Spangler, L.E.

    1994-01-01

    Salinity increases in water in some parts of the Navajo aquifer in southeastern Utah have been documented previously. The purpose of this paper is to use bromide, iodide, and chloride concentrations and del oxygen-18 and deuterium values in water from the study area to determine if oil-field brines (OFB) could be the source of increased salinity. Mixing-model results indicate that the bromide-to-chloride X 10,000 weight ratio characteristic of OFB in and outside the study area could not be causing the bromide depletion with increasing salinity in the Navajo aquifer. Mixing-model results indicate that a mixture of one percent OFB with 99 percent Navajo aquifer water would more than double the bromide-to-chloride weight ratio, instead of the observed decrease in the weight ratio with increasing chloride concentration. The trend of the mixing line representing the isotopically enriched samples from the Navajo aquifer does not indicate OFB as the source of isotopically enriched water; however, the simulated isotopic composition of injection water could be a salinity source. The lighter isotopic composition of OFB samples from the Aneth, Ratherford, White Mesa Unit, and McElmo Creek injection sites relative to the Ismay site is a result of continued recycling of injection water mixed with various proportions of isotopically lighter make-up water from the alluvial aquifer along the San Juan River. A mixing model using the isotopic composition of the simulated injection water suggests that enriched samples from the Navajo aquifer are composed of 36 to 75 percent of the simulated injection water. However, chloride concentrations predicted by the isotopic mixing model are up to 13.4 times larger than the measured chloride concentrations in isotopically enriched samples from the Navajo aquifer, indicating that injection water is not the source of increased salinity. Geochemical data consistently show that OFB and associated injection water from the Greater Aneth Oil Field

  5. Importance of Abnormal Chloride Homeostasis in Stable Chronic Heart Failure.

    PubMed

    Grodin, Justin L; Verbrugge, Frederik H; Ellis, Stephen G; Mullens, Wilfried; Testani, Jeffrey M; Tang, W H Wilson

    2016-01-01

    The aim of this analysis was to determine the long-term prognostic value of lower serum chloride in patients with stable chronic heart failure. Electrolyte abnormalities are prevalent in patients with chronic heart failure. Little is known regarding the prognostic implications of lower serum chloride. Serum chloride was measured in 1673 consecutively consented stable patients with a history of heart failure undergoing elective diagnostic coronary angiography. All patients were followed for 5-year all-cause mortality, and survival models were adjusted for variables that confounded the chloride-risk relationship. The average chloride level was 102 ± 4 mEq/L. Over 6772 person-years of follow-up, there were 547 deaths. Lower chloride (per standard deviation decrease) was associated with a higher adjusted risk of mortality (hazard ratio 1.29, 95% confidence interval 1.12-1.49; P < 0.001). Chloride levels net-reclassified risk in 10.4% (P = 0.03) when added to a multivariable model (with a resultant C-statistic of 0.70), in which sodium levels were not prognostic (P = 0.30). In comparison to those with above first quartile chloride (≥ 101 mEq/L) and sodium (≥ 138 meq/L), subjects with first quartile chloride had a higher adjusted mortality risk, whether they had first quartile sodium (hazard ratio 1.35, 95% confidence interval 1.08-1.69; P = 0.008) or higher (hazard ratio 1.43, 95% confidence interval 1.12-1.85; P = 0.005). However, subjects with first quartile sodium but above first quartile chloride had no association with mortality (P = 0.67). Lower serum chloride levels are independently and incrementally associated with increased mortality risk in patients with chronic heart failure. A better understanding of the biological role of serum chloride is warranted. © 2015 American Heart Association, Inc.

  6. Calciuric effects of protein and potassium bicarbonate but not of sodium chloride or phosphate can be detected acutely in adult women and men.

    PubMed

    Whiting, S J; Anderson, D J; Weeks, S J

    1997-05-01

    An acute load test was used to test the influence of dietary factors on urinary calcium excretion. In study 1, 10 fasting premenopausal women consumed test meals providing a moderate amount of protein (MP; 23 g), MP plus 23 mmol KHCO3 (MP+K), MP plus 23 mmol NaCl (MP+Na), and a high amount of protein (HP; 53 g), HP plus 70 mmol KHCO3 (HP+K), and HP plus 70 mmol NaCl (HP+Na). Protein was casein:lactalbumin (80:20), except for the treatments with added sodium chloride, to which only casein was added. In study 2, the effects of HP and HP plus 50 mmol KHCO3 (HP+K) were compared with those of MP or MP plus 7.5 mmol phosphate (MP+Pi), equaling the additional phosphate of HP, in 10 adult men. Subjects completed all treatments in random order. In study 1, the peak of calcium excretion was at 3 h for all treatments, except for HP+K, which indicated an acute hypocalciuric effect of potassium. Unexpectedly, there was no hypercalciuric effect of adding sodium chloride, nor was urine sodium increased. In study 2, calcium excretion was significantly higher with HP than with MP+Pi but not with MP at 3 h, indicating an acute hypercalciuric effect of protein alone. A hypocalciuric effect of potassium (HP+K compared with HP) but not of phosphate (MP compared with MP+Pi) was seen. An acute load test measuring changes 3 h postload was appropriate for examining the calciuric effects of protein and potassium bicarbonate, but not those of sodium chloride or phosphate in adults.

  7. A potentiodynamic study of aluminum-lithium alloys in an aqueous sodium chloride environment

    NASA Technical Reports Server (NTRS)

    Tsao, C.-H. T.; Pizzo, P. P.

    1985-01-01

    The characteristics of the potentiodynamic curves for Al-Li alloys in 3.5 percent NaCl aqueous solution are explained and the electrochemical parameters of the potentiodynamic technique are correlated to observed pitting and intergranular cracking behavior. It is shown that the oxygen content of the sodium chloride electrolyte plays an important role in the electrochemical behavior of Al-Li alloys. The potentiodynamic behavior of the alloys is found to be insensitive to variation in compositional content and heat treatment, both of which affect the stress-corrosion behavior. Stringer oxide particle attack and random pitting are observed. It is shown that alternate-immersion exposure prior to potentiodynamic polarization may offer a means of assessing susceptibility to stress-corrosion cracking.

  8. A Quick Reference on Chloride.

    PubMed

    Bohn, Andrea A; de Morais, Helio Autran

    2017-03-01

    Chloride is an essential element, playing important roles in digestion, muscular activity, regulation of body fluids, and acid-base balance. As the most abundant anion in extracellular fluid, chloride plays a major role in maintaining electroneutrality. Chloride is intrinsically linked to sodium in maintaining osmolality and fluid balance and has an inverse relationship with bicarbonate in maintaining acid-base balance. It is likely because of these close ties that chloride does not get the individual attention it deserves; we can use these facts to simplify and interpret changes in serum chloride concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Cortisol regulates sodium homeostasis by stimulating the transcription of sodium-chloride transporter (NCC) in zebrafish (Danio rerio).

    PubMed

    Lin, Chia-Hao; Hu, Huei-Jyun; Hwang, Pung-Pung

    2016-02-15

    In mammals, sodium/hydrogen exchanger (NHE) and sodium-chloride cotransporter (NCC) are expressed in renal tubules, and exhibit functional redundancy and mutual compensation in Na(+) uptake. In teleosts, the gills of the adult and skin of the embryonic stage function as external kidneys, and ionocytes are responsible for ionoregulation in these tissues. NHE- and NCC-expressing ionocytes mutually cooperate to adjust Na(+) uptake, which is analogous to the activity of the mammalian kidney. Cortisol is a hormone that controls Na(+) uptake through regulating NCC expression and activity in mammals; however, cortisol-mediated control of NCC expression is little understood in non-mammalian vertebrates, such as teleosts. It is essential for our understanding of the evolution of such regulation to determine whether cortisol has a conserved effect on NCC in vertebrates. In the present study, we treated zebrafish embryos with low Na(+) medium (LNa, 0.04 mM Na(+)) for 3 d to stimulate the mRNA expression of nhe3b, ncc, and cyp11b1 (a cortisol-synthesis enzyme) and whole body cortisol level. Exogenous cortisol treatment (20 mg/l, 3 d) resulted in an elevation of whole-body Na(+) content, ncc expression, and the density of ncc-expressing cells in zebrafish larvae. In loss-of-function experiments, microinjection of glucocorticoid receptor (gr) morpholino (MO) suppressed sodium content, ncc expression, and the density of ncc-expressing cells, but injection of mr MO had no such effects. In addition, exogenous cortisol treatment and gr MO injection also altered ncc expression and the density of ncc-expressing cells in gcm2 morphant larvae. Taken together, cortisol and GR appear to regulate Na(+) absorption through stimulating ncc expression and the differentiation of ncc-expressing ionocytes, providing new insights into the actions of cortisol on Na(+) uptake. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Quantification and Characterization of Chloride Sources in the Rio Grande, Southwestern United States

    NASA Astrophysics Data System (ADS)

    Lacey, H. F.; Phillips, F. M.; Tidwell, V.; Hogan, J.; Bastien, E.; Oelsner, G.

    2005-12-01

    Salinization of rivers is a problem in the southwestern United States as well as in other semiarid and arid regions of the world. Arid and semiarid rivers including the Rio Grande often exhibit increasing salinity with distance downstream, which is commonly attributed to irrigated agriculture. Increased river salinity causes economic losses by reducing crop productivity, rendering the water unsuitable for many municipal and industrial uses, and corroding or plugging pipes. Although most salinization of the Rio Grande takes place in the United States, many of the effects are felt in Mexico. Recent studies have found that salinization of the Rio Grande is geologically controlled by the addition of deep saline brines at several distinct locations. However, these additions of deep brine have not been well quantified. We have designed a model using a system dynamics software program to analyze Rio Grande chloride data. The model uses historical chloride and gaging station data and high-resolution synoptic chloride samples collected between 2000 and 2005 to characterize and quantify additions of deep brine to the river. The model has also been used to evaluate the effect of the construction of Elephant Butte Reservoir on the chloride balance of the river using chloride concentration data from 1905-1907. The model can also be used to evaluate future climatic and management scenarios in order to plan for the future water needs of the basin.

  11. Oxygen, water, and sodium chloride transport in soft contact lenses materials.

    PubMed

    Gavara, Rafael; Compañ, Vicente

    2017-11-01

    Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218-2231, 2017. © 2016 Wiley Periodicals, Inc.

  12. Synergism between Sodium Chloride and Sodium Taurocholate and Development of Pepsinogen‐altered Pyloric Glands: Relevance to a Medium‐term Bioassay System for Gastric Carcinogens and Promoters in Rats

    PubMed Central

    Tatematsu, Masae; Mutai, Mamoru; Inoue, Kaoru; Ozaki, Keisuke; Furihata, Chie; Ito, Nobuyuki

    1989-01-01

    In an approach to early detection of gastric carcinogens and promoters in an in vivo test system, promotion by sodium chloride (NaCl) and the synergistic effects of NaCl and sodium taurocholate (Na‐TC) on development of pepsinogen‐altered pyloric glands (PAPG) in rat glandular stomach after initiation with N‐methyl‐N′‐nitro‐N‐nitrosoguanidine (MNNG) were investigated. A total of 205 male WKY/NCrj rats were divided into 8 groups. Group 1 was given a single dose of MNNG of 160 mg/ kg body weight by gastric intubation, and starting 2 weeks later basal diet containing Na‐TC for 18 weeks. In addition, 1 ml doses of saturated NaCl solution were given by gastric intubation at weeks 4, 6, 8 and 10. Similarly, group 2 was treated with MNNG and Na‐TC, while group 3 animals received MNNG and NaCl. Group 4 was given MNNG alone. Groups 5–8 served as equivalent controls without MNNG initiation. The results revealed significantly enhanced induction of immunohisto‐chemically defined PAPG in the Na‐TC + NaCl (P< 0.001), Na‐TC (P<0.01) and NaCl (P<0.01) treated animals initiated with MNNG. Sodium chloride demonstrated a clear synergistic effect with Na‐TC in promoting the development of PAPG, suggesting possible advantage for its use in medium‐term in vivo assays for detection of gastric carcinogens and promoters. PMID:2514164

  13. Salt-induced aggregation and fusion of dioctadecyldimethylammonium chloride and sodium dihexadecylphosphate vesicles.

    PubMed Central

    Carmona-Ribeiro, A M; Chaimovich, H

    1986-01-01

    Small dioctadecyldimethylammonium chloride (DODAC) vesicles prepared by sonication fuse upon addition of NaCl as detected by several methods (electron microscopy, trapped volume determinations, temperature-dependent phase transition curves, and osmometer behavior. In contrast, small sodium dihexadecyl phosphate (DHP) vesicles mainly aggregate upon NaCl addition as shown by electron microscopy and the lack of osmometer behavior. Scatter-derived absorbance changes of small and large DODAC or DHP vesicles as a function of time after salt addition were obtained for a range of NaCl or amphiphile concentration. These changes were interpreted in accordance with a phenomenological model based upon fundamental light-scattering laws and simple geometrical considerations. Short-range hydration repulsion between DODAC (or DHP) vesicles is possibly the main energy barrier for the fusion process. Images FIGURE 2 FIGURE 9 PMID:3779002

  14. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    USGS Publications Warehouse

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    Salinity Control Unit was 10,700 tons/year. This accounts for approximately 27 percent of the decrease observed downstream from the Grand Valley Salinity Control Unit. Salinity loads were decreasing at the fastest rate (6,950 tons/year) in Region 4, which drains an area between the Colorado River at Cameo, Colorado (station CAMEO) and Colorado River above Glenwood Springs, Colorado (station GLEN) streamflow-gaging stations. Trends in salinity concentration and streamflow were tested at station CAMEO to determine if salinity concentration, streamflow, or both are controlling salinity loads upstream from the Grand Valley Salinity Control Unit. Trend tests of individual ion concentrations were included as potential indicators of what sources (based on mineral composition) may be controlling trends in the upper Colorado. No significant trend was detected for streamflow from 1986 to 2003 at station CAMEO; however, a significant downward trend was detected for salinity concentration. The trend slope indicates that salinity concentration is decreasing at a median rate of about 3.54 milligrams per liter per year. Five major ions (calcium, magnesium, sodium, sulfate, and chloride) were tested for trends. The results indicate that processes within source areas with rock and soil types (or other unidentified sources) bearing calcium, sodium, and sulfate had the largest effect on the downward trend in salinity load upstream from station CAMEO. Downward trends in salinity load resulting from ground-water sources and/or land-use change were thought to be possible reasons for the observed decreases in salinity loads; however, the cause or causes of the decreasing salinity loads are not fully understood. A reduction in the amount of ground-water percolation from Region 4 (resulting from work done through Federal irrigation system improvement programs as well as privately funded irrigation system improvements) has helped reduce annual salinity load from Region 4 by approxima

  15. Disinfection potential of electrolyzed solutions containing sodium chloride at low concentrations.

    PubMed

    Morita, C; Sano, K; Morimatsu, S; Kiura, H; Goto, T; Kohno, T; Hong, W U; Miyoshi, H; Iwasawa, A; Nakamura, Y; Tagawa, M; Yokosuka, O; Saisho, H; Maeda, T; Katsuoka, Y

    2000-03-01

    Electrolyzed products of sodium chloride solution were examined for their disinfection potential against hepatitis B virus (HBV) and human immunodeficiency virus (HIV) in vitro. Electrolysis of 0.05% NaCl in tap water was carried out for 45 min at room temperature using a 3 A electric current in separate wells installed with positive and negative electrodes. The electrolyzed products were obtained from the positive well. The oxidation reduction potential (ORP), pH and free chlorine content of the product were 1053 mV, pH 2.34 and 4.20 ppm, respectively. The products modified the antigenicity of the surface protein of HBV as well as the infectivity of HIV in time- and concentration-dependent manner. Although the inactivating potential was decreased by the addition of contaminating protein, recycling of the product or continuous addition of fresh product may restore the complete disinfection against bloodborne pathogens.

  16. The Plasma-Lyte 148 v Saline (PLUS) study protocol: a multicentre, randomised controlled trial of the effect of intensive care fluid therapy on mortality.

    PubMed

    Hammond, Naomi E; Bellomo, Rinaldo; Gallagher, Martin; Gattas, David; Glass, Parisa; Mackle, Diane; Micallef, Sharon; Myburgh, John; Saxena, Manoj; Taylor, Colman; Young, Paul; Finfer, Simon

    2017-09-01

    0.9% sodium chloride (saline) is the most commonly administered resuscitation fluid on a global basis but emerging evidence suggests that its high chloride content may have important adverse effects. To describe the study protocol for the Plasma- Lyte 148 v Saline study, which will test the hypothesis that in critically ill adult patients the use of Plasma-Lyte 148 (a buffered crystalloid solution) for fluid therapy results in different 90-day all-cause mortality when compared with saline. We will conduct this multicentre, blinded, randomised controlled trial in approximately 50 intensive care units in Australia and New Zealand. We will randomly assign 8800 patients to either Plasma-Lyte 148 or saline for all resuscitation fluid, maintenance fluid and compatible drug dilution therapy while in the ICU for up to 90 days after randomisation. The primary outcome is 90-day all-cause mortality; secondary outcomes include mean and peak creatinine concentration, incidence of renal replacement therapy, incidence and duration of vasoactive drug treatment, duration of mechanical ventilation, ICU and hospital length of stay, and quality of life and health services use at 6 months. The PLUS study will provide high-quality data on the comparative safety and efficacy of Plasma-Lyte 148 compared with saline for resuscitation and compatible crystalloid fluid therapy in critically ill adult patients.

  17. Role of Lipid Composition and Lipid Peroxidation in the Sensitivity of Fungal Plant Pathogens to Aluminum Chloride and Sodium Metabisulfite▿

    PubMed Central

    Avis, Tyler J.; Michaud, Mélanie; Tweddell, Russell J.

    2007-01-01

    Aluminum chloride and sodium metabisulfite have shown high efficacy at low doses in controlling postharvest pathogens on potato tubers. Direct effects of these two salts included the loss of cell membrane integrity in exposed pathogens. In this work, four fungal potato pathogens were studied in order to elucidate the role of membrane lipids and lipid peroxidation in the relative sensitivity of microorganisms exposed to these salts. Inhibition of mycelial growth in these fungi varied considerably and revealed sensitivity groups within the tested fungi. Analysis of fatty acids in these fungi demonstrated that sensitivity was related to high intrinsic fatty acid unsaturation. When exposed to the antifungal salts, sensitive fungi demonstrated a loss of fatty acid unsaturation, which was accompanied by an elevation in malondialdehyde content (a biochemical marker of lipid peroxidation). Our data suggest that aluminum chloride and sodium metabisulfite could induce lipid peroxidation in sensitive fungi, which may promote the ensuing loss of integrity in the plasma membrane. This direct effect on fungal membranes may contribute, at least in part, to the observed antimicrobial effects of these two salts. PMID:17337539

  18. Salt taste adaptation: the psychophysical effects of adapting solutions and residual stimuli from prior tastings on the taste of sodium chloride.

    PubMed

    O'Mahony, M

    1979-01-01

    The paper reviews how adaptation to sodium chloride, changing in concentration as a result of various experimental procedures, affects measurements of the sensitivity, intensity, and quality of the salt taste. The development of and evidence for the current model that the salt taste depends on an adaptation level (taste zero) determined by the sodium cation concentration is examined and found to be generally supported, despite great methodological complications. It would seem that lower adaptation levels elicit lower thresholds, higher intensity estimates, and altered quality descriptions with predictable effects on psychophysical measures.

  19. Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus.

    PubMed

    Saum, Stephan H; Pfeiffer, Friedhelm; Palm, Peter; Rampp, Markus; Schuster, Stephan C; Müller, Volker; Oesterhelt, Dieter

    2013-05-01

    Salt acclimation in moderately halophilic bacteria is the result of action of a grand interplay orchestrated by signals perceived from the environment. To elucidate the cellular players involved in sensing and responding to changing salinities we have determined the genome sequence of Halobacillus halophilus, a Gram-positive moderate halophilic bacterium that has a strict requirement for the anion chloride. Halobacillus halophilus synthesizes a multitude of different compatible solutes and switches its osmolyte strategy with the external salinity and growth phase. Based on the emerging genome sequence, the compatible solutes glutamate, glutamine, proline and ectoine have already been experimentally studied. The biosynthetic routes for acetyl ornithine and acetyl lysine are also delineated from the genome sequence. Halobacillus halophilus is nutritionally very versatile and most compatible solutes cannot only be produced but also used as carbon and energy sources. The genome sequence unravelled isogenes for many pathways indicating a fine regulation of metabolism. Halobacillus halophilus is unique in integrating the concept of compatible solutes with the second fundamental principle to cope with salt stress, the accumulation of molar concentrations of salt (Cl(-)) in the cytoplasm. Extremely halophilic bacteria/archaea, which exclusively rely on the salt-in strategy, have a high percentage of acidic proteins compared with non-halophiles with a low percentage. Halobacillus halophilus has an intermediate position which is consistent with its ability to integrate both principles. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Chloride sensing by WNK1 kinase involves inhibition of autophosphorylation

    PubMed Central

    Piala, Alexander T.; Moon, Thomas M.; Akella, Radha; He, Haixia; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2014-01-01

    WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. Here, we found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation. PMID:24803536

  1. The Importance of Abnormal Chloride Homeostasis in Stable Chronic Heart Failure

    PubMed Central

    Grodin, Justin L.; Verbrugge, Frederik H.; Ellis, Stephen G.; Mullens, Wilfried; Testani, Jeffrey M.; Wilson Tang MD, W. H.

    2015-01-01

    Background The aim of this analysis was to determine the long-term prognostic value of lower serum chloride in patients with stable chronic heart failure. Electrolyte abnormalities are prevalent in patients with chronic heart failure. Little is known regarding the prognostic implications of lower serum chloride. Methods and Results Serum chloride was measured in 1,673 consecutively consented stable patients with a history of heart failure undergoing elective diagnostic coronary angiography. All patients were followed for 5-year all-cause mortality, and survival models were adjusted for variables that confounded the chloride-risk relationship. The average chloride level was 102±4 mEq/L. Over 6,772 person-years of follow-up, there were 547 deaths. Lower chloride (per standard deviation decrease) was associated with a higher adjusted risk of mortality (HR 1.29, 95%CI 1.12–1.49, P<0.001). Chloride levels net-reclassified risk in 10.4% (P=0.03) when added to a multivariable model (with a resultant C-statistic of 0.70), in which sodium levels were not prognostic (P=0.30). In comparison to those with above first quartile chloride (≥101 mEq/L) and sodium (≥138 meq/L), subjects with first quartile chloride had a higher adjusted mortality risk, whether they had first quartile sodium (HR 1.35, 95%CI 1.08–1.69, P=0.008) or higher (HR 1.43, 95%CI 1.12–1.85, P=0.005). However, subjects with first quartile sodium but above first quartile chloride had no association with mortality (P=0.67). Conclusions Lower serum chloride levels are independently and incrementally associated with increased mortality risk in patients with chronic heart failure. A better understanding of the biological role of serum chloride is warranted. PMID:26721916

  2. Evaluation of 2 Purification Methods for Isolation of Human Adipose-Derived Stem Cells Based on Red Blood Cell Lysis With Ammonium Chloride and Hypotonic Sodium Chloride Solution.

    PubMed

    Li, Sheng-Hong; Liao, Xuan; Zhou, Tian-En; Xiao, Li-Ling; Chen, Yuan-Wen; Wu, Fan; Wang, Jing-Ru; Cheng, Biao; Song, Jian-Xing; Liu, Hong-Wei

    2017-01-01

    The present study was conducted to compare 2 purification methods for isolation of human adipose-derived stromal vascular fraction or stem cells (ADSCs) based on red blood cell (RBC) lysis with 155 mM ammonium chloride (NH4Cl) and hypotonic sodium chloride (NaCl) solution, and try to develop a safe, convenient, and cost-effective purification method for clinical applications. Adipose-derived stem cells and RBC were harvested from the fatty and fluid portions of liposuction aspirates, respectively. The suitable concentration of hypotonic NaCl solution on RBC lysis for purification of ADSCs was developed by RBC osmotic fragility test and flow cytometry analysis. The effects of 155 mM NH4Cl or 0.3% NaCl solution on ADSCs proliferation and RBC lysis efficiency were examined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and lysis efficiency test, respectively. In addition, the adipogenic and osteogenic capabilities, phenotype and genetic stability of ADSCs were evaluated by oil red staining, alkaline phosphatase activity measurement, flow cytometry, and karyotype analysis, respectively. Sodium chloride solution in 0.3% concentration effectively removed RBCs and did not influence the survival of ADSCs in the 10-minute incubation time. The lysis efficiency did not differ significantly between 0.3% NaCl and 155 mM NH4Cl. Moreover, the adipogenic and osteogenic capabilities, surface marker expression and karyotype of the ADSCs were not affected by lysis solutions or by lysis per se. However, the proliferation capacity in the 0.3% NaCl group was superior to that in 155 mM NH4Cl group. Our data suggest that 0.3% NaCl solution is useful for isolating ADSCs from liposuction aspirate for clinical applications with safety, convenience, and cost-effect.

  3. Sodium Chloride and Water Transport in the Medullary Thick Ascending Limb of Henle. EVIDENCE FOR ACTIVE CHLORIDE TRANSPORT

    PubMed Central

    Rocha, Antonino S.; Kokko, Juha P.

    1973-01-01

    Transport of NaCl and water was examined in the rabbit medullary thick ascending limb of Henle (ALH) by perfusing isolated segments of these nephrons in vitro. Osmotic water permeability was evaluated by perfusing tubules against imposed osmotic gradients. In these experiments the net transport of fluid remained at zero when segments of thick ALH were perfused with isotonic ultrafiltrate in a bath of rabbit serum in which the serum osmolality was increased by the addition of either 239±8 mosmol/liter of raffinose or 232±17 mosmol of NaCl indicating that the thick ascending limb of Henle is impermeant to osmotic flow of water. When these tubules were perfused at slow rates with isosmolal ultrafiltrate of same rabbit serum as used for the bath, the effluent osmolality was consistently lowered to concentrations less than the perfusate and the bath. That this decrease in collected fluid osmolality represented salt transport was demonstrated in a separate set of experiments in which it was shown that the sodium and chloride concentrations decreased to 0.79±0.02 and 0.77±0.02 respectively when compared with the perfusion fluid concentrations. In each instance the simultaneously determined transtubular potential difference (PD) revealed the lumen to be positive with the magnitude dependent on the perfusion rate. At flow rates above 2 nl·min-1, the mean transtubular PD was stable and equal to 6.70±0.34 mv. At stop-flow conditions this PD became more positive. Ouabain and cooling reversibly decreased the magnitude of this PD. The transtubular PD remained positive, 3.3±0.2 mV, when complete substitution of Na by choline was carried out in both the perfusion fluid and the bathing media. These results are interpreted to indicate that the active transport process is primarily an electrogenic chloride mechanism. The isotopic permeability coefficient for Na was 6.27±0.38 × 10-5 cm·s-1 indicating that the thick ALH is approximately as permeable to Na as the proximal

  4. Stability of buprenorphine, haloperidol and glycopyrrolate mixture in a 0.9% sodium chloride solution.

    PubMed

    Jäppinen, A; Kokki, H; Naaranlahti, T J; Rasi, A S

    1999-12-01

    Combinations of opioids and adjuvant drug solutions are often used in clinical practice while little information is available on their microbiological or chemical stability. Currently there are no commercially available, prepacked, ready-to-use epidural or subcutaneous mixtures. Thus, epidural and subcutaneous analgesic mixtures must be prepared in the pharmacy on an as-needed basis. Such mixtures are typically used for the treatment of severe pain in cancer patients. The aim of this study was to investigate the microbiological and chemical stability of a buprenorphine, haloperidol and glycopyrrolate mixture in a 0.9% sodium chloride solution. A high performance liquid chromatographic (HPLC) method and pH-meter were used to conduct the analyses. Antimicrobial activity of each component was studied by an agar dilution method. According to the results from the chemical and microbiological stability studies, this mixture can be stored in polypropylene (PP) syringes and polyvinyl chloride (PVC) medication cassettes for at least 30 days at either 21 degrees C or 4 degrees C, and for 16 days in PP syringes at 36 degrees C, and for 9 days in PVC medication cassettes at 36 degrees C.

  5. Insights into metabolism and sodium chloride adaptability of carbaryl degrading halotolerant Pseudomonas sp. strain C7.

    PubMed

    Trivedi, Vikas D; Bharadwaj, Anahita; Varunjikar, Madhushri S; Singha, Arminder K; Upadhyay, Priya; Gautam, Kamini; Phale, Prashant S

    2017-08-01

    Pseudomonas sp. strain C7 isolated from sediment of Thane creek near Mumbai, India, showed the ability to grow on glucose and carbaryl in the presence of 7.5 and 3.5% of NaCl, respectively. It also showed good growth in the absence of NaCl indicating the strain to be halotolerant. Increasing salt concentration impacted the growth on carbaryl; however, the specific activity of various enzymes involved in the metabolism remained unaffected. Among various enzymes, 1-naphthol 2-hydroxylase was found to be sensitive to chloride as compared to carbaryl hydrolase and gentisate 1,2-dioxygenase. The intracellular concentration of Cl - ions remained constant (6-8 mM) for cells grown on carbaryl either in the presence or absence of NaCl. Thus the ability to adapt to the increasing concentration of NaCl is probably by employing chloride efflux pump and/or increase in the concentration of osmolytes as mechanism for halotolerance. The halotolerant nature of the strain will be beneficial to remediate carbaryl from saline agriculture fields, ecosystems and wastewaters.

  6. A STUDY OF THE ACIDOSIS, BLOOD UREA, AND PLASMA CHLORIDES IN URANIUM NEPHRITIS IN THE DOG, AND OF THE PROTECTIVE ACTION OF SODIUM BICARBONATE.

    PubMed

    Goto, K

    1917-05-01

    1. The presence of an acidosis in dogs with experimental uranium nephritis is demonstrable by the Van Slyke-Stillman-Cullen method and that of Marriott. It is detected more readily by the former method. 2. This acidosis is associated with increase in the blood urea and plasma chlorides and with the appearance of albumin and casts in the urine. 3. The oral administration of sodium bicarbonate diminishes the acidosis, the increase in plasma chlorides, the amount of albumin and casts in the urine, and, to a lesser degree, the increase in the blood urea following the administration of uranium. It also diminishes the severity of the changes produced by uranium in the kidneys. 4. The oral administration of sodium bicarbonate to normal dogs raises the carbon dioxide content of the plasma as determined by the. Van Slyke-Stillman-Cullen method.

  7. Evidence against bicarbonate reabsorption in the ascending limb, particularly as disclosed by free-water clearance studies.

    PubMed Central

    Seldin, D. W.; Rosin, J. M.; rector, F. C.

    1975-01-01

    Bicarbonate reabsorption in the thick ascending limb of Henle's loop was examined by studies of free-water clearance (CH2O) and free-water reabsorption (TcH2O). During maximal water diuresis in the dog, CH2O/GFR was taken as an indes of sodium reabsorption in, and urine flow (V/GFR) as an index of delivery of filtrate to, this scarbonate, infusion of a nonreabsorbable solute (hypotonic mannitol) and administration of an inhibitor of bicarbonate reabsorption (acetaent, but less than that achieved with hypotonic saline infusion. This suggests that sodium that sodium bicarbonate is not reabsorbed in the ascending limb. Rather, it is the sodium chloride, swept out of the proximal tubule by osmotic diuresis due to nonreabsorbed mannitol or sodium bicarbonate, that is reabsorbed in the ascending limb thereby increasing CH2O, whereas the nonreabsorption of mannitol and sodium bicarbonate results in a depressed CH20 per unit V when compared with hypotonic saline. V/GFR is not a satisfactory index of delivery to the ascending limb during osmotic diuresis, since it includes water obligated by nonreabsorbable solutes. When a better index of delivery, the sum of the clearances of chloride (CC1) and free-water (CH2O) is used, hypotonic bicarbonate infusion, hypotonic mannitol infusion and acetazolamide administration increase CH2O/GFR per unit delivery to the same extent as odes hypotonic saline infusion. Studies in dogs and rats on TcH2O also indicate that sodium bicarbonate is an impermeant solute in the ascending limb. Osmotic diuresis due to sodium bicarbonate diuresis, produced either by inhibition of sodium bicarbonate reabsorption (acetazolamide, L-lysine mono-hydrochloride) or infusion of sodium bicarbonate, or mannitol diuresis both produced marked chloruresis and increased TcH2O to the same extent as did hypertonic saline infusion. If chloride excretion was almost eliminated by hemodialysis against a chloride-free dialysate (dogs) or prolonged feeding of a salt

  8. Effect of saline irrigation water on gas exchange and proline metabolism in ber (Ziziphus).

    PubMed

    Bagdi, D L; Bagri, G K

    2016-09-01

    An experiment was conducted in pots of 25 kg capacity to study the effect of saline irrigation (EC 0,5,10,15 and 20 dSm-1) prepared by mixing NaCl, NaSO4, CaCl and MgCl2 in 3:1 ratio of chloride and sulphate on gas exchange traits, membrane stability, chlorophyll stability index and osmolytic defense mechanism in Ziziphus rotundifolia and Ziziphus nummularia species of Indian jujube (Z.mauritiana). Result showed that net photosynthetic rate (PN), transpiration (e) and stomatal conductance were comparatively lower in Ziziphus nummularia, which further declined with increasing level of saline irrigation water. Chlorophyll stability and membrane stability also declined significantly in salt stress, with higher magnitude in Ziziphus nummularia. The activity of proline anabolic enzymes; Δ1-Pyrrolline-5-carboxylate reductase, Δ1-Pyrrolline-5-carboxylate synthetase and Ornithine-δ-aminotransferase were recorded higher in Ziziphus rotundifolia with decrease in proline dehydrogenase. The sodium content was observed higher in roots of Ziziphus rotundifolia and leaves of Ziziphus nummularia. Therefore, it is suggested that salt tolerance mechanism was more efficiently operative in Ziziphus rotundifolia owing to better management of physiological attributes, osmolytic defense mechanism and restricted translocation of sodium from root to leaves along with larger accumulation of potassium in its leaves.

  9. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.

    PubMed

    Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi

    2017-04-01

    The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.

  10. Electrochemical oxidation of tramadol in low-salinity reverse osmosis concentrates using boron-doped diamond anodes.

    PubMed

    Lütke Eversloh, Christian; Schulz, Manoj; Wagner, Manfred; Ternes, Thomas A

    2015-04-01

    The electrochemical treatment of low-salinity reverse osmosis (RO) concentrates was investigated using tramadol (100 μM) as a model substance for persistent organic contaminants. Galvanostatic degradation experiments using boron-doped diamond electrodes at different applied currents were conducted in RO concentrates as well as in ultra-pure water containing either sodium chloride or sodium sulfate. Kinetic investigations revealed a significant influence of in-situ generated active chlorine besides direct anodic oxidation. Therefore, tramadol concentrations decreased more rapidly at elevated chloride content. Nevertheless, reduction of total organic carbon (TOC) was found to be comparatively low, demonstrating that transformation rather than mineralization was taking place. Early stage product formation could be attributed to both direct and indirect processes, including demethylation, hydroxylation, dehydration, oxidative aromatic ring cleavage and halogenation reactions. The latter led to various halogenated derivatives and resulted in AOX (adsorbable organic halogens) formation in the lower mg/L-range depending on the treatment conditions. Characterisation of transformation products (TPs) was achieved via MS(n) experiments and additional NMR measurements. Based on identification and quantification of the main TPs in different matrices and on additional potentiostatic electrolysis, a transformation pathway was proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The effect of sodium reduction with and without potassium chloride on the survival of Listeria monocytogenes in Cheddar cheese.

    PubMed

    Hystead, E; Diez-Gonzalez, F; Schoenfuss, T C

    2013-10-01

    Sodium chloride (NaCl) in cheese contributes to flavor and texture directly and by its effect on microbial and enzymatic activity. The salt-to-moisture ratio (S/M) is used to gauge if conditions for producing good-quality cheese have been met. Reductions in salt that deviate from the ideal S/M range could result in changing culture acidification profiles during cheese making. Lactococcus lactis ssp. lactis or Lc. lactis ssp. cremoris are both used as cultures in Cheddar cheese manufacture, but Lc. lactis ssp. lactis has a higher salt and pH tolerance than Lc. lactis ssp. cremoris. Both salt and pH are used to control growth and survival of Listeria monocytogenes and salts such as KCl are commonly used to replace the effects of NaCl in food when NaCl is reduced. The objectives of this project were to determine the effects of sodium reduction, KCl use, and the subspecies of Lc. lactis used on L. monocytogenes survival in stirred-curd Cheddar cheese. Cheese was manufactured with either Lc. lactis ssp. lactis or Lc. lactis ssp. cremoris. At the salting step, curd was divided and salted with a concentration targeted to produce a final cheese with 600 mg of sodium/100 g (control), 25% reduced sodium (450 mg of sodium/100 g; both with and without KCl), and low sodium (53% sodium reduction or 280 mg of sodium/100 g; both with and without KCl). Potassium chloride was added on a molar equivalent to the NaCl it replaced to maintain an equivalent S/M. Cheese was inoculated with a 5-strain cocktail of L. monocytogenes at different times during aging to simulate postprocessing contamination, and counts were monitored over 27 or 50 d, depending on incubation temperature (12 or 5 °C, respectively). In cheese inoculated with 4 log₁₀ cfu of L. monocytogenes/g 2 wk after manufacture, viable counts declined by more than 3 log₁₀ cfu/g in all treatments over 60 d. When inoculated with 5 log₁₀ cfu/g at 3mo of cheese age, L. monocytogenes counts in Cheddar cheese were also

  12. The effect of hypophysectomy on chloride balance in young-of-the-year bowfin, Amia calva.

    PubMed

    Duff, D; Hanson, R; Fleming, W R

    1987-01-01

    The effect of hypophysectomy on chloride balance was examined in young-of-the-year bowfin, Amia calva. Hypophysectomy resulted in decreased serum and total body chloride levels but not in serum and total body sodium levels. Hypophysectomy resulted in decreased chloride influx with no effect on chloride efflux or sodium fluxes. Prolactin therapy reversed the effect of hypophysectomy on electrolyte balance but caused a significant reduction in serum protein.

  13. REDUCING TITANIUM TETRACHLORIDE WITH HIGH-SURFACE SODIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleck, D.C.; Wong, M.M.; Baker, D.H. Jr.

    1960-01-01

    A method of using sodium for reducing titanium tetrachloride, developed to improve the extractive metallurgy of titunium, is described. Finely divided titanium metal, titanium lower chlorides, or a mixture thereof was produced in a continuous operation at temperatures between 105 and 205 deg C by the reaction of molten sodium and vaporized titanium tetrachloride in an agitated bed of finely divided inert solids (powdered sodium chloride or the reaction products). Composition of the product was controlled by varying the relative quantities of sodium and titanium tetrachloride used. A description of the operations and analytical data of the reaction products aremore » given. (auth)« less

  14. Pretreated cheese whey wastewater management by agricultural reuse: chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions.

    PubMed

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-10-01

    The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW. © 2013

  15. Removal of sodium chloride from human urine via batch recirculation electrodialysis at constant applied voltage

    NASA Technical Reports Server (NTRS)

    Gordils-Striker, Nilda E.; Colon, Guillermo

    2003-01-01

    The removal of sodium chloride (NaCl) from human urine using a six-compartment electrodialysis cell with batch recirculation mode of operation for use in advanced life support systems (ALSS) was studied. From the results obtained, batch recirculation at constant applied voltage yields high values (approximately 94% of NaCl removal. Based on the results, the initial rate of NaCl removal was correlated to a power function of the applied voltage: -r=2.0 x 10(-4)E(3.8). With impedance spectroscopy methods, it was also found that the anion membranes were more affected by fouling with an increase of the ohmic resistance of almost 11% compared with 7.4% for the cationic ones.

  16. Impacts of soil and groundwater salinization on tree crop performance in post-tsunami Aceh Barat, Indonesia

    NASA Astrophysics Data System (ADS)

    Marohn, C.; Distel, A.; Dercon, G.; Wahyunto; Tomlinson, R.; Noordwijk, M. v.; Cadisch, G.

    2012-09-01

    The Indian Ocean tsunami of December 2004 had far reaching consequences for agriculture in Aceh province, Indonesia, and particularly in Aceh Barat district, 150 km from the seaquake epicentre. In this study, the spatial distribution and temporal dynamics of soil and groundwater salinity and their impact on tree crops were monitored in Aceh Barat from 2006 to 2008. On 48 sampling points along ten transects, covering 40 km of coastline, soil and groundwater salinity were measured and related to mortality and yield depression of the locally most important tree crops. Given a yearly rainfall of over 3000 mm, initial groundwater salinity declined rapidly from over 10 to less than 2 mS cm-1 within two years. On the other hand, seasonal dynamics of the groundwater table in combination with intrusion of saline water into the groundwater body led to recurring elevated salinity, sufficient to affect crops. Tree mortality and yield depression in the flooded area varied considerably between tree species. Damage to coconut (65% trees damaged) was related to tsunami run-up height, while rubber (50% trees damaged) was mainly affected by groundwater salinity. Coconut yields (-35% in average) were constrained by groundwater Ca2+ and Mg2+, while rubber yields (-65% on average) were related to groundwater chloride, pH and soil sodium. These findings have implications on planting deep-rooted tree crops as growth will be constrained by ongoing oscillations of the groundwater table and salinity.

  17. UV/TiO₂ photocatalytic oxidation of recalcitrant organic matter: effect of salinity and pH.

    PubMed

    Muthukumaran, Shobha; Song, Lili; Zhu, Bo; Myat, Darli; Chen, Jin-Yuan; Gray, Stephen; Duke, Mikel

    2014-01-01

    Photocatalytic oxidation processes have interest for water treatment since these processes can remove recalcitrant organic compounds and operate at mild conditions of temperature and pressure. However, performance under saline conditions present in many water resources is not well known. This study aims to explore the basic effects of photocatalysis on the removal of organic matter in the presence of salt. A laboratory-scale photocatalytic reactor system, employing ultraviolet (UV)/titanium dioxide (TiO₂) photocatalysis was evaluated for its ability to remove the humic acid (HA) from saline water. The particle size and zeta potential of TiO₂ under different conditions including solution pH and sodium chloride (NaCl) concentrations were characterized. The overall degradation of organics over the NaCl concentration range of 500-2,000 mg/L was found to be 80% of the non-saline equivalent after 180 min of the treatment. The results demonstrated that the adsorption of HA onto the TiO₂ particles was dependent on both the pH and salinity due to electrostatic interaction and highly unstable agglomerated dispersion. This result supports UV/TiO₂ as a viable means to remove organic compounds, but the presence of salt in waters to be treated will influence the performance of the photocatalytic oxidation process.

  18. Stability of tacrolimus injection diluted in 0.9% sodium chloride injection and stored in Excel bags.

    PubMed

    Myers, Alan L; Zhang, Yanping; Kawedia, Jitesh D; Shank, Brandon R; Deaver, Melissa A; Kramer, Mark A

    2016-12-15

    The chemical stability and physical compatibility of tacrolimus i.v. infusion solutions prepared in Excel bags and stored at 23 or 4 °C for up to nine days were studied. Tacrolimus admixtures (2, 4, and 8 μg/mL) were prepared in Excel bags using 0.9% sodium chloride injection and stored at 23 °C without protection from light or at 4 °C in the dark. Test samples were withdrawn from triplicate bag solutions immediately after preparation and at predetermined time intervals (1, 3, 5, 7, and 9 days). Chemical stability was assessed by measuring tacrolimus concentrations using a validated stability-indicating high-performance liquid chromatography assay. The physical stability of the admixtures was assessed by visual examination and by measuring turbidity, particle size, and drug content. All test solutions stored at 23 or 4 °C had a no greater than 6% loss of the initial tacrolimus concentration throughout the nine-day study period. All test samples of tacrolimus admixtures, under both storage conditions, were without precipitation and remained clear initially and throughout the nine-day observation period. Changes in turbidities were minor; measured particulates remained few in number in all samples throughout the study. Extemporaneously prepared infusion solutions of tacrolimus 2, 4, and 8 μg/mL in 0.9% sodium chloride injection in Excel bags were chemically and physically stable for at least nine days when stored at room temperature (23 °C) without protection from light and when stored in a refrigerator (4 °C) in the dark. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  19. Modeling the growth kinetics of Bacillus cereus as a function of temperature, pH, sodium lactate and sodium chloride concentrations.

    PubMed

    Olmez, Hülya Kaptan; Aran, Necla

    2005-02-01

    Mathematical models describing the growth kinetic parameters (lag phase duration and growth rate) of Bacillus cereus as a function of temperature, pH, sodium lactate and sodium chloride concentrations were obtained in this study. In order to get a residual distribution closer to a normal distribution, the natural logarithm of the growth kinetic parameters were used in modeling. For reasons of parsimony, the polynomial models were reduced to contain only the coefficients significant at a level of p

  20. Sulphates for skin preservation--a novel approach to reduce tannery effluent salinity hazards.

    PubMed

    Vankar, Padma S; Dwivedi, Ashish Kr

    2009-04-15

    In tanneries microorganisms are able to find environment suitable for their growth. Raw hide of buffalo and other animals like goat that are economically important, are an ideal source of nutrients for bacterial and fungal growth. In the past, preservatives like sodium chloride provided effective protection to fresh hides however the ill effect of their excessive use was not evaluated. But recently concern over potential ecological hazards has become more deliberate and sodium chloride features lot of disadvantages in agriculture as most of the tannery effluent is flown in agricultural fields in India. After rigorous laboratory experimentation on moisture content, SEM of hide, pure sodium sulphate as well as sodium sulphate in addition with sodium chloride (i.e. 10% w/w and 20% w/w) proved as most preferable option for curing of buffalo hide which gives effective preservation. Pollution load studies put forward sodium sulphate as an effective curing agent for buffalo hide to apply at industrial scale also.

  1. Balanced Crystalloids versus Saline in the Intensive Care Unit. The SALT Randomized Trial.

    PubMed

    Semler, Matthew W; Wanderer, Jonathan P; Ehrenfeld, Jesse M; Stollings, Joanna L; Self, Wesley H; Siew, Edward D; Wang, Li; Byrne, Daniel W; Shaw, Andrew D; Bernard, Gordon R; Rice, Todd W

    2017-05-15

    Saline is the intravenous fluid most commonly administered to critically ill adults, but it may be associated with acute kidney injury and death. Whether use of balanced crystalloids rather than saline affects patient outcomes remains unknown. To pilot a cluster-randomized, multiple-crossover trial using software tools within the electronic health record to compare saline to balanced crystalloids. This was a cluster-randomized, multiple-crossover trial among 974 adults admitted to a tertiary medical intensive care unit from February 3, 2015 to May 31, 2015. The intravenous crystalloid used in the unit alternated monthly between saline (0.9% sodium chloride) and balanced crystalloids (lactated Ringer's solution or Plasma-Lyte A). Enrollment, fluid delivery, and data collection were performed using software tools within the electronic health record. The primary outcome was the difference between study groups in the proportion of isotonic crystalloid administered that was saline. The secondary outcome was major adverse kidney events within 30 days (MAKE30), a composite of death, dialysis, or persistent renal dysfunction. Patients assigned to saline (n = 454) and balanced crystalloids (n = 520) were similar at baseline and received similar volumes of crystalloid by 30 days (median [interquartile range]: 1,424 ml [500-3,377] vs. 1,617 ml [500-3,628]; P = 0.40). Saline made up a larger proportion of the isotonic crystalloid given in the saline group than in the balanced crystalloid group (91% vs. 21%; P < 0.001). MAKE30 did not differ between groups (24.7% vs. 24.6%; P = 0.98). An electronic health record-embedded, cluster-randomized, multiple-crossover trial comparing saline with balanced crystalloids can produce well-balanced study groups and separation in crystalloid receipt. Clinical trial registered with www.clinicaltrials.gov (NCT 02345486).

  2. RNA sequencing analysis of transcriptional change in the freshwater mussel Elliptio complanata after environmentally relevant sodium chloride exposure

    USGS Publications Warehouse

    Robertson, Laura S.; Galbraith, Heather S.; Iwanowicz, Deborah; Blakeslee, Carrie J.; Cornman, Robert S.

    2017-01-01

    To identify potential biomarkers of salt stress in a freshwater sentinel species, we examined transcriptional responses of the common mussel Elliptio complanata to controlled sodium chloride (NaCl) exposures. Ribonucleic acid sequencing (RNA-Seq) of mantle tissue identified 481 transcripts differentially expressed in adult mussels exposed to 2 ppt NaCl (1.2 ppt chloride) for 7 d, of which 290 had nonoverlapping intervals. Differentially expressed gene categories included ion and transmembrane transport, oxidoreductase activity, maintenance of protein folding, and amino acid metabolism. The rate-limiting enzyme for synthesis of taurine, an amino acid frequently linked to osmotic stress in aquatic species, was upregulated, as was the transmembrane ion pump sodium/potassium adenosine 5′-triphosphatase. These patterns confirm a primary transcriptional response to the experimental dose, albeit likely overlapping with nonspecific secondary stress responses. Substantial involvement of the heat shock protein 70 chaperone family and the water-transporting aquaporin family was not detected, however, in contrast to some studies in other bivalves. A subset of the most significantly regulated genes was confirmed by quantitative polymerase chain reaction in an independent sample. Cluster analysis showed separation of mussels exposed to 2 ppt NaCl from control mussels in multivariate space, but mussels exposed to 1 ppt NaCl were largely indistinguishable from controls. Transcriptome-scale analysis of salt exposure under laboratory conditions efficiently identified candidate biomarkers for further functional analysis and field validation

  3. Salt

    USGS Publications Warehouse

    Franson, J.C.; Friend, M.

    1999-01-01

    Animals become victims of salt poisoning or toxicosis when toxic levels of sodium and chloride accumulate in the blood after they ingest large amounts of salt or, in some species, are deprived of water. For birds, salt sources may include saline water and road salt.Normally, the salt glands of birds (Fig. 47.1) excrete sodium and chloride to maintain the proper physiologic chemical balance. However, when there has been insufficient time for acclimation of the salt gland to the saline environment, or when salt gland function is compromised by exposure to certain pesticides or oil, the electrolyte balance of the blood may be upset by the excess sodium and chloride, resulting in toxicosis. Salt accumulation on the outside of the body, or salt encrustation, is a greater problem for waterbirds that use very saline waters than is salt toxicosis. Salt encrustation can lead to exertion, acute muscle degeneration, and eventual drowning during the struggle to escape entrapment.

  4. Effects of Different Oral Doses of Sodium Chloride on the Basal Acid-Base and Mineral Status of Exercising Horses Fed Low Amounts of Hay.

    PubMed

    Zeyner, Annette; Romanowski, Kristin; Vernunft, Andreas; Harris, Patricia; Müller, Ann-Marie; Wolf, Carola; Kienzle, Ellen

    2017-01-01

    The provision of NaCl, according to current recommendations, to horses in moderate work has been shown to induce immediate postprandial acidosis. The present study aimed to clarify whether this NaCl induced acidosis i) persists beyond the immediate postprandial period, and ii) is still present after a 2 week adaptation period. Six adult warmblood mares in moderate work received daily 1.00 kg hay per 100 kg body weight (bwt) only together with 0.64 kg unprocessed cereal grains/100 kg bwt.d as fed basis. Using a 3x3 Latin Square, either 0 (NaCl-0), 50 (NaCl-50) or 100 (NaCl-100) g NaCl/d were fed together with the concentrates in two equal doses for 3 weeks. During the final week, a mineral digestibility trial was undertaken. The middle sodium and chloride intake (NaCl-50) at least met the most common recommendations for moderate work. Morning (7:00 AM) urine and venous blood samples were collected on days 0, 1-4, 8, and 15, and analysed for pH, acid-base status, creatinine and electrolyte concentrations. Fractional electrolyte clearances (FC) were determined. Mean apparent sodium digestibility ranged between 60-62% whereas chloride digestibility was consistently above 94%. Supplementing 100 g but not 50 g of NaCl resulted in significant reduction of blood pH and base excess as well as urinary pH and urine acid excretion. Both 50 g and 100 g NaCl supplementation caused a significant reduction in base and net acid-base excretion, urine density and potassium concentration, but increased urine sodium concentration and the FC of sodium and chloride (P < 0.05). This suggests that a high proportion of the recommended salt doses is excreted renally. The above effects of NaCl supplementation persisted over the 2 week measurement period. Results suggest that feeding 100 g NaCl to moderately exercising horses results in mild metabolic acidosis, whereas feeding 50 g according to current recommendations resulted in compensated acidosis.

  5. Effects of Different Oral Doses of Sodium Chloride on the Basal Acid-Base and Mineral Status of Exercising Horses Fed Low Amounts of Hay

    PubMed Central

    Zeyner, Annette; Romanowski, Kristin; Vernunft, Andreas; Harris, Patricia; Müller, Ann-Marie; Wolf, Carola; Kienzle, Ellen

    2017-01-01

    The provision of NaCl, according to current recommendations, to horses in moderate work has been shown to induce immediate postprandial acidosis. The present study aimed to clarify whether this NaCl induced acidosis i) persists beyond the immediate postprandial period, and ii) is still present after a 2 week adaptation period. Six adult warmblood mares in moderate work received daily 1.00 kg hay per 100 kg body weight (bwt) only together with 0.64 kg unprocessed cereal grains/100 kg bwt.d as fed basis. Using a 3x3 Latin Square, either 0 (NaCl-0), 50 (NaCl-50) or 100 (NaCl-100) g NaCl/d were fed together with the concentrates in two equal doses for 3 weeks. During the final week, a mineral digestibility trial was undertaken. The middle sodium and chloride intake (NaCl-50) at least met the most common recommendations for moderate work. Morning (7:00 AM) urine and venous blood samples were collected on days 0, 1–4, 8, and 15, and analysed for pH, acid-base status, creatinine and electrolyte concentrations. Fractional electrolyte clearances (FC) were determined. Mean apparent sodium digestibility ranged between 60–62% whereas chloride digestibility was consistently above 94%. Supplementing 100 g but not 50 g of NaCl resulted in significant reduction of blood pH and base excess as well as urinary pH and urine acid excretion. Both 50 g and 100 g NaCl supplementation caused a significant reduction in base and net acid-base excretion, urine density and potassium concentration, but increased urine sodium concentration and the FC of sodium and chloride (P < 0.05). This suggests that a high proportion of the recommended salt doses is excreted renally. The above effects of NaCl supplementation persisted over the 2 week measurement period. Results suggest that feeding 100 g NaCl to moderately exercising horses results in mild metabolic acidosis, whereas feeding 50 g according to current recommendations resulted in compensated acidosis. PMID:28045916

  6. The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger.

    PubMed

    Alvadia, Carolina M; Sommer, Theis; Bjerregaard-Andersen, Kaare; Damkier, Helle Hasager; Montrasio, Michele; Aalkjaer, Christian; Morth, J Preben

    2017-09-21

    The sodium-driven chloride/bicarbonate exchanger (NDCBE) is essential for maintaining homeostatic pH in neurons. The crystal structure at 2.8 Å resolution of the regulatory N-terminal domain of human NDCBE represents the first crystal structure of an electroneutral sodium-bicarbonate cotransporter. The crystal structure forms an equivalent dimeric interface as observed for the cytoplasmic domain of Band 3, and thus establishes that the consensus motif VTVLP is the key minimal dimerization motif. The VTVLP motif is highly conserved and likely to be the physiologically relevant interface for all other members of the SLC4 family. A novel conserved Zn 2+ -binding motif present in the N-terminal domain of NDCBE is identified and characterized in vitro. Cellular studies confirm the Zn 2+ dependent transport of two electroneutral bicarbonate transporters, NCBE and NBCn1. The Zn 2+ site is mapped to a cluster of histidines close to the conserved ETARWLKFEE motif and likely plays a role in the regulation of this important motif. The combined structural and bioinformatics analysis provides a model that predicts with additional confidence the physiologically relevant interface between the cytoplasmic domain and the transmembrane domain.

  7. Electromagnetic-induction logging to monitor changing chloride concentrations

    USGS Publications Warehouse

    Metzger, Loren F.; Izbicki, John A.

    2013-01-01

    Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple-well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride-cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high-chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high-chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.

  8. Palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate: A practical synthesis of unsymmetrical ureas

    PubMed Central

    Vinogradova, Ekaterina V.; Fors, Brett P.; Buchwald, Stephen L.

    2012-01-01

    An efficient method for palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate is reported. The protocol allows for the synthesis of unsymmetrical N,N'-di- and N,N,N'-trisubstituted ureas in one pot, and is tolerant of a wide range of functional groups. Insight into the mechanism of aryl isocyanate formation is gleaned through studies of the transmetallation and reductive elimination steps of the reaction, including the first demonstration of reductive elimination from an arylpalladium isocyanate complex to produce an aryl isocyanate. PMID:22716197

  9. Ecophysiological adaptations to variable salinity environments in the crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Sodium regulation, respiration and excretion.

    PubMed

    Urzúa, Ángel; Urbina, Mauricio A

    2017-08-01

    The estuarine crab Hemigrapsus crenulatus is a key benthic species of estuarine and intertidal ecosystems of the South Pacific, habitats that experience wide fluctuations in salinity. The physiological strategies that allow this crab to thrive under variable salinities, and how they change during the benthic stages of their life cycle, were evaluated under laboratory conditions. Oxygen consumption, ammonia excretion and the regulatory capacity of Na + through the normal range of environmental salinities (i.e. 5, 10, 15, 20, 25, 30) were evaluated in three size classes, ranging from juveniles to adults. In all sizes, the oxygen consumption, ammonia excretion and regulatory capacity of Na + decreased as salinity increased, with the highest values at 5 and the lowest values at 30 salinity. Bigger crabs showed a higher capacity to regulate Na + , as well as higher respiration and excretion rates compared to smaller crabs, suggesting that they are better equipped to exploit areas of the estuary with low salinity. Regardless of its size, H. crenulatus is a strong hyper regulator in diluted media (i.e. 5-20) while a conformer at salinities higher than 20. The regulatory capacity of Na + was positively related with oxygen consumption and ammonia excretion rates. These relationships between sodium regulation, respiration and excretion are interpreted as adaptive physiological mechanisms that allow H. crenulatus to maintain the osmotic and bioenergetic balance over a wide range of environmental salinities. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Predictive model for the reduction of heat resistance of Listeria monocytogenes in ground beef by the combined effect of sodium chloride and apple polyphenols

    USDA-ARS?s Scientific Manuscript database

    We investigated the combined effect of three internal temperatures (57.5, 60, and 62.5C) and different concentrations (0 to 3.0 wt/wt %) of sodium chloride (NaCl) and apple polyphenols (APP), individually and in combination, on the heat-resistance of a five-strain cocktail of Listeria monocytogenes ...

  11. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    PubMed

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  12. Soil salination indicators

    USDA-ARS?s Scientific Manuscript database

    Salts are naturally present in soils, and many salt elements are essential nutrients for plants. The most common soluble salts in soil include major cations of sodium (Na+), magnesium (Mg2+), calcium (Ca2+), potassium (K+), and anions of chloride (Cl-), sulfate (SO42-), bicarbonate (HCO3-) and carbo...

  13. Sodium Carbonate is Saltier Than Sodium Chloride to Sodium-Depleted Rats.

    PubMed

    St John, Steven J; McBrayer, Anya M; Krauskopf, Erin E

    2017-10-01

    In a series of behavioral experiments in the 1960s, G.R. Morrison identified several unique features of the taste of Na2CO3 to rats; namely, it is 1) considerably more intense than NaCl at isomolar concentrations, 2) avoided at 10 times lower concentrations than NaCl to thirsty rats, 3) preferred at 10 times lower concentrations than NaCl in sodium-depleted rats. He also demonstrated its qualitatively similarity to NaCl. In Experiment 1, we confirmed and extended many of Morrison's observations. Rats were injected with furosemide on 3 occasions to stimulate a sodium appetite. After each depletion, rats were given a brief-access taste test in a lickometer presenting, in random order, water and 7 concentrations of salt. One test used NaCl (0.028-0.89 M, quarter log steps), another used Na2CO3, and the third used Na2CO3, but at a tenfold lower concentration range (0.0028-0.089 M). Rats licked NaCl in an inverted-U shaped concentration-response function peaking at 0.158-0.281 M. As Morrison's results predicted, rats licked Na2CO3 in nearly identical fashion, but at a tenfold lower concentration range (peak at 0.0158-0.028 M). In a second experiment, furosemide-treated rats were repeatedly tested with the lower Na2CO3 range but mixed in the epithelial sodium channel blocker amiloride at various concentrations (3-300 μM, half log steps). Amiloride reduced licking for Na2CO3 and shifted the peak response rightward up to about half a log unit. Thus, this "super-saltiness" of Na2CO3 to rats is at least partly amiloride-dependent. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Sodium channel blockers for cystic fibrosis.

    PubMed

    Burrows, Elinor F; Southern, Kevin W; Noone, Peadar G

    2014-04-09

    People with cystic fibrosis (CF) have increased transport of the salt, sodium across their airway lining. Over-absorption of sodium results in the dehydration of the liquid that lines the airway surface and (along with defective chloride secretion) is a primary defect in people with CF. To determine whether the topical administration of drugs that block sodium transport improves the respiratory condition of people with CF. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. We contacted principal investigators known to work in the field, previous authors and pharmaceutical companies who manufacture ion transport agents for unpublished or follow-up data.Most recent search of the Group's register: 19 December 2013. Published or unpublished randomised controlled trials (RCTs) or quasi-randomised controlled trials of sodium channel blockers compared to placebo or another sodium channel blocker or the same sodium channel blocker at a different dosing regimen. Two authors independently extracted data. Meta-analysis was limited due to differing study designs. Five RCTs, with a total of 226 participants, examining the topical administration of the short-acting sodium channel blocker, amiloride, compared to placebo were identified as eligible for inclusion in the review. In three studies over six months, there was a significant difference found in the difference in relative change in FVC in favour of placebo (weighted mean difference 1.51% (95% confidence interval -2.77 to -0.25), although heterogeneity was evident. A two-week study demonstrated that hypertonic saline with amiloride pre-treatment did not result in a significant improvement in respiratory function or mucus clearance, in contrast to pre-treatment with placebo. There were no significant differences identified in other

  15. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms.

    PubMed

    Watling, Helen R; Collinson, David M; Corbett, Melissa K; Shiers, Denis W; Kaksonen, Anna H; Watkin, Elizabeth L J

    2016-09-01

    The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water. Copyright © 2016. Published by Elsevier Masson SAS.

  16. Chloride: from Nutrient to Toxicant.

    PubMed

    Geilfus, Christoph-Martin

    2018-05-01

    In salinized soils in which chloride (Cl-) is the dominant salt anion, growth of plants that tolerate only low concentrations of salt (glycophytes) is disturbed by Cl- toxicity. Chlorotic discolorations precede necrotic lesions, causing yield reductions. Little is known about the effects of Cl- toxicity on these dysfunctions. A lack of understanding exists regarding (i) the molecular and physiological mechanisms that lead to Cl--induced damage and (ii) the adaptive aspects of induced tolerance to Cl- salinity. Here, mechanistic explanations for the Cl--induced stress responses are proposed and novel ideas and strategies by which glycophytic plants avoid the excessive accumulation of Cl- are reviewed. New experiments are suggested to test the proposed hypotheses. Cl- salinity constrains global food security and thus we urgently need more research into the causes and consequences of Cl- salinity.

  17. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.

    PubMed

    Scheibener, S A; Richardi, V S; Buchwalter, D B

    2016-02-01

    The importance of insects in freshwater ecosystems has led to their extensive use in ecological monitoring programs. As freshwater systems are increasingly challenged by salinization and metal contamination, it is important to understand fundamental aspects of aquatic insect physiology (e.g., osmoregulatory processes) that contribute to insect responses to these stressors. Here we compared the uptake dynamics of Na as NaCl, NaHCO3 and Na2SO4 in the caddisfly Hydropsyche betteni across a range of Na concentrations (0.06-15.22 mM) encompassing the vast majority of North American freshwater ecosystems. Sulfate as the major anion resulted in decreased Na uptake rates relative to the chloride and bicarbonate salts. A comparison of Na (as NaHCO3) turnover rates in the caddisfly Hydropsyche sparna and the mayfly Maccaffertium sp. revealed different patterns in the 2 species. Both species appeared to tightly regulate their whole body sodium concentrations (at ∼47±1.8 μmol/g wet wt) across a range of Na concentrations (0.06-15.22 mM) over 7 days. However, at the highest Na concentration (15.22 mM), Na uptake rates in H. sparna (419.1 μM Na g(-1) hr(-1) wet wt) appeared close to saturation while Na uptake rates in Maccaffertium sp. were considerably faster (715 g μM Na g(-1) hr(-1) wet wt) and appeared to not be close to saturation. Na efflux studies in H. sparna revealed that loss rates are commensurate with uptake rates and are responsive to changes in water Na concentrations. A comparison of Na uptake rates (at 0.57 mM Na) across 9 species representing 4 major orders (Ephemeroptera, Plecoptera, Trichoptera and Diptera) demonstrated profound physiological differences across species after accounting for the influence of body weight. Faster Na uptake rates were associated with species described as being sensitive to salinization in field studies. The metals silver (Ag) and copper (Cu), known to be antagonistic to Na uptake in other aquatic taxa did not generally

  18. Addition of sodium bicarbonate to complete pelleted diets fed to dairy calves.

    PubMed

    Wheeler, T B; Wangsness, P J; Muller, L D; Griel, L C

    1980-11-01

    During two trials, 35 and 27 Holstein calves were fed ad libitum complete, pelleted diets containing either 35% alfalfa (Trial 1) or 35% grass (Trial 2) hay from birth to 12 wk of age. Calves in Trial 1 were fed one of the following diets: control, control + 3.5% sodium chloride, or control + 5% sodium bicarbonate. In Trial 2, diets were: control, control + 5% sodium bicarbonate, or control + 5% sodium bicarbonate + loose, chopped grass hay. Intake of dry matter, gain in body weight, ruminal pH, or fecal starch did not differ. Calves fed sodium bicarbonate in Trial 1 but not 2 had a reduced feed efficiency compared with control and supplemented diets. In Trial 1 added sodium bicarbonate did not alter intake or digestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water indigestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water indigestible energy. Addition of sodium bicarbonate increased concentration of ruminal acetate and butyrate and decreased propionate in both trials. Fecal pH was elevated in calves fed sodium bicarbonate diets during both trials. Sodium chloride increased water intake in Trial 1, and sodium bicarbonate increased water intake in Trial 2. Incidence of free-gas bloat was higher in calves fed sodium bicarbonate in both trials. Addition of sodium bicarbonate to complete pelleted diets containing 35% alfalfa or 35% grass hay appeared to have no benefit for young, growing dairy calves in performance and health.

  19. Agreement of measured and calculated serum osmolality during the infusion of mannitol or hypertonic saline in patients after craniotomy: a prospective, double-blinded, randomised controlled trial.

    PubMed

    Li, Qian; Chen, Han; Hao, Jing-Jing; Yin, Ning-Ning; Xu, Ming; Zhou, Jian-Xin

    2015-10-07

    Mannitol and hypertonic saline are used to ameliorate brain edema and intracranial hypertension during and after craniotomy. We hypothesized that the agreement of measured and calculated serum osmolality during the infusion of hypertonic saline would be better than mannitol. The objective was to determine the accuracy of serum osmolality estimation by different formulas during the administration of hyperosmolar agent. A prospective, randomized, double-blinded, controlled trial was conducted in a 30-bed neurosurgical intensive care unit at a university hospital. Thirty-five adult patients requiring the use of hyperosmolar agents for prevention or treatment of brain edema after elective craniotomy were enrolled, and randomly assigned 1:1 to receive 125 mL of either 20 % mannitol (mannitol group) or 3.1 % sodium chloride solution (hypertonic saline group) in 15 min. Serum osmolality, serum sodium and potassium concentration, blood urea nitrogen and blood glucose concentration were measured during the study period. The primary outcome was the agreement of measured and estimated serum osmolality during the infusion of the two experimental agents. We used Bland and Altman's limits of agreement analysis to clarify the accuracy of estimated serum osmolality. Bias and upper and lower limits of agreement of bias were calculated. For each formula, the bias was statistically lower in hypertonic saline group than mannitol group (p < 0.001). Within group comparison showed that the lowest bias (6.0 [limits of agreement: -18.2 to 30.2] and 0.8 [-12.9 to 14.5] mOsml/kg in mannitol group and hypertonic saline group, respectively) was derived from the formula '2 × ([serum sodium] + [serum potassium]) + [blood urea nitrogen] + [blood glucose]'. Compared to mannitol, a better agreement between measured and estimated serum osmolality was found during the infusion of hypertonic saline. This result indicates that, if hypertonic saline is chosen to prevent or treat brain edema

  20. [The characteristics of the use of low-mineralization sodium chloride mineral water in the rehabilitative treatment of patients with the most common diseases of the internal organs].

    PubMed

    Babov, K D; Belichenko, T A; Nikipelova, E M; Serebrina, L A

    1999-01-01

    The paper describes some therapeutic aspects of sodium chloride mineral water from the springs of Mirgorod (a balneological resort in Ukraine). Methodological approaches to the treatment of patients with most common visceral disease with bottled mineral Mirgorod water are outlined.

  1. Influence of sodium chloride concentration on the controlled lactic acid fermentation of "Almagro" eggplants.

    PubMed

    Ballesteros, C; Palop, L; Sánchez, I

    1999-12-01

    The effect of a commercial Lactobacillus starter and sodium chloride concentration on the fermentation of "Almagro" eggplants (Solanum melongena L. var. esculentum depressum) was studied. The results of fermentation using added starter and varying salt concentrations (4, 6, and 10% w/v) in brine were compared with the results of spontaneous fermentation taking place in brine with a salt concentration of 4%. Fresh fruits, medium in size (34-44 g), were used in all cases; all fruits were blanched under identical conditions. Temperature in the fermenters was 32+/-2 degrees C. The results obtained indicate that addition of a suitable starter shortened the fermentation process, provided the salt concentration in the brine did not exceed 6%. In the conditions tested, the eggplants obtained after fermentation were found to be of good quality though somewhat bitter which may explained by the starter employed.

  2. Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions

    PubMed Central

    El-Esawi, Mohamed A.; Elansary, Hosam O.; El-Shanhorey, Nader A.; Abdel-Hamid, Amal M. E.; Ali, Hayssam M.; Elshikh, Mohamed S.

    2017-01-01

    Salinity stress as a major agricultural limiting factor may influence the chemical composition and bioactivity of Rosmarinus officinallis L. essential oils and leaf extracts. The application of salicylic acid (SA) hormone may alleviate salinity stress by modifying the chemical composition, gene expression and bioactivity of plant secondary metabolites. In this study, SA was applied to enhance salinity tolerance in R. officinallis. R. officinallis plants were subjected to saline water every 2 days (640, 2,000, and 4,000 ppm NaCl) and 4 biweekly sprays of SA at 0, 100, 200, and 300 ppm for 8 weeks. Simulated salinity reduced all vegetative growth parameters such as plant height, plant branches and fresh and dry weights. However, SA treatments significantly enhanced these plant growth and morphological traits under salinity stress. Salinity affected specific major essential oils components causing reductions in α-pinene, β-pinene, and cineole along with sharp increases in linalool, camphor, borneol, and verbenone. SA applications at 100–300 ppm largely reversed the effects of salinity. Interestingly, SA treatments mitigated salinity stress effects by increasing the total phenolic, chlorophyll, carbohydrates, and proline contents of leaves along with decline in sodium and chloride. Importantly, this study also proved that SA may stimulate the antioxidant enzymatic mechanism pathway including catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) as well as increasing the non-enzymatic antioxidants such as free and total ascorbate in plants subjected to salinity. Quantitative real-time PCR analysis revealed that APX and 3 SOD genes showed higher levels in SA-treated rosemary under salinity stress, when compared to non-sprayed plants. Moreover, the expression level of selected genes conferring tolerance to salinity (bZIP62, DREB2, ERF3, and OLPb) were enhanced in SA-treated rosemary under salt stress, indicating that SA treatment resulted in the

  3. Physicochemical characterization of diclofenac sodium-loaded poloxamer gel as a rectal delivery system with fast absorption.

    PubMed

    Yong, Chul Soon; Sah, Hongkee; Jahng, Yurngdong; Chang, Hyeun Wook; Son, Jong-Keun; Lee, Seung Ho; Jeong, Tae Cheon; Rhee, Jong-Dal; Baek, Suk Hwan; Kim, Chong-Kook; Choi, Han-Gon

    2003-05-01

    Rectal poloxamer gel systems composed of poloxamers and bioadhesive polymers were easy to administer to the anus and were mucoadhesive to the rectal tissues without leakage after the dose. However, a poloxamer gel containing diclofenac sodium could not be developed using bioadhesive polymers, since the drug was precipitated in this preparation. To develop a poloxamer gel using sodium chloride instead of bioadhesive polymers, the physicochemical properties such as gelation temperature, gel strength, and bioadhesive force of various formulations composed of diclofenac sodium, poloxamers, and sodium chloride were investigated. Furthermore, the pharmacokinetic study of diclofenac sodium delivered by the poloxamer gel was performed. Diclofenac sodium significantly increased the gelation temperature and weakened the gel strength and bioadhesive force, while sodium chloride did the opposite. The poloxamer gels with less than 1.0% sodium chloride, in which the drug was not precipitated, were inserted into the rectum without difficulty and leakage, and were retained in the rectum of rats for at least 6 hr. Furthermore, poloxamer gel gave significantly higher initial plasma concentrations and faster Tmax of diclofenac sodium than did solid suppository, indicating that drug from poloxamer gel could be absorbed faster than that from the solid one in rats. Our results suggested that a rectal poloxamer gel system with sodium chloride and poloxamers was a more physically stable, convenient, and effective rectal dosage form for diclofenac sodium.

  4. Occurrence, Distribution, Sources, and Trends of Elevated Chloride Concentrations in the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    USGS Publications Warehouse

    Kresse, Timothy M.; Clark, Brian R.

    2008-01-01

    Water-quality data from approximately 2,500 sites were used to investigate the distribution of chloride concentrations in the Mississippi River Valley alluvial aquifer in southeastern Arkansas. The large volume and areal distribution of the data used for the investigation proved useful in delineating areas of elevated (greater than 100 milligrams per liter) chloride concentrations, assessing potential sources of saline water, and evaluating trends in chloride distribution and concentration over time. Irrigation water containing elevated chloride concentrations is associated with negative effects to rice and soybeans, two of the major crops in Arkansas, and a groundwater chloride concentration of 100 milligrams per liter is recommended as the upper limit for use on rice. As such, accurately delineating areas with high salinity ground water, defining potential sources of chloride, and documenting trends over time is important in assisting the agricultural community in water management. The distribution and range of chloride concentrations in the study area revealed distinct areas of elevated chloride concentrations. Area I includes an elongated, generally northwest-southeast trending band of moderately elevated chloride concentrations in the northern part of the study area. This band of elevated chloride concentrations is approximately 40 miles in length and varies from approximately 2 to 9 miles in width, with a maximum chloride concentration of 360 milligrams per liter. Area II is a narrow, north-south trending band of elevated chloride concentrations in the southern part of the study area, with a maximum chloride concentration of 1,639 milligrams per liter. A zone of chloride concentrations exceeding 200 milligrams per liter is approximately 25 miles in length and 5 to 6 miles in width. In Area I, low chloride concentrations in samples from wells completed in the alluvial aquifer next to the Arkansas River and in samples from the upper Claiborne aquifer, which

  5. Increased salinization of fresh water in the northeastern United States

    PubMed Central

    Kaushal, Sujay S.; Groffman, Peter M.; Likens, Gene E.; Belt, Kenneth T.; Stack, William P.; Kelly, Victoria R.; Band, Lawrence E.; Fisher, Gary T.

    2005-01-01

    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. PMID:16157871

  6. Saline-water intrusion related to well construction in Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride

  7. Efficacy of disinfecting solutions in removing biofilms from polyvinyl chloride tracheostomy tubes.

    PubMed

    Silva, Rodrigo C; Carver, Ryan A; Ojano-Dirain, Carolyn P; Antonelli, Patrick J

    2013-01-01

    Bacterial biofilms are prevalent in pediatric tracheostomy tubes (TTs) and are not completely cleared by standard cleaning with gauze and household detergents. We aimed to examine the effectiveness of different disinfecting solutions to remove Staphylococcus aureus (SA) and Pseudomonas aerginosa (PA) biofilms from TTs. Prospective, controlled, in vitro microbiologic study. Uniform coupons obtained from polyvinyl chloride (PVC) pediatric TTs were briefly exposed to human plasma. The samples were incubated in growth media with either PA or SA for 7 days, and total bacterial growth was monitored by media turbidity. Five sets of 18 coupons each were exposed for 5 minutes to one of five different solutions: 2% aqueous chlorhexidine gluconate solution, 0.3% aqueous sodium hypochlorite, Polident denture cleanser, 3% hydrogen peroxide, or preservative-free phosphate-buffered saline (PBS) as a negative control. Biofilm presence was measured with bacterial counts, and surface integrity was assessed with scanning electron microscopy (SEM). All treatments significantly reduced mean SA counts (P = <.001). Sodium hypochlorite and chlorhexidine were more effective than peroxide and Polident. Chlorhexidine, sodium hypochlorite, and peroxide reduced PA counts (P = .001, .001, and .002, respectively), but Polident tabs had no significant effect. SEM revealed preserved TT surface integrity after exposure to all solutions. Disinfection with sodium hypochlorite or chlorhexidine solutions significantly reduces SA and PA biofilms on PVC TTs. Standard home care of reusable pediatric TTs may be improved by use of these readily available solutions. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  8. Effects of inhibitors on chloride outflux from CSF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, M.; Johnson, D.C.; Pappagianopoulos, P.

    1986-03-05

    The regulation of the CSF (Cl/sup -/) plays a key role in CNS acid-base homeostasis. The authors have shown in previous studies that chloride influx from blood to CSF is largely dependent upon sodium-coupled carrier mediated movement. Therefore, the mechanism of chloride outflux from CSF to brain was evaluated in anesthetized dogs using ventricular-cisternal perfusion (VCP) with the short-lived isotope /sup 38/Cl/sup -/ and dextran. The outflux of /sup 38/Cl/sup -/ from CSF was determined from the different movements between /sup 38/Cl/sup -/ and dextran using a one compartment model. VCP was performed at a rate of 1.4 ml/min formore » 14 min, and then slowed to 0.28 ml/min. The /sup 38/Cl/sup -/ activity decreased to a steady state level about 12% lower than that of dextran within 40-50 minutes. Under control conditions (19 runs in 7 dogs), the rate of chloride outflux was 0.059 +/- 0.004 min/sup -1/ (mean +/- SE). It was not significantly changed after the inclusion of bumetanide (10/sup -5/ molar) in the VCP fluid (n=6), which inhibits sodium-coupled Cl/sup -/ transport, or with acetazolamide 4.5 x 10/sup -3/ molar (n=4) which inhibits carbonic anhydrase. The authors conclude that chloride outflux from CSF is not dependent upon sodium-coupled carrier mediated movement, which is in contrast with chloride influx from blood to CSF, nor is it dependent upon carbonic anhydrase activity.« less

  9. Quinoa seed quality response to sodium chloride and sodium sulfate salinity

    USDA-ARS?s Scientific Manuscript database

    Quinoa (Chenopodium Quinoa Willd.) is a pseudocereal which has high protein content, but also provides high quality protein. The essential amino acids are balanced; protein efficiency ratio and true protein digestibility are comparable to those of casein, which considered as a good protein resource....

  10. Studies of a subarctic coastal marsh. III. Modelling the subsurface water fluxes and chloride distribution

    NASA Astrophysics Data System (ADS)

    Price, Jonathan S.; Woo, Ming-Ko

    1990-12-01

    A two-dimensional advection dispersion model of solute transport is used to simulate the long-term changes in the chloride distribution of the young isostatically raised beach ridge and depression sequences in a James Bay coastal marsh. The USGS-SUTRA model reproduces the hydraulic conditions in the wetland, causing recharge of freshwater to the ridges and discharge of saline water to the inter-ridge depressions, demonstrating the importance of vertical water fluxes of water and chloride. Even though water velocities are very low, molecular diffusion alone cannot explain the observed chloride distribution. Imposing the characteristics of a frozen surface during winter eliminated the vertical fluxes, and doubled the time required for the simulated chloride distribution to match the field data. The model correctly predicts the observed pattern of suppressed salinity beneath the ridges and a general decrease of salinity with distance inland. The results are useful in understanding the processes which operate in the first 100 years of marsh development.

  11. Response of Azospirillum brasilense Cd to sodium chloride stress.

    PubMed

    Rivarola, V; Castro, S; Mori, G; Jofré, E; Fabra, A; Garnica, R; Balegno, H

    1998-04-01

    Growth of Azospirillum brasilense Cd in the presence of different NaCl concentrations showed that it tolerates up to 200 mM NaCl in the medium, without appreciable decline in growth rate. At 300 mM NaCl, a decrease of 66% in growth was observed at 24 h of culture. At 48 h of culture, bacteria in the presence of 300 mM NaCl reached the maximum optical density value that was attained at 12 h by control cultures. This investigation was designed to elucidate the effect of saline stress on Azospirillum brasilense Cd and the physiologic mechanism involved in its possible salinity tolerance. For this reason, studies of other osmolytes, as well as of putrescine metabolism and protein patterns were done with bacteria grown with this NaCl concentration in the medium, at 24 and at 48 hours. A. brasilense responded to saline stress elevating the intracellular concentration of glutamate at 24 h, and of K+ at 48 h. Glucan pattern, putrescine metabolism, and total and periplasmic protein patterns of the treated group showed several changes with respect to the control. In spite of the several cellular functions affected by saline stress, the results imply that A. brasilense Cd shows salinity tolerance in these experimental conditions.

  12. X-ray photoelectron spectroscopic study of the oxide film on an aluminum-tin alloy in 3.5% sodium chloride solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venugopal, A.; Selvam, P.; Raja, V.S.

    1997-10-01

    Oxide films on Al and an Al-Sn alloy were analyzed by x-ray photoelectron spectroscopy (XPS) after immersion in 3.5% sodium chloride (NaCl) solution. Results showed Sn exhibited both Sn{sup 2+} and Sn{sup 4+} oxidation stats in the oxide film. It was proposed that incorporation of these cations in the film would result in generation of more anionic and cationic vacancies in aluminum oxide (Al{sub 2}O{sub 3}), leading to active dissolution of Al.

  13. Nasal saline for chronic sinonasal symptoms: a randomized controlled trial.

    PubMed

    Pynnonen, Melissa A; Mukerji, Shraddha S; Kim, H Myra; Adams, Meredith E; Terrell, Jeffrey E

    2007-11-01

    To determine if isotonic sodium chloride (hereinafter "saline") nasal irrigations performed with large volume and delivered with low positive pressure are more effective than saline sprays at improving quality of life and decreasing medication use. A prospective, randomized controlled trial. Community. A total of 127 adults with chronic nasal and sinus symptoms. Patients were randomly assigned to irrigation performed with large volume and delivered with low positive pressure (n = 64) or spray (n = 63) for 8 weeks. Change in symptom severity measured by mean 20-Item Sino-Nasal Outcome Test (SNOT-20) score; change in symptom frequency measured with a global question; and change in medication use. A total of 121 patients were evaluable. The irrigation group achieved lower SNOT-20 scores than the spray group at all 3 time points: 4.4 points lower at 2 weeks (P = .02); 8.2 points lower at 4 weeks (P < .001); and 6.4 points lower at 8 weeks (P = .002). When symptom frequency was analyzed, 40% of subjects in the irrigation group reported symptoms "often or always" at 8 weeks compared with 61% in the spray group (absolute risk reduction, 0.2; 95% confidence interval, 0.02-0.38 (P = .01). No significant differences in sinus medication use were seen between groups. Nasal irrigations performed with large volume and delivered with low positive pressure are more effective than saline sprays for treatment of chronic nasal and sinus symptoms in a community-based population.

  14. Evaluation of antibiofilm effect of benzalkonium chloride, iodophore and sodium hypochlorite against biofilm of Pseudomonas aeruginosa of dairy origin.

    PubMed

    Pagedar, Ankita; Singh, Jitender

    2015-08-01

    The present study was undertaken with objectives of; a) to investigate and compare Pseudomonas aeruginosa isolates from two dairies for biofilm formation potential and, b) to compares three common biocides for biofilm eradication efficiencies. Amongst the isolates from commercial dairy, 70 % were strong and/or moderate biofilm former in comparison to 40 % isolates from small scale dairy. All isolates, irrespective of source, exhibited higher susceptibility to biocides in planktonic stage than in biofilm. Antibiofilm efficiencies of three biocides i.e. benzalkonium chloride, sodium hypochlorite and iodophore were determined in terms of their microbial biofilms eradicating concentration (MBEC). Our findings show that the three biocides were ineffective against preformed biofilms at recommended in-use concentrations. Biofilms were the most resistant to benzalkonium chloride and least against iodophore. A trend of decreasing MBECs was observed with extended contact time. The findings of present study warrant for a systematic approach for selecting types and concentrations of biocide for application as antibiofilm agent in food industry.

  15. Manipulating vineyard nitrogen on a saline site: 1. Effect of nitrogen on growth, grape yield and nutrients of Vitis vinifera L. cv Shiraz.

    PubMed

    Bell, Sally-Jean; Francis, I Leigh

    2013-08-15

    With increased prevalence of saline irrigation water applied to vines worldwide, the issue of appropriate nitrogen management is of concern. Different rates of nitrogen per vine as urea were applied to Shiraz vines on own roots over four seasons in a low-rainfall, saline growing environment. Application of nitrogen in the vineyard early in the season not only altered the vine nitrogen status but also increased some other elements in the petioles, notably chloride and sodium but also manganese and magnesium. In contrast, nitrogen application decreased petiole phosphorus. In comparison with the majority of nitrogen studies on non-saline sites, nitrogen-induced growth responses were restricted under the saline conditions in this study. While some changes in canopy density in response to nitrogen were observed, this did not affect light interception in the fruit zone. Yield responses were varied and could be related to the nutritional conditions under which bud development and flowering took place. This study demonstrated that current best practice guidelines, in terms of rate of nitrogen applied, for correcting a nitrogen deficiency on a non-saline site may not be appropriate for saline sites and that application of nitrogen can increase the potential for salt toxicity in vines. © 2013 Society of Chemical Industry.

  16. Low potassium enhances sodium uptake in red-beet under moderate saline conditions

    NASA Technical Reports Server (NTRS)

    Subbarao, G. V.; Wheeler, R. M.; Stutte, G. W.; Levine, L. H.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Due to the discrepancy in metabolic sodium (Na) requirements between plants and animals, cycling of Na between humans and plants is limited and critical to the proper functioning of bio-regenerative life support systems, being considered for long-term human habitats in space (e.g., Martian bases). This study was conducted to determine the effects of limited potassium (K) on growth, Na uptake, photosynthesis, ionic partitioning, and water relations of red-beet (Beta vulgaris L. ssp. vulgaris) under moderate Na-saline conditions. Two cultivars, Klein Bol, and Ruby Queen were grown for 42 days in a growth chamber using a re-circulating nutrient film technique where the supplied K levels were 5.0, 1.25, 0.25, and 0.10 mM in a modified half-strength Hoagland solution salinized with 50 mM NaCl. Reducing K levels from 5.0 to 0.10 mM quadrupled the Na uptake, and lamina Na levels reached -20 g kg-1 dwt. Lamina K levels decreased from -60 g kg-1 dwt at 5.0 mM K to -4.0 g kg-1 dwt at 0.10 mM K. Ruby Queen and Klein Bol responded differently to these changes in Na and K status. Klein Bol showed a linear decline in dry matter production with a decrease in available K, whereas for cv. Ruby Queen, growth was stimulated at 1.25 mM K and relatively insensitive to a further decreases of K down to 0.10 mM. Leaf glycinebetaine levels showed no significant response to the changing K treatments. Leaf relative water content and osmotic potential were significantly higher for both cultivars at low-K treatments. Leaf chlorophyll levels were significantly decreased at low-K treatments, but leaf photosynthetic rates showed no significant difference. No substantial changes were observed in the total cation concentration of plant tissues despite major shifts in the relative Na and K uptake at various K levels. Sodium accounted for 90% of the total cation uptake at the low K levels, and thus Na was likely replacing K in osmotic functions without negatively affecting the plant water status, or

  17. Thirst Increases Chorda Tympani Responses to Sodium Chloride.

    PubMed

    Mast, Thomas G; Breza, Joseph M; Contreras, Robert J

    2017-10-01

    In nature, water is present as a low-salt solution, thus we hypothesized that thirst would increase taste responses to low-salt solutions. We investigated the effect of thirst on the 2 different salt detection mechanisms present in the rat chorda tympani (CT) nerve. The first mechanism is dependent upon the epithelial sodium channel (ENaC), is blocked by benzamil, and is specific to the cation sodium. The second mechanism, while undefined, is independent of ENaC, and detects multiple cations. We expected thirst to increase benzamil-sensitive sodium responses due to mechanistically increasing the benzamil-sensitive ENaC. We recorded CT whole-nerve electrophysiological responses to lingual application of NaCl, KCl (30, 75, 150, 300, 500, and 600 mM), and imitation rainwater in both control and 24-h water-restricted male rats. NaCl solutions were presented in artificial saliva before and after lingual application of 5µM benzamil. Water restriction significantly increased the integrated CT responses to NaCl but not to KCl or imitation rainwater. Consistent with our hypothesis, only the benzamil-sensitive, and not the benzamil-insensitive, CT sodium response significantly increased. Additionally, CT responses to salt were recorded following induction of either osmotic or volemic thirst. Both thirsts significantly enhanced the integrated CT responses to NaCl and KCl, but not imitation rainwater. Interestingly, osmotic and volemic thirsts increased CT responses by increasing both the benzamil-sensitive and benzamil-insensitive CT sodium responses. We propose that thirst increases the sensitivity of the CT nerve to sodium. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Sodium accumulation in Atriplex. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, J.A.; Caldwell, M.M.; Richardson, S.G.

    1984-09-01

    This study was undertaken to determine the ecological significance and the significance to arid land reclamation of sodium accumulation and nonaccumulation in Atriplex. There was a continuum in the genetic tendency of Atriplex canescens to accumulate sodium, from populations which accumulated almost no sodium to populations which accumulated up to 7% in the leaves. There were also substantial differences in sodium uptake between populations of A. tridentata, A. falcata and A. gardneri, with some populations having less than 0.1% leaf sodium and other populations having up to 5 or 6%. In three experiments (a field study, a greenhouse pot studymore » and a hydroponics study) there were no significant differences in salinity tolerance between sodium accumulating and nonaccumulating A. canescens: both genotypes were highly salt tolerant. There was a significant buildup of sodium in the soil beneath sodium accumulating Atriplex plants, both in natural populations and on revegetated oil shale study plots. The sodium buildup was not sufficient to be detrimental to the growth or establishment of most herbaceous species, but with older Atriplex plants or with more saline soil, the buildup could potentially be detrimental. 14 references, 42 figures, 3 tables.« less

  19. The effects of saxitoxin and tetrodotoxin on nerve conduction in the presence of lithium ions and of magnesium ions

    PubMed Central

    Evans, M. H.

    1969-01-01

    1. It has been shown that nerve fibres from rat cauda equina will conduct action potentials after immersion in saline in which lithium chloride is substituted for sodium chloride. 2. Both saxitoxin and tetrodotoxin inhibit lithium-generated action potentials. The concentration of toxin needed to inhibit the lithium-generated action potentials is similar to that needed to inhibit sodium-generated action potentials. 3. If magnesium chloride is added to the saline to give a concentration of 10-15 mM there is usually a slight fall in amplitude of the compound action potential. Saxitoxin and tetrodotoxin now inhibit the action potential to a greater degree than in the absence of magnesium ions. PMID:5789802

  20. Modeling stream-groundwater interactions and associated groundwater salinization in an urban floodplain

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Lautz, L.

    2014-12-01

    The salinization of freshwater in the Northeastern United States from road salt application is well documented by the observed long-term increases in chloride concentrations in groundwater over the last fifty years. However, the processes controlling exchange of chloride between surface water and groundwater have not been fully investigated, particularly in urban streams where stream-groundwater interactions can be reduced due to bank armoring and channelization. Our research builds on previous findings that showed the potential for an urban riparian floodplain to buffer seasonal changes in chloride concentrations in an urban stream, resulting in smaller annual ranges of chloride in areas with intact riparian floodplains. A reach of Meadowbrook Creek, in Syracuse, New York, that is disconnected from the groundwater had large seasonal shifts in chloride concentration, varying from 2173 mg/L Cl- in the winter to 161.2 mg/L Cl- in the summer. This is in contrast to a downstream reach of the stream that receives groundwater discharge from a riparian floodplain, where chloride concentrations ranged from 657.0 mg/L in the winter to 252.0 mg/L in the summer. We originally hypothesized that winter snowmelt events caused overbank flooding of saline surface water, which recharged the floodplain groundwater, causing salinization. This saline water was then slowly discharged as baseflow throughout the year and was replaced with freshwater overbank events in the summer. However, a three dimensional model of the floodplain created using Visual MODFLOW indicates that surface water-groundwater interactions, such as hyporheic exchange, may have a greater control on winter salt input than overbank events, while summer flooding recharges the aquifer with freshwater. The model was compared to riparian aquifer samples collected from May 2013 until June 2014 to qualitatively study the impact of different types of surface water-groundwater interactions (e.g. groundwater recharge and

  1. EFFECT OF SODIUM CHLORIDE ON STAPHYLOCOCCUS-PHAGE RELATIONSHIPS

    PubMed Central

    West, B.; Kelly, Florene C.; Shields, Doris A.

    1963-01-01

    West, B. (University of Oklahoma Medical Center, Oklahoma City), Florene C. Kelly, and Doris A. Shields. Effect of sodium chloride on staphylococcus-phage relationships. J. Bacteriol. 86:773–780. 1963.—Phage patterns of 21 phage-propagating strains of staphylococci on medium with high NaCl content appeared to be an expression of the staphylococcal cells, as well as of the salt tolerance of the phages. Serological group A phages, previously found to be NaCl-tolerant in the free state, were capable of lysing susceptible staphylococci on 3, 7.5, and 10% NaCl Trypticase Soy Agar. None of the other phages tested was active when the medium contained 7.5 and 10% NaCl. Increasing the NaCl content of the medium rarely resulted in nonspecific reactions; rather the effect was, generally, a narrowing of the phage spectrum of the cells, with persistence in the phage pattern of the phage, or phages, which were propagated on the cells being tested. Although NaCl tolerance of the phages was the chief limiting factor of phage activity in the presence of 7.5 and 10% NaCl, reactions on salt medium also depended on the degree of susceptibility of cells to phage on routine typing medium and to certain other unexplained factors. In some instances, under the influence of increased NaCl, significant lysis at 1000 RTD was replaced by thinning of growth (inhibition), with or without the presence of plaques. Conversely, certain phage-cell combinations, which gave inhibition at 1000 RTD on standard medium produced some degree of lysis when the NaCl concentration was increased. Studies of phage 81 and its propagating strain showed that replication of phage occurred in 10% NaCl medium, although adsorption diminished as salt concentration was increased, and the time required to reach maximal lytic activity was delayed. PMID:14066474

  2. The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plant, Kathryn E.; Anderson, Elizabeth; Simecek, Nicole

    2009-02-15

    The mood stabilizing agents lithium chloride (LiCl) and sodium valproate (VPA) have recently gained interest as potential neuroprotective therapeutics. However, exploitation of these therapeutic applications is hindered by both a lack of molecular understanding of the mode of action, and a number of sub-optimal properties, including a relatively small therapeutic window and variable patient response. Human neuroblastoma cells (SH-SY5Y) were exposed to 1 mM lithium chloride or 1 mM sodium valproate for 6 h or 72 h, and transcriptomes measured by Affymetrix U133A/B microarray. Statistically significant gene expression changes were identified using SAM software, with selected changes confirmed at transcriptmore » (TaqMan) and protein (Western blotting) levels. Finally, anti-apoptotic action was measured by an in vitro fluorescent assay. Exposure of SH-SY5Y cells to therapeutically relevant concentrations of either lithium chloride or sodium valproate elicited 936 statistically significant changes in gene expression. Amongst these changes we observed a large (maximal 31.3-fold) increase in the expression of the homeodomain protein Six1, and have characterized the time- and dose-dependent up-regulation of this gene in response to both drugs. In addition, we demonstrate that, like LiCl or VPA treatment, Six1 over-expression protects SH-SY5Y cells from staurosporine-induced apoptosis via the blockade of caspsase-3 activation, whereas removal of Six1 protein via siRNA antagonises the ability of LiCl and VPA to protect SH-SY5Y cells from STS-induced apoptosis. These results provide a novel mechanistic rationale underlying the neuroprotective mechanism of LiCl and VPA, suggesting exciting possibilities for the development of novel therapeutic agents against neurodegenerative diseases such as Alzheimer's or Parkinsonism.« less

  3. Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses.

    PubMed

    Tang, Cheng-Hao; Hwang, Lie-Yueh; Shen, I-Da; Chiu, Yu-Hui; Lee, Tsung-Han

    2011-12-01

    Opposite patterns of branchial Na(+)/K(+)-ATPase (NKA) responses were found in euryhaline milkfish (Chanos chanos) and pufferfish (Tetraodon nigroviridis) upon salinity challenge. Because the electrochemical gradient established by NKA is thought to be the driving force for transcellular Cl(-) transport in fish gills, the aim of this study was to explore whether the differential patterns of NKA responses found in milkfish and pufferfish would lead to distinct distribution of Cl(-) transporters in their gill epithelial cells indicating different Cl(-) transport mechanisms. In this study, immunolocalization of various Cl(-) transport proteins, including Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), anion exchanger 1 (AE1), and chloride channel 3 (ClC-3), were double stained with NKA, the basolateral marker of branchial mitochondrion-rich cells (MRCs), to reveal the localization of these transporter proteins in gill MRC of FW- or SW-acclimated milkfish and pufferfish. Confocal microscopic observations showed that the localization of these transport proteins in the gill MRCs of the two studied species were similar. However, the number of gill NKA-immunoreactive (IR) cells in milkfish and pufferfish exhibited to vary with environmental salinities. An increase in the number of NKA-IR cells should lead to the elevation of NKA activity in FW milkfish and SW pufferfish. Taken together, the opposite branchial NKA responses observed in milkfish and pufferfish upon salinity challenge could be attributed to alterations in the number of NKA-IR cells. Furthermore, the localization of these Cl(-) transporters in gill MRCs of the two studied species was identical. It depicted the two studied euryhaline species possess the similar Cl(-) transport mechanisms in gills.

  4. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Svoboda, Martin; Lísal, Martin

    2018-06-01

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  5. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations.

    PubMed

    Svoboda, Martin; Lísal, Martin

    2018-06-14

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  6. Role of second-sphere coordination in anion binding: Synthesis, characterization and X-ray structure of hexaamminecobalt(III) chloride hydrogen phthalate trihydrate and sodium hexaamminecobalt(III) benzoate monohydrate

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Bala, Ritu; Sharma, Rajni; Kariuki, B. M.; Rychlewska, Urszula; Warżajtis, Beata

    2005-06-01

    In an effort to utilize [Co(NH 3) 6] 3+cation as a new host for carboxylate ions, orange coloured crystalline solids of composition [Co(NH 3) 6]Cl(C 8H 5O 4) 2·3H 2O ( 1) and Na[Co(NH 3) 6](C 7H 5O 2) 4·H 2O ( 2) were obtained by reacting hot aqueous solutions of hexaamminecobalt(III) chloride with potassium hydrogen phthalate and sodium benzoate in 1:3 molar ratio, respectively. The title complex salts were characterized by elemental analyses and spectroscopic studies (IR, UV/Visible and NMR). Single crystal X-ray structure determinations revealed the formation of second-sphere coordination complexes based on hydrogen bond interactions. In complex salt 1 only two out of three ionisable chloride ions present in [Co(NH 3) 6]Cl 3 were replaced by two CHO4- ions whereas in complex salt 2 all the three ionisable chloride ions present in [Co(NH 3) 6]Cl 3 were replaced and the final product was an adduct with another mole of sodium benzoate in solid state. The crystal lattice is stabilized by electrostatic forces of attraction and predominantly N-H⋯O interactions.

  7. Glycine Betaine, Carnitine, and Choline Enhance Salinity Tolerance and Prevent the Accumulation of Sodium to a Level Inhibiting Growth of Tetragenococcus halophila

    PubMed Central

    Robert, Hervé; Le Marrec, Claire; Blanco, Carlos; Jebbar, Mohamed

    2000-01-01

    Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila. PMID:10653711

  8. Chloride-associated adaptive response in aerobic methylotrophic dichloromethane-utilising bacteria.

    PubMed

    Torgonskaya, Maria L; Doronina, Nina V; Hourcade, Edith; Trotsenko, Yuri A; Vuilleumier, Stéphane

    2011-06-01

    Aerobic methylotrophic bacteria able to grow with dichloromethane (DCM) as the sole carbon and energy source possess a specific glutathione S-transferase, DCM dehalogenase, which transforms DCM to formaldehyde, used for biomass and energy production, and hydrochloric acid, which is excreted. Evidence is presented for chloride-specific responses for three DCM-degrading bacteria, Methylobacterium extorquens DM4, Methylopila helvetica DM6 and Albibacter methylovorans DM10. Chloride release into the medium was inhibited by sodium azide and m -chlorophenylhydrazone, suggesting an energy-dependent process. In contrast, only nigericin affected chloride excretion in Mb. extorquens DM4 and Mp. helvetica DM6, while valinomycin had the same effect in A. methylovorans DM10 only. Chloride ions stimulated DCM-dependent induction of DCM dehalogenase expression for Mp. helvetica DM6 and A. methylovorans DM10, and shortened the time for onset of chloride release into the medium. Striking chloride-containing structures were observed by electron microscopy and X-ray microanalysis on the cell surface of Mp. helvetica DM6 and A. methylovorans DM10 during growth with DCM, and with methanol in medium supplemented with sodium chloride. Taken together, these data suggest the existence of both general and specific chloride-associated adaptations in aerobic DCM-degrading bacteria. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. RNA sequencing analysis of transcriptional change in the freshwater mussel Elliptio complanata after environmentally relevant sodium chloride exposure.

    PubMed

    Robertson, Laura S; Galbraith, Heather S; Iwanowicz, Deborah; Blakeslee, Carrie J; Cornman, R Scott

    2017-09-01

    To identify potential biomarkers of salt stress in a freshwater sentinel species, we examined transcriptional responses of the common mussel Elliptio complanata to controlled sodium chloride (NaCl) exposures. Ribonucleic acid sequencing (RNA-Seq) of mantle tissue identified 481 transcripts differentially expressed in adult mussels exposed to 2 ppt NaCl (1.2 ppt chloride) for 7 d, of which 290 had nonoverlapping intervals. Differentially expressed gene categories included ion and transmembrane transport, oxidoreductase activity, maintenance of protein folding, and amino acid metabolism. The rate-limiting enzyme for synthesis of taurine, an amino acid frequently linked to osmotic stress in aquatic species, was upregulated, as was the transmembrane ion pump sodium/potassium adenosine 5'-triphosphatase. These patterns confirm a primary transcriptional response to the experimental dose, albeit likely overlapping with nonspecific secondary stress responses. Substantial involvement of the heat shock protein 70 chaperone family and the water-transporting aquaporin family was not detected, however, in contrast to some studies in other bivalves. A subset of the most significantly regulated genes was confirmed by quantitative polymerase chain reaction in an independent sample. Cluster analysis showed separation of mussels exposed to 2 ppt NaCl from control mussels in multivariate space, but mussels exposed to 1 ppt NaCl were largely indistinguishable from controls. Transcriptome-scale analysis of salt exposure under laboratory conditions efficiently identified candidate biomarkers for further functional analysis and field validation. Environ Toxicol Chem 2017;36:2352-2366. © Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2017 SETAC.

  10. Compatibility of butorphanol with granisetron in 0.9% sodium chloride injection packaged in glass bottles or polyolefin bags.

    PubMed

    Chen, Fu-Chao; Xiong, Hui; Liu, Hui-Min; Fang, Bao-Xia; Li, Peng

    2015-08-15

    The stability of admixtures containing butorphanol and granisetron in polyolefin bags and glass bottles stored at 4 and 25 °C was studied. Commercial solutions of butorphanol tartrate and granisetron hydrochloride were combined and further diluted with 0.9% sodium chloride injection to final concentrations of butorphanol tartrate 0.08 mg/mL and granisetron 0.03 or 0.06 mg/mL; the resulting mixtures were packaged in polyolefin bags and glass bottles. The admixtures were assessed for periods of up to 48 hours after storage at 25 °C without protection from room light and up to 14 days at 4 °C with protection from room light. The chemical stability of the admixtures was evaluated by a validated high-performance liquid chromatography (HPLC) method and by measurement of pH values. Solution appearance and color were assessed by observing the samples against room light and dark backgrounds. HPLC analysis demonstrated that the percentages of the initial concentrations of butorphanol and granisetron in the various solutions remained above 97% during the testing period. No changes in color or turbidity were observed in any of the prepared solutions. Throughout this period, pH values remained stable. Admixtures of butorphanol tartrate 0.08 mg/mL and granisetron 0.03 or 0.06 mg/mL in 0.9% sodium chloride injection in polyolefin bags or glass bottles remained stable for 48 hours when stored at 25 °C exposed to room light and for 14 days when stored at 4 °C protected from room light. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  11. [Sylvinite speleochamber and general chloride sodium baths in medical rehabilitation of patients with chronic obstructive pulmonary disease].

    PubMed

    Rassulova, M A

    2008-01-01

    Clinico-laboratory, functional and bronchoscopic examinations were performed in 120 patients with chronic obstructive pulmonary disease. 50 patients (41.7%) were in stage of low-intensity exacerbation, 70 patients (58.3%)--in remission stage. 55 patients (45.8%) had I degree respiratory failure, 65 patients (54.2%)--II degree respiratory failure. Easy degree of disease was detected in 58 patients (48.3%), mid degree--in 62 patients (51.7%). Possibility and reasonability of the use of artificial sylvinite speleotherapy and general chloride sodium baths in patients with chronic obstructive pulmonary disease were proved. Clinical results were confirmed by data of blood morphology and biochemical analysis, microscopy of sputum, spirometry, bronchoscopy, dynamics of immunological indices.

  12. The effect of reduced sodium chloride content on the microbiological and biochemical properties of a soft surface-ripened cheese.

    PubMed

    Dugat-Bony, E; Sarthou, A-S; Perello, M-C; de Revel, G; Bonnarme, P; Helinck, S

    2016-04-01

    Many health authorities have targeted salt reduction in food products as a means to reduce dietary sodium intake due to the harmful effects associated with its excessive consumption. In the present work, we evaluated the effect of reducing sodium chloride (NaCl) content on the microbiological and biochemical characteristics of an experimental surface-ripened cheese. A control cheese (1.8% NaCl) and a cheese with a reduced NaCl content (1.3% NaCl) were sampled weekly over a period of 27d. Reducing NaCl content induced microbial perturbations such as the lesser development of the yeast Debaryomyces hansenii and the greater development of the gram-negative bacterium Hafnia alvei. This was accompanied by changes in proteolytic kinetics and in profiles of volatile aroma compounds and biogenic amine production. Finally, the development of the spoilage microorganism Pseudomonas fragi was significantly higher in the cheese with a reduced salt content. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. The effect of intravenous lactated Ringer's solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers.

    PubMed

    Williams, E L; Hildebrand, K L; McCormick, S A; Bedel, M J

    1999-05-01

    Animal studies have shown that large volumes of IV lactated Ringer's solution (LR) decrease serum osmolality, thereby increasing cerebral water. These studies have led to recommendations to limit LR to avoid cerebral edema in neurosurgical patients. Eighteen healthy human volunteers aged 20-48 yr received 50 mL/kg LR over 1 h on one occasion and 0.9% sodium chloride (NS) on another. Venous samples were taken at baseline (T1), at infusion end (T2), and 1 h after T2 (T3). Time until first urination was noted. With LR, serum osmolality decreased by 4+/-3 mOsm/kg from T1 to T2 and increased insignificantly with NS. At T3, osmolality returned almost to baseline in the LR group. Blood pH increased from T1 to T2 with LR by 0.04+/-0.04 and decreased with NS by 0.04+/-0.04. These pH changes persisted at T3. Subjective mental changes occurred only with NS. Abdominal discomfort was more common with NS. Time until first urination was longer with NS (106+/-11 min) than with LR (75+/-10 min) (P < 0.001). In healthy humans, an infusion of large volumes of LR, but not NS, transiently decreased serum osmolality, whereas acidosis associated with NS persisted and urinary output was slower with NS. Large volumes of lactated Ringer's solution administered to healthy humans produced small transient changes in serum osmolality. Large volumes of sodium chloride did not change osmolality but resulted in lower pH.

  14. Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies

    PubMed Central

    Saum, Stephan H; Müller, Volker

    2008-01-01

    The moderate halophile Halobacillus halophilus is the paradigm for chloride dependent growth in prokaryotes. Recent experiments shed light on the molecular basis of the chloride dependence that is reviewed here. In the presence of moderate salinities Halobacillus halophilus mainly accumulates glutamine and glutamate to adjust turgor. The transcription of glnA2 (encoding a glutamine synthetase) as well as the glutamine synthetase activity were identified as chloride dependent steps. Halobacillus halophilus switches its osmolyte strategy and produces proline as the main compatible solute at high salinities. Furthermore, Halobacillus halophilus also shifts its osmolyte strategy at the transition from the exponential to the stationary phase where proline is exchanged by ectoine. Glutamate was found as a “second messenger” essential for proline production. This observation leads to a new model of sensing salinity by sensing the physico-chemical properties of different anions. PMID:18442383

  15. Salt, chloride, bleach, and innate host defense

    PubMed Central

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  16. Salt, chloride, bleach, and innate host defense.

    PubMed

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  17. Increased salinization of fresh water in the Northeastern United States

    USGS Publications Warehouse

    Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T.

    2005-01-01

    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. ?? 2005 by The National Academy of Sciences of the USA.

  18. Balanced crystalloids versus saline in the intensive care unit: study protocol for a cluster-randomized, multiple-crossover trial.

    PubMed

    Semler, Matthew W; Self, Wesley H; Wang, Li; Byrne, Daniel W; Wanderer, Jonathan P; Ehrenfeld, Jesse M; Stollings, Joanna L; Kumar, Avinash B; Hernandez, Antonio; Guillamondegui, Oscar D; May, Addison K; Siew, Edward D; Shaw, Andrew D; Bernard, Gordon R; Rice, Todd W

    2017-03-16

    Saline, the intravenous fluid most commonly administered to critically ill adults, contains a high chloride content, which may be associated with acute kidney injury and death. Whether using balanced crystalloids rather than saline decreases the risk of acute kidney injury and death among critically ill adults remains unknown. The Isotonic Solutions and Major Adverse Renal Events Trial (SMART) is a pragmatic, cluster-level allocation, cluster-level crossover trial being conducted between 1 June 2015 and 30 April 2017 in five intensive care units at Vanderbilt University Medical Center in Nashville, TN, USA. SMART compares saline (0.9% sodium chloride) with balanced crystalloids (clinician's choice of lactated Ringer's solution or Plasma-Lyte A®). Each intensive care unit is assigned to provide either saline or balanced crystalloids each month, with the assigned crystalloid alternating monthly over the course of the trial. All adults admitted to participating intensive care units during the study period are enrolled and followed until hospital discharge or 30 days after enrollment. The anticipated enrollment is approximately 14,000 patients. The primary outcome is Major Adverse Kidney Events within 30 days-the composite of in-hospital death, receipt of new renal replacement therapy, or persistent renal dysfunction (discharge creatinine ≥200% of baseline creatinine). Secondary clinical outcomes include in-hospital mortality, intensive care unit-free days, ventilator-free days, vasopressor-free days, and renal replacement therapy-free days. Secondary renal outcomes include new renal replacement therapy receipt, persistent renal dysfunction, and incidence of stage 2 or higher acute kidney injury. This ongoing pragmatic trial will provide the largest and most comprehensive comparison to date of clinical outcomes with saline versus balanced crystalloids among critically ill adults. For logistical reasons, SMART was prospectively registered separately for the medical

  19. PENETRATION OF RADIOACTIVE SODIUM AND CHLORIDE INTO CEREBROSPINAL FLUID AND AQUEOUS HUMOR

    PubMed Central

    Wang, Jun-Ch'uan

    1948-01-01

    1. Experiments were performed on six dogs to determine the rate of penetration of Cl33 and Na24 across the blood-aqueous humor and blood-cerebrospinal fluid barriers after intravenous injection of the radioactive ions. The radioactivity measurements were made with an immersion type of Geiger-Müller counter. 2. The concentrations of the labelled ions in the anterior chamber and the cisterna magna increase slowly to approach that of plasma. The rate of penetration k is calculated from a simple exponential equation with the half-value interval t 0.5 or the time required for the labelled-ion concentration in the fluid to reach 50 per cent of that of plasma. The average t 0.5 for Cl38 and Na24 in aqueous humor are 34.3 ± 9 and 27.3 ± 9 minutes, respectively, while those for cerebrospinal fluid are 90 ± 6 and 95 ± 6 minutes, respectively. 3. A study of the radioactivity in plasma was made to determine the per cent remaining after a steady state was reached. By means of this determination the sodium and chloride space was calculated to be 33 ± 5 per cent. PMID:18920614

  20. Properties of the calcium-activated chloride current in heart.

    PubMed

    Zygmunt, A C; Gibbons, W R

    1992-03-01

    We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are

  1. [Effects of a supplementation on sodium chloride or ammonium chloride on urolithic potential in the rabbit].

    PubMed

    Rückert, Cornelia; Siener, Roswitha; Ganter, Martin; Coenen, Manfred; Vervuert, Ingrid

    2016-08-17

    Reduction of urolithic potential by means of increased water intake and urine dilution through supplementation of sodium chloride (NaCl) or decrease of urine pH by supplementation of ammonium chloride (NH4Cl) in rabbits. Sixteen female, 6-month-old dwarf rabbits received the following three feeding regimens in a random order: complete feed without supplements = control; complete feed + 10 g NaCl/kg feed = NaCl; complete feed + 2.5 g NH4Cl/kg feed = NH4Cl. The diets were fed ad libitum over a period of 27 days without roughage. Water was provided ad libitum by a drinker. A 14-day wash-out-period (hay feeding) was performed between the different diets. Blood, faeces, and urine were collected at the beginning of each feeding period, after 21-day adaptation to the respective diet, and after the 3-day collection period. The following parameters were analysed: water and food intake as well as acid-base balance and mineral content in blood, urine, and faeces. NaCl supplementation numerically increased the daily water intake from 40.5 ± 14.4 ml/kg body weight (BW) (control) up to 49.5 ± 14.3 ml/kg BW and significantly increased the daily urine volume from 16.9 ± 7.8 ml/kg BW (control group) to 21.1 ± 7.4 ml/kg BW. The specific gravity of urine samples from NaCl supplementation decreased from 1.060 ± 0.008 to 1.044 ± 0.008. NH4Cl supplementation did not induce significant changes in urine pH, blood acid-base parameters, or calcium retention. Relative supersaturations (RSS) for calcium oxalate and calcium phosphate showed no significant changes after treatment. RSS for struvite increased from 360 ± 735 (after hay feeding) to 3312 ± 6188 on control feeding, 2910 ± 4913 with NaCl supplementation, and 3022 ± 6635 with NH4Cl supplementation (p < 0.05). NaCl supplementation significantly increased the urine volume and decreased its specific gravity. Therefore, NaCl supplementation might be an additional dietary treatment to increase the

  2. Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators.

    PubMed

    Faye, Serigne; Maloszewski, Piotr; Stichler, Willibald; Trimborn, Peter; Cissé Faye, Seynabou; Bécaye Gaye, Cheikh

    2005-05-01

    The hydrochemistry of minor elements bromide (Br), boron (B), strontium (Sr), environmental stable isotopes (18O and 2H) together with major-ion chemistry (chloride, sodium, calcium) has been used to constrain the source(s), relative age, and processes of salinization in the Continental Terminal (CT) aquifer in the Saloum (mid-west Senegal) region. Seventy-one groundwater wells which include 24 wells contaminated by saltwater and three sites along the hypersaline Saloum River were sampled to obtain additional information on the hydrochemical characteristics of the groundwater defined in previous studies. Use of Br against Cl confirms the Saloum River saline water intrusion up to a contribution of 7% into the aquifer. In addition to this recent intrusion, a relatively ancient intrusion of the Saloum River water which had reached at least as far as 20 km south from the source was evidenced. The high molar ratio values of Sr/Cl and Sr/Ca indicate an additional input of strontium presumably derived from carbonate precipitation/dissolution reactions and also via adsorption reactions. The variable B concentrations (7-650 microg/L) found in the groundwater samples were tested against the binary mixing model to evaluate the processes of salinization which are responsible for the investigated system. Sorption of B and depletion of Na occur as the Saloum river water intrudes the aquifer (salinization) in the northern part of the region, whereas B desorption and Na enrichment occur as the fresh groundwater flushing displaces the saline waters in the coastal strip (refreshening). In the central zone where ancient intrusion prevailed, the process of freshening of the saline groundwater is indicated by the changes in major-ion chemistry as well as B desorption and Na enrichment. In addition to these processes, stable isotopes reveal that mixing with recently infiltrating waters and evaporation contribute to the changes in isotopic signature.

  3. Salinity in the Colorado River in the Grand Valley, western Colorado, 1994-95

    USGS Publications Warehouse

    Butler, David L.; von Guerard, Paul B.

    1996-01-01

    Salinity, or the dissolved-solids concentration, is the measure of salts such as sodium chloride, calcium bicarbonate, and calcium sulfate that are dissolved in water. About one-half of the salinity in the Colorado River Basin is from natural sources (U.S. Department of the Interior, 1995), such as thermal springs in the Glenwood-Dotsero area, located about 90 miles upstream from Grand Junction (fig. 1). Effects of human activities, such as irrigation, reservoir evaporation, and transbasin diversions, have increased the levels of salinity in the Colorado River. High salinity can affect industrial and municipal water users by causing increased water-treatment costs, increased deterioration of plumbing and appliances, increased soap needs, and undesirable taste of drinking water. High salinity also can cause lower crop yields by reducing water and nutrient uptake by plants and can increase agricultural production costs because of higher leaching and drainage requirements. Agricultural losses might occur when salinity reaches about 700?850 milligrams per liter (U.S Department of the Interior, 1994). Figure 1. Irrigated area in the Grand Valley and locations of sampling sites for the 1994?95 salinity study of the Colorado River. The Colorado River is the major source of irrigation water to the Grand Valley (fig. 1) and also is one source of water for the Clifton Water District, which supplies domestic water to part of the eastern Grand Valley. During spring and early summer in 1994, the Colorado River in the Grand Valley had lower than average streamflow. There was concern by water users about the effect of this low streamflow on salinity in the river. In 1994, the U.S. Geological Survey (USGS), in cooperation with the Colorado River Water Conservation District, began a study to evaluate salinity in the Colorado River. This fact sheet describes results of that study. The specific objectives of the fact sheet are to (1) compare salinity in the Colorado River among

  4. Effect of sodium hypochlorite and saline on cyclic fatigue resistance of WaveOne Gold and Reciproc reciprocating instruments.

    PubMed

    Elnaghy, A M; Elsaka, S E

    2017-10-01

    To compare the cyclic fatigue resistance of WaveOne Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK, USA) and Reciproc (VDW, Munich, Germany) reciprocating instruments during immersion in sodium hypochlorite (NaOCl) and saline solutions at body temperature. A total of 180 new WaveOne Gold primary size 25, .07 taper, and Reciproc size 25, .08 taper were randomly divided into three groups: group 1: no immersion (control, air); group 2: immersion in saline at 37 ± 1 °C; and group 3: immersion in 5% NaOCl at 37 ± 1 °C. The instruments were reciprocated in the test solution until fracture, and the number of cycles to failure was recorded. The data were analysed statistically using t-tests and one-way analysis of variance (anova) with the significance level set at P < 0.05. A Weibull analysis was performed on number of cycles to failure data. WaveOne Gold instruments had significantly greater number of cycles to failure than Reciproc instruments in all groups (P < 0.001). Fatigue resistance for both instruments tested in air was significantly higher than that in saline and NaOCl solutions (P < 0.001). For both instruments, there was no significant difference in the fatigue resistance between saline and NaOCl solutions (P > 0.05). The Weibull analysis showed that the predicted cycles of WaveOne Gold in air was 1027 cycles for 99% survival. However, Reciproc instruments tested in NaOCl solution had the lowest predicted cycles (613 cycles) among the groups. Immersion of WaveOne Gold and Reciproc reciprocating instruments in saline and NaOCl solutions decreased considerably their cyclic fatigue resistance. The fatigue resistance of WaveOne Gold instruments was higher than that of Reciproc instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland.

    PubMed

    Kalwasińska, Agnieszka; Felföldi, Tamás; Szabó, Attila; Deja-Sikora, Edyta; Kosobucki, Przemysław; Walczak, Maciej

    2017-07-01

    Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth of 2 m (both having pH ~11 and EC e up to 423 dS m -1 ) were investigated using culture-based (culturing on alkaline medium) and culture-independent microbiological approaches (microscopic analyses and pyrosequencing). A surprisingly diverse bacterial community was discovered in this highly saline, alkaline and nutrient-poor environment, with the bacterial phyla Proteobacteria (representing 52.8% of the total bacterial community) and Firmicutes (16.6%) showing dominance. Compared to the surface layer, higher bacterial abundance and diversity values were detected in the deep zone, where more stable environmental conditions may occur. The surface layer was dominated by members of the genera Phenylobacterium, Chelativorans and Skermanella, while in the interior layer the genus Fictibacillus was dominant. The culturable aerobic, haloalkaliphilic bacteria strains isolated in this study belonged mostly to the genus Bacillus and were closely related to the species Bacillus pseudofirmus, B. cereus, B. plakortidis, B. thuringensis and B. pumilus.

  6. Influence of the different sodium chloride concentrations on microbiological and physico-chemical characteristics of mozzarella cheese.

    PubMed

    Faccia, Michele; Mastromatteo, Marianna; Conte, Amalia; Del Nobile, Matteo Alessandro

    2012-11-01

    In this work the effects of addition of different amounts of sodium chloride, during cheese making, on shelf life of mozzarella cheese were evaluated. The mozzarella cheese quality decay was assessed during storage at 9 °C by monitoring microbiological, sensory and physico-chemical changes in the product. Results showed that Pseudomonas spp. growth was responsible for cheese unacceptability, whereas the sensory quality did not limit cheese shelf life. In particular, the highest shelf life values were obtained for mozzarella without salt and with the lowest salt concentration (0·23 g NaCl), and amounted to about 5 and 4 d, respectively. On the contrary, high salt concentrations affected product shelf life, probably as a consequence of progressive solubilisation of cheese casein, due to the phenomenon of 'salting in'.

  7. Last Glacial Maximum Salinity Reconstruction

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  8. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis

    PubMed Central

    Lou, Yiyun; Zhang, Fan; Luo, Yuqin; Wang, Liya; Huang, Shisi; Jin, Fan

    2016-01-01

    The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure. PMID:27517916

  9. The salinity, temperature, and delta18O of the glacial deep ocean.

    PubMed

    Adkins, Jess F; McIntyre, Katherine; Schrag, Daniel P

    2002-11-29

    We use pore fluid measurements of the chloride concentration and the oxygen isotopic composition from Ocean Drilling Program cores to reconstruct salinity and temperature of the deep ocean during the Last Glacial Maximum (LGM). Our data show that the temperatures of the deep Pacific, Southern, and Atlantic oceans during the LGM were relatively homogeneous and within error of the freezing point of seawater at the ocean's surface. Our chloride data show that the glacial stratification was dominated by salinity variations, in contrast with the modern ocean, for which temperature plays a primary role. During the LGM the Southern Ocean contained the saltiest water in the deep ocean. This reversal of the modern salinity contrast between the North and South Atlantic implies that the freshwater budget at the poles must have been quite different. A strict conversion of mean salinity at the LGM to equivalent sea-level change yields a value in excess of 140 meters. However, the storage of fresh water in ice shelves and/or groundwater reserves implies that glacial salinity is a poor predictor of mean sea level.

  10. Mineralocorticoid receptor antagonism prevents hedonic deficits induced by a chronic sodium appetite.

    PubMed

    Morris, Michael J; Na, Elisa S; Johnson, Alan Kim

    2010-04-01

    Our laboratory has reported that manipulations that provoke a robust sodium appetite (e.g., sodium depletion, deoxycorticosterone acetate) decrease lateral hypothalamic self-stimulation (LHSS) reward if rats are denied access to hypertonic saline solutions. The following studies investigated the interaction between chronic sodium appetite and the renin-angiotensin-aldosterone system on LHSS reward. In Experiment 1, animals treated with the diuretic furosemide (20 mg/kg) when denied access to saline exhibited an increase in the current required to produce 50% of the maximum LHSS response rate (ECu50) 48 hr after extracellular volume depletion. Furosemide-depleted rats that were allowed to drink 0.3 M saline after depletion, or that were treated with the selective mineralocorticoid receptor (MR) antagonist spironolactone, which significantly reduced sodium appetite, did not show ECu50 changes. In Experiment 2 chronic intracerebroventricular administration of the selective MR antagonist RU 28318 (10 microg/microl/hr) prevented decreases in the ECu50 induced by deoxycorticosterone acetate-no salt treatment. We conclude that an unresolved sodium appetite will reduce responding for rewards and that experimental manipulations that reduce sodium appetite (e.g., access to saline or blockade of MR) decrease hedonic deficits.

  11. Investigation of factors influencing chloride extraction efficiency during electrochemical chloride extraction from reinforcing concrete

    NASA Astrophysics Data System (ADS)

    Sharp, Stephen R.

    2005-11-01

    Electrochemical chloride extraction (ECE) is an accelerated bridge restoration method similar to cathodic protection, but operates at higher current densities and utilizes a temporary installation. Both techniques prolong the life of a bridge by reducing the corrosion rate of the reinforcing bar when properly applied. ECE achieves this by moving chlorides away from the reinforcement and out of the concrete while simultaneously increasing the alkalinity of the electrolyte near the reinforcing steel. Despite the proven success, significant use of ECE has not resulted in part due to an incomplete understanding in the following areas: (1) An estimation of the additional service life that can be expected following treatment when the treated member is again subjected to chlorides; (2) The cause of the decrease in current flow and, therefore, chloride removal rate during treatment; (3) Influence of water-to-cement (w/c) ratio and cover depth on the time required for treatment. This dissertation covers the research that is connected to the last two areas listed above. To begin examining these issues, plain carbon steel reinforcing bars (rebar) were embedded in portland cement concrete slabs of varying water-to-cement (w/c) ratios and cover depths, and then exposed to chlorides. A fraction of these slabs had sodium chloride added as an admixture, with all of the slabs subjected to cyclical ponding with a saturated solution of sodium chloride. ECE was then used to remove the chlorides from these slabs while making electrical measurements in the different layers between the rebar (cathode) and the titanium mat (anode) to follow the progress of the ECE process. During this study, it was revealed that the resistance of the outer concrete surface layer increases during ECE, inevitably restricting current flow, while the resistance of the underlying concrete decreases or remains constant. During ECE treatment, a white residue formed on the surface of the concrete. Analyses of the

  12. Anti-corrosion activities of apen-class inhibitive drug on aluminium alloy in simulated chloride environment

    NASA Astrophysics Data System (ADS)

    Fayomi, O. S. I.; Anawe, PAL; Ayoola, A. A.; Joseph, O. O.

    2018-05-01

    In this study, aluminium material normally used in the underlie ship was immersed in simulated sodium chloride environment and its degradation properties was evaluated. Investigation of corrosion rate and mass weight loss through gravimetric tests measurements showed that less mass loss was recorded for tests in sodium chloride with 3-(2'-chloro-6' fluorophenyl) and lowest corrosion rate values were found at 10%. On the other hand, the mass loss deteriorated in all 3-(2'-chloro-6' fluorophenyl) with less uniform corrosion. The existence of chloride dissolved the interfacial surface layer resulting into pit initiation and growth. It is found that corrosion degradation of aluminum is dependent on chloride and inhibitive concentration.

  13. Impact of trehalose on the activity of sodium and potassium chloride in aqueous solutions: Why trehalose is worth its salt.

    PubMed

    Poplinger, Michal; Shumilin, Ilan; Harries, Daniel

    2017-12-15

    Trehalose is revered for its multiple unique impacts on solution properties, including the ability to modulate the salty and bitter tastes of sodium and potassium salts. However, the molecular mechanisms underlying trehalose's effect on taste perception are unknown. Here we focus on the physico-chemical effect of trehalose to alter the activity of monovalent salts in aqueous solution. Using a modified isopiestic methodology that relies on contemporary vapor pressure osmometry, we elucidate how trehalose modifies the thermodynamic chemical activity of sodium and potassium chloride, as well as the effect of the salts on the sugar's activity. We find that trehalose has a specific impact on potassium chloride that is unlike that of other sugars or polyols. Remarkably, especially at low salt concentrations, trehalose considerably elevates the activity (or chemical potential) of KCl, raising the salt activity coefficient as high as ∼1.5 its value in the absence of the sugar. Moreover, in contrast to their action on other known carbohydrates, both KCl and NaCl act as salting-out agents towards trehalose, as seen in the elevated activity coefficient compared with its value in pure water (up to ∼1.5 higher at low sugar and salt concentrations). We discuss the possible relevance of our findings to the mechanism of trehalose taste perception modification, and point to necessary future directed sensory experiments needed to resolve the possible link between our findings and the emerging biochemical or physiological mechanisms involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Therapeutic Effects of Sodium Hyaluronate on Ocular Surface Damage Induced by Benzalkonium Chloride Preserved Anti-glaucoma Medications

    PubMed Central

    Liu, Xing; Yu, Fen-Fen; Zhong, Yi-Min; Guo, Xin-Xing; Mao, Zhen

    2015-01-01

    Background: Long-term use of benzalkonium chloride (BAC)-preserved drugs is often associated with ocular surface toxicity. Ocular surface symptoms had a substantial impact on the glaucoma patients’ quality of life and compliance. This study aimed to investigate the effects of sodium hyaluronate (SH) on ocular surface toxicity induced by BAC-preserved anti-glaucoma medications treatment. Methods: Fifty-eight patients (101 eyes), who received topical BAC-preserved anti-glaucoma medications treatment and met the severe dry eye criteria, were included in the analysis. All patients were maintained the original topical anti-glaucoma treatment. In the SH-treated group (56 eyes), unpreserved 0.3% SH eye drops were administered with 3 times daily for 90 days. In the control group (55 eyes), phosphate-buffered saline were administered with 3 times daily for 90 days. Ocular Surface Disease Index (OSDI) questionnaire, break-up time (BUT) test, corneal fluorescein staining, corneal and conjunctival rose Bengal staining, Schirmer test, and conjunctiva impression cytology were performed sequentially on days 0 and 91. Results: Compared with the control group, SH-treated group showed decrease in OSDI scores (Kruskal-Wallis test: H = 38.668, P < 0.001), fluorescein and rose Bengal scores (Wilcoxon signed-ranks test: z = −3.843, P < 0.001, and z = −3.508, P < 0.001, respectively), increase in tear film BUT (t-test: t = −10.994, P < 0.001) and aqueous tear production (t-test: t = −10.328, P < 0.001) on day 91. The goblet cell density was increased (t-test: t = −9.981, P < 0.001), and the morphology of the conjunctival epithelium were also improved after SH treatment. Conclusions: SH significantly improved both symptoms and signs of ocular surface damage in patients with BAC-preserved anti-glaucoma medications treatment. SH could be proposed as a new attempt to reduce ocular surface toxicity, and alleviate symptoms of ocular surface damage in BAC-preserved anti

  15. The effects of salinity, pH, and dissolved organic matter on acute copper toxicity to the rotifer, Brachionus plicatilis ("L" strain).

    PubMed

    Arnold, W R; Diamond, R L; Smith, D S

    2010-08-01

    This paper presents data from original research for use in the development of a marine biotic ligand model and, ultimately, copper criteria for the protection of estuarine and marine organisms and their uses. Ten 48-h static acute (unfed) copper toxicity tests using the euryhaline rotifer Brachionus plicatilis ("L" strain) were performed to assess the effects of salinity, pH, and dissolved organic matter (measured as dissolved organic carbon; DOC) on median lethal dissolved copper concentrations (LC50). Reconstituted and natural saltwater samples were tested at seven salinities (6, 11, 13, 15, 20, 24, and 29 g/L), over a pH range of 6.8-8.6 and a range of dissolved organic carbon of <0.5-4.1 mg C/L. Water chemistry analyses (alkalinity, calcium, chloride, DOC, hardness, magnesium, potassium, sodium, salinity, and temperature) are presented for input parameters to the biotic ligand model. In stepwise multiple regression analysis of experimental results where salinity, pH, and DOC concentrations varied, copper toxicity was significantly related only to the dissolved organic matter content (pH and salinity not statistically retained; alpha=0.05). The relationship of the 48-h dissolved copper LC50 values and dissolved organic carbon concentrations was LC50 (microg Cu/L)=27.1xDOC (mg C/L)1.25; r2=0.94.

  16. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    PubMed

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  17. Sodium chloride promotes tissue inflammation via osmotic stimuli in subtotal-nephrectomized mice.

    PubMed

    Sakata, Fumiko; Ito, Yasuhiko; Mizuno, Masashi; Sawai, Akiho; Suzuki, Yasuhiro; Tomita, Takako; Tawada, Mitsuhiro; Tanaka, Akio; Hirayama, Akiyoshi; Sagara, Akihiro; Wada, Takashi; Maruyama, Shoichi; Soga, Tomoyoshi; Matsuo, Seiichi; Imai, Enyu; Takei, Yoshifumi

    2017-04-01

    Chronic inflammation, which is often associated with high all-cause and cardiovascular mortality, is prevalent in patients with renal failure; however, the precise mechanisms remain unclear. High-salt intake was reported to induce lymphangiogenesis and autoimmune diseases via osmotic stimuli with accumulation of sodium or chloride. In addition, sodium was recently reported to be stored in the extremities of dialysis patients. We studied the effects and mechanisms of high salt loading on tissue and systemic inflammation in subtotal-nephrectomized mice (5/6Nx) and in cultured cells. Macrophage infiltration in the peritoneal wall (P<0.001), heart (P<0.05) and para-aortic tissues (P<0.001) was significantly higher in 5/6Nx with salt loading (5/6Nx/NaCl) than in 5/6Nx without salt loading (5/6Nx/Water); however, there were no significant differences in blood pressure and renal function between the groups. Tissue interleukin-6, monocyte chemotactic protein-1 (MCP-1), serum- and glucocorticoid-inducible kinase 1 (Sgk1) and tonicity-responsive enhancer binding protein (TonEBP) mRNA were significantly elevated in the peritoneal wall and heart with 5/6Nx/NaCl when compared with 5/6Nx/Water. Sodium was stored in the abdominal wall, exerting high-osmotic conditions. Reversal of salt loading reduced macrophage infiltration associated with decreased TonEBP in 5/6Nx/NaCl. Macrophage infiltration associated with fibrosis induced by salt loading was decreased in the 5/6Nx/NaCl/CC chemokine receptor 2 (CCR2, receptor of MCP-1)-deficient mice when compared with 5/6Nx/NaCl/Wild mice, suggesting that CCR2 is required for macrophage infiltration in 5/6Nx with NaCl loading. In cultured mesothelial cells and cardiomyocytes, culture media with high NaCl concentration induced MCP-1, Sgk1 and TonEBP mRNA, all of which were suppressed by TonEBP siRNA, indicating that both MCP-1 and Sgk1 are downstream of TonEBP. Our study indicates that high NaCl intake induces MCP-1 expression leading to

  18. Technological, sensory and microbiological impacts of sodium reduction in frankfurters.

    PubMed

    Yotsuyanagi, Suzana E; Contreras-Castillo, Carmen J; Haguiwara, Marcia M H; Cipolli, Kátia M V A B; Lemos, Ana L S C; Morgano, Marcelo A; Yamada, Eunice A

    2016-05-01

    Initially, meat emulsions were studied in a model system to optimize phosphate and potassium chloride concentrations. In the second step, frankfurters containing 1.00%, 1.30% and 1.75% sodium chloride (NaCl) were processed and their stability was monitored over 56 days. In the emulsion tests, the best levels in relation to shear force found in model system were 0.85% and 0.25% of potassium chloride and phosphate, respectively. In the second step, treatments with 1.30% and 1.75% NaCl performed better in most of the analysis, particularly the sensory analysis. Consumers could identify the levels of salt, but this was not the factor that determined the overall acceptability. In some technological parameters, frankfurters with 1.30% NaCl were better than those with 1.75%. This represents a reduction of approximately 25% sodium chloride, or 18% reduction in sodium (916 mg/100g to 750 mg/100g), and it appears to be feasible from a technological, microbiological and sensory point of view. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece

    NASA Astrophysics Data System (ADS)

    Petalas, C. P.; Diamantis, I. B.

    1999-06-01

    This paper describes the origins and distribution of saline groundwaters in the coastal area of Rhodope, Greece. The aquifer system includes two aquifers within coarse-grained alluvial sediments in the coastal part of the study area. Two major water-quality groups occur in the study area, namely Ca2+-rich saline groundwater and Ca2+-poor, almost fresh groundwater. The main process controlling the groundwater chemistry is the exchange of calcium and sodium between the aquifer matrix and intruding seawater. The natural salt water in the study area is probably residual water that infiltrated the aquifer system during repeated marine transgressions in late Pleistocene time. Seawater intrusion into the coastal aquifer system occurs as a result of overpumping in two seawater wedges separated vertically by a low-permeability layer. The rate of intrusion averages 0.8 m/d and is less than expected due to a decline of the aquifer's permeability at the interface with the seawater. The application of several hydrochemical techniques (Piper and Durov diagrams; Na+/Cl-, Ca2+/Cl-, Mg2+/Cl-, and Br-/Cl- molar ratios; Ca2+/Mg2+ weight ratio; and chloride concentrations), combined with field observations, may lead to a better explanation of the origin of the saline groundwater.

  20. Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin

    NASA Astrophysics Data System (ADS)

    Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.

    2016-01-01

    This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.

  1. Prevention of Oral Candidiasis After Free Flap Surgery: Role of 3% Sodium Bicarbonate Saline in Oral Care.

    PubMed

    Yang, Yue; Zhang, Fang; Lyu, Xin; Yan, Zhimin; Hua, Hong; Peng, Xin

    2017-03-01

    Relevant reports about oral candidiasis status and prevention measures after free flap surgery for the oral and maxillofacial region are limited. The present study explored oral candidiasis status after free flap surgery and its prevention through a prospective comparative study. One hundred four patients were randomized to a control group (n = 54) and an experimental group (n = 50). Compared with the control group, the experimental group was provided an additional 3% sodium bicarbonate saline solution for oral care after free flap surgery. The incidence of oral candidiasis was evaluated by objective examination (saliva culture and salivary pH measurement) and subjective evaluation (clinical signs of oral candidiasis) at admission and from postoperative days 1 to 14. The salivary pH values of the 2 groups were lower than the normal salivary pH, and postoperative salivary pH values were always lower than the active range of oral lysozymes in the control group. The salivary pH values of the experimental group were higher than those of the control group from postoperative days 6 to 14 (P < .05). The incidence of oral candidiasis was 13.0% in the control group, which was higher than that in the experimental group (2.0%; P < .05). In addition, advanced age, use of a free flap for the simultaneous repair of intraoral and paraoral defects, and a combination of 2 antibiotic types were risk factors for oral candidiasis. Oral candidiasis was common in patients after free flap reconstruction surgery, and the use of 3% sodium bicarbonate saline solution for oral care effectively prevented it. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Preparation and characterization of silver chloride nanoparticles as an antibacterial agent

    NASA Astrophysics Data System (ADS)

    Duong Trinh, Ngoc; Thanh Binh Nguyen, Thi; Hai Nguyen, Thanh

    2015-12-01

    Silver chloride nanoparticles were prepared by the precipitation reaction between silver nitrate and sodium chloride in an aqueous solution containing poly(vinyl alcohol) as a stabilizing agent. Different characteristics of the nanoparticles in suspension and in lyophilized powder such as size, morphology, chemical nature, interaction with stabilizing agent and photo-stability were investigated. Biological tests showed that the obtained silver chloride nanoparticles displayed antibacterial activities against Escherichia coli and Staphylococcus aureus.

  3. In situ bioinspired synthesis of silver chloride nanocrystals on silk fibroin fibers

    NASA Astrophysics Data System (ADS)

    Su, Huilan; Han, Jie; Dong, Qun; Xu, Jia; Chen, Ying; Gu, Yu; Song, Weiqiang; Zhang, Di

    2011-02-01

    Silver chloride (AgCl) nanocrystals were formed and grown on silk fibroin fibers (SFFs) by a room-temperature process. Practically, the degummed SFFs were immersed into silver nitrate solution and sodium chloride solution in turn. The amino acids on the SFF surface were negatively charged in alkaline impregnant, providing locations to immobilize silver ions and form silver chloride seeds. AgCl nanocrystals can further grow into cubic AgCl nanocrystals with an edge of about 100 nm. The morphologies of the AgCl nanocrystals were mostly influenced by the concentration of sodium chloride solution and the special configurations of the SFFs. The target AgCl/SFF nanocomposites constructed by AgCl nanocrystals and substrate SFFs could be used as photocatalysts in water splitting and antibacterial agents. This work provides an important example in the introduction of natural biofibers to the synthesis of functional hybrid nanocomposites by a green and mild technique.

  4. The Slow Moving Threat of Groundwater Salinization: Mechanisms, Costs, and Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Pauloo, R.; Guo, Z.; Fogg, G. E.

    2016-12-01

    Population growth, the Green Revolution, and climate uncertainties have accelerated overdraft in groundwater basins worldwide, which in some regions is converting these basins into closed hydrologic systems, where the dominant exits for water are evapotranspiration and pumping. Irrigated agricultural basins are particularly at risk to groundwater salinization, as naturally occurring (i.e., sodium, potassium, chloride) and anthropogenic (i.e., nitrate fertilizers) salts leach back into the water table through the root zone, while a large portion of pumped groundwater leaves the system as it is evapotranspired by crops. Decreasing water quality associated with increases in Total Dissolved Solids (TDS) has been documented in aquifers across the United States in the past half century. This study suggests that the increase in TDS in aquifers can be partially explained by closed basin hydrogeology and rock-water interactions leading to groundwater salinization. This study will present: (1) a report on historical water quality in the Tulare basin, (2) a forward simulation of salt balance in Tulare Basin based on the Department of Water Resources numerical model C2VSim, and a simple mixing model, (3) an economic analysis forecasting the cost of desalination under varying degrees of managed groundwater recharge where the basin is gradually filled, avoiding hydraulic closure.

  5. It Is Chloride Depletion Alkalosis, Not Contraction Alkalosis

    PubMed Central

    Galla, John H.

    2012-01-01

    Maintenance of metabolic alkalosis generated by chloride depletion is often attributed to volume contraction. In balance and clearance studies in rats and humans, we showed that chloride repletion in the face of persisting alkali loading, volume contraction, and potassium and sodium depletion completely corrects alkalosis by a renal mechanism. Nephron segment studies strongly suggest the corrective response is orchestrated in the collecting duct, which has several transporters integral to acid-base regulation, the most important of which is pendrin, a luminal Cl/HCO3− exchanger. Chloride depletion alkalosis should replace the notion of contraction alkalosis. PMID:22223876

  6. Effects of sodium chloride salinity on ecophysiological and biochemical parameters of oak seedlings (Quercus robur L.) from use of de-icing salts for winter road maintenance.

    PubMed

    Laffray, Xavier; Alaoui-Sehmer, Laurence; Bourioug, Mohamed; Bourgeade, Pascale; Alaoui-Sossé, Badr; Aleya, Lotfi

    2018-04-04

    Salt is widely used to melt snow on roads especially in mountain regions. Whether as rock salt or aerosols, spread or sprayed over road surfaces, salt may result in increased salt concentrations in soils, which, in turn, affect natural vegetation, especially tree seedlings already subjected to various other types of abiotic stress. The authors investigated the effects of salt treatment-related stress on seedling growth and certain biochemical parameters in Quercus robur to determine ion concentrations in root tips. Seedlings growing in a quartz sand/vermiculite mixture were subjected to NaCl concentrations of 0, 50, or 100 mM for 5 weeks. The results showed that high NaCl concentrations caused a marked reduction in total leaf biomass 55 and 75% for 50 and 100 mM treatments, respectively, in dry weight of stems (84%) and roots (175%) for 100 mM treatment and modified root architecture, whereas no changes appeared in leaf number. A non-significant decrease in relative water content, with changes in ion balance was recorded. Comparison of stressed to control plants show an increase in sodium (3.5-8-fold), potassium (0.6-fold), and chloride (9.5-14-fold) concentrations in the root tips while the K + /Na + ratio decreased. In taproots, no significant biochemical differences were observed between the salt-treated and the control plants for acid invertase activity, reducing sugars, sucrose, or soluble protein contents. The significance of ion and sugar accumulations in relation to osmotic adjustment and the ability of oak seedlings to cope with salt stress are discussed.

  7. The comparative effects of 3% saline and 0.5M sodium lactate on cardiac function:a randomised, crossover study in volunteers.

    PubMed

    Nalos, Marek; Kholodniak, Euguenia; Smith, Louise; Orde, Sam; Ting, Iris; Slama, Michel; Seppelt, Ian; McLean, Anthony S; Huang, Stephen

    2018-06-01

    To investigate the metabolic and cardiac effects of intravenous administration of two hypertonic solutions - 3% saline (SAL) and 0.5M sodium lactate (LAC). A randomised, doubleblind, crossover study in ten human volunteers. Intravenous bolus of either SAL or LAC at 3 mL/kg over 20 min followed by a 2 mL/kg infusion over 60 min. Acid base parameters and echocardiographic indices of cardiac function, cardiac output (CO), left ventricular ejection fraction (LVEF) and mitral annular peak systolic velocity (Sm) before and after infusion of SAL or LAC. Despite haemodilution, we observed an increase in sodium (139 ± 2 mmol/L to 142 ± 2 mmol/L in both groups) and respective anions, chloride (106 ± 2 mmol/L to 112 ± 3 mmol/L) and lactate (1.01 ± 0.28 mmol/L to 2.38 ± 0.38 mmol/L) with SAL and LAC, respectively. The pH (7.37 ± 0.03 to 7.45 ± 0.03; P < 0.01) and simplified strong ion difference (SID) (36.3 ± 4.6 mmol/L to 39.2 ± 3.6 mmol/L; P < 0.01) increased during the LAC infusion. The pH was unchanged, but SID decreased during SAL infusion (36.3 ± 2.5 mmol/L to 33.9 ± 3.1 mmol/L; P = 0.01). Both solutions led to an increase in preload and cardiac function, CO (4.36 ± 0.79 L/min to 4.98 ± 1.37 L/ min v 4.62 ± 1.30 L/min to 5.13 ± 1.44 L/min), LVEF (61 ± 6% to 63 ± 8% v 64 ± 6% to 68 ± 7%). The averaged Sm improved in the LAC group as compared with the SAL group (0.088 ± 0.008 to 0.096 ± 0.016 v 0.086 ± 0.012 to 0.082 ± 0.012; P = 0.032). The administration of SAL or LAC has opposing effects on acid base variables such as SID. Hypertonic fluid infusion lead to increased cardiac preload and performance with Sm, suggesting better left ventricular systolic function during LAC as compared with SAL. Lactated hypertonic solutions should be evaluated as resuscitation fluids.

  8. Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008-2011.

    PubMed

    Kim, Sung-Woo; Jeon, Jae-Han; Choi, Yeon-Kyung; Lee, Won-Kee; Hwang, In-Ryang; Kim, Jung-Guk; Lee, In-Kyu; Park, Keun-Gyu

    2015-08-01

    Accumulating evidence shows that high sodium chloride intake increases urinary calcium excretion and may be a risk factor for osteoporosis. However, the effect of oral sodium chloride intake on bone mineral density (BMD) and risk of osteoporosis has been inadequately researched. The aim of the present study was to determine whether urinary sodium excretion (reflecting oral sodium chloride intake) associates with BMD and prevalence of osteoporosis in postmenopausal women. This cross-sectional study involved a nationally representative sample consisting of 2,779 postmenopausal women who participated in the Korea National Health and Nutritional Examination Surveys in 2008-2011. The association of urinary sodium/creatinine ratio with BMD and other osteoporosis risk factors was assessed. In addition, the prevalence of osteoporosis was assessed in four groups with different urinary sodium/creatinine ratios. Participants with osteoporosis had significantly higher urinary sodium/creatinine ratios than the participants without osteoporosis. After adjusting for multiple confounding factors, urinary sodium/creatinine ratio correlated inversely with lumbar spine BMD (P = 0.001). Similarly, when participants were divided into quartile groups according to urinary sodium/creatinine ratio, the average BMD dropped as the urinary sodium/creatinine ratio increased. Multiple logistic regression analysis revealed that compared to quartile 1, quartile 4 had a significantly increased prevalence of lumbar spine osteoporosis (odds ratios 1.346, P for trend = 0.044). High urinary sodium excretion was significantly associated with low BMD and high prevalence of osteoporosis in lumbar spine. These results suggest that high sodium chloride intake decreases lumbar spine BMD and increases the risk of osteoporosis in postmenopausal women.

  9. Additive effects of Na+ and Cl– ions on barley growth under salinity stress

    PubMed Central

    Tavakkoli, Ehsan; Fatehi, Foad; Coventry, Stewart; Rengasamy, Pichu; McDonald, Glenn K.

    2011-01-01

    Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na+) and chloride (Cl–) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na+ accumulation. It has previously been suggested that Cl– toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na+ and Cl– reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na+, Cl–, and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na+ and Cl– stress. The results demonstrated that Na+ and Cl– exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na+ reduced K+ and Ca2+ uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl– concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown. PMID:21273334

  10. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment.

    PubMed

    Lashari, Muhammad Siddique; Ye, Yingxin; Ji, Haishi; Li, Lianqing; Kibue, Grace Wanjiru; Lu, Haifei; Zheng, Jufeng; Pan, Genxing

    2015-04-01

    Salinity is a major stress threatening crop production in dry lands. A 2-year field experiment was conducted to assess the potential of a biochar product to alleviate salt-stress to a maize crop in a saline soil. The soil was amended with a compost at 12 t ha(-1) of wheat straw biochar and poultry manure compost (BPC), and a diluted pyroligneous solution (PS) at 0.15 t ha(-1) (BPC-PS). Changes in soil salinity and plant performance, leaf bioactivity were examined in the first (BPC-PS1) and second (BPC-PS2) year following a single amendment. While soil salinity significantly decreased, there were large increases in leaf area index, plant performance, and maize grain yield, with a considerable decrease in leaf electrolyte leakage when grown in amendments. Maize leaf sap nitrogen, phosphorus and potassium increased while sodium and chloride decreased, leaf bioactivity related to osmotic stress was significantly improved following the treatments. These effects were generally greater in the second than in the first year. A combined amendment of crop straw biochar with manure compost plus pyroligneous solution could help combat salinity stress to maize and improve productivity in saline croplands in arid/semi-arid regions threatened increasingly by global climate change. © 2014 Society of Chemical Industry.

  11. Contrasting effects of chloride on growth, reproduction, and toxicant sensitivity in two genetically distinct strains of Hyalella azteca.

    PubMed

    Soucek, David J; Mount, David R; Dickinson, Amy; Hockett, J Russell; McEwen, Abigail R

    2015-10-01

    The strain of Hyalella azteca (Saussure: Amphipoda) commonly used for aquatic toxicity testing in the United States has been shown to perform poorly in some standardized reconstituted waters frequently used for other test species. In 10-d and 42-d experiments, the growth and reproduction of the US laboratory strain of H. azteca was shown to vary strongly with chloride concentration in the test water, with declining performance observed below 15 mg/L to 20 mg/L. In contrast to the chloride-dependent performance of the US laboratory strain of H. azteca, growth of a genetically distinct strain of H. azteca obtained from an Environment Canada laboratory in Burlington, Ontario, Canada, was not influenced by chloride concentration. In acute toxicity tests with the US laboratory strain of H. azteca, the acute toxicity of sodium nitrate increased with decreasing chloride in a pattern similar not only to that observed for control growth, but also to previous acute toxicity testing with sodium sulfate. Subsequent testing with the Burlington strain showed no significant relationship between chloride concentration and the acute toxicity of sodium nitrate or sodium sulfate. These findings suggest that the chloride-dependent toxicity shown for the US laboratory strain may be an unusual feature of that strain and perhaps not broadly representative of aquatic organisms as a whole. © 2015 SETAC.

  12. A benign synthesis of alane by the composition-controlled mechanochemical reaction of sodium hydride and aluminum chloride

    DOE PAGES

    Hlova, Ihor; Goldston, Jennifer F.; Gupta, Shalabh; ...

    2017-05-30

    Solid-state mechanochemical synthesis of alane (AlH 3) starting from sodium hydride (NaH) and aluminum chloride (AlCl 3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl 3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl 3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH 3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction,more » which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl 3 system presents some subtle differences compared to LiH–AlCl 3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. As a result, complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.« less

  13. A benign synthesis of alane by the composition-controlled mechanochemical reaction of sodium hydride and aluminum chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlova, Ihor; Goldston, Jennifer F.; Gupta, Shalabh

    Solid-state mechanochemical synthesis of alane (AlH 3) starting from sodium hydride (NaH) and aluminum chloride (AlCl 3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl 3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl 3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH 3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction,more » which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl 3 system presents some subtle differences compared to LiH–AlCl 3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. As a result, complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.« less

  14. Kinetic evidence for the interactive inhibition of laccase from Trametes versicolor by pH and chloride.

    PubMed

    Raseda, Nasrin; Hong, Soonho; Kwon, O Yul; Ryu, Keungarp

    2014-12-28

    The interactive inhibitory effects of pH and chloride on the catalysis of laccase from Trametes versicolor were investigated by studying the alteration of inhibition characteristics of sodium chloride at different pHs for the oxidation of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid). At pH 3.0, the addition of sodium chloride (50 mM) brought about a 40-fold increase in Km(app) and a 4-fold decrease in Vmax(app). As the pH increased to 7.0, the inhibitory effects of sodium chloride became significantly weakened. The mixed-inhibition mechanism was successfully used to quantitatively estimate the competitive and uncompetitive inhibition strengths by chloride at two different pHs (pH 3.0 and 6.0). At pH 3.0, the competitive inhibition constant, Ki, was 0.35 mM, whereas the uncompetitive inhibition constant, Ki', was 18.1 mM, indicating that the major cause of the laccase inhibition by chloride is due to the competitive inhibition step. At a higher pH of 6.0, where the inhibition of the laccase by hydroxide ions takes effect, the inhibition of the laccase by chloride diminished to a great extent, showing increased values of both the competitive inhibition constant (Ki= 23.7 mM) and uncompetitive inhibition constant (Ki' = 324 mM). These kinetic results evidenced that the hydroxide anion and chloride share a common mechanism to inhibit the laccase activity.

  15. On the Post-Compaction Evolution of Tensile Strength of Sodium Chloride-Starch Mixture Tablets.

    PubMed

    Radojevic, Jovana; Zavaliangos, Antonios

    2017-08-01

    This study focuses on the evolution of mechanical behavior of starch and sodium chloride (NaCl) mixture tablets after compaction. This type of mixture has attracted attention in the past because such tablets exhibit lower tensile strengths than the ones of its individual components. Here we demonstrate that the strengths of NaCl-starch mixtures and NaCl tablets evolve after compaction in an opposite way. When stored at relative humidity of 60%, NaCl tablets strengthen with time, whereas NaCl-starch mixtures weaken. To explain this behavior, we propose that in the NaCl-starch mixture, the presence of 2 materials with significantly different elastic moduli leads to creation of tensile stresses at the stiffer NaCl-NaCl contacts. Such tensile stresses lead to a reduction in strength of the compacted mixtures by negating a local dissolution-reprecipitation mechanism, which strengthens the NaCl-NaCl in pure NaCl tablet. This effect is proven by experimental results from NaCl specimens diametrically loaded during storage. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Further optimization of culture method for rat keratinocytes: titration of glucose and sodium chloride.

    PubMed

    Oku, H; Yamashita, M; Iwasaki, H; Chinen, I

    1999-02-01

    The present study further improved the serum-free method of culturing rat keratinocytes. To obtain the best growth of rat keratinocytes, we modified our previous serum-free medium (MCDB153 based medium), particularly the amounts of glucose and sodium chloride (NaCl). Titration experiments showed the optimal concentration to be 0.8 mM for glucose and 100 mM for NaCl. This modification eliminated the requirement for albumin, which had been essential for colony formation when our previous medium was used. Titration of glucose and NaCl, followed by adjustment of essential amino acids and growth factors, produced a new formulation. More satisfactory and better growth was achieved with the new medium than with the previous medium. Accumulation of monoalkyldiacylglycerol (MADAG) was consistently noted in this study, representing the unusual lipid profile. A tendency toward normalization was, however, noted with the neutral lipid profile of keratinocytes cultivated in the new medium: lower production of MADAG was obtained with the new formulation, rather than the previous one.

  17. Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor.

    PubMed

    Yogalakshmi, K N; Joseph, Kurian

    2010-09-01

    Membrane bioreactor (MBR) is a promising technological option to meet water reuse demands. Though MBR provides effluent quality of reusable standard, its versatility to shock loads remains unexplored. The present study investigates the robustness of MBR under sodium chloride shock load (5-60 g/L) conditions. A bench scale aerobic submerged MBR (6L working volume) with polyethylene hollow fiber membrane module (pore size 0.4 microm) was operated with synthetic wastewater at steady state OLR of 3.6g COD/L/d and HRT of 8h. This resulted in 99% TSS removal and 95% COD and TKN removal. The COD removal during the salt shock load was in the range of 84-64%. The TSS removal showed maximum disturbance (88%) with a corresponding decrease in biomass MLVSS by 8% at 60 g/L shock. TKN removal was reduced due to inhibition of nitrification with increasing shock loads. It took about 4-9 days for the MBR to regain its steady state performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Effects of high dietary sodium chloride content on performance and sodium and potassium balance in growing pigs.

    PubMed

    Chittavong, Malavanh; Jansson, Anna; Lindberg, Jan Erik

    2013-10-01

    Thirty castrated male Moo Lath pigs (6-8 weeks of age) were used in a 15-week growth trial to study the effect of high dietary sodium chloride (NaCl) content on feed and water intake, performance, sodium (Na) and potassium (K) balance, and plasma aldosterone concentration. The pigs were randomly allocated (ten per treatment) to diets containing 0.24 % Na (Na0.24), 0.28 % Na (Na0.28), and 0.32 % Na (Na0.32) per kg diet. Feed and water was provided ad libitum, and water consumption, feed offered, and feed residues were recorded daily. Every third week, the pigs were weighed, blood samples were collected, and a 3-day total collection of urine and feces was performed. Water intake was higher (P = 0.001) in pigs fed with diets Na0.28 (3.7 L/day) and Na0.32 (3.9 L/day) than in pigs fed with diet Na0.24 (3.4 L/day), and dry matter (DM) intake was higher on diet Na0.32 (P = 0.041) than on the other diets. The average daily body weight (BW) gain was higher on diet Na0.32 than on the other diets (P = 0.031). The feed conversion ratio (in kilogram feed DM to kilogram BW gain) was 4.6, 4.6, and 4.1 on treatments Na0.24, Na0.28, and Na0.32, respectively (P = 0.14). The highest Na balance was observed on diet Na0.32 followed by diets Na0.28 and Na0.24 (P < 0.001), while there was no treatment-related pattern for the K balance. The Na/K ratio in feces and urine increased (P < 0.001), and the K/Na ratio in feces (P < 0.001) decreased with increasing Na content in the diet. Plasma aldosterone concentration decreased (P < 0.001) with increasing dietary content of Na. These results indicate that high NaCl intake and free access to water will increase Na balance but do not negatively influence feed intake and performance of growing local pigs.

  19. Chloride: the queen of electrolytes?

    PubMed

    Berend, Kenrick; van Hulsteijn, Leonard Hendrik; Gans, Rijk O B

    2012-04-01

    Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms and have been documented extensively over the past decade. In contrast, despite the important role of chloride in serum, textbooks in general do not allocate chapters exclusively on hypochloremia or hyperchloremia and information on chloride other than channelopathies is scattered in the literature. To systematically review the function of chloride in man, data for this review include searches of MEDLINE, PubMed, and references from relevant articles including the search terms "chloride," "HCl," "chloride channel" "acid-base," "acidosis," "alkalosis," "anion gap" "strong anion gap" "Stewart," "base excess" and "lactate." In addition, internal medicine, critical care, nephrology and gastroenterology textbooks were evaluated on topics pertaining the assessment and management of acid-base disorders, including reference lists from journals or textbooks. Chloride is, after sodium, the most abundant electrolyte in serum, with a key role in the regulation of body fluids, electrolyte balance, the preservation of electrical neutrality, acid-base status and it is an essential component for the assessment of many pathological conditions. When assessing serum electrolytes, abnormal chloride levels alone usually signify a more serious underlying metabolic disorder, such as metabolic acidosis or alkalosis. Chloride is an important component of diagnostic tests in a wide array of clinical situations. In these cases, chloride can be tested in sweat, serum, urine and feces. Abnormalities in chloride channel expression and function in many organs can cause a range of disorders. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  20. Sodium and sulfur release and recapture during black liquor burning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, W.J.; Iisa, K.; Wag, K.

    1995-08-01

    The objective of this study was to provide data on sulfur and sodium volatilization during black liquor burning, and on SO2 capture by solid sodium carbonate and sodium chloride. This data was interpreted and modeled into rate equations suitable for use in computational models for recovery boilers.

  1. 21 CFR 177.1980 - Vinyl chloride-propylene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... grams of granular sodium peroxide, 0.1 gram of powdered starch, and 0.02 gram potassium nitrate; and the... provisions of this section are not applicable to vinyl chloride-propylene copolymers used in food-packaging...

  2. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC.

    PubMed

    Rosenbaek, L L; Assentoft, M; Pedersen, N B; MacAulay, N; Fenton, R A

    2012-12-01

    The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich-Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, (36)Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC.

  3. Could Sodium Chloride be an Environmental Trigger for Immune-Mediated Diseases? An Overview of the Experimental and Clinical Evidence

    PubMed Central

    Toussirot, Eric; Béreau, Matthieu; Vauchy, Charline; Saas, Philippe

    2018-01-01

    Immune mediated diseases (IMDs) are complex chronic inflammatory diseases involving genetic and environmental factors. Salt intake has been proposed as a diet factor that can influence the immune response. Indeed, experimental data report the influence of sodium chloride on the differentiation of naive CD4+ T cells into IL-17 secreting T helper (Th) cells (Th17 cells), by a mechanism involving the serum glucocorticoid kinase-1 (SGK1) that promotes the expression of the IL-23 receptor (IL-23R). The IL-23/IL-23R is critical for pathogenic inflammatory Th17 cell differentiation. Experimental data in murine models of arthritis, colitis and encephalomyelitis corroborate these findings. This manuscript reviews the current knowledge on the effects of sodium chloride on innate and adaptive immunity. We also performed a systematic literature review for clinical studies examining the relationships between salt consumption and the development or the activity/severity of the most common IMDs mediated by the IL-23/Th17 pathway, i.e., rheumatoid arthritis (RA), multiple sclerosis (MS), and Crohn's disease (CD). Nine studies were found, 4 in RA, 4 in MS and 1 in CD. An association was found between developments of anti-citrullinated protein antibody (ACPA) positive RA in smokers and salt intake, but these results were not confirmed in another study. For MS, no association was observed in pediatric subjects while in adult patients, a link was found between salt intake and disease activity. However, this result was not confirmed in another study. These conflicting results highlight the fact that further evaluation in human IMDs is required. Moreover, physicians need to develop clinical trials with diet interventions to evaluate the impact of low salt intake on disease activity/severity of IMDs. PMID:29740348

  4. Could Sodium Chloride be an Environmental Trigger for Immune-Mediated Diseases? An Overview of the Experimental and Clinical Evidence.

    PubMed

    Toussirot, Eric; Béreau, Matthieu; Vauchy, Charline; Saas, Philippe

    2018-01-01

    Immune mediated diseases (IMDs) are complex chronic inflammatory diseases involving genetic and environmental factors. Salt intake has been proposed as a diet factor that can influence the immune response. Indeed, experimental data report the influence of sodium chloride on the differentiation of naive CD4 + T cells into IL-17 secreting T helper (Th) cells (Th17 cells), by a mechanism involving the serum glucocorticoid kinase-1 (SGK1) that promotes the expression of the IL-23 receptor (IL-23R). The IL-23/IL-23R is critical for pathogenic inflammatory Th17 cell differentiation. Experimental data in murine models of arthritis, colitis and encephalomyelitis corroborate these findings. This manuscript reviews the current knowledge on the effects of sodium chloride on innate and adaptive immunity. We also performed a systematic literature review for clinical studies examining the relationships between salt consumption and the development or the activity/severity of the most common IMDs mediated by the IL-23/Th17 pathway, i.e., rheumatoid arthritis (RA), multiple sclerosis (MS), and Crohn's disease (CD). Nine studies were found, 4 in RA, 4 in MS and 1 in CD. An association was found between developments of anti-citrullinated protein antibody (ACPA) positive RA in smokers and salt intake, but these results were not confirmed in another study. For MS, no association was observed in pediatric subjects while in adult patients, a link was found between salt intake and disease activity. However, this result was not confirmed in another study. These conflicting results highlight the fact that further evaluation in human IMDs is required. Moreover, physicians need to develop clinical trials with diet interventions to evaluate the impact of low salt intake on disease activity/severity of IMDs.

  5. FRESHEM - Fresh-saline groundwater distribution in Zeeland (NL) derived from airborne EM

    NASA Astrophysics Data System (ADS)

    Siemon, Bernhard; van Baaren, Esther; Dabekaussen, Willem; Delsman, Joost; Gunnik, Jan; Karaoulis, Marios; de Louw, Perry; Oude Essink, Gualbert; Pauw, Pieter; Steuer, Annika; Meyer, Uwe

    2017-04-01

    In a setting of predominantly saline surface waters, the availability of fresh water for agricultural purposes is not obvious in Zeeland, The Netherlands. Canals and ditches are mainly brackish to saline due to saline seepage, which originates from old marine deposits and salt-water transgressions during historical times. The only available fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh groundwater is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing this fresh groundwater properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labour-intensive, airborne electromagnetics (AEM), which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO started FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in October 2014. Within 3x2 weeks of the first project year, the entire area of about 2000 km2 was surveyed using BGR's helicopter-borne geophysical system totalling to about 10,000 line-km. The HEM datasets of 17 subareas were carefully processed using advanced BGR in-house software and inverted to 2.5 Million resistivity-depth models. Ground truthing demonstrated that the large-scale HEM results fit very well with small-scale ground EM data (ECPT). Based on this spatial resistivity distribution, a 3D voxel model for Chloride concentration was derived for the entire province taking into account geological model data (GeoTOP) for the lithology correction and local in-situ groundwater measurements for the translation of water conductivity to Chloride concentration. The 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.

  6. Microbial Growth in the Magnesium- Chloride - Sodium- Sulphate Ion System: Implications for Habitability in Terrestrial and Extraterrestrial Salts

    NASA Astrophysics Data System (ADS)

    Loudon, C. M.; Aka, S.; Cockell, C. S.

    2017-12-01

    Icy moons in the outer solar system are key targets in the search for extra-terrestrial life as there is evidence that they harbour subsurface oceans. Observational evidence of icy moons such as Europa suggest that these likely brine oceans should be composed of chloride and sulphate salts. The effects of the ions that compose these salts on biology and how the interactions between them can create geochemical and geophysical barriers to life are poorly understood. Here we present an in depth study of four microorganisms grown in solutions with varying combinations of the magnesium- chloride- sodium- sulphate ions. We find that the ion composition of the brine solution can have a large effect on growth. Whilst the water activity must be permissible for growth we found that this alone could not predict the effects of the ions on growth, chaotropic effects and ion specific effects influenced by the specific physiology of organisms are also evident. For this reason we conclude that simply knowing which salts are present on icy moons is not sufficient information to determine their potential habitibility. A full sample of any brine ocean would need to be studied to fully determine the potential for biology on these outer solar system satellites.

  7. Benefits of a silica-based fluoride toothpaste containing o-cymen-5-ol, zinc chloride and sodium fluoride.

    PubMed

    Newby, Craig S; Rowland, Joanna L; Lynch, Richard J M; Bradshaw, David J; Whitworth, Darren; Bosma, Mary Lynn

    2011-08-01

    Fluoride toothpastes in conjunction with tooth brushing are used to clean teeth, control plaque build-up and for anti-caries benefits. Toothpastes are designed with attractive flavours and appearances to encourage regular prolonged use to maximise these benefits. The incorporation of additional ingredients into toothpaste is a convenient way to provide supplementary protection that fits into people's everyday oral care routine. Such ingredients should not compromise the primary health benefits of toothpaste nor discourage its use. o-Cymen-5-ol and zinc chloride have been incorporated into a sodium fluoride (NaF)/silica toothpaste at 0.1%w/w and 0.6%w/w respectively to provide additional benefits. These include improved gingival health maintenance, in terms of the reduction of plaque, gingival index and bleeding, and an immediate and long lasting reduction in volatile sulfur compounds (VSCs) measured on breath. These benefits can be attributed to the antimicrobial and neutralisation actions of the toothpaste. The use of established fluoride models demonstrated no compromise in NaF bioavailability. The toothpaste was formulated without compromising product aesthetics. The combination of o-cymen-5-ol and zinc chloride in toothpaste gave superior maintenance of gingival health and reduction in malodour related VSCs without compromising the primary health benefits of the toothpaste or diminishing attributes preferred for the product's use. © 2011 FDI World Dental Federation.

  8. Leaching of diethylhexyl phthalate from polyvinyl chloride bags into intravenous etoposide solution.

    PubMed

    Demoré, B; Vigneron, J; Perrin, A; Hoffman, M A; Hoffman, M

    2002-04-01

    To compare the release of diethylhexyl phthalate (DEHP) from polyvinyl chloride (PVC) bags from four different manufacturers into intravenous etoposide solutions. Etoposide solutions, 0.4 mg/mL, containing the vehicle polysorbate 80 were prepared in 5% dextrose or 0.9% sodium chloride injection PVC bags and stored at room temperature for 24 h. DEHP content was analysed by high-performance liquid chromatography. Substantial amounts of DEHP (up to 20 microg/mL at room temperature) leached into the etoposide solutions. However, no significant differences were found in the amounts of DEHP leached into the etoposide infusion solutions prepared using either 5% dextrose or 0.9% sodium chloride injection and stored in the four different containers. To minimize patient exposure o DEHP, etoposide solutions should ideally be stored in a glass or polyolefin container.

  9. Removal of chloride from MSWI fly ash.

    PubMed

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).

    PubMed

    Costa, P M; Fernandes, P L; Ferreira, H G; Ferreira, K T; Giraldez, F

    1987-12-01

    1. Membrane potential and conductances and short-circuit current were continuously measured with microelectrodes and conventional electrophysiological techniques in a stripped preparation of frog skin epithelium. The effects of the removal of chloride or sodium ions and the concentration or dilution of the serosal (inner) bathing solution were studied. 2. Chloride- or sodium-free solutions produced a cell depolarization of about 30 mV in parallel with a fall in the short-circuit current. Mucosal and serosal membrane conductances both decreased and the sodium permeability of the mucosal barrier was calculated to fall to about one-half its value in standard Ringer solution. The observed decrease in the short-circuit current is probably related to the combined effect of the decrease in sodium permeability and the decrease in the driving force across the mucosal membrane. 3. The removal of chloride or sodium ions reduced the depolarization caused by serosal perfusion with high-potassium solutions (50 mM-KCl). The ratio of the change in cell membrane potential under short-circuit conditions to the change in the potassium equilibrium potential (delta Ec(s.c.)/delta EK), was 0.59 in standard Ringer solution and 0.26 and 0.24 after the removal of chloride or sodium respectively. The depolarizing effect of barium-containing solutions (2 mM-BaCl2) was also markedly reduced in chloride- or sodium-free solutions, suggesting a decrease of the potassium selectivity of the serosal membrane in these conditions. 4. Increasing the osmolality of the serosal bathing solution produced similar effects, i.e. cell depolarization, fall in the short-circuit current and membrane conductances and reduction of the depolarizing effect of high-potassium and barium solutions. On the contrary, dilution of the serosal bath produced the opposite effects, consistent with an increase in the serosal permeability to potassium. 5. The effects of chloride- or sodium-free solutions were reversed by the

  11. The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Heck, Gerard L.; Desimone, John A.

    1991-11-01

    Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.

  12. Quality of cucumbers commercially fermented in calcium chloride brine without sodium salts

    USDA-ARS?s Scientific Manuscript database

    Commercial cucumber fermentation produces large volumes of salty wastewater. This study evaluated the quality of fermented cucumbers produced commercially using an alternative calcium chloride brining process. Fermentation conducted in calcium brines (0.1M calcium chloride, 6mM potassium sorbate, eq...

  13. Organic Electrolytes for Sodium Batteries

    DTIC Science & Technology

    1992-09-01

    discussion ................................... 30 3.1 Stability of the organic compounds ...................... 30 3.2 Reactivity with aluminum chloride...Reactions between organic salt/ aluminum chloride. 3.2.1 The MEICI:AICI 3 system. 3.3.1.1 Least-Squares-Fitted Parameters fo, specific conductivitie’s of l...temperature. 3.5.2.3.1 Sodium behavior towards MEICIAICI3 melts. 3.5.2.3.1.1 Standard potential of copper couples in AICt3 :BuPyCI melts versus aluminum

  14. 21 CFR 177.1980 - Vinyl chloride-propylene copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... contents of the cup are added 3.5 grams of granular sodium peroxide, 0.1 gram of powdered starch, and 0.02... applicable to vinyl chloride-propylene copolymers used in food-packaging adhesives complying with § 175.105...

  15. 21 CFR 177.1980 - Vinyl chloride-propylene copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... contents of the cup are added 3.5 grams of granular sodium peroxide, 0.1 gram of powdered starch, and 0.02... applicable to vinyl chloride-propylene copolymers used in food-packaging adhesives complying with § 175.105...

  16. Estimation of Daily Sodium and Potassium Excretion Using Spot Urine and 24-Hour Urine Samples in a Black Population (Benin).

    PubMed

    Mizéhoun-Adissoda, Carmelle; Houehanou, Corine; Chianéa, Thierry; Dalmay, François; Bigot, André; Preux, Pierre-Marie; Bovet, Pascal; Houinato, Dismand; Desport, Jean-Claude

    2016-07-01

    The 24-hour urine collection method is considered the gold standard for the estimation of ingested potassium and sodium. Because of the impracticalities of collecting all urine over a 24-hour period, spot urine is often used for epidemiological investigations. This study aims to assess the agreement between spot urine and 24-hour urine measurements to determine sodium and potassium intake. A total of 402 participants aged 25 to 64 years were randomly selected in South Benin. Spot urine was taken during the second urination of the day. Twenty-four-hour urine was also collected. Samples (2-mL) were taken and then stored at -20°C. The analysis was carried out using potentiometric dosage. The agreement between spot urine and 24-hour urine measurements was established using Bland-Altman plots. A total of 354 results were analyzed. Daily sodium chloride and potassium chloride urinary excretion means were 10.2±4.9 g/24 h and 2.9±1.4 g/24 h, respectively. Estimated daily sodium chloride and potassium chloride means from the spot urine were 10.7±7.0 g/24 h and 3.9±2.1 g/24 h, respectively. Concordance coefficients were 0.61 at d=-0.5 g, (d±2SD=-11 g and 10.1 g) for sodium chloride and 0.61 at d=-1 g, (d±2SD=-3.8 g and 1.8 g) for potassium chloride. Spot urine method is acceptable for estimating 24-hour urinary sodium and potassium excretion to assess sodium and potassium intake in a black population. However, the confidence interval for the mean difference, which is too large, makes the sodium chloride results inadmissible at a clinical level. © 2015 Wiley Periodicals, Inc.

  17. Ion Relations of Symplastic and Apoplastic Space in Leaves from Spinacia oleracea L. and Pisum sativum L. under Salinity 1

    PubMed Central

    Speer, Michael; Kaiser, Werner M.

    1991-01-01

    Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl−) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3−/Cl− uptake by roots. PMID:16668541

  18. Electrophoretic separation of alginic sodium diester and sodium hexametaphosphate in chondroitin sulfate that interfere with the cetylpyridinium chloride titration assay.

    PubMed

    Weiguo, Zhang; Giancaspro, Gabriel; Adams, Kristie M; Neal-Kababick, James; Hildreth, Jana; Li, Aishan; Roman, Mark C; Betz, Joseph M

    2014-01-01

    The most commonly used chondroitin sulfate (CS) assay method is cetylpyridinium chloride (CPC) titration. Cellulose acetate membrane electrophoresis (CAME) is the technique used for detection of impurities in the U.S. Pharmacopeia's CS monograph. Because CPC titration is a relatively nonspecific quantitative technique, the apparent amount of CS as determined by CPC titration alone may not reflect the true amount of CS due to possible interference with the CPC assay by impurities that contain CPC titratable functional groups. When CAME is used in conjunction with CPC titration, certain non-CS and adulterants can be visualized and estimated, and a true value for CS can be assigned once the presence of these non-CS impurities has been ruled out. This study examines conjunct application of CPC and CAME in ascertaining CS assay and purity in the presence of certain adulterants. These include propylene glycol alginate sulfate sodium, known in commerce as alginic sodium diester (ASD), and Zero One (Z1), a water-soluble agent newly reported in the CS marketplace and subsequently identified as sodium hexametaphosphate. ASD, Z1, and CS are similar in physical appearance and solubility in water and ethanol. They are also titratable anions and form ionic pairs with CPC, therefore interfering with the CPC titration assay for CS CAME separates these adulterants from each other and from CS by differences in their electrophoretic mobility. CAME is able to detect these impurities in CS at levels as low as 0.66% by weight. Although it is recommended that a method for detecting impurities (e.g., CAME) be used in cormbination with relatively nonspecific assay methods such as CPC titration, this is seldom done in practice. Assay results for CS derived fromn CPC titration may, therefore, be misleading, leaving the CS supply chain vulnerable to adulteration. In this study, the authors investigated ASD and Z1 adulteration of CS and developed an electrophoretic separation of these

  19. Saline water in the Little Arkansas River Basin area, south-central Kansas

    USGS Publications Warehouse

    Leonard, Robert B.; Kleinschmidt, Melvin K.

    1976-01-01

    Ground water in unconsolidated deposits of Pleistocene age in part of the Little Arkansas River basin has been polluted by the influx of saline water. The source of the saline water generally is oil-field brine that leaked from disposal ponds on the land surface. Locally, pollution by saline water also has been caused by upwelling of oil-field brine injected under pressure into the "lost-circulation zone" of the Lower Permian Wellington Formation and, possibly, by leakage of brine from corroded or improperly cased disposal wells. Anomalously high concentrations of chloride ion in some reaches of the Little Arkansas River probably can be attributed to pollution by municipal wastes rather than from inflow of saline ground water. Hydraulic connection exists between the "lost-circulation zone" and unconsolidated deposits, as evidenced by the continuing development of sinkholes, by the continuing discharge of saline water through springs and seeps along the Arkansas River south of the Little Arkansas River basin and by changes in the chloride concentration in water pumped from wells in the "lost-circulation zone." The hydraulic head in the "lost-circulation zone" is below the base of the unconsolidated deposits, and much below the potentiometric surface of the aquifer in those deposits. Any movement of water, therefore, would be downward from the "fresh-water" aquifer to the saline "lost-circulation zone."

  20. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-01

    The sodium-nickel chloride (ZEBRA) battery is operated at relatively high temperature (250-350 °C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150200 °C can not only lead to enhanced cycle life by suppressing temperature-related degradations, but also allow the use of lower cost materials for construction. To achieve adequate electrochemical performance at lower operating temperatures, reduction in ohmic losses is required, including the reduced ohmic resistance of β″-alumina solid electrolyte (BASE) and the incorporation of low melting point secondary electrolytes. In present work, planar-type Na/NiCl2 cells with a thin BASE (600 μm) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salts used as secondary electrolytes were fabricated by the partial replacement of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of these ternary molten salts demonstrated improved ionic conductivity and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175 °C compared to the cell with the standard NaAlCl4 catholyte. The cells also exhibited stable cycling performance even at 150 °C.

  1. Sodium Chloride Diffusion in Low-Acid Foods during Thermal Processing and Storage.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S

    2016-05-01

    This study aimed at modeling sodium chloride (NaCl) diffusion in foods during thermal processing using analytical and numerical solutions and at investigating the changes in NaCl concentrations during storage after processing. Potato, radish, and salmon samples in 1% or 3% NaCl solutions were heated at 90, 105, or 121 °C for 5 to 240 min to simulate pasteurization and sterilization. Selected samples were stored at 4 or 22 °C for up to 28 d. Radish had the largest equilibrium NaCl concentrations and equilibrium distribution coefficients, but smallest effective diffusion coefficients, indicating that a greater amount of NaCl diffused into the radish at a slower rate. Effective diffusion coefficients determined using the analytical solution ranged from 0.2 × 10(-8) to 2.6 × 10(-8) m²/s. Numerical and analytical solutions showed good agreement with experimental data, with average coefficients of determination for samples in 1% NaCl at 121 °C of 0.98 and 0.95, respectively. During storage, food samples equilibrated to a similar NaCl concentration regardless of the thermal processing severity. The results suggest that sensory evaluation of multiphase (solid and liquid) products should occur at least 14 d after processing to allow enough time for the salt to equilibrate within the product. © 2016 Institute of Food Technologists®

  2. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  3. Impact of sodium chloride on wheat flour dough for yeast-leavened products. II. Baking quality parameters and their relationship.

    PubMed

    Beck, Margit; Jekle, Mario; Becker, Thomas

    2012-01-30

    The traditional use of sodium chloride (NaCl) fulfills various important rheological, technological and sensory properties in the manufacturing of yeast-leavened products. However, the use of NaCl in food production has been discussed controversially since a high intake of sodium seems to be associated with hypertension. This study investigates the baking quality parameters of wheat breads containing various levels of NaCl (0-40 g NaCl kg(-1) flour). Crumb firmness and rate of bread staling decreased with decreasing NaCl levels. A slight increase in loaf volume was observed based on the increased yeast leavening ability resulting from additional NaCl. Higher crumb retrogradation (measured by differential scanning calorimetry) was observed with low NaCl levels. The retrogradation effect is based on the theory that NaCl probably leads to Na(+) inclusion in starch molecules during storage and thus reduces retrogradation. Further, significant (P⩽0.05) linear relationships (r ≥ 0.829) between Rheofermentometer results, bread volume and crumb firmness were found, suggesting a predictability of bread quality by measurement of gas release. Copyright © 2011 Society of Chemical Industry.

  4. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions

    PubMed Central

    Gleadow, Ros; Pegg, Amelia; Blomstedt, Cecilia K.

    2016-01-01

    Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants. PMID:27506218

  5. Quantitative Interaction Effects of Carbon Dioxide, Sodium Chloride, and Sodium Nitrite on Neurotoxin Gene Expression in Nonproteolytic Clostridium botulinum Type B

    PubMed Central

    Lövenklev, Maria; Artin, Ingrid; Hagberg, Oskar; Borch, Elisabeth; Holst, Elisabet; Rådström, Peter

    2004-01-01

    The effects of carbon dioxide, sodium chloride, and sodium nitrite on type B botulinum neurotoxin (BoNT/B) gene (cntB) expression in nonproteolytic Clostridium botulinum were investigated in a tryptone-peptone-yeast extract (TPY) medium. Various concentrations of these selected food preservatives were studied by using a complete factorial design in order to quantitatively study interaction effects, as well as main effects, on the following responses: lag phase duration (LPD), growth rate, relative cntB expression, and extracellular BoNT/B production. Multiple linear regression was used to set up six statistical models to quantify and predict these responses. All combinations of NaCl and NaNO2 in the growth medium resulted in a prolonged lag phase duration and in a reduction in the specific growth rate. In contrast, the relative BoNT/B gene expression was unchanged, as determined by the cntB-specific quantitative reverse transcription-PCR method. This was confirmed when we measured the extracellular BoNT/B concentration by an enzyme-linked immunosorbent assay. CO2 was found to have a major effect on gene expression when the cntB mRNA levels were monitored in the mid-exponential, late exponential, and late stationary growth phases. The expression of cntB relative to the expression of the 16S rRNA gene was stimulated by an elevated CO2 concentration; the cntB mRNA level was fivefold greater in a 70% CO2 atmosphere than in a 10% CO2 atmosphere. These findings were also confirmed when we analyzed the extracellular BoNT/B concentration; we found that the concentrations were 27 ng · ml−1 · unit of optical density−1 in the 10% CO2 atmosphere and 126 ng · ml−1 · unit of optical density−1 in the 70% CO2 atmosphere. PMID:15128553

  6. Plolyamines and other secondary metabolites of green-leaf and red-leaf almond rootstocks triggered in response to salinity

    USDA-ARS?s Scientific Manuscript database

    Almond trees are very sensitive to salinity, and saline water is the only alternative for irrigation in many semiarid regions. Thus, the use of salt-tolerant rootstocks may allow an economically-feasible yield under saline irrigation. In this study, we evaluated the effects of chloride salts on plan...

  7. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  8. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine.

    PubMed

    Weisbord, Steven D; Gallagher, Martin; Jneid, Hani; Garcia, Santiago; Cass, Alan; Thwin, Soe-Soe; Conner, Todd A; Chertow, Glenn M; Bhatt, Deepak L; Shunk, Kendrick; Parikh, Chirag R; McFalls, Edward O; Brophy, Mary; Ferguson, Ryan; Wu, Hongsheng; Androsenko, Maria; Myles, John; Kaufman, James; Palevsky, Paul M

    2018-02-15

    Intravenous sodium bicarbonate and oral acetylcysteine are widely used to prevent acute kidney injury and associated adverse outcomes after angiography without definitive evidence of their efficacy. Using a 2-by-2 factorial design, we randomly assigned 5177 patients at high risk for renal complications who were scheduled for angiography to receive intravenous 1.26% sodium bicarbonate or intravenous 0.9% sodium chloride and 5 days of oral acetylcysteine or oral placebo; of these patients, 4993 were included in the modified intention-to-treat analysis. The primary end point was a composite of death, the need for dialysis, or a persistent increase of at least 50% from baseline in the serum creatinine level at 90 days. Contrast-associated acute kidney injury was a secondary end point. The sponsor stopped the trial after a prespecified interim analysis. There was no interaction between sodium bicarbonate and acetylcysteine with respect to the primary end point (P=0.33). The primary end point occurred in 110 of 2511 patients (4.4%) in the sodium bicarbonate group as compared with 116 of 2482 (4.7%) in the sodium chloride group (odds ratio, 0.93; 95% confidence interval [CI], 0.72 to 1.22; P=0.62) and in 114 of 2495 patients (4.6%) in the acetylcysteine group as compared with 112 of 2498 (4.5%) in the placebo group (odds ratio, 1.02; 95% CI, 0.78 to 1.33; P=0.88). There were no significant between-group differences in the rates of contrast-associated acute kidney injury. Among patients at high risk for renal complications who were undergoing angiography, there was no benefit of intravenous sodium bicarbonate over intravenous sodium chloride or of oral acetylcysteine over placebo for the prevention of death, need for dialysis, or persistent decline in kidney function at 90 days or for the prevention of contrast-associated acute kidney injury. (Funded by the U.S. Department of Veterans Affairs Office of Research and Development and the National Health and Medical Research

  9. Injection order effects on efficacy of calcium chloride and sodium tripolyphosphate in controlling the pink color defect in uncured, intact turkey breast.

    PubMed

    Claus, James R; Sawyer, Christopher A; Vogel, Kurt D

    2010-04-01

    An experiment was conducted to test sequential injection of sodium tripolyphosphate (STP; 0.5% meat weight basis, mwb) followed by injection with or without addition of calcium chloride (CaCl(2), 500 ppm mwb), and to test the effect of post-injection delay prior to cooking. A second experiment evaluated the impact of injection order and delay time between independent addition of CaCl(2) (500 ppm mwb) and STP (0.5% mwb). Turkey was formulated without an added pink generating ligand (NONE), with nicotinamide (NIC; 0.1% mwb), or with sodium nitrite (NIT; 10 ppm mwb). A white colloid was observed in the extracellular space of treatments containing both STP and CaCl(2.) Addition of CaCl(2) decreased nitrosylhemochrome but did not reduce levels of nicotinamide hemochrome or CIE a(*) values. Injection order or delay between injections did not contribute to controlling the pink defect in cooked, intact turkey breast. Published by Elsevier Ltd.

  10. [Relationship between the ionic composition of blood and urine and the salinity of the external environment of the crab Hemigrapsus sanguineus].

    PubMed

    Busev, V M; Semen'kov, P G; Mishchenko, T Ia

    1977-01-01

    Studies have been made on the dependence of sodium, potassium, magnesium and calcium concentrations of the blood and urine on the salinity of the external milieu in the crab H. sanguineus. Effective regulation of sodium and potasssium balance at low salinities was found. Within the salinity range investigated, magnesium level in the blood is maintained at lower level as compared to that in the environment. At low salinities, regulation of potassium and sodium concentrations in the blood is monitored by extrarenal mechanisms. Uber high salinity conditions, regulation of magnesium and potassium concentrations in the blood is accomplished at the expense of the activity of antennal glands. Calcium concentration in the blood is regulated by extra-renal mechanisms. The antennal glands affect regulation of calcium balance.

  11. Exploring How Different Features of Animations of Sodium Chloride Dissolution Affect Students' Explanations

    NASA Astrophysics Data System (ADS)

    Kelly, Resa M.; Jones, Loretta L.

    2007-10-01

    Animations of molecular structure and dynamics are often used to help students understand the abstract ideas of chemistry. This qualitative study investigated how the features of two different styles of molecular-level animation affected students' explanations of how sodium chloride dissolves in water. In small group sessions 18 college-level general chemistry students dissolved table salt in water, after which they individually viewed two animations of salt dissolution. Before and after viewing each animation the participants provided pictorial, written, and oral explanations of the process at the macroscopic and molecular levels. The students then discussed the animations as a group. An analysis of the data showed that students incorporated some of the microscopic structural and functional features from the animations into their explanations. However, oral explanations revealed that in many cases, participants who drew or wrote correct explanations did not comprehend their meanings. Students' drawings may have reflected only what they had seen, rather than a cohesive understanding. Students' explanations given after viewing the animations improved, but some prior misconceptions were retained and in some cases, new misconceptions appeared. Students reported that they found the animations useful in learning; however, they sometimes missed essential features when they watched the animation alone.

  12. Eolian transport, saline lake basins, and groundwater solutes

    USGS Publications Warehouse

    Wood, Warren W.; Sanford, Ward E.

    1995-01-01

    Eolian processes associated with saline lakes are shown to be important in determining solute concentration in groundwater in arid and semiarid areas. Steady state mass balance analyses of chloride in the groundwater at Double Lakes, a saline lake basin in the southern High Plains of Texas, United States, suggest that approximately 4.5 × 105 kg of chloride is removed from the relatively small (4.7 km2) basin floor each year by deflation. This mass enters the groundwater down the wind gradient from the lake, degrading the water quality. The estimates of mass transport were independently determined by evaluation of solutes in the unsaturated zone and by solute mass balance calculations of groundwater flux. Transport of salts from the lake was confirmed over a short term (2 years) by strategically placed dust collectors. Results consistent with those at Double Lake were obtained from dune surfaces collected upwind and downwind from a sabkha near the city of Abu Dhabi in the United Arab Emirates. The eolian transport process provides an explanation of the degraded groundwater quality associated with the 30–40 saline lake basins on the southern half of the southern High Plains of Texas and New Mexico and in many other arid and semiarid areas.

  13. Sweat Chlorides in Salt-Deprived Cystic Fibrosis Heterozygotes

    PubMed Central

    Myers, Michael F.

    1965-01-01

    Sweat chlorides of 10 sets of parents of children with cystic fibrosis and 11 controls were studied in an attempt to develop a test for the diagnosis of cystic fibrosis heterozygotes by subjecting both the parents and controls to a low sodium diet and comparing sweat chloride values as the diet progressed. It was hoped that the sweat chloride levels of the parents, the heterozygotes, would remain stationary throughout the diet, since their children, the homozygotes, reveal this finding under similar conditions of salt deprivation. The sweat chloride levels of the controls, because of effects of aldosterone, were expected to decrease steadily from the commencement of the diet to its termination. A decrease in sweat chloride values of similar magnitude was found in both parents and controls as the diet continued. It is concluded that the study of sweat electrolyte levels in salt-deprived subjects is of no value in the diagnosis of cystic fibrosis heterozygotes. PMID:14289142

  14. An evaluation of the use of liquid calcium chloride to improve deicing and snow removal.

    DOT National Transportation Integrated Search

    1978-01-01

    The Iowa method of spraying liquid calcium chloride onto sodium chloride applied in snow and ice removal operations was evaluated On four sections of highway in the Staunton District. From the relatively sparse data accumulated over three winters, it...

  15. Different effects of sodium chloride preincubation on cadmium tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae.

    PubMed

    Ma, Ning; Li, Chunsheng; Dong, Xiaoyan; Wang, Dongfeng; Xu, Ying

    2015-08-01

    Application of growing microorganisms for cadmium removal is restricted by high cadmium toxicity. The effects of sodium chloride (NaCl) preincubation on the cadmium tolerance and removal ability of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation improved the biomass of P. kudriavzevii under cadmium stress, while no obvious effect was observed in S. cerevisiae. The improved activities of peroxidase (POD) and catalase (CAT) after NaCl preincubation might be an important reason for the decrease of the reactive oxygen species (ROS) accumulation, cell death, and oxidative damage of proteins and lipids induced by cadmium, contributing to the improvement of the yeast growth. The cadmium bioaccumulation capacity of P. kudriavzevii decreased significantly after NaCl preincubation, which played an important role in mitigating the cadmium toxicity to the yeast. The cadmium removal rate of P. kudriavzevii was obviously higher than S. cerevisiae and was significantly enhanced after NaCl preincubation. The results suggested that NaCl preincubation improved the cadmium tolerance and removal ability of P. kudriavzevii. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Shift in sodium chloride sources in past 10 years of salt reduction campaign in Japan.

    PubMed

    Shimbo, S; Hatai, I; Saito, T; Yokota, M; Imai, Y; Watanabe, T; Moon, C S; Zhang, Z W; Ikeda, M

    1996-11-01

    Twenty four-hr total food duplicate samples were collected from nonsmoking house-wives (aged mostly 30 to 60 years) twice at a 10-year interval in winter seasons, once in around 1980 and then in around 1990 in 11 prefectures in Japan. In practice, 342 and 472 samples were obtained in the 1980 and 1990 studies, respectively. Sodium chloride (NaCl) intake via each food item was estimated from the weight of the item in the duplicate. The comparison of 1990 results with 1980 results showed that the total NaCl intake (i.e., NaCl intake via all food items) decreased after a 10-year campaign to lower salt intake. The NaCl/energy ratio however stayed essentially unchanged. Whereas NaCl intake via pickles decreased remarkably and that via miso paste [a fermentation product of soy bean, rice (or wheat) and salt] slightly, the decreases were counteracted by a substantial increase in NaCl intake via soy bean sauce. Meaning of this unexpected counteraction was discussed in relation to the difficulties in the campaign to lower salt intake.

  17. Nanoscale supramolecular ordering in gel-surfactant complexes: Sodium alkyl sulfates in poly(diallyldimethylammonium chloride)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, E.L.; Yeh, F.; Khokhlov, A.

    1996-12-25

    Studies of slightly cross-linked polycationic gels interacting with anionic surfactants have been performed by using random copolymers of poly(diallyldimethylammonium chloride) (PDADMACl) and polyacrylamide (PAAm) with varying content of PDADMACl and degree of cross-linking. Gel samples which had been fully swollen in water were placed in aqueous solutions of sodium alkyl sulfates (octyl(SOS), decyl-(SDCS), dodecyl (SDS), tetradecyl (STS), and hexyl (SHS) sulfates). The degree of the sample volume contraction depends on the PDADMACl content. The collapsed gel-surfactant complexes were studied using synchrotron small-angle X-ray scattering. All studied samples containing PDADMACl exhibited pronounced supramolecular nanostructures. The gel-SDCS complex exhibited a cubic structuremore » with a periodicity (7.75 nm) of approximately 4 times the surfactant molecular length, while the gel-SDS, gel-STS, and gel-SHS complexes showed hexagonal supramolecular ordering with a periodicity of approximately 2 times the surfactant molecular length. The d spacing of the longest periodicity in the complexes was dependent on the PDADMACl content and the surfactant. The d spacing generally increased with decreasing PDADMACl (charge) content and increasing number of carbon atoms in the surfactant alkyl chain. 20 refs., 11 figs., 5 tabs.« less

  18. Variables affecting results of sodium chloride tolerance test for identification of rapidly growing mycobacteria.

    PubMed

    Conville, P S; Witebsky, F G

    1998-06-01

    The sodium chloride tolerance test is often used in the identification of rapidly growing mycobacteria, particularly for distinguishing between Mycobacterium abscessus and Mycobacterium chelonae. This test, however, is frequently unreliable for the identification of some species. In this study we examined the following variables: medium manufacturer, inoculum concentration, and atmosphere and temperature of incubation. Results show that reliability is improved if the test and control slants are inoculated with an organism suspension spectrophotometrically equal to a 1 McFarland standard. Slants should be incubated at 35 degrees C in ambient air and checked weekly for 4 weeks. Growth on control slants should be critically evaluated to determine the adequacy of the inoculum; colonies should number greater than 50. Salt-containing media should be examined carefully to detect pinpoint or tiny colonies, and colonies should number greater than 50 for a positive reaction. Concurrent use of a citrate slant may be helpful for distinguishing between M. abscessus and M. chelonae. Molecular methodologies are probably the most reliable means for the identification of rapidly growing mycobacteria and should be used, if possible, when unequivocal species identification is of particular importance.

  19. Variables Affecting Results of Sodium Chloride Tolerance Test for Identification of Rapidly Growing Mycobacteria

    PubMed Central

    Conville, Patricia S.; Witebsky, Frank G.

    1998-01-01

    The sodium chloride tolerance test is often used in the identification of rapidly growing mycobacteria, particularly for distinguishing between Mycobacterium abscessus and Mycobacterium chelonae. This test, however, is frequently unreliable for the identification of some species. In this study we examined the following variables: medium manufacturer, inoculum concentration, and atmosphere and temperature of incubation. Results show that reliability is improved if the test and control slants are inoculated with an organism suspension spectrophotometrically equal to a 1 McFarland standard. Slants should be incubated at 35°C in ambient air and checked weekly for 4 weeks. Growth on control slants should be critically evaluated to determine the adequacy of the inoculum; colonies should number greater than 50. Salt-containing media should be examined carefully to detect pinpoint or tiny colonies, and colonies should number greater than 50 for a positive reaction. Concurrent use of a citrate slant may be helpful for distinguishing between M. abscessus and M. chelonae. Molecular methodologies are probably the most reliable means for the identification of rapidly growing mycobacteria and should be used, if possible, when unequivocal species identification is of particular importance. PMID:9620376

  20. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.